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Abstract

®

CrossMark

Continuous variable multipartite entanglement is an important resource in quantum optics and
quantum information. Non-degenerate optical parametric oscillator (NOPO), generally working
in a resonant regime, can generate high quality tripartite entanglement. However, the detuning
in a real experiment is inevitable and sometimes necessary, for instance, in an optomechanical
system. We calculate the tripartite entanglement from a detuned triply quasi-resonant NOPO.
Unlike the previous literature using inseparability criterion, we use the positivity of partial
transpose, a sufficient and necessary criterion, to characterize the tripartite entanglement with
full inseparability generated from a detuned NOPO. We also consider the influence of the pump
and signal/idler losses on the tripartite entanglement. The results show that, the tripartite
entanglement could exist even with a large detuning of several times cavity linewidth, and may
be better for a detuned regime than for the resonant one under some conditions. With a fixed
non-zero loss which always exists in a real experiment, an appropriate value of non-zero
detuning could lead to the best entanglement. What’s more, unlike the bipartite entanglement,
which exists both below and above threshold, the tripartite entanglement only occurs for a
nonzero classical amplitude of signal/idler field. The jumping between the tripartite and
bipartite entanglement could make the NOPO become a quantum state switch element, which
promises a potential application on the multiparty quantum secret sharing.

Keywords: tripartite entanglement, optical parametric oscillator, detuned,

the positivity of partial transpose

1. Introduction

Continuous variable (CV) entanglement is an important
quantum resource in quantum communication, quantum
computation and quantum precision measurement [1-3].
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BY terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

Especially, the multipartite entanglement, is the core to
realize quantum computation and quantum network. Tripartite
entanglement, with the least number of entangled multi-party,
is of great significance. Tripartite entanglement can be gen-
erated by coupling squeezed beams on beam splitters [4], or
directly through nonlinear processes such as optical paramet-
ric down-conversion [5-9], second harmonic generation [10—
13] and atomic four-wave mixing [14, 15]. Unlike method
with beam splitter mixing of the same-frequency modes, dir-
ect optical parametric oscillator (OPO) could generate mul-
ticolor multipartite entanglement, which has wider applic-
ations into quantum internet [16—18]. OPO proves to be
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an effective device to generate high-quality entanglement
because of its low loss and strong nonlinearity. Three-color
tripartite (pump-signal-idler) entanglement can be directly
generated by a nondegenerate OPO (NOPO) above threshold
[5, 6]. Quadripartite Greenberger—Horne—Zeilinger (GHZ)
entanglement [19] or cluster entanglement [20] were also
experimentally realized in virtue of the spatial modes.

The OPO usually works in a resonant regime. The fre-
quencies of signal/idler/pump fields are the same to the cav-
ity frequency. The detuning is introduced if the frequency
of at least one laser beam is not resonant in the cavity.
The detuning should be avoided in a conventional experi-
ment for entanglement generation due to its losses. However,
the detuning is inevitable in a real experiment limited by
the control precision of the cavity length. What’s more, the
detuning is required in some particular experiments. For a
laser interferometer gravitational wave detector (GWD), the
detuning of the signal recycling cavity greatly enhances the
sensitivity at the optical spring frequency band [21, 22].
Adding an optical parametric amplifier further enhances the
optical spring effect [23-25]. Recently, a detuned OPO is
used to generate frequency-dependent squeezing which is
required to achieve the GWD sensitivity beyond the stand-
ard quantum limit across the whole frequency band [26]. In
the cavity optomechanics, the detuning is a feasible exper-
imental parameter to control the optomechanical coupling
strength [27-29].

The detuned OPO has been investigated in the literature
[26, 30]. In the early days, people may focus its classical prop-
erties such as bistable or self-pulsing behaviour, which exhib-
its period doubling and chaos [31, 32]. Then the impact of
detunings on the squeezing [33, 34] and bipartite entanglement
[35] was reported. In recent years, multipartite entanglement
from a detuned OPO is also reported. The tripartite entangle-
ment remains with a large detuning [36]. The detuning of the
signal field impacts tripartite entanglement more than that of
pump field [37]. All of the above literature use the inseparab-
ility criterion to characterize tripartite entanglement. And few
of them focus on the hysteresis properties of tripartite entan-
glement induced by the detunings in an NOPO.

In this article, we consider all of the detunings, say that
of the signal, idler and pump fields of a triply quasi-resonant
NOPO. The positivity of partial transpose (PPT) [38, 39],
instead of the inseparability criterion [4] is used to charac-
terize the full tripartite entanglement. PPT is a sufficient and
necessary condition to verify multipartite entanglement for
1 X N partitions, rather than the only-sufficient inseparabil-
ity criterion. The results show that, although the tripartite
entanglement generally decreases with the detunings increas-
ing, it still exists with large detunings. Under some condi-
tions, the tripartite entanglement may be better for a detuned
regime than the resonant regime. Unlike the bipartite entangle-
ment from NOPO may exist both below and above threshold,
the tripartite entanglement only occurs with a non-zero solu-
tion of down-converted classical amplitude. This is reason-
able because it is the pump depletion which constructs the
quantum correlation between the pump and down-converted
fields and finally leads to tripartite entanglement. We also

consider the influence of the losses of the pump field and
signal/idler field. Without detunings, the tripartite entangle-
ment deteriorates with increasing loss. However, with detun-
ings, the best entanglement may occur with a nonzero loss,
even with a large loss. Furthermore, the tripartite entangle-
ment exhibits hysteresis property like the classical field acts.
By adjusting the detunings and the pump amplitude, the NOPO
could be regarded as a quantum state (more precisely tripartite
entangled state) switch.

The paper is organized as follows. Section 2 gives the
Langevin equation and its steady-state solution. Section 3
gives the quantum Langevin equation and its solution in the
Fourier frequency. A brief introduction of criteria of tri-
partite entanglement for inseparability and PPT is given in
section 4. The numerical simulation of tripartite entanglement
with/without detunings is given in section 5. The loss effect on
the entanglement is simulated in section 6. In the discussion
of section 7, the quantum state control with detuned NOPO is
discussed.

2. Theoretical model

We consider the theoretical model of type-II NOPO shown
in figure 1. A second order nonlinear crystal with the non-
linear coefficient of x(®) is placed in a triangle cavity. The
input pump field of a frequency wy is down-converted into
two fields of frequencies w; and w,. The ~; (i =0, 1,2) are the
total loss parameters respectively of the pump, signal and idler
fields. We consider the triply quasi-resonant case and define
the detuning parameter as
AOZQJO—WO,Alz(.ul—f.u]’Azzwsz27 )
Yo/T /T Y/T

where w; (i =0, 1, 2) are the resonant frequencies respectively
corresponding to the pump, signal and idler fields, 7 the cav-
ity round-trip time. Neglecting all of the intracavity losses, the
loss parameters are related to the amplitude reflection (trans-
mission) coefficients 7; (¢;) of the coupling mirrors through

ri=1—=", ti =+/2%,,i =0,1,2, 2)

where -, are the one-pass loss parameters corresponding to
the input-output mirrors.

The Langevin motional equations, which could be derived
from the Heisenberg motional equations, considering intracav-
ity losses, are given by

~in

7'(;10 =—Y% (1 — ZA()) ag — ZX*&]&z =+ 1/ 2’71,0&6” + 2’}/COC0 s
(Ba)

Tay = —y (1 —iAy) ay +2xalao + /27, a0 + /276, &0,
(3D)

Télz =-—7 (1 — iAz)&z +2X&J{flo +\/ 2,Yb2&i2n —+ 4/ 2’}/526‘1211,
(30)

where @; (i =0,1,2) are the corresponding intracavity
annihilation operators, x the nonlinear coupling coefficient,
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Figure 1. The theoretical model of non-degenerate optical
parametric oscillator. @" (i = 0,1,2) are the annihilation operators
of the incoming pump and signal fields, and a™ (i =0, 1,2) the

corresponding output fields.

7. the intracavity losses due to the absorption, surface
scattering, and the total loss parameters v; = 7y, + 7.,. The
@ (i =0,1,2) are the annihilation operators of input fields.
The ¢ (i =0,1,2) are the annihilation operators of input
vacuum fields from intracavity losses. For the convenience
of numerical simulation, assuming vs, = Y5, = Vo> Ve = Ve, =
7., we define the intracavity losses of pump and signal (idler)
fields as

Veo
ly= —>— “4)
Yoo T Yeo
and
Ve
L =1, = . (5)
! ? Vb + Ye

Using the semiclassical approach, we have a; =< a; >
+da; = «o; + da;, where o; and §a; are the classical amplitudes
and quantum fluctuations associated with the intracavity fields.
Ignoring all of the fluctuations and intracavity losses, the
equations of motion of the classical amplitudes are given by
[33, 35]

Tép = —70 (1 —iAg) ap — 2x yan + \/27;,0046", (6a)
7o = =71 (1 —iA) o +2x a5 ap, (6b)
ng = 7’}/2(1 71'A2)042+2X017040. (6C)

The equations above could give the dynamical behavior
of the cavity fields. However, to investigate the squeezing or
entanglement generation, we focus on the steady-state results.
Making the left side of the equation (6) be zero, the steady-
state equations are given by [40]

Yo (1 —iAg) g = —2x vy + \/Z'ybuaé)", (7a)
1 (I —=iAp) oy =2x a5 ag, (7b)
T (1 —iAs)ap =2x af ap. (7¢)

Below the threshold, the gain of the down-converted fields
is smaller than the loss, then the average amplitudes of the
intracavity signal and idler fields are both zero, thus the steady-
state solutions below threshold are given by

in
2’)/170 (&%)

_—— 8
Yo (1 —iAo) ®

ay=a;=0,a9=

Above the threshold, the oscillation condition of triply
resonant OPO requires the two detunings of down-converted
fields are the same [40]

A=A, =A. )

Solving equations (7), by multiplying the conjugate of the
second by the third one, the pump threshold is given by

172

07 (14 A% (14 A2).
8|X|2’7b0( + )( + 0)

o'l = (10)
We can see that the pump threshold increases not only with
losses (including intracavity and output coupling losses of all
the fields) increasing, but also with the detunings A and A
increasing. Then the pump parameter normalized to the pump
threshold is given by
_ | O(;)n|2
o[,

an

Note that we normalize the pump intensity to the
real pump threshold including the detunings, unlike [40]
where the pump is normalized to the resonant threshold.
This normalization makes it convenient to study the vari-
ation of entanglement with the pump intensity with the
detunings.

Using equation (7), we yield an equation of intracavity sig-
nal field

21012\ 2
(1- a8+ 0B 4 (A 4+ A)°
(1+A2) (1+A2)

=0 (12)

Two cases are related to the solution of equation (12) as
follows.

Case 1: AjA <1

When o > oy = 1, the intracavity signal/idler intensity,

[ = loy|?, (j = 1, 2), has one nonzero solution

- ViV 1/2
¥ :4|’;|"2{[a(1+A2) (1+A2) — (A +A)
+MA—%, (13)

where j,k=1,2,j # k. The OPO operates in a monostable
regime, shown in figure 2(a). However, the solution will not
be stable if two conditions as follows are simultaneously
satisfied [32, 33],

2
AA0<(1+ HA(’), (14a)

27!
1+A2)[1+AZ2+4~7(1 !
! —2(14+9")" [1+ A2 +29" (1+ AoA)]

where we assume the two loss parameters of down-converted
fields are the same, i.e. 7y; =y, =~ for most cases in the
following, v’ =~/v. This unstable region is plotted with
dashed line in figure 2(a).
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Figure 2. The normalized signal field intensity /5*" vs the normalized pump parameter o: (a) monostable curves, where

Ap=1,A = 3,7’ = 1; (b) bistable curves, where Ay =

2,A=2,'

= 1. The blue solid lines denote stable solutions, the red dashed

lines denote unstable solutions; (c) Region map of stability in the (A, Ag) plane with v’ = 1 denoted by monostable, bistable and unstable,

respectively.

Case 2: AgA > 1

th _ _ (A+A)?
When o = (+a0(1+22)

are obtained, while only two of them are stable, so OPO may
operate in a bistable regime, shown in figure 2(b). The ofh
is the bistable pump threshold. In this region, the two stable
solutions of intracavity signal/idler intensity are given by

< o < ot =1, three solutions

av _ VK0 211/?

; 4xp{p@+AQU+A@@%+AW
+AGA — 1}, (15a)

[ =0, (15b)

J

Above threshold, o > 1, the solutions are the same to
equation (15a) and also to equation (13).

As analyzed above, OPO could operate in three regime,
depending on the value of two detunings, A and Ap. In

figure 2(c), the three regime is shown in the (A, Ay)
plane.

Now we consider the phases of intracavity average fields.
Beginning with equations (7), and assuming the phases of
intracavity pump, signal and idler fields are respectively

©0, P15 P2, 1€ ap = |agle?, ay =|aq]e, ar = |asle'??,
then the steady-state equations become

0 (1 — i) |ao|e™®® = —2x" |au1[Jan] €1 H22) + /29,0,

(16a)

7 (1 —iA)\al\eiS"‘ :2x\a2\|a0|ei(‘/’°_*@2), (16b)

7 (1 —iA)\ozg\e"“"2 :2x\a1\|ao|ei(‘ﬁ°_“"). (16¢)

Assuming two down-converted fields have the same phase
and the same intensity, i.e. ¢ = @2 = and |a;| =|az| =
||, then the steady-state solution above threshold in the mono-
stable regime is given by

) 2 0 in
Q2 — ' X W{oo‘o -, (17a)
Yo (1 —ilo) (1 —iA) +4|x [*|a]
4 1—iA) .,
ap = |a0|e’“"° — Meﬂw’ (17b)
2x
) =Qp = |O¢|ei9‘77 (17C)
Y170 ) 211/2
o=\ 31p [a(l FA2) (14 A2) = (Ag+A) ] L AA 1Y, (17d)
In the bistable regime, the nonzero steady-state solution is Toay = —o (1 — i Ng) g — 2x* (ada) + o 6a)
the same to that of monostable one, i.e. equations (17). This S Sain /9l 18
solution will be used in the following entanglement analysis. ' * \/Tbo o+ Vo, (18a)
ﬂmz—mu—mgmHax@w%+%wg
3. Quantum Langevin equations and solutions + /29, 08" + /27, &, (18b)
Using the semiclassical approaches and only considering the 8ay = —v (1 —iAy)bar +2x (0475510 + aoé&f)
quantum fluctuation operators of equations (3), the quantum i ain
Langevin equations are given by + /276,085 + /276,85 (18¢)
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Introducing the quadrature amplitude and phase operators
X=a+a'and Y= (a—a')/i, we can write equations (18) in
the matrix form as

J(0) =Af(0) +n (1), 19)
|
—% —4¢  —2xRe(m)
QAN —% —2xIm (az)
1] 2xRe(az)  2xIm(az) —-N
7 [ —2xIm(a2) 2xRe(az) NA;L
2xRe(a;)  2xIm(aq) 2xRe(ap)
—2xIm(a;) 2xRe(a;) 2xIm(ay)

where Re() and Im() respectively denote the real and imagin-
ary part of the complex amplitude of the fields. For simplicity,
the x is assumed to be real, i.e. the phase-matching condition
is fulfilled [40]. The diffusion matrix is given by

L o oy Ly e
n (t) = ; ( 27170 (SXHK:t + 2’700 5XC‘(1;7 2’71706)/2; + 27005)’:‘?)7
V2790,6Xa, 4 /270, 0X8) A/ 29,6 Yay + /27e, Yo
in in An Tin r
V/290,6%, 7/ 2900K8, /20,08, + /270,07 )
1 in in
= (B + ), 1)
pu
with two coefficient-related diagonal matrices
B = diag (/29 v/ 29005 /2005 V2705 V200V 20 )
(22a)
C = diag (V270 V290 V2900 V2905 V2700 V27 ), (220)
and £, fi" are respectively the input vectors of vacuum fluc-
tuations through the coupling mirrors and the intracavity
losses.
By Fourier transform of equation (19) with
flw) = ffo‘f f(H)e~"“'dr and using equation (21), we have
iwf(w) = Af(w) +n(w)
1 . .
= 47@)+~ (B @) + O @),

(23)

where f(w) and n(w) are respectively the Fourier transform
of f(1) and n(), f(w) = (6% (w), 671 (w), 6% (), 672 (w),
SX (w), 0¥ (w))", and £ (w) has a similar form with £ (w).
Using the input—output relation of the cavity of & = \/2vya —
@™ [41], we have

£ (W) = Bf (w) —fa (w), (24)
with £2(w) = (6K (w), 6738 (), X (), 6F3 (w), I (w),
5¥ ()

where f(1) = (0Xo,0Yy,0X;,0Y,,6X,,0Y>)" is the transpose of
the vector associated to the quadrature operators. The drift
matrix A is written as

2xIm(cy) —2xRe(aq) 2xIm(ay)
—2xRe(az) —2xIm(a;) —2xRe(ay)
_’YIAI 2XR€ (O[()) 2XIIII (QO) (20)
- 2xIm () —2xRe(ag) |’
2xIm (ap) -T2 ERAVYAY)
—2xRe(a) QPIAVS 72
[
Solving equations (23) and (24), we have
£ (w) = %B (iwl—A)'B—1I|f* ()
+ %B (iwl —A) "' Cf" (w), (25)

where I is the identity matrix. For convenience, the analyz-
ing frequency normalized to the linewidth of the fundamental
mode, Q =w/(v1/7), is used in the following.

4. Criteria for characterizing tripartite entanglement

There are two frequently used criteria to characterize CV
entanglement. The inseparability criterion developed by
Loock and Furusawa [4] is more feasible in experiment. With
the operators of the output fields of OPO, the inseparability
criterion is written as

<52 (Xl 75(2) > + <52 (Yl A gl?o) > > 4, (26a)
<52 (XO +5<1) > + <52 (?l ¥y — Y0)> > 4, (26b)
<52 (5(0 +5(2) > + <52 (g3 Yi+1,— i/o)> >4, (26¢)

where the g; (i =0, 1, 2) are the gain factors which are chosen
to minimize the variances on the left side of the inequalit-
ies. The tripartite entanglement exists, if any two of the three
inequalities are violated. However, this is a sufficient condition
for tripartite entanglement, rather than necessary [4].

The positive partial transposition (PPT) [38] is another cri-
terion to characterize CV entanglement. An n-mode Gaussian
state could be partitioned into two parts with ns +ng = n.
According to PPT, if one party, say ng, is separable from the
rest (na), the full density matrix remains positive under partial
transpose with respect to the party (ng). This criterion is neces-
sary and sufficient for 1 x N partitions of the state to verify
multipartite entanglement, where 1 and N are the number of the
modes of the first and second subsystem [42]. For three-mode
system, three partitions of 1 x 2 should be tested. The positiv-
ity is checked by verifying the symplectic eigenvalues of the
partially transposed covariance matrix. The state is separable if
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and only if all of the symplectic eigenvalues are greater than or
equal to 1. As we know, bipartite entanglement is simple on the
level of ‘separable or entangled’. In contrary, the multipartite
entanglement may be fully separable, partially separable and
fully inseparable [43]. Even the partially separable state itself
may have different types, which makes the characterization
of multipartite entanglement quite complex. Here we choose
fully inseparable criterion. That is, full tripartite entanglement
exists if and only if all of the smallest symplectic eigenvalues
of the partially transposed covariance matrix corresponding to
each partition of the three modes are smaller than 1 [6].

We use f= (0Xo,8Y,,6X1,6Y1,6X,,6Y,)7 as the fluctuation
operator vector of output fields. The canonical commutation
relations between any two operators are expressed in the sym-
plectic form as [39]

] = J 0 0 0
ﬁ,_ﬁ]:2zﬂ,j,ﬂ =[o v o|u={_, ,]- @D
00 J

The PPT employs covariance matrix V of the output fields
according to its matrix elements

1onn nn Y
Vig= 5 i +1ifi) = () ) (28)
where the square of the fluctuations is what we are interested
into, the average part is set to be zero, i.e. (f;) = 0.

The partial transpose of the covariance matrix is given by

V=AVA, (29)
where A could be one of the diagonal matrices:
diag(1,1,1,—1,1,—1), diag(1,—1,1,1,1,—1) and

diag(1,—1,1,—1,1,1), which are in fact the phase space mirror
reflections of the Wigner distribution with respect to any two
of the three output fields of OPO. The symplectic eigenvalue
of the covariance matrix V can be computed as the absolute
value of eigenvalues of matrix iQV. In the following we use
s0, 51, 52 to denote the smallest symplectic eigenvalue corres-
ponding to the partial transposes with respect to the pump,
signal and idler fields. The tripartite entanglement is numeric-
ally characterized by PPT criterion in the next section.

5. Numerical simulation

Take the results of equation (24) into equation (29), the mat-
rix iV and its eigenvalue is obtained. The following para-
meters are used, unless specified: vy =, =0.02, v =0.1,0 =
1.5,Q=0.1.

5.1 Tripartite entanglement without detunings

Firstly, we give the tripartite entanglement without detunings.
Figure 3 gives the smallest symplectic eigenvalues as a func-
tion of the normalized pump parameter for various normalized
analyzing frequencies. The tripartite entanglement exists with

selected parameters, as all of the smallest symplectic eigen-
values are smaller than 1. Note that s; = s, because the sig-
nal and idler fields are interchangeable. For the same para-
meters, s;, s, are always smaller than sy, due to the signal (or
idler) field exhibits stronger correlation to the whole system
than the pump field [5, 6, 8, 37, 44]. The increased analyz-
ing frequency leads to larger symplectic eigenvalues, hence
decreases entanglement. Furthermore, so with near-threshold
pump are very sensitive to the increasing analyzing frequency
and becomes larger quickly. However, sy with the far-threshold
pump changes little. Then an optimal pump intensity is needed
to obtain the best entanglement. The symplectic eigenvalues
versus analyzing frequency are plotted in figure 4. The eigen-
values across a large scope of analyzing frequency 2 from 0
to 5 are given, showing a monotonic increasing with Q2. Even
S0, the tripartite entanglement still exists.

5.2. Tripartite entanglement with detunings

As analyzed in section 2, with detuning, the OPO may work in
several regimes in terms of stable, bistable and unstable states,
depending on the values of the two detunings, Ay, A, and/or
the pump parameter o (also see figure 2). Here we just consider
the stable and bistable states.

By comparing equation (13) of Case 1 with AAp <1
and equation (154) of Case 2 with AA> 1, we find they
have the same steady-state solution of intracavity signal/idler
field. Therefore, the non-zero solution and the tripartite
entanglement degree are continuous when crossing AA =
1. However, the zero solution in the bistable region could
not exhibit tripartite entanglement [5, 6]. This is shown in
figure 5.

For the non-zero solution, the smallest symplectic eigen-
values as a function of the detunings are shown in figure 6.
The dependence of eigenvalues on the two detunings are
almost the same. The sy is much larger than s, s,. For Ao =0,
the so has a minimum at A =0, while for Ay=1, the sy
has a minimum at A ~ 0.3. Roughly speaking, the detun-
ings decrease the tripartite entanglement, which is consistent
with the literature for squeezing and bipartite entanglement
[33, 37, 45, 46].

6. Loss effect on tripartite entanglement

6.1 Loss without detunings

We first plot the effect of losses of pump I, and signal
(idler) I, =L on tripartite entanglement, shown in figure 7.
With increasing losses, all of the symplectic values become
larger and thus indicating less tripartite entanglement. By
comparison, the s;,s, are much more sensitive to the sig-
nal/idler loss than to the pump loss. What’s more, the so
becomes larger with a pump parameter near threshold. A
relatively larger pump could ease the requirement to the
losses, which is consistent to the experimental results
reported in [6].
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tripartite entanglement.
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Figure 4. The smallest symplectic eigenvalues as a function of the normalized analyzing frequency without detunings, for various pump

parameters of o = 1.5 (left) and o = 2.5 (right).

1.0 -
0.8

0.6~

So

$1,82

Symplectic eigenvalue

Pump parameter o

065 070 075 0.80 0.85 090 095

0.8~ So i
g $1,S2
[
Z 06
[
-2
(0]
S 04 ]
1o
<o
[}
€ 02
n
0.0 7 i - - - T L :
1 2 3 4 5

Pump parameter g
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above threshold (o > 1) are also plotted. Obviously, no tripartite entanglement exists for zero solution of |« »|. Tripartite entanglement

exists for nonzero solution of |a 5|, and becomes stronger with increasing pump parameter from bistable threshold to that above threshold.

6.2. Loss with detunings

As shown in figure 6, the dependences of symplectic eigenval-
ues on the two detunings, say A and Ay, are very similar. Thus,
for simplicity, we focus on the A dependence, while with
fixed Ag=0.

The symplectic eigenvalues as a function of signal/idler
detunings are plotted in figure 8, with various values of pump
loss, signal/idler loss, pump parameter and analyzing fre-
quency. We could find a surprising phenomenon that the tri-
partite entanglement does not monotonously deteriorate with

the detuning increasing. In the contrary, with large losses,
there are two symmetric detuning values around zero to get
the best tripartite entanglement, which could be obviously
seen in figures 8(a)-(d) with I, =0.75 or [/, =0.75. What’s
more, the best entanglement with great loss is better than
that without any loss. Decreasing pump power from oc=1.5
to o =1.1, greatly enhances the entanglement without any
loss, see figures 8(e) and (f). Decreasing analyzing frequency,
could enhance the extreme value of entanglement across
the detuning, but not change the shape of oscillation, see
figures 8(g) and (h).
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7. Discussions

In this paper, we numerically analyze the effect of detunings
on the tripartite entanglement generated from an OPO. We find
with a very large loss of signal/idler, an appropriate selection

of detunings could retrieve a high-quality tripartite entangle-
ment. It seems that detunings could compensate some loss to
obtain a good entanglement. However, the physics behind this
is still an open question. To our best knowledge, most of the
works in the literature discuss more on the numerical results
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Figure 9. Tripartite entanglement control with pump intensity in a
detuned OPO. The thick black line indicates the zero solution of
signal/idler fields without tripartite entanglement. The blue line
denotes the nonzero solution of signal/idler fields with tripartite
entanglement. If we increase the pump, OPO may start from the path
1 until it arrives at the threshold. Continuous increasing of pump
makes OPO abruptly jump onto the blue line along path 2 and get
tripartite entanglement at threshold. If we decrease the pump from a
point above threshold, OPO may goes into path 3 until it arrives at
bistable threshold. And then OPO jumps down to the black line
along path 4 and loses tripartite entanglement simultaneously. In
this way, the tripartite entanglement is effectively controlled by the
pump intensity operation. Note that this is different from bipartite
entanglement which exists for both zero and nonzero solution.

of detunings, not on the physics behind the influence of detun-
ings on the entanglement. Of course, the effect of detunings on
the steady-state field strength is evident, but on the quantum
correlation.

On the other hand, the detuned NOPO exhibits optical
bistability, causing an optical hysteresis from the point of
view of classical optical amplitude. The classical amplitude
may be related to the quantum correlation such as quadrature
squeezing and entanglement. As derived in the literature [33,
37, 45, 46], the bipartite entanglement exists both below and
above threshold, thereby not exhibiting hysteresis. However,
the tripartite entanglement does exhibit hysteresis as proved
in the preceding text. The clearer demonstration of this hys-
teresis is shown in figure 9. The rripartite not entangled state
below threshold would jump into the tripartite entangled state
with increasing pump across threshold. The tripartite entangled
state would not vanish abruptly when decreasing pump across
threshold. In stead, it will keep for a while until the pump is
reduced to the bistable threshold. What’s more, as shown in
figure 8, the best tripartite entanglement occurs in the bistable
region. The variation of changing from non-entanglement to
entanglement is very sharp (not continuous). This change

could be regarded as binary. In this way, the tripartite entan-
glement could be controlled in a binary form by changing
the pump. The NOPO could be regarded as a quantum state
switch element, which has some similarity to the classical
optical transistor behavior [47]. Note that, for a resonant
NOPO, the binary state change is similar, while this hyster-
esis property is missing, thus it could not exhibit the transistor
effect.

8. Conclusions

We calculate the tripartite entanglement among the signal,
idler and pump fields from a detuned type-II OPO. Based on
the PPT criterion (full inseparability), the tripartite entangle-
ment depends on several parameters including losses, pump
strength and analyzing frequency. With detunings, even a large
intracavity loss could still guarantee a high-quality tripartite
entanglement. Unlike bipartite entanglement which exists both
below and above pump threshold, tripartite entanglement only
exists for the down-converted nonzero solutions. With detun-
ings, the best tripartite entanglement occurs in the bistable
region. Similar to the down-converted classical field, the tri-
partite quantum entanglement also exhibits hysterical prop-
erty. This property may make a detuned NOPO a quantum
state controller such as a switch element.

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).

Acknowledgments

This work is supported by National Natural Science
Foundation of China (Grant No. 12004277), Scientific and
Technological Innovation Programs of Higher Education
Institutions in Shanxi (Grant No. 2020L0506), Shanxi
Scholarship Council of China (Grant No. 2021-005),
Natural Science Foundation of Shanxi Province (Grant No.
201901D111293) and Shanxi 1331 Project.

Conflict of interest

The authors declare no conflicts of interest.

ORCID iDs

Jun Guo @ https://orcid.org/0009-0003-4916-5156
Hengxin Sun @ https://orcid.org/0000-0002-2915-3006

References

[1] Shen L T, Shi Z C and Yang Z B 2019 Entropy 21 917

[2] Huo M, Qin J, Cheng J, Yan Z, Qin Z, Su X, Jia X, Xie C and
Peng K 2018 Sci. Adv. 4 eaas9401

[3] LiZ, Guo H, Liu H, LiJ, Sun H, Yang R, Liu K and Gao J
2022 Adv. Quantum Technol. 5 2200055


https://orcid.org/0009-0003-4916-5156
https://orcid.org/0009-0003-4916-5156
https://orcid.org/0000-0002-2915-3006
https://orcid.org/0000-0002-2915-3006
https://doi.org/10.3390/e21100917
https://doi.org/10.3390/e21100917
https://doi.org/10.1126/sciadv.aas9401
https://doi.org/10.1126/sciadv.aas9401
https://doi.org/10.1002/qute.202200055
https://doi.org/10.1002/qute.202200055

J. Opt. 26 (2024) 075201

J Guo et al

[4] van Loock P and Furusawa A 2003 Phys. Rev. A 67 052315
[5] Villar A S, Martinelli M, Fabre C and Nussenzveig P 2006
Phys. Rev. Lett. 97 140504
[6] Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S,
Martinelli M and Nussenzveig P 2009 Science 326 823—-6
[7] Jia X, Yan Z, Duan Z, Su X, Wang H, Xie C and Peng K 2012
Phys. Rev. Lett. 109 253604
[8] Yan Z and Jia X 2015 J. Opt. Soc. Am. B 32 2139
[9] Agusti A, Chang C W, Quijandria F, Johansson G, Wilson C M
and Sabin C 2020 Phys. Rev. Lett. 125 20502
[10] Zhai S, Yang R, Fan D, Guo J, Liu K, Zhang J and Gao J 2008
Phys. Rev. A 78 14302
[11] Zhai S, Yang R, Liu K, Zhang H, Zhang J and Gao J 2009 Opt.
Express 17 9851-7
[12] Yang R, Zhai S, Liu K, Zhang J and Gao J 2010 J. Opt. Soc.
Am. B 27 2721
[13] Li T, Mitazaki R, Kasai K, Okada-Shudo Y, Watanabe M and
Zhang Y 2015 Phys. Rev. A 91 023833
[14] Wang H, Zheng Z, Wang Y and Jing J 2016 Opt. Express
24 23459
[15] Wen J, Oh E and Du S 2010 J. Opt. Soc. Am. B 27 Al1
[16] van Loock P and Braunstein S L 2000 Phys. Rev. Lett.
84 3482-5
[17] Asavanant W et al 2019 Science 366 373-6
[18] Wu L, Chai T, Liu Y, Zhou Y, Qin J, Yan Z and Jia X 2022
Opt. Express 30 6388
[19] Liu K, Guo J, Cai C, Zhang J and Gao J 2016 Opt. Lett.
415178
[20] Cai C,MaL, LiJ, Guo H, Liu K, Sun H, Yang R and Gao J
2018 Photon. Res. 6 479
[21] Buonanno A and Chen Y 2001 Phys. Rev. D 64 042006
[22] Buonanno A and Chen Y 2002 Phys. Rev. D 65 042001
[23] Somiya K, Kataoka Y, Kato J, Saito N and Yano K 2016 Phys.
Lett. A 380 521-4
[24] Korobko M, Khalili F and Schnabel R 2018 Phys. Lett. A
382 2238-44
[25] Zhang J, Sun H, Guo H, Blair C, Bossilkov V, Page M,
Chen X, Gao J, Ju L and Zhao C 2023 Appl. Phys. Lett.
122 261106
[26] Junker J, Wilken D, Johny N, Steinmeyer D and Heurs M 2022
Phys. Rev. Lett. 129 033602

[27] Huang S and Chen A 2018 Phys. Rev. A 98 063818

[28] Aggarwal N, Cullen T J, Cripe J, Cole G D, Lanza R,
Libson A, Follman D, Heu P, Corbitt T and Mavalvala N
2020 Nat. Phys. 16 784-8

[29] LiY, Wang Y, Sun H, Liu K and Gao J 2023 J. Opt.
25 075201

[30] Jahani S, Roy A and Marandi A 2021 Optica 8 262

[31] Lugovoi V N 1979 Physica Status Solidi b 94 79-86

[32] Lugiato L A, Oldano C, Fabre C, Giacobino E and
Horowicz R J 1988 1l Nuovo Cimento D
10 959-77

[33] Fabre C, Giacobino E, Heidmann A, Lugiato L, Reynaud S,
Vadacchino M and Kaige W 1990 Quantum Opt. J. Eur.
Opt. Soc. B 2 159-87

[34] Kasai K, Jiangrui G and Fabre C 1997 Europhys. Lett.
40 25-30

[35] Fabre C, Giacobino E, Heidmann A and Reynaud S 1989 J.
Phys. 50 1209-25

[36] YuYB, XieZD, YuXQ,LiHX, XuP, Yao HM and
Zhu S N 2006 Phys. Rev. A 74 042332

[37] Yu'Y B, Wang H J and Feng J X 2011 Chin. Phys. Lett.
28 090304

[38] Simon R 2000 Phys. Rev. Lett. 84 2726-9

[39] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A
70 022318

[40] Debuisschert T, Sizmann a, Giacobino E and Fabre C 1993 J.
Opt. Soc. Am. B 10 1668

[41] Gardiner C W and Zoller P 2004 Quantum Noise: A Handbook
of Markovian and Non-Markovian Quantum Stochastic
Methods With Applications to Quantum Optics (Springer)

[42] Werner R F and Wolf M M 2001 Phys. Rev. Lett.
86 3658-61

[43] Giedke G, Kraus B, Lewenstein M and Cirac J 1 2001 Phys.
Rev. A 64 052303

[44] Tan A, Xie C and Peng K 2012 Phys. Rev. A 85 013819

[45] Villar A, Martinelli M and Nussenzveig P 2004 Opt. Commun.
242 551-63

[46] Guo J, Sun H, Liu K and Gao J 2022 Acta Sin. Quantum Opt.
28 87

[47] Abraham E and Smith S D 1982 Rep. Prog. Phys.
45 815-85


https://doi.org/10.1103/PhysRevA.67.052315
https://doi.org/10.1103/PhysRevA.67.052315
https://doi.org/10.1103/PhysRevLett.97.140504
https://doi.org/10.1103/PhysRevLett.97.140504
https://doi.org/10.1126/science.1178683
https://doi.org/10.1126/science.1178683
https://doi.org/10.1103/PhysRevLett.109.253604
https://doi.org/10.1103/PhysRevLett.109.253604
https://doi.org/10.1364/JOSAB.32.002139
https://doi.org/10.1364/JOSAB.32.002139
https://doi.org/10.1103/PhysRevLett.125.020502
https://doi.org/10.1103/PhysRevLett.125.020502
https://doi.org/10.1103/PhysRevA.78.014302
https://doi.org/10.1103/PhysRevA.78.014302
https://doi.org/10.1364/OE.17.009851
https://doi.org/10.1364/OE.17.009851
https://doi.org/10.1364/JOSAB.27.002721
https://doi.org/10.1364/JOSAB.27.002721
https://doi.org/10.1103/PhysRevA.91.023833
https://doi.org/10.1103/PhysRevA.91.023833
https://doi.org/10.1364/OE.24.023459
https://doi.org/10.1364/OE.24.023459
https://doi.org/10.1364/JOSAB.27.000A11
https://doi.org/10.1364/JOSAB.27.000A11
https://doi.org/10.1103/PhysRevLett.84.3482
https://doi.org/10.1103/PhysRevLett.84.3482
https://doi.org/10.1126/science.aay2645
https://doi.org/10.1126/science.aay2645
https://doi.org/10.1364/OE.451062
https://doi.org/10.1364/OE.451062
https://doi.org/10.1364/OL.41.005178
https://doi.org/10.1364/OL.41.005178
https://doi.org/10.1364/PRJ.6.000479
https://doi.org/10.1364/PRJ.6.000479
https://doi.org/10.1103/PhysRevD.64.042006
https://doi.org/10.1103/PhysRevD.64.042006
https://doi.org/10.1103/PhysRevD.65.042001
https://doi.org/10.1103/PhysRevD.65.042001
https://doi.org/10.1016/j.physleta.2015.11.010
https://doi.org/10.1016/j.physleta.2015.11.010
https://doi.org/10.1016/j.physleta.2017.08.008
https://doi.org/10.1016/j.physleta.2017.08.008
https://doi.org/10.1063/5.0137001
https://doi.org/10.1063/5.0137001
https://doi.org/10.1103/PhysRevLett.129.033602
https://doi.org/10.1103/PhysRevLett.129.033602
https://doi.org/10.1103/PhysRevA.98.063818
https://doi.org/10.1103/PhysRevA.98.063818
https://doi.org/10.1038/s41567-020-0877-x
https://doi.org/10.1038/s41567-020-0877-x
https://doi.org/10.1088/2040-8986/acd202
https://doi.org/10.1088/2040-8986/acd202
https://doi.org/10.1364/OPTICA.411708
https://doi.org/10.1364/OPTICA.411708
https://doi.org/10.1002/pssb.2220940108
https://doi.org/10.1002/pssb.2220940108
https://doi.org/10.1007/BF02450197
https://doi.org/10.1007/BF02450197
https://doi.org/10.1088/0954-8998/2/2/006
https://doi.org/10.1088/0954-8998/2/2/006
https://doi.org/10.1209/epl/i1997-00418-8
https://doi.org/10.1209/epl/i1997-00418-8
https://doi.org/10.1051/jphys:0198900500100120900
https://doi.org/10.1051/jphys:0198900500100120900
https://doi.org/10.1103/PhysRevA.74.042332
https://doi.org/10.1103/PhysRevA.74.042332
https://doi.org/10.1088/0256-307X/28/9/090304
https://doi.org/10.1088/0256-307X/28/9/090304
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1103/PhysRevA.70.022318
https://doi.org/10.1103/PhysRevA.70.022318
https://doi.org/10.1364/JOSAB.10.001668
https://doi.org/10.1364/JOSAB.10.001668
https://doi.org/10.1103/PhysRevLett.86.3658
https://doi.org/10.1103/PhysRevLett.86.3658
https://doi.org/10.1103/PhysRevA.64.052303
https://doi.org/10.1103/PhysRevA.64.052303
https://doi.org/10.1103/PhysRevA.85.013819
https://doi.org/10.1103/PhysRevA.85.013819
https://doi.org/10.1016/j.optcom.2004.09.006
https://doi.org/10.1016/j.optcom.2004.09.006
https://doi.org/10.3788/jqo20222802.0101
https://doi.org/10.3788/jqo20222802.0101
https://doi.org/10.1088/0034-4885/45/8/001
https://doi.org/10.1088/0034-4885/45/8/001

	Tripartite entanglement in a detuned non-degenerate optical parametric oscillator
	1. Introduction
	2. Theoretical model
	3. Quantum Langevin equations and solutions
	4. Criteria for characterizing tripartite entanglement
	5. Numerical simulation
	5.1. Tripartite entanglement without detunings
	5.2. Tripartite entanglement with detunings

	6. Loss effect on tripartite entanglement
	6.1. Loss without detunings
	6.2. Loss with detunings

	7. Discussions
	8. Conclusions
	References


