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Abstract: Drawing on formal parallels between scalar diffraction theory and quantum me-

chanics, it is demonstrated that quantum wavefunction propagation requires a holographic

model of time. Measurable time manifests between interactions as a duration which is

encoded in the frequency domain. It is thus a unified entity, and attempts to subdivide

these intervals introduce oscillatory artifacts or spectral broadening, altering the system’s

physical characteristics. Analogous to spatial holograms, where information is distributed

across interference patterns, temporal intervals encode information as a discrete whole.

This framework challenges the concept of continuous time evolution, suggesting instead

that discrete trajectories define a frequency spectrum which holographically constructs

the associated time interval, giving rise to the experimentally observed energy spread of

particles in applications such as time-bin entanglement, ultra-fast light pulses, and the

temporal double slit. A generalized model of quantum wavefunction propagation based on

recursive Fourier transforms is discussed, and novel applications are proposed, including

starlight analysis and quantum cryptography.

Keywords: quantum wavefunction propagation; scalar diffraction theory; spectral theory;

quantum gravity; holographic spacetime intervals; non-locality; time–energy entanglement;

quantum measurement; single-photon generation

1. Introduction

Due to the similar origins of Schrödinger’s wave equation for wavefunction propa-

gation and the propagation of light waves in scalar diffraction theory (SDT), it has long

been understood that these two theories share a common formalism [1]. This common

heritage allows one to treat time and space in a similar fashion, due to the existence of

well-defined Fourier transforms and corresponding spectra for both spatial and temporal

signals. Therefore, quantum wavefunction propagation can be formulated as a recursive

Fourier transform (RFT) in both space and time, similar to the image formation process in

scalar diffraction theory [2].

Having established a RFT process at the foundation of wavefunction propagation, it is

immediately evident that propagation intervals cannot be subdivided without introducing

distinctive changes in the frequency domain. This observation arises from the time–energy

duality, where a temporal interval such as that corresponding to the propagation of an

optical signal through a fiber is encoded as a spectrum in the frequency domain. Such a

spectrum corresponds to an entire interval, and not any subdivision of the interval. In fact,

it is readily shown that any attempt to define a smaller sub-interval introduces spectral

artifacts which uniquely define the geometry of the perturbation. Spectrally, the whole

is not the sum of the parts. This is a hallmark of holographic systems, whose spatial

information is distributed across an entire region in the form of interference patterns,

leading to non-local visual artifacts when broken into pieces.
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Holographic time intervals have implications for both the foundations of quantum

mechanics and interpreting experimental results, as well as suggesting new experimental

setups. Holographic time intervals are “irreducible” or “indivisible” in the sense that if

one makes a measurement at an intermediate time, one obtains a fundamentally different

entity, such that the spectra of the partial segments that are generated do not sum to make

up the original whole. In other words, there is a spectral difference between traveling from

A → C on a path through B and actually traveling from A → B → C. Holographic time

intervals encode information as a whole, such that intermediate measurements alter the

spectral characteristics of the interval.

In the RFT model, the standard inclusion of time only as a continuous background

parameter is modified. On one hand, unitary time evolution is trivially preserved, be-

cause the Fourier transform relies on a continuous time variable. However, this aspect of

time evolution is inherently unmeasurable. Time in a measurable or experimental sense is

limited to time intervals, whose finite boundaries appear as oscillations in the frequency

domain. Such intervals of time are thus constructed by their frequency-domain components

and have ‘structure’. For instance, the structure of a time interval in a string of femtosecond

laser pulses is the standing wave pattern of the photon pulses. They are not uniform, not ar-

bitrarily shapeable, and not reducible to parts without changing their associated frequency

components. These qualities manifest in the energy spectrum of statistical ensembles of par-

ticles in a given experimental setup, as is already demonstrated in numerous experimental

results, including ultra-fast laser pulses [3,4] and temporal double-slit interference [5].

Because, similar to a hologram’s spatial information, temporal information is dis-

tributed across a region of time, a notion of quantization is implied. Yet, time is not

inherently quantized in the usual sense. Rather than thinking about time as a background

parameter, time intervals emerge out of the trajectories of particles between interactions.

The trajectory of a particle between interactions is inherently discrete, because the wave-

function propagation is due to the application of RFT, which is inherently a discrete process,

similar to SDT. It is in this sense that measurable time intervals emerge discretely out of

measurement interactions, and are thus discrete.

Holographic time refers to the concept that measurable time intervals are encoded as

unified entities in the frequency domain, similar to how holograms store spatial information.

Just as a hologram encodes the entire spatial structure of an object within an interference

pattern, a holographic time interval stores its temporal characteristics as a whole, distributed

across its spectral components. This encoding means that subdividing or measuring

intermediate points within the interval alters the entire spectral pattern, demonstrating

that the interval cannot be meaningfully reduced into independent parts. Consequently,

the evolution of a system is determined by the global-phase structure of the interval rather

than by continuous, local increments of time.

Time evolution has previously been studied in quantum mechanics in contexts similar

to space evolution, namely diffractive effects [6], interference effects, and entanglement [7].

Applications include femtosecond laser pulses, high harmonic generation [8], single-photon

generation [9], spontaneous parametric down conversion, photon arrival time, quantum

computing and quantum sensing [10–12], and solitons [13].

In Section 2, a theoretical foundation is established for the remainder of the paper.

In Section 3, the main argument is conveyed for the holographic nature of temporal

intervals, and illustrated through an example of time-bin measurements. In Section 4, two

novel predictions are made, and various well-known experimental setups are analyzed with

respect to holographic temporal intervals. In Section 5, the new approach is compared to

the standard quantum formalism, emphasizing their compatibility, and suggesting benefits

provided by the new model. Appendices are provided which outline the relationship of
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scalar diffraction theory and quantum wavefunction propagation, as well as the formal

mathematical basis used.

2. Background

2.1. Definitions and Notation

The following definitions and notational conventions are used throughout the paper.

• A time interval is irreducible if a subdivision of the interval introduces new frequency

components, such that the whole is not the sum of the parts.

• The Fourier transform of the wavefunction Ψ(t) in the frequency domain is denoted

by Ψ̃(ω).

• The sinc function is defined as:

sinc(ω) =
sin(ω)

ω
.

• The convolution theorem states that two functions multiplied together in one domain

can be rewritten as a convolution in the dual domain, e.g.,

{ã ∗ b̃}(ω) = F{a(τ)b(τ)}. (1)

• This relationship can also be expressed through consecutive use of the inverse and

forward Fourier transform:

{ã ∗ b̃}(ω f ) = F
τ→ω f

{

F−1

ω→τ

{

ã(ω)
}

F−1

ω→τ

{

b̃(ω)
}

}

. (2)

• In the above equations:

– The subscripts under the Fourier transform symbol F indicate the initial and final

domains of the transform.

– Symbols such as τ, ω, and ω̄ are continuous, unmeasurable dummy parameters

of integration.

– The measurable coordinate in the frequency spectrum is denoted by ω f , and the

measurable event duration is denoted by T.

2.2. Representing Time in the Frequency Domain

In this approach, there are two notions of time. The first is unitary time, which

advances continuously, allowing us to calculate how a system will evolve into the future.

However, unitary time is unmeasurable; it enters the theory as the parameter of integration

in the Fourier transform (or equivalently in the Schrödinger equation or the Feynman path

integral), and thus has no definite value. Put another way, because time does not exist

as an explicit variable in the frequency domain, and the Fourier transform is unitary and

preserves information, it (time) cannot evolve continuously. Yet, another way to see the

impossibility of continuous time in this model is that the spectrum of an instantaneous

signal is not well-defined.

Instead, what we can measure are discrete coordinates or durations, which are not

variables but constant data points which can readily be represented in the frequency

domain, where they encode the frequency of oscillation of the spectrum.

We can gain an intuition for the effect of subdividing a temporal interval by consid-

ering the impact of truncating a digital audio signal using a sharp cutoff in the frequency

domain. This truncation introduces oscillatory artifacts, analogous to the phenomena of

Gibbs ringing or spectral broadening, where an approximation of a function with a sharp
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transition exhibits ringing artifacts due to the truncation of its Fourier series or discrete

Fourier transform representation, respectively.

A similar effect appears in digital imaging. The two-dimensional Fourier spectrum of

an image encodes the rapidity of contrast variations over space. When certain digital filters

apply hard cutoffs in the frequency domain, they introduce oscillatory artifacts or ripples

in the image, more generally known as spectral leakage.

Similarly, it is proposed that, in quantum wavefunction propagation, subdividing a

temporal interval introduces oscillatory artifacts in the frequency domain, emphasizing the

coherence of the original interval.

Frequency space (parameterized by ω) plays a central role in this perspective, in that

the time evolution of a quantum system is governed by the phase structure of its frequencies,

rather than by explicit time parameters.

2.3. The Interaction of Signals

The close parallels between the formulation of quantum mechanics and scalar diffrac-

tion theory are reviewed in Appendix B. This equivalence can be readily seen (in one spatial

dimension) using the propagator formulation to translate a free-particle wavefunction.

Defining the propagator,

K(x′, x) = ⟨x′|ei p̂x|x⟩

=
∫

dk ⟨x′|ei p̂x|k⟩ ⟨k|x⟩ ,
(3)

where p̂ is the momentum operator, the updated wavefunction is

Ψ(x′) = ⟨x′|ei p̂x|Ψ⟩ =
∫

dx ⟨x′|ei p̂x|x⟩ ⟨x|Ψ⟩

=
∫

dx
∫

dk ⟨x′|ei p̂x|k⟩ ⟨k|x⟩ ⟨x|Ψ⟩

=
∫

dk eikx′ eiSk(k)
∫

dx e−ikxΨ(x)

= F−1
{

eiSk(k)F
{

Ψ(x)
}}

,

(4)

where Sk(k) is a phase. It is evident that space translation via Fourier transform is the result

of a phase factor being applied in k-space, which can also be written as convolution in the

x domain, h(x) ∗ Ψ(x), where h is the impulse response of the ‘system’,

h(x) = F−1{eiS(x)}

Equation (4) is referred to as a recursive Fourier transform (RFT).

Relatedly, in signal processing, the interaction of temporal signals in the physical

domain is accomplished by multiplication in the frequency domain, as described by the

convolution theorem. This relationship is expressed as

c(t) = b(t) ∗ a(t) = F−1{b̃(ω)ã(ω)}, (5)

Any interaction that alters the temporal properties of a signal can be represented as

multiplication in ω-space.

In an analogous manner, a filter represents a non-local interaction in ω-space, achieved

by multiplying two signals in t-space,

ã(ω) = F{ f (t)g(t)}, (6)
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This relationship reflects the dual nature of convolution and multiplication: an op-

eration in one domain has a complementary effect in the other. For example, f (t) could

represent a carrier signal, and g(t) a modulation function applied to the signal. The re-

sulting product in t-space (amplitude modulation) corresponds to a convolution of their

spectra in ω-space.

Combining Equations (5) and (6), a general interaction involves simultaneous effects

in both t- and ω-spaces, reflecting the symmetry of Fourier duality,

c(t) = F−1
{

b̃(ω)F{ f (t)g(t)}
}

. (7)

Shifts in one domain correspond to phase changes in the dual domain, encapsulating

the interplay between time and frequency.

Using these relationships, we can evolve the initial spectrum Ψ̃0(ω) to a new time

τ = T using the time-dependent Schrodinger equation, written in the following form:

Ψ̃(ω f ) =
1

ih̄

∫ T

0
dτV(τ)

∫ ∞

−∞
dω eiω f τe−iωτΨ̃0(ω), (8)

where the initial state Ψ̃0(ω) could be, for instance, a Gaussian.

3. Subdividing Temporal Intervals

We now derive the main result. Consider the evolution of the energy eigenstates of a

particle under a small perturbing potential. Starting with Equation (8), we use the following

method to evaluate the expression:

• Rearrange factors such that the summation symbol or integral sign is as far as possible

to the right;

• Remove the limits of integration so the temporal integral becomes a Fourier transform;

• Insert a masking function, rect(t) (here, rect(t) is the rectangular function, defined as 1

for |t| < 0.5 and 0 otherwise. Subtracting the fraction 1/2 from its argument moves

its left edge to the origin, for convenience), so the integral is exact even under the

extension of limits.

The new expression is

Ψ̃(ω f ) =
1

ih̄

∫ ∞

−∞
dωΨ̃(ω)

∫ ∞

−∞
dτeiω f τV(τ)rect

(

τ

T
− 1

2

)

e−iωτ . (9)

Next, the Fourier transform can be evaluated exactly, using the convolution as in

Equation (2),

Ψ̃(ω f ) =
1

ih̄

∫ ∞

−∞
dωΨ̃0(ω) F

τ→ω′

{

F−1

ω̄→τ

{

T exp (i(ω̄ − ω)T/2)sinc((ω̄ − ω)T/2)
}

F−1

ω̄→τ

{

Ṽ(ω̄)
}

}∣

∣

∣

∣

∣

ω′=ω f

=
1

2πih̄

∫ ∞

−∞
dωΨ̃0(ω)

(

G0(ω
′ − ω) ∗ Ṽ(ω′)

)∣

∣

∣

ω′=ω f

,

(10)

where

G0(ω) ≡ TeiωT/2sinc(ωT/2), (11)

is the Fourier transform of the rect function, known as the transfer function.

Here, we started with a photon in the state Ψ̃0(ω) parameterized by the initial fre-

quency variable, ω. We then reverse engineered the integrand of the time integral of the

TDSE into the frequency domain parameterized by ω̄, transformed it into a convolution
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parameterized by ω′ using the convolution theorem, evaluated that distribution at the

measurable value ω′ = ω f , and finally integrated over the initial states (ω), which amounts

to a convolution over that variable. This process is described in [14].

In Equation (10), the integral over ω is recognized as a convolution, so in the case that

the potential is time independent and the initial state is a single-frequency ω0, we obtain

the result

Ψ̃(ω f ) ∝ δ(ω f − ω0) ∗ G(ω f )

∝ G(ω f − ω0),
(12)

which tells us how each individual frequency component is spread.

We now divide the time integral in the equation into two unequal segments of 1/3

and 2/3 in duration, respectively. Due to the nature of the Fourier transform and Multiplier

Operator Theory, evaluating the time integral over contiguous segments is not the same as

a single unbroken interval.

Ψ̃(ω f ) =
1

ih̄

∫ ∞

−∞
dωΨ̃0(ω)

∫ T/3

0
dτeiω f τe−iω̄τV(τ)

+
1

ih̄

∫ ∞

−∞
dωΨ̃0(ω)

∫ T

T/3
dτeiω f τe−iω̄τV(τ)

=
1

2πih̄

∫ ∞

−∞
dωΨ̃0(ω)

(

G3(ω
′ − ω) ∗ Ṽ(ω′)

)∣

∣

∣

ω′=ω f

(13)

where

G3(ω) =
T

3
eiωT/6sinc(ωT/6) +

2T

3
ei2ωT/6sinc(2ωT/6). (14)

Equation (14) should be compared to Equation (11). The oscillating integrands G0(ω)

and G3(ω) are plotted in Figure 1.

The result of decomposing or ‘reducing’ the whole interval from 0 to T to two intervals

of unequal duration is to introduce oscillations in the spectrum. This represents a measur-

able distinction in the spectrum associated with the path A → C (on a timeline where B

is implicit but not written) compared to the path A → B → C, where B is a boundary of

the integration. Interestingly, we have said nothing of the cause of the segmentation or the

nature of physical measurement. All we have done is identified potential subsections of a

region. Apparently, the very act of identifying or defining such a subdivision affects the

spectrum of the particle.

These two cases (subdivided or not subdivided) can be distinguished from each other

by their spectral fingerprint. Except for a special case noted below, one can determine

whether (and when) any sort of disturbance has happened along the journey of duration T

by checking if these extra oscillations exist in the spectrum of the detected photons.

The introduction of additional frequency components when subdividing a temporal

interval can be understood through Multiplier Operator Theory, where the application of

rectangular functions to define sub-intervals acts as sinc filters in the frequency domain,

generating new frequency components. According to the Mikhlin Multiplier Theorem, such

multipliers in the frequency domain can be minimized with the use of smooth windowing

filters, but in any case the spectra of the subdivided intervals will be modified by the

windowing [15].
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Figure 1. Spectrafor a single interval of duration T (left) compared to that for the same inter-

val divided into 1/3 (blue) and 2/3 (orange) segments (right). The spectra are calculated using

Equations (10) and (13).

Gaussian windows could be employed to experimentally minimize the spectral signa-

tures of subdivision, to test whether these results are fundamental or methodology dependent.

Note that in the special case that one divides the temporal interval exactly in half,

the spectrum is unaltered.

Ψ̃(ω f ) =
1

ih̄

∫ ∞

−∞
dωΨ̃0(ω)

∫ T/2

0
dτeiω f τe−iωτV(τ)

+
1

ih̄

∫ ∞

−∞
dωΨ̃0(ω)

∫ T

T/2
dτeiω f τe−iωτV(τ)

=
1

ih̄

∫ ∞

−∞
dωΨ̃0(ω)

([

eiω′T/4 + ei3ω′T/4
]

sinc(ω′T/4) ∗ Ṽ(ω′ − ω)
)∣

∣

∣

ω′=ω f

=
1

ih̄

∫ ∞

−∞
dωΨ̃0(ω)

(

TeiωT/2sinc(ωT/2) ∗ Ṽ(ω′)
)∣

∣

∣

ω′=ω f

,

(15)

where a trigonometric identity was used in the last step. This expression matches the result

for the undivided interval in Equation (10). We can therefore subdivide an interval exactly

in half and have no effect on the spectrum.

Demonstrating Holographic Time in a Time-Entangled State

To demonstrate this empirically, we can arrange to subdivide a time interval through

the use of time bins. In the initial configuration, we create one sole time bin, of duration T.

This represents a temporal interval of travel for a photon. In a secondary configuration we

create two consecutive time bins of the same total duration. All the time bins are represented

by rect functions in time. We can readily show that the latter condition generates extra

spectral oscillations, distinguishing it from the initial configuration. The only difference

between these two cases is our ability to distinguish between early arrival and late arrival

within that window.

In a typical time–energy entanglement experiment, two identical photons (signal and

idler) are generated from a single higher-energy photon through the process of spontaneous

parametric down conversion (SPDC). The photons are correlated, in that they share a

common joint spectral amplitude (JSA), φ(ωs, ωi).

Let’s examine the frequency space wavefunction for the two distinct cases. The

time bins will define the basis functions for our representation of the frequency space

wavefunction. Using the standard process, we project the JSA onto the time bins in order to
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determine the coefficients, ck. Once those are known, the momentum space wavefunction

is calculated as,

Ψ̃(ωs, ωi) = ∑
k,m

ck,m√
∆tk∆tm

ei(ωs(tk+∆tk/2)+ωi(tm+∆tm/2)) sin(ωs∆tk/2)

ωs/2

sin(ωi∆tm/2)

ωi/2
.

In the initial configuration, with k = m = 0 we have a single bin of duration ∆t0 = T

which begins at t0 = 0, so the expression above simplifies to,

Ψ̃(ωs, ωi) = c0,0Tei(ωs+ωi)T/2sinc(ωsT/2)sinc(ωiT/2). (16)

Compare this with Equations (10) and (11) for the single-photon case.

The spectral distribution of the signal and idler photons is a simple sinusoid with a

period of oscillation 2/T, decaying away from the origin. This can be measured by counting

the number of photons detected at each frequency.

In the second case, we define the early bin from t = 0 → T/3 and the late bin from

t = T/3 → T, so that ∆t0 = T/3 and ∆t1 = 2T/3. Now, there are four combinations

for either of the two photons to arrive in either of two time bins. The momentum space

wavefunction becomes

Ψ̃(ωs, ωi) = c0,0
T

3
e−i(ωs+ωi)T/6sinc(ωsT/6)sinc(ωiT/6)

+ c0,1

√
2T

3
e−i(ωs+4ωi)T/6sinc(ωsT/6)sinc(ωiT/3)

+ c1,0

√
2T

3
e−i(4ωs+ωi)T/6sinc(ωsT/3)sinc(ωiT/6)

+ c1,1
2T

3
e−i4(ωs+ωi)T/6sinc(ωsT/3)sinc(ωiT/3)

(17)

where factors of the form
√

∆tk are included to normalize each sinc function.

Equation (17) is the extension of Equation (10) to the case of two entangled particles.

Comparing Equations (16) and (17), we see that the consequence of dividing the interval

into parts is to remove the fundamental oscillation at T/2 and introduce harmonics at T/6

and 2T/6 in the spectral domain.

By expressing quantum wavefunction propagation in terms of the Fourier transform,

we leverage our understanding of dual spaces, namely that the spectrum changes when the

domain of integration changes. Because the physical principles of quantum wavefunction

propagation can be derived from the physics of these dual spaces, subdividing the inte-

gration domain has a physical effect, and thus the time bin intervals should be considered

irreducible or holographic.

4. Holographic Time Intervals in Experiment

The usage of RFT for wavefunction propagation is consistent with existing exper-

imental results. For instance, time-dependent potentials lead to the application of the

Schrödinger equation to second order using the RFT methodology. However, we begin

with two novel predictions based upon time-independent scenarios predicted by the holo-

graphic time interval hypothesis.

4.1. Novel Results

4.1.1. Measuring Stellar Distances Using Spectral Oscillations

A novel method is proposed for determining the distance of astronomical objects by

identifying specific spectral oscillations introduced by the finite duration of light propaga-
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tion. Unlike standard redshift and parallax techniques, this method exploits the holographic

nature of temporal intervals according to Equation (10).

When photons travel from a distant star to Earth, the finite propagation time acts as a

temporal boundary condition, modifying the frequency spectrum of the arriving photons.

According to the holographic time hypothesis, this boundary condition encodes itself in

the spectral domain as oscillatory sidebands spaced at intervals inversely proportional to

the travel time.

For a given incoming frequency (e.g., one of the spectral lines of hydrogen), we write

the initial state as Ψ̃(ω) = δ(ω − ω0), and the Fourier transformed potential in the time-

independent case is Ṽ(ω) = δ(ω), resulting in Equation (12). The sinc function has maxima

spaced at ±π, or

∆ f =
1

T

where T is the travel time, so the principal spectral sidebands should be found at

f1 = f0 ±
1

T
.

For Proxima Centauri, our nearest stellar neighbor at approximately 4.24 light years

(1.34 × 108 s), the predicted spectral-oscillation spacing is approximately

∆ f ≈ 7.5 × 10−9 Hz,

a very small variation. To detect this, a frequency comb can be employed. The maximum

fractional variation will occur if we minimize the carrier frequency. A good candidate in the

hydrogen spectrum is the 21 cm radio frequency line (1.4× 109 Hz). Current technology can

resolve frequency differences on the order of 10−18 Hz (fractional resolution) [16], leading

to an overall resolution at the given carrier frequency of

∼ 10−18 × 109 Hz = 10−9 Hz,

so our current technology is capable of measuring the predicted spectral lobes. Assuming

advances in technology in the near future, this method has the potential to be used over

greater distances.

The measurement procedure is outlined as follows. Begin by capturing high-resolution

spectra using an ultra-stable spectrograph equipped with an optical frequency comb which

spans the carrier frequency of the starlight. The predicted side bands will generate a beat

frequency with the frequency comb, on the order of nanohertz, which can be measured

with standard electronics. The travel time between the star and the telescope can then be

calculated using the inverse of the sideband spacing.

The procedure can be calibrated using laboratory light sources, which will display

a broader spacing of the spectrum due to the very short laboratory optical travel time.

Once starlight data are obtained, these can be compared with stars of known distances

obtained through parallax to establish empirical correlations. For instance, Procyon’s

starlight travels 11.5 years to reach Earth, corresponding to a primary sideband spacing of

∆ f ≈ 2.8 × 10−9 Hz. Corrections will need to be made for potential confounding factors

such as interstellar medium dispersion and gravitational redshift.

Successful detection of spectral sidebands would provide direct empirical evidence

supporting the concept of holographic time intervals, and could enable precise distance

measurements of distant astronomical objects without reliance on standard candles or

parallax. If dramatic increases in resolution capabilities are made, this procedure could

potentially extend distance measurements to galaxies and quasars and provide a means to
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verify the distance results obtained through the Doppler shift method, as well as provide

an independent method for verifying Hubble’s law.

4.1.2. Quantum Eavesdropping

In this theory, the entire spacetime path contributes to the observed spectrum, meaning

the spectral artifacts reflect the shape of the whole trajectory in space and time. This includes

any perturbations along its history, which would leave a distinctive spectral trace unique

to the time at which the perturbation happened. Analyzing the spectrum could allow one

to detect tampering by a third party (Eve) of a quantum signal (between Alice and Bob).

This fundamentally differs from the traditional approach by emphasizing the role

of spacetime geometry in preserving and altering information, offering a direct way to

detect eavesdroppers in a quantum channel. For instance, the spectrum in Equation (10)

corresponds to a perturbation of the signal by an external system at a particular time T/3

along its path. The new method does not apply to individual photons whose quantum

properties are disrupted due to the uncertainty principle, as is commonly done in discrete

variable quantum computing; rather, the detection of eavesdropping depends upon the

continuous spectrum of a collection of photons, similar to continuous variable quantum

computing systems.

Experimental validation for this effect is significantly more feasible than for the astro-

nomical case, as the much shorter path lengths involved in quantum optical setups result

in substantially greater spectral spreads. Detecting spectral artifacts from intermediate

interactions should be well within the capabilities of existing high-resolution spectroscopy

and quantum optics instrumentation.

To illustrate a possible setup, a laser with a common telecom wavelength can be used,

say 1550 nm. The light is channeled into a spool of single-mode optical fiber, approximately

ten kilometers long, to simulate realistic transmission conditions in the lab. Before entering

the fiber, the light is sampled and sent to an optical spectrum analyzer (OSA) to record

its baseline spectrum, which should display a sharp, narrow peak centered at the laser’s

central frequency with minimal noise or sidebands. After passing through the fiber, the

output light is sent to a second OSA to record the spectrum again for comparison.

To investigate how disturbances affect the spectral signature, controlled interference

can be introduced at a midpoint along the fiber, such as gentle bends, pressure points,

or the insertion of a weak optical coupler to simulate eavesdropping. The expectation is

that these disturbances will alter the overall frequency content of the light according to

Equation (10), producing small but measurable deviations in the spectrum.

By comparing the “before” and “after” spectra, the experiment aims to identify

whether the holistic spacetime behavior of the continuous light stream creates a stable

spectral fingerprint that reveals disturbances. The predicted results of this experiment

could be explained through traditional ideas of resonance, where the frequency spectrum

pattern is a standing wave due to back and forth reflections along the length of the channel.

However, in the previous case when measuring starlight, it is clear that such a resonance

model is not valid, since the light travels for interstellar distances and is not reflecting

off the endpoints. Even without the classical resonant models of waves reflecting and

interfering in a cavity, one still finds patterns of interference and spectral shifts due to the

geometry of the path as a whole.

However, a key experimental challenge will be distinguishing genuine spectral arti-

facts from noise due to fiber imperfections. Random defects in an optical fiber waveguide

can lead to intrinsic or extrinsic perturbations (e.g., optical fiber defects or microscopic

bends, which collectively alter the refractive index profile and manifest as spectral arti-

facts) [17].
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4.2. Confirmation of Existing Experimental Results

4.2.1. Temporal Modulation of Ultra-Fast Laser Pulses

In recent decades, the creation of chains of very short light pulses has become possible

through high harmonic generation in the frequency domain [3]. Attosecond light pulses

provide a very short-scale application of time’s holographic nature.

It is interesting to think of a train of discrete attosecond pulses instead as a single

entity with a temporal structure defined in the frequency domain. In our usual conception,

a series of events are considered distinct and causal, i.e., the past pulses can affect the future

pulses, but not the reverse. But, in this case, a series of pulses of extremely short duration

in the time domain are generated from a comb in the frequency domain. The temporal

characteristics are encoded as a whole within the phase structure of the frequency spectrum,

set up more like a standing wave than a series of individual events. One can stretch the

definition of the present moment to include a series of events, separated in time and yet

occurring, in some sense, during the same moment.

In the process of high-harmonic generation (HHG), multiple harmonics are combined

to produce ultra-short pulses. The exact pulse shape is determined by Fourier synthesis

and is not a freely adjustable time-localized event, due to the structural constraints imposed

by the time–frequency duality. The pulse chain is constructed as a whole, so, in a sense,

the individual pulses are not separate objects. This is what is meant by holographic time.

One could ask why new methods are necessary given that the current methods ade-

quately describe ultra-fast laser pulses. However, current methods do not allow for precise

mapping of the temporal shape of the pulse. They rely on electron streaking and phase

retrieval interferometry to infer the shape of the temporal envelope rather than directly

measure it. Additionally, we do not have precise control over all aspects of amplitude and

phase of the harmonics. Hence, the ability to craft precise shapes in the time domain and to

confirm their accuracy is limited.

Attosecond pulses provide a nice illustration of the holographic structure of time

intervals because their short duration maximizes the spectral broadening predicted by

the theory. One uses the theory essentially in reverse to generate a laser pulse whose

properties extend over a finite duration of time from the necessary spectral components

which correlate to the desired shape of the pulse.

In this approach, time intervals are not defined as continuously adjustable parameters

that can be arbitrarily shaped with continuous precision, but must be shaped as an entire

interval via the harmonic spectrum.

4.2.2. Temporal Double Slit

The theory distinguishes between a single contiguous spacetime interval and subdi-

vided intervals. In the temporal domain, this can be tested by splitting a photon’s temporal

path into two discrete segments. Following Lindner, et al. [5], two high-probability ioniza-

tion windows are created within a single laser pulse by subjecting argon gas to femtosecond

laser fields. Ionization of the argon atoms is allowed to occur within precisely two short time

windows, separated by a brief duration where ionization is certain not to occur. The two

time windows act as a double slit in time, producing fringes in the energy spectrum of the

ejected electrons.

One can potentially modify the experiment by introducing a controlled disturbance

to the photons prior to ionization (e.g., a weak laser pulse), which is predicted to have

the effect of localizing the photons at a point partway along their path before ejecting the

electrons. The distribution of kinetic energies for ejected electrons will exhibit the predicted

spectral oscillations.
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4.2.3. Bardeen Tunneling

A second-order prediction for electron tunneling through a voltage-biased junction

can be made which builds upon Bardeen’s first-order approximation. By expressing the

TDSE in terms of RFT we capture higher-order effects [14]. A multi-lobed energy spectrum

emerges, valid for short time intervals. The nested integrals of the TDSE are a clue to the

non-instantaneous nature of second-order tunneling processes. Physically, this implies that

electrons traversing the barrier exhibit transient energy fluctuations influenced by interme-

diate virtual states before reaching the final energy level. The RFT method expresses the

resulting spectrum in terms of layered subspectra. This is, again, a hallmark of holographic

systems which are constructed through gradual, non-local refinement, rather than point by

point. By analyzing the spectral lobes, experimental techniques such as scanning tunneling

microscopy (STM) and time-resolved photoemission spectroscopy could provide direct

evidence of second-order tunneling dynamics, validating the predictive power of this

approach and extending the applicability of Bardeen’s theory to more complex quantum

systems. Further second-order effects for four-wave mixing and optical experiments using

the joint spectral amplitude are discussed in [14].

4.2.4. HOM Effect

In the HOM effect, two indistinguishable photons are arranged to interfere such that,

when the arrival time of the photons match, both photons exit the interferometer through

the same output port, reducing the coincidence detection rate between the output ports.

The coherence is measured in the so-called “HOM dip”, which depends on simultaneous

arrival times of the photons with matching spectral characteristics.

Because of the dependency on arrival time, the HOM effect could be a useful way to

confirm the relationship between the spectrum of a photon and the temporal subdivisions

along its path. Since the temporal characteristics of the photons are encoded in their spectral

phases, these phases can be measured by tracking the photon arrival time through the

HOM dip [18].

Introducing spectral artifacts by subdividing the path of the incoming photons would

result in variations of the time of arrival of the photons. The timing could be precisely

correlated to the HOM dip in coincidence counts. Quantum-computing logic gates typically

use the HOM dip as criteria turn on and off, so precise control of the arrival time of photons

is crucial [10]. This theory predicts that the spectral envelope of a photon can be shaped

through deliberate perturbations along its duration of flight.

4.2.5. Testing the Relationship Between Time and Frequency Domains

In this theory, the relationship between time and frequency domains is leveraged as

a foundation for quantum dynamics. For instance, changes to the spectrum of laser light

in an appropriate medium can generate a chain of laser pulses (mode-locked lasers) or an

organized series of higher-frequency modes (high harmonic generation). Given that a finite

spectrum corresponds to a non-instantaneous temporal interval, how do such changes

in the spectrum translate to changes in the temporal domain? Is this relationship causal,

in the sense that the beginning of the interval happens first? Is the temporal form a direct

and instantaneous manifestation of the spectral changes? Do laser-pulse chains arise or

disintegrate as a group or individually?

The emergence of standing wave patterns in a medium is generally thought of as a

causal process, arising from the interference between waves emitted over a span of time

and reflecting off the boundaries of the medium. Using the theory presented here, one

could more carefully investigate the detailed process of formation or disintegration of a

chain of pulses, or the lasing process within a laser when it is first turned on or turned off.
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5. Discussion

5.1. The Role of Phase

An important aim of this analysis is to highlight the importance of the frequency

domain spectrum—and particularly phase information—in temporal translation for both

quantum wavefunction propagation (QWP) and scalar diffraction theory (SDT). While

phase information is often ignored in signal processing (e.g., due to the limitations of

photographic film or the focus on spectral magnitude), it plays a critical role in interference

effects and system dynamics.

In Fourier analysis, phase information in k-space encodes spatial information in x-

space. This insight motivates a 3 + 1D formulation of quantum wavefunction propagation,

where the same properties apply to space and to time. For example, an auditory tone can be

shifted in time by t0 via the transformation f̃ (ω) → exp (iωt0) f̃ (ω), and similarly, a spatial

feature in a digital image can be shifted by ∆x via f (k) → exp (−ik∆x) f (k).

Modeling quantum dynamics after scalar diffraction theory provides a framework

for symmetry between space and time, where the phase structure governs evolution.

This approach reinforces the view of spacetime as fundamentally spectral, with phase

information central to understanding quantum interactions and coherence.

5.2. Quantum Evolution in 3 + 1 Dimensions

It is common in formulations of dynamics to treat dynamical variables such as displace-

ment, velocity, or acceleration as dependent variables, parameterized by an unconstrained

time parameter. Yet, even in the non-relativistic quantum formalism, a more sophisticated

notion of time exists, namely in the distinction between parameters and coordinate inter-

vals. Parameters, such as x and k, or t and ω, are unmeasurable dummy variables used in

Fourier integrations to convert between dual domains. In contrast, coordinates x(i) and

t(i) represent measurable intervals in space and time, while k(i) and ω(i) correspond to

distinct jumps in momentum states or energy levels. This distinction clarifies the static yet

dynamically encoded nature of 3 + 1 D distributions in kµ-space proposed here.

For example, a Fourier transform integrates out explicit time dependency, leaving a

static ω distribution that cannot evolve in time but encodes dynamical information through

its phase structure. This is analogous to a hologram, where 2D interference patterns encode

3D coordinates. Because the frequency domain does not contain a continuous-time variable,

and the Fourier transform is unitary so it preserves information; in the RFT framework,

continuous time cannot exist in either domain. Motion is represented as discrete updates in

coordinate intervals during interactions, rather than continuous evolution, highlighting the

encoded dynamical constraints within frequency space.

It was shown in Section 2.3 that the propagator can be represented as a discrete

forward and inverse Fourier transform. Therefore, any propagation is carried out over

finite, rather than infinitesimal distances and durations. Points in time or space in between

the starting point and ending point of integration of the propagator are not individually

defined. Distinguishing between parameters (of integration) which vary smoothly over the

interval and the coordinates at the endpoints of the interval is a natural consequence of

this approach. The latter are measurable and distinctly defined, whereas the former are not.

This distinction is part of the standard theory of quantum mechanics, and emphasized in

the RFT theory.

If we accept that the geometry of spacetime intervals and their spectra can be used to

track dynamical interactions, and that expressions of the form Equation (4) (a propagator)

can be applied to interactions in both space and time, we must conclude that intervals

of space and time are discrete and holographic. The resulting description is symmetric
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in these variables, providing a possible connection between the quantum formalism and

special relativity.

5.3. Comparison to the Standard Quantum-Mechanics Formalism

The approach presented here distinguishes between unitary time, as an unmeasurable

continuous parameter used in theoretical formulations, and discrete time, as a measurable

interaction-defined coordinate interval. Unitary time exists only as an abstract, unmea-

surable parameter, while measurable time consists of discrete intervals determined by

interactions. The word ‘time’ itself will be typically reserved for the latter measurable

interactions. Instead of treating time as a continuously evolving background parameter, this

model views it as an emergent feature of discrete interactions. This aligns with some aspects

of relational quantum mechanics, quantum gravity, and event-based models, but challenges

standard interpretations of the Schrödinger equation and quantum field theory.

5.3.1. Relationship to the Time-Evolution Postulate (the Schrödinger Equation)

In standard quantum mechanics, time evolution is governed by the Schrödinger

equation, which assumes a continuous-time parameter.

Standard QM Postulate 1. The change in the state of a closed quantum system from t0 to t1 is

described by the Schrödinger equation, i.e., the unitary transformation:

|ψt1
⟩ = Û |ψt0⟩

The form of the unitary operator Û follows directly from the Schrödinger equation,

and depends only on the underlying Hamiltonian and the times t0 and t1.

In the model presented here, the same time parameter exists and the Schrödinger

equation is unmodified, but it does not represent physical reality directly. Only discrete

interaction-based time intervals are physically meaningful and measurable.

It was shown in [2], and summarized in Appendix C, that two new postulates (i.e.,

a 3 + 1 dimensional wave distribution governed by RFT evolution) can reproduce the

Feynman path-integral formulation and the Schrödinger equation. Specifically, in the

Schrödinger equation one integrates between two distinct measurable times, thereby defin-

ing a definite interval. In the (more general) RFT process, the time integration is treated

as an indefinite integral (the transform) using a continuous dummy variable, while the

limits of integration become values inside the integrand. Thus, there is both a calculational

and an interpretational difference which does not invalidate, but can make more precise,

the predictions of standard quantum mechanics via the Schrödinger equation.

For instance, in [14], a method for obtaining second-order corrections to the TDSE

was presented using the RFT approach. Furthermore, the prediction made here of spectral

signatures to starlight based on duration of travel is a unique prediction of this theory,

showing where the paraxial approximation of the Schrödinger equation falls short.

To be clear, unitary time evolution is preserved in this model, since the Fourier trans-

form uses a continuous-time parameter to transform between configuration space and

the frequency domain. The Schrödinger equation, Heisenberg picture, and path-integral

formulation all rely on unitary time evolution as a mathematical tool, and this is not altered

in the present approach. Therefore, experimental setups that use precise continuous con-

trol parameters (e.g., ultra-fast laser experiments, Bose–Einstein condensates, or quantum

tunneling experiments) still function exactly as expected. Such experiments do not directly

measure a continuously evolving time; instead, they measure discrete interaction events

(such as photon arrivals, transitions between quantum states, or interference patterns).

Continuous evolution, while a useful concept, is ‘hidden’ from the experimenter.
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For instance, in ultra-fast laser dynamics, pulse shaping and evolution are described

by a continuous-time parameter, but photon detection times (from which we infer the pulse

shape and spectrum) are discrete [19]. Similarly, the trajectory of a tunneling particle is dis-

crete, but unitary calculations leading to the tunneling probability remain unchanged [20].

In Bose–Einstein condensates, condensate fraction measurements, phase coherence,

or quantum state transitions are observed discretely, while the probabilities of each result

are described through continuous-time evolution via the Gross–Pitaevskii equation [21].

In short, there is a measurable spectral signature associated with this model, in some

cases validating previous predictions and in other cases generating new ones. Because tra-

jectories are based upon spectral representations of temporal intervals, the frequency

statistics of particles exiting a quantum device will have components dispersed above and

below the central frequency in a predictable pattern dependent on the duration of the path.

In this model, it is not correct to think of time as an external parameter, nor as a

background field that is quantized. Rather, trajectories themselves are quantized (as

is evident from their description as RFT) and discrete time intervals emerge out of the

description of specific trajectories.

5.3.2. Connection to the Measurement Postulate and the Born Rule

Holographic time intervals and the Fourier transform model of evolution are consistent

with the standard measurement formalism. In quantum mechanics, it is already understood

that there are two distinct notions of evolution, one unitary and the other discrete (Von

Neumann’s processes 2 and 1, respectively). The unclear relationship between these is the

foundation of the quantum measurement problem or ‘collapse of the wave function’.

Process 2 was described in the previous section (i.e., the Schrödinger equation). Process

1 was formalized by Dirac and Von Neumann [22], called the projection postulate:

Standard QM Postulate 2. Consider a quantum system S whose pure states belong to a Hilbert

space H, and an observable A represented by a self-adjoint operator Â on H which has a discrete

spectrum. If A is measured when S is in a pure state |ψ⟩ and the value α is found, then, after the

measurement, S is in the pure state Πα|ψ⟩, where Πα is the operator on H of orthogonal projection

onto the subspace of eigenstates of Â with eigenvalue α.

The result is a discrete transition from the previously measured state which has been

spread into an array of eigenstates of a measurement operator, then evolved unitarily

in time (though ‘hidden’), before being truncated to a single state, resulting in a finite

time interval.

Sudbery explains, “From the earliest adumbrations of quantum theory by Bohr and

Heisenberg, it was recognised that a central feature of the theory was that observation had

an inescapable effect on a physical system; after Schrödinger’s formulation of the theory in

terms of wavefunctions, this came to be known as the ‘collapse of the wave function’ ” [22].

The model presented here perhaps more clearly delineates these two concepts, as they

appear naturally in a single theory as continuous parameters (non-measurable unitary

Fourier integration dummy variables) and discrete coordinates (measurable values which

appear as frequencies in the dual domain). The introduction of probabilities with the Born

rule already implies a non-continuous structure in practical observations.

Thus, the approach presented here is consistent with the traditional model of Von

Neumann evolution and its probabilistic interpretation, and in fact may provide an expla-

nation for the source of these principles; namely, Fourier space duality, which is central to

both approaches.
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5.3.3. The Born Rule

The relationship between the 3 + 1 dimensional distribution made possible by the

RFT model (see Section 5.2) and the probabilistic interpretation of the standard quantum

mechanical wavefunction (i.e., the Born rule) is briefly examined in [2] in relationship to the

Parseval–Plancheral theorem. Through this theorem, the squared norm of the distribution

in the time domain is equal to the squared norm of the dual distribution in the frequency

domain (because the Fourier transform is unitary), reinforcing that either distribution may

be interpreted as a normalizable probability distribution.

Horwitz examines this relationship in the context of quantum gravity, discussed

briefly in Section 5.4 [23]. The author shows that the probabilistic interpretation of the

wavefunction (i.e., the Born rule) emerges naturally from the Fourier transform’s role in

preserving norms between position and momentum spaces.

5.3.4. A Multi-Block Universe

From special relativity, one has the model of a block universe in which spacetime

trajectories are laid out as a whole, and time evolution is seen as the unfolding of a

predetermined trajectory through spacetime. A multi-block universe extends this concept

to accommodate branching of the wavefunction due to measurement interactions, a concept

resulting from the superposition principle of quantum mechanics.

In a multi-block universe, segments of evolution are defined by a single-block universe

description, consistent with special relativity. However, such evolution is punctuated by

the splitting of 3 + 1 dimensional spacetime trajectories into mutually exclusive branches.

This is the standard measurement problem in the context of a multi-block universe, and is

naturally resolved into a single measurement result in the usual way using one’s preferred

collapse mechanism in quantum mechanics.

A multi-block universe is essential to the model proposed here, as it allows multiple

trajectories defined in the frequency domain to evolve simultaneously while also accommo-

dating free choices by an outside experimenter. The difference between a whole trajectory

(e.g., from Sun to Earth) and a broken trajectory (e.g., from Sun to satellite to Earth) is

described by distinct frequency domain phase distributions within distinct blocks.

In this model, the multi-block universe concept extends the standard block universe

by allowing distinct frequency-domain trajectories to evolve simultaneously. Each ‘block’

represents a discrete time interval encoded as a holographic whole, with subdivisions

corresponding to separate frequency patterns. Measurement interactions cause branching,

where each branch maintains its own spectral signature. This approach aligns with the non-

local and discrete nature of holographic time intervals, while preserving the deterministic

structure of spacetime within each block. Consequently, the model offers a potential frame-

work for integrating quantum measurements with relativistic spacetime, without relying

on continuous time evolution.

5.4. Consistency with General Relativity and Theories of Quantum Gravity

The notion of holographic time intervals presented here shows promising compatibility

with the theory of general relativity, which rejects the notion of a global clock. In general

relativity, measurements of time intervals are relative to the observer, and are therefore

defined by interactions, similar to the proposal put forward here. A number of existing

theories of quantum gravity will be briefly compared to the current proposal.

As discussed in Section 5.3.3, Horwitz ensures covariance in curved spacetime by

redefining the Fourier transform, the scalar product, and momentum operator to include

the metric tensor gµν(x) and applying these to the Parseval–Plancherel theorem [23]. By

incorporating the measure
√

g(x) d4x and modifying the momentum operator to remain
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self-adjoint, the quantum probability interpretation via the Born rule becomes consistent

with local diffeomorphisms. It is therefore promising that the theory presented here,

grounded in similar mathematics, may be a candidate for a theory of quantum gravity.

In causal set theory (CST), time emerges as the causal ordering of events, and again

global time is rejected. In the theory put forward here, reducing a single time interval to a

sequence of multiple shorter segments implies a causal relationship between the segments.

Instead of a continuous background parameter, the coordinates of successive interactions

(which show up as frequencies in the dual space) stitch together the segments in a causal

chain, marking the end of one segment and the beginning of the next.

In AdS/CFT holography, gravitational effects and spacetime itself are encoded into

the boundary of anti-deSitter space, emerging as particle interactions in a conformal field

theory in fewer dimensions. Some parallels might be drawn to the implicit encoding of

spacetime trajectories in the frequency domain, as prescribed here.

It should be recalled also that in an actual holographic picture, the coordinates of

features in space correspond to frequencies in the holographic interference pattern. Thus,

the theory on which holographic spacetime intervals is based is fundamentally holographic,

maybe more so than AdS/CFT, which simply borrows the notion of ‘encoding on the

boundary’ as an analog, not a direct description.

In the theory of loop quantum gravity, geometrical entities like area and volume are

associated with operators that define spectra, with some potential similarity to the new

theory in which the temporal interval of a trajectory corresponds to a unique spectrum,

leading to the notion of discrete holographic intervals.

In summary, holographic time intervals resulting from the RFT propagation methodol-

ogy provide a model of time which is discrete and interaction-based. It should be explored

whether spectrum-based time intervals are compatible with relativistic invariance.

6. Conclusions

In this study, it was shown that time intervals are encoded as a whole in the spec-

tral fingerprint of a particle, e.g., photon. Emphasizing the similarity between quantum

wavefunction propagation and scalar diffraction theory, it was shown that any subdivision

or intermediate measurement along a temporal interval will result in spectral artifacts,

making it evident that the whole interval and the partial interval are fundamentally differ-

ent, and that they are to be considered as distinct, discrete wavefunction branches. As a

corollary, it is predicted that photons of cosmic origin should retain a spectral fingerprint

encoding their duration of travel, potentially providing a novel method for measuring

astronomical distances.
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Appendix A. Overview of Quantum Wavefunction Dynamics in
RFT Model

Time intervals should be treated differently depending on whether the Hamiltonian is

time-independent or time-dependent. This can be seen through an analogy between spatial

propagation and temporal evolution. In scalar diffraction theory, the propagation of an
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optical wavefront across space is accomplished through the application of a phase factor in

the frequency domain. A single Fourier transform converts the incoming two-dimensional

wavefront into the frequency domain, whereupon a frequency-dependent phase factor is

applied to appropriately update the phases of each frequency component, and then an

inverse Fourier transform is applied, resulting in a spatially translated image.

It is possible to represent quantum wavefunction propagation in the same way for

time-independent systems. In such cases, a single forward and reverse Fourier transform is

required to propagate the wavefunction, with the appropriate phase factor applied in the

frequency domain.

In the case of a time-dependent Hamiltonian, the Feynman path integral can be written

as a recursion of forward and inverse Fourier transforms with appropriate phase factors,

sliced at infinitesimal time intervals (see Appendix C) [2]. This is analogous to the spatial

propagation of an optical wave in which a new aperture is encountered at every small step.

In the former case, the usage of RFT through a single time-evolution cycle corresponds

to a novel holographic understanding of time intervals. This leads to novel predictions, such

as modifications of the spectrum of starlight based upon duration of travel, or novel meth-

ods of detecting eavesdropping in quantum communication. This effect is not predicted by

standard quantum mechanics, although it is simply an application of temporal diffraction.

In the latter case, infinitesimal time slices are necessary in order to invoke the Taylor

series, and the result is useful for improving second-order calculations using the standard

TDSE. In this case, the theory does not generate new predictions but provides a strong

theoretical foundation for understanding existing experimental results.

Appendix A.1. Single-Step Fourier Transform for a Time-Independent Evolution

In scalar diffraction theory, the propagation of an optical wavefront from one plane to

another is described by a single forward Fourier transform, multiplication by a phase factor

representing free-space propagation, and an inverse Fourier transform to return to the

spatial domain. This single-step process works because the entire spatial interval is treated

as a boundary-value problem, with well-defined initial and final conditions. There is no

need to break the propagation into incremental steps, as the Fourier transform inherently

encodes the entire spatial structure of the wavefront. This is typically the situation with a

single aperture in an optical imaging system.

Time evolution in quantum mechanics can be understood analogously. For a system

governed by a time-independent Hamiltonian, the wavefunction evolves according to

a single exponential phase factor, e−iHt/h̄, which represents the entire temporal interval

as a unified entity. In this case, the time evolution is conceptually equivalent to a single

forward and inverse Fourier transform, reflecting the fact that the entire interval is encoded

in the frequency domain as a whole. This holographic view implies that, in the case of a

time-independent Hamiltonian, measurable temporal intervals are irreducible, much like

the spatial intervals in diffraction.

Appendix A.2. RFT for Time-Dependent Evolution

When the Hamiltonian is time-dependent or the system undergoes interactions at

intermediate times, the analogy shifts from free-space propagation to the case of light

passing through multiple spatial filters or apertures. In spatial optics, each filter or aperture

modifies the wavefront, necessitating a forward Fourier transform to analyze the wavefront

in the frequency domain, application of the filter’s transfer function, and an inverse Fourier

transform to return to the spatial domain. When multiple filters are present, this process

must be repeated sequentially.
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Similarly, in quantum mechanics, time-dependent evolution requires breaking the

temporal interval into smaller segments. Each segment is treated as a short-duration

evolution, where the RFT is applied to evolve the wavefunction incrementally. This iterative

process accounts for changes in the Hamiltonian or external interactions at each step.

Notably, this approach relies on the Taylor series expansion of the time evolution operator,

which is valid only for small time intervals. Consequently, the recursive nature of the

Fourier transforms is associated with second-order corrections, aligning with standard

quantum mechanics’ predictions for systems experiencing time-dependent perturbations.

Appendix A.3. Implications for Temporal Intervals and Experimental Predictions

The distinction between single-step and RFT has profound implications for inter-

preting temporal intervals. In the case of starlight, where photons travel over extremely

long durations with no intermediate interactions, the temporal interval acts as a single

holographic entity encoded in the frequency domain. This results in first-order spectral side

lobes that cannot be explained by standard quantum mechanics, as there is no incremental

evolution to produce second-order corrections.

Conversely, in tunneling experiments, where electrons traverse a potential barrier over

very short durations, the RFT approach applies naturally. The Taylor series expansion is

valid for these short intervals, and the second-order corrections predicted by this approach

align with the established results of Bardeen’s tunneling theory. Thus, the spectral side

lobes observed in tunneling are not fundamentally new predictions but rather refinements

of standard quantum mechanical effects.

Appendix B. Similarities Between Scalar Diffraction Theory and
Quantum Wavefunction Propagation

Scalar diffraction theory (SDT) describes how an optical wavefront in two spatial

dimensions changes as it propagates in a third spatial dimension. It utilizes both x-space

and k-space to do so.

In SDT, an optical wavefront is propagated by multiplying its k-space representation

by an amplitude transfer function. More generally, any filter can be applied to a signal by

convolution in x-space or multiplication in k-space.

Similarly, in quantum mechanics (QM), the propagation of a wavefunction (or quan-

tum wavefunction propagation, QWP) is encapsulated in the propagator, also defined in

k-space. In both instances, propagation of a signal in spacetime involves multiplication by

a phase factor in k-space.

The starting point for scalar diffraction theory is the Huygens–Fresnel equation, de-

scribing the propagation and consequent image formation due to an incoming wavefront

affected by an aperture that propagates to a screen. If ξ and η correspond to the horizontal

and vertical directions on the aperture of the imaging device, an integral is performed

over the entire aperture for each point (x′, y′) on the viewing screen. Labeling the original

waveform U(ξ, η), the Huygens–Fresnel equation is [24]

U(x′, y′) ∝

∫

dξdηU(ξ, η)
exp (ikr01)

r2
01

∝

∫

dξdηU(ξ, η)
exp

(

ik
√

z2 + (x′ − ξ)2 + (y′ − η)2
)

z2 + (x′ − ξ)2 + (y′ − η)2
,

(A1)
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When combined with Fresnel’s quadratic wavefront curvature approximation, the im-

age on a screen under Fresnel diffraction is proportional to

U(x′, y′) ≈
∫

dξdηU(ξ, η) exp

(

ik

2z
[(x′ − ξ)2 + (y′ − η)2]

)

≈
∫

dξdηU(ξ, η)e
ik
2z (ξ

2+η2)e−i 2π
λz (x′ξ+y′η)

≈ F−1
{

e
ik
2z (ξ

2+η2)F{U(x, y)}
}

.

(A2)

where a quadratic constant-phase factor of the form exp ((x′)2 + (y′)2) has been pulled out

of the integral and omitted for the sake of clarity.

Note that when light passes through an aperture in x⃗−space, the spatial parameters ξ

and η describing the aperture become scaled frequency parameters in k-space,

kx =
2πξ

λz

ky =
2πη

λz
,

(A3)

where z is the distance to the screen, Equation (A2) can be written

U(x′, y′) ∝

∫ ∫

dξdη Ũ

(

2πξ

λz
,

2πη

λz

)

h

(

x′ − 2πξ

λz
, y′ − 2πη

λz

)

∝ Ũ(ξ, η) ∗ h(ξ, η),

(A4)

where Ũ is the Fourier transform of the incoming wavefront, and the convolution ker-

nel h(x, y) is called the impulse response, which is the inverse Fourier transform of the

amplitude transfer function.

Appendix C. Formulating the Path Integral with RFT

Consider the following expression for a path integral,

Ψ(xN , tN) =
∫

DxDk exp

(

i
∫ t f

ti

(kẋ − H) dt

)

Ψ(x0, t0)

≈
∫ ∫ N−1

∏
j=0

dxj

dk j

2π
exp (i(k j

xj+1 − xj

τ
− H)τ)Ψ(x0, t0)

=
N−1

∏
j=0

∫ dk j

2π
exp (ik jxj+1)

∫

dxj exp (−ik jxj) exp (−iHτ)Ψ(x0, t0)

{N = 2} ⇒ F−1
k1

{e−i
k2
1

2m τFx1
{eiV(x1)τF−1

k0
{e−i

k2
0

2m τFx0{eiV(x0)τΨ(x0, t0)}}}}

(A5)

where k j and xj are free parameters of momentum and position inserted at the jth time step,

and the Hamiltonian is H = H(k j, xj). In the second line, we have passed from an integral

to a Reimann sum, where τ = (t f − ti)/N is a small time interval. In the last line, we have

passed to an explicit representation with N = 2, and Fx refers, for instance, to a transform

specifically over the x parameter.

As is well known, and evaluated in detail in [2], the Schrödinger equation can be de-

rived from the Feynman path integral, and is also analogous to the paraxial approximation

of scalar diffraction theory. Thus, the Schrödinger equation is not fundamentally modified

by the reformulation via RFT.
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Appendix C.1. Incorporating the Time Dimension into the RFT Method

The Feynman path integral in Equation (A5) expresses quantum evolution as an

integral over all possible paths, where a spacetime path is defined as “a sequence of

configurations for successive times” [25]. Through time slicing, one allows the spatial path

to vary over all possible spatial trajectories, but always along a specific temporal trajectory.

A single time slice can be rewritten using convolution with the free-particle propagator:

Ψ(x1) = hx ∗ (eiV(x1)τΨ(x0)), (A6)

where hx(xj) ∝ exp (i
x2

j m

2τ ).

The time evolution of the wavefunction can also be represented via convolution in the

time domain:

Ψ(tj+1) = δ(tj − τ) ∗ Ψ(tj) (A7)

= F−1
ω {eiωjτFt{Ψ(tj)}}. (A8)

This transformation leverages the shift property of the Fourier transform to express

time evolution explicitly in the frequency domain.

A single time slice of the path integral can thus be rewritten as:

Ψ(xj+1, tj+1) ∝

(

δ(tj − τ) exp (i
x2

j m

2tj
)

)

∗
(

eiV(x)τΨ(xj, tj)
)

, (A9)

where successive time slices apply this relationship recursively.

This reformulation suggests that instead of infinitesimal time slicing, explicit Fourier

domain transformations provide an equivalent framework, emphasizing interactions rather

than continuous time evolution.
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