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Abstract. In this talk we present a matrix approximation to the algebra of functions on the
disc and define a fuzzy approximation to the Laplacian with Dirichlet boundary conditions. A
basis for the NC algebra is introduced in terms of the eigenfunctions of the fuzzy Laplacian,
which are seen to converge to the eigenfunctions of the ordinary Laplacian on the disc, that is,
the Bessel functions.

A. Introduction
Fuzzy spaces are an approximation of the abelian algebra of functions on an ordinary space with
a sequence of finite rank matrix algebras, which preserve the symmetries of the original space,
at the price of noncommutativity.

The idea was introduced by Madore [1]with the fuzzy sphere (see also [2, 3]): a sequence
of nonabelian algebras, generated by three “noncommutative coordinates” which satisfy xixi =
1, [xi, xj ] = κεijkxk with κ depending on the dimension of representations of SU(2). Such
an algebra is seen to correctly reproduce the algebra of functions on the ordinary sphere in an
appropriate limit [4]. (For applications to field theory a partial list of references is [5].) The
main ingredient here being the existence of a compact group of which the sphere is an orbit, the
same idea has been further applied to spaces with similar features[6, 7, 8, 9].

Here we present a generalization to a space, the disc, which cannot be seen as the coadjoint
orbit of a compact group. First we briefly review the fuzzy sphere from a perspective which
can be partly generalised to the disc case. Then introduce the fuzzy disc starting from the
noncommutative plane and implementing the constraint x2 + y2 ≤ R2 [10, 11, 12, 13]. As for
the fuzzy sphere, the geometry is introduced through a fuzzy Laplacian, whose eigenfunctions
furnish a basis for the matrix algebra approximating the algebra of functions on the disc. In the
commutative limit they tend to the ordinary Bessel functions (from which the name of fuzzy
Bessel functions) and the spectrum of the Laplacian recovers the correct spectrum.

B. The fuzzy sphere
In this section we present the fuzzy sphere in the general context of the Weyl-Wigner formalism
[7, 8, 14], which establishes invertible maps between operators and functions on a given manifold.
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Since the sphere is an orbit of SU (2), we may use coherent states of SU(2) to establish the
map [15]. These are defined starting from unitary irreducible representations of the group.
On each finite dimensional Hilbert space CN , with N = 2L + 1 -here (L = 0, 1/2, 1, 3/2 . . .)-
, a basis is given by vectors that, in ket notation, are represented as |L,M 〉 -with M =
(−L,−L+ 1, . . . , L− 1, L)-. To each group element we associate an operator

u ∈ SU (2) R̂(L)�→ B
(
CN

)
(B.1)

whose matrix elements are the Wigner functions

〈L,M |R̂(L) (u) |L,M ′〉 = DL
MM ′ (u) . (B.2)

The second step is to fix a fiducial state. We choose the highest weight in the representation:
|ψ0〉 = |L,L〉. If the group manifold is parametrised by Euler angles, then u represents a point
whose “coordinates” range through α ∈ [0, 4π) ,β ∈ [0, π) , γ ∈ [0, 2π) . Fixed the fiducial
vector, its stability subgroup Hψ0 by the R̂(L) representation is made by elements for which
β = 0 (this condition is seen to be valid independently of N). Two elements u and u′ are
equivalent if u†u′ ∈ Hψ0 . It is possible to prove that:

SU (2) /Hψ0 ≈ S2 (B.3)

identifying θ = β and ϕ = α mod 2π. To each equivalence class of the quotient we associate a
coherent state. Therefore, varying ũ, a representative element for each equivalence class, the set
of coherent states is defined as:

|θ, ϕ,N〉 = R̂(L) (ũ) |L,L〉 . (B.4)

This set of states is nonorthogonal, and overcomplete (dΩ = dϕ sin θ dθ):

〈θ′, ϕ′, N |θ, ϕ,N〉 = e−iL(ϕ′−ϕ)
[
ei(ϕ

′−ϕ) cos θ/2 cos θ′/2 + sin θ/2 sin θ′/2
]2L

,

11 =
2L+ 1

4π

∫
S2
dΩ|θ, ϕ,N〉〈θ, ϕ,N | . (B.5)

Using this set of vectors it is possible to map operators on a finite dimensional Hilbert space
(finite rank matrices) to functions on the sphere S2 (Berezin symbols [16]):

Â(N) ∈ B
(
CN

)
≈ MN �→ A(N) ∈ F

(
S2
)
,

A(N) (θ, ϕ) = 〈θ, ϕ,N |Â(N)|θ, ϕ,N〉 . (B.6)

Among these operators, there are some special ones, Ŷ (N)
JM whose symbols are the spherical

harmonics, up to order 2L (here J = 0, 1, . . . , 2L and M = −J, . . . ,+J):

〈θ, ϕ,N |Ŷ (N)
JM |θ, ϕ,N〉 = YJM (θ, ϕ) , (B.7)

these operators are called fuzzy harmonics. What is special to these operators? Till now we
have just associated functions with finite dimensional representations of SU(2). The geometry
of the sphere is introduced through a Laplacian defined on each finite rank matrix algebra MN ,
whose eigenmatrices are precisely the fuzzy harmonics

∇2 : MN �→ MN ,

∇2Â(N) =
[
L̂(N)
s ,

[
L̂(N)
s , Â(N)

]]
(B.8)
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where L̂(N)
a are the generators of the Lie algebra of This operator is called the fuzzy Laplacian.

Its spectrum is given by the eigenvalues Lj = j (j + 1), where j = 0, . . . , 2L, and every eigenvalue
has a multiplicity of 2j+1. The spectrum of the fuzzy Laplacian thus coincides, up to order 2L,
with the one of its continuum counterpart acting on the space of functions on a sphere. The cut-
off of this spectrum is of course related to the dimension of the rank of the matrix algebra under
analysis. The fuzzy harmonics, besides being the eigenstates of the fuzzy Laplacian, furnish a
basis in each space of matrices MN . An element F̂ (N) belonging to MN can be expanded as:

F̂ (N) =
2L∑
J=0

J∑
M=−J

F
(N)
JM Ŷ

(N)
JM , (B.9)

with coefficients

F
(N)
JM =

Tr
[
Ŷ

(N)†
JM F̂ (N)

]
Tr Ŷ (N)†

JM Ŷ
(N)
JM

. (B.10)

Then a Weyl-Wigner map can be defined simply mapping spherical harmonics into fuzzy
harmonics:

Ŷ
(N)
JM ⇔ YJM (θ, ϕ) . (B.11)

This map clearly depends on the dimensionN of the space on which fuzzy harmonics are realized.
It can be linearly extended by:

F̂ (N) =
2L∑
J=0

J∑
M=−J

F
(N)
JM Ŷ

(N)
JM ↔ F (N) (θ, ϕ) =

2L∑
J=0

+J∑
M=−J

F
(N)
JM YJM (θ, ϕ) . (B.12)

This is a Weyl-Wigner isomorphism and it can be used to define a fuzzy sphere. Given a function
on a sphere, if it is square integrable with respect to the standard measure dΩ, then it can be
expanded in the basis of spherical harmonics:

f (θ, ϕ) =
∞∑
J=0

J∑
M=−J

fJM YJM (θ, ϕ) . (B.13)

Now consider the set of “truncated” functions:

f (N) (θ, ϕ) =
2L∑
J=0

J∑
M=−J

fJM YJM (θ, ϕ) . (B.14)

this is made into an algebra, isomorphic to the matrix algebra MN , if we define a new,
noncommutative product,(

f (N) ∗ g(N)
)

(θ, ϕ) =< θ, ϕ,N |f̂ (N)ĝ(N)|θ, ϕ,N > . (B.15)

The Weyl-Wigner map (B.12) has been used to make each set of truncated functions a non
abelian algebra A(N)

(
S2, ∗), isomorphic to MN .

To make contact with our initial definition of fuzzy sphere, let us observe that these algebras
can be seen as formally generated by matrices which are the images of the norm 1 vectors in
R3, i.e. points on the sphere. They are mapped into multiples of the generators L̂(N)

a of the Lie
algebra:

xa
‖ �x ‖ �→ x̂(N)

a

[
x̂(N)
a , x̂

(N)
b

]
=

2iεabc√
N2 − 1

x̂(N)
c . (B.16)

The commutation rules satisfied by generators of the algebras in the sequence A(N)
(
S2, ∗) make

it intuitively clear that in the limit for N → ∞ we recover the abelian algebra of functions on
S2.
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C. The fuzzy disc
In the previous section we have defined the fuzzy sphere as a sequence of finite-dimensional
matrix algebras. The finite rank was connected to the dimension of UIRR’s of the group
SU(2).The Weyl-Wigner map associating operators to functions was realised by means of
coherent states of SU(2), which are in one to one correspondence with points on the sphere
S2. Moreover, a basis in the set MN has been found in terms of eigenmatrices of the fuzzy
Laplacian. This procedure works for all coadjoint orbits of compact groups, therefore, not for
the disc. What to do then? Despite the evident differences, the procedure followed for the
sphere can still be applied, with some modifications. In fact, in [10, 11] we propose the following
approach. Considering the disc as a subspace of the plane R2, we first regard the plane as an
orbit of the Heisenberg-Weyl group, consider coherent states for such a group and establish a
Weyl-Wigner map between functions on the plane and operators which, being the HW group
non-compact, are morally infinite dimensional matrices. At this point we have to implement the
constraint x2 + y2 ≤ R2, where x, y are coordinates on the plane and R is the radius of the disc.
This is achieved introducing a sequence of projections converging to the characteristic function
of the disc. The projections identify a sequence of finite rank matrix algebras converging to the
commutative algebra of functions on the disc. This algebra can be endowed with an additional
structure, a fuzzy Laplacian, identifying the underlying geometry. In the commutative limit
N → ∞, with Nθ = R2 this geometry is seen to converge to a disc of radius R. It is this
sequence which we call the fuzzy disc (some points of contact with our approach may be found
in [17, 18]). Pursuing our analogy with the fuzzy sphere, we can go a step further and solve
the eigenvalue problem for the fuzzy Laplacian. It is known that, in complete analogy with
spherical harmonics and their role for the sphere, Bessel functions of integer order are a basis for
the algebra of functions on the ordinary disc. Moreover, they are eigenfunctions of the Laplacian
with Dirichlet boundary conditions on the disc. What happens in the fuzzy case? Here, the
eigenmatrices are finite rank operators. Their symbols are seen to tend to Bessel functions of
integer order, therefore deserving the name of fuzzy Bessel. As we will see in detail below, these
finite rank operators, the fuzzy Bessel functions, furnish a basis in each finite dimensional matrix
algebra of the sequence, completing the picture.

A noncommutative plane can be defined by means of a Weyl-Wigner map, following again
the general procedure of Berezin: so the first step is the definition of a set of coherent states
for the Heisenberg-Weyl group, since they are labelled by points of the plane. For details on
the derivation, which follows the same steps we have seen for the sphere, we refer to [11].
However, coherent states for the HW group are very well known: they are the eigenstates of
the annihilation operator â = θ ∂

∂z where z = x+ iy are complex coordinates for the plane. The
commutation relations of â with creation operator â†, (â†f)(z) = zf(z) read

[â, â†] = θ11 (C.17)

with the unconventional presence of θ. In the basis of the number operator N̂ = â†â coherent
states read

|z〉 =
∞∑
n=0

e−z̄z/2θ
zn√
n!θn

|ψn〉 . (C.18)

Thus a Weyl-Wigner correspondence can be established. To operators f̂ acting on the Hilbert
space of complex analytic functions of complex variable z we associate

f (z̄, z) = 〈z|f̂ |z〉 . (C.19)

This relation can be inverted to:

f̂ =
∫

d2ξ

πθ

∫
d2z

πθ
f (z, z̄) e−(z̄ξ−ξ̄z)/θ eξâ

†/θ e−ξ̄â/θ. (C.20)
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Instead than the integral form (C.20) we look for a series expansion, which is more manageable
to be adapted to the disc. To start with, we can restrict to functions which can be written as
Taylor series in z̄, z:

f (z̄, z) =
∞∑

m,n=0

fTaymn z̄
mzn . (C.21)

An easy calculation shows that this f is the symbol of the operator:

f̂ =
∞∑

m,n=0

fTaymn â
†mân . (C.22)

More generally we can consider operators written in a density matrix notation:

f̂ =
∞∑

m,n=0

fmn|ψm〉〈ψn| . (C.23)

The Berezin symbol of this operator is the function:

f (z̄, z) = e−|z|2/θ
∞∑

m,n=0

fmn
z̄mzn√
m!n!θm+n

, (C.24)

where the relation between the Taylor coefficients fTaymn and the fmn is

flk =
min(l,k)∑
q=0

fTayl−q k−q

√
k!l!θl+k

q!θq
, (C.25)

while the inverse relation is given by:

fTaymn =
min(m,n)∑
p=0

(−1)p

p!
√

(m− p)! (n− p)!θm+n
fm−p n−p . (C.26)

Equation (C.22) shows that the quantization of a monomial in the variables z, z̄ is an operator
in â, â†, formally a monomial in these two noncommuting variables, with all terms in â† acting
at the left side with respect to terms in â.

The invertibility of the Weyl map (on a suitable domain of functions on the plane) enables
to define a noncommutative product in the space of functions, known as Voros product [19, 20],
a variant of the more popular Grönewold-Moyal product [21, 22]:

(f ∗ g) (z̄, z) = 〈z|f̂ ĝ|z〉 . (C.27)

It is a non local product:

(f ∗ g) (z̄, z) = e−z̄z/θ
∫

d2ξ

πθ
f (z̄, ξ) g

(
ξ̄, z
)
e−ξ̄ξ/θeξ̄z/θez̄ξ/θ . (C.28)

Its asymptotic expansion, on a suitable domain, acquires the form:

(f ∗ g) (z̄, z) = f eθ
←−
∂ z̄

−→
∂ z g, (C.29)
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and makes it clear that it is a deformation in θ of the pointwise commutative product. Since it
is the translation, in the space of functions, of the product in the space of operators, if symbols
are expressed in the form (C.24), then the product acquires a matrix form:

(f ∗ g)mn =
∞∑
k=0

fmkgkn . (C.30)

The space of functions on the plane, with the standard definition of sum, and the product
given by the Voros product (C.27), is a nonabelian algebra, a noncommutative plane. This
algebra Aθ =

(F (R2
)
, ∗) is isomorphic to an algebra of operators, or, as equation (C.30)

suggests, to an algebra of infinite dimensional matrices.
As anticipated above, to obtain finite rank matrices we introduce a set of projectors

P̂
(N)
θ =

N∑
n=0

|ψn〉〈ψn| (C.31)

in the space of operators. Their symbols are projectors in the algebra Aθ of the noncommutative
plane, in the sense that they are idempotent functions of order 2 with respect to the Voros
product (here z = reiϕ):

P
(N)
θ (r, ϕ) =

N∑
n=0

〈z|ψn〉〈ψn|z〉 = e−r
2/θ

N∑
n=0

r2n

n!θn

P
(N)
θ ∗ P (N)

θ = P
(N)
θ . (C.32)

This finite sum can be performed yielding a rotationally symmetric function which is the ratio
of an incomplete gamma function by a gamma function:

P
(N)
θ (r, ϕ) =

Γ
(
N + 1, r2/θ

)
Γ (N + 1)

. (C.33)

Let us analyse the limit N → ∞. If θ is kept fixed, and nonzero, in the limit for N → ∞ the
symbol P (N)

θ (r, ϕ) converges, pointwise, to the constant function P
(N)
θ (r, ϕ) = 1, which can be

formally considered as the symbol of the identity operator: in this limit one recovers the whole
noncommutative plane.

This situation changes if the limit for N → ∞ is performed keeping the product Nθ equals
to a constant, say R2. In a pointwise convergence, chosen R2 = 1:

P
(N)
θ →

⎡
⎣ 1 r < 1

1/2 r = 1
0 r > 1

⎤
⎦ = Id (r) . (C.34)

This sequence of projectors converges to a step function in the radial coordinate r, the
characteristic function of a disc on the plane. Thus a sequence of subalgebras A(N)

θ can be
defined by:

A(N)
θ = P

(N)
θ ∗ Aθ ∗ P (N)

θ . (C.35)

As it has been said, the full algebra Aθ is isomorphic to an algebra of operators. What the
previous relation says is that A(N)

θ is isomorphic to MN+1, the algebra of (N + 1) rank matrices.
The effect of this projection on a generic function is:

Π(N)
θ (f) = f

(N)
θ = P

(N)
θ ∗ f ∗ P (N)

θ = e−|z|2/θ
N∑

m,n=0

fmn
z̄mzn√
m!n!θm+n

(C.36)
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which, comparing with (C.24) is nothing but a truncation of the series expansion. On every
subalgebra A(N)

θ , the symbol P (N)
θ (r, ϕ) is then the identity, because it is the symbol of the

projector P̂ (N) =
∑N
n=0 |ψn〉〈ψn|, which is the identity operator in A(N)

θ , or, equivalently, the
identity matrix in every MN+1.

Note that the rotation group on the plane, SO (2), acts in a natural way on these subalgebras.
Its generator is the truncated number operator N̂ (N) =

∑N
n=0 nθ|ψn〉〈ψn|. Cutting at a finite

N the expansion provides an infrared cutoff. This cutoff is “fuzzy” in the sense that functions
in the subalgebra are still defined outside the disc of radius R, but are exponentially damped.
In general functions are close to their projected version f

(N)
θ if they are mostly supported on

a disc of radius R =
√
Nθ, otherwise they are exponentially cut, provided they do not present

oscillations of too small wavelength (compared to θ). In this case the projected function becomes
very large on the boundary of the disc. More details and examples are in [10, 12].

The procedure outlined so far allows a fuzzy approximation to functions mostly supported
on the disc. What is missing, however, is a direct association between functions on the disc and
finite-dimensional matrices: in other words, we need a basis in each ANθ which is mapped one to
one into a basis for (F(D), ·). We know that a basis for (F(D), ·) is represented by the Bessel
functions of integer order, which are in turn the eigenfunctions of the Laplacian on the disc
with Drichlet boundary conditions. Therefore, mimicking the procedure outlined for the fuzzy
sphere, we consider a properly defined fuzzy Laplacian, we show that it is a good approximation
because its spectrum reproduces the standard spectrum in the noncommutative limit and we
study the eigenmatrices.

The first step is to define derivatives in ANθ . In Aθ we have

∂zf =
1
θ
〈z|
[
f̂ , â†

]
|z〉 ,

∂z̄f =
1
θ
〈z|
[
â, f̂

]
|z〉 . (C.37)

Therefore we define [11]

∂zf
(N)
θ ≡ 1

θ
〈z|P̂ (N)

θ

[
P̂

(N)
θ f̂ P̂

(N)
θ , â†

]
P̂

(N)
θ |z〉

∂z̄f
(N)
θ ≡ −1

θ
〈z|P̂ (N)

θ

[
P̂

(N)
θ f̂ P̂

(N)
θ , â

]
P̂

(N)
θ |z〉 (C.38)

which can be checked to be true derivations on each A(N)
θ , that is a linear operation from A(N)

θ
to itself, satisfying the Leibnitz rule.

Let us come to the definition of the Laplacian operator. In the spirit of noncommutative
geometry it is this additional structure which carries the information about the geometry of the
space underlying A(N)

θ .
Starting from the exact expression on Aθ:

∇2 f(z̄, z) = 4∂z̄∂zf =
4
θ2
〈z|
[
â,
[
f̂ , â†

]]
|z〉 (C.39)

it is possible to define, in each A(N)
θ :

∇2
(N) f̂

(N)
θ ≡ 4

θ2
P̂

(N)
θ

[
â,
[
P̂

(N)
θ f̂ P̂

(N)
θ , â†

]]
P̂

(N)
θ . (C.40)

The image of an element of the truncated algebra:

f̂
(N)
θ =

N∑
a,b=0

fab|ψa〉〈ψb|
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is then:

∇2
(N) f

(N)
θ = 4N

[
N−1∑
s=0

N−1∑
b=0

fs+1,b+1

√
(s+ 1) (b+ 1)|ψs〉〈ψb| +

−
N∑
s=0

N∑
b=0

fsb (s+ 1) |ψs〉〈ψb| −
N−1∑
s=0

f0,s+1 (s+ 1) |ψ0〉〈ψs+1|+

+
N−1∑
s=0

N−1∑
b=0

fsb

√
(s+ 1) (b+ 1)|ψs+1〉〈ψb+1|+

−
N−1∑
s=0

N−1∑
b=0

fs+1,b+1 (b+ 1) |ψs+1〉〈ψb+1|
]
. (C.41)

The eigenvalues of this Laplacian have been numerically calculated [10, 11]. They are seen to
converge to the spectrum of the standard Laplacian defined on a disc, with boundary conditions
on the edge of the disc of Dirichlet homogeneous kind. We recall that in the standard case all
eigenvalues are negative, and their modules λ solve the implicit equation:

Jn
(√

λ
)

= 0 , (C.42)

where n is the order of the Bessel functions. In particular, those related to J0 are simply
degenerate, the others are doubly degenerate: so there is a sequence of eigenvalues labelled by
λn,k where n is the order of the Bessel function and k indicates that it is the kth zero of the
function. Moreover, the eigenfunctions of the standard Laplacian are:

Φn,k = einϕ

⎛
⎝
√
λ|n|,kr

2

⎞
⎠

|n| ∞∑
s=0

(
−λ|n|,k

)s
s! (|n|+ s)!

(
r

2

)2s

= einϕJ|n|
(√

λ|n|,kr
)
. (C.43)

with n integer number and |n| its absolute value. This is a way to write the eigenfunctions in a
compact form, taking into account the degeneracy of eigenvalues for |n| ≥ 1.

The spectrum of the fuzzy Laplacian is in good agreement with the spectrum of the continuum
case, even for low values N of the dimension of truncation, as can be seen in figure 1. It
is interesting to note that with this definition of Laplacian (C.40) we correctly reproduce the
degeneracy pattern of the eigenvalues.

Despite many points of contact, there is an important difference with respect to the fuzzy
sphere. There, the spectrum is truncated (we get the first 2L eigenvalues, with 2L = N − 1)
but exact up to the truncation. For the fuzzy disc the spectrum is not only cut but also
approximated.

Let us consider now the eigenmatrices of the fuzzy Laplacian (C.40). As anticipated, their
symbols will furnish a basis in ANθ . It can be shown after lengthy calculations [11] that the
eigenmatrices are of the form

Φ̂(N)
n,k =

(
λn,k
4N

)n/2 N−n∑
a=0

√
a! (a+ n)!

[
a∑
s=0

(
−λn,k

4N

)s 1
s! (s+ n)! (a− s)!

]
|ψa〉〈ψa+n| . (C.44)

To understand what these operators are, let us consider the eigenfunctions of the standard
Laplacian, Φn,k represented by (C.43) and map them into operators via the Weyl map. We
obtain for a fixed nonnegative n, such that 0 ≤ n ≤ N ,

Φ̂n,k =
(
λn,k
4

)n/2 ∞∑
s=0

(
−λn,k

4

)s 1
s! (s+ n)!

â†s âs+n. (C.45)
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Figure 1. Comparison of the first eigenvalues of the fuzzy Laplacian (circles) with those of the
continuum Laplacian (crosses) on the domain of functions with Dirichlet homogeneous boundary
conditions. The orders of truncation are N = 10, 20, 30.

In the density matrix notation, it acquires the form:

Φ̂n,k =
(
λn,k
4

)n/2 ∞∑
j=n

j−n∑
s=0

(
−θ λn,k

4

)s θn/2

s! (s+ n)!

√
j! (j − n)!

(j − s− n)!
|ψj−n〉〈ψj | . (C.46)

Comparing this expression with the eigenmatrices of the fuzzy Laplacian (C.44) we can easily
verify that (C.44) is a truncation of (C.46) with the constrain θN = 1. Therefore the
eigenmatrices of the fuzzy Laplacian coincide with the eigenmatrices of the exact Laplacian
(which are represented by an infinite series), up to the order of the approximation. We refer for
details to [11].

As a final result, we now compare the behaviour of the symbols of the fuzzy Bessel with their
ordinary counterparts.

From (C.44) the symbol of a fuzzy Bessel is:

Φ(N)
n,k =

⎛
⎝λ(N)

n,k

4

⎞
⎠
n/2

rneinϕe−Nr
2
N−n∑
a=0

r2aNa

⎡
⎣ a∑
s=0

1
s! (s+ n)! (a− s)!

⎛
⎝−λ(N)

n,k

4N

⎞
⎠
s⎤
⎦ . (C.47)

The integer n appears as a phase modulating factor for the variable ϕ. This would be the
expansion of the corresponding Bessel function, where it not for the truncation in the sum, and
the fact that the parameter λ0,k has become the eigenvalue of the fuzzy Laplacian. For n = 0
the expression can be simplified:

Φ(N)
0,k (r) =

N∑
a=0

⎛
⎝ a∑
s=0

⎛
⎝−λ(N)

0,k

4N

⎞
⎠
s

1
s!

(
a
s

)⎞⎠ e−Nr
2
r2a

Na

a!

= e−Nr
2

N∑
a=0

Na

a!
r2a L(a)

⎛
⎝λ(N)

0,k

4N

⎞
⎠ . (C.48)

Where L(a)

(
λ
(N)
0,k

4N

)
is the ath Laguerre polynomial in the variable

(
λ
(N)
0,k

4N

)
. We can plot the

diagonal fuzzy elements. Fig. 2 shows that the zero order fuzzy Bessel state converges to the
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continuum eigenfunctions Φ0,1 (r, ϕ) for values of r inside the disc of radius 1, while it converges
to zero outside the disc. This behaviour is seen to be valid also for eigenstates of different
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Figure 2. Comparison of the radial shape for the symbol Φ(N)
0,1 (r, ϕ) (continuum line), the

symbol of the eigenmatrix of the fuzzy Laplacian for N = 10, 20, 30, with Φ0,1 (r, ϕ).

eigenvalues. It is interesting to analyse the fuzzification of Φ0,10 (r). The fuzzy symbol is Φ(N)
0,10.

For N = 10, 20, 25 it is plotted in figure (3). It is evident that the fuzzy eigenfunction reproduces
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Figure 3. Comparison of the radial shape for the Φ(N)
0,10 symbol (continuum line)for N =

10, 20, 25. The bump goes out of the picture. As N increases, it becomes narrower and narrower.

the continuum eigenfunction for values of r close to the centre of the disc, but not on the edge,
where a huge bump appears. In [10] it has been explained that the presence of the bump
on the edge of the disc, in the fuzzification of a function defined on the plane, is related to
the fact that this function has oscillations of too small wavelength compared to θ. This is a
manifestation of the infrared-ultraviolet mixing characteristic of noncommutative theories. In
the case of Φ0,10 (r) = J0

(√
λ0,10r

)
, one can immediately see that the oscillation wavelength

of the continuum eigenfunction is given by ρλ ∼ 1/k ∼ 1/10. In these plots, it is assumed
θ = 1/N (the fuzzy disc truncation), so θ and ρλ are of compatible magnitude. In the fuzzy disc
limit, N → ∞, so θ is infinitesimal. The bump disappears, as it is shown in the other plots
(figure 4).
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Figure 4. Comparison of the radial shape for the Φ(N)
0,10 symbol for N = 30, 35, 40.

The non radial functions follow a similar pattern. Their phases are exactly as the ones of
their continuum counterparts, while the radial parts are similar. A first plot is in Fig. 5, a
second one in Fig. 6, where the fuzzification procedure gives again a bump, for small values of
N . This bump is seen to disappear in the fuzzy disc limit.
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Figure 5. Comparison of the radial shape of the Φ(N)
1,1 (r, ϕ) symbol (continuum line) for

N = 10, 20, 30.

Since the fuzzy Bessels play a role similar to fuzzy harmonics for the fuzzy sphere algebra, we
can now make the process of approximating the algebra of functions on a disc with matrices more
precise. In complete analogy with (B.13) and (B.14), if f is square integrable with respect to
the standard measure on the disc dΩ = rdrdϕ, it can be expanded in terms of Bessel functions:

f (r, ϕ) =
+∞∑

n=−∞

∞∑
k=1

fnke
inϕJ|n|

(√
λ|n|,kr

)
(C.49)

and it is possible to truncate:

f (N) (r, ϕ) =
+N∑

n=−N

N+1−|n|∑
k=1

fnke
inϕJ|n|

(√
λ|n|,kr

)
=

+N∑
n=−N

N+1−|n|∑
k=1

fnk Φn,k (r, ϕ) . (C.50)
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Figure 6. Comparison of the radial shape of the Φ(N)
6,5 (r, ϕ) symbol (continuum line) for

N = 10, 20, 30.

This set of functions is a vector space. It is made into a nonabelian algebra if we induce the
product

f (N) ∗ g(N) =< z|f̂ (N)ĝ(N)|z > (C.51)

with

f̂
(N)
θ =

+N∑
n=−N

N+1−|n|∑
k=1

fnkΦ̂
(N)
n,k . (C.52)

The formal limit N →∞ with the constraint Nθ = 1 is the abelian algebra of functions on the
disc. The sequence of nonabelian algebras A(N)

θ is what we call the fuzzy disc.
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