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Abstract. Complex machine learning models have been fundamental for achieving accurate
results regarding events classification in High Energy Physics (HEP). However, these complex
models or black-box systems lack transparency and interpretability. In this work, we use
the SHapley Additive exPlanations (SHAP) method for explaining the output of two event
machine learning classifiers, based on eXtreme Gradient Boost (XGBoost) and deep neural
networks (DNN). We compute SHAP values to interpret the results and analyze the importance
of individual features, and the experiments show that SHAP method has high potential for
understanding complex machine learning model in the context of high energy physics.

1. Introduction

Classifying High Energy Physics (HEP) events, or separating signal events from the background,
is one of the most important analysis tasks in the HEP field, and a fundamental work in the
research of new phenomena. The complicate nature of HEP processes requires the use of complex
Machine Learning (ML) classifiers, like tree ensembles with thousands of trees, or deep neural
networks with thousands of layers and millions of parameters [6]. These complex ML models are
viewed as black-boxr systems that frequently lack transparency and interpretability, as opposed
to the white-box systems like linear or decision trees-based models, that are more simple and
understandable, but are less accurate than black-box systems. Fully understanding complex ML
models increase their reliability in accurately identifying physics of interest and also in drawing
conclusions about proposed theories.

Explainable Artificial Intelligence (XAI) is a current research field that proposes methods
and techniques for producing more explainable models, and as well as a conceptual framework
for a better understanding of the predictions performed by artificial intelligence systems [4].
This work is focused on the use of the SHapley Additive exPlanations (SHAP) [9] method,
a post-hoc explainability technique from the XAI field that creates a new explanation model
for providing local explanation by assigning to each feature of each data point an importance
value on the model’s prediction. More precisely, in this work we use the SHAP method for
interpreting the predictions performed by two HEP event classifiers that are based on eXtreme
Gradient Boost (XGBoost) [5] and deep neural networks (DNN). The classification problem in
this paper consists of identifying the Higgs boson, which is the signal of interest, and the goal
is to separate it from the background. The public Higgs dataset described in [3] is used.
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The Python shap framework [9] is used in the paper. This framework provides diverse
methods for computing the importance features values, as well as for the visualization of
the feature contribution on the model’s prediction. In addition, by aggregating the local
explanations, it is possible to compute global explanations, capturing global patterns that
contribute to understand the model’s behavior.

This paper is organized as follows. In Section 2 we describe the dataset and the classifiers
configuration. Then, in Section 3 we introduce the SHAP method and show the SHAP values of
each HEP event classifier, using diverse plots provided by the shap module. Finally, in Section
4 we present the conclusions and the future work.

2. High energy physics events classification

2.1. Dataset

In this work, we use a publicly available benchmark dataset, corresponding to simulated data
generated to perform the event classification task. The dataset is downloaded from OpenML [10],
and it is a subset of the Higgs dataset described in [3]. Here, the signal process corresponds to
the production of new theoretical Higgs bosons, and the background is the process with identical
decay products but different kinematic features. More precisely, the signal is the process defined
by: gg — HY - WTH* — WTW*h? — WTW=bb, where the signal process starts with the
fusion of two gluons (gg), with intermediate Higgs and W bosons that finally decay into a pair
of b quarks.

Each event is represented by a feature vector z € R?® of 21 low-level features corresponding to
physics properties measured by the detector, and 7 high level features derived from the previous
ones. The low level features consists of transverse momentum measurements (lepton_pT, jet1pT,
jet2pt, jet3pt, jetdpt), pseudorapidity (lepton_eta, jetleta, jet2eta, jet3eta, jetdeta), azimuthal
angles (lepton_phi, jetlphi, jet2phi, jet3phi, jet4phi), b-tagging information of each jet (jet1lb-
tag, jet2b-tag, jet3b-tag, jetdb-tag), missing energy_magnitude, and missing energy_phi. The
high-level features include reconstructed masses: m_jj, m_jjj, m_lv, m_jlv, m_bb, m_wbb, and
m_wwbb. Here, |, v, j, and b are the notations for lepton, neutrino, jet, and b-quark, respectively.
In addition, each event has the class label y € {0,1}, and from the machine learning point of
view, this a binary classification problem, where events are classified as signals (y = 1) or
background (y = 0).

2.2. Building the classifiers

Machine learning (ML) has been fundamental for the analysis of HEP data [2] and in this
work, we build two ML classifiers, using eXtreme Gradient Boost (XGBoost) and deep neural
networks (DNN). We train and evaluate each classifier using the Higgs dataset which is divided
into training, validation and test sets in a 60%, 20%, 20% split. Models were trained in
http://www.hpc.utfsm.cl cluster. Then, each classifier together with the testing dataset will
be the input of the SHAP method for interpreting the outputs of the models, as shown in Figure
1.

2.2.1. XGBoost classifier. XGBoost [5] is a tree based ensemble ML technique with an efficient
implementation of gradient boosted algorithm. For model training, we used the Python XGBoost
package and the scikit-learn library. Several parameters need to be selected to maximize
model performance, hence we performed parameter tuning using a grid search approach, and
10-fold cross-validation, with ROC AUC as selection metric. The best model were obtained
for the following parameter values: max_depth = 2, min_child_weight = 5, subsample = 0.5,
colsample_bytree = 0.8, eta=0.01, and eval_metric = auc, using the binary logistic as objective
function, and n_rounds = 5000. As a result, the best XGBoost classifier achieved F1-score 0.75,
precision 0.63, recall 0.93, accuracy 0.67, and AUC 0.81.
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Figure 1. (a) Schematic representation of the local explanation of an event classifier using
SHAP. (b) SHAP local explanation using the waterfall plot. We observe the SHAP values of an
individual event’s features. The prediction of the classifier (XGBoost) is f(z) = 1.218 and the
base value E[f(x)] = 0.123. Here, the feature m_wwbb has a SHAP value +0.77 indicating is
pushing higher the prediction value, and the feature m_wbb has a SHAP value —0.6, and hence,
is pushing lower.

2.2.2. DNN Classifier. Deep learning, i.e., artificial neural networks with multiple layers, is a
ML approach that have achieved impressive results in different research fields, including HEP.
In this work, we use a fully connected neural network, and the architecture together with the
hyper-parameters were found using Talos [1], a Python hyperparameter optimization framework
that can be used together with Keras. The best results were obtained for a brick shape network
with 4 hidden layers with 64 neurons each one, and the ReL.u activation function. The output
layer has 2 neurons and the sigmoid activation function, as usual in binary classification. We
use the binary cross entropy loss function, the AUC validation metric, and the Adam optimizer,
with learning rate 1.0, batch size 512, and 100 epochs. The best DNN classifier achieved F1-score
0.67, precision 0.68, recall 0.66, accuracy 0.66, and AUC-ROC 0.71.

3. Explainability using SHAP

8.1. SHAP method

Once the classifiers are built, the next step is to explore the model explainability. The SHapley
Additive exPlanations or SHAP [9] method is a technique of the XAI field based on concepts
of the cooperative game theory to compute a unified measure of feature importance, the so-
called SHAP values, which summarize the importance of each feature on the model prediction.
SHAP is a post-hoc and model-agnostic method, i.e., it creates a new explanation model for a
given black-box system, by extracting relationships between the feature values and the black-box
system output [4].

In this work, we interpret the predictions of the HEP event classifiers using the tools provided
by SHAP. As shown in Figure 1.(a), the SHAP method receives as inputs the ML classifier (the
XGBoost or DNN classifier) and a set of events, and generates the SHAP values of each event
of that set. Then, the local explanations can be visualized using the plots provided by the shap
Python module, like the waterfall plot depicted in Figure 1.(b). This plot allows us to visualize
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Figure 2. Force plots. SHAP values of a single prediction of the (a) XGBoost and (b) DNN
classifiers. Features that contributes to higher and lower SHAP values are shown in red and
blue, respectively, along with the size of each feature’s contribution to the model’s output.

the SHAP values of each feature in a particular event. Here, the model prediction made by the
XGBoost classifier is f(x) = 1.218 and the base value (or expected value) is E[f(x)] = 0.123.
Note that in this work, the classifiers predict an score in the range [0, 1], but in the waterfall
plot, the prediction an base values are the values before to transform log odds to probabilities.

As described in [9], SHAP is an additive feature explanation method that considers a ML
model f that predicts y = f(z) from an input = = [z1,...,2], and an explanation model g
that is defined as a linear function of binary variables, such that g(z’) = ¢o + Zf\il ¢iz. Here,
2" € {0,1}M is a binary vector of ones and zeros: one if the feature is present and zero if not.
M is the number of features, and ¢; € R are the feature importance values.

Briefly speaking, the SHAP values are computed by combining the Shapley values (from
game theory) and the conditional expectaction function of the original model f. When the
explanation model g satisfies the following three properties: local accuracy, missingness, and
consistency [9, 7], the SHAP values are given by:

S|N(M — |S] - 1)!
>y [SIHM — 15[ = 1)

oilf, ) = IRl S UL — £u(S) (1)

SCTSaun{i}

where Sy ;) 1s the set of all features, S is the set of non-zero indices in 2/, and f,(S) =
E[f(z)|xs] is the expected output of the model conditioned to the feature values of the subset
S [7]. The exact determination of SHAP values is computationally expensive, but there are
different variants of the method like Tree SHAP algorithm [8] that deals with decision trees-
based models and calculates exact SHAP values in a fast way, or the Deep SHAP [9] algorithm
which is optimized to explain models based on deep neural networks.

3.2. SHAP values

We use the TreeEzrplainer and DeepFExplainer methods, provided by the shap Python module,
and each one implements the Tree SHAP and Deep SHAP algorithms, respectively, for computing
the SHAP values. Then, we use force plots, which show how each feature forces the output value
of the model. As shown in Figure 2, the red/blue color indicates that features push the prediction
higher/lower, and the magnitude corresponds to the amount of contribution of each feature on
the model’s prediction. The XGBoost classifier predicts an score in the range [0, 1], and then, by
selecting a threshold, the classification is made: the event is classified as signal if the XGBoost
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Figure 3. Global explanation. Summary plots for interpret the global feature influences on
HEP event classification. m_bb and m_wwbb are the most contributing features on the model’s
prediction. Each dot represents an event, and a higher SHAP value (z-axis position) indicates
the model predicts higher, and vice-versa.

prediction is larger than the threshold and is classified as background otherwise. Hence, in the
example of Figure 2, the XGBoost model predicted f(z) = 0.77, and the feature m_wwbb whose
value is 0.5475 is pushing higher the prediction of the model, i.e., this feature is pushing to
predict the signal class, and its contribution is quantified with the SHAP value equal to 4+0.77
(SHAP values of this event are shown in Figure 1.(b)). On the other hand, the feature m_wbb
whose value is 0.5364 is pushing the prediction to the background class, with a SHAP value
equal to —0.6.

The features contribution when the DNN classifier is used to predict on the same previous
event is different compared the the XGBoost model. As shown in Figure 2.(b), the DNN
model predicted f(z) = 0.54, and the features m_wbb = 0.5364, jet3b-tag = 0, jetl-btag
= 2.173, and m_bb = 0.5837 with SHAP values equal to —0.19, —0.08, —0.07, and —0.07,
respectively (obtained from the computational experiments), are pushing the prediction lower
(to background class), and the feature m_jlv = 0.5566 is pushing higher, with the SHAP
value equal to +0.06. Note that this force plot can be obtained for each instance of the
testing set, but can also can be obtained for the entire dataset (more plots available at
https://github.com/rpezoa/hep_shap/).

By combining the local explanations it is also possible to obtain a global explanation. The
SHAP summary plot provides this information, and Figure 3 depicts this plot for each classifier.
Here, each dot represents an individual event of the testing set. The y-axis shows a feature rank
in descending order (we show the 20 first features), the position of the dots on the z-axis indicates
the individual impact (the SHAP values) of each feature, and its gradient color indicates the
value of the feature. In the plot of Figure 3 we can observe that the m_bb, m_wwbb, and m_wbb
are the most important features on average in both models. We also see that the lower values
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of m_bb and m_wwbb (blue dots) push prediction higher (higher SHAP values), but in the case
of the XGBoost model, this impact is bigger due to the cluster of blue dots is further from the
center compared to the DNN model. Hence, values close to the center represent less impact, like
jet2b-tag feature. Figure 3 also shows that both classifiers coincide in 17 of the first 20 most
important variables, but there is a difference in the order of the feature importance and in the
magnitude of impact of each feature. For instance, the XGBoost model has the feature m_jjj in
the fourth place of importance, but the DNN model has this feature in the place number 17.
This result shows us the different nature of the learning process of each classifier, and hence,
the application of an explainability method like SHAP can help us to strategically control and
adjust the black-boxr system.

4. Conclusions

We have shown the application of the SHapley Additive exPlanations (SHAP) method to explain
the output of two HEP events classifiers, based on eXtreme Gradient Boost (XGBoost) and
deep neural networks (DNN), using the Higgs public dataset for classifying the signal from
background. The present paper shows the application of SHAP method in complex machine
learning systems, or black-bor systems, in the context of HEP events classifiers. Using the
TreeExplainer and DeepEzxplainer methods, provided by the Python shap library, we computed
the SHAP values, i.e, we calculated a measure that summarizes the feature contribution of
each event on the model prediction. Results showed the top-level features m_bb, m_wwbb,
and m_wbb were the most important features on average in both models, contributing to push
higher the model’s prediction, i.e., the value of f(x) is higher, pushing to predict the signal
class. Even though both classifiers obtained a similar set of most important features, showed a
different distribution of SHAP values, which clearly shows a distinct learning process on each
classifier. This work is a starting point for contributing to a rigorous understanding of physics
processes when machine learning methods are used. The future work include the development
of a framework able to explain different machine learning models using SHAP, using datasets of
other physics phenomena of interest. In addition, SHAP values can be used as a feature selection
technique, and a comparison with the traditional feature selection methods will be performed.
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