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Abstract. We investigate the spherical reduction of the rational An−1 Calogero model. It defines a
quantum superintegrable model of a particle trapped in one of n! spherical (n−2)-simplices on Sn−2 in a
special Sn-symmetric potential. The energy levels (including degeneracy) and eigenstates are given, and
the construction of conserved charges and Hamiltonian intertwiners outlined. We describe superintegrable
complex PT deformations which remove the trapping walls and in some cases create a Z2-graded
(“supersymmetric”) extension of the spectrum. Details are worked out for the cases of n=3 and n=4.

1. Introduction – some history
The Calogero model [1] has been the workhorse for integrable systems for 45 years. It is therefore mildly
surprising that new aspects of it can still be uncovered. This talk describes the superintegrable spherical
reduction of the rationalAn−1 quantum Calogero model and some of its complex PT deformations. The
emphasis is on the energy spectrum including degeneracy and eigenstates, and on the conserved charges
and intertwiners, in particular for a coupling strength g(g−1) with g ∈ Z. We discuss all features in
some detail for the cases n=3 (the hexagonal or Pöschl-Teller model) and for n=4 (the tetrahexahedric
model), the latter being the simplest non-separable case. We close with a number of open issues.

It is worth recalling the relevant part (for this talk) of the Calogero model’s long history:

• 1971 Calogero [2]:
Solution of the one-dimensional N-body problem with . . . inversely quadratic pair potentials

• 1981 Olshanetsky & Perelomov [3, 4]:
Classical integrable finite-dimensional systems related to Lie algebras (1983: quantum)
• 1983 Wojciechowski [5]:

Superintegrability of the Calogero–Moser system
• 1989 Dunkl [6]:

Differential-difference operators associated to reflection groups
• 1990 Veselov & Chalykh [7]:

Commutative rings of partial differential operators and Lie algebras, supercompleteness
• 1991 Heckman [8]:

Elementary construction for commuting charges and intertwiners (shift operators)
• 2003 M. Feigin [9]:

Intertwining relations for the spherical parts of generalized Calogero operators
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• 2008 A. Fring, M. Znojil [10, 11]:
PT -symmetric deformations of Calogero models

• 2008 Hakobyan, Nersessian, Yeghikyan [12]:
The cuboctahedric Higgs oscillator from the rational Calogero model (classical)
• 2013 M. Feigin, Lechtenfeld, Polychronakos [13]:

The quantum angular Calogero–Moser model (spectra, eigenstates)
• 2013 Correa, Lechtenfeld, Plyushchay [14]:

Nonlinear supersymmetry in the quantum Calogero model
• 2014 M. Feigin, Hakobyan [15]:

On the algebra of Dunkl angular momentum operators
• 2015 Correa, Lechtenfeld [16]:

The tetrahexahedric angular Calogero model

This talk is based on [13] and [16] but contains yet unpublished material concerning PT deformations.

2. The angular (relative) Calogero model
The Hamiltonian for the An−1 rational Calogero system reads

H =

n∑
µ<ν

{
1

2n(pµ−pν)2 +
g(g−1)

(xµ−xν)2

}
, (1)

where xµ and pµ with µ = 1, 2, . . . , n denote position and momentum in R for the µth particle, and
g is a constant. Even though H(1−g) = H(g), it is useful to admit any real value for g. The quantum
theory demands that [xµ , pν ] = i δµν . Note that the center-of-mass degree of freedom has already
been removed, so we introduce radial variables in the remaining (n−1)-dimensional coordinate and
momentum spaces,

1
n

∑
µ<ν

(xµ−xν)2 = r2 and 1
n

∑
µ<ν

(pµ−pν)2 = p2
r + 1

r2
L2 + (n−2)(n−4)

4 r2
. (2)

Furthermore, it is convenient to pass to n−1 relative coordinates and momenta,

r2 =

n−1∑
i=1

(yi)2 , pi ≡ pyi , Lij = −i(yipj − yjpi) , L2 = −
∑
i<j

L2
ij , (3)

and to define the corresponding angular momenta Lij . The sl(2,R) conformal algebra is generated by

H = 1
2p

2
r + (n−2)(n−4)

8 r2
+ 1

r2
HΩ , D = 1

2(r pr + prr) , K = 1
2r

2 , (4)

where all the interactions are hiding in the angular Calogero HamiltonianHΩ (or the sl(2,R) CasimirC),

HΩ = 1
2L

2 + U(~θ) = C − 1
8(n−1)(n−5) with C = KH +HK − 1

2D
2 . (5)

It defines a model for a single particle moving on the (n−2)-sphere (angular coordinates ~θ) under the
influence of a special potential

U(~θ) = r2
∑
µ<ν

g(g−1)

(xµ−xν)2
= r2

∑
α∈R+

g(g−1)

(α · y)2
= g(g−1)

2

∑
α∈R+

cos−2 θα (6)
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which is a superposition of “Higgs oscillators” cos−2 θ [17, 18] centered at the directions of the 1
2n(n−1)

positive roots α for An−1. It is singular at the (n−3)-dimensional intersections of the Weyl chamber
walls with the unit (n−2)-sphere, so the particle is trapped in one of n! spherical (n−2)-simplices
tessalating the sphere. This potential breaks the SO(n−1) invariance of the free particle on Sn−2 to the
permutation group Sn, which is the Weyl group of An−1.

From now on, we pass to the position representation,

pi 7→ −i∂i =⇒ pr 7→ −i
(
∂r + n−2

2 r

)
, (7)

H 7→ −1
2

(
∂2
r + n−2

r ∂r
)

+ 1
r2
HΩ = w−1

[
−1

2

(
∂2
r −

(n−2)(n−4)
4 r2

)
+ 1

r2
HΩ

]
w ,

HΩ 7→ −1
2

∑
i<j

(
yi∂j−yj∂i

)2
+ r2

∑
α∈R+

g(g−1)

(α · y)2
with w = r

n−2
2 .

(8)

The energy spectrum and radial eigenfunctions of the full Calogero model are well known,

H ΨE,q = EΨE,q with E ∈ R≥0 ,

ΨE,q(r, ~θ) = r−
n−3
2 Jq+(n−3)/2(

√
2E r) vq(~θ) ,

(9)

but the angular part of these wave functions is part of the spectral problem for the angular model,

HΩ vq = εq vq with εq = 1
2 q (q + n− 3) and

q = 1
2n(n−1) g + ` where ` = 3`3 + 4`4 + . . .+ n`n ∈ N0 .

(10)

Naturally, the spectrum {εq} is discrete, for a fixed g governed by an integer-valued angular momentum
quantum number `. For a free particle on Sn−2, the degeneracy at level ` is

(
`+n−2
n−2

)
−
(
`+n−4
n−2

)
. With

the potential U turned on, the SO(n−1) representation content has to be decomposed with respect to
the Sn subgroup. The full An−1 Calogero system describes n identical particles, whose wave function
picks up just a phase factor of eiπg under a particle exchange, so – apart from this – only Sn singlet
representations are kept. Here we keep this heritage for the angular model and, therefore, admit only
permutation invariant states. This greatly reduces the degeneracy at level ` to the number of all (n−2)-
tuples (`3, `4, . . . , `n) subject to (10). It can be expressed as

degn(εq) = pn(`)− pn(`−1)− pn(`−2) + pn(`−3) , (11)

where pn(`) is the number of partitions of ` into integers not larger than n, which can be generated via

pn(t) :=
∞∑
`=0

pn(`) t` =
n∏

m=1

(
1− tm

)−1
. (12)

For small values of n, there are explicit formulæ [19]:

deg3(`) =

{
0 for ` = 1, 2 mod 3

1 for ` = 0 mod 3
,

deg4(`) =
⌊ `

12

⌋
+

{
0 for ` = 1, 2, 5 mod 12

1 for ` = else mod 12
,

deg5(`) =
⌊6`2 + 72`− 89

720

⌋
+


0 for ` = 2, 22, 26, 46 mod 60

2 for ` = 0, 48 mod 60

1 for ` = else mod 60

.

(13)
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The main task lies in the construction of the angular eigenfunctions, which are given by

vq(~θ) ≡ v
(g)
` (~θ) ∼ rn−3+q

( n∏
µ=3

σµ
(
{Di}

)`µ)∆g r3−n−n(n−1)g . (14)

The key ingredients are the Vandermonde factor and the Dunkl operators,

∆ =
∏
α∈R+

α · y and Di = ∂i − g
∑
α∈R+

αi
α · y

sα , (15)

where sα denotes the reflection about the hyperplane orthogonal to the root α. The latter are combined
into the elementary Weyl-symmetric polynomials σµ(y) of degree µ, with σ2 =

∑
i(y

i)2 being
absent because we freeze the radial excitations. The vanishing locus of the Vandermonde ∆ produces
singularities for g < 0, rendering these states non-normalizable. Splitting off a universal factor, the
angular wave functions become Dunkl-deformed Weyl-symmetric harmonic polynomials of degree `,,

v
(g)
` (~θ) = r−q ∆g h

(g)
` with H

(
∆g h

(g)
`

)
= 0 . (16)

Just like ‘Dunkl-deforming’ the momenta, i.e. ∂i → Di, generates the full Calogero model from
the free particle, the angular submodel can be obtained from free motion on Sn−2 by an analogous
deformation of the angular momenta,

Lij 7→ −(yi∂j−yj∂i) =⇒ Lij = −(yiDj − yjDi) . (17)

In both cases, their square yields a differential-difference operator (‘pre-Hamiltonian’) whose restriction
to Weyl symmetric functions is basically the Hamiltonian,

H = −1
2

∑
i

D2
i and HΩ = −1

2

∑
i<j

L2
ij + 1

2 g
∑

αsα (g
∑

αsα + n−3) , (18)

H = res(H) and HΩ = res(HΩ) = 1
2res

(
L2
)

+ εq(`=0) . (19)

In fact, any Weyl-invariant polynomial in the Lij of some degree t provides a conserved quantity,

Ct(Lij) Weyl-invariant =⇒ Ct = res(Ct) commutes with HΩ . (20)

In contrast to the full model, these are not in involution and hence do not constitute Liouville charges.
The reason is that, while [Di,Dj ] = 0, angular momenta (deformed or not) do not commute, rather [15]

[Lij ,Lk`] = Li`Sjk − LikSj` − Lj`Sik + LjkSi` (21)

with Sij =

{
−g sij for i 6= j

1 + g
∑

k(6=i)sik for i = j
, (22)

[Sij ,Lk`] = 0 , {Sij ,Lij} = 0 , SijLik = LjkSij . (23)

This algebra is a ‘Dunkl deformation’ of so(n−1), with HΩ being the Casimir invariant. More
technically, it is a subalgebra of the rational Cherednik algebra generated by {Di, yj} and the Weyl
reflections.

It is equally interesting to consider Weyl-antiinvariant polynomialsMs(Lij) of some degree s, since

Ms(Lij) Weyl-antiinvariant =⇒ Ms = res(Ms) is an intertwiner for H and HΩ . (24)
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Indeed, since [Lij ,H] = 0 we have

[Ms,H] = 0 =⇒ M (g)
s H(g) = H(−g)M (g)

s = H(g+1)M (g)
s

and M (g)
s Ψ

(g)
E,q ∼ Ψ

(g+1)
E,q ,

(25)

[Ms,HΩ] = 0 =⇒ M (g)
s H

(g)
Ω = H

(−g)
Ω M (g)

s = H
(g+1)
Ω M (g)

s

and M (g)
s v

(g)
` ∼ v

(g+1)
`−n(n−1)/2 .

(26)

This allows us to connect the states for integer increments of the coupling g and allows one to generate the
wave functions for g ∈ N directly from the free ones (g=0 or g=1). Therefore, we restrict ourselves to
g ∈ Z from now on (it will prove beneficial to formally admit g < 0), keeping only Bose (g even)
and Fermi (g odd) statistics. The intertwiners Ms clearly exchange bosons with fermions. Since
H

(g)
Ω = H

(1−g)
Ω , at each g ∈ N the spectrum of H(g)

Ω formally contains a bosonic and a fermionic
tower of states, but one of them is unphysical because it is constructed with a non-positive g-value and
thus not normalizable. The only exception occurs for g = 1 because the g = 0 states are non-singular,
but this is obvious since for vanishing potential the only restriction arises from Weyl invariance.

3. PT deformation
It has been known for a long time that hermiticity is not an esential feature of a Hamiltonian for its
spectrum to be real. For instance, it suffices that the Hamiltonian commutes with an antilinear involution
(called PT ) which also leaves the eigenfunctions invariant (“unbroken PT symmetry”) [20]. Such a
non-hermitian Hamiltonian is related to a hermitian one by a (non-unitary) similarity transformation,
which may be impossibly complicated. Often, however, there exists a family Hε of non-hermitian PT -
invariant Hamiltonians representing a smooth deformation of a hermitian H0. In this case we speak
of a “PT deformation”, with the parameter ε measuring the deviation from hermiticity. For rational
Calogero models, a particularly nice set of PT deformations can be generated by a specific complex
orthogonal deformation of the coordinates xµ (or yi) in the expression for the Hamiltonian. If such a PT
deformation is in accordance with the Weyl symmetry of the system, its integrability will be preserved.

For our case of the rational An−1 Calogero model, the following SU(1,1)×SU(1,1)× · · · ⊂
SO(n−1,C) coordinate deformations yi 7→ yiε with εa ∈ R are admissible:

y1

y2

y3

y4

...

 7−→


cosh ε1 −i sinh ε1 0 0 · · ·
i sinh ε1 cosh ε1 0 0 · · ·

0 0 cosh ε2 −i sinh ε2 · · ·
0 0 i sinh ε2 cosh ε2 · · ·
...

...
...

...
. . .




y1

y2

y3

y4

...

 . (27)

This is equivalent to a complex deformations of angles, φa 7→ φa + iεa, which parametrize mutually
orthogonal planes. The complex coordinate deformation induces a non-unitary similarity transformation
in the Hilbert space, sending

L2 7→ L2 and U(~θ) 7→ U(~θε) =: Uε(~θ) (28)

thus leaving the energy spectrum unchanged. Moreover, the singular Higgs oscillator potential gets
regularized,

Uε(~θ) = r2
∑
µ<ν

g(g−1)

(xµε−xνε )2
= r2

∑
α∈R+

g(g−1)

(α · yε)2
= g(g−1)

2

∑
α∈R+

cos−2 θα(ε) , (29)
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and the Weyl-chamber wall singularities disappear due to

1

cos2(θα + iηα(~θ, ε))
=

cosh2 ηα cos2 θα − sinh2 ηα sin2 θα + i
2 sinh 2ηα sin 2θα

(cosh2 ηα cos2 θα + sinh2 ηα sin2 θα)2
, (30)

where the azimuthal angle for the Higgs oscillator pertaining to the root α is θα(ε) = θα + iηα(~θ). The
PT deformation frees the particle up to escape from its Weyl chamber and move anywhere on the (n−2)-
sphere. Singularities of codimension two remain at the vanishing loci of ηα. We shall see later that such
a change of boundary conditions for the spectral problem may bring back previously unphysical singular
wave functions to the physical sprectrum, essentially doubling the degeneracy of the energy levels.

4. Warmup: the hexagonal or Pöschl-Teller model
The first interesting case is n=3, leading to a one-dimensional integrable system known as the Pöschl-
Teller model for a particle on a circle. The Jacobi relative coordinates on the two-plane perpendicular to
the center-of-mass X are

x1 = X + 1√
2
y1 + 1√

6
y2 , ∂x1 = 1

3∂X + 1√
2
∂y1 + 1√

6
∂y2 ,

x2 = X − 1√
2
y1 + 1√

6
y2 , ∂x2 = 1

3∂X −
1√
2
∂y1 + 1√

6
∂y2 ,

x3 = X − 2√
6
y2 , ∂x3 = 1

3∂X −
2√
6
∂y2 ,

(31)

and we also use polar and complex coordinates in that plane,

y1 = r cosφ and y2 = r sinφ =⇒ w := y1 + iy2 = r eiφ . (32)

The angular Hamiltonian reads

HΩ = 1
2

(
w∂w − w̄∂w̄

)2
+ g(g−1)

18 (ww̄)3

(w3 + w̄3)2
, (33)

with the potential coming from

U(φ) = g(g−1)
2

∑
k=0,1,2

cos−2(φ+k 2π
3 ) = 9

2g(g−1) cos−2(3φ) . (34)

Specializing our general formulæ for the energy eigenvalues and -functions from the previous section
and denoting by (s0, s+, s−) the three Coxeter reflections, we get ` = 3 `3 and

εq = 1
2q

2 with q = 3g + ` = 3(g + `3) and deg(εq) = 1 , (35)

ΨE,q(r, φ) = Jq(
√

2E r) vq(φ) , (36)

vq(φ) ≡ v
(g)
` (φ) ∼ rq

(
D3
w −D3

w̄

)`3 ∆g r−6g = r−q ∆g h
(g)
` (w3, w̄3) , (37)

∆ ∼ w3 + w̄3 ∼ r3 cos(3φ) vanishing at φ = ±π
6 ,±

π
2 ,±

5π
6 , (38)

Dw = ∂w − g
{ 1

w + w̄
s0 +

ρ

ρw + ρ̄w̄
s+ +

ρ̄

ρ̄w + ρw̄
s−

}
with ρ = e2πi/3 , (39)

h
(g)
` (w3, w̄3) =

`3∑
k=0

(−1)k Γ(1+`3) Γ(g+k) Γ(g+`3−k)
Γ(2g+`3) Γ(g) Γ(1+k) Γ(1+`3−k) w

`−3kw̄3k , (40)

where the final equation is the result of a nontrivial computation. We display the homogeneous
polynomials h(g)

` defining the wave functions (un-normalized, see above) for g = 0, 1, 2 and the lowest
five energy levels, using the notation (mm̄) := w3mw̄3m̄ = (y1 + iy2)3m(y1 − iy2)3m̄,

6
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` h
(0)
` h

(1)
` h

(2)
` · · ·

0 (00) (00) (00) · · ·

3 (10)− (01) (10)− (01) (10)− (01) · · ·

6 (20) + (02) (20)− (11) + (02) 3(20)− 4(11) + 3(02) · · ·

9 (30)− (03) (30)− (21) + (12)− (03) 4(30)− 6(21) + 6(12)− 4(03) · · ·

12 (40) + (04) (40)− (31) + (22)− (13) + (04) 5(40)− 8(31) + 9(22)− 8(13) + 5(04) · · ·
...

...
...

...

These states can also be obtained by applying the angular intertwiner M1 = res(M1),

M(g)
1 ∼ i

(
wDw − w̄Dw̄

)
∼ i
(
w∂w − w̄∂w̄

)
− i g

{w − w̄
w + w̄

s0 +
ρw − ρ̄w̄
ρw + ρ̄w̄

s+ +
ρ̄w − ρw̄
ρ̄w + ρw̄

s−

}
,

(41)

M
(g)
1 ∼ i

(
w∂w − w̄∂w̄

)
− 3i g

w3 − w̄3

w3 + w̄3
= i ∆g

(
w∂w − w̄∂w̄

)
∆−g = ∂φ + 3 g tan 3φ . (42)

Since M (g)
1 v

(g)
` ∼ v

(g+1)
`−3 , we learn that

h
(g+1)
` ∼ i ∆−1

(
w∂w − w̄∂w̄

)
h

(g)
`+3 , (43)

which may be iterated to arrive at (40). This intertwiner does not yield additional conserved charges,
because (

M †1M1

)(g)
= −2H

(g)
Ω + 9 g2 = −res(L2) = −C(g)

2 . (44)

What are the possible PT deformations of the Pöschl-Teller system? Without loss of generality, we
may fix P to be the Coxeter reflection about the line perpendicular to α ∼

(
1
0

)
, hence

P : s0 =
(−1 0

0 1

)
and T : complex conjugation (but w 7→ w and w̄ 7→ w̄ !) . (45)

The most general PT deformation compatible with this involution is an SU(1,1) ⊂ SO(2,C) boost,(
y1

y2

)
7−→

(
cosh ε −i sinh ε

i sinh ε cosh ε

)(
y1

y2

)
= r

(
cos(φ+iε)

sin(φ+iε)

)
, (46)

which in the original particle coordinates acquires the less transparent formx
1

x2

x3

 7−→ 1

3

 1+2 cosh ε 1− cosh ε−i
√

3 sinh ε 1− cosh ε+i
√

3 sinh ε

1− cosh ε+i
√

3 sinh ε 1+2 cosh ε 1− cosh ε−i
√

3 sinh ε

1− cosh ε−i
√

3 sinh ε 1− cosh ε+i
√

3 sinh ε 1+2 cosh ε


x

1

x2

x3

 . (47)

In polar and complex coordinates, it is simply

φ 7→ φ+ iε ⇐⇒ (w, w̄) 7→ (e−εw, eεw̄) , (48)
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leading to the complex and completely regular potential

Uε(φ) = U(φ+iε) = 9 g(g−1)
(1 + cosh 6ε cos 6φ) + 2i sinh 6ε sin 6φ

(cosh 6ε+ cos 6φ)2
. (49)

The energy levels are independent of ε, but previously singular states for g<0 now have become
normalizable and thus appear in the physical spectrum (but q < 0 yields nothing new!),

εq = 1
2q

2 with q = 3g + ` = 3(g + `3) and `3 ≥ max(−g, 0) , (50)

∆ε ∼ e−3εw3 + e3εw̄3 ∼ r3
(
cosh(3ε) cos(3φ)− i sinh(3ε) sin(3φ)

)
6= 0 , (51)

h
ε(g)
` (w3, w̄3) =

`3∑
k=0

(−1)k Γ(1+`3) Γ(g+k) Γ(g+`3−k)
Γ(2g+`3) Γ(g) Γ(1+k) Γ(1+`3−k) (e−εw)`−3k(eεw̄)3k , (52)

where the latter expression also holds for g < 0 with proper ∞∞ regularization. Here is a list of the
low-lying deformed polynomials including the g=−1 tower as a negative-g example, with the adapted
notation (mm̄) := e−3(m−m̄)εw3mw̄3m̄:

` h
ε(−1)
` h

ε(0)
` h

ε(1)
` h

ε(2)
`

0 (00) (00) (00)

3 (10)− (01) (10)− (01) (10)− (01) (10)− (01)

6 (00) (20) + (02) (20)− (11) + (02) 3(20)− 4(11) + 3(02)

9 (30) + 3(21)− 3(12)− (03) (30)− (03) (30)− (21) + (12)− (03) 4(30)− 6(21) + 6(12)− 4(03)

...
...

...
...

...

Since the Hamiltonian depends only on the combination g(g−1), we should restrict to g ≥ 1 but join to
the energy eigenstates of any positive g-value the new tower of states at coupling 1−g. This enhances
the level degeneracy to

deg(εq)
g>0
=

{
1 for q < 3g

2 for q ≥ 3g
(53)

and yields a totally Weyl symmetric and a totally Weyl antisymmetric state at each but the lowest energy
levels. These states are related by a new conserved charge,

Q(g) = M
(g−1)
1 M

(g−2)
1 · · ·M (1−g)

1 =⇒ Q(g)H
(g)
Ω = Q(g)H

(1−g)
Ω = H

(g)
Ω Q(g) . (54)

It is algebraically independent of the Hamiltonian but squares to

(
Q(g)
ε

)2
=

g−1∏
j=1−g

(
−2H(g)

ε + 9j2
)
, (55)

which provides a kind of “nonlinear supersymmetry” [21].
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5. Tetrahexahedric model: the spectrum
TheA2 model is atypical since it is completely separable. It is much more exciting to study the next more
complicated system, which is based on A3 ' D3 and has been termed the “tetrahexahedric model”, due
to theA3 Coxeter system and its tetrahedral finite reflection group. For convenience, we rotate the Jacobi
relative coordinates adapted to the A3 root system to a D3 basis, called Walsh-Hadamard coordinates:

x1 = X + 1
2(+x+y +z) , ∂x1 = 1

4∂X + 1
2(+∂x +∂y +∂z) ,

x2 = X + 1
2(+x− y − z) , ∂x2 = 1

4∂X + 1
2(+∂x − ∂y − ∂z) ,

x3 = X + 1
2(−x+ y − z) , ∂x3 = 1

4∂X + 1
2(−∂x + ∂y − ∂z) ,

x4 = X + 1
2(−x− y + z) , ∂x4 = 1

4∂X + 1
2(−∂x − ∂y + ∂z) ,

(56)

and introduce polar coordinates

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ . (57)

The angular momenta

Lx = −(y∂z−z∂y) , Ly = −(z∂x−x∂z) , Lz = −(x∂y−y∂x) (58)

are the building blocks of the S2 Laplacian

L2 = −(L2
x + L2

y + L2
z) = − 1

sin θ∂θ sin θ ∂θ − 1
sin2 θ

∂2
φ , (59)

and the full and angular Hamiltonians read

H = −1
2(∂2

x + ∂2
y + ∂2

z ) + 2 g(g−1)
( x2 + y2

(x2 − y2)2
+

y2 + z2

(y2 − z2)2
+

z2 + x2

(z2 − x2)2

)
(60)

and HΩ = 1
2L

2 + U(~θ), respectively, with

U(θ, φ) = 2g(g−1)

{
1

sin2 θ cos2 2φ
+

cos2 θ + sin2 θ cos2 φ

(cos2 θ − sin2 θ cos2 φ)2
+

cos2 θ + sin2 θ sin2 φ

(cos2 θ − sin2 θ sin2 φ)2

}
, (61)

which blows up on 6 great circles of S2. The potential is invariant under the S4 Weyl group action, whose
elementary reflections are realized as

sx+y : (x, y, z) 7→ (−y,−x,+z) , sx−y : (x, y, z) 7→ (+y,+x,+z) ,

sy+z : (x, y, z) 7→ (+x,−z,−y) , sy−z : (x, y, z) 7→ (+x,+z,+y) ,

sz+x : (x, y, z) 7→ (−z,+y,−x) , sz−x : (x, y, z) 7→ (+z,+y,+x) .

(62)

Specializing our general formulæ to n=4 with σ3 = x y z and σ4 = x4 + y4 + z4, we get

εq = 1
2q (q+1) with q = 6g + ` = 6g + 3`3+4`4 , (63)

ΨE,q(r, θ, φ) = jq(
√

2E r) vq(θ, φ) , (64)

v
(g)
` (θ, φ) ∼ rq+1

(
DxDyDz

)`3 (D4
x+D4

y+D4
z

)`4 ∆g r1−12g = r−q ∆g h
(g)
` (x, y, z) , (65)

∆ ∼ (x2 − y2)(y2 − z2)(x2 − z2) , (66)
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with the linear Dunkl operators

Dx = ∂x −
g

x+y
sx+y −

g

x−y
sx−y −

g

z+x
sx+z −

g

x−z
sz−x ,

Dy = ∂y −
g

y+x
sx+y −

g

y−x
sx−y −

g

y+z
sy+z −

g

y−z
sy−z ,

Dz = ∂z −
g

z+x
sz+x −

g

z−x
sz−x −

g

z+y
sy+z −

g

z−y
sy−z .

(67)

With the short-hand notation {rst} := xryszt + xrytzs + xsytzr + xsyrzt + xtyrzs + xtyszr, we
display the eigenstate polynomials for ten lowest energy levels at g=0 and g=1,

` `3 `4 h
(0)
`

0 0 0 {000}
3 1 0 {111}
4 0 1 {400} − 3{220}
6 2 0 {600} − 15{420}+ 30{222}
7 1 1 3{511} − 5{331}
8 0 2 {800} − 28{620}+ 35{440}
9 3 0 9{711} − 63{531}+ 70{333}

10 2 1 {1000} − 45{820}+ 42{640}+ 504{622} − 630{442}
11 1 2 5{911} − 60{731}+ 63{551}
12 4 0 36{1200} − 2376{1020}+ 2445{840}+ 46125{822}+ 4893{660} − 215250{642}+ 179375{444}
12 0 3 101{1200} − 6666{1020}+ 47100{840}+ 8685{822} − 42609{660} − 40530{642}+ 33775{444}

` `3 `4 h
(1)
`

0 0 0 {000}
3 1 0 {111}
4 0 1 3{400} − 11{220}
6 2 0 3{600} − 39{420}+ 196{222}
7 1 1 5{511} − 13{331}
8 0 2 {800} − 20{620}+ 23{440}+ 12{422}
9 3 0 3{711} − 27{531}+ 56{333}

10 2 1 15{1000} − 425{820}+ 576{640}+ 7568{622} − 14454{442}
11 1 2 35{911} − 476{731}+ 477{551}+ 204{533}
12 4 0 12{1200} − 456{1020}+ 657{840}+ 13581{822}+ 1137{660} − 88842{642}+ 114007{444}
12 0 3 813{1200}−30894{1020}+165652{840}+72131{822}−147943{660}−169702{642}+57527{444}

The first degeneracy occurs at ` = 12 = 4 · 3 = 3 · 4, and it increases linearly in steps of 12.
What kind of PT deformation is admissible in this model? Without loss of generality, we may

take P = sx−y. Compatibility with this PT involution restricts the coset SO(3,C)/SO(3,R) of
complex orthogonal deformations to a two-parameter family, which contains e.g. the SU(1,1) boost in
the xy plane,y1

y2

y3

 7−→

 cosh ε −i sinh ε 0
i sinh ε cosh ε 0

0 0 1

y1

y2

y3

 = r

sin θ cos(φ+iε)
sin θ sin(φ+iε)

cos θ

 (68)

equivalent to 
x1

x2

x3

x4

 7−→


1+ cosh ε i sinh ε −i sinh ε 1− cosh ε
−i sinh ε 1+ cosh ε 1− cosh ε i sinh ε
i sinh ε 1− cosh ε 1+ cosh ε −i sinh ε

1− cosh ε −i sinh ε i sinh ε 1+ cosh ε



x1

x2

x3

x4

 (69)
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but more simply given by

φ 7→ φ+ iε or
(
x± iy, z

)
7→
(
e∓ε(x± iy), z

)
. (70)

The ensuing complex potential

Uε(θ, φ)

2g(g−1)
=

1

sin2 θ cos2 2(φ+iε)
+

cos2 θ + sin2 θ cos2(φ+iε)

(cos2 θ − sin2 θ cos2(φ+iε))2
+

cos2 θ + sin2 θ sin2(φ+iε)

(cos2 θ − sin2 θ sin2(φ+iε))2

(71)
is free of singular lines but still blows up at 5 pairs of antipodal points. Because these singularities are
also carried by

∆ε ∼ sin2 θ cos 2(φ+iε) (cos2 θ − sin2 θ cos2(φ+iε)) (cos2 θ − sin2 θ sin2(φ+iε)) , (72)

the formal g<0 wave functions vε(g)` ∼ ∆g
ε , obtained by simply applying the deformation to the argument

of v(g)
` , remain non-normalizable. Hence, except for the free system (g=1), the degeneracy remains to

be given by deg4(`) for any g ∈ N.
If we were able to invent a (nonlinear) PT deformation (for a suitable involution) which gets rid

of all zeros of ∆ (and hence of the potential), then the g<0 states would be resurrected, extending the
eigenspace for any given g≥2 by the new states with angular momenta ˜̀for a coupling g̃ = 1−g ≤ −1.
For small values of ˜̀ this requires q < 0, so the second branch of (63) would get occupied, and the g>0
spectrum would be modified to

εq = 1
2q (q+1) with q = 6g + ` = 6(1−g) + ˜̀ or −1−q = 6(1−g) + ˜̀ , (73)

where we restricted q ≥ 0 for uniqueness, and both ` and ˜̀ are composed of 3’s and 4’s. This would
enhance the degeneracy to

deg(εq) = deg4(`) + deg4(˜̀) = deg4(q−6g) + deg4(q+6g−6) + deg4(−q+6g−7)

=


g−1 +

{
0 for q + 6g = 0, 3, 4, 7, 8, 11 mod 12

1 for q + 6g = 1, 2, 5, 6, 9, 10 mod 12

}
if q < 6g−6

⌊
q
6

⌋
+

{
0 for q = 1, 2, 5 mod 6

1 for q = 0, 3, 4 mod 6

}
if q ≥ 6g−6

(74)

which shows that its linear growth with q would become g-independent at high energy.

6. Tetrahexahedric model: intertwiner & integrability
As can already be glanced from the tetrahexahedric case, the angular Calogero models possess a rich
structure of intertwiners. For their construction, we need the angular Dunkl operators:

Lx = Lx + g
{

z
x−ysx−y −

z
x+ysx+y − y

x−zsz−x + y
z+xsz+x −

y+z
y−zsy−z + y−z

y+zsy+z

}
,

Ly = Ly + g
{

x
y−zsy−z −

x
y+zsy+z − z

y−xsx−y + z
y+xsx+y − z+x

z−xsz−x + z−x
z+xsz+x

}
,

Lz = Lz + g
{ y
z−xsz−x −

y
z+xsz+x −

x
z−ysy−z + x

z+ysy+z − x+y
x−ysx−y + x−y

x+ysx+y

}
.

(75)

Although we cannot (yet) prove it, we have ample evidence that there exist exactly two algebraically
independent angular intertwiners. The first one, of order three, derives from the Weyl antiinvariant

M3 ∼ 1
6

(
LxLyLz + LxLzLy + LyLzLx + LyLxLz + LzLxLy + LzLyLx

)
, (76)
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whose restriction to symmetric functions yields

M3 ∼ y2z∂zxx − yz2∂xxy + 1
2(y2−z2) ∂xx + 4g yz

y2−z2
(
yz∂xx + x2∂yz − zx∂xy)

+ g
[
2g y2z2

( 8g
(x2−y2)(z2−x2)

+ 16g
(z2−x2)(y2−z2)

− 2g−1

(x2−y2)2
+ 2g−1

(z2−x2)2

)
− 2x2y2

(z2−x2)2
+ 2x2z2

(x2−y2)2
− 2y2

x2−y2 −
2z2

z2−x2 − 2y
2+z2

y2−z2

]
x∂x

+ 2g(g−1)(g+2)x2
[

y2+z2

(y2−z2)2
+ z
(

1
(y−z)3 −

1
(y+z)3

)]
+ g

(
2g2+8g−1

)y2+z2

y2−z2

+ 2g2(8+9g) x2y2z2

(x2−y2)(x2−z2)(y2−z2)
− 2

3g
3 x6+y6+z6

(x2−y2)(x2−z2)(y2−z2)
+ cyclic(x y z) .

(77)

It somewhat simplifies in the “potential-free frame”,

∆−gM3 ∆g ∼ y2z∂zxx − yz2∂xxy + 1
2(y2−z2) ∂xx + 2g y2z2(y2−z2)

(x2−y2)(x2−z2)
∂xx

+ 4g xy2z
x2−z2 ∂xz + 2g x

[
y2(x2+3z2)
(x2−z2)2

− z2(x2+3y2)
(x2−y2)2

]
∂x + cyclic(x y z) .

(78)

The second one, of order six, emerges from

M6 ∼ {L4
x,L2

y} − {L4
y,L2

x}+ {L4
y,L2

z} − {L4
z,L2

y}+ {L4
z,L2

x} − {L4
x,L2

z} , (79)

whose symmetric restriction M6 = res(M6) is a rather lengthy expression not displayed here.
(Hopefully ∆−gM6 ∆g is a bit shorter.)

Higher angular intertwiners can be reduced toM3 andM6 in combination with the conserved charges

Jk := res
(
Lkx + Lky + Lkz

)
for k = (0, )2, 4, 6 (80)

with J0 = C0 = 1 and J2 = −C2 = −2HΩ + 6g(6g+1) . (81)

In fact, any word in the letters {J2, J4, J6} is conserved, but they are not in involution because [J4, J6]
and {J4, J6} both are nontrivial new words, and the center of the algebra of conserved charges is spanned
by the Casimir J2 (and J0 of course). This is different from the situation in the full A3 model, since we
deal with a Dunkl-deformed nonabelian so(3) algebra. However, like in the full model, higher conserved
charges are algebraically dependent, e.g.

6J8 = 8J6J2 + 3J4J4 − 6J4J2J2 + J2J2J2J2

− 12(8+5g+12g2)J6 + 4(34+23g+30g2)J4J2 − 8(5+3g+3g2)J2J2J2

+ 24(13+15g−102g2−72g3)J4 − 4(43+70g−252g2−144g3)J2J2

− 48(1+3g)(1+4g)(1−12g)J2 .

(82)

The intertwining relations for the conserved charges beyond the Hamiltonian are also more involved
than in the full model. In particular, they are no longer diagonal in either set. The basic relations for M3

are
M

(g)
3 J

(g)
2 =

(
J

(g+1)
2 − 6(7+12g)

)
M

(g)
3 ,

M
(g)
3 J

(g)
4 =

(
J

(g+1)
4 − 4(11+12g)J

(g+1)
2 + 48(26+73g+48g2)

)
M

(g)
3

+ 2M
(g)
6 ,

M
(g)
3 J

(g)
6 =

(
J

(g+1)
6 − (35+36g)J

(g+1)
4 − 3(7+4g)J

(g+1)
2 J

(g+1)
2

+ 2(1111+2668g+1392g2)J
(g+1)
2

+ 96(457+1933g+2717g2+1368g3+144g4)
)
M

(g)
3

+
(
3J

(g+1)
2 − (115+200g+48g2)

)
M

(g)
6 ,

(83)
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and those for M6 look similar (but more lengthy).
Finally, for g > 0 the intertwining ladder 1−g → 2−g → . . . → g−2 → g−1 → g extends

the algebra of conserved charges to a Z2-graded one by adjoining the new “odd” charges (∗ = 3 or 6)

Q(g) = M
(g−1)
∗ M

(g−2)
∗ · · ·M (1−g)

∗ (84)

relating bosonic and fermionic states at any given energy level and positive integer coupling g. However,
these operators are only well defined if a suitable PT deformation can fully regularize the potential (as
is the case for the Pöschl-Teller model) and so allows one to double the state space by combining the
states at 1−g and g. It is clear that such fermionic charges are independent of the Jk because they are of
odd order, but they square to a polynomial in the Jk. We conjecture that the various above choices for Q
(depending on the details of ‘∗’) are all related by multiplication with appropriate even charges, and so
the Z2-graded nonlinear algebra would be generated by {Q, J2, J4, J6}.

7. Summary and outlook
The angular rational An−1 Calogero model for rank n−1 ≥ 3 is superintegrable but not separable. It
describes the Weyl-symmetric states of a particle on Sn−2 subject to a particular Sn-symmetric potential.
We have formulated the spectral problem and given a constructive solution, including a discussion of the
conserved charges and the Hamiltonian intertwiners shifting the coupling g 7→ g+1. A complex PT
deformation reduces the dimension of the singular loci of the potential. If all singularities can be removed
(as we demonstrate for n=3), then the degeneracy of the energy spectrum will essentially double, and
for g ∈ Z the algebra of conserved charges gets enhanced to a Z2-graded one (“supersymmetrized”) by
the appearance of an additional, odd, charge. We have analyzed in some detail the cases of n=3 (the
hexagonal or Pöschl-Teller model) and n=4 (the tetrahexahedric model).

Various issues remain unresolved. First, the question of Liouville charges (the first test appears at
n=5) and, more generally, the algebra of the conserved charges depend on the structure of the deformed
so(n−1) algebra of Dunkl-deformed angular momenta Lij , about which little is known. Second, a
classification of all independent Hamiltonian intertwiners, via Weyl antiinvariants built from the Lij , is
open. Third, a systematic study of PT deformations compatible with the Weyl symmetry is warranted,
in order to decide if and when the state space can be doubled and a nonlinear supersymmetry can be
realized for integral values of g. Finally, there is always the potential generalization to trigonometric,
hyperbolic or elliptic Calogero systems.
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