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The generalized Proca theories with second-order equations of motion can be healthily extended to a 
more general framework in which the number of propagating degrees of freedom remains unchanged. 
In the presence of a quartic-order nonminimal coupling to gravity arising in beyond-generalized Proca 
theories, the speed of gravitational waves ct on the Friedmann–Lemaître–Robertson–Walker (FLRW) 
cosmological background can be equal to that of light c under a certain condition. By using this condition 
alone, we show that the speed of gravitational waves in the vicinity of static and spherically symmetric 
black holes is also equivalent to c for the propagation of odd-parity perturbations along both radial and 
angular directions. As a by-product, the black holes arising in our beyond-generalized Proca theories 
are plagued by neither ghost nor Laplacian instabilities against odd-parity perturbations. We show the 
existence of both exact and numerical black hole solutions endowed with vector hairs induced by the 
quartic-order coupling.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The constantly accumulating observational evidence of dark en-
ergy and dark matter implies the existence of additional degrees 
of freedom (DOFs) beyond those appearing in standard model of 
physics or General Relativity (GR) [1]. One of the candidates for 
such extra DOFs is a spin-0 scalar field φ. If the scalar field is 
nonminimally coupled to gravity, Horndeski theories [2] are the 
most general scalar-tensor theories with second-order equations of 
motion [3]. It is also possible to perform a healthy extension of 
Horndeski theories without increasing the propagating DOFs (one 
scalar and two tensor polarizations) [4–6].

The other candidate for extra DOFs is a spin-1 vector field 
Aμ . A massless vector field respects the U (1) gauge symmetry in 
Minkowski spacetime, but the gauge invariance is explicitly bro-
ken by introducing a vector-field mass or by considering deriva-
tive and nonminimal couplings. Most general U (1)-broken vector-
tensor theories with second-order equations of motion are known 
as generalized Proca (GP) theories [7–10], which contain five prop-
agating DOFs (one longitudinal scalar, two transverse vectors, and 
two tensor polarizations). If we apply GP theories to cosmology, 
there exists an interesting de Sitter attractor responsible for the 
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late-time cosmic acceleration [11]. The dark energy models in the 
framework of GP theories are observationally distinguished from 
the cosmological constant due to different cosmic expansion and 
growth histories [12,13]. One can extend GP theories to the do-
main of beyond-generalized Proca (BGP) theories [14–16] in which 
the propagating DOFs remain five.

The recent gravitational-wave (GW) event GW170817 [17] from 
a neutron star merger, together with the gamma-ray burst GRB 
170817A [18], showed that the speed of gravitational waves ct

traveling over a cosmological distance (the redshift z < 0.009) is 
very close to that of light c with the difference less than the order 
of 10−15. If we demand that ct is strictly equivalent to c, neither 
quartic-order nor quintic-order nonminimal derivative couplings 
appearing in Horndeski and GP theories are allowed [19–22] (see 
also Refs. [23,24]). In scalar-tensor theories beyond Horndeski, it 
is possible to realize ct = c on the FLRW cosmological background 
even in the presence of quartic-order nonminimal derivative cou-
plings [25,26]. This is also the case for quartic-order BGP theories 
[14].

After the detection of GWs from a black hole (BH) merger [27], 
we are now entering an era in which the physics of BHs can be 
probed from precise GW measurements in nonlinear regimes of 
gravity. In theories beyond GR, the existence of extra DOFs can 
leave imprints on BH solutions as new “hairs”. In Horndeski theo-
ries, for example, there are several hairy BH solutions on a static 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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and spherically symmetric background for a radial-dependent 
scalar φ = φ(r) [28–36] or a linearly time-dependent scalar φ =
qt + ψ(r) [37,38] (see also Ref. [39] and references therein). In the 
latter configuration there exists a stealth Schwarzschild solution 
for the quartic coupling G4 containing a linear term of ∂μφ∂μφ

and the reduced Planck mass squared M2
pl , in which case the GW 

speed differs from c on the cosmological background. The quartic-
order beyond-Horndeski interaction allows for the realization of a 
model in which ct is equivalent to c [40].

In GP theories, the existence of a temporal vector component 
A0 besides a longitudinal component A1 gives rise to a wide vari-
ety of hairy BH solutions [41–50]. For example, there is a stealth 
Schwarzschild solution with A1 �= 0 for the specific quartic cou-
pling G4(X) = M2

pl/2 + X/4, where X = −Aμ Aμ/2. Recently, it was 
shown that this BH solution is unstable against odd-parity pertur-
bations in the vicinity of the event horizon [51]. The point is that, 
under the absence of ghosts, one of the propagation speed squares 
along the angular direction is negative. This instability problem 
is intrinsically related to the fact that the speed of GWs around 
BHs is different from c for quartic couplings G4(X). There is also 
the branch with A1 = 0, but the model given by the coupling 
G4(X) = M2

pl/2 +β4 M2
pl(X/M2

pl)
n with n ≥ 1 also leads to the radial 

and angular propagation speeds whose deviations from c approach 
nonvanishing constants at spatial infinity [51]. Unless the coupling 
β4 is very small, this behavior is at odds with the observed speed 
of GWs. The extension to BGP theories can give rise to the ex-
act value ct = c, so there is a possibility for overcoming the above 
mentioned problems.

In this paper, we focus on quartic-order BGP theories and study 
whether the condition imposed for obtaining the value ct = c on 
the FLRW cosmological background is sufficient for realizing the 
same speed of GWs in the vicinity of BHs. In Sec. 2, we derive the 
equations of motion in quartic-order BGP theories on a static and 
spherically symmetric background. In Sec. 3, we obtain the prop-
agation speeds of GW and vector-field perturbation in the vicinity 
of BHs by considering odd-parity perturbations. We show that the 
condition for realizing the cosmological value ct = c is sufficient 
to obtain the same propagation speed around BHs. In Sec. 4, we 
search for exact and numerical BH solutions with vector hairs in 
BGP theories satisfying ct = c. As a result, our new hairy BH so-
lutions are affected by neither ghost nor Laplacian instabilities 
against odd-parity perturbations. In the rest of sections, we choose 
the natural unit c = 1.

2. Quartic-order beyond-generalized Proca theories

We consider quartic-order BGP theories [14] with the vector 
field Aμ and the field strength Fμν = ∇μ Aν − ∇ν Aμ , where ∇μ is 
the covariant derivative operator. The corresponding action is given 
by

S =
∫

d4x
√−g

[
−1

4
Fμν F μν + G4(X)R

+ G4,X (X)
{
(∇μ Aμ)2 − ∇μ Aν∇ν Aμ

}
+LBGP

4

]
, (2.1)

where g is the determinant of four-dimensional metric tensor gμν , 
R is the Ricci scalar, and G4 is a function of X = −Aμ Aμ/2 with 
the notation G4,X ≡ ∂G4/∂ X . The Lagrangian LBGP

4 is a new term 
appearing beyond the domain of second-order GP theories, which 
is given by

LBGP
4 = f4(X)Eα1α2α3γ4Eβ1β2β3γ4 Aα1 Aβ1∇α2 Aβ2∇α3 Aβ3 , (2.2)

where f4 is a function of X , and Eα1α2γ3γ4 is the Levi-Civita ten-
sor satisfying the normalization Eα1α2γ3γ4Eα1α2γ3γ4 = −4!. We note 
that, by taking the scalar limit Aμ → ∇μφ, the action (2.1) reduces 
to that of quartic-order shift-symmetric Horndeski theories and its 
Gleyzes–Langlois–Piazza–Vernizzi (GLPV) extension [4].

We study BH solutions on a static and spherically symmetric 
background described by the line element

ds2 = − f (r)dt2 + h−1(r)dr2 + r2(dθ2 + sin2 θ dϕ2), (2.3)

where t , r and (θ, ϕ) represent the time, radial, and angular co-
ordinates, respectively, and f , h are functions of r. The vector-field 
profile compatible with the background (2.3) is [52]

Aμ = (A0(r), A1(r),0,0) , (2.4)

where A0 and A1 are functions of r. The quantity X is expressed 
in the form

X = A2
0

2 f
− h A2

1

2
. (2.5)

We compute the action (2.1) on the background (2.3) and vary it 
with respect to f , h, A0, A1. The resulting equations of motion are 
given by

c1

r
h′ + c2 + c3

r
+ c4

r2
= 0 , (2.6)

− h

f

c1

r
f ′ + c5 + c6

r
+ c7

r2
= 0 , (2.7)(

d1 + d2

r

)
f ′ +

(
d3 + d4

r

)
h′ + d5 + d6

r
+ d7

r2
= 0 , (2.8)

d8 f ′ + d9 + d10

r
= 0 , (2.9)

where a prime represents the derivative with respect to r. The co-
efficients c1, · · · , c7 and d1, · · · , d10 are given in Appendix A.

On the FLRW cosmological background, the propagation speed 
ct of tensor perturbations was computed in Ref. [14]. For the the-
ories given by the action (2.1), we have

c2
t = G4

G4 − 2XG4,X − 4X2 f4
. (2.10)

The condition for realizing the value c2
t = 1 translates to

f4 = − G4,X

2X
, (2.11)

where X �= 0. In Sec. 3, we show that, under the condition (2.11), 
the propagation speed squared of gravitational waves in the odd-
parity sector around the static and spherically symmetric back-
ground (2.3) is also equivalent to 1. In Sec. 4, we search for hairy 
BH solutions by imposing the condition (2.11).

3. Odd-parity perturbations

We study the stability of BHs against odd-parity perturbations 
on top of the spacetime metric (2.3) and the vector-field pro-
file (2.4). We decompose the metric gμν and the vector field Aμ

into the background and perturbed parts as gμν = ḡμν + hμν and 
Aμ = Āμ + δAμ , where a bar represents the background values. 
The components of metric perturbations hμν in the odd-parity sec-
tor are expressed in the forms [51,53–57]:

htt = htr = hrr = 0 , (3.1)

hta =
∑

Q lm(t, r)Eab∂
bYlm(θ,ϕ) , (3.2)
l,m
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hra =
∑
l,m

Wlm(t, r)Eab∂
bYlm(θ,ϕ) , (3.3)

hab = 1

2

∑
lm

Ulm(t, r)
[

Ea
c∇c∇bYlm(θ,ϕ) + Eb

c∇c∇aYlm(θ,ϕ)
]

,

(3.4)

where a, b represent θ or ϕ , and Q lm , Wlm , Ulm are functions of 
t and r. The tensor Eab is defined by Eab = √

γ εab , where γ is 
the determinant of two-dimensional metric γab on the sphere and 
εab is the Levi-Civita symbol with εθϕ = 1, and Ylm is the spherical 
harmonics. We choose the Regge–Wheller gauge [58,59], in which 
the perturbation Ulm vanishes. The vector perturbation δAlm for 
odd-parity modes is given by

δAt = δAr = 0 , δAa =
∑
l,m

δAlm(t, r)Eab∂
bYlm(θ,ϕ) , (3.5)

where δAlm is a function of t and r.
We expand the action (2.1) up to quadratic order in odd-parity 

perturbations and then perform the integrals with respect to θ and 
ϕ . Integrating the action by parts with respect to t and r, and us-
ing the background equations of motion (2.6)–(2.9), we obtain the 
second-order action of odd-parity perturbations in the form

Sodd =
∑
l,m

L

∫
dtdr Lodd , (3.6)

where L = l(l + 1), and

Lodd = r2

√
f

h

[
C1

(
Ẇlm − Q ′

lm + 2

r
Q lm

)2

+ 2
(
C2 ˙δAlm + C3δA′

lm + C4δAlm
)(

Ẇlm − Q ′
lm + 2

r
Q lm

)

+ C5 ˙δA
2
lm + C6 ˙δAlmδA′

lm + C7δA′ 2
lm

+ (L − 2)

(
C8W 2

lm + C9WlmδAlm + A0

f
C9Wlm Q lm

+ C10 Q 2
lm + C11 Q lmδAlm

)
+ (LC12 + C13)δA2

lm

]
, (3.7)

where a dot represents the derivative with respect to t , and

C1 = h

2 f r2

[
G4 − A2

0 − f h A2
1

f
G4,X − (A2

0 − f h A2
1)

2

f 2
f4

]
,

C2 = − h A1

2 f 2r2

[
f G4,X + (A2

0 − f h A2
1) f4

]
,

C3 = h A0

2 f 2r2

[
f G4,X + (A2

0 − f h A2
1) f4

]
,

C4 = 1

2 f r3

[
−hr A′

0 + h(r A′
0 − 2A0)G4,X

+ h

f 2
(A0 A2

1 f 2h′r + 2A0 A1 A′
1 f 2hr − A′

0 A2
1 f 2hr

+ 2A0 A2
1 f 2h + A3

0 f ′r − A2
0 A′

0 f r − 2A3
0 f ) f4

]
,

C5 = 1

2 f r2
, C6 = 0 , C7 = − h

2r2
,

C8 = − h
4

[
f (G4 + h A2

1G4,X ) + h A2
1(A2

0 − f h A2
1) f4

]
,

2 f r
C9 = h A1

f r4

[
f G4,X + (A2

0 − f h A2
1) f4

]
,

C10 = 1

2 f 3r4

[
f ( f G4 − A2

0G4,X ) − A2
0(A2

0 − f h A2
1) f4

]
,

C11 = − A0

f 2r4

[
f G4,X + (A2

0 − f h A2
1) f4

]
,

C12 = − 1

2r4
. (3.8)

Since the coefficient C13 is not needed in the following discussion, 
we do not write its explicit expression here. The coefficient C6 van-
ishes in quartic-order BGP theories, but this is not the case in the 
presence of other interactions [51].

We can derive conditions for the absence of ghosts and Lapla-
cian instabilities by following the procedure given in Ref. [51]. 
There are two dynamically propagating modes:

χ ≡ Ẇlm − Q ′
lm + 2

r
Q lm + C2 ˙δAlm + C3δA′

lm + C4δAlm

C1
,

δAlm , (3.9)

for l ≥ 2. For the monopole mode (l = 0), the Lagrangian (3.7) van-
ishes identically. For the dipole mode (l = 1), the perturbation χ
becomes non-dynamical and the vector-field perturbation δA1m is 
the only propagating DOF. As shown in Ref. [51], the mode δA1m

possesses the propagation speed same as that for δAlm(l ≥ 2) in GP 
theories. Hence, the perturbation δAlm corresponds to the intrin-
sic vector mode, and consequently the other mode χ is associated 
with the tensor perturbation arising from the gravity sector.

Introducing χ as a Lagrange multiplier in the action and elim-
inating Wlm and Q lm from Sodd by using their perturbation equa-
tions of motion, the second-order Lagrangian is expressed in the 
form

(L − 2)Lodd = r2

√
f

h

( 
̇X t K 
̇X + 
̇X t R 
X ′ + 
X ′ t G 
X ′ + 
X t M 
X
)

,

(3.10)

where 
X t = (χ, δAlm), and K , R, G, M are 2 × 2 matrices. In gen-

eral, there are other contributions 
X ′ t S 
X and 
̇X t T 
X to the La-
grangian Lodd [51]. The diagonal components of matrices S and 
T can be absorbed into M after integration by parts. Moreover, 
the off-diagonal components of S and T vanish by using the coef-
ficients given in Eq. (3.8). Hence the second-order Lagrangian in 
quartic-order BGP theories can be expressed in the form (3.10)

without the contributions 
X ′ t S 
X and 
̇X t T 
X .
The nonvanishing components of the kinetic matrix K are 

K11 = q1 and K22 = (L − 2)q2, where

q1 = 4 f 2C2
1 C10

A2
0C2

9 − 4 f 2C8C10
, q2 = C1C5 − C2

2

C1
. (3.11)

The sufficient conditions for the absence of ghosts correspond to 
q1 > 0 and q2 > 0.

Let us first consider the radial propagation of odd-parity 
modes by assuming the solution of the form 
X t ∝ ei(ωt−kr) . In 
the limit of large ω and k, the dispersion relation reduces to 
det(ω2 K − ωkR + k2G) = 0. The radial propagation speed cr in 
proper time is given by cr = ω/(

√
f h k) [51]. On using the fact 

that the nonvanishing components of R and G are given by R11 =
A0C9 K11/( f C10), R22 = −2C2C3(L − 2)/C1, G11 = C8 K11/C10, and 
G22 = (L − 2)(C1C7 − C2

3)/C1, we obtain the two propagation 
speeds from the dispersion relation:
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cr1 =
A0C9 ±

√
A2

0C2
9 − 4 f 2C8C10

2 f 3/2h1/2C10
,

cr2 =
−2C2C3 ± 2

√
C1C2

3 C5 − C2
1 C7q2

2 f 1/2h1/2C1q2
. (3.12)

The Laplacian instability along the radial direction can be avoided 
for c2

r1 ≥ 0 and c2
r2 ≥ 0.

For the modes L � 1, we substitute the solution 
X t ∝ ei(ωt−lθ)

into Eq. (3.10) to derive propagation speeds along the angular di-
rection. Then, the dispersion relation corresponds to det(ω2 K +
M) = 0. The leading-order diagonal components of the matrix M
are M11 = −LC1 and M22 = L(L − 2)D1, where

D1 = C12 + f C8C2
11 + C2

9( f C10 − A0C11)

4 f C2
1 C10

q1 . (3.13)

The propagation speed squared along the angular direction in 
proper time is given by c2

� = ω2r2/( f l2). Taking the limit L → ∞
in the dispersion relation, we obtain the two values:

c2
�1 = C1r2

f q1
, c2

�2 = − D1r2

f q2
. (3.14)

We require the two conditions c2
�1 ≥ 0 and c2

�2 ≥ 0 to avoid the 
Laplacian instability along the angular direction. Since the matrices 
K , R , and G are diagonal and the matrix M also becomes diagonal 
in the limit L � 1, the tensor mode χ and the intrinsic vector 
mode δAlm are orthogonal and decoupled in the high-frequency 
limit.

We recall that, under the condition (2.11), the cosmologi-
cal value of c2

t is equivalent to 1. We compute the quantities 
q1, q2, c2

r1, c
2
r2, c

2
�1, c

2
�2 by imposing (2.11). Since the condition 

(2.11) translates to f G4,X + (A2
0 − f h A2

1) f4 = 0, some of the co-
efficients in Eq. (3.8) reduce to

C1 = hG4

2 f r2
, C2 = C3 = C9 = C11 = 0 ,

C8 = −hG4

2r4
, C10 = G4

2 f r4
. (3.15)

In Ref. [60] it was argued that, if the Lagrangian contains cross 
terms of both the time and spatial derivatives ( 
̇X t R 
X ′ in our the-
ory), the positivity of kinetic matrix K is not necessarily required 
for the Hamiltonian bounded from below. In other words, provided 
that the cross terms associated with the matrix R do not vanish, 
the two conditions q1 > 0 and q2 > 0 are sufficient but not nec-
essary for the absence of ghosts. In our BGP theory the matrix 
components of R vanish identically by using Eq. (3.15), so the suf-
ficient conditions for the absence of ghosts translate to q1 > 0 and 
q2 > 0. These quantities yield

q1 = − C2
1

C8
= hG4

2 f 2
, q2 = C5 = 1

2 f r2
. (3.16)

Provided that G4 > 0, the conditions q1 > 0 and q2 > 0 are trivially 
satisfied outside the horizon.

The squares of the radial propagation speeds in Eq. (3.12) are 
given by

c2
r1 = − C8

f hC10
= 1 , c2

r2 = − C7

f hq2
= 1 . (3.17)

On using the fact that D1 is equivalent to C12 = −1/(2r4), the 
propagation speed squares in the angular direction are
c2
�1 = 1 , c2

�2 = 1 . (3.18)

We have thus shown that, under the condition (2.11), the 
propagation speeds for odd-parity perturbations on the static and 
spherically symmetric background are all equivalent to 1. The prop-
agation speeds cr1 and c�1 can be identified with those arising 
from tensor perturbations. Then, under the condition (2.11), the 
speed of gravitational waves propagating around BHs is the same 
as the cosmological value ct = 1. The other speeds cr2 and c�2

correspond to those arising from vector-field perturbations. For 
quartic-order BGP theories, the propagation speed squared of vec-
tor perturbations on the FLRW cosmological background is given 
by [14]

c2
v = 1 + 2X(G4,X + 2X f4)

2

G4 − 2XG4,X − 4X2 f4
. (3.19)

Under the condition (2.11), it follows that c2
v = 1. This is consis-

tent with the fact that both c2
r2 and c2

�2 are equivalent to 1 on 
the background (2.3). The coincidence of the propagation speed of 
the vector perturbation with that of the tensor perturbation and 
their coincidence with the speed of light arises from the specific 
choice of our theory (2.1) with the condition (2.11). For instance, 
if the action (2.1) contains nonlinear kinetic terms of the vector 
field G2(X, F , Y ) with F = −F μν Fμν/4 and Y = Aμ Aν Fμρ Fν

ρ , the 
propagation speed of vector perturbations generally differs from 
the speed of light, while that of tensor perturbations remains the 
same.

It is also natural to expect that, if the propagation speed of a 
mode on the cosmological background coincides with the speed 
of light, that on the BH background should also coincide with the 
speed of light, since the propagation speed of perturbations is lo-
cally fixed on scales much shorter than background curvature radii. 
Thus, if the propagation speed of the vector mode on the cosmo-
logical background cv is equivalent to the speed of light, those on 
the static and spherically symmetric background, c2

r2 and c2
�2, also 

coincide with the speed of light.
For the dipole perturbation (l = 1), only the vector perturba-

tion δAlm propagates with the radial and angular speed squares 
c2

r2 and c2
�2, respectively. They are equivalent to 1 under the con-

dition (2.11).
We note that the configuration of a linearly time-dependent 

scalar φ = qt + ψ(r) in quartic-order shift-symmetric Horndeski 
theories and its GLPV extension [4] can be recovered by taking 
the limits δAlm → 0, A0 → q, and A1 → ψ ′ , where q is a constant 
and ψ is a function of r. The fact that the condition (2.11) is suffi-
cient to guarantee the values c2

r1 = c2
�1 = 1 in BGP theories means 

that the same result also holds in quartic-order shift-symmetric 
GLPV theories. Thus, we proved that the claim of Ref. [40] is cor-
rect for odd-parity perturbations without putting any restriction 
on the models.

As we mentioned in Introduction, the charged stealth
Schwarzschild solution arising from the specific quartic coupling 
G4(X) = M2

pl/2 + X/4 in GP theories is unstable against odd-parity 
perturbations in the vicinity of the event horizon [51]. We note 
that, by the “charged stealth Schwarzschild” solution [41], we dis-
tinguish it from the “stealth Schwarzschild” solution obtained in 
Ref. [37] and its straightforward extension to the GP theory with 
G4 = M2

pl/2 + β X and Fμν = 0 [43], where β is an arbitrary di-
mensionless coupling constant. One may wonder if this instability 
can be alleviated according to the discussion of no-ghost criterion 
claimed in Ref. [60]. As we will show in Appendix B, this is not 
the case since the origin of this instability is not the appearance 
of ghosts but the propagation speed squared being negative. Thus, 
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the conclusion of Ref. [51] was rather obtained from the same cri-
terion as the hyperbolicity condition employed in Ref. [60]. This 
charged stealth Schwarzschild solution has a nonzero electric field 
and hence there is no counterpart solution in scalar-tensor theories 
obtained by the replacement of Aμ with ∂μφ. Thus, our argument 
here is peculiar for vector-tensor theories.

Finally, one may concern that the instability of the stealth 
Schwarzschild solution stemming from the model G4(X) = M2

pl/2 +
X/4 in GP theories [51] would contradict with the stability of 
our model in BGP theories described by the action (2.1), as these 
two theories may be related to each other via a disformal trans-
formation. As we show in Appendix C, however, the disformal 
transformation cannot exactly map the former into the latter. After 
the transformation, there are new interactions of the forms (C.3)
[15]. Hence the quadratic GP theory after the disformal transfor-
mation is not physically equivalent to our BGP theory given by the 
action (2.1).

4. Hairy BH solutions

In this section, we derive hairy BH solutions in quartic-order 
BGP theories. The background equations of motion (2.6)–(2.9) can 
be expressed in the form

Z x = y , (4.1)

where x = t( f ′, h′, A′′
0, A′

1), Z and y are 4 × 4 and 1 × 4 matri-
ces, respectively, which contain the dependence of f , h, A′

0, A0, A1. 
The components Z11, Z13, Z22, Z23, Z43, Z44 of the matrix Z van-
ish, so the determinant of Z reduces to det Z = Z33(Z12 Z24 Z41 +
Z21 Z42 Z14). On using the relations Z21 = −(h/ f )Z12, Z42 =
−Z24/(2h), and Z41 = −Z14/(2 f ), it follows that

det Z = 0 . (4.2)

Hence we cannot solve Eq. (4.1) for x to derive closed-form dif-
ferential equations. This property generally holds in quartic-order 
BGP theories on the static and spherically symmetric background 
without imposing the condition (2.11).

We note that the determinant also vanishes for the dynamics of 
anisotropic cosmology in quartic-order BGP theories [61]. Then, the 
property of vanishing determinant arises for vector-tensor theories 
with the equations of motion higher than second order under the 
metric ansatz with maximally-symmetric two-dimensional space. 
It is an open question whether such behavior generally occurs 
in the spacetime with the two-dimensional maximally-symmetric 
space for other gravitational theories beyond second order (e.g., 
GLPV theories), which we would like to address in a future publi-
cation.

The fact that the background equations of motion are not closed 
means that we need additional conditions to close the system. 
From Eq. (2.9), there are in general two branches: (a) A1 = 0, or 
(b) A1 �= 0.

For the branch (a), Eq. (2.9) is redundant, so the differential 
equations (4.1) reduce to the system of the 3 × 3 matrix Z with 
x = t( f ′, h′, A′′

0). In this case, the determinant of Z is given by

det Z = − 4h2

r2 f 4

(
A2

0G4,X − f G4

)2
, (4.3)

which does not generally vanish. Then, we can solve Eq. (4.1) for 
the variables f , h, A0. In Sec. 4.1, we will obtain numerical BH so-
lutions for the branch A1 = 0 by considering quartic-order power-
law couplings.

For the branch (b), we need to impose at least one condition 
to close the system (4.1). In Refs. [47], the authors found exact 
BH solutions in GP theories by imposing the two conditions f = h
and X = constant. In Sec. 4.2, we will find exact BH solutions in 
quartic-order BGP theories by imposing the same conditions.

4.1. Numerical solutions for the branch A1 = 0

In this subsection, we will focus on the branch

A1 = 0 , (4.4)

and numerically obtain hairy BH solutions for power-law couplings

G4(X) = M2
pl

2
+ β4M2

pl

(
X

M2
pl

)n

, (4.5)

where n ≥ 1 is an integer and β4 is a constant. We also impose the 
condition (2.11), under which the function f4 is given by

f4(X) = − nβ4

2M2
pl

(
X

M2
pl

)n−2

. (4.6)

Around the event horizon characterized by the distance rh , we 
iteratively derive the solutions to Eqs. (2.6)–(2.8) by using the ex-
pansions:

f =
∞∑

i=1

f i(r − rh)
i , h =

∞∑
i=1

hi(r − rh)
i ,

A0 = a0 +
∞∑

i=1

ai(r − rh)
i , (4.7)

where f i, hi, a0 are constants. The coupling β4 works as correc-
tions to the metric components of the Reissner–Nordström (RN) 
solution: fRN = hRN = (1 − rh/r)(1 − μrh/r), where μ is a constant 
in the range 0 < μ < 1. Substituting Eq. (4.7) into Eqs. (2.6)–(2.8)
for the branch A1 = 0, the leading-order coefficients are given by

f1 = h1 = 1 − μ

rh
, a0 = 0, a1 =

√
2μ Mpl

rh
, (4.8)

where we have assumed f1 = h1. The result (4.8) holds irrespec-
tive of the values of n, but the next-to-leading order coefficients 
depend on the power n.

For n = 1, the nontrivial β4 dependence appears at the order of 
O((r − rh)2), as

f2 = −1 − (3 − 4β4)μ + (2 − 5β4)μ
2

(1 − μ)r2
h

,

h2 = −1 − 3μ + (2 + 3β4)μ
2

(1 − μ)r2
h

,

a2 = −
√

2μ Mpl
[
(1 − μ)2 − β4μ

2
]

(1 − μ)2r2
h

. (4.9)

For n = 2, the coupling β4 appears at the order of O((r − rh)3), 
as

f2 = h2 = −1 − 2μ

r2
h

, a2 = −
√

2μ Mpl

r2
h

,

f3 = 3 − 15μ + 3(7 − 4β4)μ
2 + (14β4 − 9)μ3

3(1 − μ)2r3
h

,

h3 = 3 − 15μ + 21μ2 − (9 + 10β4)μ
3

3(1 − μ)2r3
h

,

a3 =
√

2μMpl[3 − 9μ + 9μ2 + (2β4 − 3)μ3]
3(1 − μ)3r3

. (4.10)

h
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For n > 2, the nontrivial β4 dependence around the horizon ap-
pears at the order of O((r −rh)n+1). Thus, the regularity of f , h, A0
at the horizon is ensured for general n (≥ 1).

At large distances (r � rh), the iterative solutions for general n
are given by

f = 1 − 2n+1M(Mpl/P )2n + 4Mβ4 + 8nQ β4/P[
2n(Mpl/P )2n − 2(2n − 1)β4

]
r

+O(r−2),

(4.11)

h = 1 − 2M

r
+ 2n−1 Q 2

M2
pl

[
2n − 2(2n − 1)(P/Mpl)

2nβ4
]

r2
+O(r−3),

(4.12)

A0 = P + Q

r
− nQ (2M P + Q )β4

P
[
2n(Mpl/P )2n − 2(2n − 1)β4

]
r2

+O(r−3).

(4.13)

The coupling β4 works as corrections to the RN solution with A0 =
P + Q /r.

In Fig. 1, we plot the numerically integrated solutions of 
f , h, A0, f −h for n = 2, β4 = 0.49, and μ = 0.3. We employ the it-
erative solutions (4.7) up to third order as boundary conditions in 
the vicinity of the horizon and solve Eqs. (2.6)–(2.8) for the branch 
A1 = 0. The two asymptotic solutions in the regimes r � rh and 
r � rh smoothly connect to each other without any discontinuity. 
As estimated above, the temporal vector component A0 is close to 
0 around the horizon and then it increases toward the asymptotic 
value P as r → ∞.

We also numerically confirmed that the curvature invariants 
such as R , Rμν Rμν , and Rμναβ Rμναβ (where Rμν is the Ricci 
tensor and Rμναβ is the Riemann tensor) are regular at/outside 
the horizon and hence there is no curvature singularity. Using the 
iterative solutions (4.7) for n = 2 and picking up the dominant 
contributions around the BH event horizon, these quantities re-
duce to R → [20μ2β4/{(1 −μ)r3

h}](r − rh), Rμν Rμν → 4μ2/r4
h , and 

Rμναβ Rμναβ → 4(5μ2 − 6μ + 3)/r4
h , while they converge to 0 at 

spatial infinity. We note that for general n (≥ 1), R ∼ (r − rh)n−1, 
while Rμν Rμν and Rμναβ Rμναβ approach constant as r → rh .

In our numerical simulation, we have shifted the value of f to 
1 at the distance r = 107rh by using the freedom of time rescal-
ing. In Fig. 1, we observe that the difference between f and h
induced by the coupling β4 is most significant in the vicinity of 
the horizon ( f − h � 0.1 around r � 3rh). This difference may be 
potentially probed in future high-precision GW measurements in 
nonlinear regimes of gravity.

We have thus shown the existence of hairy BH solutions regu-
lar throughout the horizon exterior for n = 2. Numerically, we have 
also confirmed that the two asymptotic solutions (4.7) and (4.13)
are smoothly joined each other for general powers of n (≥ 1). 
Since there are two independent parameters rh and μ for the near-
horizon solutions, the charge P generally depends on M and Q . 
Hence the Proca hair P is of the secondary type.

4.2. Exact BH solutions

The exact BH solution found for the specific coupling G4(X) =
M2

pl/2 + X/4 in GP theories [41] satisfies the two relations

f = h, X = Xc, (4.14)

where Xc is a constant. In the following, we will search for ex-
act BH solutions in quartic-order BGP theories by imposing the 
Fig. 1. Numerical solutions to f , h, A0, f − h for the couplings (4.5) and (4.6) with 
n = 2, β4 = 0.49 and μ = 0.3. The boundary conditions are chosen to be consistent 
with the expansion (4.7) at the distance r = 1.001rh . The temporal vector compo-
nent A0 is normalized by Mpl . The solutions are regular throughout the horizon 
exterior.

two conditions (4.14). The second condition gives the relation 
A2

1 = (A2
0 − 2 f Xc)/( f h) between A1 and A0.1

From Eq. (2.9), it follows that[
A2

0 + 2r A0 A′
0 − Xc(1 + f + r f ′)

]
G4,X (Xc) A1 = 0 , (4.15)

so there are three branches satisfying (i) A2
0 +2r A0 A′

0 − Xc(1 + f +
r f ′) = 0, (ii) G4,X (Xc) = 0, and (iii) A1 = 0.

4.2.1. Branch (i)
For this branch, the derivative f ′ is given by

f ′ = A2
0 + 2r A0 A′

0 − Xc(1 + f )

Xcr
. (4.16)

Substituting this relation into Eq. (2.8), we obtain

A′′
0 + 2

r
A0 = 0 , (4.17)

whose integrated solution is

A0 = P + Q

r
, (4.18)

where P and Q are constants. Substituting Eqs. (4.16) and (4.18)
into Eq. (2.6), it follows that

4
(

P 2 − 2Xc

)
G4(Xc)r

2 + [Xc − 4G4(Xc)] Q 2 = 0 , (4.19)

under which Eq. (2.7) is also satisfied. To ensure the equality of 
Eq. (4.19) for arbitrary r, we require the two conditions

Xc = P 2

2
, [Xc − 4G4(Xc)] Q 2 = 0 . (4.20)

1 Here we note that the longitudinal mode A1 diverges at the horizon where f =
0 as long as A1 �= 0. This behavior is simply comes from the choice of coordinate. 
In fact, one can show that the product Aμdxμ is regular at the future and past 
event horizons by introducing the advanced and retarded null coordinates with the 
tortoise coordinate; see Ref. [43] and also Refs. [47,48].



R. Kase et al. / Physics Letters B 782 (2018) 541–550 547
The second condition is satisfied for either (A) G4(Xc) = Xc/4 =
P 2/8, or (B) Q = 0.

In the case (A), Eq. (4.16) reduces to f ′ = [P 2(1 − f )r2 −
2Q 2]/(P 2r3), which is integrated to give

f = h = 1 − 2M

r
+ 2Q 2

P 2r2
,

A1 = ±
√

2P (M P + Q )r − Q 2

r f
, (4.21)

where M is an integration constant. If we identify the constant P
as 2Mpl, the metric components in Eq. (4.21) reduce to the RN so-
lution with G4(Xc) = M2

pl/2. The difference from the RN solution 
in GR is that there is a nonvanishing longitudinal mode A1. We 
require that 2P (M P + Q )r > Q 2 for the existence of the exact so-
lution (4.21). At spatial infinity, the longitudinal mode decreases as 
A1 ∝ 1/

√
r. The solution (4.21) exists for the couplings

G4(X) = P 2

8
+

∞∑
n=1

bn

(
X − P 2

2

)n

,

f4(X) = − 1

2X

∞∑
n=1

nbn

(
X − P 2

2

)n−1

, (4.22)

where bn are arbitrary constants.
The case (B) corresponds to the special case of (A), i.e., Q =

0 in Eq. (4.21). Namely, this is the stealth Schwarzschild solution 
f = h = 1 −2M/r with A0 = P and A1 = P

√
2M/r/ f . This solution 

exists for arbitrary regular functions G4(X).

4.2.2. Branch (ii)
We proceed to the second branch characterized by G4,X (Xc) =

0. In this case, Eq. (2.8) reduces to (4.17), so the solution to A0 is 
given by Eq. (4.18). From Eq. (2.6), we obtain

Q 2 + 4r2G4(Xc)
(
r f ′ + f − 1

) = 0 , (4.23)

under which Eq. (2.7) is also satisfied. This gives the following in-
tegrated solution

f = h = 1 − 2M

r
+ Q 2

4G4(Xc)r2
,

A1 = ± 1

r f

[{[
(2P 2 − 4Xc)r

2 + (4P Q + 8M Xc)r + 2Q 2]G4(Xc)

− Q 2 Xc

}
/{2G4(Xc)}

]1/2

, (4.24)

with A0 = P + Q /r. Provided that Xc �= P 2/2, the longitudinal 
mode A1 approaches a constant for r → ∞. This behavior is dif-
ferent from the branch (i) in which A1 decreases toward 0 due to 
the condition Xc = P 2/2. The exact solution (4.24) can be realized 
for the couplings

G4(X) = G4(Xc) +
∞∑

n=2

bn(X − Xc)
n ,

f4(X) = − 1

2X

∞∑
n=2

nbn(X − Xc)
n−1 . (4.25)

If we choose G4(Xc) = M2
pl/2, the metric components f and h in 

Eq. (4.24) are the same as those of the RN solution.
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.3. Branch (iii)
Let us finally discuss exact solutions for the branch (iii) sat-
ing A1 = 0. In this case, the two conditions (4.14) give A0 =
f Xc , where we have chosen the branch A0 > 0. Multiplying 

s. (2.6) and (2.7) by G4(Xc) and G4(Xc) − 2Xc G4,X (Xc), respec-
ely, and taking their sums, it follows that

f ′ 2G4,X (Xc) = 0 . (4.26)

ce we are considering the case Xc �= 0, we obtain

,X (Xc) = 0. (4.27)

en, Eq. (2.8) reduces to

2 − 2 f
(
2 f ′ + r f ′′) = 0 , (4.28)

ich is integrated to give

C1

r2

( r

M
− 1

)2
, (4.29)

ere C1 and M are constants. From Eq. (2.6), we obtain

4(Xc)
(

C1 − M2
)

r2 + [Xc − 2G4(Xc)] C1M2 = 0 , (4.30)

ich also follows from Eq. (2.7). This relation is satisfied for

= M2 , G4(Xc) = Xc

2
. (4.31)

en, the resulting solution is

h =
(

1 − M

r

)2

, A0 = √
2Xc

(
1 − M

r

)
, A1 = 0 ,

(4.32)

ich corresponds to the extremal RN solution. The above exact 
ution can be realized by the couplings

(X) = Xc

2
+

∞∑
n=2

bn(X − Xc)
n ,

(X) = − 1

2X

∞∑
n=2

nbn (X − Xc)
n−1 . (4.33)

e solution (4.32) is the special case of Eq. (4.24) with the corre-
ndence

(Xc) = Xc

2
, P = √

2Xc , Q = −√
2Xc M , (4.34)

der which A1 vanishes.

Conclusions

The recent event GW170817 showed that the GW speed ct

veling over the cosmological distance is very close to 1. This 
t put strong constraints on models of cosmic acceleration in 
 framework of modified gravity theories. In GP theories with 
ond-order equations of motion, the quartic- and quintic-order 
eractions are not allowed, unless their coupling constants are 
y small. In the healthy extension of GP theories (dubbed BGP 
ories), the additional quartic-order interaction (2.2) gives rise 
a model in which the cosmological value of ct is equivalent to 
nder the condition (2.11).
The remaining question is whether the condition (2.11) is suffi-
nt to ensure that the speed of GWs around massive bodies like 
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BHs is equal to 1 as well. To address this point, we considered met-
ric and vector-field perturbations in the odd-parity sector on the 
static and spherically symmetric background in quartic-order BGP 
theories. We explicitly showed that, under the condition (2.11), the 
propagation speeds cr1 and c�1 along the radial and angular di-
rections in the gravity sector are both equivalent to 1. Under the 
same condition, we also found that the speeds of vector-field per-
turbations in the radial and angular directions reduce to 1. The 
no-ghost conditions are trivially satisfied for G4 > 0. Our result 
about the GW speed around BHs is also valid in quartic-order shift-
symmetric Horndeski and GLPV theories with the time-dependent 
scalar field φ = qt + ψ(r), where r is the radial coordinate, by tak-
ing the limits δAlm → 0, A0 → q, and A1 → ψ ′ . Hence we proved 
the claim of Ref. [40] for odd-parity perturbations without restrict-
ing models.

We also searched for hairy BH solutions in quartic-order BGP 
theories by imposing the condition (2.11). In general, the additional 
interaction beyond the domain of GP theories leads to a vanishing 
determinant for the equations of motion on the static and spher-
ically symmetric background. This property does not hold under 
additional conditions, say, by choosing a branch with the vanish-
ing longitudinal component (A1 = 0) or by imposing the condition 
f = h.

For the branch A1 = 0, we analytically derived iterative solu-
tions around the horizon and at spatial infinity for the quartic-
order power-law model (4.5) with the BGP interaction (4.6). Nu-
merically, we also confirmed that the solutions in two asymptotic 
regimes connect to each other without any discontinuity outside 
the horizon. The coupling β4 works as corrections to the RN met-
ric. As we see in Fig. 1, the difference between two metric compo-
nents f and h induced by β4 is most significant in the vicinity of 
the horizon.

Imposing the two conditions f = h and X = Xc = constant, we 
also obtained three branches of exact solutions in quartic-order 
BGP theories satisfying the condition (2.11). The branch (i) cor-
responds to the RN-type solution (4.21) present for the model 
(4.22), in which case the longitudinal mode has the dependence 
A1 ∝ 1/

√
r at spatial infinity. The branch (ii) arises for the model 

(4.25) with the RN-type metric given in Eq. (4.24), but A1 ap-
proaches a constant for r → ∞. The branch (iii), which exists for 
the model (4.33), corresponds to A1 = 0 with the extremal RN 
metric given in Eq. (4.32).

In GP theories with the quartic power-law coupling (4.5), the 
branch A1 �= 0 is unstable against odd-parity perturbations [51]. 
Moreover, the branch with A1 = 0 gives rise to the speed of GWs 
approaching a constant different from 1 at spatial infinity, so this 
behavior can be odd with the observational bound of ct . In con-
trast, all the numerical and exact BH solutions derived in this 
paper satisfy ct = 1 even in the vicinity of BHs, so they are not 
prone to the instability problem against odd-parity perturbations. 
Thus, the extension from GP theories to BGP theories allows the 
possibility for realizing hairy BH solutions in which the behavior 
of tensor perturbations is similar to that in GR.

In this paper, we focused on perturbations in the odd-parity 
sector, but it is necessary to study the behavior of even-parity per-
turbations in order to ensure the stability of BHs in the model 
with ct = 1. In particular, the existence of scalar perturbations in 
the even-parity sector may give rise to additional constraints on 
the model parameters. The numerical solutions with A1 = 0 and 
exact solutions with Q �= 0 presented in Secs. 4.1 and 4.2 do not 
exist as the counterparts of shift-symmetric Horndeski theories, 
so it is of interest to investigate the stabilities of them against 
even-parity perturbations. It is also interesting to place observa-
tional constraints on dark energy models in quartic-order BGP the-
ories satisfying the condition (2.11). These issues are left for future 
works.
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Appendix A. Coefficients in the background equations of motion

The coefficients appearing in Eqs. (2.6)–(2.9) are given, respec-
tively, by

c1 = −2G4 + 2

(
A2

0

f
− 2h A2

1

)
G4,X

− 2h A2
1

f

(
A2

0 − f h A2
1

)
G4,X X

−2h A2
1

f

(
7A2

0 − 5 f h A2
1

)
f4 − 2h A2

1

f 2

(
A2

0 − f h A2
1

)2
f4,X ,

c2 = − h

2 f
A′ 2

0 ,

c3 = −4h2 A1 A′
1G4,X

− 4h2 A1

f

(
A2

0 A′
1 + A0 A′

0 A1 − f h A2
1 A′

1

)
G4,X X

− 4h2 A1

f

(
5A2

0 A′
1 + 3A0 A′

0 A1 − 4 f h A2
1 A′

1

)
f4

− 4h2 A1

f 2

(
A2

0 − f h A2
1

)
×

(
A2

0 A′
1 + A0 A′

0 A1 − f h A2
1 A′

1

)
f4,X ,

c4 = 2(1 − h)G4 + 2

f

(
h A2

0 − A2
0 − f h2 A2

1

)
G4,X

− 2h2 A2
0 A2

1

f
G4,X X

− 2h2 A2
1

f

(
5A2

0 − f h A2
1

)
f4

− 2h2 A2
0 A2

1

f 2

(
A2

0 − f h A2
1

)
f4,X ,

c5 = h

2 f
A′ 2

0 ,

c6 = 4h A0 A′
0

f

(
G4,X − h A2

1G4,X X

)

+ 4h2 A0 A1

f

(
A0 A′

1 − 5A′
0 A1

)
f4

− 4h2 A0 A′
0 A2

1

f 2

(
A2

0 − f h A2
1

)
f4,X ,

c7 = 2 (h − 1) G4 + 2h(2h − 1)A2
1G4,X − 2h3 A4

1G4,X X
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+ 2h2 A2
1

f

(
A2

0 − 5 f h A2
1

)
f4 − 2h3 A4

1

f

(
A2

0 − f h A2
1

)
f4,X ,

d1 = h

2 f 2
A′

0 ,

d2 = 2h2 A0 A2
1

f 2
G4,X X + 6h2 A0 A2

1

f 2
f4

+ 2h2 A0 A2
1

f 3

(
A2

0 − f h A2
1

)
f4,X ,

d3 = − A′
0

2 f
,

d4 = −2A0

f
G4,X + 2h A0 A2

1

f
G4,X X + 10h A0 A2

1

f
f4

+ 2h A0 A2
1

f 2

(
A2

0 − f h A2
1

)
f4,X ,

d5 = − h

f
A′′

0 ,

d6 = −2h A′
0

f
+ 4h2 A0 A1 A′

1

f
G4,X X

+ 16h2 A0 A1 A′
1

f
f4 + 4h2 A0 A1 A′

1

f 2

(
A2

0 − f h A2
1

)
f4,X ,

d7 = −2(h − 1)A0

f
G4,X + 2h2 A0 A2

1

f
G4,X X

+ 8h2 A0 A2
1

f
f4 + 2h2 A0 A2

1

f 2

(
A2

0 − f h A2
1

)
f4,X ,

d8 = 2h2 A1

f
G4,X + 2h2 A1

f 2

(
A2

0 − f h A2
1

)
G4,X X

+ 2h2 A1

f 2

(
5A2

0 − 4 f h A2
1

)
f4

+ 2h2 A1

f 3

(
A2

0 − f h A2
1

)2
f4,X ,

d9 = −4h2 A0 A′
0 A1

f
G4,X X − 2h A0 A1

f

(
8h A′

0 + h′ A0
)

f4

− 4h2 A0 A′
0 A1

f 2

(
A2

0 − f h A2
1

)
f4,X ,

d10 = 2h(h − 1)A1G4,X − 2h3 A3
1G4,X X − 8h3 A3

1 f4

− 2h3 A3
1

f

(
A2

0 − f h A2
1

)
f4,X .

Appendix B. Instability of the charged stealth Schwarzschild 
solution in a specific GP theory

Let us briefly revisit the instability of the charged stealth 
Schwarzschild solution stemming from the specific quartic-order 
coupling in GP theories found in Ref. [51]. This solution arises for 
the couplings

G4 = M2
pl

2
+ 1

4
X , f4 = 0 . (B.1)

In this model, there exists the following charged stealth
Schwarzschild solution [41]:
f = h = 1 − 2M

r
, A0 = P + Q

r
,

A1 = ε

√
2P (M P + Q )r + Q 2

r − 2M
, (B.2)

with X = P 2/2, where M , P , and Q are integration constants. We 
substitute Eqs. (B.1) and (B.2) into one of the propagation speed 
squares along the angular direction c2

�1 given in Eq. (3.14). Ex-
panding it around the BH horizon at r = 2M and picking up the 
leading-order contribution, we obtain

c2
�1 = − M(4M2

pl + P 2)

(2M P + Q )2
(r − 2M) +O((r − 2M)2) . (B.3)

Provided that M > 0, we have c2
�1 < 0 outside the horizon. Thus, 

the instability of BHs (B.2) arises due to the negative sound speed 
squared.

Appendix C. Disformal transformation of a specific GP theory

In Appendix A.3 of Ref. [15], the disformal transformation of 
quartic-order GP theories is presented. Let us consider the theory 
given by the action

S =
∫

d4x
√−ḡ

[
−1

4
F̄μν F̄ μν + Ḡ4 R̄

+ Ḡ4, X̄

{
(∇̄μ Āμ)2 − ∇̄μ Āν∇̄ν Āμ

}]
, (C.1)

where a bar represents quantities associated with the metric ten-
sor ḡμν . For the coupling Ḡ4 = M2

pl/2 + X̄/4, there exists the 
charged stealth Schwarzschild solution [41], which was shown 
to be unstable against odd-parity perturbations [51]. In this Ap-
pendix, we consider the theory related to (C.1) via the disformal 
transformation:

ḡμν = gμν + �(X)Aμ Aν , (C.2)

with Āμ = Aμ . The quantities without a bar represent those as-
sociated with the metric gμν . By using Eqs. (A.21a)–(A.21f) of 
Ref. [15], the specific GP theory (C.1) is transformed to the action 
(2.1) with new interactions of the forms

1

4
α6(X)F μν Fμν , and

1

4
α7(X)Aμ Aν Fμρ Fν

ρ , (C.3)

where the functions α6(X) and α7(X) are related to G4(X) and 
�(X). Thus, the GP theory (C.1) cannot be mapped to the BGP 
theory (2.1) itself via the disformal transformation. It is worthy 
of mentioning that these new interactions do not arise in shift-
symmetric Horndeski theories, since the term Fμν identically van-
ishes by taking the scalar limit Aμ → ∂μφ.
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