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Using the precursor map in AdS/CFT, the renormalization group cutoff function is mapped to the dual
theory. The resulting flow equations on the two sides of the duality are compared.
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I. INTRODUCTION

AdS/CFT duality between a conformal quantum field
theory and gravity with an extra dimension has occupied a
large part of theoretical physics research in the past two
decades [1-3].

Moving away from the conformal fixed point in the field
theory space, the duality is believed to persist once the
gravity on the dual space is allowed to evolve along the
extra dimension according to a specific recipe [4,5].

In this renormalization group (RG) holographic setup,
the connection between the field theory energy cutoff scale
and the extra dimension cutoff scale on the gravity side is
not well understood [6]. Moreover, the smooth cutoff
function utilized in the field theory side, as elaborated in
Ref. [7], has no obvious counterpart on the gravity side.

The present work addresses this question via the pre-
cursor map. The concept of the precursor originated from
the observation that, in AdS/CFT, an event in the bulk must
be perceived in the boundary theory immediately and an
operator be assigned to it there, thus, the precursor [8].
Where the two sides of the duality are known, a map is
constructed which assigns an operator in the conformal
field theory to every field on the gravity side [9]:

ple.x) = / K (2. x| )OW). (1)

where K is called the smearing function, a Green function
of the gravity theory, and O is an operator in the conformal
field theory; z is the extra dimension, the radial direction.

Using this map, it is possible, in principle, to relate the
RG flow of the field theory side to the evolution along the
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extra dimension in the gravity side. In particular, it must be
possible to relate the cutoff energy scale of the RG flow to
the cutoff scale of the extra dimension in the gravity side
and the smooth cutoff function in the RG equation [7] to a
corresponding smooth cutoff function on the gravity side.
However, it is not obvious how this will happen in an
arbitrary RG scheme.

There is an RG scheme, though, in which the corre-
spondence between the two cutoff functions is straightfor-
ward [10]. In this scheme, the momentum cutoff is directly
imposed on the fields themselves via multiplication of the
fields by a cutoff function in the momentum space. It is then
only a matter of reading off the precursor map of the cutoff
field in the gravity side and, conversely, given a cutoff
function on the bulk side will lead to a cutoff operation on
the field theory side.

It will be shown here that the outcome of the map is not a
simple multiplication of the fields by a cutoff function,
when it is so on the other side. Rather, it will turn out to be a
type of convolution of the fields by the image of the cutoff
function. This is not unexpected, as the map (1) involves a
nonlocal smearing. The consequence of this outcome will
be discussed in some detail, and the relation between the
RG equation on the boundary theory with the evolution
equations on the bulk theory side will be explored.This
behavior has then the important consequence that there will
not be a sharp cutoff on one side of the duality when the
cutoff is sharp on the other side.

In Sec. II, the holographic renormalization is briefly
reviewed and the multiplicative renormalization scheme is
introduced. Furthermore, the precursor map is explicated.
Section III contains the main result of this investigation and
is devoted to the study of the precursor map on the
renormalization scheme and its ramification on the flow
equation and evolution equation, respectively, on the two
sides of AdS/CFT duality. Section IV is devoted to
speculations on the precursor map’s relevance to the
holographic renormalization group flow.

After the initial submission of this work on the arXiv, I
was informed of the references [11,12] in which the bulk
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reconstruction was carried out for the cutoff procedure of
Refs. [4,5]. There, the map is constructed for on-shell
configurations of the bulk fields. In contrast, the cutoff
function imposed on the precursor map in this article moves
the configuration off shell, as it is to be utilized in the path
integrals of the duality equivalence considered here.
Therefore, one does not expect the map to reduce to that
considered in [11,12] when the cutoff function is made
sharp. This will be reflected in the absence of negative-
frequency Bessel functions in its expansion.

II. HOLOGRAPHIC RENORMALIZATION GROUP

In the quantum field theory, the central quantity is the
partition function

Z= /ane‘s(‘/’). (2)

In the AdS/CFT duality, the partition function of the
boundary conformal field theory is related to the partition
function of the bulk gravity theory through the transform:

Zy= [ Dy ® = [ Da(e @[, (3

where Zj is the bulk partition function, s is the bulk action,
S is the boundary action, ¢, is the boundary value of the
bulk field, ¢y(x) = ¢(z,x =0), and O(x) is the corre-
sponding boundary conformal field theory operator.

Correlation functions of the quantum field theory may be
obtained by functional derivatives of the partition function
in the presence of external sources J:

o 1)
(p(x1)...0(x,)) = i) 'mzp (4)
Z, E/D(De—s(@)—&-fjtbdx. (5)

In calculating the path integrals for the correlation
functions, one may first integrate over the high-momentum
modes above a certain energy scale A and write the
partition function Z as

Z= / D®e5:(®), (6)
P<A

where S,(®) is now an effective action, which, by
definition, would satisfy a differential equation, the RG
flow equation. This equation, first written down by explic-
itly path integrating the higher-momentum modes, was
given by Wegner and Houghton [13], which was sub-
sequently generalized to the case of a smooth cutoff
function by Wilson and Kogut [14] and later Polchinski [7]:

d
N asim
1 / d [ OSing  OSint 5% Sint
=—=[dpAN—K + ,
2 dn [8p(=p) dp(p)  Se(=p)de(p)
(7)
where
1L [o(-p)p(p
Sy = —z/%*' Sint- (8)

The germ of the smoothing function K is in the imprecise
notion of “almost integration” of Wilson and Kogut [14].
The cutting off of the higher-momentum modes in the path
integral is accomplished in the Polchinski equation by the
form of the cutoff function K(p), which almost equals to 1
for momenta less than A and rapidly decays to zero for
momenta larger than A. Clearly, the resulting correlation
functions will depend on the form of K. But a judicious
choice of the function renders the dependence minimal. An
optimum choice is one which is nearly a step function. In
the rest of this article, such a choice of the cutoff function is
to be understood.

The imposition of the cutoff function on the kinetic term
of the action makes it cumbersome for certain purposes as
for the precursor map. There is an alternative method of
imposition of the cutoff on the momentum modes which
will be natural for the precursor map considerations. In this
scheme, the momentum space fields are directly multiplied
by a cutoff function, so that the higher-momentum modes
are “almost deemphasized” in the fields, to begin with [10]:

@(p) = h(p)o(p), )

where i(p) is a function which is nearly 1 for momenta less
that a scale A and rapidly vanishing for momenta larger
than A.

The resulting RG equation, following the usual pro-
cedurel, turns out to be similar to the Polchinski equation
and is

1 d [5S, S, 8%S,
__5/dpAﬁh[&p(p)&ﬂ(—p)+5<0(—p)5fp(p) '
(10)

In AdS/CFT, the question of the relation between the two
sides of the duality when the boundary field theory

'The equation for the total action in this regularization scheme
turns out to be identical to that of the interaction part of action in
the Polchinski-Wilson scheme (7); details may be found in
Ref. [15].
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undergoes renormalization group flow was addressed
almost a decade ago [4,5]. The conjecture is that, when
the boundary field theory is cut off at a scale A, the
corresponding dual gravity theory is cut off along the extra
dimension with the scale z,, where

1
A~—. (11)
20
Explicitly, the partition function of the gravity side is
related to the generating functional on the field theory side
as follows:

Zy., E/ Dg(z,x)e=®) —/Dd)(x)e_SA@Hf%(x)O(x).
>270

(12)

Here S, (®) is the boundary field theory cutoff at A, s(¢) is
the bulk action, and ¢ (x) = ¢(z = zp, x) is the bulk field
at z = zp.

The precise dependence of z, on A is not known [6].
Also, it is not obvious how a smooth cutoff function in the
boundary field theory RG is projected on a similar
mechanism on the bulk side. Here the precursor map
may come to the rescue. If one knows how objects on
the two sides of duality correspond to each other, then it
may be possible to find what corresponds in the bulk theory
to the RG flow of the boundary field theory and, hopefully,
find the precise relation between the aforementioned cutoff
scale A of the boundary field theory and the cutoff scale of
the extra dimension in the gravity bulk theory. From the
very early beginnings of AdS/CFT duality, it was under-
stood that the information in the bulk should be somehow
encoded in the boundary theory and, in particular, events in
the bulk should be represented in the boundary conformal
field theory [8]. Thus, a field operator in the bulk should be
given by an operator in the boundary, called the precursor.
A generic precursor map (1) was constructed by Hamilton,
Kabat, Lifschytz, and Lowe (HKLL) giving a bulk field
@(x, 1) as an operator in the boundary theory [9].

In the particular case of the dual pair of the O(N) vector
model in three dimensions, and the higher spin theory in the
four-dimensional bulk, the smearing function K turns out to
be a set of delta functions in the momentum representation
[16]. The exact expression will be written down in the next
section.

In general, K is in terms of the mode functions of the
bulk space, for pure AdS, being Bessel functions [9].
|

III. PRECURSORS AND CUTOFFS

In this section, precursors are used for the multiplicative
regularization scheme to relate the cutoff functions of the
two sides of the AdS/CFT duality and relate the two
evolution equations.

Generally, for a scalar theory the HKLL [9] reconstruction
gives the precursors in the form (1). Therefore, the multi-
plicative regularization of the boundary fields

O(p) = h(p)O(p). (13)

where h(p) is a generic smooth cutoff function on a generic
boundary momentum space operators, is mapped via this
precursor map to a corresponding “cutoff” field ¢, (x) in the
bulk. This cutoff field will certainly not be a sharp cutoff field
in the bulk even when h(p) is a sharp cutoff. To see its
behavior, the concrete form of the smearing function should
be inserted in the expression (1):

on(p) = / dp'K(z. p|lp")h(p")O(p"). (14)

Conversely, following the holographic renormalization
conjecture [4,5], the precursor may allow finding the
behavior of the cutoff field O,(p) in the boundary theory:

()i (p) = / ARGz plp)0,(p).  (15)

where p(z) is the cutoff function on the z direction of the
bulk theory, and it is a sharp cutoff in Refs. [4,5].

It is, in general, not straightforward to find the induced
cutoff functions in either case. However, in the particular
case of O(N)/higher-spin AdS/CFT duality, it is possible to
find these cutoff functions and, therefore, see how a certain
cutoff on one side of the duality is affected on the other side
and, in particular, find the behavior of the cutoff when on
the other side the cutoff is sharp as in Refs. [4]. This latter
behavior is further studied from now on.

In the O(N )/higher-spin duality, the operator on the CFT
side is the bilocal field O(xy, x,):

O(x,y) = ®;(x)®;(y). (16)

where @;(x) are the boundary O(N) fundamental fields.
The precursor map between the bulk higher-spin fields
¢(z,x) and the boundary bilocal fields O(xy, x,) are best
written down in momentum space and are [16]

+ +
_ P Ip Ip
@s(z.x) Z/d“pe (p-xtp Z)/d2P1d2P25(pf+p2*—p*)-5(p1 +pz—p)-5<p1 p—i—pz p—i—pz>
1 2

11 S22/ —pr\ ~
( +—+>(PT+pz+)SP3 2<# -O(p1 p{sp2:P3 ) (17)

pT P Py +p7
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where ¢, is the bulk higher-spin field of spin s and z the radial direction; P; = (p;, p;r, p7), i = 1,2, are the momentum

=11
light cone variables of the O(N) boundary fields ¢(p;, p;), and P? * are the Jacobi polynomials. This relation can be put in

the HKLL form [16]:

0o = [ @rersay (/=) 5y ) (18)

where now (7)3‘ are the CFT boundary operators of HKLL and are

- 1 1 Ll p+ — p+ ~
O,(p) = /d2Pld2P2 <+ +p+>5(m+ +py = pT)8(p1 + pa—p).(pT + p3)*Ps <21 O(P,,Py) (19)

1 2

in terms of the bilocal fields O(xy, x,).

It is now possible to trace the effect of a cutoff on the
bulk radial direction of the fields ¢, on the boundary
operator O;, when

?5(2,%) = ¢ (2,x) = p(2) s (2, %), (20)

where p(z) is some smooth cutoff function in the z
direction. In Eq. (17), changing the p; and p, variables
py—rf
Py +py”

+ +

P> P
PP =0 21
1\/pl+ 2\/173 2!

and taking into account its Jacobian, it is simple to see
that regularization of ¢, with the multiplication by p(z)
[Eq. (20)] induces a convolution transformation of O by
p(p™) along the z direction:

and

in the integral to p; + py, p{ + p5,

O(....0) = O,(....0) = (500)(....0).  (22)

P>+ (p*)* =0, (23)

it is immediate that the spin s-primary operator of the
boundary theory, O, is similarly regularized:

Oy(p) = (5o Oy)(p). (24)

This is not exactly the cutoff procedure in the exact
renormalization group flow treatment in field theories.
However, it may become of a form more familiar in RG;
by taking the dual Fourier transform of Eq. (24), one ends
up with

5(rO(r), (25)

py +pf

where r is the “dual Fourier” coordinate of p. This is
reminiscent of the internal coordinate of the bilocal system
considered in Ref. [6].

The case of a sharp cutoff in the bulk,

p(z) =1

is of particular interest. Here z; is the UV cutoff point and
Zo 1s an IR cutoff. Then

for zp < 7 < Z» zero otherwise, (26)

; in pA
plp) ~efiwtiol SIS @7)

where Az =z — 2.
As zy > Zo, the width of j(p) increases, and the
operator

(50 0)(p) = / dpp - p)O(p).  (28)

at a fixed p, becomes “larger,” and Ois partially integrated
out. In the limit zo = z,, p — 6 and

(poO)(p) » / O )dp'

while for zy =0, p— 1, and j— & then (500).
(p) = O(p), and no modes are integrated out.

In the above construction, the precursor map was entirely
derived from symmetry considerations [16], which uses a
map between the canonical coordinates of the two dual
theories. In other cases, the map is derived from the
dynamical equation of the bulk theory as in the case below.
However, in the above case, the map derived from
dynamics is identical to that from symmetry arguments,
as it should be [Eq. (18)].

Another example is the AdS;/CFT, duality of a scalar
field in the AdS background dual to a boundary conformal
field, where the bulk theory
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S = /dxzdz(aﬂgoaﬂgo + m>¢?) (29)
is dual to a boundary CFT of dimension A given by [3]
A(A =2) =m?.
The bulk field is then related to the boundary operator O
as [9,17]

. 1 -
@(z.x) = cz / dp*e’”—J,(pz)O(p). (30)
p*<0 pv

where v=A—1. Here p=,/p,p¥, and ¢ is some
numerical constant.

This precursor formula makes it very easy to study the
cutoff functions on the two sides of the duality. Using the
orthogonality relation of Bessel functions,

Am zpJ (p2)J,(p'z)dz = &(p = p'), (31)

the behavior of the cutoff CFT operator O is obtained:
|

I(p.p') = / ® padzl, (p2)d,(p'2)

<0

1

L6,p) = / "t p. )z 0. (32

pv

where

L(p.p) = / dzpz),(p2)J,(p'2)p(z).  (33)

Again, this cutoff operator (32) is not a simple product of
the operator O by a cutoff function; rather it is a smearing
operation on it. But, the integral operator I(p, p’) has the
general properties expected from a genuine cutoff pro-
cedure. Indeed, at large momentum, (§p is damped, and it is
not damped at smaller momenta. To be precise, consider a
cutoff function p(z) which decreases rapidly at z < z; then
the properties of the Bessel functions J, imply that in
Eq. (35), for momenta p or p’ larger than %, the function
1,(p, p') is small, compared to when momenta have finite
values.

The result (32) leads to an explicit formula for the
boundary cutoff operator O,, in terms of the Bessel
function, when p(z) is a sharp cutoff function on the bulk
fields as in the original [4,5] holographic renormalization
conjecture. When p(z) =0 for z <0 and 1 otherwise,
Eq. (33) becomes

20
=d(p.p') - /0 pzdzJo(pz)J,(p'z)

P20
=6p-pr)-—5—=5
(=)=

One can see from this relation that there is a soft cutoff at
momenta of the order of > io

There remains to compare the evolution equations on the
two sides of the duality. The generalization of the AdS/CFT
duality equivalence conjecture [Eq. (12)], is

Z, (o) = ™", (35)

where Z, is the bulk partition function,

Z,(00) = / Doz x)e 09, (36)

and e="» is the generating functional of the boundary field
theory:

e_Wp(¢O) p— /D¢<x)e_s((b/7)+f¢0/)(bﬂ. (37)

(P'J.,(pz0) T (P'20) = PT,(P20)J,(P'20)]- (34)

Here, ¢,, is the corresponding cutoff boundary operator,
@0, = 1,90, and ¢ is the bulk field at the inflection point
of the cutoff function p(z):

@o(x) = @(z = 20, %), (38)

with z, the inflection point of p.

Also, ®,(x) is the cutoff boundary field induced by the
precursor map, Eq. (32). As the cutoff function is changed,
the two sides of the equivalence equation (35) will change
according to the two evolution equations, as follows.

On the bulk side, the equation was derived in Refs. [4,18]
and is the Schrodinger equation

Z,(po) =H (fﬂov 8%0() Z,(9o)- (39)

Here H is the “Hamiltonian” derived from the bulk action s,
with the radial direction replacing time. Strictly speaking,
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this equation is valid in the case of zy = 0 or when p(z) is
sharp. But, as p is always considered to be nearly sharp, this
equation is almost valid in the spirit of “almost path
integration” of Wilson, alluded to in the introduction.

The evolution equation on the field theory side, of the
generation functional, is related to the RG equation in the
theory and can be obtained by similar techniques
[7,13,19,20]. Differentiate Eq. (37) with respect to z:

. 0 0 . .
(e—W,;(f/k))) — /D(I) [——S(—) — 1,08 (®,) + 600(1/%)@] e~ S(®,)+0,®,

0z \Opop

0 0 .9 0 .0
= [dp|-——S|—|-1,—¢ + 20,1, ——| e~ Woloo), 40
/ p[ 0z (34’0/’) ”8% (a%ﬂ) ’ pafpoj ( )

where the prime on S indicates differentiation with respect
to the field. As in Eq. (32), the cutoff boundary field @, is
defined by

®,(p) = / 'L (. p)O(p). (41)
or, generally,
&, =1,0, (42)

where [, is the cutoff linear operator induced on the
boundary fields by the bulk cutoff function p. But, -2 §

] aZ()
is obtained from the generalization of Polchinski-

Wilson [20]

o 1 o . 8 o . 0
S 2SI, S+ —1,—S|. (4
ZOS Z/dp{ SI,—S LS| (43)

Throughout, the relation f,.g,= [dp(1,f)(p)(1,9)(—p)=
Jdpf(I,)*gis understood. And the distinction between the

CFT operator O and its modification # O(p) is overlooked.

The duality conjecture equation (35) relates the dynam-
ics of the two sides of the duality from equating (39)
and (40):

0 0 0
H(pg— ) = ——8—
<¢° 3rpo> 0z (3%/))
.0 0 .0
-1, +2¢,0,——. (44
pafﬂo (8600) ? p&/)op ( )

From this equation, one may derive the Hamiltonian of
the bulk theory from the knowledge of the action of the
boundary theory. There is an important caveat here; one
assumes the form of the background in the bulk and, thus,
the form of the integral operator /, which is in terms of the
mode functions in the bulk background. Of course, a central
assumption is the validity of the precursor map. Moreover,
there is a great deal of freedom in the choice and support of
the precursor map which complicates the application of the
relation (44), [21].

IV. CONCLUSION

In this work, a precursor map between the bulk fields and
boundary operators was used to study the relation between
the cutoffs on the bulk and boundary theories and to relate
the evolution equation in the radial direction of the bulk
theory to the RG flow equation of the boundary theory. To
do this, a smooth cutoff function on the radial direction was
imposed and the consequent cutoff operation on the
boundary theory obtained. It was found that, generally,
the operation of cutting of higher momenta in the boundary
field theory is some convolution and that a sharp cutoff in
the bulk does not lead to a sharp cutoff on the field theory
momenta.

It is interesting to find out, in the reverse direction, what
the cutoff functions on the field theory in the boundary lead
to in the bulk theory.

The introduction of smooth cutoffs on both sides of the
duality allows one to find the evolution equations on the
respective theories. On the bulk side, taking the bulk field’s
value at the inflection point of the cutoff function as the
boundary value ¢, it is straightforward, from previous
studies, to arrive at the Schrodinger equation for the
evolution of the bulk partition function as the inflection
point z;, varies.

But on the field theory side, the evolution of the generating
functional gives an equation (40) which is not, strictly
speaking, the usual RG equation (10) of the field theory.
Equating the differential operators on the two sides of the
duality acting on the single functional of the duality
equivalence [Eq. (35)] leads to a relation [Eq. (44)] between
the Hamiltonian in the bulk and the action functional of the
boundary. As there is no unique RG equation, Eq. (44)isnota
unique relation between the dynamics of the two sides of the
duality. Yet, given the dynamics on one side, a dynamics for
the other can be derived from this equation.

One should not forget that the usual equivalence, referred
to as Hamilton-Jacobi equation versus RG equation, is
between the nonrelativistic limit of the bulk Schrodinger
equation and the Calan-Szymansik equation of the boundary.

It is of interest to study this equation in concrete
examples of AdS/CFT duality.
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In a separate development, it has been conjectured [22]
that, in the case AdS;/CF,, there is a duality between the
cutoff bulk theory and the CFT boundary theory modified
by a TT term, where T is the energy momentum tensor
component 7', in the complex coordinate system. Later
[23], it was shown that, both in two dimensions and also in
higher dimensions with the appropriate generalization of
the TT term, the CFT modification can be derived from the
Hamilton-Jacobi equation of the bulk theory, in a similar
spirit as that of this article.

It is surprising that such a simple modification is all that
remains from a large collection of possible irrelevant
operators in moving away from the CFT fixed point.

This point will be addressed in future work.
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