Physics Letters B 782 (2018) 541-550

Contents lists available at ScienceDirect

PHYSICS LETTERS B

Physics Letters B

www.elsevier.com/locate/physletb

L))

Check for
updates

Black holes in quartic-order beyond-generalized Proca theories

Ryotaro Kase ®*, Masato Minamitsuji°, Shinji Tsujikawa ®

@ Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
b Centro de Astrofisica e Gravitagéio - CENTRA, Departamento de Fisica, Instituto Superior Técnico - IST, Universidade de Lisboa - UL, Av. Rovisco Pais 1, 1049-001
Lisboa, Portugal

ARTICLE INFO ABSTRACT

Article history:

Received 16 March 2018

Received in revised form 30 April 2018
Accepted 31 May 2018

Available online 4 June 2018

Editor: M. Cvetic

The generalized Proca theories with second-order equations of motion can be healthily extended to a
more general framework in which the number of propagating degrees of freedom remains unchanged.
In the presence of a quartic-order nonminimal coupling to gravity arising in beyond-generalized Proca
theories, the speed of gravitational waves c¢; on the Friedmann-Lemaitre-Robertson-Walker (FLRW)
cosmological background can be equal to that of light ¢ under a certain condition. By using this condition
alone, we show that the speed of gravitational waves in the vicinity of static and spherically symmetric
black holes is also equivalent to ¢ for the propagation of odd-parity perturbations along both radial and
angular directions. As a by-product, the black holes arising in our beyond-generalized Proca theories
are plagued by neither ghost nor Laplacian instabilities against odd-parity perturbations. We show the
existence of both exact and numerical black hole solutions endowed with vector hairs induced by the
quartic-order coupling.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

The constantly accumulating observational evidence of dark en-
ergy and dark matter implies the existence of additional degrees
of freedom (DOFs) beyond those appearing in standard model of
physics or General Relativity (GR) [1]. One of the candidates for
such extra DOFs is a spin-0 scalar field ¢. If the scalar field is
nonminimally coupled to gravity, Horndeski theories [2] are the
most general scalar-tensor theories with second-order equations of
motion [3]. It is also possible to perform a healthy extension of
Horndeski theories without increasing the propagating DOFs (one
scalar and two tensor polarizations) [4-6].

The other candidate for extra DOFs is a spin-1 vector field
Ay. A massless vector field respects the U(1) gauge symmetry in
Minkowski spacetime, but the gauge invariance is explicitly bro-
ken by introducing a vector-field mass or by considering deriva-
tive and nonminimal couplings. Most general U (1)-broken vector-
tensor theories with second-order equations of motion are known
as generalized Proca (GP) theories [7-10], which contain five prop-
agating DOFs (one longitudinal scalar, two transverse vectors, and
two tensor polarizations). If we apply GP theories to cosmology,
there exists an interesting de Sitter attractor responsible for the
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late-time cosmic acceleration [11]. The dark energy models in the
framework of GP theories are observationally distinguished from
the cosmological constant due to different cosmic expansion and
growth histories [12,13]. One can extend GP theories to the do-
main of beyond-generalized Proca (BGP) theories [14-16] in which
the propagating DOFs remain five.

The recent gravitational-wave (GW) event GW170817 [17] from
a neutron star merger, together with the gamma-ray burst GRB
170817A [18], showed that the speed of gravitational waves c;
traveling over a cosmological distance (the redshift z < 0.009) is
very close to that of light ¢ with the difference less than the order
of 1071, If we demand that c; is strictly equivalent to c, neither
quartic-order nor quintic-order nonminimal derivative couplings
appearing in Horndeski and GP theories are allowed [19-22] (see
also Refs. [23,24]). In scalar-tensor theories beyond Horndeski, it
is possible to realize ¢; = ¢ on the FLRW cosmological background
even in the presence of quartic-order nonminimal derivative cou-
plings [25,26]. This is also the case for quartic-order BGP theories
[14].

After the detection of GWs from a black hole (BH) merger [27],
we are now entering an era in which the physics of BHs can be
probed from precise GW measurements in nonlinear regimes of
gravity. In theories beyond GR, the existence of extra DOFs can
leave imprints on BH solutions as new “hairs”. In Horndeski theo-
ries, for example, there are several hairy BH solutions on a static
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and spherically symmetric background for a radial-dependent
scalar ¢ = ¢ (r) [28-36] or a linearly time-dependent scalar ¢ =
qt + ¥ (r) [37,38] (see also Ref. [39] and references therein). In the
latter configuration there exists a stealth Schwarzschild solution
for the quartic coupling G4 containing a linear term of 9,¢d"¢
and the reduced Planck mass squared Msl, in which case the GW
speed differs from ¢ on the cosmological background. The quartic-
order beyond-Horndeski interaction allows for the realization of a
model in which c¢; is equivalent to c [40].

In GP theories, the existence of a temporal vector component
Ao besides a longitudinal component A gives rise to a wide vari-
ety of hairy BH solutions [41-50]. For example, there is a stealth
Schwarzschild solution with A1 # 0 for the specific quartic cou-
pling G4(X) = M§1/2+X/4, where X = —A, A" /2. Recently, it was
shown that this BH solution is unstable against odd-parity pertur-
bations in the vicinity of the event horizon [51]. The point is that,
under the absence of ghosts, one of the propagation speed squares
along the angular direction is negative. This instability problem
is intrinsically related to the fact that the speed of GWs around
BHs is different from ¢ for quartic couplings G4(X). There is also
the branch with A; = 0, but the model given by the coupling
G4(X) = Mgl /2+,84M§1(X/M§l)" with n > 1 also leads to the radial
and angular propagation speeds whose deviations from ¢ approach
nonvanishing constants at spatial infinity [51]. Unless the coupling
B4 is very small, this behavior is at odds with the observed speed
of GWs. The extension to BGP theories can give rise to the ex-
act value ¢; =c, so there is a possibility for overcoming the above
mentioned problems.

In this paper, we focus on quartic-order BGP theories and study
whether the condition imposed for obtaining the value ¢; = c on
the FLRW cosmological background is sufficient for realizing the
same speed of GWs in the vicinity of BHs. In Sec. 2, we derive the
equations of motion in quartic-order BGP theories on a static and
spherically symmetric background. In Sec. 3, we obtain the prop-
agation speeds of GW and vector-field perturbation in the vicinity
of BHs by considering odd-parity perturbations. We show that the
condition for realizing the cosmological value c¢; = c is sufficient
to obtain the same propagation speed around BHs. In Sec. 4, we
search for exact and numerical BH solutions with vector hairs in
BGP theories satisfying ¢; = c. As a result, our new hairy BH so-
lutions are affected by neither ghost nor Laplacian instabilities
against odd-parity perturbations. In the rest of sections, we choose
the natural unit c = 1.

2. Quartic-order beyond-generalized Proca theories

We consider quartic-order BGP theories [14] with the vector
field A, and the field strength F,, =V, A, — V), Ay, where V,, is
the covariant derivative operator. The corresponding action is given

by
1
S :/d‘lxa/—g [—ZFWFW + G4(X)R
4—G{X(X){(VMA“)2—-VMAVV”A“}4—£TP], 1)

where g is the determinant of four-dimensional metric tensor g,
R is the Ricci scalar, and G4 is a function of X = —A, A*/2 with
the notation G x = 3G4/dX. The Lagrangian £5°P is a new term
appearing beyond the domain of second-order GP theories, which
is given by

EEGP N f4(X)5¢x1aza3J/45ﬂlﬂ2ﬁ3y4Aa] Ap V2 AV Ap . (22)

where f4 is a function of X, and Ey,q,),y, is the Levi-Civita ten-
sor satisfying the normalization Ey,q,y;y, £¥1%2737* = —4!. We note

that, by taking the scalar limit A, — V¢, the action (2.1) reduces
to that of quartic-order shift-symmetric Horndeski theories and its
Gleyzes-Langlois-Piazza-Vernizzi (GLPV) extension [4].

We study BH solutions on a static and spherically symmetric
background described by the line element

ds? = — f(r)dt?> + h= 1 (r)dr? + r?(d6? + sin® 6 dp?), (2.3)

where t, r and (0, ) represent the time, radial, and angular co-
ordinates, respectively, and f, h are functions of r. The vector-field
profile compatible with the background (2.3) is [52]

Ap = (Ao(r), A1(r),0,0) , (24)

where Ap and A;p are functions of r. The quantity X is expressed
in the form
A3 hA?
X=——-—. (2.5)
2f 2
We compute the action (2.1) on the background (2.3) and vary it
with respect to f,h, Ag, A1. The resulting equations of motion are
given by

e+ 2+ 2o, (2.6)
r r r
hC] , Ce C7
_ha %1% 9, 2.7
I fi+cs+ - +T2 (2.7)
d d ds d
(d1+—2>f’+<d3+—4)h’+d5+—6+—z=0, (2.8)
r r r I
d
dsf'+dy + =2 =0, (2.9)

where a prime represents the derivative with respect to r. The co-
efficients ¢, ---,c7 and d1, --- , d1o are given in Appendix A.

On the FLRW cosmological background, the propagation speed
c; of tensor perturbations was computed in Ref. [14]. For the the-
ories given by the action (2.1), we have

2 Gy

= . 2.10
L7 Gy —2XGyx —4X2fy (2.10)
The condition for realizing the value ¢? =1 translates to
Ga,x
=% 211
fa=—=2 (211)

where X # 0. In Sec. 3, we show that, under the condition (2.11),
the propagation speed squared of gravitational waves in the odd-
parity sector around the static and spherically symmetric back-
ground (2.3) is also equivalent to 1. In Sec. 4, we search for hairy
BH solutions by imposing the condition (2.11).

3. O0dd-parity perturbations

We study the stability of BHs against odd-parity perturbations
on top of the spacetime metric (2.3) and the vector-field pro-
file (2.4). We decompose the metric g, and the vector field A,
into the background and perturbed parts as g, = guv + hyy and
Ay = Au + 8A,, where a bar represents the background values.
The components of metric perturbations h,,, in the odd-parity sec-
tor are expressed in the forms [51,53-57]:

htt = htr = hrr =0, (3-1)
hta =Y Qim(t,1)Eapd"Yim(0, ¢) (32)

I,m
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hra =) Win(t, N Eapd"Yin (0, ¢),

I,m

1
hap =5 3 Uin(6,1) [Ea“ VeV Yim(©, 9) + Ep"VeVaYin (0, 9]
Im

(3.3)

(3.4)

where a, b represent 0 or ¢, and Qjy, Wiy, Uy, are functions of
t and r. The tensor Egy is defined by Egqp = /¥ €ap, Where y is
the determinant of two-dimensional metric y,, on the sphere and
€qp is the Levi-Civita symbol with €yy =1, and Y}y, is the spherical
harmonics. We choose the Regge-Wheller gauge [58,59], in which
the perturbation Uj, vanishes. The vector perturbation §A;, for
odd-parity modes is given by

8Aq=Y 8Am(t.NEawpd"Yim(©®. @),

I,m

SA; =8A; =0, (3.5)

where §Aj, is a function of t and r.

We expand the action (2.1) up to quadratic order in odd-parity
perturbations and then perform the integrals with respect to 6 and
¢. Integrating the action by parts with respect to t and r, and us-
ing the background equations of motion (2.6)-(2.9), we obtain the
second-order action of odd-parity perturbations in the form

Sodd = Z L / dtdr Logd ,
I,m

where L =I(I+ 1), and

2 f A ’ 2 2
Lodd =T n Cq Wlm—le‘f‘?le

. . 2
+ 2 (C28Aim + C38 Ay, + C48Am) (Wlm — Qi+ - le)

(3.6)

+ Cs8Ap, + CoSAmdAl + C78A72

+1L-2) (cs W2, + CoWind A + %cgwlm Qi
+C10Qp, + C11 Q1m5Alm)

+ (LC12 + cla)aAﬁn] , (3.7)

where a dot represents the derivative with respect to t, and

. [64 a7 —fth% Gax o M%—fé’m?)z f4} ,
Co= 5 1y [FGa + (AF - fhad fa]
3= ;}% [fG4,x + (A% — th%)f4] ,
Ca= 2;7 [—hrAg +h(rAy —2A0)Ga x
+ %(AOA%th’r +2A0A1A] f2hr — ALAS f2hr
+2A0A3 f2h+ A3 f'r — A3 AL fr — 2A3f)f4] ,
C5=L, Ce =0, C7=—L,
2fr? 2r2
Cs = —2;’7 [ £(Ga+nA3Gax) +hAZ(AG — FRAD fu] |

Co = ’}% [ FGax+ A3~ fhadfa)],
Cio= 37573 |1 Ga = A3Ga0 — A543 — Fhad fs].
Cii= —% [£Gax+ A3 — fnadfa].
Ciza= —21?. (3.8)

Since the coefficient Cq3 is not needed in the following discussion,
we do not write its explicit expression here. The coefficient Cg van-
ishes in quartic-order BGP theories, but this is not the case in the
presence of other interactions [51].

We can derive conditions for the absence of ghosts and Lapla-
cian instabilities by following the procedure given in Ref. [51].
There are two dynamically propagating modes:

C28Aim + C38A, + CadApm
Cq

’

. 2
XEWIm_Ql/m‘i‘;le‘i‘

8Aim , (3.9)

for | > 2. For the monopole mode (I = 0), the Lagrangian (3.7) van-
ishes identically. For the dipole mode (I = 1), the perturbation x
becomes non-dynamical and the vector-field perturbation §A1y is
the only propagating DOF. As shown in Ref. [51], the mode §A1n
possesses the propagation speed same as that for § Ay, (I > 2) in GP
theories. Hence, the perturbation §Aj, corresponds to the intrin-
sic vector mode, and consequently the other mode x is associated
with the tensor perturbation arising from the gravity sector.

Introducing x as a Lagrange multiplier in the action and elim-
inating Wy, and Qyy from Soqq by using their perturbation equa-
tions of motion, the second-order Lagrangian is expressed in the
form

(L = 2)Logd = rz\/% (2?1(;? + XRY 4+ XX + )?tM.)?) ,
(3.10)

where Xt = (x,6Am), and K, R,G, M are 2 x 2 matrices. In gen-
eral, there are other contributions X’{SX and X!TX to the La-
grangian Loqq [51]. The diagonal components of matrices S and
T can be absorbed into M after integration by parts. Moreover,
the off-diagonal components of § and T vanish by using the coef-
ficients given in Eq. (3.8). Hence the second-order Lagrangian in
quartic-order BGP theories can be expressed in the form (3.10)
without the contributions X'{SX and X{T X.

The nonvanishing components of the kinetic matrix K are
K11 =q1 and Ky = (L — 2)q2, where

4r*CiCuo Sl s

=, 3.11
A(Z)CS% —4f2CgCqo Gy ( )

a1

The sufficient conditions for the absence of ghosts correspond to
g1 >0 and g > 0.

Let us first consider the radial propagation of odd-parity
modes by assuming the solution of the form X! o el@ k) In
the limit of large w and k, the dispersion relation reduces to
det(w?K — wkR + k*G) = 0. The radial propagation speed c; in
proper time is given by ¢, = a)/(\/ﬁk) [51]. On using the fact
that the nonvanishing components of R and G are given by R{; =
AoCoK11/(fC10), R22 = —2C2C3(L — 2)/Cy, G11 = CgK11/C10, and
Gy = (L — 2)(C1C7 — C%)/CL we obtain the two propagation
speeds from the dispersion relation:
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AoCo £ \/A3C3 —4f2C5Cro

Cr1 = 27320172 Crg
—2C,C3£2,/C1C3C5 — C2C7q2
Crp = 2f1/2h1/2(‘]q2 . (3]2)

The Laplacian instability along the radial direction can be avoided
for ¢ >0 and % > 0.

For the modes L > 1, we substitute the solution X* e
into Eq. (3.10) to derive propagation speeds along the angular di-
rection. Then, the dispersion relation corresponds to det(w?K +
M) = 0. The leading-order diagonal components of the matrix M
are M1; = —LCy and My = L(L — 2)Dq, where

fCsC2, + Ca(fC10— AoC11)
4fC2Cq0

i(wt—16)

D1 =Cu2+ qi - (313)
The propagation speed squared along the angular direction in
proper time is given by ¢2 = w?r?/(fI?). Taking the limit L — oo
in the dispersion relation, we obtain the two values:

Cqir? Dqr?
céaﬁ, Cop=— o (3.14)

We require the two conditions ¢4, > 0 and c%, > 0 to avoid the
Laplacian instability along the angular direction. Since the matrices
K, R, and G are diagonal and the matrix M also becomes diagonal
in the limit L > 1, the tensor mode x and the intrinsic vector
mode 8Aj, are orthogonal and decoupled in the high-frequency
limit.

We recall that, under the condition (2.11), the cosmologi-
cal value of c? is equivalent to 1. We compute the quantities
1,92, ¢%, ¢, ¢k, . ¢4, by imposing (2.11). Since the condition
(2.11) translates to fGg x + (A — fhA?)fs =0, some of the co-
efficients in Eq. (3.8) reduce to

_ hGa Cp=C3=Cg=Cy; =0
PR 2=0G=0=C1=0,
hG4 G4
__hGs _ b 315
8 o7 10=55a (3.15)

In Ref. [60] it was argued that, if the Lagrangian contains cross
terms of both the time and spatial derivatives (?2 tRX’ in our the-
ory), the positivity of kinetic matrix K is not necessarily required
for the Hamiltonian bounded from below. In other words, provided
that the cross terms associated with the matrix R do not vanish,
the two conditions q; > 0 and g, > O are sufficient but not nec-
essary for the absence of ghosts. In our BGP theory the matrix
components of R vanish identically by using Eq. (3.15), so the suf-
ficient conditions for the absence of ghosts translate to q; > 0 and
q2 > 0. These quantities yield

C?  hGs e !
Cs 227 BTHTom

Provided that G4 > 0, the conditions q; > 0 and g > 0 are trivially
satisfied outside the horizon.
The squares of the radial propagation speeds in Eq. (3.12) are
given by
C C
2 8 2 7
Ci=— =1, CHh=———=1.
n fhCyo r2 fhq
On using the fact that D; is equivalent to Cip = —1/(2r%), the
propagation speed squares in the angular direction are

a1 = (3.16)

(3.17)

=1, c&p=1. (3.18)

We have thus shown that, under the condition (2.11), the
propagation speeds for odd-parity perturbations on the static and
spherically symmetric background are all equivalent to 1. The prop-
agation speeds cr; and cg1 can be identified with those arising
from tensor perturbations. Then, under the condition (2.11), the
speed of gravitational waves propagating around BHs is the same
as the cosmological value c¢; = 1. The other speeds ¢, and cg»
correspond to those arising from vector-field perturbations. For
quartic-order BGP theories, the propagation speed squared of vec-
tor perturbations on the FLRW cosmological background is given
by [14]

2X(G 2Xf4)?
214 XCaxF2Xfa (3.19)
G4 —2XGyx —4X2f4

<N

Under the condition (2.11), it follows that cZ = 1. This is consis-
tent with the fact that both cZ, and c2, are equivalent to 1 on
the background (2.3). The coincidence of the propagation speed of
the vector perturbation with that of the tensor perturbation and
their coincidence with the speed of light arises from the specific
choice of our theory (2.1) with the condition (2.11). For instance,
if the action (2.1) contains nonlinear kinetic terms of the vector
field Go(X, F,Y) with F = —FHYF;, /4 and Y = A#AVF,,F,”, the
propagation speed of vector perturbations generally differs from
the speed of light, while that of tensor perturbations remains the
same.

It is also natural to expect that, if the propagation speed of a
mode on the cosmological background coincides with the speed
of light, that on the BH background should also coincide with the
speed of light, since the propagation speed of perturbations is lo-
cally fixed on scales much shorter than background curvature radii.
Thus, if the propagation speed of the vector mode on the cosmo-
logical background c, is equivalent to the speed of light, those on
the static and spherically symmetric background, cfz and céz, also
coincide with the speed of light.

For the dipole perturbation (I = 1), only the vector perturba-
tion §Ay, propagates with the radial and angular speed squares
cfz and Céz- respectively. They are equivalent to 1 under the con-
dition (2.11).

We note that the configuration of a linearly time-dependent
scalar ¢ = qt + ¥ (r) in quartic-order shift-symmetric Horndeski
theories and its GLPV extension [4] can be recovered by taking
the limits § Aj, — 0, Ao — ¢, and A1 — ¥/, where q is a constant
and v is a function of r. The fact that the condition (2.11) is suffi-
cient to guarantee the values cfl = C?N =1 in BGP theories means
that the same result also holds in quartic-order shift-symmetric
GLPV theories. Thus, we proved that the claim of Ref. [40] is cor-
rect for odd-parity perturbations without putting any restriction
on the models.

As we mentioned in Introduction, the charged stealth
Schwarzschild solution arising from the specific quartic coupling
G4(X) = Mgl/z + X /4 in GP theories is unstable against odd-parity
perturbations in the vicinity of the event horizon [51]. We note
that, by the “charged stealth Schwarzschild” solution [41], we dis-
tinguish it from the “stealth Schwarzschild” solution obtained in
Ref. [37] and its straightforward extension to the GP theory with
Gyq = M;l/Z + X and Fy, =0 [43], where g is an arbitrary di-
mensionless coupling constant. One may wonder if this instability
can be alleviated according to the discussion of no-ghost criterion
claimed in Ref. [60]. As we will show in Appendix B, this is not
the case since the origin of this instability is not the appearance
of ghosts but the propagation speed squared being negative. Thus,
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the conclusion of Ref. [51] was rather obtained from the same cri-
terion as the hyperbolicity condition employed in Ref. [60]. This
charged stealth Schwarzschild solution has a nonzero electric field
and hence there is no counterpart solution in scalar-tensor theories
obtained by the replacement of A, with 9,¢. Thus, our argument
here is peculiar for vector-tensor theories.

Finally, one may concern that the instability of the stealth
Schwarzschild solution stemming from the model G4(X) = M;l /2+
X/4 in GP theories [51] would contradict with the stability of
our model in BGP theories described by the action (2.1), as these
two theories may be related to each other via a disformal trans-
formation. As we show in Appendix C, however, the disformal
transformation cannot exactly map the former into the latter. After
the transformation, there are new interactions of the forms (C.3)
[15]. Hence the quadratic GP theory after the disformal transfor-
mation is not physically equivalent to our BGP theory given by the
action (2.1).

4. Hairy BH solutions

In this section, we derive hairy BH solutions in quartic-order
BGP theories. The background equations of motion (2.6)-(2.9) can
be expressed in the form

Ix=1y, (4.1)

where x:[(f/,h/,Ag,A;), Z and y are 4 x 4 and 1 x 4 matri-
ces, respectively, which contain the dependence of f,h, Aé), Ao, Aq.
The components Zi1, Z13, Z22, Z23, Z43, Z44 of the matrix Z van-
ish, so the determinant of Z reduces to detZ = Z33(Z12Z24Z41 +
Z21Z42Z14). On using the relations Zyy = —(h/f)Z12, Zap =
—Z24/(2h), and Z41 = —Z14/(2f), it follows that

detZ=0. (4.2)

Hence we cannot solve Eq. (4.1) for x to derive closed-form dif-
ferential equations. This property generally holds in quartic-order
BGP theories on the static and spherically symmetric background
without imposing the condition (2.11).

We note that the determinant also vanishes for the dynamics of
anisotropic cosmology in quartic-order BGP theories [61]. Then, the
property of vanishing determinant arises for vector-tensor theories
with the equations of motion higher than second order under the
metric ansatz with maximally-symmetric two-dimensional space.
It is an open question whether such behavior generally occurs
in the spacetime with the two-dimensional maximally-symmetric
space for other gravitational theories beyond second order (e.g.,
GLPV theories), which we would like to address in a future publi-
cation.

The fact that the background equations of motion are not closed
means that we need additional conditions to close the system.
From Eq. (2.9), there are in general two branches: (a) A; =0, or
(b) A1 #0.

For the branch (a), Eq. (2.9) is redundant, so the differential
equations (4.1) reduce to the system of the 3 x 3 matrix Z with
x="(f",n’, A}). In this case, the determinant of Z is given by

4h? 2
T (A%G4,x - fG4> ; (43)
which does not generally vanish. Then, we can solve Eq. (4.1) for
the variables f,h, Ag. In Sec. 4.1, we will obtain numerical BH so-
lutions for the branch A1 = 0 by considering quartic-order power-
law couplings.

For the branch (b), we need to impose at least one condition
to close the system (4.1). In Refs. [47], the authors found exact

detZ =

BH solutions in GP theories by imposing the two conditions f =h
and X = constant. In Sec. 4.2, we will find exact BH solutions in
quartic-order BGP theories by imposing the same conditions.

4.1. Numerical solutions for the branch A; =0

In this subsection, we will focus on the branch

A1 =0, (4.4)

and numerically obtain hairy BH solutions for power-law couplings

MZl X g

G4(X) = TP +,34M§1 (M_2> > (4.5)
pl

where n > 1 is an integer and B4 is a constant. We also impose the

condition (2.11), under which the function f4 is given by

n—2
npa X
faX)=———=|— - (4.6)
2Mp, <M 31)
Around the event horizon characterized by the distance rp,, we
iteratively derive the solutions to Egs. (2.6)-(2.8) by using the ex-
pansions:

o o
f=Y fir=m)',  h=) ho—m),
i=1 i=1
[o¢]
Ao=ao+ Y ai(r—rp)’, (4.7)
i=1
where f;, hj,ap are constants. The coupling B4 works as correc-
tions to the metric components of the Reissner-Nordstréom (RN)
solution: fgny =hgrn = (1 — 1 /1)(1 — ury /1), where u is a constant
in the range 0 < u < 1. Substituting Eq. (4.7) into Eqgs. (2.6)-(2.8)
for the branch A =0, the leading-order coefficients are given by
f1=hl=1 B =0 012@,
Th Th
where we have assumed f; = hq. The result (4.8) holds irrespec-
tive of the values of n, but the next-to-leading order coefficients
depend on the power n.
For n =1, the nontrivial 84 dependence appears at the order of
O((r—m)?), as

1-B 4B+ 251>

(4.8)

fa= ,
(1—pyr
1—3u+ Q2+ 38>
hy=— >
(l—,LL)Th
20 My [(1 = )2 — 2
4y Y2 My [( w? pan’] (49)
(1 —pw)?ry
For n =2, the coupling B4 appears at the order of O((r —rp,)%),
as
1-2 V2t My,
fa=hy=— ZM, az=—7uz =
Th Th
fy o 37150+ 307 — APau” + (14Ps —
} 31— w2r? ’
L _ 3—15p+21u% — (9+ 108y 1>
- 30 - wery ’
V2UMp[3 — 9 +9u2 + (284 — )3
05— UMpi[ W+ 99U+ (284 )M]. (410)

31— ppry
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For n > 2, the nontrivial 84 dependence around the horizon ap-
pears at the order of O((r —ry)"*1). Thus, the regularity of f,h, Ag
at the horizon is ensured for general n (> 1).

At large distances (r > rp,), the iterative solutions for general n
are given by

2" MMy /PY?" + 4MBa + 8nQ Ba/ P

=1 +0r™?),
! [27(Mpi/P)?" — 221 — Dfa]r "o
(411)
n—-1n2
hzl—ﬁ-i- 5 27 Q 3 2+O(r_3),
M2 (27— 220 — 1)(P/Mp)?Ba]r
(412)
_ Q nQ(2MP + Q)B4 -3
o T M —2Gn - g O
(413)

The coupling 4 works as corrections to the RN solution with Ag =
P+ Q/r.

In Fig. 1, we plot the numerically integrated solutions of
f,h, Ag, f—h forn=2, B4 =0.49, and u = 0.3. We employ the it-
erative solutions (4.7) up to third order as boundary conditions in
the vicinity of the horizon and solve Egs. (2.6)-(2.8) for the branch
A1 = 0. The two asymptotic solutions in the regimes r >~ ry and
r > rp, smoothly connect to each other without any discontinuity.
As estimated above, the temporal vector component Ag is close to
0 around the horizon and then it increases toward the asymptotic
value P as r — oo.

We also numerically confirmed that the curvature invariants
such as R, R,yR*Y, and RﬂvaﬁR“Wﬁ (where Ry, is the Ricci
tensor and Ry,qp is the Riemann tensor) are regular at/outside
the horizon and hence there is no curvature singularity. Using the
iterative solutions (4.7) for n = 2 and picking up the dominant
contributions around the BH event horizon, these quantities re-
duce to R — [20p2B4/{(1 — i)rp 1(r — 1), Ry RMY — 4p? /1, and
RuvapRMVP — 4(5u% — 644 + 3)/ry}, while they converge to 0 at
spatial infinity. We note that for general n (> 1), R ~ (r — )" 1,
while R,y R*Y and R, e R*V*# approach constant as r — rp.

In our numerical simulation, we have shifted the value of f to
1 at the distance r = 107r, by using the freedom of time rescal-
ing. In Fig. 1, we observe that the difference between f and h
induced by the coupling B4 is most significant in the vicinity of
the horizon (f —h ~ 0.1 around r =~ 3ry,). This difference may be
potentially probed in future high-precision GW measurements in
nonlinear regimes of gravity.

We have thus shown the existence of hairy BH solutions regu-
lar throughout the horizon exterior for n = 2. Numerically, we have
also confirmed that the two asymptotic solutions (4.7) and (4.13)
are smoothly joined each other for general powers of n (> 1).
Since there are two independent parameters r, and u for the near-
horizon solutions, the charge P generally depends on M and Q.
Hence the Proca hair P is of the secondary type.

4.2. Exact BH solutions

The exact BH solution found for the specific coupling G4(X) =
M;l/z + X/4 in GP theories [41] satisfies the two relations

f=h,

where X, is a constant. In the following, we will search for ex-
act BH solutions in quartic-order BGP theories by imposing the

X =X, (4.14)

0

10

1 10 100
r / ry

Fig. 1. Numerical solutions to f,h, A, f —h for the couplings (4.5) and (4.6) with
n=2, B4 =0.49 and p = 0.3. The boundary conditions are chosen to be consistent
with the expansion (4.7) at the distance r = 1.001r,. The temporal vector compo-
nent Ap is normalized by Mp. The solutions are regular throughout the horizon
exterior.

two conditions (4.14). The second condition gives the relation
A2 = (A2 —2fXc)/(fh) between A; and Ao.!

From Eq. (2.9), it follows that
[43+2rA0dy = X1+ 1) | Gax(X) A1 =0, (415)

so there are three branches satisfying (i) A% +2rApAy — Xc(1+ f +
rf’) =0, (ii) G4 x(Xc) =0, and (iii) A; =0.

4.2.1. Branch (i)
For this branch, the derivative f’ is given by

A3 +2rAgAy — Xc(1+ f)

f'= X (4.16)
Substituting this relation into Eq. (2.8), we obtain

A3+%A0:0, (417)
whose integrated solution is

A0:P+%, (4.18)

where P and Q are constants. Substituting Eqs. (4.16) and (4.18)
into Eq. (2.6), it follows that

4 (P2 - 2xc) Ga(X)r +[Xc —4G4(X)] Q2 =0, (419)

under which Eq. (2.7) is also satisfied. To ensure the equality of
Eq. (4.19) for arbitrary r, we require the two conditions

P2
Xe=—,

5 [Xc —4G4(X)] Q2 =0.

(4.20)

T Here we note that the longitudinal mode A; diverges at the horizon where f =
0 as long as A; # 0. This behavior is simply comes from the choice of coordinate.
In fact, one can show that the product A,dx* is regular at the future and past
event horizons by introducing the advanced and retarded null coordinates with the
tortoise coordinate; see Ref. [43] and also Refs. [47,48].
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The second condition is satisfied for either (A) G4(X.) = Xc/4 =
P2/8, or (B) Q =0.

In the case (A), Eq. (4.16) reduces to f’' = [P%?(1 — f)r? —
2Q21/(P?r?), which is integrated to give

.. 2M  2Q?
f=h=1-"""4 52
_ 2
A1=i‘/2P(MP:}Q)r Q° (421)

where M is an integration constant. If we identify the constant P
as 2Mp;, the metric components in Eq. (4.21) reduce to the RN so-
lution with G4(X;) = M;l/Z. The difference from the RN solution
in GR is that there is a nonvanishing longitudinal mode A;. We
require that 2P(MP + Q)r > Q2 for the existence of the exact so-
lution (4.21). At spatial infinity, the longitudinal mode decreases as
A1 o< 1/4/7. The solution (4.21) exists for the couplings

p2 = p2\"
G4(X)=§+;bn<X—7) ,

1 [e%) P2 n—1
X)=—— b X — —
fa(X) ngnn( 2) ,

where b, are arbitrary constants.

The case (B) corresponds to the special case of (A), i.e, Q =
0 in Eq. (4.21). Namely, this is the stealth Schwarzschild solution
f=h=1-2M/r with Ag =P and A; = P/2M/r/f. This solution
exists for arbitrary regular functions G4(X).

(4.22)

4.2.2. Branch (ii)

We proceed to the second branch characterized by G4 x(X¢) =
0. In this case, Eq. (2.8) reduces to (4.17), so the solution to Ag is
given by Eq. (4.18). From Eq. (2.6), we obtain

Q2 +4r*Ga(Xe) (rf + f — 1) =0,

under which Eq. (2.7) is also satisfied. This gives the following in-
tegrated solution

(4.23)

2M Q2
= h = 1 _—— —,
f r + 4G4(Xc)r?

A—il[2P2—4X2 4P 8MX 2021G4(X,
1= [( Or? + (4PQ + 8MX)r +2Q%]Ga(Xc)

1/2
- szc}/{zcuxc)}} : (424)

with Ag = P 4+ Q/r. Provided that X, # P2?/2, the longitudinal
mode A; approaches a constant for r — oo. This behavior is dif-
ferent from the branch (i) in which A; decreases toward 0 due to

the condition X. = P2/2. The exact solution (4.24) can be realized
for the couplings

Ga(X) =Ga(X) + ) ba(X = Xo)",
n=2

_ 1 - n—1
fa)=—— n;nbn(x — X" (4.25)

If we choose G4(X;) = M§1/2, the metric components f and h in
Eq. (4.24) are the same as those of the RN solution.

4.2.3. Branch (iii)

Let us finally discuss exact solutions for the branch (iii) sat-
isfying A1 = 0. In this case, the two conditions (4.14) give Ag =
V2 fXc:, where we have chosen the branch Ay > 0. Multiplying
Egs. (2.6) and (2.7) by Ga(Xc¢) and G4(X¢) — 2XcG4 x(X¢), respec-
tively, and taking their sums, it follows that

XZf'*Gax(X)=0. (4.26)
Since we are considering the case X # 0, we obtain
G4.x(Xc) =0. (4.27)
Then, Eq. (2.8) reduces to
rf'2=2f (2f +rf") =0, (4.28)
which is integrated to give
Cq r 2

(L 1) , 429
F== (5 (4.29)
where C; and M are constants. From Eq. (2.6), we obtain
2G4(X0) (cl - M2> 1 4 [Xe — 2G4(X0)]CiM% =0, (4.30)

which also follows from Eq. (2.7). This relation is satisfied for

Xc
Ga(Xo) = 7 .

Then, the resulting solution is

M\? M
f:h:(1—7>, Aoz,/zxc(1—7>, A; =0,

(4.32)

Ci=M?, (431)

which corresponds to the extremal RN solution. The above exact
solution can be realized by the couplings

X o0
Ga(X) = 7C + E bn(X — X",
n=2

__l - _ n—1
fa(X) = 2x§”b"(x X" (4.33)

The solution (4.32) is the special case of Eq. (4.24) with the corre-
spondence

X
Ga(Xe) = 7“ . P=y2X.,

under which A4 vanishes.

Q =—V2XM, (4.34)

5. Conclusions

The recent event GW170817 showed that the GW speed c;
traveling over the cosmological distance is very close to 1. This
fact put strong constraints on models of cosmic acceleration in
the framework of modified gravity theories. In GP theories with
second-order equations of motion, the quartic- and quintic-order
interactions are not allowed, unless their coupling constants are
very small. In the healthy extension of GP theories (dubbed BGP
theories), the additional quartic-order interaction (2.2) gives rise
to a model in which the cosmological value of c; is equivalent to
1 under the condition (2.11).

The remaining question is whether the condition (2.11) is suffi-
cient to ensure that the speed of GWs around massive bodies like



548 R. Kase et al. / Physics Letters B 782 (2018) 541-550

BHs is equal to 1 as well. To address this point, we considered met-
ric and vector-field perturbations in the odd-parity sector on the
static and spherically symmetric background in quartic-order BGP
theories. We explicitly showed that, under the condition (2.11), the
propagation speeds cr; and cgp along the radial and angular di-
rections in the gravity sector are both equivalent to 1. Under the
same condition, we also found that the speeds of vector-field per-
turbations in the radial and angular directions reduce to 1. The
no-ghost conditions are trivially satisfied for G4 > 0. Our result
about the GW speed around BHs is also valid in quartic-order shift-
symmetric Horndeski and GLPV theories with the time-dependent
scalar field ¢ = qt + ¥ (r), where r is the radial coordinate, by tak-
ing the limits §A;;, — 0, Ag — ¢, and A; — V. Hence we proved
the claim of Ref. [40] for odd-parity perturbations without restrict-
ing models.

We also searched for hairy BH solutions in quartic-order BGP
theories by imposing the condition (2.11). In general, the additional
interaction beyond the domain of GP theories leads to a vanishing
determinant for the equations of motion on the static and spher-
ically symmetric background. This property does not hold under
additional conditions, say, by choosing a branch with the vanish-
ing longitudinal component (A; = 0) or by imposing the condition
f=h.

For the branch A1 =0, we analytically derived iterative solu-
tions around the horizon and at spatial infinity for the quartic-
order power-law model (4.5) with the BGP interaction (4.6). Nu-
merically, we also confirmed that the solutions in two asymptotic
regimes connect to each other without any discontinuity outside
the horizon. The coupling 4 works as corrections to the RN met-
ric. As we see in Fig. 1, the difference between two metric compo-
nents f and h induced by B4 is most significant in the vicinity of
the horizon.

Imposing the two conditions f =h and X = X, = constant, we
also obtained three branches of exact solutions in quartic-order
BGP theories satisfying the condition (2.11). The branch (i) cor-
responds to the RN-type solution (4.21) present for the model
(4.22), in which case the longitudinal mode has the dependence
A1 o< 1/4/7 at spatial infinity. The branch (ii) arises for the model
(4.25) with the RN-type metric given in Eq. (4.24), but A; ap-
proaches a constant for r — co. The branch (iii), which exists for
the model (4.33), corresponds to A; = 0 with the extremal RN
metric given in Eq. (4.32).

In GP theories with the quartic power-law coupling (4.5), the
branch A # 0 is unstable against odd-parity perturbations [51].
Moreover, the branch with A1 =0 gives rise to the speed of GWs
approaching a constant different from 1 at spatial infinity, so this
behavior can be odd with the observational bound of c¢;. In con-
trast, all the numerical and exact BH solutions derived in this
paper satisfy ¢ =1 even in the vicinity of BHs, so they are not
prone to the instability problem against odd-parity perturbations.
Thus, the extension from GP theories to BGP theories allows the
possibility for realizing hairy BH solutions in which the behavior
of tensor perturbations is similar to that in GR.

In this paper, we focused on perturbations in the odd-parity
sector, but it is necessary to study the behavior of even-parity per-
turbations in order to ensure the stability of BHs in the model
with ¢; = 1. In particular, the existence of scalar perturbations in
the even-parity sector may give rise to additional constraints on
the model parameters. The numerical solutions with A; =0 and
exact solutions with Q # 0 presented in Secs. 4.1 and 4.2 do not
exist as the counterparts of shift-symmetric Horndeski theories,
so it is of interest to investigate the stabilities of them against
even-parity perturbations. It is also interesting to place observa-
tional constraints on dark energy models in quartic-order BGP the-

ories satisfying the condition (2.11). These issues are left for future
works.
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Appendix A. Coefficients in the background equations of motion

The coefficients appearing in Egs. (2.6)-(2.9) are given, respec-
tively, by

A2
c1=-2G4+2 70 —2hA? ) Gax

2hA2
- f1 (Ag—th%) Gaxx
2h A2 2h A2 2
—TF (748 =5 AT fa - gt (A3 - fhAT) fax,
h
— __A/2 ,
C2 2f 0
C3 = —4h2A]A/1 G4,x
4h%A
- (A347 + AoAgAr — FRATAL) Gaxx
4h2 A,
-~ (54347 +3A043A1 — 4fnATA}) fa
4h2A
-5 L (43— rha3)

x (AgAq + AoAhA; — th%Aq) fax,

2
ca=201=MGa+ (nA3 - A3~ fH2A%) Gax

2h2A2 A2
_ #(@XX
2h2A2
-~ 1 (5A5—th%) fa
2h2A2A2
=S (A rnat) fax,
h
— _A/Z ,
Cs 2f 0
4hApA.
Cg = % <G4’X — hA%G4ﬁxx)
4h2ApA
# (AoA} —5A)A1) fa
4h%A0AL A2
- = (48— pnat) fux.

c7=2(h—1)Gq+2h(2h — 1)A2G4 x — 203 A}G4 xx
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2h2A2 2h3A%
= (A3 —5rhA?) fa- = (43— rhA?) fax,
h .,
d] = ﬁAO N
2h2AgA? 6h?ApA3
2= 2 4.xx t Tﬂl
2h%AgA?
= (45— rnad) fax.
A/
d3=—--2
3 2f 5
2A0 2hAgA? 10hAgA3
dyg=——Cax+——F—Gaxx+——fa
f f f
2hAgA?
72 (A8 = maT) fax.
h
ds = ~F 0>
2hAy  4h?AgAqA|
6=— + Ga,xx
f f
16h2AgA1 A’ 4h%AgA A’
i L fy 72 1 (Aﬁ—fh/ﬁ) fax,
p 2(h—1Ao 2h2A0A%G
7= " LU4X 7  U4.XX
f ’ f ’
8h2ApA? 2h%AgA?
£k =g (A ) fax.
2h%A 2h%A
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dio =2h(h —1)A1G4x — 2h°A3Ga xx — 8h3A3 f4
2n3A3
f

Appendix B. Instability of the charged stealth Schwarzschild
solution in a specific GP theory

(Aé — th%) fax.

Let us briefly revisit the instability of the charged stealth
Schwarzschild solution stemming from the specific quartic-order
coupling in GP theories found in Ref. [51]. This solution arises for
the couplings

M
Ga=—2+ X,

> 112 fa=0. (B.1)

In this model, there exists the following charged stealth
Schwarzschild solution [41]:

2M
f=h=1-2M  a=pi &,
r r
2P(MP 2
A1=e‘/ (MP+Q)r+0Q* (8.2)
r—2M

with X = P2/2, where M, P, and Q are integration constants. We
substitute Eqs. (B.1) and (B.2) into one of the propagation speed
squares along the angular direction cél given in Eq. (3.14). Ex-
panding it around the BH horizon at r = 2M and picking up the
leading-order contribution, we obtain

1\/1(41\/15l + P?)

R . S _ 2
o1 = GMP + Q)2 (r—2M)+O((r —2M)“). (B.3)

Provided that M > 0, we have cél < 0 outside the horizon. Thus,
the instability of BHs (B.2) arises due to the negative sound speed
squared.

Appendix C. Disformal transformation of a specific GP theory

In Appendix A.3 of Ref. [15], the disformal transformation of
quartic-order GP theories is presented. Let us consider the theory
given by the action

[ 1. - -
sz/d‘*x,/—g [—ZFM,,F“”+G4R
+Cyux [(?MMV—?MAN“AM” , (c1)

where a bar represents quantities associated with the metric ten-
sor guy. For the coupling G4 = M2 /2 + X/4, there exists the
charged stealth Schwarzschild solution [41], which was shown
to be unstable against odd-parity perturbations [51]. In this Ap-
pendix, we consider the theory related to (C.1) via the disformal
transformation:

guv =8uv + (XA Ay, (C2)

with ;\M = A,. The quantities without a bar represent those as-
sociated with the metric g,,. By using Egs. (A.21a)-(A.21f) of
Ref. [15], the specific GP theory (C.1) is transformed to the action
(2.1) with new interactions of the forms

1 1
Z(xe(X)F‘“’FW, and Zom(X)A“A“FW)FU'O, (C.3)

where the functions og(X) and a7(X) are related to G4(X) and
['(X). Thus, the GP theory (C.1) cannot be mapped to the BGP
theory (2.1) itself via the disformal transformation. It is worthy
of mentioning that these new interactions do not arise in shift-
symmetric Horndeski theories, since the term F,, identically van-
ishes by taking the scalar limit A, — 9, ¢.
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