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P H Y S I C S

Toward Heisenberg scaling in non-Hermitian metrology 
at the quantum regime
Xinglei Yu1, Xinzhi Zhao1, Liangsheng Li2, Xiao-Min Hu3,4, Xiangmei Duan1,  
Haidong Yuan5*, Chengjie Zhang1,6*

Non-Hermitian quantum metrology, an emerging field at the intersection of quantum estimation and non-Hermitian 
physics, holds promise for revolutionizing precision measurement. Here, we present a comprehensive investigation 
of non-Hermitian quantum parameter estimation in the quantum regime, with a special focus on achieving 
Heisenberg scaling. We introduce a concise expression for the quantum Fisher information (QFI) that applies to 
general non-Hermitian Hamiltonians, enabling the analysis of estimation precision in these systems. Our findings 
unveil the remarkable potential of non-Hermitian systems to attain the Heisenberg scaling of 1/t, where t represents 
time. Moreover, we derive optimal measurement conditions based on the proposed QFI expression, demonstrating 
the attainment of the quantum Cramér-Rao bound. By constructing non-unitary evolutions governed by two 
non-Hermitian Hamiltonians, one with parity-time symmetry and the other without specific symmetries, we 
experimentally validate our theoretical analysis. The experimental results affirm the realization of Heisenberg 
scaling in estimation precision, marking a substantial milestone in non-Hermitian quantum metrology.

INTRODUCTION
The assumption of Hamiltonian Hermiticity has long been regarded 
as a fundamental requirement in quantum mechanics, ensuring real 
energy eigenvalues and unitary evolution. However, the emergence 
of research on non-Hermitian Hamiltonians with parity-time (   ) 
symmetry has challenged this concept and sparked substantial inter-
est. This class of non-Hermitian Hamiltonians exhibits an intriguing 
property—an entirely real spectrum, especially at exceptional points 
(EPs), which serve as critical thresholds distinguishing the   sym-
metry–broken and unbroken regimes (1, 2). Over past two decades, 
there has been plenty of research and developments in various fields 
based on the interesting features of  -symmetric non-Hermitian 
Hamiltonians, such as single-mode lasers (3–5), laser absorbers (6–8), 
topological mode transfer (9, 10), metamaterials (11–14), and non-
reciprocal device (15, 16). These endeavors have reshaped our under-
standing and opened up frontiers in quantum science and engineering, 
leveraging the unique characteristics of non-Hermitian systems with 
  symmetry.

Among various applications, non-Hermitian metrology has 
emerged as a captivating area of study, attracting considerable inter-
est and attention. Previous studies have focused on achieving enhanced 
sensitivity near EPs in classical wave systems with balanced gain and 
loss (17–21). In addition, quantum noise theory of non-Hermitian 
sensors (22, 23) and quantum Fisher information (QFI) in open sys-
tems (24, 25) have been investigated. However, most of the imple-
mented and discussed non-Hermitian systems in these works are 

still in the classical regime, the investigation of non-Hermitian quan-
tum metrology in the quantum regime is still in its early stage.

Recent advancements have showcased promising progress in real-
izing non-Hermitian quantum systems across various platforms. These 
developments encompass single-photon networks (26–31), cold atoms 
(32, 33), trapped ions (34, 35), superconducting circuits (36, 37), and 
single nitrogen-vacancy centers (38, 39). Furthermore, important re-
search has demonstrated the evolution of quantum non-Hermitian 
systems in nuclear magnetic resonance quantum systems (40, 41). 
Non-Hermitian operators have also been investigated as observables 
for quantum estimation (42). Using the non-Hermitian quantum sys-
tems for quantum parameter estimation, however, is still a largely 
unexplored area.

Extensive research has been devoted to achieving the coveted 
Heisenberg scaling in the realm of Hermitian systems (43–46). Vari-
ous strategies have been explored, with the parallel scheme gaining 
prominence. This approach leverages entangled states as input to 
achieve Heisenberg precision (47–49). However, the preparation of 
high-quality, large entangled states poses a substantial challenge. As 
an alternative, the direct sequential scheme has emerged as another 
viable avenue to attain Heisenberg scaling without relying on en-
tangled probe states (50–53). Substantial progress has been made in 
understanding the conditions necessary for achieving Heisenberg 
scaling in Hermitian systems under both the parallel and sequential 
schemes (54, 55). For non-Hermitian systems in the quantum regime, 
such understanding is still very limited.

In this work, we investigate non-Hermitian quantum parameter 
estimation both theoretically and experimentally. First, we propose 
a concise expression for the QFI that is applicable to general non-
Hermitian Hamiltonians. This expression allows us to analyze the 
estimation precision of non-Hermitian systems. We find that Heisen-
berg scaling, characterized by an inverse scaling with time t−1, can be 
achieved in non-Hermitian systems. Furthermore, we derive the 
condition for optimal measurements based on the proposed QFI 
expression. By identifying the optimal measurement strategy, we 
demonstrate that the estimation precision can reach the funda-
mental limit known as the quantum Cramér-Rao bound (QCRB). To 
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experimentally validate our theoretical findings, we construct a 
non-unitary evolution governed by a  -symmetric non-Hermitian 
Hamiltonian and estimate the associated parameters. By using the 
condition for optimal measurements obtained from our theoretical 
analysis, we achieve estimation precision that matches well with the 
QCRB. The experimental results reveal that the precision follows 
Heisenberg scaling t−1 for both multiplicative and non-multiplicative 
Hamiltonians. Our theory is universally applicable and independent 
of the symmetries of non-Hermitian Hamiltonians. This research 
not only enriches our understanding of non-Hermitian systems 
but also opens up exciting avenues for Heisenberg-limited quantum 
metrology.

RESULTS
QFI for general non-Hermitian Hamiltonians
The precision of a quantum system is theoretically limited by the 
QCRB, as given by (Δθ̂)2 ≥ 1∕ (nθ) (56–61). Here, θ is the un-
known parameter to be estimated, (Δθ̂)2 is the variance of an unbi-
ased estimator θ̂ , n is the number of the measurements, and θ is 
QFI that characterizes the optimal estimation precision. For a mul-
tiplicative non-Hermitian Hamiltonian Ĥ0 = Ĝs , where Ĝ is the 
generator and s is the parameter, the evolution of the system is 
described by the operator Ûθ = e−iĤ0t = e−iĜθ (40, 62), where θ = 
st. If the evolution time t is constant, then estimating θ is equivalent 
to estimating s.

In the case of a pure initial probe state, ∣ψ0〉〈ψ0∣, the QFI for esti-
mating θ can be expressed as θ = 4

�
⟨Ĝ

†
Ĝ⟩θ − ⟨Ĝ

†
⟩θ⟨Ĝ⟩θ

�
 (63), 

where ⟨Ĝ⟩θ = ⟨φθ ∣ Ĝ ∣ φθ ⟩ represents the expectation value of the 
normalized output state, and ∣ φθ ⟩ = Ûθ ∣ψ0 ⟩ ∕

�

⟨ψ0 ∣ Û
†

θ
Ûθ ∣ψ0 ⟩  

represents the normalized output state (64). We refer the interested 
readers to the Supplementary Materials for the justification of such 
normalization.

For general non-multiplicative non-Hermitian Hamiltonians, the 
QFI cannot be expressed in the form mentioned earlier. In this work, 
we propose a general expression for the QFI that is applicable to both 
multiplicative and non-multiplicative non-Hermitian Hamiltonians. 
Consider a general non-Hermitian Hamiltonian Ĥα that does not 
necessary takes the multiplicative form, the evolution operator is given 
by Ûα = e−iĤαt . The generator of the parameter α is denoted as 
ĥα = i(�αÛα)Û

−1

α
 . On the basis of this, we can write the QFI as

This expression provides a more general way to analyze the QFI 
for non-Hermitian Hamiltonians, regardless of whether they take 
the multiplicative form or not. One specific application of this expres-
sion is the analysis of enhanced or reduced sensitivity near EPs. By 
using this expression, we can deduce that the sensitivity of quantum 
sensors is reduced near EPs for two-level multiplicative non-Hermitian 
Hamiltonians. However, for non-multiplicative non-Hermitian 
Hamiltonians, the sensitivity may be enhanced and is affected by 
the modulus of the difference ∣Δλ∣ between two eigenvalues of ĥ 
near the EP. This expression thus opens up avenues for the study of 
quantum metrology near EPs. Detailed derivations and discussions 

of Eq. 1 can be found in the Supplementary Materials. It should 
be noted that, when the Hamiltonian is Hermitian, this expression 
reduces to the previously reported form in (58–61) for Hermitian 
systems.

In addition to the previous analysis, with the expression for the QFI 
given in Eq. 1, we can further explore whether the Heisenberg scaling 
can be achieved in non-Hermitian systems using the direct sequential 
scheme. While the sequential scheme has been well-established as a 
means to attain Heisenberg scaling of 1/t in Hermitian systems, the 
applicability of this scaling to non-Hermitian systems has remained 
uncertain due to the previous formulation of the QFI using the ex-
pression α = 4(〈∂αφα∣∂αφα〉 − ∣〈∂αφα∣φα〉∣2). However, with the 
expression for the QFI provided in Eq. 1, we can now delve into the 
possibility of achieving the Heisenberg scaling in non-Hermitian sys-
tems through the direct sequential scheme. Specifically in the case 
of multiplicative non-Hermitian Hamiltonian where the evolution op-
erator is given by Û = e−iĤ0t = e−iĜts (estimating the parameter s), the 
generator of the parameter s is Ĝt . Using Eq. 1, we can calculate 
the QFI as s = 4t2

�
⟨Ĝ

†
Ĝ⟩s − ⟨Ĝ

†
⟩s⟨Ĝ⟩s

�
 . It becomes evident that the 

precision of the estimation, given by σ(̂s) ≥ 1∕
√
s  , achieves the 

Heisenberg scaling of t−1.
Achieving the ultimate precision in quantum metrology, as quanti-

fied by the QCRB, requires the identification of optimal measurement 
strategies. It is well-known that one of the optimal measurements is 
the projections on the eigenbasis of the symmetric logarithmic deriva-
tive (SLD) operator Lα (58–61), which can be obtained as Lα = 2(∣∂αφα〉
〈φα∣ + ∣φα〉〈∂αφα∣) for pure state. However, it is worth noting that 
the optimal measurement may not be unique, and the computation of 
the SLD may not be easy using the equation (L̂αρ̃α + ρ̃αL̂α)∕2 = �αρ̃α , 
where ρ̃α is the normalized output density matrix.

In the pursuit of optimal measurements in non-Hermitian 
systems, a condition has been proposed in (63) for multiplicative 
Hamiltonians. Here, we further generalize this condition to en-
compass general non-Hermitian Hamiltonians. Consider a Her-
mitian operator Â as the observable with δÂ = Â − ⟨Â⟩α and 
(ΔÂ)2 = ⟨δÂ

†
δÂ⟩α = ⟨Â

†
Â⟩α − ⟨Â

†
⟩α⟨Â⟩α , the precision of the pa-

rameter estimation can be characterized via the error propagation for-

mula (Δα)2 = (ΔÂ)2 ∕
�
n ∣�α⟨Â⟩α ∣

2

�

  (65, 66). Using the non-Hermitian 
uncertainty relationship (ΔÂ)2(ΔB̂)2 ≥ ∣ ⟨Â

†
B̂⟩α−⟨Â

†
⟩α⟨B̂⟩α ∣ (67–71) 

by taking B̂ as ̂h , we can obtain (ΔÂ)2(Δĥ)2 ≥ ∣�α⟨Â⟩α ∣
2 ∕4 (see the 

Supplementary Materials). This inequality provides a lower bound 
on the variance of the estimator given by

which is exactly the QCRB. This bound represents the fundamental 
limit on the precision of parameter estimation. The bound is satu-
rated if and only if the observable Â satisfies

where ∣ f ⟩ = δĥ ∣ φα ⟩ , ∣ g ⟩ = δÂ ∣ φα ⟩ , and c is a real number. This 
condition specifies the relationship between the observables Â and ̂h 
required to saturate the QCRB. By satisfying the condition in Eq. 3, 
one can attain optimal measurements in non-Hermitian systems, 
thereby achieving the ultimate precision allowed by the QCRB. This 

α = 4

�
⟨ĥ

†
ĥ⟩α − ⟨ĥ

†
⟩α⟨ĥ⟩α

�
(1)

(Δα)2 =
(ΔÂ)2

n ∣�α⟨Â⟩α ∣
2
≥

(ΔÂ)2

4n(ΔÂ)2(Δĥ)2
=

1

nα
(2)

∣ f ⟩ = ic ∣ g ⟩ (3)
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generalized condition opens up possibilities for designing optimal 
measurement strategies.

Model of the experiment system
For the experiment, we consider a  -symmetric non-Hermitian 
Hamiltonian given by

where s and α are real parameters. In this case, we assume that the 
  symmetry is not broken, so we have 0 < α < π/2. The eigenvalues of 
ĤPT are λ± = ± s cos α, and the corresponding normalized eigenstates 
are ∣ λ+⟩ = (eiα∕2, e−iα∕2)T ∕

√
2 and ∣ λ−⟩ = (e−iα∕2, −eiα∕2)T ∕

√
2.

Furthermore, the non-unitary evolution operator is given by

where t represents time. This non-unitary evolution can be accom-
plished using two-qubit dilated systems, which consist of a probe 
qubit and an ancilla qubit. The circuit representation of the total 
evolution Û tot for the two qubits is illustrated in Fig. 1. After post-
selecting the ancilla qubit, the probe qubit undergoes a non-unitary 
evolution. However, it is essential to note that this non-unitary evolu-
tion occurs with a certain probability conditioned on the post-selection, 
which introduces a loss of a portion of states (26–29, 72). Even when 
accounting for this loss, the Heisenberg scaling is still achievable.

The Heisenberg precision can be achieved for the estimation of s 
because the Hamiltonian ĤPT is in a multiplicative form with re-
spect to s. When the probe state is initially in the state ∣ψ0〉 = ∣0〉, the 
QFI can be obtained as

This expression provides the QFI for the parameter s at a general 
time t, which achieves the Heisenberg scaling. For the estimation of 
α where the non-Hermitian Hamiltonians ĤPT does not take the 
multiplicative form, we can use Eq. 1 to obtain the QFI as

This also achieves the Heisenberg scaling t2. More detailed analysis 
and information can be found in the Supplementary Materials.

In addition, to illustrate the generality of Eq. 1, we investigate 
a broader scenario involving a non-Hermitian Hamiltonian 
Ĥκ = κ ∣0⟩ ⟨1 ∣ + ∣1⟩ ⟨0∣ without special symmetries. The experi-
mental precision also achieves Heisenberg scaling, aligning with the 
theoretical analysis. The details are presented in the Supplementary 
Materials.

Experimental setup and results
The experimental setup, as depicted in Fig. 2, consists of four mod-
ules: (i) Photon pair source: A periodically poled potassium titanyl 
phosphate crystal is pumped by a 405-nm laser to generate photon 
pairs through the process of type II phase-matched spontaneous 
parametric down-conversion (73). One of the photons, called the 
target photon, serves as the qubit carrier for the non-Hermitian sys-
tem evolution operation Û ′

PT
 . The other photon acts as a trigger sig-

nal, referred to as the trigger photon. To ensure data accuracy and 
reduce environmental interference, we record the coincidence count 
between photon counter A (trigger photon) and B (target photon), 
with a coincidence window of 1 ns. (ii) State preparation: Photons’ 
polarizations are used to encode states, where a horizontally polar-
ized state ∣H〉 corresponds to ∣0〉, and a vertically polarized state ∣V〉 
corresponds to ∣1〉. To prepare the target photon, it undergoes a ro-
tation and purification process using half-wave plate 1 (H1) and po-
larization beam splitter 1 (PBS1), respectively. The target photon is 
initially prepared in the horizontal state ∣0〉 and can be further pre-
pared as an arbitrary linear polarization pure probe state ∣ψ0〉 = cos 
2ϕ∣0〉 + sin 2ϕ∣1〉 with the help of H2. (iii) Non-Hermitian system 
evolution: The non-Hermitian system evolution is achieved by using 
an ancilla qubit and the projection operation (for post-selection) 
(26). The detailed construction is described in Materials and Methods. 
In practical experiments, the non-unitary evolution is efficiently 
simulated in an open system by implementing a projection mea-
surement on the ancilla qubit. The actual realized evolution operator 
is Û �

PT
= FÛ

PT , where F is a function of the estimated parameter. 
Note that the evolution operator ÛPT multiplied by a function of the 
estimated parameter does not affect the expression of QFI, and the 
proof can be found in Materials and Methods. (iv) Measurement: 
This module consists of HWP and a PBS. Different eigenbases can 
be used to perform projective measurements. In this case, we choose 
the measurement Â =∣0⟩ ⟨0∣ , which is the optimal measurement 
when the input probe state is ∣0〉. We also experimentally demon-
strate the conditions for optimal measurements (see the Supplemen-
tary Materials for detail).

ĤPT = s

(
isinα 1

1 − isinα

)

(4)

ÛPT = e
−iĤPTt

=
1

cosα

[
cos(ts cosα−α) − isin(ts cosα)

− isin(ts cosα) cos(ts cosα+α)

]

(5)

s(t) =
4t2cos4α

[−1+ sin αsin(α−2 st cosα)]2 (6)

α(t)=

[
1− sec αcos(α−2 st cos α)+2 st sin α

sec α− sin(α−2 st cos α)tan α

]2

(7)

Probe

Ancilla

Fig. 1. Post-selected scheme for the non-unitary evolution. The operator ̂Utot is an unitary evolution, and we effectively obtain the evolution ̂U�
PT

= FÛ
PT of the PT-symmetric 

Hamiltonian ĤPT for probe qubit after post-selection.
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On the basis of the theoretical results that we discussed earlier, 
we conducted an experiment to achieve the precision with Heisen-
berg scaling. In this experiment, we prepared the initial state as  
∣ψ0〉 = ∣0〉 and estimated the parameters s and α with the optimal 
measurement Â for different values of t. The true values of the 
parameters are s = 1 and α = π/4. We performed n = 1500 to 2000 
measurements to obtain the probabilities p0 = ⟨φ ∣ Â ∣ φ⟩ for each 
evolved probe state, where ∣φ〉 is the normalized final state. The ex-
perimental results, as shown in Fig.  3, are in agreement with the 
theoretical probabilities. This agreement validates, to a substantial 
extent, the accuracy of the evolution matrix Û ′

PT
 used in the ex-

periment.
To obtain the statistical information of the estimation, we per-

formed 1000 maximum likelihood estimates and obtained the dis-
tributions of the estimators ŝ  and α̂ separately. In Fig. 4 (A and B), 
we compare the experimental precision 1∕σ(̂s) and 1∕σ(α̂) with the 
theoretical optimal estimation precision 

√
s and 

√
α , where σ(̂s) 

and σ(α̂) are the SDs of the experimental estimation results. To com-
pare with the theoretical results, we multiplied the coefficient 

√
n by 

the SD obtained in the experiment. It is important to note that the 
results shown in Fig. 4 (A and B) correspond to the precision of a 
single measurement. The experimental precision matches well with 
the theoretical estimation precision for both multiplicative and non-
multiplicative Hamiltonians.

In non-Hermitian systems, the estimation precision of successful 
detection events is characterized by the QFI. However, to determine 
the ultimate precision for a given resource of probe states, it is neces-
sary to multiply the QFI by the normalization coefficient K of the out-
put state. This can be expressed as 

√
Is =

√
Ks and 

√
Iα =

√
Kα 

(63). The normalization coefficient K is a periodic function, but it 
does not affect the overall estimation precision, which still achieves 
Heisenberg scaling. As shown in Fig. 4 (C and D), the growth of 

√
Is 

and 
√
Iα follows a scaling of t, with only a decrease in the oscillation 

amplitude.

The histograms of parameter estimation results for two estima-
tors are also plotted, as shown in Fig. 5 (A and B). As indicated in 
Fig. 4, the estimation precision gradually improves within the range 
of t from 0 to 10π/8. Consequently, the distribution of the estimator 
becomes more centralized over time. In Fig. 5, it is observed that, 
when t is small, the center of the experimental distribution is notice-
ably larger than the theoretical value. This discrepancy arises due to 
the error in the constructed evolution, although the error itself is 
relatively small (as shown in Fig. 3). When the QFI is small, even a 
slight error in the probability of measurement outcomes can result 
in a notable error in the estimation of the parameter. Additional re-
sults can be found in the Supplementary Materials.

DISCUSSIONS
One of the main goals in quantum metrology is to achieve the 
Heisenberg scaling, surpassing the classical limit. Recent studies on 
systems with Markovian noises have identified the conditions to 

Fig. 2. Schematic illustration of the experimental setup. Photons pair are generated by a periodically poled potassium titania phosphate (PPKTP) crystal, and the single 
target photon is heralded by trigger photon and prepared as probe state. The probe states are purified and rotated respectively by half-wave plate (HWP) and polarization 
beam splitter (PBS) in the module of state preparation and then evolve in the module non-Hermitian system evolution, and the parameter α is determined by H5 and H6. 
The output states after evolution are measured by PBS and HWP in the module of measurement.QWP, quarter-wave plate; SPD, single photon detector; DM, dichroic mir-
ror; LPF, long pass filter; LD, laser diode; DPBS, dichroic polarization beam splitter; DHWP, dichroic half-wave plate.

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. The probabilities of measurement outcomes for varying t. The black dots 
represent the experimentally measured data of p0 for varying t. In addition, we set 
s = 1, α = π/4, the measurement performed is Â =∣0 ⟩ ⟨0 ∣ , and the probe state is 
∣ψ0〉 = ∣0〉. The black solid line is the theoretical value of p0 = ⟨φ ∣ Â ∣ φ ⟩ , and the 
data points match well with the theoretical curve.

D
ow

nloaded from
 https://w

w
w

.science.org on July 25, 2024



Yu et al., Sci. Adv. 10, eadk7616 (2024)     10 May 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

5 of 8

achieve the Heisenberg scaling (54, 55). These conditions show that 
the Heisenberg scaling is not attainable with generic Markovian 
noises (74). The demonstration of the Heisenberg scaling in non-
Hermitian systems presented in this work opens up avenues for 
identifying systems capable of achieving this scaling. As we have 

shown, the QFI exhibits an oscillatory behavior as it increases with 
time in non-Hermitian systems. This phenomenon is paralleled by 
the periodic oscillation of state distinguishability in non-Hermitian 
systems (28, 75). These oscillations result from the flow of infor-
mation back from the environment, indicating non-Markovian 
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Fig. 4. QFI for varying time t. The probe state is set as ∣0〉, the measurement performed is Â , and the condition for optimal measurements is satisfied. The practical values 
of s and α that we set are 1 and π/4. (A) The square root of QFI when s is estimated; the green dots are the experimental data, and the green solid line is the theoretical 
value of 

√

s
(t) . (B) The square root of QFI when α is estimated; the orange dots are the experimental data, and the orange solid line is the theoretical value of 

√
α(t) . 

(C) The QFI multiplied by normalized coefficient Ks. (D) The QFI multiplied by normalized coefficient Kα.
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Fig. 5. The distribution of estimator ŝ  and �̂ for varying t. The distribution becomes more centralized as time t increases (QFI is increased). (A) The distribution of ŝ  . 
(B) The distribution of α̂.
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behavior that exceeds the scope of previous research on achieving 
the Heisenberg scaling within Markovian dynamics (54, 55). Al-
though dealing with general non-Markovian systems can be chal-
lenging, the presence of non-Markovian behavior in non-Hermitian 
systems provides possibilities for the identification of systems that 
can achieve the Heisenberg scaling. By examining the relationship between 
these oscillatory behaviors and the attainment of the Heisenberg scaling, 
we anticipate gaining deeper insights into the interplay between 
quantum metrology and non-Hermitian physics.

In summary, we have introduced a formulation of QFI for general 
non-Hermitian Hamiltonians, enabling the distinction between sys-
tems with enhanced and reduced sensitivity near EPs. This provides 
a unique perspective for the study of quantum metrology in the vicinity 
of EPs. We have demonstrated that the Heisenberg scaling can be 
achieved both theoretically and experimentally in non-Hermitian sys-
tems. In addition, we have derived conditions for optimal measure-
ments, which are applicable to both Hermitian and non-Hermitian 
systems. Building on this theoretical framework, we have implemented 
non-unitary evolutions governed by two non-Hermitian Hamiltonians 
and investigated parameter estimation for these evolutions. We have 
achieved the Heisenberg scaling for both parameter-independent 
and parameter-dependent Hamiltonians, with the estimation also 
reaching the QCRB. The experimental results closely match the the-
oretical model. Our theory does not make any specific assumptions 
about the Hamiltonian, and it remains valid for non-Hermitian 
Hamiltonians without special symmetries. This work represents a 
notable advancement in both theoretical and experimental research 
on quantum metrology in non-Hermitian systems.

MATERIALS AND METHODS
Implementation of the non-Hermitian system evolution Û′

PT

The probe state is prepared as ∣ψ0〉 = cos 2ϕ∣0〉 + sin 2ϕ∣1〉; the pho-
ton is separated into two paths by beam displacer 1 (BD1), which 
introduces the ancilla qubit of path space (∣a〉 represents the path a 
and ∣b〉 represents the path b); the horizontal component remains un-
changed (path a), while the vertical component is deflected into path b. 
The horizontal and vertical components are respectively prepared as 
∣ φ

H
⟩ =∣ψ

H
⟩ ∕

√
⟨ψ

H
∣ψ

H
⟩  and ∣ φV

⟩ =∣ψ
V
⟩ ∕

√
⟨ψ

V
∣ψ

V
⟩  by H5, 

Q1, H6, and Q2, where ∣ψH
⟩ = Û

PT
∣0⟩ and ∣ψV

⟩ = Û
PT

∣1⟩ . Last, 
∣φH〉 and ∣φV〉 would be recombined into one path at the output port 
of the non-Hermitian system evolution, resulting in a loss of pho-
tons due to post-selection. As a result, the probe state becomes F(cos 
2ϕ∣φH〉 + sin 2ϕ∣φV〉). However, the target output state is F(cos 
2ϕ∣ψH〉 + sin 2ϕ∣ψV〉), and it should be noticed that the gain or loss 
of two components can be different, i.e., 〈ψH∣ψH〉 ≠ 〈ψV∣ψV〉, but 
〈φH∣φH〉 = 〈φV∣φV〉 = 1. To realize it, we add a sub-module consist-
ing of H3, H4, and PBS2, which could control components of ∣φH〉 
and ∣φV〉 in two paths. Therefore, before BD2, the probe state is 
changed to

where p = sin 2(ϕ1 − ϕ2) and q = cos 2ϕ2 are controlled by H3 (ϕ1) 
and H4 (ϕ2), and p2/q2 = 〈ψH∣ψH〉/〈ψV∣ψV〉. The horizontal and ver-
tical components of ∣φH〉∣a〉 and ∣φV〉∣b〉 are separated by BD2 and 
then recombined by H7, H8, and BD3. The post-selection is realized 

by performing projection operator P̂ = (∣a⟩ + ∣b⟩)(⟨a ∣ + ⟨b ∣)∕2 on 
ancilla qubit, and the projection operator is constructed by PBS3 
and H9 (22.5∘). After H10, BD4, and H11, two paths are combined 
into one path, the output state of probe qubit lastly can be written as

where F = p∕
√

⟨ψH ∣ψH ⟩ = q∕
√

⟨ψV ∣ψV ⟩  . The theoretical out-
put state is

Therefore, the actual evolution that we constructed is Û �
PT
=FÛ

PT.

Proof of the invariance of QFI
We can prove that multiplying the evolution operator with a sca-
lar function, denoted as F(α), does not change the QFI of the nor-
malized state. Let us consider the original expression of QFI with 
α = 4(〈∂αφα∣∂αφα〉 − ∣〈∂αφα∣φα〉∣2), where α is the parameter to be 
estimated. We can decompose the scalar function F(α) into its modulus 
and phase, F(α) = R(α)eif(α). When the evolution operator is multi-
plied by F(α), it becomes Û �(α) = F(α)Û(α) = R(α)eif(α)Û(α) . The 
normalized final state after the multiplication is given by

It can be observed that, if F(α) is a real function, then the nor-
malized final state remains unchanged, and, consequently, the QFI 
does not change. However, if F(α) is a complex function, then there 
will be a phase difference eif(α) between ∣φ′α〉 and ∣φα〉, and this 
phase is also a function of α.

To simplify the explanation, let us consider this problem from a 
geometric standpoint. The QFI can also be defined in terms of the 
quantum geometric tensor (QGT). The QGT, which depends on a 
set of parameters denoted as x = (x1, x2, …) ∈ ℳ, represents a man-
ifold of the quantum system. The QGT is defined as Qμν(x) = 
〈∂μφ(x)∣∂νφ(x)〉 − 〈∂μφ(x)∣φ(x)〉〈φ(x)∣∂νφ(x)〉 (76–78), where ∂μ = 
∂/∂xμ, and we have a gauge-invariant metric given by gμν = Re [Qμν]. 
This metric, gμν, remains invariant under gauge transformations of 
the form ∣φ′(x)〉 = eif(x)∣φ(x)〉. Therefore, the single parameter QFI is 
exactly the same as the gauge-invariant metric of a one-dimensional 
manifold α ∈ ℳ.

According to the gauge invariance, we know that gμν is invariant 
under the gauge transformation ∣φ′(α)〉 = eif(α)∣φ(α)〉. Because    α = 
4Re[Qαα] = 4gαα, the QFI is also invariant when the evolution op-
erator is multiplied by a function of α.

p cos2ϕ ∣φH ⟩ ∣a⟩ + qsin2ϕ ∣φV ⟩ ∣b⟩ (8)

Û
�
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V
⟩)

=
1
√
2

�
pcos2ϕ ∣ψ

H
⟩

√
⟨ψ

H
∣ψ

H
⟩
+
qsin2ϕ ∣ψ

V
⟩

√
⟨ψ

V
∣ψ

V
⟩

�

=F(cos2ϕ ∣ψ
H
⟩+ sin2ϕ ∣ψ

V
⟩)

(9)

Û
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Analysis of experimental imperfections and details
In our experimental setup, as depicted in Fig. 2, the optical path dif-
ference between BD1 and BD3 is very small, and H9 is set at an angle 
of 22.5∘, resulting in a Mach-Zehnder interference. This interference 
leads to the increase or decrease in the number of photons after post-
selection when we input a superposition state of ∣0〉 and ∣1〉. 
Consequently, the accuracy of the non-Hermitian evolution is com-
promised. The fluctuation in the double-coincidence event rate during 
long-term experiments also affects the accuracy of the evolution. To 
minimize the interference, it is crucial to maintain a stable experimental 
environment.

In our experiment, the experimental double-coincidence event rate 
is approximately 15 kHz after the non-Hermitian system evolution. To 
obtain the probabilities of measurement outcomes, we measured the 
final states using both ∣0〉〈0∣ and ∣1〉〈1∣. We denote the coincidence 
events of ∣0〉〈0∣ and ∣1〉〈1∣ as N0 and N1, respectively. The probability of 
jumping into ∣0〉 is calculated as p0 = N0/(N0 + N1).

To mitigate the experimental errors caused by the variation in 
the double-coincidence event rate during long-term experiments, 
we recorded the coincidence events within a time window of 0.3 s. 
In addition, we changed the measurement every 500 data points. 
This approach reduces the fluctuations in the number of measure-
ments between the two different projective operators.

Error analysis
In our experiment, a estimation of the parameter α is based on n = 1500 
to 2000 measurement outcomes. By repeating these n measure-
ments K = 1000 times, we obtain 1000 estimation of α. On the 
basis of this set of estimation results, we could obtain the SD of the 
estimation σ(α̂) . The error of σ(α̂) , denoted as Δ[σ(α̂)] can be ap-
proximated by Δ[σ(α̂)] = σ(α̂)∕

√
2(K − 1) (53, 79). According to 

QCRB, the experimental QFI depends on the σ(α̂) , so we have √
α = 1∕ [σ(α̂)

√
n] . In addition, the error of 

√
α is approximated 

by Δ(
√
α) =

√
α ∕

√
2(K − 1) , which is used to draw the error bar 

in Fig. 4. The error analysis corresponding to parameter s is the same.
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