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Abstract. Nowadays, employing deep learning for Structural Health Monitoring is a common
practice. However, one of the main challenges here is the lack of data. Several methods have
been developed to address this issue. Quantum machine learning is known to be trained faster
and with less data, therefore, it could be a suitable option to be used for this purpose. However,
since at the current stage limited numbers of qubits can remain stable at the same time, hybrid
quantum-classical deep learning approaches can be a replacement. In this study, the bene�t of
incorporating a quantum layer into a classical deep learner for detecting damage is investigated.
For this purpose, a deep learning model with and without a quantum layer is used to predict
damage in a wind turbine blade by using ultrasonic inspection data. The results indicate the
bene�t of employing hybrid quantum-classical ML in detecting damage.

1. Introduction

Nowadays, machine learning is being used extensively for monitoring the quality of a component
throughout its life cycle. This includes Non-Destructive Testing (NDT) [1] and Structural Health
Monitoring (SHM)[2]. However, there are several challenges in this e�ort among which two cases
are particularly crucial: data shortage and long training time. Researchers address the former
by di�erent approaches such as fusion at the data [3] or decision level [4], and by incorporating
the physics of the problem through a hybrid cost function or by generating synthetic data from
a �nite element model [5]. These approaches may increase the overall training time.

With the advancement of quantum computers and the associated algorithms, di�erent
�elds have started to exploit inherent quantum mechanical features such as superposition and
entanglement and investigate if these e�ects can be leveraged in their �eld. Among various
quantum-related research areas, quantum machine learning (QML) is one of the promising
domains because of its ability to achieve faster convergence with smaller datasets than classic
ML [6]. This is one of the main reasons for its recent widespread applications [7, 8, 9]. Despite
this progress, implementing QMLs in real applications is very challenging due to the limited
number of qubits that can remain stable at the same time.

To overcome this limitation, researchers developed hybrid quantum-classic machine learning
approaches that combine the strength of both classical and quantum algorithms. For instance,
classical machine learning algorithms can be used for data preprocessing and reducing the
complexity of problems, while quantum computing can be used to speed up computations and
optimizations that could be intractable to classical computers. These approaches thus, have
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the potential to enable more e�cient and accurate analysis of complex data sets, as is in SHM,
leading to better and faster decision-making.

In this study, a preliminary investigation have been conducted on the application of Hybrid
Quantum-Classical ML to structural health monitoring. It should be emphasized that the
primary focus is on developing an ML model that could perform better than a classical ML
model on a set of SHM data, rather than on the generalization capability and interpretability
of the model obtained. In this regard, in Section 2, a short background on pertinent topics
in quantum machine learning is provided. In Section 3 hybrid quantum-classic model will be
introduced and in Section 4, it will be applied to ultrasonic inspection and the relevant results
will be shown. Section 5 will conclude the paper.

2. Background on quantum computing

In this section, some pertinent information about quantum computing will be presented.
Quntumbit, or qubit, is the smallest piece of quantum information which is a complex vector
pointing to a unit sphere, i.e. Bloch sphere. Mathematically, its state is shown by Bra-Ket
notation and can be in state 0 as |0⟩ =

[
1 0

]
, 1 as |1⟩ =

[
0 1

]
, or in a superposition state as

|ψ⟩ = α|0⟩+ β|1⟩ where α, β ∈ C and |α2|+ |β2| = 1
To change the state of a quantum state, unitary transformation U is needed to map the state

ψ to ϕ as,

|ϕ⟩ = U |ψ⟩ (1)

The transformation U is unitary if UU † = U †U = I with I as an identity operator. The
unitary transformations can make quantum gates that can act on 1 or more qubits. The list of
common gates is shown in Table 1. In this table, besides their name and their representation, their
matrix form, number of inputs, and a short description of each gate are presented. For instance,
Pauli gates rotate their input for 90 degrees about their corresponding axes. The Hadamard
gate transforms a qubit from the computational basis (|0⟩ and |1⟩ like classical information) to
the superposition state. This means when it is applied to a qubit in the |0⟩ (resp. |1⟩) state, the
qubit transforms to |+⟩ = 1√

2
(|0⟩+ |1⟩) (resp. |−⟩ = 1√

2
(|0⟩ − |1⟩)).

The quantum gates can be parameterized and then connected to each other to make a quantum
machine learning model [10]. For instance, the Pauli gates can be parameterized by their rotation
angles. These parameterized gates together with their matrix representations are shown in Table
2.

After making a parameterized quantum model, measurement is required to extract classical
information from a quantum state. One technique is based on the σz expectation. σz is the
matrix shown in Table 1 as Pauli-Z that acts on a single qubit.

The expectation value of the σz operator for a qubit in state |ψ⟩ is given by:

⟨σz⟩ = ⟨ψ|σz|ψ⟩ (2)

This expression calculates the average result we would obtain if we were to perform many
measurements of the qubit in the σz basis. For example, if we have a qubit in the state
|ψ⟩ = 1√

2
(|0⟩+ |1⟩), then the expected value of the σz operator is:

⟨σz⟩ = ⟨ψ|σz|ψ⟩ =
1√
2

(
1 1

)(1 0
0 −1

)
1√
2

(
1
1

)
= 0

3. Hybrid Quantum-Classical ML

As mentioned, hybrid quantum-classical ML is being developed as a response to leverage the
quantum properties in classical methods. Depending on where, how and to what extent the
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Table 1: Important quantum gates and their representations

Quantum gates Matrix Representation Input Description

Identity

[
1 0
0 1

]
I 1 qubit Does nothing

Pauli-X (σx)

[
0 1
1 0

]
X 1 qubit Rotation around X-axis

Pauli-Y (σy)

[
0 −i
i 0

]
Y 1 qubit Rotation around Y-axis

Pauli-Z (σz)

[
1 0
0 −1

]
Z 1 qubit Rotation around Z-axis

Hadamard 1√
2

[
1 1
1 −1

]
H 1 qubit Superposition

CNOT


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 • 2 qubits Entanglement

SWAP


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ×
×

2 qubits Swap two qubits

Table 2: Parameterized Quantum Gates

Quantum gates Matrix Parameters Applications

Rx

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
θ Rotation around X-axis

Ry

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
θ Rotation around Y-axis

Rz

[
e−i θ

2 0

0 ei
θ
2

]
θ Rotation around Z-axis

U3

[
cos θ

2 −eiϕ sin θ
2

eiλ sin θ
2 ei(λ+ϕ) cos θ

2

]
θ, ϕ, λ Universal gate

quantum algorithms and/or layers are employed to enhance classical methods, di�erent hybrid
approaches have been developed as discussed in [11].

In this work, a hybrid model is made by adding a quantum layer to a classical deep learning
model. The classical part of the model consists of two Convolution layers, two ReLU activation
layers, two Maxpool layers, and one Dropout as shown in Fig.1. The outcome of the Dropout
layer will be fed to two fully connected (FC) layers. The con�guration of this part of the model
is presented in Table 3. The second FC layer has one output that will be sent to the quantum
layer shown in Fig. 2 as q.

The chosen quantum layer shown in Fig. 2 is a simple quantum circuit consisting of two
gates: Hadamard gate H and the rotation gate Ry. The Hadamard gate was chosen to impose
the superposition to the input data q and then Ry gate that has one parameter, i.e. the rotation
angle θ as shown in Table 2, to be able to make some adjustment for �tting to the data. In
the end, a measurement was performed based on σz expectation as shown in Eq. (2). This is a
standard measurement approach in most of quantum algorithm.
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Figure 1: The CNN model used in this study. The parameters of the classic part of the model
is presented in Table 3 and the quantum layer is shown in Fig 2

Table 3: Con�guration of the classical part of the hybrid model shown in Fig. 1

Layer Properties

Convolution 1 10 �lters, kernel size 11x11, activation function ReLU
Max Pool 1 Pool size 2x2
Convolution 2 16 �lters, kernel size 6x6, activation function ReLU
Max Pool 2 Pool size 2x2
Dropout Dropout rate of 0.20
Fully Connected 1 784 neurons, activation function ReLU
Fully Connected 2 64 neurons, activation function ReLU, 1 output: q in Fig. 2,

|q⟩ H Ry(θ)

measurement
1 0

Figure 2: The employed quantum layer consisting of a Hadamard gate H and Ry gate. The
measurement will then be done by the σz expectation

After making the model, the Adam optimization algorithm will be employed to estimate the
unknown parameters.

4. Application to the ultrasonic inspection

Ultrasonic inspection is one of the common techniques for SHM to detect damage. This technique
has been used for damage detection in a wind turbine blade made of glass �ber-reinforced polymer
(GFRP). In this analysis, the ultrasonic signals were captured through the pulse-echo method
using a phased array probe composed of 50 transducer elements sending the pulse at a 0.5 MHz
frequency.
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To generate a dataset for training the model shown in Fig. 1, a portion of these images
collected at the location of the bonding area between skin and spar caps have been used. From
all the collected images, 44 images have been chosen: 20 healthy and 24 damaged. The dataset
has been divided into 50% training and 50% test. It should be emphasized here that the number
of healthy/damaged images and the train/test portions have been selected to simulate complex
situations for learning models.

To illustrate the importance of the quantum layer in the hybrid model, the performance of
the same model without the quantum layer has also been analyzed. In this model, the second
fully connected layer (FC2) gives two outputs that will be fed to the Softmax layer for making
decisions. This model will be referred to as the classical model. Both classical and hybrid models
have been trained by the Adam optimizer together with the negative log-likelihood loss function
[12].
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(a) Classic network
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(b) Hybrid network

Figure 3: Convergence analysis of the networks

Fig.3 illustrates the convergence of the hybrid model and the classic model on the train (red
line) and test (blue line) datasets. As can be seen in Fig. 3a, the classical model got stuck in
a local minimum of "all damaged" with the accuracy of 54.5% on the train and test datasets
whereas, the hybrid model was converged to 100% accuracy on the train and test datasets after
about 25 iterations, as shown in Fig. 3b.

Statistical analysis

In order to provide a thorough comparison between the performance of the hybrid model and
its classical counterpart, a statistical analysis has been devised. For this purpose, the whole
procedure of generating random training datasets and training the models have been repeated
100 times. The performance of the models are shown in Fig. 4. In these �gures, the training
procedure of all the 100 models is shown individually in the background while the mean (solid
lines) and median (dashed lines) of the accuracies are shown in the foreground.

As can be observed, in most cases, the classic model with the softmax couldn't move and got
stuck in the local minimum of "all damaged". But the hybrid model, in most cases, jumps out
of the local minimum and converge to close to 100% accuracy in the test datasets. Therefore,
the mean of the accuracy is about 80% for both training and test datasets and the median of
the accuracies converges to 100% for training datasets and above 90% for test datasets.

This statistical analysis clearly shows the importance of the quantum layer for making non-
complex models, especially with small training datasets.
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(a) Classical network
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Figure 4: Statistical analysis of the models' performance

5. Conclusion

In this study, the bene�t of hybrid quantum-classical machine learning to the �led of structural
health monitoring has been demonstrated. In this regard, the performance of two models have
been compared in detecting damages: i) a classical deep learner and ii) a hybrid model with the
same classic learning part together with a simple quantum layer. Both models have been trained
on an experimental dataset obtained by performing ultrasonic inspection of a wind turbine blade.

The results indicate that the dataset is too complex for the classic model and got stuck in a
local minimum. But, the hybrid quantum-classic model could jump over the local minimum and
converges to the median accuracy of above 90% on the test dataset. It should be emphasized
that, the generalization capability and interpretability of the model were not the focus of this
work.
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