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Toward Heisenberg scaling in non-Hermitian metrology

at the quantum regime

Xinglei Yu', Xinzhi Zhao', Liangsheng Li%, Xiao-Min Hu??, Xiangmei Duan’,

Haidong Yuan®*, Chengjie Zhang"®*

Non-Hermitian quantum metrology, an emerging field at the intersection of quantum estimation and non-Hermitian
physics, holds promise for revolutionizing precision measurement. Here, we present a comprehensive investigation
of non-Hermitian quantum parameter estimation in the quantum regime, with a special focus on achieving
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Heisenberg scaling. We introduce a concise expression for the quantum Fisher information (QFI) that applies to
general non-Hermitian Hamiltonians, enabling the analysis of estimation precision in these systems. Our findings
unveil the remarkable potential of non-Hermitian systems to attain the Heisenberg scaling of 1/t, where t represents
time. Moreover, we derive optimal measurement conditions based on the proposed QFI expression, demonstrating
the attainment of the quantum Cramér-Rao bound. By constructing non-unitary evolutions governed by two
non-Hermitian Hamiltonians, one with parity-time symmetry and the other without specific symmetries, we
experimentally validate our theoretical analysis. The experimental results affirm the realization of Heisenberg
scaling in estimation precision, marking a substantial milestone in non-Hermitian quantum metrology.

INTRODUCTION

The assumption of Hamiltonian Hermiticity has long been regarded
as a fundamental requirement in quantum mechanics, ensuring real
energy eigenvalues and unitary evolution. However, the emergence
of research on non-Hermitian Hamiltonians with parity-time (P7)
symmetry has challenged this concept and sparked substantial inter-
est. This class of non-Hermitian Hamiltonians exhibits an intriguing
property—an entirely real spectrum, especially at exceptional points
(EPs), which serve as critical thresholds distinguishing the P7 sym-
metry-broken and unbroken regimes (1, 2). Over past two decades,
there has been plenty of research and developments in various fields
based on the interesting features of P7 -symmetric non-Hermitian
Hamiltonians, such as single-mode lasers (3-5), laser absorbers (6-8),
topological mode transfer (9, 10), metamaterials (11-14), and non-
reciprocal device (15, 16). These endeavors have reshaped our under-
standing and opened up frontiers in quantum science and engineering,
leveraging the unique characteristics of non-Hermitian systems with
PT symmetry.

Among various applications, non-Hermitian metrology has
emerged as a captivating area of study, attracting considerable inter-
est and attention. Previous studies have focused on achieving enhanced
sensitivity near EPs in classical wave systems with balanced gain and
loss (17-21). In addition, quantum noise theory of non-Hermitian
sensors (22, 23) and quantum Fisher information (QFI) in open sys-
tems (24, 25) have been investigated. However, most of the imple-
mented and discussed non-Hermitian systems in these works are
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still in the classical regime, the investigation of non-Hermitian quan-
tum metrology in the quantum regime is still in its early stage.

Recent advancements have showcased promising progress in real-
izing non-Hermitian quantum systems across various platforms. These
developments encompass single-photon networks (26-31), cold atoms
(32, 33), trapped ions (34, 35), superconducting circuits (36, 37), and
single nitrogen-vacancy centers (38, 39). Furthermore, important re-
search has demonstrated the evolution of quantum non-Hermitian
systems in nuclear magnetic resonance quantum systems (40, 41).
Non-Hermitian operators have also been investigated as observables
for quantum estimation (42). Using the non-Hermitian quantum sys-
tems for quantum parameter estimation, however, is still a largely
unexplored area.

Extensive research has been devoted to achieving the coveted
Heisenberg scaling in the realm of Hermitian systems (43-46). Vari-
ous strategies have been explored, with the parallel scheme gaining
prominence. This approach leverages entangled states as input to
achieve Heisenberg precision (47-49). However, the preparation of
high-quality, large entangled states poses a substantial challenge. As
an alternative, the direct sequential scheme has emerged as another
viable avenue to attain Heisenberg scaling without relying on en-
tangled probe states (50-53). Substantial progress has been made in
understanding the conditions necessary for achieving Heisenberg
scaling in Hermitian systems under both the parallel and sequential
schemes (54, 55). For non-Hermitian systems in the quantum regime,
such understanding is still very limited.

In this work, we investigate non-Hermitian quantum parameter
estimation both theoretically and experimentally. First, we propose
a concise expression for the QFI that is applicable to general non-
Hermitian Hamiltonians. This expression allows us to analyze the
estimation precision of non-Hermitian systems. We find that Heisen-
berg scaling, characterized by an inverse scaling with time £ ', can be
achieved in non-Hermitian systems. Furthermore, we derive the
condition for optimal measurements based on the proposed QFI
expression. By identifying the optimal measurement strategy, we
demonstrate that the estimation precision can reach the funda-
mental limit known as the quantum Cramér-Rao bound (QCRB). To
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experimentally validate our theoretical findings, we construct a
non-unitary evolution governed by a P7 -symmetric non-Hermitian
Hamiltonian and estimate the associated parameters. By using the
condition for optimal measurements obtained from our theoretical
analysis, we achieve estimation precision that matches well with the
QCRB. The experimental results reveal that the precision follows
Heisenberg scaling ' for both multiplicative and non-multiplicative
Hamiltonians. Our theory is universally applicable and independent
of the symmetries of non-Hermitian Hamiltonians. This research
not only enriches our understanding of non-Hermitian systems
but also opens up exciting avenues for Heisenberg-limited quantum
metrology.

RESULTS
QFI for general non-Hermitian Hamiltonians
The precision of a quantum system is theoretically limited by the
QCRB, as given by (A/E)\)2 >1/(nF,) (56-61). Here, O is the un-
known parameter to be estimated, (A/G\)2 is the variance of an unbi-
ased estimator @ n is the number of the measurements, and Fy is
QFI that characterizes the optimal estimation precision. For a mul-
tiplicative non-Hermitian Hamiltonian H, = Gs, where G is the
generator and s is the parameter, the evolutlon of the system is
described by the operator U, = et = ¢=109 (40, 62), where 6 =
st. If the evolution time ¢ is constant, then estimating 0 is equivalent
to estimating s.

In the case of a pure initial probe state, [yo){yo|, the QFI for esti-

mating 0 can be expressed as Fy = 4((G G)o — (G )Q(G)9> (63),
where (G>e = (g | G| @g ) represents the expectation value of the

normalized output state, and | Qg ) = [79 [wo) /V (ol IAJ(: ﬁe [wo)
represents the normalized output state (64). We refer the interested
readers to the Supplementary Materials for the justification of such
normalization.

For general non-multiplicative non-Hermitian Hamiltonians, the
QFI cannot be expressed in the form mentioned earlier. In this work,
we propose a general expression for the QFI that is applicable to both
multiplicative and non-multiplicative non-Hermitian Hamiltonians.
Consider a general non-Hermitian Hamiltonian A, that does not
necessary takes the multiplicative form, the evolution operator is given
by U,=e ~iflyt The generator of the parameter o is denoted as

h =i(d, U )U On the basis of this, we can write the QFI as

PN ~F A
Fu= (o= (R alB) M

This expression provides a more general way to analyze the QFI
for non-Hermitian Hamiltonians, regardless of whether they take

the multiplicative form or not. One specific application of this expres-
sion is the analysis of enhanced or reduced sensitivity near EPs. By

using this expression, we can deduce that the sensitivity of quantum
sensors is reduced near EPs for two-level multiplicative non-Hermitian
Hamiltonians. However, for non-multiplicative non-Hermitian
Hamiltonians, the sensitivity may be enhanced and is affected by
the modulus of the difference |AL| between two eigenvalues of h
near the EP. This expression thus opens up avenues for the study of
quantum metrology near EPs. Detailed derivations and discussions
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of Eq. 1 can be found in the Supplementary Materials. It should
be noted that, when the Hamiltonian is Hermitian, this expression
reduces to the previously reported form in (58-61) for Hermitian
systems.

In addition to the previous analysis, with the expression for the QFI
given in Eq. 1, we can further explore whether the Heisenberg scaling
can be achieved in non-Hermitian systems using the direct sequential
scheme. While the sequential scheme has been well-established as a
means to attain Heisenberg scaling of 1/t in Hermitian systems, the
applicability of this scaling to non-Hermitian systems has remained
uncertain due to the previous formulation of the QFI using the ex-
pression Fy = 4({0aPol0aPa) — |(0a(pu|(p(,)|2). However, with the
expression for the QFI provided in Eq. 1, we can now delve into the
possibility of achieving the Heisenberg scaling in non-Hermitian sys-
tems through the direct sequential scheme. Specifically in the case
of multiplicative non-Hermitian Hamiltonian where the evolution op-
erator is given by U = e=lo! = ¢=0%5 (estimating the parameter s), the
generator of the parameter s is Gt. Using Eq. 1, we can calculate

the QFl as F, = 4t* ((@TG) — (@T) (@) ) It becomes evident that the

precision of the estlmatlon, given by 6(8) > 1/ \/?S , achieves the
Heisenberg scaling of £ !

Achieving the ult1mate precision in quantum metrology, as quanti-
fied by the QCRB, requires the identification of optimal measurement
strategies. It is well-known that one of the optimal measurements is
the projections on the eigenbasis of the symmetric logarithmic deriva-
tive (SLD) operator L, (58-61), which can be obtained as Ly = 2(|0y®o)
(Pal + |Pa){0uPal) for pure state. However, it is worth noting that
the optimal measurement may not be unique and the computation of
the SLD may not be easy using the equation (L, + Pole) /2 = OuPeo
where p,, is the normalized output density matrix.

In the pursuit of optimal measurements in non-Hermitian
systems, a condition has been proposed in (63) for multiplicative
Hamiltonians. Here, we further generalize this condition to en-
compass general non-Hermitian Hamiltonians, Consider a Her-
mitian operator A as ‘the obser‘vable with 8A =4 — (A>(, and
(AA)? = (8A'8A), = (A'A), — (A ) (A), the precision of the pa-
rameter estimation can be characterized via the error propagation for-

mula(Aa)? = (AA)2 / (” |9 <A>(x |2> (65, 66) Us1ngthenon Hermitian

uncertalnty relatlonshlp (AA)2(AB) 2| <A B), <A Yo (Bl (67-71)

by taking Bas h, we can obtain (AA)2(AR)? > | 0“(A)“ |2 /4 (see the

Supplementary Materials). This inequality provides a lower bound
on the variance of the estimator given by

Ay ~
(hap= B4, @A _ L
n10,(A), >~ 4n(aA)z(ahy "

which is exactly the QCRB. This bound represents the fundamental
limit on the precision of parameter estimation. The bound is satu-

2)

rated if and only if the observable A satisfies

If) =iclg) 3)
where |f) = 6h|(pa) lg) = 6A|(pa) and c is a real number. This
condition specifies the relationship between the observables Aandh
required to saturate the QCRB. By satisfying the condition in Eq. 3,
one can attain optimal measurements in non-Hermitian systems,
thereby achieving the ultimate precision allowed by the QCRB. This
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generalized condition opens up possibilities for designing optimal
measurement strategies.

Model of the experiment system
For the experiment, we consider a P7 -symmetric non-Hermitian

Hamiltonian given by
isina 1 )
1 —isina

o=
where s and a are real parameters. In this case, we assume that the
PT symmetry is not broken, so we have 0 < « < 7/2. The eigenvalues of
Hpp are A, = + s cos a, and the corresponding normalized eigenstates

are|A,) = (€2, e /)T /\/2 and |A_) = (e7/2, —ei®/2)T / /2.

(4)

Furthermore, the non-unitary evolution operator is given by
ﬁPT =e—iﬁp,4t
1 | cos(ts cosa—a) —isin(ts coso) 5)

COSQ | —jsin(ts cosa) cos(ts coso+ar)

where t represents time. This non-unitary evolution can be accom-
plished using two-qubit dilated systems, which consist of a probe
qubit and an ancilla qubit. The circuit representation of the total
evolution f]tot for the two qubits is illustrated in Fig. 1. After post-
selecting the ancilla qubit, the probe qubit undergoes a non-unitary
evolution. However, it is essential to note that this non-unitary evolu-
tion occurs with a certain probability conditioned on the post-selection,
which introduces a loss of a portion of states (26-29, 72). Even when
accounting for this loss, the Heisenberg scaling is still achievable.

The Heisenberg precision can be achieved for the estimation of s
because the Hamiltonian H pr is in a multiplicative form with re-
spect to s. When the probe state is initially in the state |yg) = |0), the
QFI can be obtained as

412 cosa
[—1+sinasin(a—2 st cosa)]?

Fit) =
) ©)
This expression provides the QFI for the parameter s at a general
time ¢, which achieves the Heisenberg scaling. For the estimation of
o where the non-Hermitian Hamiltonians Hp; does not take the
multiplicative form, we can use Eq. 1 to obtain the QFI as

Fult)=| > )

—secocos(a—2 stcoso)+2 stsina 2
seca—sin(a—2 st cos a)tan o

Probe

@

Ancilla

’
tot 2
P

This also achieves the Heisenberg scaling 2. More detailed analysis
and information can be found in the Supplementary Materials.

In addition, to illustrate the generality of Eq. 1, we investigate
a broader scenario involving a non-Hermitian Hamiltonian
lr/-\IK =x|0)(1]+|1) (0] without special symmetries. The experi-
mental precision also achieves Heisenberg scaling, aligning with the
theoretical analysis. The details are presented in the Supplementary
Materials.

Experimental setup and results

The experimental setup, as depicted in Fig. 2, consists of four mod-
ules: (i) Photon pair source: A periodically poled potassium titanyl
phosphate crystal is pumped by a 405-nm laser to generate photon
pairs through the process of type II phase-matched spontaneous
parametric down-conversion (73). One of the photons, called the
target photon, serves as the qubit carrier for the non-Hermitian sys-
tem evolution operation G;T. The other photon acts as a trigger sig-
nal, referred to as the trigger photon. To ensure data accuracy and
reduce environmental interference, we record the coincidence count
between photon counter A (trigger photon) and B (target photon),
with a coincidence window of 1 ns. (ii) State preparation: Photons’
polarizations are used to encode states, where a horizontally polar-
ized state |H) corresponds to |0), and a vertically polarized state | V)
corresponds to |1). To prepare the target photon, it undergoes a ro-
tation and purification process using half-wave plate 1 (H1) and po-
larization beam splitter 1 (PBS1), respectively. The target photon is
initially prepared in the horizontal state |0) and can be further pre-
pared as an arbitrary linear polarization pure probe state |yo) = cos
2¢|0) + sin 2¢|1) with the help of H2. (iii) Non-Hermitian system
evolution: The non-Hermitian system evolution is achieved by using
an ancilla qubit and the projection operation (for post-selection)
(26). The detailed construction is described in Materials and Methods.
In practical experiments, the non-unitary evolution is efficiently
simulated in an open system by implementing a projection mea-
surement on the ancilla qubit. The actual realized evolution operator

is ﬁ;T =F ﬁPT, where F is a function of the estimated parameter.

Note that the evolution operator U pr multiplied by a function of the
estimated parameter does not affect the expression of QFI, and the
proof can be found in Materials and Methods. (iv) Measurement:
This module consists of HWP and a PBS. Different eigenbases can
be used to perform projective measurements. In this case, we choose
the measurement A =|0) (0|, which is the optimal measurement
when the input probe state is |0). We also experimentally demon-
strate the conditions for optimal measurements (see the Supplemen-
tary Materials for detail).

Fig. 1. Post-selected scheme for the non-unitary evolution. The operator (Almt isan unitary evolution, and we effectively obtain the evolution U;,T = FUPT of the PT-symmetric

Hamiltonian FIPT for probe qubit after post-selection.

Yu et al., Sci. Adv. 10, eadk7616 (2024) 10 May 2024
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Fig. 2. Schematic illustration of the experimental setup. Photons pair are generated by a periodically poled potassium titania phosphate (PPKTP) crystal, and the single
target photon is heralded by trigger photon and prepared as probe state. The probe states are purified and rotated respectively by half-wave plate (HWP) and polarization
beam splitter (PBS) in the module of state preparation and then evolve in the module non-Hermitian system evolution, and the parameter « is determined by H5 and H6.
The output states after evolution are measured by PBS and HWP in the module of measurement.QWP, quarter-wave plate; SPD, single photon detector; DM, dichroic mir-
ror; LPF, long pass filter; LD, laser diode; DPBS, dichroic polarization beam splitter; DHWP, dichroic half-wave plate.

On the basis of the theoretical results that we discussed earlier,
we conducted an experiment to achieve the precision with Heisen-
berg scaling. In this experiment, we prepared the initial state as
[wo) = |0) and estimated the parameters s and o with the optimal
measurement A for different values of ¢. The true values of the
parameters are s = 1 and o = n/4. We performed # = 1500 to 2000
measurements to obtain the probabilities p, = ((p|7{ |@) for each
evolved probe state, where |@) is the normalized final state. The ex-
perimental results, as shown in Fig. 3, are in agreement with the
theoretical probabilities. This agreement validates, to a substantial
extent, the accuracy of the evolution matrix f];T
periment.

To obtain the statistical information of the estimation, we per-
formed 1000 maximum likelihood estimates and obtained the dis-
tributions of the estimators 5 and @ separately. In Fig. 4 (A and B),
we compare the experimental precision 1/6(5) and 1 / o(@) with the
theoretical optimal estimation precision \/?S and \/Fa , where o(5)
and o(@) are the SDs of the experimental estimation results. To com-
pare with the theoretical results, we multiplied the coefficient \/Z by
the SD obtained in the experiment. It is important to note that the
results shown in Fig. 4 (A and B) correspond to the precision of a
single measurement. The experimental precision matches well with
the theoretical estimation precision for both multiplicative and non-
multiplicative Hamiltonians.

In non-Hermitian systems, the estimation precision of successful
detection events is characterized by the QFIL. However, to determine
the ultimate precision for a given resource of probe states, it is neces-
sary to multiply the QFI by the normalization coefficient K of the out-
put state. This can be expressed as \/I_s = 4/KF, and \/E =/KF,
(63). The normalization coefficient K is a periodic function, but it
does not affect the overall estimation precision, which still achieves
Heisenberg scaling. As shown in Fig. 4 (C and D), the growth of \/I_S
and \/K follows a scaling of ¢, with only a decrease in the oscillation
amplitude.

used in the ex-
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Fig. 3. The probabilities of measurement outcomes for varying t. The black dots
represent the experimentally measured data of p, for varying t. In addition, we set
s =1, a = n/4, the measurement performed is A= |0) (0|, and the probe state is
|wo) = |0). The black solid line is the theoretical value of p, = (gp|ﬁ|cp>, and the
data points match well with the theoretical curve.

The histograms of parameter estimation results for two estima-
tors are also plotted, as shown in Fig. 5 (A and B). As indicated in
Fig. 4, the estimation precision gradually improves within the range
of t from 0 to 10m/8. Consequently, the distribution of the estimator
becomes more centralized over time. In Fig. 5, it is observed that,
when ¢ is small, the center of the experimental distribution is notice-
ably larger than the theoretical value. This discrepancy arises due to
the error in the constructed evolution, although the error itself is
relatively small (as shown in Fig. 3). When the QFI is small, even a
slight error in the probability of measurement outcomes can result
in a notable error in the estimation of the parameter. Additional re-
sults can be found in the Supplementary Materials.

DISCUSSIONS

One of the main goals in quantum metrology is to achieve the
Heisenberg scaling, surpassing the classical limit. Recent studies on
systems with Markovian noises have identified the conditions to
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Fig. 4. QFI for varying time t. The probe state is set as |0), the measurement performed is A, and the condition for optimal measurements is satisfied. The practical values
of s and a that we set are 1 and /4. (A) The square root of QFI when s is estimated; the green dots are the experimental data, and the green solid line is the theoretical
value of 1/F(t). (B) The square root of QFl when a is estimated; the orange dots are the experimental data, and the orange solid line is the theoretical value of \/F(t).
(€) The QFI multiplied by normalized coefficient K;. (D) The QFI multiplied by normalized coefficient K.
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Fig. 5. The distribution of estimator s and @ for varying t. The distribution becomes more centralized as time t increases (QFl is increased). (A) The distribution of 5.

(B) The distribution of @.

achieve the Heisenberg scaling (54, 55). These conditions show that
the Heisenberg scaling is not attainable with generic Markovian
noises (74). The demonstration of the Heisenberg scaling in non-
Hermitian systems presented in this work opens up avenues for
identifying systems capable of achieving this scaling. As we have

Yuetal, Sci. Adv. 10, eadk7616 (2024) 10 May 2024

shown, the QFI exhibits an oscillatory behavior as it increases with
time in non-Hermitian systems. This phenomenon is paralleled by
the periodic oscillation of state distinguishability in non-Hermitian
systems (28, 75). These oscillations result from the flow of infor-
mation back from the environment, indicating non-Markovian
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behavior that exceeds the scope of previous research on achieving
the Heisenberg scaling within Markovian dynamics (54, 55). Al-
though dealing with general non-Markovian systems can be chal-
lenging, the presence of non-Markovian behavior in non-Hermitian
systems provides possibilities for the identification of systems that
can achieve the Heisenberg scaling. By examining the relationship between
these oscillatory behaviors and the attainment of the Heisenberg scaling,
we anticipate gaining deeper insights into the interplay between
quantum metrology and non-Hermitian physics.

In summary, we have introduced a formulation of QFI for general
non-Hermitian Hamiltonians, enabling the distinction between sys-
tems with enhanced and reduced sensitivity near EPs. This provides
a unique perspective for the study of quantum metrology in the vicinity
of EPs. We have demonstrated that the Heisenberg scaling can be
achieved both theoretically and experimentally in non-Hermitian sys-
tems. In addition, we have derived conditions for optimal measure-
ments, which are applicable to both Hermitian and non-Hermitian
systems. Building on this theoretical framework, we have implemented
non-unitary evolutions governed by two non-Hermitian Hamiltonians
and investigated parameter estimation for these evolutions. We have
achieved the Heisenberg scaling for both parameter-independent
and parameter-dependent Hamiltonians, with the estimation also
reaching the QCRB. The experimental results closely match the the-
oretical model. Our theory does not make any specific assumptions
about the Hamiltonian, and it remains valid for non-Hermitian
Hamiltonians without special symmetries. This work represents a
notable advancement in both theoretical and experimental research
on quantum metrology in non-Hermitian systems.

MATERIALS AND METHODS

Implementation of the non-Hermitian system evolution v

The probe state is prepared as [yp) = cos 2¢|0) + sin 2¢)|1); the pho-
ton is separated into two paths by beam displacer 1 (BD1), which
introduces the ancilla qubit of path space (|a) represents the path a
and |b) represents the path b); the horizontal component remains un-
changed (path a), while the vertical component is deflected into path b.
The horizontal and vertical components are respectively prepared as

o) =) / vV {Wulwy) and9v) =lwy) /v (wylwy) by H5,

Q1, H6, and Q2, where [Wg) = Upr|0) and [ Wy) = Uprl1). Last,
|@x) and |@y) would be recombined into one path at the output port
of the non-Hermitian system evolution, resulting in a loss of pho-
tons due to post-selection. As a result, the probe state becomes F(cos
2¢|pm) + sin 2¢|py)). However, the target output state is F(cos
2¢|wy) + sin 2¢|yy)), and it should be noticed that the gain or loss
of two components can be different, i.e., (Wwylwy) # (wvlyy), but
(oHloH) = (PvlQv) = 1. To realize it, we add a sub-module consist-
ing of H3, H4, and PBS2, which could control components of |@g)
and |@y) in two paths. Therefore, before BD2, the probe state is
changed to

P cos2| @y ) [a) +qsin2¢ |y ) | b) (8)

where p = sin 2(¢; — ¢2) and g = cos 2¢; are controlled by H3 (¢,)
and H4 (¢p,), and pz/ q2 = (yylyu)/{wy|yy). The horizontal and ver-
tical components of |@g)|a) and |pv)|b) are separated by BD2 and
then recombined by H7, H8, and BD3. The post-selection is realized

Yu et al., Sci. Adv. 10, eadk7616 (2024) 10 May 2024

by performing projection operator P=(la)+|b)(al +(b])/20n
ancilla qubit, and the projection operator is constructed by PBS3
and H9 (22.5%). After H10, BD4, and H11, two paths are combined
into one path, the output state of probe qubit lastly can be written as

A~ 1 .
Uprlwo) = —=(pcos2d | @y ) +gsin2d | ¢y))
V2

ZL(pcoszd)hyH)+qsin2¢|qlv)> )
\/5 \/<‘|’H|‘|’H) \/<WV|WV>
=F(cos2¢ | yy) +sin2d |y ))

where F =p /\/{Wg|wy) =9/ V{Wwy |y, ). The theoretical out-

put state is

Uprlwo) = cos2p|wy) + sin2d | wy) (10)
Therefore, the actual evolution that we constructed is a;T=F ﬁPT.

Proof of the invariance of QFI

We can prove that multiplying the evolution operator with a sca-
lar function, denoted as F(a), does not change the QFI of the nor-
malized state. Let us consider the original expression of QFI with
Fo = 4({06PalO0uPa) — |(0acp(x|(pa>|2), where o is the parameter to be
estimated. We can decompose the scalar function F(x) into its modulus
and phase, F(a) = R((x)e'ﬂ“). When the evolution operator is multi-
plied by F(a), it becomes U”() = F() U (ax) = R()e® U (). The
normalized final state after the multiplication is given by

0 () | o)

v wol 07(@) 0700 1)
T (a) | yy)

v Wol 0@ D@ o)

l@)) =

11)

=" g,)

It can be observed that, if F(a) is a real function, then the nor-
malized final state remains unchanged, and, consequently, the QFI
does not change. However, if F(a) is a complex function, then there
will be a phase difference ¢ between |¢’s) and |@g), and this
phase is also a function of a.

To simplify the explanation, let us consider this problem from a
geometric standpoint. The QFI can also be defined in terms of the
quantum geometric tensor (QGT). The QGT, which depends on a
set of parameters denoted as x = (x1, Xy, ...) € <4, represents a man-
ifold of the quantum system. The QGT is defined as Qu(x) =
(000, (x)) — {(Fup(X)|@(x)){@(x)|0vp(x)) (76-78), where 9, =
0/0x,,, and we have a gauge-invariant metric given by g,,, = Re [Q,].
This metric, g, remains invariant under gauge transformations of
the form |p'(x)) = e'ﬂx)lcp(x)). Therefore, the single parameter QFI is
exactly the same as the gauge-invariant metric of a one-dimensional
manifold a € .

According to the gauge invariance, we know that g, is invariant
under the gauge transformation |¢’(x)) = ¢"9|p(a)). Because F =
4Re[Qua) = 4guw the QFI is also invariant when the evolution op-
erator is multiplied by a function of .
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Analysis of experimental imperfections and details

In our experimental setup, as depicted in Fig. 2, the optical path dif-
ference between BD1 and BD3 is very small, and H9 is set at an angle
of 22.5°, resulting in a Mach-Zehnder interference. This interference
leads to the increase or decrease in the number of photons after post-
selection when we input a superposition state of |0) and |1).
Consequently, the accuracy of the non-Hermitian evolution is com-
promised. The fluctuation in the double-coincidence event rate during
long-term experiments also affects the accuracy of the evolution. To
minimize the interference, it is crucial to maintain a stable experimental
environment.

In our experiment, the experimental double-coincidence event rate
is approximately 15 kHz after the non-Hermitian system evolution. To
obtain the probabilities of measurement outcomes, we measured the
final states using both [0)(0] and [1){1]. We denote the coincidence
events of |0)(0] and |1)(1| as Np and N}, respectively. The probability of
jumping into |0) is calculated as py = No/(No + Ny).

To mitigate the experimental errors caused by the variation in
the double-coincidence event rate during long-term experiments,
we recorded the coincidence events within a time window of 0.3 s.
In addition, we changed the measurement every 500 data points.
This approach reduces the fluctuations in the number of measure-
ments between the two different projective operators.

Error analysis

In our experiment, a estimation of the parameter a is based on 7 = 1500
to 2000 measurement outcomes. By repeating these n measure-
ments K = 1000 times, we obtain 1000 estimation of a. On the
basis of this set of estimation results, we could obtain the SD of the
estimation o(a@). The error of 6(@), denoted as A[c(@)] can be ap-

proximated by A[o(®)] = o(@) / /2(K — 1) (53, 79). According to
QCRB, the experimental QFI depends on the o(@), so we have

V/Fy =1/[0(@)4/n]. In addition, the error of \/Fy is approximated
by A(v/F,) = \/F,/ V2(K — 1), which is used to draw the error bar

in Fig. 4. The error analysis corresponding to parameter s is the same.
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