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Abstract

This thesis presents results towards the realisation of high-repetition rate laser wakefield

acceleration (LWFA). I have framed the contributions around the development of multi-

pulse laser wakefield acceleration (MP-LWFA), which is a scheme using a train of laser

pulses rather than a single pulse to excite a plasma wakefield. High energy but low

peak power lasers that can reach multi-kHz repetition rates are already commercially

available, and could become viable as drivers in the MP-LWFA scheme in the near

future.

First, I discuss the development of a waveguiding mechanism capable of overcoming the

diffraction length of the tightly focused laser pulses without suffering laser damage after

continuous operation. I describe the novel solution of plasma channel waveguides and

focus on the measurement of their densities using optical methods. This is challenging

due to the small size (∼ 100µm) and often low densities (ne ∼ 1017 cm−3) of the plasma

structures, leading to a low phase contrast. I discuss several techniques for measuring

such structures, and methods for analysing the obtained data. Finally, I show how these

methods are applied using data acquired from a recent experiment that was performed

to produce plasma channels waveguides.

Second, I discuss the issue of ion motion and wakefield decay. MP-LWFA requires

that the wakefields after each pulse in the train interact coherently to excite a wakefield

through resonance. However, the interaction between the wakefield and the plasma ions

lead to several instabilities which moves energy into other modes, eventually breaking

up the wakefield. I present new experimental results measuring the wakefield decay time

to be on the order of 100 plasma periods in hydrogen, which is likely to be sufficient

for the MP-LWFA scheme.
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Chapter 1

Introduction

Throughout history, scientific discoveries have been driven as much by the develop-

ment of new tools as by the conception of new theories. For example, tools such as

the polished glass lens has allowed us to study objects as far away as other galaxies

and as small as individual biological cells. Sometimes making existing tools smaller

and cheaper also have a profound and unexpected impact on scientific progress. For

example, the invention of the transistor led to the miniaturisation of computers which

allowed their use to become much more widespread in the experimental sciences and

in society at large. The particle accelerator has over the past 80 years or so been one

of the real workhorses of scientific discoveries; one study concluded that between 1938

and 2009, 28% of all Nobel prizes awarded in physics had direct contributions from the

field of accelerator physics [1]. The laser plasma accelerator is based on the latest tech-

nological advances in laser physics and is a promising method for accelerating particles

to high energies over a short distance. With a footprint small enough to fit inside a

university experimental lab, their cost are a fraction of that of a modern synchrotron

accelerator. In this thesis, I will investigate the road towards high-repetition rate laser

plasma accelerators.
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CHAPTER 1. INTRODUCTION
1.1. ENGINES OF DISCOVERY

1.1 Engines of discovery

The first particle accelerators were constructed in the early 20th century by Rolf

Wideroe (1928), Ernest Lawrence (1929), and John Cockroft and Ernest Walton (1932).

The Cockroft-Walton generator [2], pictured in Figure 1.1a was capable of accelerating

protons to an energy of 0.7 MeV, sufficient to overcome the strong force and to split

atoms for the first time. Since their inception, particle accelerators have found an in-

creasing range of applications. Synchrotron light sources such as the Diamond Light

Source in the UK, Figure 1.1b, are used to study the properties of new materials and

biological matter. Examples include the structure of green fluorescent protein (Figure

1.2a), used among other things for indicating gene expression, giant magneto-resistance

(Figure 1.2b), the enabling principle of modern hard drives, and photo-voltaic materials

(Figure 1.2c).

Particle accelerators built purposely for investigating nuclear and particle physics

can be found at laboratories such as the European Organisation for Nuclear Research

(CERN), where machines such as the Large Hadron Collider (Figure 1.1c) are used to

study the properties of fundamental particles.

(a) (b) (c)

Figure 1.1: Historical and current particle accelerators. (a) Cockroft-Walton generator,
(b) Diamond Light Source, (c) Large Hadron Collider. For image sources see end of
this chapter.

2



CHAPTER 1. INTRODUCTION
1.2. TOWARDS LASER-DRIVEN PARTICLE ACCELERATORS

(a) (b) (c)

Figure 1.2: Objects studied at synchrotron light sources. (a) E-coli bacteria expressing
green fluorescent protein, (b) hard drives, (c) photo-voltaic cells. For image sources see
end of this chapter.

1.2 Towards laser-driven particle accelerators

The large number of scientific applications has led to a growing interest in particle accel-

erators. New methods for accelerating particles are being designed that could overcome

some current limitations of conventional accelerators, such as their prohibitive cost and

size. One of these methods is laser plasma acceleration (LPA). The performance of

LPAs in terms of generated electron beam energy has doubled approximately every 7.4

years (see Figure 1.3). The beam energy currently achievable (≥ 4 GeV) is comparable

to that used in synchrotron light sources. However, other important metrics such as

the beam emittance (a measure of the electron beam size in position and momentum

space) and the repetition rate need to be improved in order for LPA to be useful for

many applications in science and industry. In this thesis, the focus is on the issue of

how to increase the repetition rate of LPAs. Current high energy (≥ GeV electron ener-

gies) LPAs require relatively high intensity lasers to accelerate electrons, which means

that the repetition rate currently is restricted to the 1 − 10 Hz range due to heat-

ing of the optical components. Laser with lower peak power are capable of generating

pulses at kHz repetition rates, and have been used to accelerate electron beams up to

5 MeV [3–6]. Low peak power lasers could also be used to excite the plasma wakefield

through resonance. This scheme is known a multi-pulse laser wakefield acceleration

3



CHAPTER 1. INTRODUCTION
1.2. TOWARDS LASER-DRIVEN PARTICLE ACCELERATORS

(MP-LWFA). In this thesis, two aspects of high-repetition rate LPAs will be covered.

The first concerns the issue of plasma structures capable of guiding the drive pulse(s)

over several centimetres. The second concerns the lifetime of the plasma wakefield, as

this constitutes a critical limit of the feasibility of the multi-pulse scheme.

Figure 1.3: Beam energy generated by laser plasma accelerators since their inception.
For references see the labels in Table 2.1.

1.2.1 High-repetition rate plasma channels

A crucial aspect of enabling high-repetition rate laser plasma accelerators is finding a

device capable of guiding the high-intensity laser pulses over a long (∼ cm) distance.

This is similar to how guiding in optical fibres work (Figure 1.4), except that the

medium is a plasma instead of glass. In this thesis, I will focus on how to measure

their structure to ensure that they have the desired properties. These methods will be

covered in Chapters 3 and 4.

4
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1.2. TOWARDS LASER-DRIVEN PARTICLE ACCELERATORS

Figure 1.4: Optical fibre waveguide. For image source see end of this chapter.

1.2.2 Plasma wakefield decay

The method used to excite a high-repetition rate plasma wakefield is another important

aspect. The MP-LWFA scheme could to achieve this at a repetition rate of several

kHz. However, the lifetime of the plasma wakefield could limit the usefulness of this

scheme. If the wakefield decays too quickly, additional pulses would not generate a

higher amplitude wakefield. In Chapters 5 and 6, I investigate the causes and timescales

of wakefield decay, in order to determine whether this constitutes an issue for the

feasibility of MP-LWFA.

5
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1.3. OUTLINE OF THE THESIS

1.3 Outline of the thesis

In this thesis, I address two issues of multi-pulse laser wakefield and other high-repetition

rate laser plasma acceleration schemes. The first, that of diagnosing plasma channels

used for guiding high-intensity laser pulses, is covered in Chapters 3 and 4. The second

issue pertains to the decay of plasma wakefields, which affects all long-pulse wakefield

acceleration schemes. This is covered in Chapters 5 and 6.

Chapter 2 - Laser plasma acceleration An overview of several schemes to

achieve wakefield excitation: laser beatwave acceleration, self-modulated laser wakefield

acceleration, laser wakefield acceleration, and multi-pulse laser wakefield acceleration.

An introduction to the theory of laser-plasma acceleration is presented. I present a

simple scaling law showing that the energy gain achievable in a laser-plasma acceler-

ator stage is inversely proportional to the plasma density. I introduce the concept of

ion motion, which leads to plasma instabilities and wakefield decay, and discuss its

implication for long-pulse plasma acceleration schemes.

Chapter 3 - Plasma density diagnostics I introduce a theory of low-intensity

laser propagation in plasma, leading to a phase shift and deflection of the laser pulse.

These effects are proportional to the plasma density, providing a non-destructive method

for measuring the plasma density. I present several methods of diagnosing plasma

structures using lasers; shadowgraph and schlieren imaging, use of wavefront sensors,

deflectometry, and interferometry. I present a novel diagnostic layout allowing the

simultaneous measurement of the plasma structure from two different angles.

Chapter 4 - Interferometry analysis I discuss the problem of extracting the

phase from an interferogram and provide a solution for each step in this process; the

phase extraction, unwrapping the phase, and methods to recreate a three-dimensional

symmetric structure from a two-dimensional projection. I show that a previously de-
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veloped method that enables the reconstruction of phase objects that are asymmetric

in one transverse direction can be expanded to an arbitrary angle by adding a second

projection axis. I provide an example analysis of interferometric data of low-density

plasma channels and compare the use of the Fourier transform with the continuous

wavelet transform for this purpose.

Chapter 5 - Wakefield decay: theory and experiment I present several

mechanisms that can lead to wakefield decay through interaction with plasma electrons

and ions; Landau damping, modulational instability, and collisional damping. I provide

estimates of the growth rate of each of these instabilities. I also present several methods

for measuring the wakefield amplitude, both using electron beams and lasers. Previous

experiments that have measured the wakefield decay rate are summarised.

Chapter 6 - Measuring wakefield decay The results of an experiment to mea-

sure wakefield decay is presented. I outline the main difference with respect to previous

experiments, and use for the first time the recently developed frequency domain holog-

raphy diagnostic (FDH) to measure the wakefield decay, with the temporally encoded

spectral shifting (TESS) analysis method to extract the wakefield amplitude. Finally, I

discuss the implications of these measurements on the MP-LWFA and other long-pulse

laser plasma acceleration schemes.

Chapter 7 - Frequency domain holography I describe an attempt to analyse

the wakefield decay data using the frequency domain holography analysis method. I

show that due to a limitation in the bandwidths of the laser pulses used to measure

the wakefield, this method does not accurately reconstruct the wakefield amplitude.

Theoretical and numerical calculations confirm this result, and I discuss why the TESS

method is not similarly affected.
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Chapter 8 - Discussion and future outlook I summarise the main results of

the thesis, together with a future outlook of laser plasma accelerators.

1.4 Role of the author

The main experimental data presented in Chapter 6 in this thesis were collected during

an experimental campaign in September to November 2018 at the Central Laser Facility

(CLF), UK. The author was responsible for designing the experiment and leading the

day-to-day operations in the role of deputy target area operator. The analysis of the

collected data has been carried out by the author. The results have been presented as

a conference presentation at the European Advanced Accelerators Concepts Workshop

2019, and a journal publication of these results is being prepared.

The results presented in Chapter 4 were collected from a later experimental campaign

in 2019, also at the CLF. Here, the author was responsible for the design of an in-

terferometric diagnostic to measure low-density plasma channels. The results of this

experiment has been published [7]. In addition the author has assisted during two ear-

lier experimental campaigns, one at Oxford in 2017 and one at CLF in 2018. In the

2017 experiment, the author helped with day-to-day operations and in the 2018 ex-

periment the author was responsible for setting up a transverse diagnostic and writing

some of the control software for the experiment. The results of these experiments have

resulted in two published articles [8, 9]. The author has also presented this work at the

Advanced Accelerators Workshop at Elba in 2017 during a poster session, and again as

a speaker at the John Adams Institute annual meeting in 2018.
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Chapter 2

Laser plasma acceleration

In this chapter I give a brief overview of basic theoretical concepts of plasma wakefields

that will underpin the later chapters, including the ponderomotive force and plasma

oscillations. I show that the energy gain of a single accelerator stage is proportional to

the inverse plasma density, which necessitates the use of low-density plasma channels

capable of guiding a high-intensity laser pulse over a long distance. I also review some

common laser-driven plasma accelerator schemes: laser beatwave acceleration (LBWA),

self-modulated laser wakefield acceleration (SM-LWFA), laser wakefield acceleration

(LWFA), and multi-pulse laser wakefield acceleration (MP-LWFA). Finally, I discuss

the issue of ion motion in laser plasma accelerators.

2.1 Background

The acceleration of charged particle beams in a plasma wakefield was first envisioned by

Tajima and Dawson in 1979 [10]. They noted that plasma waves could sustain strong

electric fields with accelerating gradients up to three orders of magnitude greater than

those of conventional accelerators. They proposed using short, intense laser pulses

(> 1018 W cm−2) propagating through a plasma to drive a trailing wakefield, as shown
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Drive pulse

Wakefield

e− bunch

Figure 2.1: Laser wakefield acceleration.

in Figure 2.1. For suitable plasma densities (1017− 1018 cm−3), the laser pulse duration

would need to be less than 100 fs. However, the technology required to generate intense

laser pulses this short was not available at the time. Instead, other methods had to

be used generate plasma wakefield in the laboratory. I provide an overview of some of

these methods in Section 2.8. First, however, I review some of the basic theory of laser

plasma acceleration.

2.2 Laser ponderomotive force

A laser pulse with a finite spatio-temporal extent has an intensity gradient which causes

an effective transverse and longitudinal force that pushes the plasma electrons away

from the laser pulse through the ponderomotive force [11]. Once the laser pulse has

propagated past the electrons, they are pulled back towards their original positions by

the positive charge from the ions, and subsequently start to oscillate around the axis.

The ponderomotive force for an electromagnetic wave is proportional to the gradient of

the laser electric field intensity, and is equal to (following Chen [12]):

FNL = −
ε0ω

2
p

ω2 ∇

〈
E2
〉

4 . (2.1)
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I obtain this expression by considering the equation of motion for a single electron in

an oscillating electromagnetic field with a radial dependence r and frequency ω:

m
dv
dt

= −e[E(r, t) + v×B(r, t)]. (2.2)

Evaluating the electric field at the initial position r0 of the electron and neglecting the

magnetic field, I obtain the first-order solutions for the velocity and position of the

electron in the field. Expressing the electric field wave as the product of a radially-

dependent envelope function Es(r) and an oscillating cosinus term:

E(r, t) = Es(r) cosωt, (2.3)

I rewrite the equation of motion (2.2) as

m
dv1

dt
= −eE (r0) , (2.4)

with solutions for the velocity v1 and position δr1:

v1 = dr1

dt
= − e

mω
Es(r0) sinωt (2.5)

δr1 =
(

e

mω2

)
Es(r0) cosωt. (2.6)

Next, I use these expressions in the equation of motion (2.2), to find the second-order

equation of motion. No longer neglecting the magnetic field, I obtain an expression of

it using:

dB
dt

= −∇× E (2.7)

B1 = − 1
ω
∇× Es|r=r0

sinωt. (2.8)
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Expanding the electric field to first order, E(r) = E (r0) + (δr1 · ∇) E(r)
∣∣
r=r0

, one may

write the second-order equation of motion as:

m
dv2

dt
= −e

[
(δr1 · ∇) E + v1 ×B1

]
. (2.9)

Inserting equations (2.5), (2.6) and (2.8) I obtain:

m
dv2

dt
= − e2

mω2

[
(Es · ∇) Es cos2 ωt+ Es × (∇× Es) sin2 ωt

]
(2.10)

m

〈
dv2

dt

〉
= − e2

mω2
1
2
[
(Es · ∇) Es + Es × (∇× Es)

]
, (2.11)

where I averaged over time using 〈cos2 ωt〉 = 〈sin2 ωt〉 = 1/2. Substituting with the

expansion Es × (∇× Es) = ∇(Es · Es)− (Es · ∇)Es I am left with:

m

〈
dv2

dt

〉
= − e2

mω2
1
2∇(Es · Es), (2.12)

I now obtain an expression for the ponderomotive force acting on a single particle,

fNL ≡ m

〈
dv2

dt

〉
= −1

2
e2

mω2∇E
2
s (2.13)

I multiply with the plasma density ne = ε0ω
2
pme/e

2 to obtain the force per area. Since

I assumed an electric field wave of the form E(r, t) = Es(r) cosωt one sees that 〈E〉 =

〈Es〉/2. Making these substitutions in equation (2.13) I finally obtain the expression of

the ponderomotive force in equation (2.1) [12].

2.3 Plasma oscillations

The laser ponderomotive force acts to push electrons out from the laser axis, while the

much heavier, and therefore slower, ions remain in the centre and provide a restoring

force for the electrons. The frequency of the resulting plasma electron oscillation can be
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− − −
+ + + E+

−

Figure 2.2: Plasma slab model of electron oscillations.

calculated from a simple model assuming an infinite slab of uncharged and homogeneous

plasma. By displacing a layer of electrons with surface charge ene by a distance x an

electric field rises between the charge layers, as shown in Figure 2.2. Using Gauss’s law

I obtain an expression for the electric field in one dimension and neglecting the v × B

term:

E = ene
ε0
x, (2.14)

where e is the electron charge, ne the density, and ε0 the vacuum permittivity. This

electric field is responsible for the restoring force and hence the motion of the electrons

is given by:

meẍ = eE = −e
2ne
ε0

x, (2.15)

⇒ẍ+ ωpx = 0, (2.16)

where me is the mass of the electrons. This is the equation for the harmonic oscillator,

with ωp the plasma electron frequency [13]:

ωp =
√
e2ne
ε0me

. (2.17)
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2.4 Radial and longitudinal plasma oscillations

A two-dimensional model of non-relativistic plasma waves driven by a Gaussian laser

pulse was developed by Gorbunov and Kirsanov [14]. The plasma behaviour is derived

using the linear plasma fluid equations together with the plasma electrons equation of

motion in a ponderomotive force field. The finite width of the drive laser pulse gives

rise to oscillating plasma electric fields in both the radial or longitudinal directions.

However, a laser plasma accelerator usually requires longitudinal oscillations since the

electrons are accelerated along the laser axis.

The longitudinal electron density perturbation is caused by the extent of the

laser pulse in time, while the radial perturbation is caused by the spatial extent of

the laser. The density modulation is given by the sum of the radial and longitudinal

contributions δn = δnr + δnz: [15]

δn

ne
=A

1 +
(

2c
ωpσ

)2 (
1− r2

σ2

)
︸ ︷︷ ︸

Radial wakefield

 exp
(
− r

2

σ2

)
sin

(
ωp(t− z/c)

)
, (2.18)

where c is the speed of light, σ the focal spot size of the drive laser, and τ0 the temporal

duration of the drive laser. t and z are the temporal and spatial coordinates, respec-

tively. The amplitude term A is proportional to the intensity I of the laser pulse at

focus:

A = I
√
π

c3ncme

(
ωpτ0

2

)
exp

[
−
(
ωpτ0

2

)2
]
. (2.19)

Here, nc = ε0me/e
2ω2 is the critical plasma density, From this equation, one can calcu-

late the ratio between the radial and the longitudinal components of the wakefield at
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the centre of the laser focus:

δnr
δnz

∣∣∣∣∣
r=0

=
(
λp
πω

)2

, (2.20)

where λp = 2πc/ωp is the plasma wavelength. This equation indicates that when the

laser spot size is larger than the plasma wavelength (πσ � λp), the wakefield is mainly

longitudinal, whereas when the plasma wavelength is larger (πσ � λp), the radial

component is greater. I also investigate the amplitude of the radial and longitudinal

Figure 2.3: Absolute amplitudes of longitudinal and radial wakefields for a range of
different plasma densities for a given laser intensity, focal spot size, and wavelength.
The values of these parameters are identical to those in the experiment presented in
chapter 6. The blue line shows the longitudinal wakefield amplitude, the red line the
radial wakefield amplitude, and the black striped line the total wakefield amplitude.

oscillations as a function of plasma density. The plasma density at which the wakefield

amplitude is maximised is known as the resonant density. For the longitudinal wakefield,

I investigate the existence of a resonant density by calculating the derivative of equation

(2.18), excluding the radial part. I find that this gives the following condition for the
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product of the plasma frequency ωp and the laser pulse duration τ0:

d

dn

(
δnz
ne

)
= 0 (2.21)

⇒ωpτ0 =
√

2. (2.22)

For a given pulse duration, this relation indicates that the resonant plasma density that

maximises the (relative) longitudinal wakefield amplitude δnz/n0: the one such that

ωp =
√
nee2/ε0me =

√
2 /τ0. Similarly, the (absolute) density perturbation δne also has

a maximum at ωp =
√

6 /τ0. Meanwhile, for the radial wakefield amplitude δnr/n0 I

find that the derivative does not equal to zero for any combination of parameters ωp

and τ0, and so it has no resonant plasma density (the amplitude keeps increasing for

decreasing plasma densities). However, the absolute density perturbation δnr has a

resonance at ωp =
√

2 /τ0. Figure 2.3 shows the behaviour of δnz and δnr as a function

of the plasma background density.

2.5 Relativistic limit

In intense laser fields, the plasma electrons can acquire relativistic velocities, which

modifies the dynamics of the plasma. The velocity acquired by an electron in a linearly

polarized oscillating electric field is [13]:

v(t) = eE0

meω
, (2.23)

where v is the electron velocity, e the electron charge, me the electron mass, E0 the

electric field amplitude, ω the laser angular frequency, and t the time. From this

expression one can define the dimensionless unit a0:

a0 = eE0

meωc
, (2.24)
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where c is the speed of light. For a0 > 1, the electrons have relativistic velocities

approaching c. More commonly, a0 can be expressed in terms of the laser intensity I

and wavelength λ:

a0 ≈ 0.85
√
I [1018 Wcm2])(λ [10−6 m])2. (2.25)

Above the relativistic limit, the plasma electron frequency and wavelength are modified:

ωp =
√
e2nw
ε0γme

(2.26)

λp = 2πc
√
ε0γme

e2ne
, (2.27)

where γ = (1− β2)−1/2 and β = v/c.

2.6 Energy gain

The maximum achievable accelerating gradient of a LWFA (in a cold, nonrelativistic

plasma, i.e. T ≈ 0 eV, a0 � 1) is determined by the cold plasma wave breaking limit,

which occurs when the velocity of the plasma electrons becomes equal to the phase

velocity of the plasma wave [16, 17]. This limit can be written as [11]:

E[V/m] ≈ 96
√
n0[cm−3]. (2.28)

As an example, a plasma density of ne = 1018 cm−3 used in experiment corresponds to

an accelerating gradient close to 100 GeV/m. The energy gain ∆E in a single accelerator

stage is the accelerating gradient times the effective accelerator length: ∆E = ELAcc,

where E is the peak electric field in the plasma wave. For a given accelerating gradient,

the total energy gain is therefore limited by the effective accelerator length. That is the

shortest among the following:
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• The diffraction length

• The dephasing length

• The depletion length

The diffraction length is equal to the Rayleigh range of the laser, the distance

from focus over which the laser intensity falls to below Imax/2 (typically on the order

of a few mm). The diffraction length can be overcome by the use of a guiding mecha-

nism, either self-guiding of the laser pulse (occurs when the laser intensity is above the

relativistic limit) [11] or by an external guiding structure such as a capillary discharge

waveguide [18] or a plasma channel [8, 19–24] (more on this in Section 2.7).

The depletion length is the distance it takes for the drive laser to transfer all of

its energy to the wakefield, which in the non-relativistic (a0 � 1) case is given by:

Lpd =
2λ3

p

λ2
0a

2
0
, (2.29)

where λp is the plasma wavelength and λ0 the laser wavelength.

The dephasing length is the distance over which the accelerated electrons, with

a speed close to c, move into the decelerating phase of the plasma wake, which has a

group velocity less than c. This length given by the following equation, valid for a0 � 1:

Ld =
λ3
p

λ2
0
, (2.30)

Since λp ∝ n−1/2
e , the dephasing and depletion lengths scale as Ld, Lpd ∝ n−3/2. The

total energy meanwhile scales as (using Eq. (2.29)) ∆E ∝ EL ∝ n1/2n−3/2 = n−1 which

means that the use of lower plasma densities allows for longer accelerating lengths

and thus higher energy gains. The benefit of using low-density plasma channels is

demonstrated in Figure 2.4, using data from Table 2.1, where one observes that the

20



CHAPTER 2. LASER PLASMA ACCELERATION
2.7. PLASMA WAVEGUIDES

energy gains in previous laser plasma acceleration experiments follow this simple scaling

law.

Figure 2.4: Plot showing the plasma density used and energy gain observed in previous
laser plasma acceleration experiments. The black line shows the scaling law ∆E = ELd
(using the dephasing length Ld as the limiting factor) with a drive laser wavelength
λ0 = 800 nm, driving a wakefield at the wave breaking limit. The references for each
experiment are listed in table 2.1

2.7 Plasma waveguides

In the previous section I discussed the diffraction length that limits the energy gain

achievable in a single acceleration stage. Pre-formed plasma waveguides is one method

that has been successfully used to guide the drive laser over distances much longer

than the Rayleigh range (∼ centimetre) distance. In general, gradient refractive index

waveguides consist of a high refractive index material in the centre of the waveguide and

a lower refractive index material on the edge. In this case total internal reflection occurs,

which is what enables light to be guided in optical fibres. This is because the refractive

index of glass is higher than that of air. In a plasma channel, where the refractive

index depends on the plasma density, similar guiding is achieved by manipulating the
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plasma into a certain structure. Because the refractive index decreases with increasing

electron density, plasma waveguides require higher densities on the edges than in the

centre. This can be seen in the following equation for the refractive index η(r) for non-

relativistic plasmas, where r is the radius of an assumed axisymmetric plasma channel

[37]:

η(r) =

√√√√1−
ω2
p

ω2
0
' 1−

ω2
p

2ω2
ne(r)
n0

, (2.31)

where ne(r) is the transverse electron density profile, n0 the background density, ω0

the laser frequency, and ωp the plasma frequency. In underdense plasmas, the plasma

to laser frequency ratio satisfies ω2
p/ω

2
0 � 1. Plasma density profiles with the desired

guiding properties have previously been achieved in capillary discharge waveguides [18],

where plasmas are generated by a high-voltage discharge in a small diameter gas-filled

capillary laser-machined through a sapphire block. Heated electrons from the centre of

the capillary thermalise with the cold sapphire, forming a cold, dense plasma near the

capillary wall, and a relatively warm, low-density plasma on axis. Capillary waveguides

have been successful used to reach high energies [36]. However, the walls of the capillary

would be damaged even when hit infrequently by the laser beam which would would

burn and eventually destroy the capillary.

Plasma waveguides have also been created hydrodynamically. Here, the plasma is

pre-heated through collisional ionisation using a long (∼ ps) laser pulse, causing the

plasma to expand outward into the surrounding gas at a speed greater than the local

sound speed [19]. This generates a shock wave at the gas-plasma interface, leaving a

density minimum in the centre of the plasma channel. A similar approach developed

by the author’s group is to use a shorter (∼ fs), more intense laser pulse that heats

the plasma through optical field ionisation (OFI) where the ionised electrons acquire

the excess energy of the ionising laser electric field as kinetic energy. Earlier work

on OFI-heated plasma channels [21, 38], showed that plasma channels are formed at

densities on the order of 1018 cm−3. At lower densities, on the order of 1017 cm−3,
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measuring the plasma density profiles becomes challenging due to the low phase contrast

of the channels. Methods for diagnosing these low density channels, which were partly

developed by me, are discussed in Chapters 3 and 4, and have been used to successfully

diagnose plasma channels with on-axis densities as low as ne(0) ' 1017 cm−3 [22–24].

2.8 Laser plasma acceleration methods

2.8.1 Plasma beatwave acceleration

One of the earliest methods to excite a plasma wakefield was the the plasma beat-wave

accelerator (PBWA) [39]. Here, two laser pulses of different frequencies ω1 and ω2

interfere to generate beats with frequency ∆ω = ω2 − ω1. By choosing ω1, ω2, and

ne the beat distance can be made equal to the plasma wavelength λp, as shown in

Figure 2.5. The concept was first experimentally demonstrated in the 1990s [40, 41],

and in 1993 Clayton [42] was the first to demonstrate electron acceleration in a PBWA.

In that experiment, a CO2 laser was used to produce two beams with wavelengths

λ1 = 10.59 µm with (60± 10) J and λ2 = 10.29 µm with (10± 5) J. Electrons were

externally injected into the wakefield with an energy of 2.1 MeV and accelerated up to

9.1 MeV. The accelerator length of 3.2 cm (limited by the Rayleigh length of the drive

laser) implied an accelerating gradient of 0.7 GeV/m. A drawback of the PBWA scheme

is that as the wakefield amplitude grows, the wavelength increases due to relativistic

effects. If the beatwave pattern is constant, it will eventually become out of phase with

the wakefield, limiting the maximum amplitude achievable [11]. In addition, it is also

vulnerable to several instabilities, such as the modulational instability, which will be

discussed later.
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Laser beatwave

Wakefield

e− bunch

Figure 2.5: Laser beatwave acceleration.

2.8.2 Self-modulated laser wakefield acceleration

Another way to excite a plasma wakefield using a longer laser pulse is by exploiting

instabilities through the propagation through the plasma to break up the longer pulse

into shorter pulses, with lengths similar to the plasma wavelength. This scheme, known

as self-modulated laser wakefield acceleration (SM-LWFA) was described theoretically

by Esarey et al. [43]. For pulses with an optical power exceeding the critical power

threshold P > Pcrit, where Pcrit = 17(ω/ωp)2, the plasma wake structure starts behaving

like a lens and periodically focuses and diffracts the laser beam. In low-density regions

of the wake the laser is focused, while in the high-density regions the plasma has a

defocusing effect on the laser. The increase in laser intensity in turn drives up the

amplitude of the wakefield, further increasing the focussing effect. This process, known

as the self-modulation instability, acts to break up the long laser pulse into a series

of shorter pulses that excite a wakefield, as shown in Figure 2.6. An advantage of

SM-LWFA is that the modulations remain in phase with the wakefield even as the

amplitude grows, which enables higher amplitudes to be reached. This method was

first demonstrated experimentally by Coverdale et al. [44] and Modena et al. [26]. In

the former experiment, a 600 fs long laser pulse with a wavelength of 1053 nm and energy

of 3 J was focused to a spot with intensity 1018 W m−2 (a0 = 0.9). As it propagated

through the plasma, the laser pulse decayed into a plasma wave with frequency ωp and

two forward-propagating daughter waves with frequencies ω0−ωp and ω0 +ωp. The first
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Self-modulated laser pulse

Wakefield

e− bunch

Figure 2.6: Self-modulated laser wakefield acceleration.

is referred to as the ‘Stokes’ scattered wave and the second as the ‘Anti-Stokes’ scattered

wave. By measuring the laser spectrum after the plasma, a peak corresponding to the

Anti-stokes scattered wave was detected, which confirmed the presence of a wakefield.

Electrons accelerated up to 2 MeV were detected by a spectrometer. In the latter

experiment, electrons were accelerated up to 44 MeV with the use of a 0.8 ps long pulse

with a wavelength of 1054µm, achieving an intensity on target of 6× 1018 W cm−2.

2.8.3 Laser wakefield acceleration

The development of new laser technology opened up the possibility of testing the theo-

ries of Tajima and Dawson in the short-pulse regime that they had originally considered.

Chirped pulse amplification (CPA), invented by Mourou and Strickland in 1985 [45] (for

which both were subsequently awarded the Nobel prize in physics in 2018), allowed the

generation of pulses with high peak intensity and temporal duration below 100 fs. The

use of CPA laser systems allowed researchers to demonstrate electron acceleration up

to 100 MeV [29–31], with a small (< 3 %) energy spread and high beam charge (22 pC).

This development has since continued and several experiments have reported energy

gains above 1 GeV [32, 35, 46, 47] using CPA laser systems. The highest energy gains

reported so far is 4.2 GeV [36], and more recently 8 GeV [48]. Several design studies

are under way to develop LWFA-based facilities and achieve energies exceeding 10 GeV

[49, 50].
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Drive pulse train

Wakefield

e− bunch

Figure 2.7: Multi-pulse laser wakefield acceleration.

2.8.4 Multi-pulse laser wakefield acceleration

While CPA based lasers have been remarkably successful in producing plasma acceler-

ated electron beams with energies reaching several GeV, they are still fundamentally

limited by the relatively poor thermal properties of the gain media. The cooling require-

ments limits the operation of the laser to a repetition rate to a few Hz (for high energy

electron generation), far from the 100’s of kHz operation that conventional accelerators

are capable of [13]. Relatively lower electron acceleration, up to 5 MeV, have been

achieved at kHz repetition rates [3–6]. The low energy efficiency of high intensity lasers

is also problematic, since less than 0.1% of the supplied electrical energy is converted

to laser energy [51]. Moreover, the single pulse LWFA requires high intensity focus

comparable to the plasma wavelength, around 30 µm. This requires large optics with

long focal lengths, which takes up space and makes acceleration in several stages more

difficult if each stage is to be driven by a single pulse [52]. Multi-pulse laser wakefield

acceleration (MP-LWFA), Figure 2.7, builds on the idea of the beat-wave accelerator

originally proposed by Tajima and Dawson in 1979 [10]. It has been proposed as a way

to overcome some of the challenges with LWFA, by using a different class of lasers with

much higher energy efficiency and repetition rates on the order of 10 kHz. For example,

commercially developed thin-disc or fibre lasers could be used as the wakefield driver.

Commercial fibre lasers can operate with a wall-plug efficiency (electrical energy to op-
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tical energy) exceeding 50%∗. MP-LWFA uses a pulse train, where each pulse is spaced

by the plasma wavelength λp, to excite a wakefield through resonance. Since the en-

ergy is spread over several pulses, the peak intensity of each pulse is lower, potentially

limiting the damage on optical elements. Several schemes have been proposed that

could be used to generate a pulse train for MP-LWFA: coherent combination of laser

pulses [53], divided pulse amplification [54], beam splitters and delay lines [55], and beat

wave-type interference of chirped pulses [56].The first experimental demonstration of

the MP-LWFA concept was recently reported [57]. In this work, two interfering chirped

pulses were used to create a train of 7 pulses and used it to excite a δne/n0 = 1% plasma

wake. Another potential benefit of MP-LWFA compared to LWFA is that under op-

timal conditions it can be more efficient than single-pulse excitation, since the timing

between each subsequent pulse can be adapted to the increasing plasma wavelength

[58].

2.9 Ion motion

In this chapter, I have so far assumed that ions do not move and do not contribute to

the dynamics of the wakefield, other than giving rise to the restoring force as a con-

stant positive background. While they can be assumed to be stationary over the short

timescale of a single laser pulse, this assumption no longer holds after the characteristic

timescale of ion motion:

τi = 2π
ωpi

(2.32)

ωpi =
√
Z2nie2

miε20
, (2.33)

∗For an example of this, see https://www.ipgphotonics.com/en/products/lasers/
high-power-cw-fiber-lasers/1-micron/yls-eco-1-10-kw
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where ωpi is the plasma ion frequency, Z the atomic number, ni the ion density, mi

the ion mass, e the atomic charge, and ε0 the vacuum permittivity. The long-term

evolution and eventual decay of a plasma wake is dominated by the dynamics of plasma

ions. The above equation shows that the determining factor is the charge to mass ratio

Z/mi of the plasma species (for a given electron density ne = Zni) — the lower this

ratio, the slower the onset of ion motion. Ion acoustic waves, the plasma equivalent to

sound waves in conventional fluids also arise and are driven either by thermal pressure

or the ponderomotive pressure from a wakefield [59]. These are different from electron

plasma waves, since there is no restoring force — when ions move, the much lighter

electrons follow and maintain quasi-neutrality in the plasma. This process leads to

density perturbations which trap and modulate electron plasma waves, resulting in the

break-up of wakefields and energy eventually dissipating into thermal motion. Due to

its longer timescale, ion motion is relevant for all plasma acceleration schemes with

laser or particle drivers with lengths greater or equal to the ion timescale σz ≥ cτi.

In the case of MP-LWFA, simulations have shown that after about N ≈ 70 pulses

the wakefield starts to deteriorate due to ion motion in a hydrogen plasma and after

N ≈ 120 pulses in a xenon plasma [60]. Another case where ion motion is relevant

is the proton-driver wakefield accelerator (PDWFA) (for example the AWAKE project

at CERN [61]), which uses long (σz ≈ 10 cm) proton bunches. It relies on the self-

modulation instability to shape the particle beam into a train of smaller bunches, each

on the scale of the plasma wavelength (10 µm). Ion motion stops this process from

fully developing a modulated beam, which limits the achievable accelerating gradient.

Simulations have showed that higher charge-to-mass ratio plasma species yielded higher

amplitude wakefields in this case [59]. The processes leading the decay of plasma

wakefields will be covered in Chapter 5, and the results of an experiment to measure

the wakefield lifetime is presented in Chapter 6.
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Chapter 3

Plasma density diagnostics

3.1 Plasma diagnostics for LWFA

The plasma medium is of central importance to both laser-driven and particle-driven

wakefield acceleration, as its characteristics determines the performance of the acceler-

ator. Of principal interest is the plasma number density, spatial homogeneity, temporal

stability, and shape. In this chapter I cover the principle diagnostic methods for deter-

mining the plasma density by means of optical probes (methods for measuring plasma

wakefields are covered in a later chapter). The main benefit of light-based probing

is that it is fast enough (sub-ps) to capture plasma dynamics on the temporal scale

which is relevant for applications in LWFA. Furthermore, in the case of LWFA, there is

already a high-performance laser with pico or femto-second resolution used for exper-

iments, and so it is convenient to use a small fraction of the available laser energy to

probe the resulting plasma.
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3.1.1 Uses of plasma diagnostics

Knowledge of the plasma density is important for LWFA since it determines both the ac-

celerating field strength, the dephasing length, and the depletion length. As I discussed

in Chapter 2, current developments in LWFA favours the production of centimetre long

plasma cells with low plasma densities (1016-1017 cm−3). In order to guide the driving

laser pulse over that distance, guiding plasma structures are needed where high sensi-

tivity diagnostics are used to infer the on-axis density, as well as the height, width, and

thickness of the surrounding plasma walls.

3.1.2 Light-based plasma diagnostics

In this chapter I will focus on light-based methods for measuring plasma densities, since

they are sensitive enough to measure the low plasma densities required for LWFA, and

fast enough to capture the relevant dynamics. The techniques covered have been used

for many different experiments in the field. I begin with two “qualitative” methods

which rely on measuring changes in the intensity of the probe pulse to infer either

the first order derivative of the plasma refractive index, as in schlieren imaging, or

the second order derivative, as in shadowgraph imaging. The rest of methods covered

are more sensitive and work either by measuring the wavefront directly, measuring the

difference in the group delay between two pulses on a spectrometer (group velocity

technique and two-colour spectral interferometry), interfering two pulses to generate

a fringe pattern on a camera (interferometry), or measuring the deflection angle with

the use of a grating pair (moiré deflectometry). Before I describe each method in more

detail, I will show how the propagation of a laser pulse through a plasma generates a

measurable quantity (the phase), which is proportional to the density.
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3.2 Electromagnetic waves in plasma

Electromagnetic waves in the form of laser light is commonly used to measure plasma

densities. Here I show how the interaction with a plasma causes the electromagnetic

wave to acquire a phase shift relative to an identical wave that propagated through

vacuum. Consider Maxwell-Faraday’s equation and Amperès law in vacuum together

with a plasma current (see Hutchinson [62] for a full derivation of these results):

∇× E = −∂B
∂t
, ∇×B = µ0j + ε0µ0

∂E
∂t
,

where µ0 and ε0 are the permeability and emittivity of vacuum. The plasma effects

are captured by the plasma current j. Combining these two equations yields the wave

equation in a medium:

∇× (∇× E) + ∂

∂t

(
µ0j + ε0µ0

∂E
∂t

)
= 0 (3.1)

In an isotropic and homogeneous plasma one is be able to assume solutions of the

form exp(ik · r− iωt), however since plasma structures are not necessarily homogeneous

I instead use the Wentzel, Kramers, and Brillouin (WKB) approximation. Here one

assumes that the scale length of the variations in the plasma, L, is much longer than

the plasma wavelength L � λ. One can also write this as 2π(kL)−1 � 1, where k

is the plasma wave number k = 2π/λ [63]. Starting with rearranging equation (3.1),

replacing c = 1/√ε0µ0:

c2∇× (∇× E) + ∂

∂t

(
1
ε0

j + ∂E
∂t

)
= 0. (3.2)

I then look for solutions E = Ẽ exp{i
[∫

k(r) · dr− ωt
]
}, where Ẽ is the electric field

amplitude, so that I replace ∇E → exp{i
[∫

k(r} · dr− ωt
]
)(∇ + ik)Ẽ and ∂E/∂t →

−iωE. I also assume that the current is linear in E, so that j = σE, where σ is the
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conductivity of the plasma.

c2

ω2 (k− i∇)× [(k− i∇)× Ẽ] = −Ẽ− i
ε0ω

j (3.3)

= −
(

I + i
ε0ω

σ

)
Ẽ (3.4)

= −ε · Ẽ, (3.5)

where I is the unity matrix and ε the dielectric tensor of the plasma:

ε =
(

I + i
ε0ω

σ

)
. (3.6)

I have assumed that the spatial variations are slow compared to the wavelength of

the laser pulse. One can therefore expand Ẽ into zero and first orders in (kL)−1:

Ẽ ≈ Ẽ0 + Ẽ1. Since terms ∇Ẽ ≈ ∇Ẽ0 +∇Ẽ1 = ∇Ẽ1 and Ẽ1 are small compared to

Ẽ0 they may be neglected [63]. With these approximations, replacing k = kk̂, with k̂

a unit vector, I obtain:

[
c2k2

ω2 (k̂k̂− I) + ε

]
· Ẽ0 = 0, (3.7)

which is the plasma dispersion relation. In order solve it, I need an expression for ε

and σ. Assuming a linear plasma, the current can be expressed as:

j = −enev = σ · E. (3.8)

In order to find σ I need an expression for the plasma velocity v. I do this starting

from the equation of motion of a single particle in an electromagnetic field:

me
∂v
∂t

= −e (E + v×B0) . (3.9)
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The Lorenz force on a single, nonrelativistic electron of the laser magnetic field B0 is

small compared to that of the electric field ∗. Therefore I will neglect it and obtain:

−meiωv = −eE (3.10)

v = − ie

meω
E. (3.11)

From equation (3.8) I can now identify:

σ = inee
2

meω
I (3.12)

ε =
(

I + i
ε0ω

σ

)
=
(

1− nee
2

ε0meω2

)
I =

1−
ω2
p

ω2

 I, (3.13)

where I have used the the definition of the plasma frequency: ω2
p = nee

2/ε0me. I now

proceed to solve the dispersion relation in equation (3.7) by inserting the expression for

ε:

c2k2

ω2 (k̂k̂− I) +
1−

ω2
p

ω2

 I

 · Ẽ0 = 0, (3.14)

and one sees that for transverse electric fields, i.e. k ⊥ Ẽ0, I obtain the following

solution:

c2k2

ω2 =
1−

ω2
p

ω2

 . (3.15)

Using the standard expression for the refractive index η I finally obtain:

η = ck

ω
=
√

1−
ω2
p

ω2 . (3.16)

∗For a fully relativistic electron, v ≈ c, the magnetic field contribution to the Lorenz force would
be equal to that of the electric field.
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This result shows us that in the linear regime, with a probe beam that interacts weakly

with the plasma, and with slowly varying plasma features, E = Ẽ exp(i [
∫

k · dr− ωt])

is a solution to the wave equation 3.1. One sees that in the case where the magnetic

field of the electromagnetic wave is much weaker than the electric field, I obtain the

dispersion relation 3.15 and an expression for the refractive index in equation 3.16. The

phase acquired by a probe beam propagating along z is therefore:

φ =
∫
kdz (3.17)

=
∫ ηω

c
dz =

∫ ω

c

√
1−

ω2
p

ω2dz. (3.18)

For a plasma density ne ∼ 1× 1018 cm−3, the plasma frequency is approximately ωp ∼

50 THz, which I compare to the frequency of a laser of wavelength λ = 800 nm, ω ∼

2400 THz. Therefore ωp � ω and I expand the square root term above:

φ ≈
∫ ω

c

1−
ω2
p

2ω2

 dz (3.19)

=
∫ ω

c
−

ω2
p

2ωc

 dz (3.20)

=
∫ (

ω

c
− nee

2

2ε0meωc

)
dz (3.21)

=
∫ (

ω

c
− nee

2λ

4πε0me

)
dz. (3.22)

By comparing the phase with that of another laser pulse which has propagated the

same distance in vacuum, with a phase shift φ0 =
∫

(ω/c)dz one obtains:

∆φ = φ− φ0 =
∫ nee

2λ

4πε0me

dz. (3.23)

In order to measure the integrated density along some line of sight in a plasma, it

therefore suffices to measure the integrated phase of a probe beam and compare with

the phase of a similar beam which has propagated through vacuum.
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3.2.0.1 Deflection angle

It is also worth noting that there is a clear connection between the phase of the beam

and the deflection angle, and this is used in many diagnostic methods which are sensitive

to the deflection angle rather than the phase. The local angle of the wavefront with

respect to the transverse axis y is [62]

θ = λ

2π
∂φ

∂y
.

The derivative of φ with respect to y is given by:

∂φ

∂y
=
∫ (

e2λ

4πε0me

∂ne
∂y

)
dz, (3.24)

and therefore:

θ = λ

2π
∂φ

∂y
=
∫ (

e2λ2

8π2ε0me

∂ne
∂y

)
dz. (3.25)

3.3 Qualitative methods

3.3.1 Schlieren and shadowgraph imaging

Two common and relatively simple methods for obtaining qualitative imaging of a

plasma structure are schlieren and shadowgraph imaging.

In schlieren imaging, a knife edge is placed in the focal position of an imaging lens

located after the plasma. A small deflection angle caused by a density gradient in the

plasma is given by equation (3.25)

θ =
∫ (

e2λ2

8π2ε0me

∂ne
∂y

)
dz

leads to a deviation of the beam path and a change in the intensity pattern in the
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β

f

Figure 3.1: Schematic drawing of a schlieren imaging setup. A ray deflected in a
plasma with an angle θ produces a focal spot that is shifted by ∆x with respect to an
unperturbed beam, leading to a difference in intensity at the object plane.

image plane that is proportional to the angle of deflection. I show this by considering

the angle emerging from a plasma at a distance s1 from focusing lens with focal length

f2, and study the intensity at the image plane s2. Using the thin lens formula, these

quantities are related by:

1
s1

+ 1
s2

= 1
f
. (3.26)

In Figure 3.1, one sees that the relation between the angle of deflection θ, and the

angle at which the ray approaches the focus is

θs1 ≈ βs2, (3.27)

for small angles. The knife edge at focus reduces the image intensity by an amount that

is proportional to the vertical position of the knife edge. Therefore, a beam deflection

leads to an increase in intensity by an amount that is proportional to the vertical
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Laser wavefront Detector
Intensity

Figure 3.2: In shadowgraph imaging, the light rays of a laser wavefront perturbed by
an inhomogenous plasma point at different angles from each other. This produces an
intensity pattern proportional to the second derivative of the plasma refractive index.

displacement of the deflected beam above the knife edge: I ∝ ∆x (valid for small

displacements). Again, from Figure 3.1, one sees that this displacement is

∆x ≈ (s2 − f)β. (3.28)

Combining equations (3.26), (3.27), and (3.28), I find that the vertical displacement is

given by ∆x ≈ fθ, and thus I obtain the result that in schlieren imaging the image

intensity is proportional to the angle of deflection

I ∝ fθ.

In shadowgraph imaging, or shadowgraphy, the deflection of the rays in the plasma

causes a shift on the detector in the direction of the deflection of

y′ = y + Lθ = y + L
∫ (

e2λ2

8π2ε0me

∂ne
∂y

)
dz. (3.29)
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The integrated intensity I1 of a beam without a plasma present, integrated along the

direction of the deflection angle is
∫
Idy. The corresponding integrated intensity on

a screen in the presence of a plasma is
∫
I ′dy′. Assuming a homogeneous background

illumination, and no absorption or emission by the plasma itself, these quantities must

be equal and as a result:

∫
I ′dy′ =

∫
Idy (3.30)

I ′dy′ = Idy (3.31)
I ′

I
= dy′

dy
= 1 + d

dy
L
∫ (

e2λ2

8π2ε0me

∂ne
∂y

)
dz (3.32)

∆I ′
I

= L
∫ (

e2λ2

8π2ε0me

d2ne
dy2

)
dz. (3.33)

From this derivation, one sees that shadowgraph imaging is proportional to the second

spatial derivative of the plasma density [62].

While both schlieren and shadowgraph imaging could in principle be used to measure

plasma density quantitatively, as the intensity in the image plane is proportional to

either the first or second derivative of the plasma density, they are less accurate than

other methods. The intensity is affected by noise and shot-to-shot variations, which

makes it difficult to measure low-density plasmas.

3.4 Quantitative methods

3.4.1 Wavefront sensors

Using a Shack-Hartmann sensor it is possible to directly measure the wavefront cur-

vature, which is caused by deflection through the plasma. The principle was first

developed by Johannes Hartmann in the early 20th century where a mask of regularly

spaced holes were used to align astronomical telescopes. In a Shack-Hartmann sensor,
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∆xa

Laser wavefront Lenslets Detector

Figure 3.3: Drawing of a Shack-Hartmann wavefront sensors, showing how local per-
turbations in a laser wavefront leads to changes in the focal positions of an array of
lenslets on a detector.

the holes are replaced by lenslets, and local deviations in the wavefront causes the focal

spot of each lens to be shifted by an amount that is proportional to the gradient of the

phase. The principle of this technique is shown in Figure 3.3. The distance the focal

spot is displaced, ∆x, is approximately:

∆x ≈ fθ.

The angle θ of the wavefront is related to the gradient of the phase by:

θ = ∇φ λ2π ,

where λ is the laser wavelength. Thereforet:

∆x = ∇φf λ2π .
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After each small lens in the array of lenses is a corresponding sensor which measures the

displacement ∆x and relates it to the local gradient in the wavefront ∇φ, as outlined in

the equation above. Assuming that the smallest deflection the detector can measure is

∆h, the smallest measurable angle is θmin = ∆h/f . For a typical sensor, assuming that

the detection limit is the pixel size, ∆h ≈ 5 µm and f ≈ 10 mm. Therefore θmin ≈ 0.5

mrad. The spatial resolution is limited by the aperture a of the lenses, approximately

150 µm. Using a telescope to magnify the beam by a factor M smaller features can be

resolved. However, this comes at the cost of a corresponding M times decrease in the

phase sensitivity due to the decrease in the phase gradient.

3.4.2 Group velocity technique

The group velocity vg of a laser pulse propagating through a medium is dependent on

the density of the medium, and this is used to measure the on-axis density in the case

of propagation through a plasma channel [64–66]. Using βg = vg/c, it can be shown

that the on-axis group velocity is given by:

βg = 1− 4πren0

2k2
0
,

where re is the classical electron radius, n0 the on-axis density, and k0 = 2π/λ is the

laser wavenumber. A higher density leads to a lower group velocity, which leads to a

later arrival time of a laser probe pulse propagating through a plasma channel compared

to vacuum. This can be exploited by measuring the relative arrival time between the

probe and reference pulses:

∆t = L

βgc
− L

c
,

where L is the length of the channel. In practice, ∆t can be measured by interfering the

probe-reference pulse pairs on a spectrometer, producing spectral fringes. These can

be Fourier transformed to yield the temporal delay ∆t, which can be used to calculate
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the on-axis density n0 through the equations given above.

3.4.3 Two-colour spectral interferometry

This method is a further development of the group velocity technique described above,

and uses two pulses of frequencies ω and 2ω in order to simultaneously measure the

group and phase delays with a common-path interferometer [67]. The key advantages

of this method is the decreased sensitivity to noise due to the shared optical elements,

and the ability to measure plasma objects with large density gradients. A schematic

drawing is shown in Figure 3.4. A single broadband laser pulse, for example of central

wavelength 800 nm is incident on a BBO type I second-harmonic crystal and a fraction

of this pulse is frequency doubled to 400 nm. The two pulses are temporally sepa-

rated by passing through a glass plate before propagating through the plasma. Being

of different wavelengths, the pulses suffer different group and phase delays, which are

measured separately. Finally, both pulses pass through a second BBO type I second

harmonic crystal and are incident on an imaging spectrometer. The (normalised) in-

tensity I(ω)/Ienv (with Ienv the spectral intensity of each pulse measured separately),

measured at the image plane of the spectrometer is:

I(ω)/Ienv(ω) = 2 + 2 cos
[
φmat + ω0∆zφ + 1

c
(ω − ω0)

(
Lmat −∆zgr

)]
, (3.34)

where φmat and Lmat are constants due to the difference in optical path length through

the glass and BBO crystals of the different colours and can be measured with no plasma

present. The expressions for the phase delay ∆zφ and group delay ∆zgr are given by:

∆zφ = 3
2
ω2
p

ω2
0
Lplasma (3.35)

∆zgr = −3
2
ω2
p

ω2
0
Lplasma . (3.36)
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SHG Glass Gas cell SHG

Figure 3.4: Schematic layout of two-colour spectral interferometry. In this example, an
800 nm pulse incident on an SHG generates a pulse with wavelength 400 nm. The two
pulses are separated temporally by propagating through a glass block before entering
the gas cell. Finally, a second SHG crystal generates another blue pulse (any remaining
800 nm light are removed with a dichroic mirror and filters) and the two are interfered
on an imaging spectrometer.

The group delay can be measured by locating the sideband in the amplitude of the

Fourier transform of the captured interferogram, while the phase delay is measured by

fitting Equation (3.34) to the interferogram. The two quantities differ in sensitivity

with the group delay being less sensitive to changes in the refractive index than the

phase delay. The lower sensitivity of the group delay can therefore be used to guide

the unwrapping of the phase measured by the phase delay, as this would otherwise be

limited to one multiple of 2π.

3.4.4 Interferometry

Interferometry is one of the most commonly used methods to measure the plasma

density due to its relatively easy setup. I will be focusing on folded wave interferometry,

but the principles are very similar for different designs.

When two coherent beams with wavelength λ overlap at an angle θ on a screen,

they generate spatial fringes. This is shown in Figure 3.5. Suppose that the two beams

have equal phase φ1 = φ2 up to a multiple of 2π at some point x0. At that point there

is constructive interference and a bright fringe appears on the screen. At another point

x1 = x0 + λ/ sin θ, the phase difference is again a multiple of 2π. Between x0 and x1,

where φ1 − φ2 = π there is destructive interference and a dark fringe appears on the
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∆x

θ

x′

Figure 3.5: Left: illustration of interference between two lasers with a crossing angle
θ. Bright and dark fringes with a fringe separation ∆x appear on the screen. Right:
a phase shift ∆φ in one of the beams causes the fringes on the screen to shift by a
distance x′.

screen. One therefore obtains a fringe pattern, with fringes separated by

∆x = λ

sin θ . (3.37)

Assuming instead that one of the beams has an additional phase shift ∆φ, the fringes

are locally displaced by a distance x′:

x′ = ∆φ
2π

λ

sin θ . (3.38)

Dividing by the fringe separation I obtain an expression for the phase shift:

x′

∆x = ∆φ
2π , (3.39)

which means that relative fringe offset provides a measurement of the phase shift, and

that this measurement is independent of the wavelength and angle of incidence θ.
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3.4.4.1 Mach-Zehnder interferometer

A versatile design for an interferometer that is frequently used in plasma experiments

is the folded wavefront Mach-Zehnder interferometer (Figure 3.6). A single probe beam

propagates through the plasma either transversally or longitudinally and suffers a phase

shift ∆φ, given by equation (3.23), relative to propagation through vacuum. The probe

beam diameter is chosen to be much larger than the plasma, so that a large part

propagates through low-density neutral gas, which has a refractive index ng close to

that of vacuum. By interfering the part of the beam which propagated through plasma

with a different part of the beam, an interference pattern is generated and used to

measure the phase shift ∆φ. As was shown in equation (3.37), the fringe spacing is

determined by the angle between the two incident beams. The specific design of the

Mach-Zehnder shown in Figure 3.6 allows independent control of the angle, as well as

the position the two overlapping beams. This setup is required when the plasma is

oriented horizontally, as the interferogram fringes need to be oriented perpendicular to

the plasma.

When used to probe plasma channels I differentiate between the cases of the probe

propagating parallel to the longest dimension of the plasma (longitudinal interferome-

try) and perpendicular to it (transverse interferometry). An advantage of longitudinal

interferometry is that the phase shift is relatively large, which makes it easy to measure.

However, this also means that refraction interferometry is only useful up to a length

where the phase is less than ∼ 2π (a larger phase difference than this over a short length

causes the interferometry fringes to disconnect which makes analysis difficult). For this

reason transverse interferometry should be used for longer plasma columns. The draw-

backs of this are that the integrated phase shift is relatively small (∼ 100 mrad for a

density n0 ∼ 1018 cm−3), and that the phase needs to be inverted in order to recreate

the 3-dimensional phase object from a 2-dimensional projection. This is usually done

assuming that the phase object is azimuthally symmetric, and this analysis method is
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Plasma
Imaging lenses

Beam splitter

Beam splitterDetector

Translation stage

Interference fringes

Figure 3.6: Schematic layout of a Mach-Zehnder interferometer for measuring plasma
densities. The plasma is imaged by two lenses onto a detector. A pair of beam splitters
are used to set up and combine two arms which overlap on the detector with a spatial
offset and at an angle θ to generate an interference pattern. A translation stage in one
of the arms is used to ensure that the path lengths are identical, in order to ensure
temporal overlap.

covered in a later chapter.

3.4.4.2 Tomographic interferometry

In general, plasma columns are not fully symmetric which means that inversion tech-

niques that assume symmetry are not accurate. A simple improvement which was

designed by the author is shown in Figure 3.7. Here the probe pulse is split into two

arms using a polarising beam splitter; the two orthogonally polarised beams propagate

transversely through the plasma at right angles. After the plasma, two mirrors are

used to capture the beams and steer them onto a common path using a 50 : 50 beam

splitter (this will lead to a 50% loss of intensity in each beam). The rest of the layout is

identical to the interferometer detailed in Figure 3.6, with the difference of having a po-

larising beam splitter located before the camera, and a second camera to capture both

the reflected and the transmitted light, as shown in Figure 3.8. See Section 4.3.3 for a

discussion on how this setup could be used to aid in the analysis of plasma channels.
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Imaging lens

Plasma

50:50
Beam splitter

Polarising
beam splitter

Beam dump

Figure 3.7: Layout of of a tomographic interferometer. Two beams with different
polarisations are generated and cross the plasma at right angles, before being imaged
and pass through the same Mach-Zehnder interferometer layout as shown in Figure 3.6.

Polarising
beam splitter

Detector 2

Detector 1

Figure 3.8: Drawing showing how a second camera could be added to the Mach-Zehnder
interferometer shown in Figure 3.6 to simultaneously and independently measure two
beams with different crossing angles through a plasma, from Figure 3.6.
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l = m - n l = −1 0 1

m = 0, 1, 2, . . .

n = 0, 1, 2, . . .

Figure 3.9: Two overlapped gratings, with the resulting bright ‘fringes’ marked with
the red dashed lines. Each fringe can be labelled by l = m− n, where m and n are the
indices of each line in the gratings.

3.4.5 Moiré deflectometry

In moiré deflectometry, the angular deflection rather than the acquired phase is used

to measure the plasma density, which allows the angular sensitivity to be increased at

the cost of spatial resolution. I will mainly follow the treatment presented in Kafri and

Glatt [68].

3.4.5.1 The moiré pattern

The moiré pattern is caused by two overlapping gratings with a similar pitch (i.e. the

distance between each line). Mathematically, I describe the location of the lines of one
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of the gratings using the coordinates x and y:

y = x tan θ2 + np

cos θ
2
, n = 0± 1± 2± 3, ... (3.40)

where θ/2 is its angle with respect to the horizontal, p the pitch, and n the grating

index. Rearranging the terms we obtain:

y cos θ2 = x sin θ2 + np, n = 0± 1± 2± 3, ... (3.41)

Similarly, for the second grating, we assume it to have an angle −θ2 with respect to the

horizontal, so that the angle between the two rulings is θ. The equation for the second

ruling is thus:

y cos −θ2 = x sin −θ2 +mp, m = 0± 1± 2± 3, ... (3.42)

y cos θ2 = −x sin θ2 +mp, m = 0± 1± 2± 3, ... (3.43)

The two rulings will cross and form a diamond-shape pattern, which is what will give

rise to the moiré fringes. I index the line crossings by the new index l = m− n and we

see that by subtracting Equation (3.41) from Equation (3.43), I obtain the following

equation:

0 = −2x sin θ2 + lp, l = 0± 1± 2± 3, ... (3.44)

x sin θ2 = lp, l = 0± 1± 2± 3, ... (3.45)

⇒ x = lp

2 sin θ
2
≈ lp

2θ , (3.46)

assuming that θ is small. Equation (3.46) tells us that the line crossings, and thus the

moiré fringes, are aligned horizontally and spaced by a distance of the pitch divided

by the angle between the gratings. There is also a high-frequency interference pattern
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which is found by setting l = m + n, but that is less useful for applications since it is

not easily detectable with a camera.

3.4.5.2 Moiré deflectometry

So far, I have assumed that the ruling patterns are on top of each other, but in order

to use them for deflectometry they need to be separated by some distance L > 0. A

schematic of a moiré deflectometer setup is shown in Figure 3.10. It turns out that

this configuration leads to moiré fringes that are sensitive to the angle of the incident

rays, which I will explore next. Instead of assuming that the incident optical rays are

normal to the gratings, let them have some angle φ with respect to the normal in the y-

direction. In the space between the grating pair, the rays will have travelled a distance

φL. This changes the projection of the first grating onto the second grating, and so the

two grating equations become:

y cos θ2 = x sin θ2 + np, n = 0± 1± 2± 3, ... (3.47)

[y + φL] cos θ2 = −x sin θ2 +mp, m = 0± 1± 2± 3, ... (3.48)

Combining these equations, using again the definition l = m− n, one obtains:

φL cos θ2 = −2x sin θ2 + lp, l = 0± 1± 2± 3, ... (3.49)

x = lp

2 sin θ
2
− φL

cos θ
2

2 sin θ
2

(3.50)

x ≈ lp

θ
− φL

θ
, (3.51)

Thus, a vertical angle of the incident beam φ leads to a relative horizontal shift in the

moiré fringe pattern of δx/x ≈ φL/p. The fact that the angle is multiplied by L/p

means that the sensitivity can be increased by either increasing the distance between

the gratings, or use gratings with a smaller pitch.
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3.4.5.3 Talbot planes

It is important to note that the process in which moiré fringes are generated in a real

deflectometer is more complicated than in the case of our everyday experiences (such

as the example of overlaying two gratings in the beginning of this section). As is shown

in Goodman [69], the diffracted beams from a grating interfere at fixed distances to

generate Talbot images (or self-images), which are interference patterns with the same

pitch as the original grating. These images appear at regular positions:

z = 2np2

λ
,

where n is an integer, p the pitch of the grating and λ the wavelength of the laser. In

the situations that are relevant for the work presented here, typical values are p = 5 µm

and λ = 800 nm. I thus obtain

z = n
2× 52

0.8 µm = n× 62.5 µm,

so the Talbot images appear every 62.5 µm, or 16 times per millimetre. When setting

up the deflectometer, it is important to make sure to place the second grating at one

of the Talbot planes.

3.4.5.4 Resolution and sensitivity

In the standard moiré deflectometry setup shown in Figure 3.10, increasing the distance

inevitably leads to poorer spatial resolution, meaning that there is a trade-off between

angular sensitivity and spatial resolution. This happens because rays originating from

a single point before the grating are diffracted into different orders by the grating. A

grating with pitch p diffracts rays with wavelength λ at an angle θ = λ/p. A distance
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Plasma Camera

∆x

Imaging lenses Grating pair

Figure 3.10: Schematic layout of a moiré deflectometer. The two lenses form separate
images for each diffracted order of the plasma on the detector. The spatial offset
between two orders is ∆x, which also determines the spatial resolution attainable.

L away from the grating the first and zeroth diffracted orders are separated by:

∆x = θL = λ

p
L,

which sets the lower of limit of the spatial resolution of the deflectometer. Note that

for a broadband pulse with finite bandwidth ∆λ there is additional uncertainty due

to the spread in wavelengths, but in practice this will be smaller by a factor of ∆λ/λ

compared to the above term (this follows from the angular spread ∆θ = ∆λ/p, and

∆θ/θ = ∆λ/λ). One can also investigate the angular sensitivity by calling h the lowest

fractional fringe shift δx/x that can be resolved by the detector: h = δx/x. This sets

the lowest deflection one can measure by:

φmin = h
p

L
.

By comparing this expression with that of the spatial resolution, one sees that the de-

pendence on p and L are inverted. Taking the product of the sensitivity and resolution,

one obtains:

φmin∆x = h
p

L

λ

p
L = hλ.

This relation shows that in the standard moiré deflectometry setup, the product of the

resolution and sensitivity is limited by the resolution of the detector and the wavelength
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of the probe light. For example, increasing the pitch of the gratings used may increase

the spatial resolution, but decreases the angular sensitivity. Another way to see this is to

consider moiré deflectometry as a form of shearing interferometry [68, 70, 71]. Here, two

identical beams are offset in a direction transverse to the propagation direction. Both

beams have a phase imprint φ(x, y) caused by propagation through a plasma structure,

and assuming plane waves and neglecting time dependence they are described by:

E1(x, y, z) = E0 exp
(
−2πiφ(x, y)

)
(3.52)

E2(x, y, z) = E0 exp
(
−2πiφ(x+ δx, y)

)
, (3.53)

where E0 is the electric field amplitude and δx is the transverse offset between the

beams. The intensity distribution of the overlap of the two beams is:

I(x, y, z) =
∣∣E1(x, y, z) + E2(x, y, z)

∣∣2
= 2E2

0

∣∣∣exp
(
−2πiφ(x, y)λ

)
+ exp

(
−2πizφ(x+ δx, y)

)∣∣∣2
= 2E2

0

(
1 + cos 2π

[
φ(x+ δx, y)− φ(x, y)

])
.

(3.54)

The term in the cos-function looks similar to a derivative, and one can replace it with

(for small offsets):

φ(x+ δx, y)− φ(x, y) ≈ ∂φ(x, y)
∂x

δx. (3.55)

It therefore follows that:

I(x, y, z) = 2E2
0

1 + cos 2πδx
[
∂φ(x, y)
∂x

] . (3.56)

In a moiré deflectometer, the separation δx is caused by the diffraction angle, and

thus the pitch of the grating, and the separation between the gratings. We focus only

on the zeroth and first orders, since these contain most of the intensity. The link to
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∆x

50:50 BS

(1)

(−1)
(0)

(1,−1)

(0, 0)

(−1, 1)

Grating pair

∆x

Figure 3.11: Left: drawing of a simple shearing interferometer, commonly used to
measure wavefront collimation. Right: diffracted orders in a moiré deflectometer. The
first three diffracted orders (−1, 0, 1) of the first grating produce three beams parallel
to the zeroth order after the second grating. As an example, the beam diffracted into
order (1) by the first grating and −1 by the second grating will be parallel to the beam
diffracted into order (0) by both gratings. The other diffracted orders are not shown.

the shearing interferometer can be seen by considering that after the second grating,

the first orders are diffracted to parallel with the zeroth order, separated by δx. A

comparison between a shearing interferometer and a moiré deflectometer is shown in

Figure 3.11. I write:

δx = λL

p
. (3.57)

Finally, obtaining:

I(x, y, z) = 2E2
0

1 + cos 2πλL
p

[
∂φ(x, y)
∂x

] . (3.58)

This also shows the inherent trade-off between ∂φ(x, y)/∂x and δx — increasing L/p

increases the sensitivity to angular deflections, but decreases the ability to localise the

source of the deflection. Note that approximating φ(x+ δx, y)−φ(x, y) as the differen-

tial (∂φ(x, y)/∂x)δx is only valid as long as δx is small compared to the length scale of

φ(x). It has been suggested that the trade-off between resolution and sensitivity is not

fundamental but can be overcome [72]. The idea behind this concept is that by sepa-

rating the different orders by a strongly diffracting gratings, blocking the zeroth order,

and recombining the first orders at the diffraction angle θ the angular sensitivity can
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be increased arbitrarily without negatively impacting the spatial resolution. However,

this is does not work, since as seen from Figure 3.11, the spatial separation of different

orders is necessary in order to measure the gradient of the wavefront.
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Chapter 4

Interferogram analysis

After having obtained an interferogram from either an interferometer or a deflectometer,

as shown in the previous chapter, I now turn to the problem of how to analyse the

interferogram in order to extract the phase shift. The subject of how this is done

is an entire field in its own right, and a number of steps need to be taken, each of

which will be covered in this chapter. First, the phase shift (determined up to modulo

2π) is extracted from measuring the fringe deformation. Second, the obtained phase

is unwrapped, where phase discontinuities in the phase caused by the uncertainty in

the absolute phase value are removed. When the measured phase is the transverse

projection of the object, an additional step of inverting the phase is required.

4.1 Phase extraction

4.1.1 Fringe tracing

The simplest method of obtaining the phase shift from an interferogram is by tracing

each fringe along its axis. The phase is then be obtained by dividing the horizontal

deformation x′ from the original fringe position by the fringe spacing ∆x, as I showed
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in section 3.4.4:

∆φ = 2π x′

∆x. (4.1)

While the fringe tracing method is now outdated and has been replaced by more com-

putationally efficient and sensitive methods that I will discuss below, it is still a very

robust method and serves as a simple illustration of phase retrieval. In Figure 4.1a I

show a simulated phase map, and the corresponding interferogram in Figure 4.1b. I

show how its fringes are traced along the ridge of each fringe in Figure 4.2a. Figure

4.2b shows the resulting extracted phase using equation (4.1). A clear shortcoming

of the fringe tracing method is immediately visible from these simulated results: the

phase data is only collected from one line per fringe, while any data between the fringes

is unused. This leads both to a reduction in the spatial resolution and in the phase

resolution.

(a) (b)

Figure 4.1: (a) Simulated phase map, in radians, and (b) corresponding interferogram.
Gaussian noise with mean 0, peak amplitude 0.1 and variance 1 was added to interfer-
ogram.
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(a) (b)

Figure 4.2: Illustration of the fringe tracing method: (a) shows the trace of each fringe,
and (b) the extracted phase using equation (4.1), averaged along the x-axis (black solid
line), compared with the original averaged phase (red dashed line).

4.1.2 Fourier transform method

A very fast method for obtaining the phase from an interferogram was first reported

by Takeda et al. [73], based on the use of the Fourier transform (FT). Whereas in the

fringe tracing method only one line was used to represent each fringe, here all pixels in

the image are used. Assuming that the pixel intensity in the interferogram I(x, y) has

the following general form:

I(x, y) = a(x, y) + b(x, y) cos
[
2πf0x+ ∆φ(x, y)

]
, (4.2)

where a and b are slowly varying compared to the intensity of the fringes f0. I rewrite

this as:

I(x, y) = a(x, y) + c(x, y) exp (2πif0x) + c∗(x, y) exp (−2πif0x) , (4.3)

where c(x, y) is defined as:

c(x, y) = (1/2)b(x, y) exp[iφ(x, y)]. (4.4)
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The Fourier transform of equation (4.3) is given by:

Ĩ(f, y) = A(f, y) + C (f − f0, y) + C∗ (f + f0, y) , (4.5)

where A and C is the Fourier transforms of a and c, respectively. An illustration of the

magnitude of equation (4.5) is shown in Figure 4.3. Since C and A are well separated

in the frequency domain, I apply a filter around C(f−f0, y), shift f by f0, and perform

an inverse Fourier transform to obtain c(x, y). It is then straightforward to obtain the

phase shift ∆φ(x, y) by taking the logarithm of equation (4.4):

log[c(x, y)] = log[(1/2)b(x, y)] + i∆φ(x, y). (4.6)

The phase shift is thus obtained from:

∆φ(x, y) = =(log[c(x, y)]). (4.7)

f

C(f − f0, y)

f0

A(f, y)

Figure 4.3: Illustration of the magnitude of a Fourier transform of an interference
pattern (after [73]).

4.1.3 Continuous wavelet transform method

An alternative approach to performing Fourier analysis to extract the phase from an

interferogram is the use of continuous wavelet transform (CWT) [74]. Instead of using

infinite-length sinus and cosinus functions as basis functions to represent a function, we
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use a finite-length basis function, for example the Morlet wavelet:

ϕ(x) = g(x) exp(iηx), (4.8)

where g(x) is a window function, here the Gaussian function g(x) = exp(−x2/τ); τ

and η are fixed parameters that determine the spectral and temporal resolution of the

wavelet. The advantage of the CWT compared to the Fourier transform is that it can be

used to analyse functions with frequency components that vary in time or space. This is

possible since it uses basis functions with a finite, rather than infinite, length. To show

how to obtain the phase using the CWT method, I calculate the wavelet coefficients of

the interferogram profile, following Mallat [75]:

f(x) = a(x) cos
[
θ(x)

]
, (4.9)

where a(x) is the amplitude, θ(x) = kx + φ, k the spatial frequency of the fringes and

φ the phase shift. The wavelet coefficients of f(x) are given by:

Wf(u, s) =
∫ +∞

−∞
f(x)ϕs,u(x)dx. (4.10)

Here, ϕs,u(x) are ‘daughter’ wavelets generated from the ‘mother’ wavelet in Equation

(4.8). These are generated by introducing a scale parameter s, where s−1 is a measure

of the instantaneous frequency, and a translation parameter u indicating position, in

the mother wavelet:

ϕs,u(x) = 1√
s
g

(
x− u
s

)
exp

(
iη
x− u
s

)
(4.11)

= gs,u,ξ(x) exp(−iξu) (4.12)

gs,u,ξ(x) = 1√
s
g

(
x− u
s

)
exp(−iξx), (4.13)
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Figure 4.4: Illustration of the Morlet wavelet for the parameters τ = 2, η = 6 at two
different scales s = 1 (blue) and s = 2 (red).

with ξ = η/s, and I introduced the scaled and translated window function gs,u,ξ(x).

Figure 4.4 shows a plot of two daughter wavelets at the same offset u = 0 with two

different scale parameters s = 1 and s = 2. In Appendix A I show that the wavelet

coefficients are:

Wf(u, s) =
√
s

2 a(u) exp[iθ(u)]ĝ
(
s
[
ξ − θ′(u)

])
, (4.14)

where ĝ(ω) is the Fourier transform of the window function g(x):

ĝ
(
s
[
ξ − θ′(u)

])
=
∫ +∞

−∞
g
(
t′
)

exp
(
−ist′

(
ξ − θ′(u)

))
dt′. (4.15)

In general, any real interferogram will contain noise with many different frequency

components. In order to isolate the signal from the noise, I look for the strongest

frequency component of interferogram which should correspond to the fringe frequency.

In order to localise this, I calculate the normalised scalogram:

|Wf(u, s)|2
s

= 1
4a

2(u)
∣∣∣∣∣ĝ
(
s
[
ξ − θ′(u)

])∣∣∣∣∣
2

, (4.16)
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which is maximum at the frequency of the fringes: ξ = η/s = θ′ = ω. The set of

scales sR(u) for each position u for which equation 4.16 is maximum is known as the

ridge. This is shown in Figure 4.5 using a simulated 1D interference pattern. One can

therefore use the scales sR(u) at each ridge position to extract the phase directly from

the wavelet coefficients in equation 4.14, for example using:

θ(u) = ={log[Wf(u, sR)]}. (4.17)

The phase shift φ is obtained by subtracting a reference phase θref(u), from an inter-

ferogram with no phase shift, from the phase from an interferogram with an encoded

phase shift θdata(u):

φ(u) = θdata(u)− θref(u). (4.18)

(a) (b)

Figure 4.5: Illustration of the CWT analysis: (a) single row lineout along the x-axis
of the simulated interferogram in Figure 4.1b (b) corresponding intensity of the CWT
coefficients of the lineout, using equation (4.16) with wavelet parameters τ = 2 and
η = 6. The scale ridge of s ≈ 60, corresponds to a spatial frequency η/2πs ≈ 0.016,
which is approximately equal to the simulated fringe frequency 1/60.
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4.1.4 Comparing the Fourier transform with the continuous
wavelet transform

To compare the FT method with the CWT method I used both techniques on the same

simulated interferogram, shown in Figure 4.1. I then obtained the phase maps shown in

Figure 4.6. As can be seen, the CWT method does not perform well near the edges of

the phase map, so I made cuts in order to remove these artefacts. I then compared the

phase in the central square with the corresponding original phase from Figure 4.1, and

calculated the standard deviation σ of the discrepancy between the acquired φ1(z, y)

and the original phase φ0(z, y):

σ =
√√√√ 1
N

∑
i,j

[φ1(i, j)− φ0(i, j)− µ] (4.19)

µ = 1
N

∑
i,j

[φ1(i, j)− φ0(i, j)]. (4.20)

I found that the CWT method performed slightly better than the FT method, with

σFT ≈ 0.015, σCWT ≈ 0.013 (σFT/σCWT ≈ 1.1), which could be compared to the

amplitude of the simulated phase map: max(φsim(x, y)) = 0.4094.

(a) (b)

Figure 4.6: Comparing the obtained phase using (a) the Fourier transform method and
(b) the continuous wavelet transform method. The central square shows the region
used to compare the accuracy of the two methods.
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Figure 4.7: Wrapped phase (red striped line) compared to the original phase (blue solid
line). The original phase can be recovered by adding a factor 2π to the wrapped phase
after each discontinuity.

4.2 Phase unwrapping

After having obtained the phase φ through either the methods described above, we

need to ‘unwrap’ the phase. This is because φ can only be determined up to modulo

2π: this is illustrated in Figure 4.7. In one dimension, this shows up as a saw-tooth

shape. In this example, it is simple to recover φ, assuming that the real phase is slowly

varying: simply add 2π at each discontinuity in the phase. However, in two dimensions

the problem becomes much more difficult since there is not necessarily a unique way

to unwrap the phase. To get around this problem, a number of algorithms have been

devised.

4.2.1 The Itoh condition

The Itoh condition [76] is an assumption that the signal is sufficiently sampled so that

the difference in phase between two points is less than 2π, or

∆φ(n) ≡ φ(n)− φ(n− 1), −π < ∆φ(n) ≤ π. (4.21)
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If this condition holds, the phase may be uniquely unwrapped using the following

method. Define the wrapping operator W:

Wφ = φ− 2πk, (4.22)

where k is an integer that ensures −π < Wφ ≤ π. The wrapping operator W has the

following property:

W∆Wφ = ∆φ, (4.23)

where

∆Wφ = Wφ(n)−Wφ(n− 1) (4.24)

= φ(n)− 2πkn − φ(n− 1)− 2πkn−1 (4.25)

= ∆φ(n)− 2π(kn − kn−1). (4.26)

I evaluate W∆Wφ as

W∆Wφ = W[∆φ(n)− 2π(kn − kn−1)] (4.27)

= ∆φ(n)− 2π(kn − kn−1)− 2πk. (4.28)

On the left hand side, one has by definition −π < Wφ ≤ π, and on the right hand side

we have ∆φ(n) which we assumed be in the range −π < ∆φ(n) ≤ π. Since the ki are

integers, this means that the left hand side of the above expression can not equal the

right hand side unless:

−2π(kn − kn−1)− 2πk = 0. (4.29)
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It therefore follows that W∆Wφ = ∆φ, and for a given sequence of points

φm, φm−1 . . . φ0 I can calculate the sum of differences along the path as

m∑
n=1

∆φ(n) =
m∑
n=1

W∆Wφ(n). (4.30)

I can expand the sum above using:

m∑
n=1

∆φ(n) = (φm − φm−1) + (φm−1 − φm−2) + · · ·+ (φ1 − φ0) = φm − φ0. (4.31)

Finally, I obtain by rearranging:

φm = φ0 +
m∑
n=1

W∆Wφ, (4.32)

which is the Itoh unwrapping method: assuming an initially correct phase in the point

φ0, I then calculate the correct phase in the point φm by integrating along a path that

connects φm and φn.

4.2.1.1 Example unwrapping

φ2

φ1

φ0

Figure 4.8: Sequence of three phase values to be unwrapped.

Consider the sequence of three points in Figure 4.8 with correct phase values

[φ0, φ1, φ2] = [0.0π, 0.75π, 1.5π]. The wrapped phase sequence is [Wφ0,Wφ1,Wφ2] =

[0.0π, 0.75π,−0.5π], and I consider φ0 to be the correct phase. Using the method de-

scribed above, I can find the correct unwrapped phase sequence:
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φ1 = φ0 + W∆Wφ1 = φ0 + W(Wφ1 −Wφ0) (4.33)

= 0.0 + W(0.75π − 0.0π) = 0.75π (4.34)

φ2 = φ0 + φ1 + W∆Wφ2 = φ0 + φ1 + W(Wφ2 −Wφ1) (4.35)

= 0.0π + 0.75π + W(−0.5π − 0.75π) (4.36)

= 0.0π + 0.75π + W(−1.25π) (4.37)

= 0.0π + 0.75π + 0.75π = 1.5π. (4.38)

4.2.2 Residues

φm

φ0

Figure 4.9: Some of the possible paths for unwrapping the phase value φm, using φ0 as
a starting point in a 3× 3 matrix.

In the Itoh method described above, the path between two points φm and φ0 was

not specified, which means that any path connecting the two points should be valid.

Following the example described above, any of the unwrapping paths in Figure 4.9

should be valid choices. However, in reality the obtained result does often depend on

the path, which can lead to inconsistent results. The underlying reason for this can be

traced to the presence of residues; in 2D phase maps these are 2× 2 points in a square

where the clockwise and counterclockwise path integrals are not equal. In general, an

integral of 2 × 2 points, ∑4
n=0 ∆φn = p that is path independent must have a value

of p = −p = 0. However, the value of a counterclockwise integral around a residue is
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either p = 2π (positive residue) or p = −2π (negative residue), as shown in Figure 4.10.

φ4 φ3

φ1 φ2

−2π
φ4 φ3

φ1 φ2

+2π

Figure 4.10: Integrating around a closed 4-pixel paths (i.e. where φ1 is both the starting
and ending pixel) should yield a path integral of 0, unless there is residue in which case
the path integral has a value of +2π (positive residue, left) or −2π (negative residue,
right)

4.2.3 Goldstein algorithm

The residues thus introduce path dependency in the unwrapping procedure. The foun-

dation of the Goldstein algorithm [77] is to identify the location and sign of each residue,

connecting each residue with its closest neighbour of opposite sign (or with the edge

of the phase map, whichever is closest) via “branch cuts” that one does not unwrap

across. The algorithm is expressed as follows

1. For each pixel in the phase map, add the phases of the pixel itself and its bottom,

bottom-right, and right neighbouring pixels. If this sum is not zero, this is a

residue with a sign equal to the sign of the sum.

2. For each found residue, find its closest neighbouring residue with opposite sign

and join them with the shortest branch cut possible. If the edge of the phase map

is closer than other residues, connect the residue with the edge.

3. Starting from any pixel, calculate the phase difference with respect to all its

neighbours and add a factor of ±2π if there is a discontinuity (i.e. a phase jump

> 2π), while ignoring discontinuities across branch cuts.

68



CHAPTER 4. INTERFEROGRAM ANALYSIS
4.2. PHASE UNWRAPPING

+

−φ0

φm

Figure 4.11: Example of a phase unwrapping path that does not cross branch cuts
between positive and negative residues, following the Goldstein algorithm.

4.2.4 Quality-guided phase unwrapping

An alternative approach to introducing branch cuts between residues is to remove path

dependency by defining a specific unwrapping path. For example, by using a measure

of “reliability” of the pixel phase values, a path is defined that first unwraps the phase

between pixels that are the most reliable, and so on until the least reliable pixels. These

unwrapping algorithms are known as quality guided path methods. A practical measure

of reliability is the phase difference between the pixels and its neighbours. For a pixel

with indices (i, j) the reliability is then defined as:

R = 1
D(i, j) , (4.39)

where D is defined as:

D(i, j) = [H2(i, j) + V 2(i, j) +D2
1(i, j) +D2

2(i, j)]1/2, (4.40)

and H the difference between the adjacent horizontal pixels, V the difference between

adjacent vertical pixels, and D1 and D2 the difference between the diagonals. These
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functions are given by:

H(i, j) = γ[ϕ(i− 1, j)− ϕ(i, j)]− γ[ϕ(i, j)− ϕ(i+ 1, j)]

V (i, j) = γ[ϕ(i, j − 1)− ϕ(i, j)]− γ[ϕ(i, j)− ϕ(i, j + 1)]

D1(i, j) = γ[ϕ(i− 1, j − 1)− ϕ(i, j)]− γ[ϕ(i, j)− ϕ(i+ 1, j + 1)]

D2(i, j) = γ[ϕ(i− 1, j + 1)− ϕ(i, j)]− γ[ϕ(i, j)− ϕ(i+ 1, j − 1)],

(4.41)

where γ is an unwrapping function that brings the difference between pixels to the

interval (−π, π]. Using this definition of reliability, an unwrapping path is defined that

first unwraps the phase between the two pixels with highest summed reliability. The

unwrapped pixels join a group of pixels that is then unwrapped with respect to other

groups or pixels, and so on until all the pixels are unwrapped [78].

4.2.5 Fringe errors

The Goldstein and quality-guided algorithms can be used to unwrap phase maps that

suffers from noise-induced residues. However, it can also give misleading results if ap-

plied incorrectly. One such example is with the case of fringe disconnections, which are

caused by large changes in the phase over a distance smaller than the spatial resolution

of the detector. This is shown in Figure 4.12. This violates the Itoh condition, and the

interference fringes may be seen to connect to a neighbouring fringe. In this case, the

fringes need to be traced manually in order to preserve the phase information, as was

shown in section 4.1.1.

4.3 Inversion techniques

After having obtained a phase map, I need to invert the phase projection in order to

obtain the 3D structure of the object from a 2D projection. Consider the projection

shown in Figure 4.13: assume that the plasma structure is identical along the z-axis,
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(a) (b)

Figure 4.12: Example of a fringe error: the interferogram fringes in (a) are disconnected,
leading to phase errors in (b) that can not be corrected by phase unwrapping.

and write it as function of the two transverse dimensions x and y. The phase in each

plane is given by φ(x, y) and I write the 1-dimensional projection as:

Φ(y) =
∫ ∞
−∞

φ(x, y)dx. (4.42)

A fully general object φ(x, y) cannot be reconstructed with a single or even two axes of

y

x

Φ(y)φ(x, y)

Figure 4.13: Projection of a 2-dimensional structure φ(x, y) onto a line Φ(y).

projections, as was demonstrated by Cormack in 1963 [79]. This is a common problem

in medical physics, where images of internal organs are recreated using for example X-

ray projection images. To achieve this, projections at several angles are used to obtain
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an increasingly accurate reconstruction of the organ. However, in plasma physics we

can often assume that the objects are either fully symmetric under rotation or have

one axis of symmetry. In this section we will study some inversion techniques in these

simplified cases.

4.3.1 Abel inversion

If the phase φ(x, y) is assumed to be fully azimuthally symmetric around its centre, I

may write it as purely a function of the radius φ(x, y) = φ(r, θ) = φ(r). In this case, I

rewrite equation (4.42) as:

Φ(y) =
∫ ∞
−∞

φ(r)dx (4.43){
dx = rdr√

r2 − y2

}
(4.44)

Φ(y) = 2
∫ ∞
y

φ(r)r√
r2 − y2dr. (4.45)

It can be shown [80] that a solution to the above equation is:

φ(r) = − 1
π

∫ ∞
r

dΦ
dy

dy√
y2 − r2 . (4.46)

However, in most cases apart from the purely theoretical the solution cannot be obtained

directly from this equation since it is divergent at the lower bound, when r = y.

4.3.2 Forward fitting reconstruction

A different approach consists of assuming a trial solution φ′ and calculating its projec-

tion [9]:

Φproj(y) =
∫ ∞
−∞

φ′(x, y)dx. (4.47)
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By trying a range of different φ′ and choosing the solution that minimises

(Φ(y)− Φproj(y))2, (4.48)

one obtains an approximate solution to the inversion problem φ′(r) ≈ φ(r). Since

it would be impossible to try an infinite range of solutions φ′ one usually chooses

an orthonormal basis set of functions where the solution is a superposition of these

functions, parameterised by m and n: φ′(x, y) = ∑
mn amnφmn(x, y). One choice of

basis function are the Laguerre-Gaussian intensity modes [81], in the following way:

ne(x, y) =
∑
mn

amnImn (x, y;x0, y0, w0) , (4.49)

where the am,n are the amplitudes associated with each basis function Im,n.

Imn(x, y) = |fmn(x, y)|2 (4.50)

=

∣∣∣∣∣∣∣
√2
w0

n [(x− x0) + i (y − y0)
]n exp

(
− s

2

w2
0

)
Lnm

(
2 s

2

w2
0

)∣∣∣∣∣∣∣
2

, (4.51)

where s2 = (x−x0)2 +(y−y0)2 and Lnm is the generalised Laguerre polynomial of order

p and index l, given by:

Lnm(x) = exx−n

m!
dm

dxm

(
e−xxm+n

)
. (4.52)

Using this basis set asymmetric functions can be generated, by letting x0 and y0 take on

complex values. The amount of asymmetry along the x-axis is determined by Imag(y0)

and vice versa. With a single axis of projection, the amount of asymmetry in only one

axis can be determined.

73



CHAPTER 4. INTERFEROGRAM ANALYSIS
4.3. INVERSION TECHNIQUES

4.3.3 Two-axis projection forward fitting reconstruction

By adding a second projection axis at 90◦ to the first, the asymmetry along both axes

can be fully determined. I presented a schematic drawing of an experimental setup that

could be used for this measurement in Figure 3.7. To show how this analysis works,

I generated a simulated plasma channels with the transverse profile shown in Figure

4.14a. I then calculated the projected phase separately along the x and y axes as:

Φproj
x (y) =

∫ ∞
−∞

φ(x, y)dx (4.53)

Φproj
y (x) =

∫ ∞
−∞

φ(x, y)dy. (4.54)

as shown in Figure 4.14a. Using the Laguerre-Gaussian basis decomposition, I per-

formed a fit of the projected phases to obtain the inverted phase for each projection

which minimised:

(Φx(y)− Φproj
x (y))2 (4.55)

(Φy(y)− Φproj
y (x))2. (4.56)

The obtained fits are shown in black dashed lines in Figure 4.14a. Since I used sim-

ulated data, the basis parameters of each fit were identical except for the asymmetry

parameters =(x0) and =(y0). I could therefore combine the asymmetry parameters from

both projected fits to recover the simulated channels with an asymmetry at an arbitrary

angle in the plane. The reconstructed channel is shown in Figure 4.14b. While this

method would not be able to recover a general 2D object from only two 1D projections,

these simulations demonstrate that it is possible to recover objects with a single axis

of symmetry using two orthogonal axes of projection. Provided it is experimentally

validated, this method could be used to recreate asymmetric plasma channels in future

plasma-based accelerators.
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(a) (b)

Figure 4.14: (a) Simulated plasma channel with an asymmetry along an axis with an
angle of 22.65 degrees. The white solid lines show the projection along the x- and y-
axes, and the black dashed lines the projection of the recovered channel in (b).

4.3.4 Deflectometry reconstruction

In deflectometric measurements, for example schlieren imaging (section 3.3.1) or moiré

deflectometry (section 3.4.5), the obtained phase is related to the integrated deflection

angle Θ(y) ∝
∫
θdz ∝

∫
(∂φ/∂y)dz. This is similar to the illustration in figure 4.13 for

the integrated phase. Following the same procedure as in equation (4.43), I write:

Θ(y) =
∫ ∞
−∞

∂φ(r)
∂y

dx (4.57){
dx = rdr√

r2 − y2 ,
∂φ(r)
∂y

= ∂φ(r)
∂r

y

r

}
(4.58)

Θ(y) = 2y
∫ R

y

∂φ

∂y

dr√
r2 − x2

, (4.59)

with a solution given by the Abel inverse integral, in the special case where the object

is symmetrical:

φ(r) = − 1
π

∫ R

r
Θ(y) dy√

y2 − r2 . (4.60)
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Similarly to the case of inverting interferometric data, the integral is diverging at x = r

and so cannot be calculated directly. Instead, numerical integration techniques are

employed, for example the two-point algorithm, as described by Kolhe and Agrawal

[82]. The electron number density is calculated from the measured deflection angle

(assuming rotational symmetry) using the following formula:

ne (ri) =
N+1∑
j=i

Dij ·Θj, (4.61)

where

Dij = 1
π
·
(
Ai,j − Ai,(j−1) − j ·Bi,j + (j − 2) ·Bi,(j−1)

)
if j > i and j 6= 2

= 1
π
·
(
Ai,j − j ·Bi,j − 1

)
if j > i and j = 2

= 1
π
·
(
Ai,j − j ·Bi,j

)
if j = i and i 6= 1

=0 if j = i = 1 or j < i,

(4.62)

and

Ai,j =
√
j2 − (i− 1)2 −

√
(j − 1)2 − (i− 1)2 (4.63)

Bi,j = ln

 j +
√
j2 − (i− 1)2

(j − 1) +
√

(j − 1)2 − (i− 1)2

 . (4.64)

In Figure 4.15a, I show a the deflection angle caused by a simulated plasma object.

Using equation (4.61), I recover the plasma number density and compare it with the

original density in Figure 4.15b. I found that the difference between the recovered and

the original density was less than 0.12× 1017 cm−3, for a peak density of n0 = 1018 cm−3.
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(a) (b)

Figure 4.15: (a) Simulated integrated deflection angle caused by a plasma object and
(b) reconstructed number density of the plasma object. The black solid line shows the
original object and the white dashed line shows the reconstructed object.

4.4 Example interferogram analysis

In the following section, I provide an example of phase extraction from an interferogram,

shown in Figure 4.16, using the Fourier transform and CWT methods. I perform phase

unwrapping and forward-fitting phase reconstruction in order to recover the original

plasma channel. The interferogram was captured by an interferometer diagnostic set

up by the author and was used to measure the density and shape of an axicon-generated

plasma channel using the optical field ionisation method, described in section 2.7. The

channel was formed in a hydrogen plasma by an ionising laser pulse of peak intensity

I ≈ 7× 1015 W cm−2 and radius r ≈ 7.1µm. The density was measured approximately

25 mm downstream of the beginning of the plasma channel [7].

The extracted phase can only be determined up to modulo 2π, and therefore needs to

be unwrapped. This is done following the quality-guided phase unwrapping algorithm

described in section 4.2.4. After the phase has been unwrapped, a reference phase

is subtracted. The reference phase is captured and analysed using the same steps as

above, but without any plasma in the beam path, in order to reduce errors introduced
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Figure 4.16: Interferogram of a plasma channel. The arrow indicates the direction of
laser propagation through the plasma channel waveguide.

(a) (b)

Figure 4.17: Comparing the obtained phase using (a) the Fourier transform method
and (b) the continuous wavelet transform method.

by imperfections in the probe pulse wavefront.

After the unwrapping procedure, residual quadratic background phase is removed

by fitting a two-dimensional quadratic surface to the phase map with the signal region

removed. The fitted surface is then subtracted from the entire phase map, and the

resulting phase is shown in Figure 4.17. Average phase lineouts for both the FT and

CWT methods, calculated along the horizontal (z) axis of Figure 4.17, are shown in

Figure 4.18.
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Figure 4.18: Obtained phase projections using the FT (blue) and CWT (red) methods.

Finally, the obtained average phase lineout was inverted – as the obtained phase was

highly asymmetric, the standard Abel inversion method could not be used. Instead,

I used the Laguerre-Gaussian basis set expansion, as explained in Section 4.3.2. The

projected fits are shown together with the average phase lineouts in Figure 4.19.

(a) (b)

Figure 4.19: Comparing the obtained phase using (a) the Fourier transform method
and (b) the continuous wavelet transform method. The dashed lines shows the fit to
the density lineouts using the Laguerre-Gaussian intensity modes.

In section 3.2, I showed that the phase acquired by propagating through a plasma
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(a) (b)

Figure 4.20: (a) The reconstructed 2D density profile, using the FT method and (b)
lineout through x = 0 (i.e. θ = π/2) comparing the CWT method (blue) with the
FT method (red). The filled areas correspond to the uncertainty of the reconstructed
density, estimated by calculating the standard deviation of the phase backgrounds, σ(φ),
in Figure 4.17, from which the minimum detectable density ∆ne could be obtained.

is given by

∆Φ =
∫ nee

2λ

4πε0me

dz. (4.65)

Using Equation (4.42), the density from the inverted phase φ(x, y) can now be calculated

as:

ne(x, y) = 4πε0me

e2λ
φ(x, y). (4.66)

I use this expression to calculate the plasma density profile, based on the obtained

inverted phase using the FT and CWT methods. This is plotted in Figure 4.20, where

we can see that the on-axis density of this experimentally measured plasma channel is

as low as ne ≈ 0.5× 1017 cm−3. As can be seen, both the CWT and FT yield similar

results, with the estimated error of the CWT result being somewhat lower than the

FT, due to the smaller background noise as observed in Figure 4.17. The assymmetry
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observed in Figure 4.20b is most likely due to asymmetries in the intesity of the axicon

beam focus, rather than through e.g. a bifurcation process as observed by Sarri et al.

[83]. This process occurs when a low-intensity focused laser beam propagates through

a plasma; the phase difference between the inner part of the beam (focused by the

plasma channel with a diameter smaller than the beam spot size) and the outer part

leads to a bifurcation of the ionised plasma. This process may be overcome through

the use of relativistic, self-focusing laser beams, which has been studied extensively in

the context of inertial confinement fusion [84–87]. However, in an axicon-focused laser

beam each part of the line focus corresponds to a distinct part of the incident beam, so

the bifurcation process as described above would not be expected to occur here.

4.5 Conclusions

In this chapter I have reviewed the analysis methodology for obtaining density profile

of a phase object such as a plasma channel measured using either an interferometer or

a deflectometer setup. Using both fake data and experimental data, I showed that the

Fourier transform method and continuous wavelet transform methods perform similarly,

with the CWT having somewhat lower uncertainty in the reconstructed density. I

also discussed the fringe tracing method, which has been all but fully replaced by

more advanced methods, but due to being very intuitive and robust can be used to

when there are fringe errors in the interferogram. I provided a brief overview of the

problems of phase unwrapping and inversion, and introduced methods for inverting

the phase profiles of asymmetric objects. I showed that using two projection axes

an asymmetric object with a single axis of symmetry can be fully recovered. This

concludes my investigation of optical-based plasma density diagnostics, and in the next

two chapters I will shift focus to the measurement of plasma wakefields, and the causes

of plasma wakefield decay.

81



Chapter 5

Wakefield decay: theory and ex-

periment

In Chapter 2 I covered the physics underlying the excitation of plasma wakes using ei-

ther a single pulse (the LWFA scheme) or a train of laser pulses (the MP-LWFA scheme).

I showed that the number of pulses that can be used in MP-LWFA is limited by the

lifetime of the plasma wakes, which is determined by the interaction between the elec-

trons and the plasma ions. In this chapter, I discuss three mechanisms that contribute

to the decay of wakefields: Landau damping, collisional damping, and modulational

instability. I also cover experimental aspects of measuring the wakefield amplitude over

time, using either electron beam or laser probes, focussing on the Fourier domain holog-

raphy (FDH) method, together with the temporally encoded spectral shifting (TESS)

analysis technique. Lastly, I discuss previous experiments that have been conducted to

measure the temporal evolution of plasma wakefields.
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5.1 Wakefield decay mechanisms

5.1.1 Parametric instabilities

Viewing plasma oscillations as simple harmonic oscillators, the question arises what

happens when several oscillations (e.g. among the electrons and ions in the plasma)

interact. It turns out that these interactions can excite new modes of oscillation that

draw energy from the fundamental mode — through processes known as parametric

instabilities [12]. In the following example, a pump wave excites two coupled oscillators

x1 and x2 with amplitudes x̄1, x̄2, and resonant frequencies ω1 and ω2:

d2x1

dt2
+ ω2

1x1 = c1x2E0 (5.1)

d2x2

dt2
+ ω2

2x2 = c2x1E0, (5.2)

with coupling parameters c1 and c2, and E0 is a time-dependent pump wave with

amplitude Ē0 and frequency ω0. Assuming solutions of the form y = A cos(ωt), we

look for the frequencies of the driven oscillators x1(ω) and x2(ω′) that satisfy the above

equations. Equation (5.2) becomes:

(
ω2

2 − ω′2
)
x̄2 cos(ω′)t = c2Ē0x̄1

1
2
{

cos
[
(ω0 + ω) t

]
+ cos

[
(ω0 − ω) t

]}
. (5.3)

One sees that the frequencies of x2 satisfy ω′ = ω0 ± ω. The frequencies ω and ω′ can

be complex; in this case the sign of the imaginary part =(ω) determine whether the

oscillation is a decaying mode (=(ω) < 0) or an instability mode (=(ω) > 0). Assuming

that the driven frequencies ω and ω′ are close to the resonant frequencies ω1 and ω2

one obtains the frequency matching condition for this system of oscillators:

ω0 = ω2 ± ω1. (5.4)
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In plasmas, there is a corresponding wavelength matching condition between the pump

wave and the excited modes, analogous to the conservation of momentum in quantum

mechanics:

k0 ≈ k2 ± k1. (5.5)

In this chapter, I am investigating the decay of plasma wakefields which correspond to

the pump wave E0 in the example above. The other waves x1 and x2 may be either

electron, ion, or light waves depending on the instability in question. The frequency

and wavenumber matching of two electron plasma wave and one ion-acoustic wave is

illustrated in Figure 5.1. The parabolic curve shows the electron plasma wave dispersion

relation, given by:

ω2 = ω2
p + 3k2v2

th (5.6)

vth =
√
kBTe
me

, (5.7)

where kB is the Boltzmann constant, Te the electron temperature, and me the electron

mass. Ion acoustic waves are assumed to be one-dimensional and have the dispersion

relation [12]:

ω = csk (5.8)

cs =
√
kBTe + 3kBTi

mi

, (5.9)

where cs is the sound speed in a plasma, Ti ion temperature, and mi the ion mass. The

ion acoustic wave dispersion relation is illustrated by the straight lines in Figure 5.1.
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ω

k

ωp

ω0, k0
ω2, k2

ω1, k1

Figure 5.1: Illustration of a parametric decay instability. The arrow marked ω0, k0 rep-
resents the pump electrostatic wave, which couples into a second, backward-propagating
electrostatic wave ω2, k2 and an ion acoustic wave ω1, k1. The parabolic-shaped curve
shows the electron plasma wave dispersion relation, equation (5.6), and the the straight
lines shows the dispersion relation of ion acoustic waves, equation (5.8).

5.1.1.1 Modulational instability

The modulational instability∗ was originally studied to answer the question whether

deep-water ocean waves are stable over long distances† [90]. In the modulational insta-

bility, the original pump wave is “modulated” by co-propagating sideband waves with

frequencies ω1 = ω0 − ω and ω2 = ω0 + ω and an ion acoustic wave with frequency

ω. A simplified illustration the resulting modulation is shown in Figure 5.2. In cases

where this modulation is self-reinforcing an instability develops that eventually break

up the pump wave into smaller incoherent wave-packets. In plasma physics, the modu-

lational instability has been under theoretical investigation since 1965 [91–93] owing to

its importance in the beat-wave accelerator [94]. In this case, the modulational insta-

bility progresses through an interaction between an electron plasma wave as the pump

and an ion-acoustic wave. The density perturbation of the ion-acoustic wave, with a

phase velocity close to the group velocity of the pump, traps pump wave energy in the

low-density troughs. This in turn leads to a modulation of the pump which further
∗In the literature, the term oscillating two-stream instability is used interchangeably with modu-

lational instability, however the former term refers to the special case of an infinite wavelength pump
[88, 89]
†It turns out that they are not, due to the modulational instability
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ω ω

ω0 ω0

ω2ω1

Figure 5.2: Illustration of a modulated wave. The left shows a wave at the unique fre-
quency ω0, and the right a superposition of a wave with frequency ω0 and two sidebands
with frequencies ω1 and ω2 (after [90]).

increases the ion acoustic wave density perturbation through the ponderomotive force

[89]. This process is shown in Figure 5.3.

An important parameter in the theoretical calculation of the growth rate of the

modulational instability is the ratio of peak oscillation velocity in the wake (vL) to the

thermal velocity (vt) [95], where:

vL = eEL
meωp

(5.10)

vt =
(
kBTe
me

)1/2

, (5.11)

where EL is the electric field of the wakefield. When vL/vt < 1 the thermal velocity is

greater than the oscillation velocity, called the weak field regime. Conversely, the case

vL/vt > 1 is the strong field regime. Henceforth, I will use the decay parameter W to

refer to this ratio, which I express in the following way:

W =
(
vL
vt

)2

= e2E2
L

mekBTe

ε0me

nee2 = ε0E
2
L

nekBTe
. (5.12)

An approximate expression for the growth rate γ as a function of the wavenumber k of
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Unmodulated envelope

Modulated envelope

Ion-acoustic wave

Energy trapping Ponderomotive
force

FNL FNL

Figure 5.3: Illustration of the modulational instability in a plasma, with the horizontal
direction representing a spatial dimension, and the vertical direction the amplitude
of the waves. An initially modulated pump electric field associated with an electron
plasma wave (due to random fluctuations), top, exerts a non-linear ponderomotive force
on the plasma ions, generating an ion-acoustic wave, bottom. The low-density regions
of the ion acoustic wave in turn traps pump wave energy and further modulates the
pump, leading to the development of an instability (after [89]).

the instability in the case of kλD � 1 was given by Mora et al. [94]:

γ(k)2 = ω2
pi

6k2λ2
D

9k4λ4
D + 4γ2/ω2

pe

J2
1

(
kλD

vL

vt

)
. (5.13)

where the J1 is the Bessel function of the first kind and λD the Debye length. Since γ

appears both on the left and right hand sides in the above expression, I am required to

solve it numerically to obtain the maximum growth rate γmax and the wavenumber kmax

at which it occurs. I show a numerical solution to Equation (5.13) at electron density

ne = 9.7× 1017 cm−3, as a function of the decay parameter W in Figure 5.4a, and the

obtained wave numbers kmax in Figure 5.4b.

It was found that the weak field limit extends up to vL/vt ≤ (ωpe/ωpi)1/3 [94], or

W ≤ (ωpe/ωpi)2/3 ≈ 12, in which case the maximum growth rate can be written using

the simplified expression, in units of rad/s:

γwf
max = 6−1/2ωpi

(
vL/vte

)
. (5.14)

In the strong field regime, W ≥ (ωpe/ωpi)2/3, the following simplified expression is
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(a)

(b)

Figure 5.4: (a) Plot showing the growth rate of the modulational instability as a function
of the decay parameterW . The black line shows a numerical solution to equation (5.13),
and the horizontal dashed line the limit between the weak field (W ≤ 12) and the strong
field (W ≥ 12) growth rates. The red lines show the approximate expressions for the
growth rate in these regimes. (b) Plot of the wave number kmax that maximises the
growth rate of the modulational instability in equation (5.13). The horizontal line shows
the limit between the weak and strong field regimes, as explained in (a).

obtained:

γsf
max =

(
3
2

)1/4

ωpi
(
ωpevte/ωpivL

)1/2
. (5.15)

For kBTe = 2 eV, ne = 9.7× 1017 cm−3 and a relative wakefield amplitude δne/n0 = 0.08

in hydrogen (the same parameters of the experiment presented in Chapter 6) I find the
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following time scale of the modulational instability using equation (5.13):

τ ∼ (γsf
max/2π)−1 ≈ 3.11 ps, (5.16)

occurring at the wavenumber kmax ≈ 0.09/λD. Note that the growth rate of the in-

stability does not necessarily equal the damping rate of the wakefield, but it is usually

assumed to be within a factor of 5 of the decay rate [94]. Also, the growth rate depends

on the plasma species, through a dependence on the ion mass mi and atomic number

Z.

5.1.2 Landau damping

Landau damping is a collisionless process through which a plasma can lose energy to

thermal electrons in the plasma. Since the electrons have a Maxwellian distribution

of velocities, some will be in vicinity of the vφ, the phase velocity of the plasma wake.

These electrons are effectively “injected” into the wake and draws energy from oscillating

within the electrostatic potential of the wakefield. The damping rate of an electron

plasma wave due to Landau damping is given by [96]:

γL =
√
π

8
ωpe
k3λ3

De

exp
[
−
(
1 + 3k2λ2

De

)
/2k2λ2

De

]
, (5.17)

where k is the plasma wave vector k ≈ ωp/c and λD is the Debye length λD =√
ε0kBTe/nee2. For a plasma of density ne = 9.7× 1017 cm−3 and kBTe = 2 eV we

find:

τ ∼ γ−1
L ≈ 3 ms. (5.18)

89



CHAPTER 5. WAKEFIELD DECAY: THEORY AND EXPERIMENT
5.1. WAKEFIELD DECAY MECHANISMS

5.1.3 Collisional damping

Electron-electron, ion-ion, electron-ion, as well as collisions with neutrals all contribute

to removing energy from the wakefield into thermal energy of the plasma. In the

following, I will assume a fully ionised plasma, which is reasonable given the relatively

high laser intensities used in LWFA. The damping rate of electron plasma waves due

to collisions between electrons and ions in this case has been shown to be close to the

Braginskii collision frequency [97]:

νcoll ' [4/(3
√

2π)]νei,th/2, (5.19)

where the thermal collision frequency νei,th is given by:

νei,th = 2πZe
4Ne log Λ
m2
ev

3
the

, (5.20)

and vthe the electron thermal velocity. The Coulomb logarithm (log Λ) for electron-ion

collisions is given by [98]:

log Λ = 23− ln
(
n1/2
e [cm−3]ZkB(Te[eV ])−3/2

)
. (5.21)

The above equation is valid for Time/mi < kBTe < 10Z2eV, which is the case for LWFA

with cold ions and electron plasma temperatures kBT < 10 eV. For kBTe = 2 eV and

ne = 9.7× 1017 cm−3 we find log Λ ≈ 12. This gives a collisional damping decay rate

of:

τ ∼ ν−1
coll ≈ 40µs. (5.22)
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5.1.4 Conclusion: wake decay mechanisms

In this section I have covered three possible decay mechanisms for electron plasma

waves; the modulational instability, Landau damping, and collisional damping. I have

shown that the modulational instability is significantly faster than the other two, and

here we compare these timescales with that of plasma oscillations τp = 2π/ωp ≈ 0.11 ps.

For the kBTe = 2 eV, ne = 9.7× 1017 cm−3 and a relative wakefield amplitude δne/n0 =

0.08, we obtain the typical time scale in units of the plasma period are τMI/τp ∼ 30 for

the modulational instability, τL/τp ∼ 3×1010 for Landau damping, and τ coll/τp ∼ 4×108

for collisional damping. In Figure 5.5, I show a plot of how the growth or decay rates

of these mechanisms depend on the plasma density. In the next section, I will review

several methods for measuring the wakefield amplitude, and in Section 5.3 I review

previous work on measuring the decay rates of plasma wakefields.

Figure 5.5: Plot showing the growth rate γ in units of rad/s of the three wakefield
instabilities and decay rates presented in this chapter. The dotted line shows the strong
field modulational instability, the solid line the collisional damping rate, and the dashed
line the Landau damping rate.
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5.2 Measuring the wakefield amplitude

The ability to accurately measure the structure and temporal evolution of the acceler-

ating wake is crucial for the development of plasma-based accelerators. This is much

more challenging than for conventional RF-cavity based particle accelerators, where the

macroscopic fields are directly accessible. The plasma wake accelerator is small in size,

for laser-drivers typically less than 100 µm in width and with a sub-structure on the

order of 30 µm (a single plasma wave). The highly nonlinear processes taking place

within the plasma, together with the fluctuating energy and pointing differences of the

drive laser pulse means that the shot-to-shot variability is large. The plasma dynamics

takes place over many different timescales, from the femtosecond level (electron plasma

wave) up to picoseconds (ion motion), nanoseconds (hydrodynamics) and microseconds

(plasma recombination). The plasma wave is also not static but travels with a velocity

close to c over a distance of typically several centimetres for laser-driven plasma acceler-

ators, and as high as several metres for particle-beam-driven accelerators [99]. While an

electrode is often sufficient to measure the oscillating electric fields within an RF-cavity,

plasma diagnostics require an altogether different set of measurement techniques. Here

I will review some of the most important techniques, based either on electron or light

beams.

5.2.1 Electron beam probes

Electron beam probing was one of the first methods used to diagnose a plasma accel-

erator. In the earliest experiment [100] an electron beam generated at the Argonne

National Laboratory Advanced Accelerator Test Facility was used to excite a plasma

wakefield. A probe beam was cut out from the main drive beam by introducing a car-

bon target on a portion of the beam, producing a lower energy beam. The probe beam

was then reintroduced onto the same beam axis after passing through a delay line with

a variable temporal delay. The experimental layout of the drive-probe electron beam
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Carbon
target Probe delay

line
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Spectrometer
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Drive beam line

Figure 5.6: Schematic diagram showing how an electron beam can be used to probe the
plasma wakefield driven by an electron beam driver (after Rosenzweig et al. [100]).

lines is shown in Figure 5.6. By measuring the spectrum of the probe beam using a

dipole magnet with and without the presence of a plasma wakefield, the experimenters

could detect energy gains caused by the wakefield. More recently, LWFA-generated

electron beams have been used to transversally probe a laser-driven wakefield [101].

This requires electron beams which are shorter than the plasma period (< 100 fs) and

highly energetic (γ � 1), where γ =
√

1
1−β2 , β = v/c, and v the electron velocity.

When passing through the wakefield, the electrons receive a transverse momentum kick

through the interaction with the electric field in the wakefield; this translates into a

density modulation which can be detected on a fluorescent screen.

5.2.2 Laser probes

5.2.2.1 Collective Thomson scattering

Some of the earliest methods to diagnose wakefields with laser pulses was to scatter a

probe beam off the wakefield either longitudinally or transversely. With this method

the wake structure acts as a refractive index grating and scatter the light to frequencies

ωprobe ± ωp, with ωprobe the probe frequency and ωp the plasma frequency. The longer

wavelength scattered light is known as the Stokes sideband and the shorter wavelength

the anti-Stokes sideband. This process is called collective Thomson scattering (CTS),

and measuring the frequency separation of the sideband provides a direct measurement
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of the plasma wavelength. The ratio of the intensities of the (anti-) Stokes sidebands

(Ps) to the unscattered light (P0) can also be used to estimate the amplitude of the

plasma wakefield (δne) using the equation presented in Reference [102]:

Ps
P0

= 1
4δn

2
er

2
0λ

2L2 sin2(∆KL)
(∆KL)2 , (5.23)

where r0 is the classical electron radius, λ the probe wavelength, L the plasma length,

∆K = kpr − ks ± kp, with kpr the probe wavenumber, kp the plasma wavenumber, and

ks the Stokes wavenumber.

5.2.2.2 Frequency domain interferometry

With the development of ultra-short laser pulses (∼ 30 fs) came the possibility of

probing the inner structure of the wakefield since the probe was shorter than a plasma

wave. The measurements are taken by using a probe-reference pulse pair, where a phase

φ(r, ζ) due to the wakefield are acquired by the probe beam, co-propagating with a time

delay ζ with respect to the wakefield. A simplified drawing of the setup is shown in

Figure 5.7a. The phase is retrieved by interfering the probe with the reference pulse

that propagated ahead of the wake. It is then read out on a spectrometer by measuring

the shift of the spectral fringes generated by the time delay between the probe and

reference. This is known as frequency domain interferometry (FDI). The full wakefield

is reconstructed by taking multiple shots, each time incrementing the probe-pump delay.

This also means that several measurements have to be stitched together to form a single

picture, which risks giving rise to errors due to the shot-to-shot variation [99].

5.2.2.3 Frequency domain holography

A further development came with frequency-domain holography (FDH), which was

experimentally demonstrated in 2006 [103] with the use of a frequency-doubled probe

to distinguish it from the main drive beam. A simple sketch showing the main principle
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of FDH is shown in Figure 5.7b. FDH relies on a linearly chirped probe that is long

enough to cover a few plasma periods in the wakefield and is made to interfere with a

similarly chirped reference pulse, as in FDI. The difference with FDI is that the phase

imprint on the probe beam covers several plasma wavelengths. Thus one can map the

phase structure imprinted on the spectrum of the beam ϕ(ω) to the temporal phase

φ(ζ), where ζ = t− vg/c is a co-propagating time variable. The captured spectrum can

then be used to fully reconstruct the wakefield structure. The spectral interferogram

can also be analysed in a slightly simpler way where the plasma wake is assumed to

be sinusoidal, and the amplitude averaged over the length of the wake. This approach,

known as temporally encoded spectral shifting (TESS), was first published in 2016 [104]

and since then extended to also include quasi-nonlinear wakes [105]. The theory behind

TESS will be covered in detail in Section 5.2.3.

5.2.2.4 Photon acceleration

Another method for measuring the wakefield amplitude consists of measuring the

amount of photon acceleration caused by the plasma refractive index gradient [106].

It is detectable through a frequency shift in the laser pulse spectrum, and for a lin-

ear wake, the maximum shift in frequency (∆ω) of a laser is given by the following

expression:

∆ω ≈
ω2
p

2ω0

δne0

ne0

kp∆z cos
(
kpζ

)
. (5.24)

Here, ω0 is the laser frequency, kp is the plasma wavenumber, ζ the co-propagating time,

∆z the total interaction length, and δne0/ne0 the relative wakefield amplitude. However,

for nonlinear wakes no analytic expression has been developed, and experimental results

should instead be compared to simulations.
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Figure 5.7: (a) Frequency domain interferometry (b) Frequency domain holography. A
reference pulse precedes the drive beam and is unaffected by the wakefield. A similar
probe pulse co-propagates with the wakefield and suffers a phase shift, which can be
extracted by interfering it with the reference pulse on a spectrometer. The wakefield
causes a modulation of the spectral fringes from which the phase is read out. In FDI,
both reference and probe pulses are compressed whereas in FDH they are chirped and
stretched in time.
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5.2.3 Temporally encoded spectral shifting analysis

TESS is a simplified analysis method to obtain the wakefield amplitude from spectral

interferometric data obtained using an FDH diagnostic setup, as outlined above. In

the following section, I will follow the method described by Matlis [104]. We start by

describing a propagating reference pulse, ahead in time of the pump and probe pulses,

by Eref(ζ). The probe pulse, co-propagating with the wakefield, acquires a phase φ(ζ).

In TESS a sinusoidal wake is assumed, and I write the phase in the form:

φ(ζ) = φ0 sin(ωpζ), (5.25)

where φ0 is the phase amplitude of the sinusoidal wave, and ωp the plasma frequency.

Adding the phase term from Equation (5.25) to the the unperturbed electric field of

the probe pulse Eprobe(ζ) I obtain:

E ′probe(ζ) = Eprobe(ζ) exp[iφ0 sin(ωpζ)]. (5.26)

The Fourier transform of Equation (5.26) is:

E ′probe(ω) = 1√
2π

∫ ∞
−∞

Eprobe(ζ) exp[iφ0 sin(ωpζ)] exp(−iωζ) dζ. (5.27)

Since the phase is assumed to be sinusoidal, I use the Jacobi-Anger expansion to express

the phase term as an infinite sum of Bessel functions of the first kind:

exp[iφ0 sin(ωpζ)] =
∞∑

k=−∞
Jk(φ0) exp(ikωpζ). (5.28)
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This allows me to rewrite the Fourier transform as:

E ′probe(ω) = 1√
2π

∫ ∞
−∞

Eprobe(ζ)
∞∑
−∞

Jk(φ0) exp(ikωpζ) exp(−iωζ) dζ (5.29)

=
∞∑
−∞

Jk(φ0) 1√
2π

∫ ∞
−∞

Eprobe(ζ) exp[i(kωp − ω)ζ] dζ (5.30)

=
∞∑
−∞

Jk(φ0)Eprobe(ω − kωp). (5.31)

One sees that the probe spectrum is composed of an infinite number of copies of the

unmodulated probe spectrum, each offset by an integer number k times the plasma

frequency ωp, multiplied by a Bessel function Jk(φ0). Using a spectrometer allows one

to measure the spectral interference pattern between the probe and reference pulses:

S(ω) = |Eprobe(ω) + Eref(ω)|2. (5.32)

Using Equation (5.31), this can be expanded into a sum of the cross-terms of the probe

and reference spectra, as well as the different copies contained in the probe spectrum:

S(ω) = |Eprobe(ω)|2 + |Eref(ω)|2 + E∗probe(ω)Eref(ω) + c.c. (5.33)

=
∑
m,n

Jn(φ0)Jm(φ0)E∗probe(ω − nωp)Eprobe(ω −mωp) + |Eref(ω)|2 (5.34)

+
∑
k

Jk(φ0)E∗ref(ω)Eprobe(ω − kωp) exp(−iω∆ζ) + c.c.,

where c.c. stands for the complex conjugate of the previous term, and I have used the

Fourier shift theorem to introduce ∆ζ, the temporal delay between probe and reference

pulses. By calculating the Fourier transform of the spectral interferogram in Equation

(5.34), one obtains a temporal representation of the interferogram:

S(ζ) =
∑
m

gm(φ0, ζ, ωp)H(ζ,mωp) +H(ζ, 0) +
∑
k

Jk(φ0)H(ζ −∆ζ, kωp) + c.c., (5.35)
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where the function H is given by:

H(ζ, ωp) = 1√
2π

∫ ∞
−∞
E∗ref(ω)Eprobe(ω − ωp) exp(iωζ) dω, (5.36)

and the function g is given by the sum:

gm(φ0, ζ, ωp) =
∑
n

Jn(φ0)Jm+n(φ0) exp(inωpζ). (5.37)

My approach is now the following:

1. Evaluate S(ζ) without a wakefield (setting ωp = 0)

2. Evaluate S(ζ) with a wakefield (setting ωp 6= 0)

In the following, I assume that the probe and reference pulses have identical Gaussian

spectra, but the calculations are similar for non-Gaussian spectra [105]. Starting with

first point, I evaluate the function H(ζ, ωp) at ωp = 0. For a Gaussian spectrum, I write

Eref(ω) as:

Eprobe(ω) = Eref(ω) = A exp
−1

2

(
ω − ω0

δω

)2

+ iϕ(2)
(
ω − ω0

δω

)2
 , (5.38)

with amplitude A, centre frequency ω0, bandwidth δω, and group delay dispersion ϕ(2).

Using equation (5.38) I obtain:

H0(ζ) ≡ H(ζ, ωp = 0) = 1√
2π

∫ ∞
−∞
E∗ref(ω)Eprobe(ω) exp (iωζ) dω (5.39)

= δω
A2
√

2
exp

[
iω0ζ −

1
4 (ζδω)2

]
. (5.40)

Using equation (5.40) I can then evaluate S(ζ) using ωp = 0 and φ0 = 0. Since all

Bessel functions of the first kind apart from k = 0, J|k|>0(φ0) are zero at φ0 = 0, I

obtain:

S(ζ) = 2H0(ζ) +H0(ζ −∆ζ) +H0(ζ + ∆ζ), (5.41)
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and upon evaluating the magnitude |S(ζ)| I obtain three peaks: one at ζ = 0, one at

ζ = ∆ζ, and one at ζ = −∆ζ. A sketch of this is shown in Figure 5.8a.

In the case of ωp 6= 0, I instead have [104]:

H(ζ, kωp) = F(kωp) exp
(
ikωpζ

2

)
H0(ζ + ϕ(2)kωp), (5.42)

and using this I rewrite equation (5.35) as:

S(ζ) =
∑
m

gm(φ0, ζ, ωp)f(mωp)H0(ζ +mτ) +H0(ζ)︸ ︷︷ ︸
DC peak

(5.43)

+
∑
k

Jk(φ0)F(kωp)H0(t−∆ζ + kτ) + c.c.︸ ︷︷ ︸
Sidebands+satellites

, (5.44)

where I have introduced τ ≡ ϕ(2)ωp, and F(kωp) is a spectral overlap factor:

F(kωp) = exp
−1

4

(
kωp
δω

). (5.45)

In the above equation the overlap function F(kωp) was evaluated assuming that the

spectrum is Gaussian, using equation (5.38). For non-Gaussian spectra, a more general

form of the overlap factor is given by [105]:

F(kωp) =
∫∞
−∞ |Eprobe(ω + kωp)||Eref(ω)|dω∫∞
−∞ |Eprobe(ω)||Eref(ω)|dω . (5.46)

The “sideband” term in equation (5.44) contains TESS satellite peaks (k 6= 0) and

the sideband caused by interference (k = 0). The magnitude |S(ζ)| in the presence of

a wakefield is shown in Figure 5.8b. The ratio r between the first TESS satellite in

equation (5.44) (k = 1 term, evaluated at ζ = ∆ζ − T ) and the sideband (k = 0 term,
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evaluated at ζ = ∆ζ), is:

r = J1(φ0)f(ωp)
J0(φ0) . (5.47)

For small amplitudes φ0 � 1, the Bessel functions of the first kind Jα can be expanded

as:

Jα(φ0) ≈ 1
(α− 1)!

(
φ0

2

)α
(5.48)

J0(φ0) ≈ 1 (5.49)

J1(φ0) ≈ φ0

2 . (5.50)

The phase amplitude φ0 can therefore be expressed as:

φ0 = 2r
f(ωp)

. (5.51)

Using φ0 I can now calculate the density modulation δne/δne0. I have already assumed

that the wakefield is sinusoidal over the duration of the probe pulse. Over the co-

propagating time ζ, I write the plasma density as:

ne(ζ) = ne0 + δne sin(ωpζ). (5.52)

Previously, in Section 3.2, I found that the phase difference acquired by a laser propa-

gating through plasma is:

∆φ(ζ) =
∫ ne(ζ)e2λ

4πε0me

dz. (5.53)

Inserting Equation (5.52) I obtain:

∆φ(ζ) =
∫ e2λ

4πε0me

[ne0 + δne sin(ωpζ)] dz. (5.54)
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Removing the constant density term ne0 and replacing ω2
p/ne0 = e2/ε0me:

∆φ(ζ) =
∫ ω2

pλ

4π
δne
ne0

sin(ωpζ) dz. (5.55)

Assuming that there is no significant longitudinal spatial variation we can integrate

over the length L of the plasma:

∆φ(ζ) =
ω2
pλ

4π
δne
ne0

sin(ωpζ)L. (5.56)

Comparing the above expression with equation (5.25) I identify:

φ0 =
ω2
pλ

4π
δne
ne0

L. (5.57)

Using Equation (5.51) we obtain an expression for the relative wakefield amplitude

δne/ne0 as a function of the satellite-to-sideband ratio r and the spectral overlap F(ωp):

δne
ne0

= φ0
4π
ω2
pλL

(5.58)

= 2r
F(ωp)

4π
ω2
pλL

. (5.59)

5.2.4 Frequency domain holography analysis

Using the frequency domain holography data I not only obtain the wakefield amplitude

using the TESS method, as shown above, but also recreate the probe beam electric field

amplitude and phase. From this measurement I obtain the wakefield amplitude over the

co-propagating time coordinate ζ, δne(ζ)/n0. Following Matlis et al. [103], I assume

that the reference pulse is unperturbed by the plasma, while the probe pulse suffers a

phase shift φwake(ζ) after propagation through the plasma. I write the perturbed probe
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∆ζ

DC peak

Sideband

∆ζ
(a)

ττ

TESS peaks

∆ζ ∆ζ

k = −1 k = 1

(b)

Figure 5.8: Amplitude of the Fourier transform of a spectral interferogram: (a) without
a wakefield, (b) modulated by a wakefield, with the first order (k = ±1) TESS peaks
separated by τ from the DC peak and sidebands. The sidebands are due to the probe-
reference interference.

electric field E ′probe(ζ) as:

E ′probe(ζ) = Eprobe(ζ) exp
[
iφwake(ζ)

]
. (5.60)

The FDH measurement is made in the frequency rather than temporal domain, so I

perform forward Fourier transforms of the probe and reference pulses. These are simply:

E ′probe(ω) = 1√
2π

∫ ∞
−∞

Eprobe(ζ) exp[iφwake(ζ)] exp(−iωζ)dζ (5.61)

Eref(ω) = 1√
2π

∫ ∞
−∞

Eref(ζ + ∆ζ) exp(−iωζ)dζ, (5.62)

where, as in the TESS analysis above, the factor ∆ζ accounts for the earlier time-

of-arrival of the reference pulse on the spectrometer (see Figure 5.7b). Measuring

both probe and reference pulses simultaneously on an imaging spectrometer, I obtain

a spectral interference pattern

S(ω) =
∣∣∣Eprobe(ω) + Eref(ω)

∣∣∣2 (5.63)

= |Eprobe(ω)|2 + |Eref(ω)|2 + E∗probe(ω)Eref(ω) + Eprobe(ω)E∗ref(ω), (5.64)
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where the first two terms are just the spectral intensities of the individual laser pulses,

while the two latter terms are interference terms. As was shown in Equation (5.44),

the Fourier transformed interference pattern S(ζ) reveals that the interference terms

are separated from the background intensity terms by ∆ζ. It is therefore possible to

isolate the interference terms in the temporal domain, and then transform back to the

frequency domain in order to obtain:

Sinterference(ω) = Eprobe(ω)E∗ref(ω), (5.65)

which I write as:

Sinterference(ω) =
∣∣∣Eprobe(ω)

∣∣∣ ∣∣Er(ω)
∣∣ exp

[
iϕprobe(ω)− iϕref (ω)

]
. (5.66)

To a first approximation, I assume that the spectral phases ϕprobe (ω) and ϕref (ω) of

the probe and reference pulses only contain terms up to the third order:

ϕref(ω) ≈ ϕ
(0)
ref + ϕ

(1)
ref (ω − ω0) + 1

2ϕ
(2)
ref (ω − ω0)2 + 1

6ϕ
(3)
ref (ω − ω0)3 (5.67)

ϕprobe(ω) ≈ ϕ
(0)
probe + ϕ(1)

pr (ω − ω0) + 1
2ϕ

(2)
probe(ω − ω0)2 + 1

6ϕ
(3)
probe(ω − ω0)3 + ϕwake(ω),

(5.68)

where ω0 is the central frequency and ϕ(2) is the group delay dispersion (GDD). By

measuring the spectral phase and amplitude of the reference pulse separately (this is

covered in Section 6.2.3), I reconstruct the probe electric field in the frequency domain

as:

∣∣∣Eprobe(ω)
∣∣∣ ∣∣Eref(ω)

∣∣∣∣Eref(ω)
∣∣ exp

[
iϕprobe(ω)− iϕref(ω)

]
exp

[
iϕref(ω)

]
(5.69)

=
∣∣∣Eprobe(ω)

∣∣∣ exp
[
iϕprobe(ω)

]
(5.70)

= Eprobe(ω). (5.71)
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One thus sees that:

Epr(ω) = Sinterference(ω) exp
[
iϕref (ω)

]
/
∣∣Er(ω)

∣∣ . (5.72)

I can recover the electric field in the temporal domain by performing an inverse Fourier

transform

E ′probe(ζ) = 1√
2π

∫ ∞
−∞
Eprobe(ω) exp(−iωζ)dζ. (5.73)

The probe temporal phase is also recovered from the electric field:

φ′probe = arg[E ′probe(ζ)] ≈ φprobe(ζ) + φwake(ζ), (5.74)

where φprobe(ζ) is the unmodulated probe phase. The phase shift induced by the wake-

field is thus either be recovered from φprobe by subtracting the phase recovered from a

reference measurement, φprobe(ζ), taken without any plasma in the gas cell:

φwake(ζ) = φ′probe(ζ)− φprobe(ζ). (5.75)

The phase is only determined up to a factor of 2π, and therefore needs to be unwrapped.

This procedure is covered in Section 4.2. Assuming again that the longitudinal variation

of the density within the gas cell is small, I integrate Equation (5.53) over the plasma

length L to obtain (having subtracted a constant background):

∆φ(ζ) = δne(ζ)e2λ

4πε0me

L. (5.76)
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The wakefield amplitude is therefore:

δne(ζ) = 4πε0me

e2λL
∆φ(ζ) (5.77)

δne(ζ)
ne0

= 4π
ω2
pλL

∆φ(ζ). (5.78)

5.3 Previous wakefield decay experiments

I will now review some of the previous experimental work that has been carried out to

both measure the wakefield decay rate as well as to determine the leading causes of

wakefield decay. The relevant experiments, parameters, and key results are summarised

in Table 5.1. I have also listed the experimental parameters and results obtained in

this thesis; this is presented in detail in Chapter 6. In addition to the measured decay

rate, which is presented in normalised in units of plasma periods, some experimental

parameters are of particular importance. The first is (λp/πw0)2, which I showed

in Section 2.4 is the ratio between the radial and longitudinal components of the

wakefield. As was shown by Marqués et al. [15], radial wakefields decay from different

mechanisms than longitudinal wakefields, as they interact with the surrounding neutral

gas. Of the experiments presented here, that of Marqués et al. mentioned above and

Kotaki et al. [107] were performed in the radial regime (λp/πw0)2 > 1, and the others

in the longitudinal regime. A second important parameter is W =
(
vL/vt

)2, the ratio

of electron plasma wave energy to thermal energy in the plasma, as this determines the

rate of the modulational instability. While the importance of the pump beam length

relative to the plasma period has not yet been firmly established, it is noteworthy

that most experiments used drive lasers with temporal durations much longer than

the plasma period, except for the those by Marqués et al. and Kotaki et al. This fact

complicates the theory behind the modulational instability presented in Section 5.1.1.1,

as the pump wave also needs to be added to the calculations. Finally, the choice of
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gas target may also be significant; with the use of a gas jet, there is considerably

longitudinal variation in the density which could affect the measurements by averaging

over regions with different plasma frequencies. In comparison, gas chambers and gas

cells are capable of providing plasmas with a much more stable plasma density.

Using the results presented in Table 5.1 I produced a plot comparing these re-

sults with those predicted from the modulational instability theory presented in

Section 5.1.1.1. I excluded the experiments conducted in the radial wakefield regime.

The resulting plot is shown in Figure 5.9, with the measured decay time plotted as a

function of the parameter W . As can be seen, all the reported results show a decay

time on ∼ 100 plasma periods, and are consistent with the theory of modulational

instability.
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Figure 5.9: Plot showing the measured wakefield lifetime, in units of the plasma period,
as a function of initial wakefield amplitude for the experiments presented in Table 5.1.
The three lines shows the time scale τ ∼ 2πγ−1 of the modulational instability using
Equation (5.13), multiplied by a factor of 4. This factor corresponds to the number
of e-foldings of the instability before it causes the wakefield to decay, and was chosen
by hand to approximately fit the data. Each point represents a different experiment
and the vertical lines the corresponding errors (the experiments by Marqués et al. and
Kotaki et al. were excluded as they were in the radial wakefield regime). The colours of
the lines and the points represent the plasma species that was used: hydrogen (gray),
deuterium (blue) and helium (red).
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Chapter 6

Measuring wakefield decay

In this chapter, I present the results of an experiment that was conducted at the Central

Laser Facility, UK, to measure the decay rates of linear wakefields in hydrogen and

deuterium. As was shown in the previous chapter, there are numerous decay processes

taking place simultaneously in the plasma. I also reviewed several previous experiments

that have measured the wakefield lifetime. The experiment discussed here differs from

these previous experiments in the following ways:

1. The parameter regime: this is the first experiment in the linear, short-pulse LWFA

regime. This represents a significant simplification in the setup compared the

earlier LBWA and SM-LWFA experiments, where a pulse much longer than the

plasma wavelength is used to excite a plasma wakefield. In these latter schemes,

the plasma instabilities are developing alongside the pump, which is not the case

in the short-pulse regime. Secondly, in the present work the wakefield generated

was in the linear regime. Thirdly, I used a gas cell which is much uniform in the

longitudinal plasma density compared to a gas jet, which was used in many of the

earlier works.

2. Diagnostic: I used for the first time a frequency domain holography (FDH) di-

agnostic to measure the wakefield decay. While I do not expect the results to
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be significantly different from, for example, a frequency domain interferometry

diagnostic, FDH has the advantage of being single-shot. This allows in principle

the measurement of several plasma oscillations with a single shot. Since in the

present work I seek to measure the wakefield decay over several picoseconds, I still

scan over a range of temporal delays, but still require many fewer shots compared

to FDI.

This chapter is organised in the following way. First, I discuss particle-in-cell sim-

ulations that were conducted to estimate the initial plasma temperature in the exper-

iments. I also discuss simulations of the wakefield decay process that were conducted

by group member Alexander von Boetticher. Next, I explain the experimental layout

and the diagnostic design. I present measurements to characterise the focal spot size

and spectral phase of the drive pulse. Finally, we analyse the results using the TESS

analysis method and compare the obtained results to the particle-in-cell simulations

and discuss the implications for the MP-LWFA scheme.

6.1 Particle-in-cell simulations

6.1.1 Estimating the temperature

Table 6.1: Simulation parameters used in 2D PIC simulations to estimate the plasma
electron temperature.

Parameter Value Unit

Particles per cell 32 -
Simulation length 150 µm
Simulation width 300 µm
Resolution (along laser axis) 0.05 λ
Resolution (perpendicular to laser axis) 0.1 λ
Gas species H2 -
Plasma density 9.7× 1017 cm−3

Laser temporal duration 48.9 fs
Laser spot width 52.3 µm
Laser intensity 6.5× 1017 Wcm−2

In Section 5.1.1.1 I introduced the decay parameter W that determines the growth
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rate of the modulational instability. It depends on the wake electric field, plasma

density, and plasma electron temperature:

W = ε0E
2
L

nekBTe
. (6.1)

Experimentally I was able to directly measure both the plasma density (ne) and the

wake electric field (EL). However, in the experiment presented in this chapter we

did not directly measure the temperature (Te). In order to obtain an estimate of the

temperature, I performed 2D particle-in-cell (PIC) simulations in the code Extendable

PIC Open Collaboration (EPOCH) [108]. In this code, the plasma is simulated as a

number of macro-particles, each representing several real particles. The space is divided

up into a grid of smaller cells on which the electromagnetic forces are calculated. At

each discrete time step, the position of each macroparticle is used to calculate the

forces on the grid, which in turn is used to update the particles velocities and their

new positions. EPOCH also includes ionisation models, which take into account both

tunnelling and barrier suppression ionisation pathways [109]. Collisional ionisation is

a third pathway that is less important in the case of short-pulse laser ionisation; with

a measured ionisation cross-section of hydrogen of σ ≈ 5× 1017 cm2 [110] for non-

relativistic electrons with quiver velocities vosc = a0c ≈ 0.5c (with a0 ≈ 0.5), the

ionisation rate is approximately given by:

W = neσvosc[s−1] ≈ 0.72 ps−1. (6.2)

Hence I conclude that collisional ionisation is important over the scale of picoseconds

rather than femtoseconds, as is the case for short-pulse laser ionisation. I therefore

neglected this contribution in the simulations. The simulation parameters, which were

chosen to be equal to the experimental parameters, are summarised in Table 6.1. Two

different methods were used for estimating the temperature from these simulations.

112



CHAPTER 6. MEASURING WAKEFIELD DECAY
6.1. PARTICLE-IN-CELL SIMULATIONS

In the first, which is a built-in temperature probe in EPOCH, the temperature is ap-

proximated as the standard deviation of the total momentum in each simulation cell

i,

kbTi ≈
〈p2〉i
2m . (6.3)

The obtained temperature map, recorded after the laser pulse had passed through the

plasma is shown in Figure 6.1. Averaging along the axis of laser propagation, I obtain

the transverse temperature profile plotted in Figure 6.4 and find an average on-axis

temperature of 2.75 eV.

The second way of approximating the temperature is by measuring the random

(thermal) motion of the electrons, from which I obtain the thermal energy distribution

Ethermal = p2
thermal/2m. However, during the time that the drive laser spends in the

plasma slab, there is a strong coherent quiver motion at the laser frequency. By

filtering out this low-frequency component from the momentum ~p = ~pquiver + ~pthermal, I

am left with only the thermal component from which can estimate the thermal energy

distribution. I then obtain the temperature by fitting using the Maxwell-Boltzmann

distribution, using the temperature T as the fitting parameter:

fE(E, T ) = 2
√
E

π

(
1

kBT

)3/2

exp
(
−E
kBT

)
. (6.4)

The ionisation processes described above do not lead to a thermal distribution of elec-

trons at the instance of ionisation. Over time however, the electrons will equilibrate to

a thermal distribution through collisions. I found that the simulation results could be

well characterised as a sum of two electron populations with different temperatures T1
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and T2, with a total distribution given by:

fE(E, T1, T2) = fE,1(E, T1) + fE,2(E, T2). (6.5)

Figure 6.3 shows the obtained energy distribution together with the two electron

populations of T1 = 0.26 eV and T2 = 1.54 eV. The transverse average of the higher of

these is compared to the EPOCH temperature in Figure 6.4. These two electron popula-

tions will equilibrate through Coulomb collisions, which leads to a thermal distribution

after a short time. The equilibration process may be described by [98]:

dTα
dt

=
∑
β

ν̄α\βε

(
Tβ − Tα

)
, (6.6)

where the Spitzer collision frequency is given by:

ν̄α\βε = 1.8× 10−19

(
mαmβ

)1/2
Z2
αZ

2
βnβ ln λ(

mαTβ +mβTα
)3/2 s−1. (6.7)

For electron-electron equilibration I have that mα,β = me, Zα = Zβ = 1. I found that

the populations were approximately equal in size, thus nα = nβ = 0.5ne. The Coulomb

logarithm for these parameters is ln λ ≈ 13.7 (using Equation (5.21)). I define an

equilibration time as [98]

τα/βε ≡ 1
ν̄
α\β
ε

≈ 1.7× 105

(
Tα[eV] + Tβ[eV]

) 3
2

nβ [cm−3] lnλ s ≈ 0.1 ps. (6.8)

With the low temperatures obtained in the simulation, one sees that τ � 1 ps. The two

different plasma electron will also isotropize on a similar timescale [111], and will there-

fore be fully thermalised on a time scale much shorter than the picosecond timescale

relevant for the wakefield decay processes discussed in this thesis.
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Figure 6.1: The two-dimensional temperature distribution after the passage of the
ionising pulse, as calculated by the temperature probe built into EPOCH (colour scale
in eV).

Figure 6.2: The transverse momentum py before and after filtering out low-frequency
quiver motion to obtain the thermal fluctuations.

6.1.2 Wakefield decay simulations

2D PIC simulations were also performed by group member Alexander v. Boetticher to

study the decay of the laser-driven linear wakefields using the same design parameters

as the experimental study. The simulations were done using the relativistic PIC code
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Figure 6.3: Plasma electron energy. The distribution is modelled using a sum of two
Maxwell-Boltzmann distributions.

Figure 6.4: Transverse temperature distributions using the two different methods.

smilei [112], using cartesian coordinates. The simulations had a longitudinal (along the

laser axis of projection) spatial resolution ∆x = 1λD, and transverse spatial resolution

of ∆y = 5λD, where λD is the Debye length. It used 64 particles per cell and an ex-

tent of 8λD in the longitudinal direction and 160µm in the transverse direction. The

wakefield amplitude was measured by performing a Fourier transform of the density

perturbation δne = ne−ni along the laser propagation axis and identifying the highest

amplitude peak. By performing this measurement at regular timepoints the temporal

evolution of the wakefield was obtained, which I used to compare with the experimen-

tally obtained amplitudes. A convergence scan was performed over the non-physical
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parameters (particles per cell, grid resolution), in order to ensure that artifacts due to

these parameters did not influence the simulation.

6.2 Wakefield decay experimental design

The experiment was conducted during an 8-week campaign using the Astra Gemini TA3

laser at the Central Laser Facility (CLF), part of the Rutherford Appleton Laboratory,

UK. The experiment was set up to measure the temporal evolution of laser-driven linear

plasma wakes, comparing two plasma species with different ion masses, but identical

charge: hydrogen and deuterium. The plasma wakes were measured using the TESS

and FDH techniques discussed earlier. The experimental parameters are summarised

in Table 6.2.

Table 6.2: Experimental parameters.

Parameter Symbol Value Units
Plasma species - H & D -
Target - Gas cell -
Cell length L 4 mm
Plasma density ne 9.7× 1017 cm−3

Wavelength (drive) λdrive 800 nm
Pulse energy (drive) E 1.68± 0.06 J
Pulse duration (drive) τdrive 48.9± 6.3 fs
Spot radius (1/e2) w0 52.3± 0.8 µm
Intensity at focus Imax 6.5× 1017 Wcm−2

Normalised momentum a0 0.54± 0.18 -
Wavelength (probe) λprobe 400 nm
Pulse duration (probe) τprobe 1.35 ps

6.2.1 Experiment layout

The Astra Gemini TA3 laser consists of two separately amplified and compressed

beams originating from the same oscillator, ensuring temporal synchronicity between
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the beams. The initial amplification stages provides 1.5 J pulses at 10 Hz stretched to

0.53 ns FWHM. Half of these pulses (5 Hz) are compressed and provided to users in

TA2, while the other half (5 Hz) are further stretched to 1.06 ns before they are trans-

ported to the Gemini laser area. They are then split into two beams, called “North”

and “South”, where each is amplified to a maximum of 15 J and compressed to 45 fs

measured as the full width at half the maximum (FWHM) before they are delivered to

TA3. A delay stage located in the South beam allows the relative timings between the

two beams to be adjusted to allow for temporal overlap at the interaction point (IP).

Stretcher glass

SHGHM

Gas cell

Beamsplitter

Michelson interferometer

North beam

L1

HWPAO

f/40

f/25
L2 L3 10X

PHWP

CCD

Spectrom
eter

South beam

DM

Figure 6.5: Simplified layout of the experiment. AO — adaptive optic, HM — holed
mirror, SHG — second harmonic generating crystal, HWP — half wave plate, DM —
dichroic mirror, L — lenses, CCD — charged coupled device.

The experiment layout is shown in Figure 6.5 and is described as follows: the

Astra Gemini South beam, with centre wavelength 800 nm, temporal duration

(FWHM) 45 fs, and energy at focus 1.68 J, was used as the drive beam. It was

focused onto a gas cell (Figure 6.6) mounted on a 5-axis stage and pressurised to

between 10-40 mbar of either hydrogen or deuterium. The laser was coupled into

and out of the gas cell through a pair of coaxial pinholes mounted at each end

of the cell. The pinholes used were 3D printer nozzles with a pinhole diameter
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Transverse window
Cell body

Endcap Nozzle

Figure 6.6: CAD drawing showing an exploded view of the design of the gas cell.

of 400 µm. A spot size of w0 = (52.3± 0.8) µm (defined as the radius over which

the intensity falls by a factor 1/e2 from its peak value) was achieved using a 6′′

diameter, 6.096 m focal length (f/40) spherical mirror. A camera fitted with a 10X

magnifying objective was used to locate and image the drive beam focus so that the

gas cell could be centred around it. An adaptive optic (AO) was used together with a

wavefront sensor that imaged the focus in order to correct for any wavefront aberrations.

The second Gemini beam (North beam), was used as the probe beam to diag-

nose the wakefield using the FDH diagnostic described in Section 5.2.2.3. To generate

the probe-reference pair, the North beam was apertured by a serrated aperture in

the laser area to 15 mm diameter and propagated through a type I second harmonic

generating crystal (600 µm thick Beta Barium Borate). This has a high nonlinear index

to maximise the amount of frequency doubled (400 nm) light. Remaining 800 nm light

was dumped by > 99% transmitting dichroic mirrors at 800 nm (and > 99% reflecting

at 400 nm). The beam was then split in the two arms of a Michelson interferometer

(shown in Figure 6.5), with a variable path difference between the mirrors. The path

difference was used to set the time delay between the probe and reference, and was

fixed to 6 ps in the experiment. The probe-reference subsequently propagated through

a stretcher block (160 mm BK7) to stretch the pulses to about 1.4 ps (as described in
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Section 6.2.3). They were then injected onto the drive beam axis through the back of a

holed mirror (HM in Figure 6.5) with a 1′′ hole cut through its centre. The probe beam

was focused through the gas cell using the same f/40 spherical mirror. A spherical

mirror (f = 2.54 m focal length) was used as an f/25 to collect the transmitted light

from the back of the gas cell. A half wave plate and linear polariser setup was used

to filter out any plasma-originating blue light generated by the drive beam [103, 113]

(the plasma-generated blue light has the same linear polarisation as the drive beam

and is perpendicular to the probe beam polarisation). A set of mirrors and lenses

was used to transport the beam and image the centre of the cell onto the entrance

slit of an imaging spectrometer (Acton SP2 − 750), which projected the probe beam

spectrum onto a CCD camera (Andor Newton). In the following two sections, I will

describe the drive and probe beam characterisations that were carried out alongside

the experimental measurements. In the first, Section 6.2.2, I describe the focal scan

analysis that was done to establish the position of the focus along the laser axis, using

the D4σ method to measure the focal spot. In Section 6.2.3 I describe a method for

measuring the spectral phase, including the GDD, of the probe and reference pulses.

6.2.2 Focal scan analysis

To obtain a value for the parameter a0 and the beam spot size used in the experiment, I

performed a focal scan by capturing images of the beam over a 15 mm range using a 10X

imaging microscope together with a CCD camera mounted on a motorised translation

stage. The imaging position relative to focus could be varied by adjusting a motorised

linear translation stage, located inside the vacuum chamber. At each stage position,

three images were taken and analysed, using the D4σ method [114]. The beam width

is then defined as four times the standard deviation of the beam intensity:

D4σ = 4

√√√√∫∞−∞ ∫∞−∞ I(x, y)(x− x̄)2dxdy∫∞
−∞

∫∞
−∞ I(x, y)dxdy , (6.9)
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(a) (b)

Figure 6.7: (a) Plot of the drive beam a0 values at the focal position. The white ellipse
shows a fit of the focal spot using the D4σ method. (b) Average beam size w0 at
different z-positions. The error bars correspond to the camera resolution of 2.2 µm, and
the black line shows the fit to the measured data.

and the beam centroid x̄ is calculated as:

x̄ =
∫∞
−∞

∫∞
−∞ I(x, y)xdxdy∫∞

−∞
∫∞
−∞ I(x, y)dxdy . (6.10)

Figure 6.7 shows the average beam radius of each shot as a function of the position

along the beam axis at which the shot was taken, together with a fit of the function:

w(z) = w0

√√√√1 +
(
z − z0

zR

)2

, (6.11)

where zR is the Rayleigh range zR = πw2
0/λ, w0 the beam spot at focus, and λ the

laser wavelength. Using this fit, I identified the focus position z0 as well as the focal

spot w0. Together with the measured pulse energy and duration from Table 6.2, I then

calculated the normalised momentum a0 of the drive laser at focus. This was done by

multiplying the value of each pixel with the beam intensity divided by the total pixel

count in the image. This gives the beam intensity I(i, j) measured at each pixel (i, j),
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from which I calculated a0 as:

a0(i, j) ≈ 0.85
√
I(i, j)[1018 W cm−2](λ[µm])2. (6.12)

6.2.3 Measuring the spectral phase

The FDH method relies on stretching the probe pulse in time by adding group delay

dispersion (GDD). In the spectral phase of a light pulse, the GDD is the second order

coefficient ϕ(2) of the Taylor series expansion around (ω − ω0):

ϕ(ω) ≈ ϕ(0) + ϕ(1)(ω − ω0) + 1
2ϕ

(2)(ω − ω0)2 + 1
6ϕ

(3)(ω − ω0)3. (6.13)

The difference in delay between the different wavelength components after propagation

through the dispersive medium causes the pulse to stretch out in time. In the case of

Gaussian pulses, the FWHM pulse duration τout after a pulse with FWHM duration τin

has propagated through a dispersive medium can be estimated by (assuming ϕ(3) = 0)

[115]

τout
τin

=
1 + (ϕ(2))2

4β2

1/2

(6.14)

β = τ 2
in/(8 ln 2). (6.15)

For a dispersive material with a given group velocity dispersion (GVD), the GDD can

be obtained from the GVD times the propagation length in the media:

ϕ(2) = GVD× L. (6.16)

The calculated value of the GDD accumulated by propagation through a 160 mm long

BK7 block with a group velocity dispersion (GVD) of 124.49 fs2 mm−1 [116] was found
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to be approximately ϕ(2) ≈ 19 918 fs2. Here I present the method used to measure the

group delay dispersion (GDD), ϕ(2), and the third order spectral phase, ϕ(3), of the

probe and reference pulses. The method consists of overlapping one of the probe or

reference pulse with the much shorter drive pulse in the gas-filled cell, which causes an

ionisation blowout feature in the 400 nm spectrum due to the high gradient refractive

index. This feature is observed as a significant loss of intensity at the corresponding

frequency in the probe spectra (since the probe and reference pulses are significantly

stretched, the different frequency components occur at different times ζ in the pulses).

By changing the time delay between the drive and probe pulses, the blowout feature

is tracked as it moves across the probe spectrum, providing a mapping between time

ζ and frequency ω(ζ). This is shown in Figure 6.8. By definition, the instantaneous

frequency is the first derivative of the temporal phase with respect to time:

ω(ζ) = dφ(ζ)
dζ

. (6.17)

In Section 5.2.3 one saw that the temporal phase and the spectral phase are related by

a Fourier transform. Let the electric field in the frequency domain be E(ω) and in the

temporal domain E(ζ):

E(ω) = |E(ω)| exp (iϕ(ω)) (6.18)

E(ζ) = |E(ζ)| exp (iφ(ζ)), (6.19)

with the spectral phase ϕ(ω) and temporal phase φ(ζ), which I can obtain from the

complex argument of the electric fields:

ϕ(ω) = arg[E(ω)] ≈ ϕ(0) + ϕ(1)(ω − ω0) + 1
2ϕ

(2)(ω − ω0)2 + 1
6ϕ

(3)(ω − ω3
0) (6.20)

φ(ζ) = arg[E(ζ)], (6.21)
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Figure 6.8: The ionisation blowout feature in the blowout spectrum for a series of 14
shots in top-to-bottom order of decreasing delay between the drive and probe pulses
(the delay in units of ps is shown in white text next to each spectrum). The white
lineouts show the transverse average between the parallel horizontal lines in the centre
of each spectrum, and the red cross marks the tracked blowout feature.
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where I assumed that the spectral phase can be expanded up to a polynomial of third

order. The temporal and frequency representations of the electric field are related

through the Fourier transforms:

E(ω) = 1√
2π

∫ ∞
−∞

E(ζ) exp(−iωζ)dζ (6.22)

E(ζ) = 1√
2π

∫ ∞
−∞
E(ω) exp(iωζ)dζ. (6.23)

Using the ionisation blowout measurement in Figure 6.8 I obtain for each temporal delay

coordinate ζ the corresponding ω(ζ) from the blowout in the spectrum. A measurement

of the unperturbed spectrum |E(ω)| (i.e. taken without drive beam or plasma) is shown

in Figure 6.9a, and the forward Fourier-transformed spectrum shows the pulse shape

in the temporal domain in Figure 6.9b. I now have enough information to estimate the

spectral phase ϕ(ω). The process can be described as follows.

1. Assume a spectral phase ϕ′(ω) up to third order, of the form in Equation 6.20

2. Calculate the Fourier transform of E(ω) = |E(ω)| exp(iϕ′(ω)) using Equation 6.23

to obtain the temporal representation of the electric field E(ζ), as shown in Figure

6.9b (this figure shows the final obtained phase)

3. Use Equation (6.21) to obtain the temporal phase and calculate its temporal

derivative
dφ(ζ)
dζ

= d

dζ
arg[E(ζ)].

4. Vary the guess ϕ′(ω), repeating steps 1 - 3, to obtain the spectral phase that

minimises

ϕmin(ζ) = arg min
∑∣∣∣∣∣ω(ζ)− dφ(ζ)

dζ

∣∣∣∣∣
2
. (6.24)
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(a) (b)

Figure 6.9: Electric field amplitude (black lines) and phase (blue lines) in the (a) spectral
domain and (b) temporal domain. The spectral amplitude in (a) can be measured
directly, while the spectral phase can be obtained using the procedure described in this
section. The temporal amplitude and phase in (b) are obtained by Fourier-transforming
the spectral amplitude and phase.

(a) (b)

Figure 6.10: Measurement of the GDD of the (a) probe and (b) reference pulses. The
black dots indicate the location of the ionisation front feature in time and frequency.
The error bars indicate the estimated uncertainty in locating the intensity minima,
from Figure 6.8. The dashed lines show the fitted first derivative of the temporal phase
dφ(ζ)/dζ of each pulse. The dotted lines show a linear fit to the data.

The benefit of this procedure is that it allows the measurement of the spectral phase

up to third order. This is required in analysis methods such as FDH which require
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knowledge of the full spectral phase of the probe and reference pulses, as I showed

in Section 5.2.4. I performed this measurement for the probe and reference pulses

individually. Shown in Figure 6.10 are the measured frequency mappings ω(ζ) − ω0,

where ω0 is the central frequency of the pulses, and ω(ζ) the frequency measured using

the blowout method. This is compared with the first derivative of the temporal phase

dφmin(ζ)/dζ deduced from the fitted spectral phase ϕ(ω), obtained from Equation 6.24.

The obtained components of the probe and reference spectral phases are summarised in

Table 6.3. The errors were estimated using a non-linear least squares fitting procedure

[117] (see appendix B). I also compared this method to a previous method to estimate

the GDD, where the third order spectral phase terms are assumed to be negligible. In

this case, it can be shown that the second order spectral phase is approximately equal

to the inverse of the second order temporal phase [105],

ϕ(2) ≈ 1
φ(2) , (6.25)

which in turn is estimated using the derivative of the instantaneous frequency:

φ(2) ≈ dω(ζ)
dζ

, (6.26)

where ω(ζ) is measured using the same blowout technique as above. This means I am

able to find the GDD by performing a linear fit to the location of the blowout feature

as a function of time, as shown in Figure 6.10. Using this technique, I obtained the

following values of the GDD for the probe: ϕ(2) = (23 000± 1400) fs2 and reference

pulses: ϕ(2) = (18 000± 1000) fs2 (the errors were calculated from the fit to the data,

as explained in Appendix B). These are close, but not identical to, the values obtained

using the method described above. This is likely due to the fact it does not take into

account the non-zero third order phase term ϕ3(ω) that was observed in the phase.
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Table 6.3: Spectral phase components obtained using the spectral blowout technique.

Pulse ϕ2(ω) ϕ3(ω)
Probe (18 600± 790) fs2 (−4.0± 1.0)× 105 fs3

Reference (17 592± 800) fs2 (−2.0± 1.0)× 105 fs3

6.3 Temporally encoded spectral shifting analysis

In the following section I describe how to obtain the wakefield amplitude, δne/n0, using

the TESS analysis method on data obtained from an FDH diagnostic. For a detailed

description of the theory behind TESS and FDH I refer the reader to Section 5.2.3.

In FDH, a spectral interferogram is generated from recording light incident on the

vertical slit of an imaging spectrometer using a CCD camera (see Figure 6.11). The

vertical axis corresponds to a spatial dimension, and the horizontal axis to wavelengths.

We perform a one-dimensional inverse Fourier transform (FT) along the spectral axis

Figure 6.11: Recording of a wakefield in a spectral interferogram. The fringes are caused
by the 6 ps delay between the probe and reference pulses. The presence of a wakefield
causes a modulation of the spectral fringes, which can only be seen by performing an
inverse Fourier transform of the data.

to transform the interferogram into the temporal domain. The FT is symmetric around

zero, however the ”negative time” components can be discarded as they are identical to

those at positive time. I also cut the data vertically to remove the camera pixels which

were not exposed to light. Three reference shots were taken for each data run, without

any gas in the cell, in order to remove from the FT any background. The shots were
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aligned spatially by using the vertical edges of the measured spectras to account for

spatial jitter of the probe beam and normalised to their integrated intensity to account

for shot-to-shot variation in the probe beam fluence, before the average of them was

subtracted from the FT. The result of this background removal procedure is shown in

Figure 6.12, where the TESS peaks are visible in Figure 6.12b. In order to identify

the TESS satellites we perform a filter operation on the FT using a Gaussian kernel

to remove highly localised noise which could be incorrectly identified as a peak. Peaks

are subsequently located within a region based on the expected separation from the

sideband. The region was selected so that TESS peaks could lie within ±0.15 ps from

the expected separation, in order to avoid wrongly identifying noise, or the sideband,

as TESS peaks. It also had a vertical extent of ±70 µm around the centre of of the FT,

as most of the TESS peaks were found to lie within this range. After obtaining the

(a) (b)

Figure 6.12: Absolute value of the Fourier transform of the spectral interferogram, (a)
before processing and (b) after subtracting reference shot (colour scale is logarithmic).

positions of the TESS peaks in the FT, any residual background was removed by first

fitting a two-dimensional quadratic polynomial to a background region, shown in Figure

6.13. The quadratic polynomial was then subtracted from the peak region. Finally, a

2D Gaussian function was fitted to the identified peak, as shown in Figure 6.14. In order
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Figure 6.13: A quadratic function is fitted to the background regions enclosed by the
white lines and subtracted from the peak in the centre.

to obtain the sideband height at the same vertical position as the TESS peak, I fitted

a Gaussian to each of five lineouts centred on the TESS peak, and take the average of

these as the sideband height. The ratio of the Gaussian peak to the sideband height, r,

was then used to obtain the wakefield amplitude. To extract the wakefield amplitude I

(a) (b)

Figure 6.14: (a) Peak after quadratic background subtraction, (b) Gaussian 2D fit to
the peak. The height of the Gaussian fit was used as the peak height, and the radius
at which the Gaussian falls to (1/e2) of its maxima was used as the transverse width of
the peak.

130



CHAPTER 6. MEASURING WAKEFIELD DECAY
6.3. TEMPORALLY ENCODED SPECTRAL SHIFTING ANALYSIS

(a) (b)

Figure 6.15: (a) Lineouts of the spectral intensities of the probe (red line) and reference
pulses (blue line). The dashed lines show Gaussian fits to these spectra. (b) spectral
overlap function F(ωp) as a function of the electron density, for the measured spectra
and Gaussian spectra fitted to the measured spectra.

also need the spectral overlap factor, F(kωp), which is calculated using equation (5.46),

with k = 1:

F(ωp) =
∫∞
−∞ |Eprobe(ω + ωp)||Eref(ω)|dω∫∞
−∞ |Eprobe(ω)||Eref(ω)|dω . (6.27)

I used Equation (6.27) with the separately measured probe and reference pulses spectra

averaged over their spatial axis. The measured spectra together with the spectral

overlap as a function of plasma density are plotted in Figure 6.15. In Section 5.2.3, I

showed that using the TESS method, the wakefield amplitude is calculated as:

δne
ne0

= φ0
4π
ω2
pλL

, (6.28)

where L is the plasma length and λ the probe wavelength. The phase amplitude φ0 can

be retrieved by solving the transcendental equation:

r = J1(φ0)
J0(φ0)F(ωp). (6.29)
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In Equation (5.48), it was showed that if φ0 � 1, then J0(φ0) ≈ 1 and J±1(φ0) ≈ φ0/2.

One therefore obtains the phase amplitude φ0 from

φ0 ≈
2r
F(ωp)

(6.30)

Together with the satellite-to-sideband ratio r, the spectral overlap factor F(ωp), and

the measured plasma density (and hence, the plasma frequency ωp), there is now suf-

ficient information to calculate the wakefield amplitude δne/ne0. In Section 6.3.1, I

show to apply these steps to analyse a run in which the pressure is changed. I also

compare these results to a theoretical prediction. Next, in Section 6.3.2, I apply the

same analytic method to runs in which the temporal delay was changed between the

probe and drive pulses, in order to measure the wakefield decay timescale.

6.3.1 Pressure scan analysis

Here I present the analysis of a pressure scan which was performed during the exper-

iment by varying the backing pressure between 10 − 40 mbar in hydrogen. For each

shot, a one-pixel wide slice in the y-direction centred on the TESS peak, was selected

and used to populate a waterfall plot with shots taken at different pressures. This plot

is shown in Figure 6.16, and shows the TESS peaks moving away from the sideband

with increasing pressure as expected from the relation τ = ϕ(2)ωp. I then measured

the positions of the peaks relative to the sideband as a function of plasma density. I

used this data to fit the expression τ = ϕ(2)ωp, using the GDD, ϕ(2), as the fitting

parameter. This constitutes a different method to measure the GDD to the method

presented in Section 6.2.3. First, I fitted directly to the data and obtained a GDD

value of ϕ(2) = (15 203± 327) fs2. However as can be seen in Figure 6.17, the fit was

not very good and appeared to be offset from the data. The reason for this could be

for example that the pressure reading was offset by a constant pressure, and that gas
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was leaking out from the system before the gas cell (the pressure gauge was located

outside the vacuum chamber, a distance of 2 m from the cell)∗. I therefore performed

a second fit, where I allowed the pressure be modified by a constant offset and a scaling

factor: P → αP + P0. Using this method, I obtained α = 0.8, P0 = 4 mbar, and

ϕ(2) = (19 698± 98) fs2, which is shown in Figure 6.17. This is within 10% of the

values of the GDD obtained using the spectral blowout technique in Section 6.2.3. I

Figure 6.16: Waterfall plot showing lineouts of the absolute values of the Fourier trans-
forms at different backing pressures. The white lines shows a fit to the expected offset,
using the equation τ = ωpϕ

(2).

also compared the measured wakefield amplitude to that predicted from linear plasma

theory. In Section 2.4, I showed an expression for the linear wakefield amplitude as a
∗In later experiments, a second pressure gauge was used close to the gas cell in order to measure

the drop in gas pressure.
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Figure 6.17: Plot showing a fit to the temporal separation τ between the sideband and
the peaks on the right hand side of it. The red points show the temporal separations
assuming that the measured cell pressure Pmeas is correct, and the blue points are
assuming that a correction of form αPmeas − P0 should be applied. The horizontal
error bars correspond to the pressure resolution of 1 mbar of the pressure gauge, and
the vertical bars show the estimated error of the TESS satellite location. The solid
(dashed) line shows a fit to the red (blue) points of the form τ = ωpϕ

(2).

function of the plasma frequency and the drive laser parameters:

δne
n0

= A

1 +
(

2c
ωpeσ

)2 (
1− r2

σ2

)
︸ ︷︷ ︸

Radial wakefield

 exp
(
− r

2

σ2

)
sin

(
ωpe(t− z/c)

)
, (6.31)

A = I
√
π

c3ncme

(
ωpeτ0

2

)
exp

[
−
(
ωpeτ0

2

)2
]
. (6.32)

Here, nc = ω2ε0me/e
2 is the critical plasma density, ω the laser frequency, ε0 the

vacuum permittivity, and me the electron mass. Inserting the measured values of the

laser intensity I at focus, the pulse duration τ0, the beam spot size σ and the plasma

frequency ωp I calculated the predicted amplitude using Equation (6.32) (multiplied

with n0 to show the absolute rather than relative wakefield amplitude). The result is

plotted alongside the experimental results in Figure 6.18.
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Figure 6.18: Plot showing the measured absolute wakefield amplitude δne as a function
of plasma density ne (blue points). The horizontal error bars correspond to the 1
mbar resolution of the pressure gauge, and the vertical error bars to the background
noise of the interferogram FTs, as explained in Section 6.3.2. The black line shows the
theoretical prediction (equation (6.32)) using the experimental parameters from Table
6.2.

6.3.2 Wakefield decay measurements

In order to measure the wakefield amplitude at different temporal delays after the initial

wakefield excitation, a time delay stage located in the drive beam line was used to adjust

the relative timing between the drive pulse and the probe pulse. At each timing position,

ten shots were taken for each gas (hydrogen and deuterium) at a nominal pressure

of 20 mbar and all other experimental conditions as summarised in Table 6.2. The

wakefield decay measured over 4 ps (the maximum delay that could be measured due to

the experimental constraints — any longer delay, and the drive would start overlapping

with the reference pulse). The uncertainty in the wake amplitude measurement of each

shot was determined using the standard deviation of the background segments shown

in Figure 6.13. The deduced wakefield amplitude, and its associated error, is shown in

Figure 6.19 for the case of hydrogen gas. From the fitted 2D Gaussian functions to the
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TESS peaks I also defined a transverse width: the radius at which the height of the

Gaussian falls to (1/e2) of its maximum. This was compared to the drive beam spot

size w0, and is shown in Figure 6.20a for hydrogen and 6.20b for deuterium.

Figure 6.19: Plot showing the wakefield amplitude and uncertainty of each shot (gray
lines) and the average amplitude (blue diamonds) and error of the mean (blue lines) at
each temporal delay.

In order to characterise the decay time of the wakefield I performed a nonlinear fit

to the measured wakefield amplitude at different temporal delays, using a function of

the form y = A exp(−ζ/τ), where τ is the lifetime. See appendix B for more details on

how to perform such a non-linear fit. The result is shown in Figure 6.21a for hydrogen

and in Figure 6.21b for deuterium. I also performed the same analysis assuming that

the measured pressure Pmeas did not correspond to the actual cell pressure, and had

to be corrected by αPmeas − P0, according to the pressure scan analysis presented in

Section 6.3.1 where I found α = 0.8 and P0 = 4 mbar. The resulting τwf, in units of

the number of plasma periods (2πω−1
p ) obtained from this analysis are summarised in

Table 6.4.

The obtained experimental results were also compared with those obtained from 2D

PIC simulations, described in Section 6.1.2.
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(a) (b)

Figure 6.20: The measured (1/e2) radial extent of the plasma wakefields for (a) hydrogen
and (b) deuterium. The gray dots and vertical lines represent the spatial width and
uncertainty of the fitted Gaussian functions to the TESS satellites, as shown in Figure
6.14b. The blue diamonds show the average at each temporal delay, weighted by the
uncertainty of each shot. The dashed black lines show the (1/e2) radial extent (w0) of
the drive beam at focus.

(a) (b)

Figure 6.21: Plot showing the decay of (a) hydrogen and (b) deuterium plasma wake-
fields. The red lines indicate the simulation results. The blue points show the average
wakefield amplitude of 10 shots, at cell pressure Pmeas for each shot. The red points
show the average wakefield amplitude of the same shots, assuming a correction to the
cell pressure αPmeas−P0, with α = 0.8 and P0 = 4 mbar. The vertical bars indicate the
error of the mean. The black striped lines show fits of the function exp(−ζ/τwf) to the
experimental data. The obtained τwf from these fits are summarised in Table 6.4.
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Table 6.4: Characteristic wakefield decay time τwf in units of plasma periods, for hy-
drogen and deuterium plasmas. The results under Pmeas show τwf for the measured
cell pressure, whereas the results under αPmeas − P0 show the results when applying a
correction to the cell pressure based on the analysis presented in Section 6.3.1.

Plasma species τwf / 2πω−1
p

(Cell pressure: Pmeas) (Cell pressure: αPmeas − P0)
Hydrogen 75± 19 97± 32
Deuterium 178± 97 178± 102

6.4 Conclusions

The results presented in this chapter confirm the feasibility of the FDH/TESS diagnostic

to measure wake decay at delays as long as 4 ps. I have shown that an excited wakefield

survives up to this delay, and measured the characteristic decay timescales of both

hydrogen and deuterium plasma wakefields at low amplitudes. I found that hydrogen

has characteristic decay time of 97 ± 32 plasma periods and and deuterium 178 ±

102 plasma periods. If the MP-LWFA pulses are spaced by one plasma period, this

indicates that ∼ 100 and ∼ 180 pulses can be supported in hydrogen and deuterium

plasmas respectively. However, future work is needed to confirm this conclusion; both

simulations and experiments using a pulse-train as the drive beam rather than a single

pulse. The results are in close agreement both to the timescales expected from PIC

simulations and from the modulational instability, indicating that this is a likely to be

responsible for the observed wakefield decay. The results are also in agreement with

previous experiments which also measured the wakefield decay. However, this is the first

experiment to measure wakefield decay in the linear, short-pulse, longitudinal wakefield

regime that are of relevance for future LWFA and MP-LWFA experiments.
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6.4.1 Future work

The maximum temporal delay could be further extended in order to measure the en-

tire wakefield lifetime by adding a second Michelson interferometer with a 50:50 beam

splitter to the probe beam line. This is because with a single Michelson interferometer,

as shown Figure 6.5, increasing the separation between the probe and reference pulses

decreases the spectral fringe spacing. The requirement for the fringes to be resolved

by the spectrometer camera thus imposes a maximum pulse separation. However, this

could be overcome by setting a longer pulse separation of for example 12 ps using the

first interferometer, and using the second interferometer located before the spectrom-

eter to undo some of the separation to for example 6 ps. Since this would generate

further copies of the probe and reference pulses, care must be taken to ensure that the

interfering pulses measured on the spectrometer are the correct ones.
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Chapter 7

Frequency domain holography

In addition to analysing the wakefield decay data using the TESS technique in the

previous chapter, I also attempted to use the FDH analysis method to obtain the

wakefield amplitude. In this chapter, I will outline how this analysis is carried out,

and some fundamental limitations that arise when the frequency band of the probe and

references pulses are similar to the plasma frequency. Finally, I will demonstrate that

the TESS method can overcome these limitations and is therefore more robust than

FDH analysis.

7.1 FDH analysis in practice

As outlined in Section 5.2.4, in FDH analysis one performs filtering in the time domain

to isolate the third term in S(ω), the spectral interferogram:

S(ω) = |E ′probe(ω)|2 + |Eref(ω)|2 + E ′probe(ω)E∗ref(ω) + c.c., (7.1)

where c.c. stands for the complex conjugate of the previous term. The modulated probe

pulse spectrum is then recovered by removing the reference spectrum and phase from
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this “sideband” term:

E ′probe(ω) =
E ′probe(ω)E∗ref(ω)
|Eref(ω)| exp [iϕref(ω)]. (7.2)

To obtain the temporal amplitude and phase one performs an inverse Fourier transform:

E ′probe(ζ) = 1√
2π

∫
E ′probe(ω) exp (iωζ)dω (7.3)

φ(ζ) = ={log[E ′probe(ζ)]} = φprobe(ζ) + φwf(ζ), (7.4)

where φwf(ζ) is the wakefield phase that we seek to measure. In practice, I performed

the following steps:

1. Used an inverse FT of the obtained spectral interferogram.

2. Applied a window centred on the temporal sideband located at ∆ζ and shift the

sideband to ζ = 0 (Figure 7.1a).

3. Used a forward FT to spectral domain; this yields the spectral sideband

E ′probe(ω)E∗ref(ω) (Figure 7.1b).

4. Divide by the reference pulse |Eref(ω)| exp [−iϕref(ω)] in order to recover the the

wakefield-modulated probe spectrum E ′probe(ω) (Figure 7.1c). I describe how the

reference phase ϕref(ω) was measured using the spectral blow-out technique in

Section 6.2.3.

5. Performed an inverse FT to the temporal domain to obtain the probe pulse in the

temporal domain E(ζ) (Figure 7.2)

6. Isolate the wakefield phase from the probe temporal phase (Figure 7.3a)

In order to remove the noise which was caused by the low-amplitude regions of the ref-

erence spectrum I applied a tapered Tukey window to the sideband before the division,
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(a)

(b)

(c)

Figure 7.1: The FDH analysis procedure: (a) shifted and isolated sideband from the
inverse Fourier-transformed spectral interferogram (blue) using a tapered Tukey window
(black), (b) the forward Fourier transformed sideband term Eprobe(ω)E∗ref(ω) (blue) and
the measured reference spectrum (red), and (c) the recreated probe spectrum (blue) and
window used to remove noise caused by division with the reference spectrum (black).
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shown in Figure 7.1c. Performing an inverse Fourier transform, I then obtained the

probe temporal profile. We saw earlier that the corresponding phase is a sum of the

probe phase and the wakefield phase:

φ(ζ) = φprobe(ζ) + φwf(ζ). (7.5)

In order to recover the wakefield phase φwf(ζ) I needed to remove the probe phase

terms φprobe(ζ) (these are due to the second and higher order terms in the spectral

phase). In order to do so, I obtained the phase of a shot taken without a wakefield

φ(ζ). This is shown in Figure 7.2. I then performed a fit to this phase by finding the

probe spectral phase terms that most closely correspond to this temporal phase. This

method for measuring the spectral phase is almost identical to how I measured the

spectral phase in Section 6.2.3, except that I perform a fit to the temporal phase itself

rather than to its derivative. The obtained spectral phase components are those of the

probe beam, ϕ(2) = (20 030± 20) fs2, ϕ(3) = (3.6± 0.5) fs3. These values are close to

those measured using the spectral blowout technique, summarised in Table 6.3. Note

that the results are not identical since the reference pulse spectral phase is used in this

procedure and therefore contributes an additional source of error. After subtracting

the fitted temporal phase, the remaining phase is the oscillating phase shift induced

by the wakefield on the probe pulse. The obtained phase map is shown in Figure 7.3a,

and a lineout taken through the centre of the wakefield is shown in Figure 7.3b (here

I used Equation (5.55) to convert from phase to density). It was observed that the

measured wakefield was modulated, showing a maximum away from the centre and

decaying towards the centre of the pulse. In order to understand this phenomena, I

performed numerical and analytical calculations using a simulated probe spectrum; this

process is described in the next section.
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Figure 7.2: Temporal phase obtained from the FDH analysis. The blue line shows the
experimentally obtained phase, and the black dashed line shows a fit of the spectral
phase using the probe measured spectrum.

7.2 Cause of the wakefield modulation

In other to understand the reason for modulation of the recovered wakefield, it can

be studied as a deconvolution problem [118]. Here, the goal is to recover an unknown

function f(t) that has been convolved with a known transfer function K(t):

g(t) =
∫
K(t− t′)f(t′)dt′ ≡ K ∗ f(t), (7.6)

where g(t) is called the image. By performing a Fourier transform, the function f(t) is

easily recovered by division in the frequency domain. It was then be transformed back

to the temporal domain:

ĝ(ω) = f̂(ω)K̂(ω) (7.7)

f̂rec(ω) = ĝ(ω)
K̂(ω)

(7.8)

f(t) = FT[f̂rec(ω)], (7.9)
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(a) (b)

Figure 7.3: (a) The spatial variation of the electron density recovered by the FDH
method (b) lineout showing the wakefield amplitude through the centre of the wakefield.

where the hats signify the Fourier transform of the respective functions. The decon-

volution process is very sensitive to noise due to the division by the transfer function

K̂(ω), which will be very small outside some frequency range. Denoting the band B(y)

of a function y as the region over which it is non-zero, we see from Equation (7.7) that

ĝ(ω) is band-limited by the function with the smallest band B(ĝ) = min{B(K̂),B(f̂)}.

One therefore sees from Equation (7.8) that the recovered f̂rec(ω) is also band-limited

by:

B(f̂rec) = min{B(ĝ),B(K̂)} (7.10)

= min{min{B(K̂),B(f̂)},B(K̂)} (7.11)

= min{B(f̂),B(K̂)}. (7.12)

This shows that in order to fully recover f̂(ω), the band of K̂ must be equal or greater

than that of f̂ : B(K̂) ≥ B(f̂). The division in Equation (7.8) looks just like that in

FDH if one identifies K(ω) as the reference spectrum Eref(ω) and f(ω) as the modulated

probe spectrum E ′probe(ω). In Section 5.2.3, I showed that the effect of a sinusoidal phase

modulation with amplitude φ0 on the probe pulse is to generate an infinite number of
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copies of the spectrum, offset by kωp and multiplied by a Bessel function of the first kind

Jk(φ0) (where k is an integer). I now briefly revisit this theory in order to understand the

effects of spectral cut-off of the modulated probe pulse, starting with the Jacobi-Anger

expansion of the modulated probe:

E ′(ζ) = E(ζ) exp[iφ0 sin(ωpζ)] (7.13)

= E(ζ)
∞∑

k=−∞
Jk(φ0) exp(ikωpζ). (7.14)

Including only the three terms k = −1, k = 0, k = 1 one has:

E ′(ζ) ≈ E(ζ)
[
J−1(φ0) exp(−iωpζ) + J0(φ0) + J1(φ0) exp(iωpζ)

]
(7.15)

= E(ζ)
[
J0(φ0) + J1(φ0) exp(iωpζ)− J1(φ0) exp(−iωpζ)+

]
(7.16)

= E(ζ)
{
J0(φ0) + J1(φ0)[exp(iωpζ)− exp(−iωpζ)]

}
(7.17)

≈ E(ζ)
{

1 + φ0

2 [2i sin(ωpζ)]
}

(7.18)

= E(ζ)
{

1 + iφ0 sin(ωpζ)
}
. (7.19)

In Equation (7.18), I used the expansion of the the Bessel function from equation (5.48),

where I showed that J0(φ0) ≈ 1 and J1(φ0) ≈ φ0/2 if φ0 � 1. The last expression,

equation (7.19), corresponds to the first two terms of the Taylor expansion of the

exponential function: exp(x) ≈ 1 + x, and the phase of the bracketed expression is the

same as in equation (7.13). Since I am primarily concerned with the phase, this shows

that the three terms k = −1, k = 0, and k = 1 are necessary and sufficient to recover

the probe phase. In the spectral domain, I can therefore expand equation 5.31 using

only these three terms:

E ′probe(ω) =
∑
k

Jk(φ0)Eprobe(ω − kωp) (7.20)

≈ J−1(φ0)Eprobe(ω + ωp) + J0(φ0)Eref(ω) + J1(φ0)Eprobe(ω − ωp). (7.21)
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Assuming that the probe and reference spectra have initially equal band, it follows that

B(E ′probe) > B(Eprobe) = B(Eref) due to the terms that are shifted by ω±ωp. This means

that the recorded probe spectrum is partially cut to a smaller band by the reference

spectrum. Using a reference pulse with a band greater than the plasma frequency ωp,

B(Eref) ≥ ωp, means that more of the probe pulse can be recovered which reduces this

modulation. In Section 7.2.1, I perform a numerical calculation using FFT to study the

effect of the band-limited spectrum on the recovered wakefield, and in Section 7.2.2 I

obtain an analytic expression of the band-limited probe pulse in the temporal domain.

I show that these are in good agreement and use these to obtain a limit of the plasma

frequency ωp for which the wakefield amplitude can be recovered, for a given bandwidth.

Finally, in Section 7.3 I show that TESS analysis can overcome this issue by measuring

the spectral overlap factor, which can be seen as a correction term.

7.2.1 FFT calculation

I performed a numerical calculation assuming a super-Gaussian spectrum of the probe

pulse (see Figure 7.4a) to study the effect of the band-limited probe spectrum on the

recovered wakefield amplitude. The k = −1, k = 0, and k = 1 terms in the modulated

probe spectrum are plotted separately in Figure 7.4b. Note that large parts of the

modulated spectrum appear outside the band of the reference spectrum. Performing

an FFT of the full probe spectrum and the band-limited probe spectrum, I obtained

the wakefield amplitudes from the phase of the probe in the temporal domain. This

is plotted in Figure 7.5a. Using a band-limited probe leads to a modulation in the

recovered wakefield amplitude that is similar to the one observed experimentally in

Figure 7.3b. In Figure 7.5b I plot the wakefield amplitude in the centre of the simulated

wakefield (measured using the first wakefield trough and peak on either side of ζ = 0)

as a function of the plasma frequency. This shows that the modulation decreases at

lower plasma frequencies, as expected from the above discussion.
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(a) (b)

Figure 7.4: (a) Measured probe spectrum (red), assumed super-Gaussian spectrum
(black solid line), and assumed Gaussian spectrum (black dotted line). (b) Modulated
super-Gaussian probe spectrum. The blue line corresponds to the amplitude of the
k = 0 term and the red lines to the amplitudes of the individual k = ±1 terms from
Equation (7.21). The red dashed lines show the parts of the k = ±1 terms that are cut
off due to the band-limited reference spectrum.

7.2.2 Theoretical calculation

I also found an analytic expression that could be used to study the recovered phase of a

band-limited probe spectrum. Assuming a Gaussian probe spectrum of width δω, GDD

ϕ(2) and centre frequency ω0, one has the following expression of the probe spectrum:

E(ω) = exp
[

(ω − ω0)2

2δω2

]
exp

iϕ(2)

2 (ω − ω0)2

 . (7.22)

Calculating the Fourier transform of the band-limited probe is equivalent to setting the

integration limits of the transform to ωL > −∞ and ωU < ∞. The Fourier transform
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(a) (b)

Figure 7.5: (a) Wakefield amplitude obtained using the full super-Gaussian probe spec-
trum (blue), the band-limited super-Gaussian spectrum (black solid line), and the the-
oretical calculation based on the Gaussian spectrum as described in Section 7.2.2 (black
dotted line). In this plot I have assumed a plasma frequency of ωp = 5.5× 1013 rad
s−1. (b) Centre wakefield amplitude as a function of plasma frequency. The solid line
shows the recovered wakefield amplitude between the dashed black lines in the centre
of (a), using the band-limited super-Gaussian probe spectrum. The dotted line shows
the centre amplitude from the theoretical calculation assuming a Gaussian spectrum.
The horizontal dashed line shows the true wakefield amplitude.

is thus:

E(ζ) = FT[E(ω)] (7.23)

= 1√
2π

∫ ωU

ωL
exp

[
(ω − ω0)2

2δω2

]
exp

iϕ(2)

2 (ω − ω0)2

 exp(iωζ)dω (7.24)

= 1√
2π

∫ ωU

ωL
exp

(ω − ω0)2

2δω2 + i
ϕ(2)

2 (ω − ω0)2 + iωζ

 dω. (7.25)

I complete the square in the argument and make the change of variables:

u(ω, ζ) = ωε− Ω(ζ)√
ε

(7.26)

dω = 1√
ε
du. (7.27)
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I have also introduced the constants

ε = 1
2δω2 + iϕ(2) (7.28)

Ω(ζ) = εω0 + iζ. (7.29)

With these substitutions I obtain the following expression of the integral

E(ζ) = 1
2
√

2ε
exp

[
Ω(ζ)2

ε
− εω2

0

]
2√
π

∫ u(ωU ,ζ)

u(ωL,ζ)
exp(−u2)du (7.30)

= 1
2
√

2ε
exp

[
Ω(ζ)2

ε
− εω2

0

]
{erf[u(ωU , ζ)]− erf[u(ωL, ζ)]}, (7.31)

where the error function is defined as:

erf(x) = 2√
π

∫ x

0
exp(−t2)dt. (7.32)

Note that in the limit ωL → −∞, ωU →∞, I obtain

E(ζ) = 1
2
√

2ε
exp

[
Ω(ζ)2

ε
− εω2

0

]
. (7.33)

To obtain the band-limited wakefield amplitude, I simply evaluate:

φwf(ζ) = arg{FT[E ′probe(ω)]} − arg{FT[Eprobe(ω)]}, (7.34)

with the modulated probe spectrum given by:

E ′probe(ω) = J−1(φ0)Eprobe(ω + ωp) + J0(φ0)Eref(ω) + J1(φ0)Eprobe(ω − ωp), (7.35)

and the Fourier transform FT calculated according to equation (7.24). For a band-

limited Gaussian probe spectrum (where the unmodulated probe spectrum have a

bandwidth of δω = 2× 1013 rad s−1, shown in Figure 7.4a) with lower frequency
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ωL = 4.705× 1015 rad s−1 and upper frequency ωU = 4.78× 1015 rad s−1, we obtain the

wakefield amplitude plotted in Figure 7.5a. Using the centre of the wakefield, around

ζ = 0, as a measure of the modulation we calculate this amplitude as a function of

plasma frequency. The result is shown in Figure 7.5b. The wakefield amplitude can be

recovered if the plasma frequency is ωp ≤ 3× 1013 rad s−1, corresponding to a density

n0 ≤ 2.8× 1023 cm−3 (in a hydrogen plasma).

7.3 FDH versus TESS

In the previous section I showed that an issue with frequency domain holography is

that the wakefield can only be correctly recovered if the reference spectrum has band

greater than the plasma frequency. An important question is therefore if this is an issue

for TESS analysis as well. To answer this, I start by reviewing the expression for the

spectral interference S(ω):

S(ω) = |E ′probe(ω)|2 + |Eref(ω)|2 + E ′probe(ω)E∗ref(ω) + c.c., (7.36)

where c.c. stands for the complex conjugate of the previous term. By performing an

inverse Fourier transform of this term, I obtain:

S(ζ) = 1√
2π

∫
|E ′probe(ω)|2 exp (iωζ)dω + 1√

2π

∫
|Eref(ω)|2 exp (iωζ)dω (7.37)

+ 1√
2π

∫
E ′probe(ω)E∗ref(ω) exp (iωζ)dω + c.c.. (7.38)
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Focussing on the third term which is used in TESS analysis, I use Equation (7.20) to

expand this as (omitting the prefactor 1/
√

2π)

∫
E ′probe(ω)E∗ref(ω) exp (−iωζ)dω =

∑
k

Jk(φ0)
∫
Eprobe(ω − kωp)E∗ref(ω) exp (−iωζ)dω︸ ︷︷ ︸

H(ζ,kωp)

.

(7.39)

It can be shown [105] that the integral H(ζ, kωp) is maximised at ζ = kϕ(2)ωp, where

it takes the magnitude:

|H(kϕ(2)ωp, kωp)| =
∫
|Eprobe(ω − kωp)||Eref(ω)|dω. (7.40)

The TESS analysis method consists measuring the relative amplitudes of k = 1 term

and the k = 0 term from Equation (7.39), so I get:

r = J1(φ0)
J0(φ0)

|H(ϕ(2)ωp, ωp)|
|H(0, 0)| (7.41)

|H(ϕ(2)ωp, ωp)|
|H(0, 0)| =

∫
|Eprobe(ω − ωp)||Eref(ω)|dω∫
|Eprobe(ω)||Eref(ω)|dω = F(ωp). (7.42)

This is just the spectral overlap function F(ωp) from Equation (6.27). I therefore have:

r = J1(φ0)
J0(φ0)F(ωp), (7.43)

from which I obtain the phase amplitude φ0 of the assumed sinusoidal wakefield. I

therefore conclude that TESS, in contrast to FDH, does not require the band of the

reference spectrum to be greater than the plasma frequency. Instead, it only requires

that the spectral overlap function F(ωp) is greater than zero, and by measuring the

(unmodulated) probe and reference spectra separately it can be estimated using the

measured plasma density as shown in Chapter 6.
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7.4 Conclusions

In this chapter I presented an attempt to recover the wakefield temporal profile us-

ing FDH analysis of the data that was presented in Chapter 6, and observed that

the obtained wakefield was modulated. By making the connection to the well-known

problem of Fourier deconvolution, I showed that this is because the band of the refer-

ence spectrum limits the band of the recovered probe spectrum. By using simulated

probe and reference spectra I showed using numerical and theoretical calculations that

the band-limited probe spectrum generates a modulated wakefield amplitude similar to

that observed experimentally. In order for FDH to work as described in this chapter,

the reference spectra must therefore be wider than the plasma frequency. I also showed

that in TESS analysis, the requirement on the band of the reference spectra is less strict,

as long as one can correct for the partial overlap of the probe and reference spectra by

calculating the spectral overlap factor.
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Summary

Particle accelerators have a wide range of applications in science and technology, and

have directly contributed to a substantial fraction of research awarded with Nobel prizes

in physics since 1938. Compared to traditional particle accelerators, laser plasma ac-

celeration (LPA) is a much more compact acceleration method capable of generating

femtosecond long particle bunches that could lead to new applications in fields such as

biotechnology and material science.

In this thesis, I have described several different laser-driven accelerator schemes:

laser wakefield acceleration (LWFA), laser beatwave acceleration (LBWA), self-

modulated laser wakefield acceleration (SM-LWFA), and multi-pulse laser wakefield

acceleration (MP-LWFA). I have argued that MP-LWFA provides a way towards high-

repetition rate laser plasma accelerators, which is a requirement for their wider applica-

tions in science and technology. Another requirement is the development of low-density

plasma waveguides capable of guiding the high-intensity drive laser pulses over a ∼ 10

centimetre distance, or several Rayleigh ranges.

The problem of diagnosing these low-density plasma waveguides, i.e. measuring

their density profiles, is described in Chapters 3 and 4. Plasma diagnostics for LPA

experiments (Chapter 3) are challenging as they simultaneously require a high spatial
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and temporal resolution. As an example, plasma channel waveguides have a size on

the order of 100 µm, requiring a resolution better than 10 µm. They are also rapidly

evolving, on the scale of picoseconds, requiring sub-ps temporal resolution. A third

challenge is the low plasma density, on the order of n0 ≈ 1017 − 1018 cm−3, leading to

small refractive index differences. This is at the lower range of what interferometers

using 800 nm or 400 nm light can measure, due to a low integrated phase shift (on the

order of 100 mrad when probing transversely). I showed that adding a second probe

along a different axis of projection (the experimental design is shown in Figure 3.7)

can help to reconstruct the density of asymmetric plasma channels. In order to reduce

the shot-to-shot variation, a kHz probe beam should be used for plasma diagnostics

in the future. Because of wavefront errors in the probe beam, a reference shot is

usually recorded without any plasma that can be used to remove these errors. As

these wavefront errors change over time due to mechanical vibrations and deformations

of the optical elements in the laser chain, recording the probe and reference shots

at short time-intervals ensures that they are taken at similar conditions. It is also

conceivable to use longer probe wavelengths, as this increases the phase shift acquired by

propagated through the plasma. In permanent installations of laser plasma acceleration

an operationally simple probe layout is required in order to reduce maintenance. Due

to their extreme simplicity, Shack-Hartmann sensor are most likely to fulfil this task,

since they have a very simple optical setup. As of now however, they lack the spatial

resolution needed to resolve the plasma channels (currently approximately 150 µm).

In Chapter 4 I provided an overview of the process by which an interferogram (or

deflectogram) is analysed. The obtained phase can in turn be converted into a density

using the calculations presented in Section 3.2. I discussed three different methods

for calculating the projected phase from an interferogram: fringe tracing, the Fourier

transform method, and the continuous wavelet transform method. I showed that the

latter two are preferred due to their higher sensitivity. Furthermore, the continuous

wavelet transform method offers the additional benefit of working even when the fringe
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frequency is not constant. Next, I discussed the problem of phase unwrapping a 2D

image, since the phase obtained in the interferogram analysis can only be determined

up to a factor of 2π. Assuming that the phase is continuous everywhere discontinuities

in the obtained phase can be corrected by adding factors of 2π. If the Itoh condition

is satisfied this can be done uniquely for a 2D phase image. However, the presence

of residues (2 × 2 group of pixels with a path integral of ±2π) breaks this, which

means that there is more than one way to unwrap the phase. Several algorithms have

been developed to ensure a unique phase unwrapping solution of which we discuss

two common approaches: branch cutting (the Goldstein algorithm) and quality-guided

unwrapping.

Since the measured phase is a projection of the plasma structure, the final step

of phase inversion is necessary in order to obtain the true phase. Up to this point,

the procedure for analysing interferograms and deflectograms is identical, but here

different solutions of the inversion problem are employed as the former measures

projected phase and the latter the deflected angle. For interferograms, I showed that

fitting Laguerre-Gaussian basis functions with known inverted forms is a robust way

to obtain the inverted phase, even in the presence of one-dimensional asymmetries in

the original phase. I also showed that using the two-axis projection interferometer, the

second projection axis allows one to determine the angle and position of asymmetries

in any direction in the plane. I also showed how the phase obtained from deflectometry

can be inverted using the two-point algorithm to calculate the Abel inversion. Finally,

I showed a full example of how to analyse an interferogram that was captured in an

experimental campaign to measure the density of plasma channels.

In the second part of the thesis, Chapters 5 and 6, I discussed another crucial

aspect of building a high-repetition rate laser plasma accelerator using the MP-LWFA

scheme: that of wakefield decay. In the theory chapter (Chapter 2), I explained that

ions are usually assumed to be stationary in the calculations, only providing a constant
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background for the oscillating electrons in the plasma. While this assumption holds in

the LPA schemes where the drive pulse is much shorter than the plasma wavelength,

this is not necessarily true if the drive pulse (or train of drive pulses) is much longer

than that. Ion motion leads several plasma instabilities that eventually leads to

the decay of plasma wakefields (with stable ions, they would eventually decay from

other mechanisms that occur over much longer timescales). Several wakefield decay

mechanisms are described in Chapter 5: Landau damping, collisional damping, and

the modulational instability. I showed that of these, the modulational instability is

the fastest, occurring on the picosecond timescale. I also presented several previous

experiments that have measured the wakefield decay time. In Chapter 6, I presented

the results of an experimental campaign to measure the decay time of hydrogen and

deuterium plasma wakes in the linear regime. I have for the first time studied a

parameter regime that is relevant both for current and future LWFA experiments.

The primary motivation of this experiment was to investigate the feasibility of the

MP-LWFA scheme as the wakefield lifetime limits the number of pulses that can be

used in a pulse train as a wakefield driver. Using for the first time a FDH diagnostic

and the TESS analytic method to measure the decay of a plasma wakefield I measured

the wakefield amplitude between 0-4 ps after ionisation. Our results indicate that

within this timeframe the wakefields have a characteristic decay time scale of ∼ 100

plasma periods in hydrogen plasmas and up to ∼ 180 plasma periods in deuterium.

Assuming that the drive pulses are separated by one plasma period, this means that

pulse trains up to ∼ 100 (∼ 180) pulses may be useful to excite a wakefield in hydrogen

(deuterium); beyond this limit it is likely that the wakefield would saturate and

additional pulses would only maintain, rather than add, to the wakefield amplitude.
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8.1 Future work

In this thesis I have presented a possible path towards high repetition rate laser wakefield

accelerators, with results that open the door to future work. Guiding high-intensity laser

pulses in low-density plasma channels have already been achieved over 100 mm by the

author’s group. This experimental work should be extended to accelerating electrons

in these channels; this would require an electron injection scheme (for example through

ionisation injection or downramp injection). Another issue is the generation of plasma

channels at high repetition rates (≥ kHz), where the timescale is approaching plasma

timescales such as the recombination time. Thirdly, the staging of several channels

after each other is required for future collider experiments, and a way to couple both

the laser and electron beam into the channels is required.

I showed results indicating that the plasma wakefield decay after a single pulse is

sufficiently slow to not be a concern for the MP-LWFA scheme. Here, further work

is required to ensure that this conclusion holds for pulse trains as well as for single

pulses. For example, the continuous excitation of wakefields in addition to the build-up

of plasma instabilities through the modulational instability could change the seeding

of the instability. This should be done both in simulations and experimentally, by

repeating the experiments described in Chapter 6 with a pulse train rather than a single

pulse. Furthermore, other instabilities such as the oblique mode instability should be

studied in the context of wakefield decay [119].

A further direction of the work is the combination of the MP-LWFA scheme with

the plasma channel work; the interaction between a pulse train and a plasma waveguide

should be investigated theoretically and experimentally.

Combining the MP-LWFA technique with the low-density, all-optical plasma chan-

nels developed by the group is a promising direction in the pursuit of multi-GeV laser-

plasma accelerators capable of high-repetition-rate operation. It is hoped that the work

presented in this thesis is a contribution towards that objective.
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The continuous wavelet trans-

form coefficients

I want to calculate the wavelet coefficients for the function f(x) = a(x) cos
[
θ(x)

]
, given

wavelets of the form:

ϕs,u(x) = gs,u,ξ(x) exp(−iξu), (A.1)

where ξ = η/s and gs,u,ξ(x) is given by:

gs,u,ξ(x) = 1√
s
g

(
x− u
s

)
exp(−iξx). (A.2)

I will follow the procedure described in Stéphane [75]. The wavelet coefficients are given

by:

Wf(u, s) =
∫ +∞

−∞
f(x)ϕs,u(x)dx (A.3)

=
∫ +∞

−∞
a(x) cos θ(x)gs,u,ξ(x) exp(−iξu)dx (A.4)

= exp(−iξu)
∫ +∞

−∞
a(x) cos θ(x)gs(x− u) exp(−iξx)dx. (A.5)
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In equation A.5 I introduced the notation:

gs(x) = 1√
s
g
(
x

s

)
. (A.6)

I evaluate the integral in equation (A.5), expanding cos[θ(x)] = {exp[iθ(x)] +

exp[−iθ(x)]}/2:

∫ +∞

−∞
a(x) cos θ(x)gs(x− u) exp(−iξx)dx

= 1
2

∫ +∞

−∞
a(x){exp[iθ(x)] + exp[−iθ(x)]}gs(x− u) exp(−iξx)dx

= 1
2

∫ +∞

−∞
a(x) exp[iθ(x)]gs(x− u) exp[−iξx]dx︸ ︷︷ ︸

I(θ)

+ 1
2

∫ +∞

−∞
a(x) exp[−iθ(x)]gs(x− u) exp[−iξx]dx︸ ︷︷ ︸

I(−θ)

.

(A.7)

In the first integral, I perform a change of variable from x to x+ u:

I(θ) = 1
2

∫ +∞

−∞
a(x) exp[iθ(x)]gs(x− u) exp(−iξx)dx

= 1
2

∫ +∞

−∞
a(x+ u) exp[iθ(x+ u)]gs(x) exp[−iξ(x+ u)]dx.

(A.8)

I assume that a(x) and θ′(x) are slowly varying and expand:

a(x+ u) ≈ a(u)

θ(x+ u) ≈ θ(u) + xθ′(u).
(A.9)

Here I am making the assumption that |a′(u)| is small compared to |a(u)|; it can be

shown that this leads to an error on the order ε ≤ s|a′(u)|/|a(u)| [75]. Using this I
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write:

I(θ) = 1
2

∫ +∞

−∞
a(u) exp[iθ(u) + xθ′(u)]gs(x) exp

[
−iξ(x+ u)

]
dx (A.10)

= 1
2 exp(i(θ(u)− ξu))a(u)

∫ +∞

−∞
gs(x) exp

{
−it

[
ξ − θ′(u)

]}
dx (A.11)

= 1
2 exp(i(θ(u)− ξu))a(u)

∫ +∞

−∞

1√
s
g
(
x

s

)
exp

{
−it

[
ξ − θ′(u)

]}
dx. (A.12)

Where I have replaced gs(t) = (1/
√
s)g(x/s) in the integral above. Through a change

of variables x→ x′ = x/s I obtain:

∫ +∞

−∞

1√
s
g
(
x

s

)
exp

(
−it

(
ξ − θ′(u)

))
dx =

∫ +∞

−∞

√
sg
(
x′
)

exp
(
−isx′

(
ξ − θ′(u)

))
dx′.

(A.13)

Rewriting slightly, I recognise the expression for ĝ(ω), the Fourier components of g at

the frequency ω = s
[
ξ − θ′(u)

]
:

√
s
∫ +∞

−∞
g
(
x′
)

exp
(
−isx′

(
ξ − θ′(u)

))
dx′ =

√
sĝ
(
s
[
ξ − θ′(u)

])
. (A.14)

Finally, I obtain the expression:

I(θ) =
√
s

2 exp
{
i
[
θ(u)− ξu

]}
a(u)ĝ

(
s
[
ξ − θ′(u)

])
. (A.15)

Similarly, for I(−θ) I obtain:

I(−θ) =
√
s

2 exp
{
−i
[
θ(u) + ξu

]}
a(u)ĝ

(
s
[
ξ + θ′(u)

])
. (A.16)

Assuming that the Fourier transform of the window function ĝ(ω), which is maximum

at ω = 0 has a limited bandwidth δω, and that θ′ ≥ δω/s, I see that ĝ
(
ξ + θ′(u)

)
≈ 0

and I may neglect this term. The expression for the wavelet coefficients of f(x) can
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now be obtained by using equation (A.15) in equation (A.5) and:

Wf(u, s) = exp(−iξu)
√
s

2 exp
{
i
[
θ(u)− ξu

]}
a(u)ĝ

(
s
[
ξ − θ′(u)

])
(A.17)

=
√
s

2 a(u) exp[iθ(u)]ĝ
(
s
[
ξ − θ′(u)

])
. (A.18)

163



Appendix B

Non-linear least squares fitting

Given a set of measured data y(x) that we assume can be described by a non-linear

function f(x, θ) with p parameters θ = [θ0, . . . , θp−1] and a normally distributed error

term ε(x), I have the equation:

y(x) = f(x, θ) + ε(x). (B.1)

The fitting procedure consists of finding the parameters θ so that the following expres-

sion is minimised (following Seber and Wild [117]):

S(θ) =
∑
x

[y(x)− f(x, θ)]2. (B.2)

The optimal parameters θ̂i are those where the derivative of S(θ) with respect to θi

equals zero:

∂S(θ)
∂θi

∣∣∣∣∣
θ̂i

= 0. (B.3)

The variance Var(θ̂) can be obtained using methods from linear regression [120]. Later

in this section, I will show these methods can be generalised to the non-linear case. A
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linear regression problem can formulated as a matrix equation:

Y = Xβ + ε, (B.4)



Y1

Y2

...

Yn


=



x10 x11 x12 · · · x1,p−1

x20 x21 x22 · · · x2,p−1

... ... ... ... ...

xn0 xn1 xn2 · · · xn,p−1





β0

β1
...

βp−1


+



ε1

ε2

...

εn


, (B.5)

where Y is a vector of length n, X a matrix of dimension n× p, β is a vector of length

p and ε a vector of length n. Thus each value in Y corresponds to one measured data

point, each value in X to an experimental parameter, each value in β to an unknown

parameter to be estimated, and each value in ε to an error of that measurement. In

order to find the best fit β, I minimise the squared error term εTε with respect to β

(this is equivalent to Equation (B.2)). I therefore write:

εTε = (Y −Xβ)T (Y −Xβ) (B.6)

= YTY − βTXTY −YTXβ + βTXTXβ (B.7)

= YTY − 2βTXTY + βTXTXβ. (B.8)

In equation (B.7), I used that YTXβ = (βTXTY)T = βTXTY (note that the product

is a single number and so equal to its transpose). Differentiating with respect to β and

setting ∂εTε/∂β|β̂ = 0, I obtain the condition:

XTXβ̂ = XTY (B.9)

⇒β̂ = (XTX)−1XTY. (B.10)
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In order to obtain the variance of the estimated parameters β̂, I simply use Equa-

tion (B.10):

Var[β̂] = Var[(XTX)−1XTY] (B.11)

=
(
XTX

)−1
XT Var[Y]X

(
XTX

)−1
(B.12)

= σ2
(
XTX

)−1 (
XTX

) (
XTX

)−1
(B.13)

= σ2
(
XTX

)−1
. (B.14)

In Equation (B.12), I used the following matrix properties:

Var[AY] = A Var[Y]AT (B.15)

[(XTX)−1XT ]T = X(XTX)−1. (B.16)

In order to estimate the variance Var[Y] = σ2, I use the population variance s2 =

(Y −Xβ)T (Y −Xβ) (for the full derivation see Seber and Lee [120]):

σ2 ≈ s2

n− p
. (B.17)

I thus obtain the final expression

Var[β̂] ≈ s2

n− p
(
XTX

)−1
. (B.18)

I can follow a similar procedure to estimate the variance of the parameters of a non-

linear fit, by linearising the fitted function around the true value of the parameters θ∗

[117]:

f(x, θ) ≈ f(x, θ∗) +
p−1∑
i

∂f

∂θi

∣∣∣∣∣
x,θ∗

(θi − θ∗). (B.19)
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I can now rewrite equation (B.1) as a linear matrix equation:

Y ≈ f(θ∗) + Fβ + ε. (B.20)

where I have defined:

F = [Fi,j] =
 ∂fi
∂θj

∣∣∣∣∣
x,θ∗

 (B.21)

β = (θ − θ∗). (B.22)

F is known as the Jacobian matrix of f(x, θ). I can visualise Equation (B.20) as:



Y1 − f(x1, θ
∗)

Y2 − f(x2, θ
∗)

...

Yn − f(xn, θ∗)


=



F10 F11 F12 · · · F1,p−1

F20 F21 F22 · · · F2,p−1

... ... ... ... ...

Fn0 Fn1 Fn2 · · · Fn,p−1





(θ0 − θ∗0)

(θ1 − θ∗1)
...

(θp−1 − θ∗p−1)


+



ε1

ε2

...

εn


.

(B.23)

Defining Z ≡ Y − f(θ∗) I can rewrite: Equation (B.20) as

Z ≈ Fβ + ε. (B.24)

One sees that Equation (B.24) is identical to the linear case, and if θ̂ are the parameters

that best estimate θ∗ their variance is given by an expression similar to Equation (B.18):

Var(θ̂) = Var(β̂) = σ2(F̂T F̂)−1 (B.25)

σ2 = 1
n− p

εTε, (B.26)
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APPENDIX B. NON-LINEAR LEAST SQUARES FITTING

where I have defined

F̂ =
 ∂fi
∂θj

∣∣∣∣∣
x,θ̂

 (B.27)

β̂ = (θ − θ̂). (B.28)
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