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Abstract: In this paper, a short review of the calculus of exact finite-differences of integer order is
proposed. The finite-difference operators are called the exact finite-differences of integer orders, if
these operators satisfy the same characteristic algebraic relations as standard differential operators of
the same order on some function space. In this paper, we prove theorem that this property of the exact
finite-differences is satisfies for the space of simple entire functions on the real axis (i.e., functions that
can be expanded into power series on the real axis). In addition, new results that describe the exact
finite-differences beyond the set of entire functions are proposed. A generalized expression of exact
finite-differences for non-entire functions is suggested. As an example, the exact finite-differences of
the square root function is considered. The use of exact finite-differences for numerical and computer
simulations is not discussed in this paper. Exact finite-differences are considered as an algebraic
analog of standard derivatives of integer order.
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1. Introduction

Equations with derivatives and integrals of integer and non-integer orders are a
very important tool for describing various processes in mechanics, physics, chemistry,
biology, economics, and other sciences [1–7]. As another important tool for describing such
processes, equations with finite-differences of integer and non-integer orders are also often
used. However, the well-known finite-differences of integer and the non-integer orders
cannot be considered as exact discrete analogs of derivatives of the same orders. This is
due to the fact that the finite-differences have characteristic algebraic properties, which do
not coincide with the properties of differential operators. This is clearly seen in the finite-
differences and derivatives of the integer order. It is well-known that the standard finite-
differences (S-FDs) do not have the same algebraic properties as the standard derivatives
of the integer order [8–10].

Exact finite-differences can be called as such finite-difference operators that satisfy the
same characteristic algebraic relations as the corresponding standard differential operators
of the same order for some function sets. Therefore, one can state that the standard
finite-differences of the integer order cannot be considered as the exact finite-differences
of the same order. In 1982, the problem of constructing the exact finite-differences of
integer orders was first formulated in the form of a problem of the exact discretization
of differential equations of integer orders by Potts in the papers [11,12], and then by
Mickens in articles [13–15] in 1988. In these works, a concept of non-standard finite-
differences (NS-FDs) was proposed. Mickens proved that for differential equations there is
a “locally exact” finite-difference discretization, where the local truncation errors are zero.
These NS-FDs were used for modeling various processes and systems that described by
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differential equations of integer orders in the books and edited volumes [16–19], Mickens
papers [20–28], and papers by various scientists [29–63].

A main disadvantage of the non-standard finite-differences is that these difference
operators strongly depend on the form of the considered differential equation and the
parameters of these equations. In addition, the proposed non-standard finite-differences
do not have the same algebraic properties as derivative operators of integer orders. For
example, the standard Leibniz rule is a characteristic property of the derivative operators
of integer orders [64–66] is not satisfied for the NS-FDs of the integer order. Moreover,
these non-standard finite-differences do not form a calculus. For example, the sequential
action of the NS-FDs of the first order does not coincide with the action of the NS-FDs of
the second order.

Equations with derivatives and integrals of the non-integer orders [1–7] are actively
used in various sciences. In addition to the standard finite-differences of the integer
order, there are finite-differences of the non-integer order. Such difference operators of
the non-integer orders have been first proposed by Grunwald [67] and Letnikov [68] in
1867 and 1868, respectively, (see also [1,4]). It should be noted that the Grunwald–Letnikov
differences, and almost all other types of finite-differences of the non-integer order [1,4],
cannot be considered as exact finite-differences. This is easy to see by the fact that the
discrete Fourier transform of these difference operators does not coincide with the Fourier
transform of derivatives of the non-integer order [69]. In addition, for the integer values of
orders, these fractional differences do not have the same algebraic properties as the standard
derivatives of the same integer-orders.

In 2011, a generalization of NS-FDs for the exact discretization of fractional differential
equations of the non-integer order was first proposed by Moaddy, Momani, and Hashim in
papers [70,71]. In these papers, the non-standard discretization scheme, which is proposed
by Mickens, has been applied to the partial differential equations with fractional derivatives.
The Grunwald–Letnikov fractional derivatives have been used in numerical analysis to dis-
cretize the fractional differential equations. From this year, the non-standard discretization
scheme began to be actively studied and applied to fractional differential equations of the
non-integer orders in various works [70–84]. However, the disadvantages of this scheme
after generalization for operators of the non-integer order remained almost the same. The
proposed difference operators significantly depend on the form of the fractional differential
equation and parameters of this equation. In addition, these NS-FDs of the non-integer
order do not form a fractional calculus.

Let us briefly describe some basic steps from discrete systems with long-range inter-
actions to the creation of a fractional calculus on physical lattices, which then led to the
construction of exact finite-differences of the integer and non-integer order.

Step 1: Power-Law Long-Range Interaction.
In the 2006 papers [85–89], we proposed discrete systems with power-law long-range

interactions, which, in a continuous limit, are described by fractional differential equations
of non-integer-orders. Equations of these discrete systems can be considered as fractional
finite-difference equations with power-law kernels. In this work, it was first shown that
these discrete equations of motions with power-law long-range interactions give fractional
differential equations of non-integer order in the continuous limit.

Step 2: Long-Range Interaction of Power-Law Type (Alpha Interaction):
In 2006 works [88,89] (see also Section 8 in [90], pp. 335–353), a whole family of long-

range interactions was proposed that are called alpha-interactions, for which the equations
of motions led to fractional differential equations of non-integer orders in a continuous
limit. The set of alpha-interactions, which can also be called long-range interactions of
power-law type, contains the power-law long-range interactions are a particular case. In
2006 works [88,89], it was proved that equations with derivatives of non-integer orders can
be directly connected with discrete models of lattice systems with long-range interactions
of power-law type. In the next few years, some applications of the proposed approach were
also considered (for example, see [90–97]).
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In most works, equations of discrete systems with such long-range interactions gave
equations with a fractional derivative in the continued limit. However, the algebraic
properties of discrete and continuous operators, which, in fact, are used in the discrete
equations and associated with them are equations with fractional derivatives, which were
different and did not coincide. This property is manifested, for example, in the fact that the
properties of the Fourier images of discrete operators of a non-integer order and fractional
derivatives did not coincide.

Step 3: Alpha Interaction described by the Lommel function.
It should be emphasized that, in two articles [88,89], the finite-difference operators,

which, if fact, define the exact finite-difference, were proposed. These finite-differences
describe a special form of the long-range interactions of power-law type (alpha-interaction).

The finite-difference operators with this kernel have the Fourier image the exactly
coincides with the Fourier image of the fractional differential operator of non-integer
order. In the 2006 papers [88,89] and book [90], we proposed a kernel of the difference
(lattice) operator, which describe the long-range interactions, which has a discrete Fourier
transform coinciding with the Fourier transform of the fractional operator of a non-integer
order. The kernel of the difference operator is expressed through the Lommel function
(see Equation (41) in [89], p. 092901-7; see Table on page 14900 in [88], and Appendix on
page 14908 in [88]; see Definition 8.2 and Example 1 in [90], pp. 166–167, and Table on
page 170 of [90]). Note that the Lommel function can be expressed through the generalized
hypergeometric function 1F2(a; b, c; x) that is used in the exact finite-difference of arbitrary
order, which was proposed in [69], by equation that is given in [98], p. 372, [99], p. 428,
and [100], p. 682.

In fact, the proposed discrete (difference) equations of physical lattices and chains with
long-range interactions with these kernels, which were proposed in the 2006 papers [88,89],
can be considered as equations with exact finite-differences. Unfortunately, the concept of
exact discretization of the fractional derivative and the calculus of exact finite-differences
was not clearly formulated. This was performed only 10 years later.

Step 4: Lattice Fractional Calculus.
In the articles of 2014–2016 [101–103], a finite-difference operator, which exactly corre-

sponded to the fractional differential operators of the Riesz type, was actually rediscovered.
The kernel of these operators are represented through a generalized hypergeometric func-
tion 1F2(a; b, c; x). Using these operators, a discrete fractional calculus on physical lattices
was formulated and it was called the lattice fractional calculus. In fact, these finite-difference
operators, which were called as lattice fractional derivatives, are exact finite-differences,
which can be considered as exact discrete analogs of the well-known fractional operators of
the Riesz type.

The interconnection between the equations of these discrete systems (lattices) and the
fractional differential equations is proved by the special transform operator that includes
the Fourier series transform and Fourier integral transform [88,89,101–103]. The suggested
differences are derived by the discretization of the Riesz-type differentiation and the
integration of non-integer and integer orders.

As a result, in the 2014–2016 papers [101–103], we propose a lattice fractional calculus
of finite-difference operators of non-integer orders that have the same characteristic proper-
ties of the derivatives of integer and non-integer orders. This approach has been applied to
the discrete and lattice models of non-local continua and fields (for example, see [104–108]).

Step 5: Calculus of Exact Finite-Differences.
In the 2015–2017 papers [69,109–111], the exact finite-differences of integer and non-

integer orders have been suggested. The proposed new finite-difference operators, which
can be considered as an exact discrete analog of derivatives of integer (and non-integer)
orders, form a calculus.

These finite-difference operators of integer orders satisfy the same characteristic alge-
braic relations as the corresponding standard differential operators of the same order on
the space of simple entire functions E(R) (i.e., functions that are expandable into power
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series in R). These finite-differences do not depend on the form of differential equations
and the parameters of these equations. Using the E-FDs of integer orders, we can obtain the
exact discrete analogs of the differential equation of integer orders. The suggested E-FDs
allow us to obtain difference equations that exactly correspond to the differential equations,
where the exact correspondence exists not only between the equations, but also between
their solutions. The discrete analogs of the exact solutions of differential equations are
solutions to the corresponding equations with exact finite-differences.

Note that, in contrast to the standard derivatives of a integer order, for which Leibniz’s
rule is a characteristic property, for the derivatives of a non-integer order, the standard
Leibniz rule is violated [64–66]. Because of this, the comparison of the algebraic properties of
the fractional finite differences and fractional derivatives is complicated. For the operators
of non-integer orders, the most important indicator of the coincidence or difference in
properties is the comparison of their Fourier transforms [69].

In paper [69], we proposed an approach to the exact discretization that is based on
the principle of universality and the algebraic correspondence principle. The universality
principle means that exact finite-differences should not depend on the form of differential
equations and the parameters of these equations. An algebraic correspondence means
that the exact finite-differences must satisfy the same algebraic relations as the differential
operators. Therefore, the proposed exact finite-differences satisfy the exact discrete analogs
of algebraic properties.

As the main characteristic algebraic properties of the derivatives of integer orders, one
can consider the Leibniz rule (the product rule), the chain rule, the semi-group property,
the rule for the action of an integer-order derivative on a power function [64–66,112]
(see also [1,113–116]). Therefore, these algebraic properties should be the characteristic
algebraic property of exact discrete analogs of the derivative, i.e., the properties of the
E-FDs of integer orders. For example, the semi-group property means that the E-FD of the
second order should be equal to the sequential action of the E-FDs of the first order. The
exact finite-difference analog of the rule for the action of an integer-order derivative on a
power function means that the action of the E-FD on power-law functions should give the
same expression as an action of derivatives. For E-FDs of integer orders, these properties is
important for the space of simple entire functions E(R).

The calculus of exact finite-differences and lattice derivatives are applied to continuum
mechanics [97,104,105,117], statistical mechanics [106,107], economics [118–120], quantum
mechanics [121–123], and quantum field theory [108,124,125]. The E-FDs, the results and
methods proposed in these works were developed in an article on quantum theory [126–129].

Step 6: Exact Finite-Differences Beyond Entire Functions.
Due to the fact that exact finite differences were considered only on the space of

simple entire functions E(R), a natural question arises about the properties of these finite-
differences outside this space. This is exactly what this 2024 article is dedicated to. It
will be shown that the equation that defines the exact finite-difference on the space E(R)
of simple entire functions cannot define the exact finite-difference for a wider class of
functions. For a wider class of the function equation, which should define E-FDs, must
be generalized to preserve its characteristic properties of standard derivatives of integer
orders. A generalized equation of the exact finite-differences is proposed to use these
differences for a wider class of functions. The equation of E-FDs, which is used for simple
entire functions, is a special case of the new proposed generalized equation that defines
the E-FDs.

In this paper, a short review of the basic properties of exact finite-differences is pro-
posed. The sixth step is performed in this article, which gives a generalized definition
of exact finite-differences beyond the space of simple entire functions, is suggested in
this paper. The fact that the equation, which defines the generalized form of the exact
finite-differences, gives an exact algebraic analog of the standard derivatives of a integer
order is proven. For simple entire functions, this generalized equation takes the previously
proposed (not generalized) form. As an example, the exact finite-difference of the square
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root function is described. Note that the use of exact finite-differences for numerical and
computer simulations is not discussed in this paper.

Let us briefly describe the contents of the paper. In Section 2, it is demonstrated that
standard and well-known non-standard finite-differences cannot be considered as exact
finite-differences. In Section 3, a short review of exact finite-differences and its properties
for the space of entire functions is suggested. In Section 4, a generalized definition and
basic properties of exact finite-differences for a set of non-entire functions are proposed. A
short conclusion is given in Section 5.

2. Standard and Non-Standard Finite-Differences

In this section, we demonstrate that standard finite-differences (S-FD) and non-
standard finite-differences (NS-FD) cannot be considered as candidates for exact finite-
differences (E-FD). In order for finite-difference operators to be exact finite-differences
of integer orders, these operators must satisfy the same characteristic algebraic relations
as the corresponding standard differential operators of the same order on some function
space [69]. To demonstrate the fact that S-FD and NS-FD cannot be E-FD, we will list
the well-known properties of the standard and non-standard finite-differences of integer
orders that do not coincide with the corresponding properties of the standard differential
operators of the same orders.

2.1. Standard Finite-Differences

Standard finite-differences ∆k and ∆k
h can be defined in various forms. Let us give

some examples of the well-known standard finite-differences.

(1) The forward difference
f ∆1 f [n] := f [n + 1] − f [n], (1)

f ∆1
h f (x) := f (x + h) − f (x), (2)

f ∆m
h f (x) :=

m

∑
k=0

(−1)m−k
(

m
k

)
f (x + k h). (3)

(2) The backward difference

b∆1 f [n] := f [n] − f [n − 1], (4)

b∆1
h f (x) := f (x) − f (x − h), (5)

b∆m
h f (x) :=

m

∑
k=0

(−1)k
(

m
k

)
f (x − k h). (6)

(3) The central difference

c∆m
h f (x) :=

m

∑
k=0

(−1)k
(

m
k

)
f
(

x +
(m

2
− k
)

h
)

. (7)

Here n ∈ Z, m ∈ N, k ∈ N, x ∈ R.

The standard finite-differences ∆k of the positive integer order m ∈ N, do not preserve
the main characteristic property of the derivatives dm/dxm (the standard Leibniz rule)
in general.

Let us note some properties of the S-FDs, which do not coincide with the standard
properties of integer-order derivatives. To simplify the consideration, one can consider the
forward S-FDs.

(1) The standard Leibniz rule is violated as follows:

f ∆1
(

f [n] g[n]
)

̸= ( f ∆1 f [n]) g[n] + f [n] ( f ∆1 g[n]) (n ∈ Z), (8)
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since the forward finite-difference satisfies the equality

f ∆1
(

f [n] g[n]
)

= ( f ∆1 f [n]) g[n] + f [n] ( f ∆1 g[n]) + ( f ∆1 f [n]) ( f ∆1 g[n]) (n ∈ Z), (9)

where ( f ∆1 f [n]) ( f ∆1 g[n]) ̸= 0, in the general case.

For an algebra A over a ring or a field R, a R-linear map D : A → A is called
the derivation if D satisfies the standard Leibniz rule D( f g) = D( f ) g + f D(g) for all
f , g ∈ A. Using (8), one can see that the S-FDs cannot be considered as a derivation on
an algebra. In mathematics, a derivation is a map on an algebra, which generalizes the
derivatives of the first order. As a result, the S-FDs cannot be considered as an exact analog
of derivatives of integer orders since the S-FDs violate the standard Leibniz rule.

(2) An action of the S-FD f ∆1 on a function f (n), n ∈ Z, cannot give the same result as
an action of the derivative d/dx on f (x), x ∈ R:

f ∆1 f (n) ̸=
(

d f (x)
dx

)
x=n

. (10)

For example, inequality (10) can be demonstrated for the elementary functions xm,
sin(k x) and exp(k x) as follows:

(a) The power-law function

f ∆ nm ̸= m nm−1 (n ∈ Z, m ∈ N), (11)

f ∆1 nm = (n + 1)m − nm =
m

∑
s=1

(
m
s

)
mm−s ̸=

(
m
1

)
mm−1 (n ∈ Z). (12)

(b) The sine and cosine function

f ∆1 sin(k n) = k cos(k n) · sin(k)
k

+ sin(kn) · (cos(k)− 1) ̸= k cos(k n). (13)

(c) The exponential function

f ∆1 exp(k n) = exp(k n) · (exp(k)− 1) ̸= k exp(k n). (14)

Here, n ∈ N, k ∈ R.

(3) The solutions of equations with S-FDs do not coincide with the solutions of the
corresponding differential equation with integer-order derivatives. For example, one
can compare the first-order differential equation with its solution as follows:

d f (x)
dx

= −λ f (x) ⇐⇒ f (x) = f (0) e−λ x, (15)

and the equation with forward S-FD with its solution

f ∆1 f [n] = −λ f [n] ⇐⇒ f [n] = f [0] (1 − λ)n ̸= f [0] e−λ n. (16)

It can be seen that these solutions do not coincide.
In addition to the mentioned properties, the Fourier integral transform F of the integer-

order derivatives is

F

(
dn f (x)

dxm

)
(k) = (i k)m F( f (x))(k) m ∈ N. (17)
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The Fourier series transform F∆ of the standard backward difference of order is

F∆

(
b∆m f (x)

)
(k) = (1 − exp(i k))m

F∆( f (x))(k) m ∈ N. (18)

One can see that these Fourier transforms are not similar.
As a result, the S-FDs and standard integer-order derivatives have different algebraic

properties and, therefore, the S-FDs cannot be considered as exact finite-difference analogs
of derivatives of an integer order.

2.2. Non-Standard Finite-Differences

The concept of non-standard finite-differences (NS-FDs) was first proposed in Potts
papers [11,12], Mickens articles [13–15], and the books [16,19]. The NS-FDs have the follow-
ing important property: the solutions of equations with NS-FDs coincide with the solutions
of the corresponding differential equation with integer-order derivatives. Unfortunately,
for each differential equation this approach associates its own NS-FD operator. Therefore,
there are no universal NS-FDs that can be used for all types of differential equations.

Let us give some examples of equations with the NS-FDs and the expressions of the
corresponding NS-FDs. In these examples, we emphasize some disadvantages of the Mickens
approach from the point of view of a construction of exact analogs finite-differences.

Example 1. For the following differential equation:

d f (x)
dx

+ λ f (x) = 0 (x ∈ R) (19)

with λ ∈ R and its solution f (x) = f (0) exp (−λ x), the difference equation with HS-FDs is

M
1 ∆1

h,λ f [n] + λ f [n] = 0, f [0] = C (n ∈ Z), (20)

where
M
1 ∆1

h,λ f [n] :=
f [n + 1]− f [n]

(1 − exp(−λ h))/λ
. (21)

One can see that NS-FD (21) depends on the parameter λ of Equation (19).

Example 2. Equation
d2 f (x)

dx2 + λ2 f (x) = 0 (x ∈ R), (22)

where λ is a real constant, can be represented in the following form:

d f1(x)
dx

− f2(x) = 0,
d f2(x)

dx
+ λ2 f1(x) = 0 (x ∈ R). (23)

The system of equations with NS-FD is

M
2 ∆1

h,λ f1[n] − f2[n] = 0, M
2 ∆1

h,λ f2[n] + λ2 f1[n] = 0 (n ∈ Z), (24)

where
M
2 ∆1

h,λ f [n] :=
f [n + 1]− cos(λ h) f [n]

sin(λ h)/λ
. (25)

One can see that in Examples 1 and 2 the NS-FDs of the first order are not identical since the
form of NS-FDs depends on the differential equations and its parameters.

Example 3. For the differential equation

d2 f (x)
dx2 + λ2 f (x) = 0 (x ∈ R), (26)
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where λ is a real constant, the equation with NS-FDs is

M∆2
h,λ f [n] + λ2 f [n] = 0 (n ∈ Z), (27)

where
M∆2

h,λ f [n] :=
f [n + 1]− 2 f [n] + f [n − 1]

(4/λ2) sin2(λ h/2)
. (28)

Using these examples of equations with NS-FDs and its solutions, one can see the
following disadvantages of the NS-FDs.

1. Using Equations (21) and (25), one see that the NS-FDs of the same order are not
identical, i.e.,

M
1 ∆1

h,λ ̸= M
2 ∆1

h,λ. (29)

2. Using Equations (21) and (25), and Equation (28), one can see that the second-order
NS-FD (28) cannot be represented as a sequential action of the first-order NS-FDs (21)
or (25). Therefore the semi-group property of NS-FDs is violated;

M∆2
h,λ ̸= M∆1

h,λ
M∆1

h,λ. (30)

3. The integer-order NS-FDs strongly depends on the form of the differential equation
and the parameters in it. Therefore, the set of the NS-FDs cannot form a calculus of
NS-FDs since the set of integer-order NS-FDs cannot be known completely;

4. If the solution of differential equation is known, then the NS-FDs can be constructed.
For a general differential equation, for which the solution is not known, NS-FDs
cannot be proposed in a general form. If we do not know in advance a solution for
the differential equation, then the corresponding NS-FDs cannot be constructed;

5. The standard Leibniz rule is violated;

M∆1
(

f [n] g[n]
)

̸= ( M∆1 f [n]) g[n] + f [n] ( M∆1 g[n]) (n ∈ Z). (31)

It can easy to see from the following representation:

M∆1
h,λ f [n] :=

f [n + 1]− f [n]
(1 − exp(−λ h))/λ

=
λ

(1 − exp(−λ h))
· f ∆1

h f [n] (32)

and Equation (8).
Using (31), one can see that the NS-FDs cannot be considered as a derivation on an

algebra. As a result, the NS-FDs cannot be considered as an exact analog of the integer-order
derivatives, since the NS-FDs violate the standard Leibniz rule.

3. Exact Finite-Differences for Entire Functions

A set of finite-difference operators T∆m and T∆m
h will be called the exact finite-

differences (E-FDs) of integer orders m ∈ N, if all operators of this set satisfy the same
characteristic algebraic relations as the corresponding differential operators on some func-
tion space. The correspondence between the calculus of E-FDs and the calculus of the
standard differential operators of integer order lies not so much in the limiting condition,
when the step h → 0. This correspondence lies in the fact that operators of these two
theories should obey, in many cases, the same algebraic rules. This statement is called the
“Algebraic Correspondence Principle” [69].

3.1. Set of Entire Functions

Let us consider exact finite-differences of simple entire functions in R, i.e., functions
which are expandable into a power series in R. The space of such functions will be denoted
as E(R).
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Let us note some properties of the entire functions f (x) with x ∈ R.

1. Every real-valued entire function f (x) with x ∈ R, can be represented as a power series

f (x) =
∞

∑
k=0

fk xk (|x| < ∞), (33)

which converges everywhere in the real line.
2. Any series

∞

∑
k=0

fk xk (|x| < ∞), (34)

for which the Cauchy–Hadamard condition

lim
k→∞

k
√
| fk| = 0 (35)

is satisfied, represents an entire function f (x) from E(R).
3. Let us give examples of the following entire functions:

(A) The polynomials Pn(x); exponential function:ex = exp(x); sine and cosine func-
tions sin(x), cos(x); hyperbolic sine and cosine functions sinh(x), cosh(x);

(B) The Mittag–Leffler function Eα(x); Gamma function reciprocal 1/Γ(x); Wright
function ϕ(ρ, β; x); generalized hypergeometric function pFq(a1, ..., ap; b1, ..., bq; x);

(C) Bessel function of the first and second kinds Jn(x), Yn(x); sine integral Si(x);
error function erf(x); Airy functions Ai(x), Bi(x); Jacobi theta functions θn(x, q);

3.2. Generalized (Cesaro and Poisson–Abel) Summation

In the definitions of exact finite-differences, we use generalized convergences (general-
ized summations) that assign values to some infinite sums that are not convergent in the
usual sense. For example, one can consider the Cesaro, Poisson–Abel, and Mittag–Leffler
summations [130–133].

Let us define the Cesaro summation.

Definition 1. Let g[m] be a discrete function (sequence) with m ∈ Z and let

A[k] =
k

∑
m=1

g[m] (36)

be the partial sum of the series
∞

∑
m=1

g[m]. (37)

The series (37) and the sequence g[m] are called Cesaro summable, with the sum A ∈ R, if the
average (mean) value of its partial sums A[k] tends to A:

lim
N→∞

1
N

N

∑
k=1

A[k] = A. (38)

The Cesaro sum is a limit of the arithmetic mean (average) of first N partial sums
of the series, as N goes to infinity. It is well-known that any convergent series is Cesaro
summable, and the sum of the series is equal to its Cesaro sum. There are divergent series
that are Cesaro summable.

Let us define the Poisson–Abel summation.

Definition 2. Let g[m] be a discrete function (sequence) with m ∈ Z and let
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B(x) :=
∞

∑
m=0

g[m] xm =
∞

∑
m=0

g[m] exp(−m t) (39)

be the corresponding power series. If this series is convergent for 0 < x = e−t < 1, (if t > 0, then
0 < e−t < 1) and its sum B(x) has the limit B at x → 1 − 0 (t → 0+),

lim
x→1−0

B(x) = B, (40)

then the series (39) (and the sequence g[m]) is called Poisson–Abel summable and A is a Poisson–
Abel sum.

Note that if the series is Cesaro summable with the sum A then this series is Poisson–
Abel summable with sum B = A (for example, see Chapters 11 and 12 of [130], including
Section 449).

3.3. Definition and Examples of Exact Finite-Differences of Integer Orders

Let us define the exact finite-differences (E-FDs) of the first order.

Definition 3. Let f (x) belong to the set E(R) of the simple entire functions.
The exact finite-difference of the first order with the step h > 0 for the function f (x) is defined as

T∆1
h f (x) :=

+∞

∑
m=1

(−1)m

m

(
f (x − h m)− f (x + h m)

)
, (41)

where the sum means the Poisson–Abel (or Cesaro) summation.
The exact finite-difference of a positive integer order m ∈ N is

T∆m
h f (x) := ( T∆1

h)
m f (x), (42)

where f (x) ∈ E(R).

Definition 4. Let f [n] belong to the set E(Z) of the simple entire functions.
Then, the first-order exact finite-difference is defined as

T∆1 f [n] :=
+∞

∑
m=−∞

m ̸=0

(−1)m

m
f [n − m] =

+∞

∑
m=1

(−1)m

m

(
f (n − m)− f (n + m)

)
, (43)

where the sum means the Poisson–Abel (or Cesaro) summation.
The exact finite-difference of the positive integer order m ∈ N is

T∆m f [n] := ( T∆1)m f [n], (44)

where f [n] ∈ E(Z).

Remark 1. Using the following function:

g[m] :=
(−1)m

m

(
f (n − m) − f (n + m)

)
, (45)

the Poisson–Abel summation of (48) means that the following limits exist:

T∆1 f [n] := lim
x→1−0

∞

∑
m=1

(−x)m

m

(
f [n − m]− f [n + m]

)
, (46)

or
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T∆1 f [n] := lim
t→0+

∞

∑
m=1

(−1)m e−m t

m

(
f [n − m]− f [n + m]

)
. (47)

Let us give examples of the exact finite-differences of orders equal to 1, 2, 3, and 4.
The first-order exact finite-difference is

T∆1 f [n] :=
+∞

∑
m=−∞

m ̸=0

(−1)m

m
f [n − m]. (48)

The second-order exact finite-difference is

T∆2 f [n] := ( T∆1)2 f [n] = −
+∞

∑
m=−∞

m ̸=0

2 (−1)m

m2 f [n − m]− π2

3
f [n]. (49)

The third-order exact finite-difference is

T∆3 f [n] := ( T∆1)3 f [n] = −
+∞

∑
m=−∞

m ̸=0

(
(−1)m π2

m
− 6 (−1)m

m3

)
f [n − m]. (50)

The fourth-order exact finite-difference is

T∆4 f [n] := ( T∆1)4 f [n] =
+∞

∑
m=−∞

m ̸=0

(
4 π2 (−1)m

m2 − 24 (−1)m

m4

)
f [n − m] +

π4

5
f [n]. (51)

3.4. Exact Finite-Difference and Derivative of Integer Orders

Let us prove one of the most important theorems, which directly shows the relationship
between the exact finite-difference and the standard derivative of an integer order.

Theorem 1. Let f (x) belong to the set E(R) of the simple entire functions.
For the exact finite-difference of the first order with the step h > 0 of the following form:

T∆1
h f (x) :=

+∞

∑
m=1

(−1)m

m

(
f (x − h m)− f (x + h m)

)
, (52)

where the sum means the Poisson–Abel (or Cesaro) summation, the following equality:

1
h

T∆1
h f (x) = f (1)(x) (53)

holds for all x ∈,R, and all h ∈ (0, ∞), where f (1)(x) = d f (x)/dx is the standard first-
order derivative.

Proof. The exact finite-difference of the first order with the step h > 0 is

T∆1
h f (x) :=

+∞

∑
m=1

(−1)m

m

(
f (x − h m)− f (x + h m)

)
. (54)

The Taylor series of a real-valued entire function f (z), where z = x + ∆x, and x is a
real number, can be written as the following power series:

f (x ± ∆x) = f (x)± f (1)(x) · ∆x +
1
2

f (2)(x) · (∆x)2 ± R3,±(x, ∆x), (55)

where R3,±(x, ∆x) is a remainder term of the Taylor series in the Lagrange’s form
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R3,±(x, ∆x) :=
1
3!

f (3)(c±) (∆x)3 (0 < |c±| < |∆x|). (56)

Using ∆x = h m, we have the following:

f (x − h m)− f (x + h m) = − 2 m h f (1)(x) − 1
3!
( f (3)(c−) + f (3)(c+)) (h m)3. (57)

Substituting (57) into (54) gives the following:

1
h

T∆1
h f (x) = −2 f (1)(x)

+∞

∑
m=1

(−1)m − 1
3!

(
f (3)(c−) + f (3)(c+)

)
h2

+∞

∑
m=1

(−1)m m2. (58)

For the Poisson–Abel summation (or Cesaro summation), we have the following:

+∞

∑
m=1

(−1)m = −1
2

(the Grandi’s series),
+∞

∑
m=1

(−1)m m2j = 0 (j ∈ N). (59)

As the result, we obtain the following:

1
h

T∆1
h f (x) = f (1)(x) (the Poisson–Abel summation), (60)

where x ∈ R and h ∈ R+.

Remark 2. Another proof of Theorem 1 is given in paper [69] (see Theorem 8).

Remark 3. It should be emphasized that Equation (53) holds without passing to the limit h → 0.

The following statements directly follows from Theorem 1.

Corollary 1. Let f (x) belong to the set E(R) of the simple entire functions.
For the exact finite-difference of the order k ∈ N with the step h > 0 of the form

T∆k
h f (x) :=

(
T∆1

h

)k
f (x), (61)

the equality
1
hk

T∆k
h f (x) = f (k)(x) (62)

holds for all x ∈,R, and all h ∈ (0, ∞), where f (k)(x) = dk f (x)/dxk is the standard derivative
of the order k ∈ N.

Corollary 2. Let f [n] belong to the set E(Z) of the simple entire functions.
For the exact finite-difference of the first order

T∆1 f [n] :=
(

T∆1
h=1 f (x)

)
x=n

=
+∞

∑
m=1

(−1)m

m

(
f (n − m)− f (n + m)

)
, (63)

where the sum means the Poisson–Abel (or Cesaro) summation, the equality

T∆1 f [n] =
(

d f (x)
dx

)
x=n

(64)

holds for all n ∈,Z, where d f (x)/dx is the standard first-order derivative.

Corollary 3. Let f (x) belong to the set E(R) of the simple entire functions.
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For the exact finite-difference of the first order

T∆1
h f (x) :=

+∞

∑
m=1

(−1)m

m

(
f (x − h m)− f (x + h m)

)
, (65)

where the sum means the Poisson–Abel (or Cesaro) summation, the equality

lim
h→0+

1
h

T∆1
h f (x) = f (1)(x) (66)

holds for x ∈ R, where f (1)(x) is the standard first-order derivative.

Proof. Using ∑+∞
m=1 (−1)m = −1/2 and passing to the limit h → 0+ in (58), we obtain the

following:

lim
h→0+

1
h

T∆1
h f (x) = f (1)(x) =⇒ d f (x)

dx
= lim

h→0+

T∆1
h f (x)
h

. (67)

Therefore, the derivatives of integer order can be defined through the exact finite-
differences of the same order by Equation (66).

Corollary 4. For derivative of the integer order k ∈ N and the exact finite-difference of the order
k ∈ N the following equality is satisfied:

dk f (x)
dxk = lim

h→0+

T∆k
h f (x)
hk (k ∈ N), (68)

where T∆k
h := ( T∆1

h)
k, k ∈ N.

3.5. Properties of Exact Finite-Differences of Integer Orders

Let us prove the main characteristic algebraic property of the exact finite-differences
T∆1 of the first order on the space of entire functions E(Z).

Theorem 2 (Leibniz rule). Let f [n] and g[n] belong to the set E(Z) of the simple entire functions.
For the exact finite-difference of the first order

T∆1 f [n] := T∆1
h=1 f (x = n) :=

+∞

∑
m=1

(−1)m

m

(
f (n − m)− f (n + m)

)
, (69)

where the sum means the Poisson–Abel (or Cesaro) summation, the standard product rule (the
Leibniz rule) of the form

T∆1
(

f [n] g[n]
)

= f [n]
(

T∆1g[n]
)
+
(

T∆1 f [n]
)

g[n] (70)

holds for all n ∈,Z.

Proof. Using Equation (64) and the standard product rule for the first-order derivative, we
obtain the following:

T∆1
(

f [n] g[n]
)
=

(
d

dx
( f (x) g(x))

)
x=n

=

(
f (1)(x) g(x) + f (x) g(1)(x)

)
x=n

=
(

f (1)(x)
)

x=n
g[n] + f [n]

(
g(1)(x)

)
x=n

=
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f [n]
(

T∆1g[n]
)
+
(

T∆1 f [n]
)

g[n], (71)

where we use the property f [n] g[n] ∈ E(Z), if f [n] ∈ E(Z) and g[n] ∈ E(Z).

Remark 4. Another proof of Theorem 2 is given in paper [69], p. 49, (see Theorem 7).

For exact finite-differences T∆1
h on the space of entire functions E(R), the chain rule

can be proved by using Theorem 1 and the standard chain rule for a derivative of the first
order.

Theorem 3 (Chain rule). Let f (x), y(x) and g(x) := f (y(x)) belong to the set E(R) of the
simple entire functions.

For the exact finite-difference of the first order with the step h > 0 of the form

T∆1
h f (x) :=

+∞

∑
m=1

(−1)m

m

(
f (x − h m)− f (x + h m)

)
, (72)

where the sum means the Poisson–Abel (or Cesaro) summation, the equality

T∆1
h f (y(x)) =

1
h

(
T∆1

h f (y)
)

y=y(x)
T∆1

hy(x) (73)

holds for all x ∈,R, and all h ∈ (0, ∞), where f (1)(x) = d f (x)/dx is the standard first-
order derivative.

Proof. Using equality (53) for g(x) := f (y(x)) ∈ E(R) and the standard chain rule for
g(x), one can obtain the following:

1
h

T∆1
hg(x) = g(1)(x) =

d
dx

f (y(x)) =

(
d f (y)

dy

)
y=y(x)

dy(x)
dx

=

(
1
h

T∆1
h f (y)

)
y=y(x)

1
h

T∆1
hy(x), (74)

where
T∆1

h f (y) :=
+∞

∑
m=1

(−1)m

m

(
f (y − h m)− f (y + h m)

)
. (75)

and f (y) ∈ E(R) and y(x) ∈ E(R).

Remark 5. The chain rule for the E-FD T∆1 of the first order on the space E(Z) is given as follows:

T∆1 f (y[n]) = ,
(

T∆1 f (y)
)

y=y(n)
T∆1y[n] (76)

holds for all n ∈,Z Equality (76) is a corollary of Theorem 3 and the equation

T∆1 f [n] =
(

T∆1
h=1 f (x)

)
x=n

. (77)

The exact finite-differences T∆k of positive integer order k ∈ N preserve the fol-
lowing characteristic property of the derivatives dk/dxk on the space of entire functions
f (x), g(x) ∈ E(R), which are proved in [69,103,109].

(1) The Leibniz rule

T∆1
(

f [n] g[n]
)

= ( T∆1 f [n]) g[n] + f [n] ( T∆1 g[n]) (n ∈ Z), (78)
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T∆k
(

f [n] g[n]
)

=
k

∑
j=0

(
k
j

)
( T∆k−j f [n]) ( T∆j g[n]) (n ∈ Z, k, j ∈ N). (79)

(2) The chain rule

T∆1 f (g[n]) = ,
(

T∆1 f (g)
)

g=g(n)
T∆1g[n] (n ∈ Z). (80)

(3) The semi-group property

T∆1( T∆1 f [n]) = T∆2 f [n] (n ∈ Z), (81)

T∆k( T∆j f [n]) = T∆k+j f [n] (n ∈ Z, k, j ∈ N). (82)

(4) The equations for power-law entire functions

T∆1 nj = j nj−1 (n ∈ Z, j ∈ N j ≥ 1), (83)

T∆k nj =
j!

(j − k)!
nj−k (n ∈ Z, k, j ∈ N j ≥ k). (84)

(5) Let f (x) and g(x) be entire functions ( f (x), g(x) ∈ E(R)). If these functions satisfy
the following equation:

dk f (x)
dxk = g(x) (85)

for all x ∈ R and k ∈ N, then the following equation:

T∆k f [n] = g[n] (86)

holds for all n ∈ Z and k ∈ N.
(6) The Fourier series transform F∆ of the exact finite-difference of order m ∈ N is

F∆

(
T∆m f [n]

)
(k) = (i k)m (F∆ f [n])(k), (87)

which has the same form as the Fourier integral transform F of the integer-order derivatives

F

(
dm f (x)

dxm

)
(k) = (i k)m F( f (x))(k), (88)

where n ∈ N.
(7) If p ≥ 1, then we can define a norm on the lp-space by the following equation:

∥ f (m)∥p :=

(
+∞

∑
n=−∞

| f (m)]|p
)1/p

, (89)

where m ∈ Z. The sequence space lp with p > 0 is a complete metric space with
respect to this norm (89) and, therefore, it is the Banach space. Using that lq ⊂ lp

(1 ≤ p < q), then lq ⊂ l2 if q > 2, and f [m] ∈ lq with q ≥ 2.

Theorem 4. Let T∆n be an exact finite-difference that is defined by convolutions of its kernel
Kn(m) ∈ lp (p > 1) and function f [m] ∈ lq (q ≥ 2) in the form

T∆n f [m] :=
∞

∑
k=−∞

Kn(k) f [m − k]. (90)
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Then, the operator T∆n maps the discrete function f [m] ∈ lq (q ≥ 2) into functions g[m] ∈ lr

(r ≥ 2) such that
T∆n f [m] = g[m] ∈ lr, (91)

where m ∈ Z, and

1
r
+ 1 =

1
p
+

1
q

. (92)

The proof of this Theorem is given in [69,109,121,122] by using the Young’s inequality
for convolution [134–136].

Corollary 5. The exact finite-differences T∆2s of even orders 2s of a function f [n] ∈ l2 belongs to
the Hilbert space l2 of square-summable sequences, i.e.,

T∆2s f [n] = g[n] ∈ l2 ( f [n] ∈ l2). (93)

Corollary 5 means that the exact finite-differences T∆2s is an operator on the Hilbert
space l2 of square-summable sequences:

T∆2s : l2 −→ l2, (94)

where s ∈ N.
The proof of Corollary 5 is given in [69,109,121,122]. This corollary is important to

application in quantum mechanics [8,121–123,126,127,129].

3.6. Exact Finite-Differences of Arbitrary Integer Orders

Let us give equations that represent the exact finite-differences of arbitrary positive
integer orders [69].

Theorem 5. Let f [n] belong to the set E(Z) of the simple entire functions.
Then, the exact finite-differences of integer orders 2s − 1 and 2s with s ∈ N can be repre-

sented as follows:

T∆2s−1 f [n] :=
+∞

∑
m=−∞

m ̸=0

K2s−1(m) f [n − m], (s ∈ N), (95)

T∆2s f [n] :=
+∞

∑
m=−∞

m ̸=0

K2s(m) f [n − m] + K2s(0) f [n], (s ∈ N), (96)

where the sum means the Poisson–Abel (or Cesaro) summation, and the kernels

K2s−1(m) =
s−1

∑
k=0

(−1)m+k+s+1 (2s − 1)! π2s−2k−2

(2s − 2k − 1)!
1

m2k+1 (m ∈ Z, m ̸= 0), (97)

K2s(m) =
s−1

∑
k=0

(−1)m+k+s (2s)! π2s−2k−2

(2s − 2k − 1)!
1

m2k+2 (m ∈ Z, m ̸= 0), (98)

and

K2s−1(0) = 0, K2s(0) =
(−1)s π2s

2s + 1
(99)

with s ∈ N.

The proof is given in [69,103].
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Remark 6. Using the even and odd properties of the kernels

K2s(−m) = +K2s(−m), (100)

K2s−1(−m) = −K2s−1(m), (101)

and replacing

+∞

∑
m=−∞

m ̸=0

=⇒
+∞

∑
m=1

, (102)

the exact finite-differences (103) and (104) can be represented as

T∆2s−1 f [n] :=
+∞

∑
m=1

K2s−1(m)
(

f [n − m] − f [n + m]
)

(s ∈ N), (103)

T∆2s f [n] :=
+∞

∑
m=1

K2s(m)
(

f [n − m] + f [n + m]
)
+ K2s(0) f [n] (s ∈ N), (104)

that simplify the direct calculations for some cases.

Corollary 6. Let f (x) belong to the set E(R) of the simple entire functions.
Then, two Equations (103) and (104) can be written as one equation

T∆k
h f (x) :=

+∞

∑
m=−∞

m ̸=0

Kk(m) f (x − m h) + Kk(0) f (x), (k ∈ N), (105)

where the kernel Kk(m) with m ∈ Z, and m ̸= 0, is defined by

Kk(m) =
[(k+1)/2]+1

∑
j=0

(−1)m+j k! πk−2j−2

(k − 2j)! m2j+2

(
(k − 2j) cos

(
π k
2

)
+ π j sin

(
π k
2

))
, (106)

and for m = 0 it is

Kk(0) =
πk

k + 1
cos
(

π k
2

)
(k ∈ N). (107)

Examples of the E-FDs of the orders 1, 2, 3, and 4 are presented by Equations (48)–(51).

3.7. Exact Finite-Difference of Arbitrary Positive Order

The differential and integral operators of arbitrary positive orders form fractional
calculus [1–7]. The study of such operators has a long history [137–142]. Another important
tool is the calculus of finite-differences of integer and non-integer orders.

In the papers [69,103], the exact finite-differences T∆α of arbitrary order α ∈ (−1, ∞),
which are called fractional exact finite-differences, have been proposed. Note that these
proposed differences can be considered for the orders α > −2; that is, for orders α ∈
(−2,−1].

Definition 5. The fractional exact finite-difference T∆α of the order α > − 2 is defined by
the equation

T∆α f [n] :=
+∞

∑
m=−∞

Kα(m) f [n − m], (108)

where the function f [n] and the kernel Kα(m) are real-valued functions of the variable m ∈ Z, and

Kα(m) = cos
(π α

2

)
K+

α (m) + sin
(π α

2

)
K−

α (m), α > −1, (109)
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and
Kα(m) = sin

(π α

2

)
K−

α (m), α ∈ (−2,−1], (110)

where the kernels K±
α (n − m) are defined as

K+
α (n − m) =

πα

α + 1 1F2

(
α + 1

2
;

1
2

,
α + 3

2
;−π2 (n − m)2

4

)
, α > −1, (111)

K−
α (n − m) = − πα+1(n − m)

α + 2 1F2

(
α + 2

2
;

3
2

,
α + 4

2
;−π2 (n − m)2

4

)
, α > −2, (112)

where 1F2 is the generalized hypergeometric function.

The generalized hypergeometric function is defined as

pFq(a1, . . . , ap; b1, . . . , bq; z) :=
∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

k!
, (113)

where al ∈ C (l = 1, . . . , p), bj ∈ C and bj ̸= 0,−1,−2... (j = 1, . . . , q), and (a)k is the
Pochhammer symbol (rising factorial) that is defined by

(a)0 = 1, (a)k =
Γ(a + k)

Γ(a)
= a(a + 1)(a + 2)...(a + k − 1) (k ∈ N). (114)

The function 1F2(a; b, c; z) is the special case of (113) for p = 1 and q = 2,

1F2(a; b, c; z) :=
∞

∑
k=0

(a)k
(b)k (c)k

zk

k!
, (115)

where 1F2(a; b, c; z) = 1F2(a; c, b; z).

Remark 7. The exact finite-differences T∆α of the arbitrary positive order α > 0 has the following
characteristic property of the Liouville fractional derivative of the arbitrary positive order α > 0.
The exact finite-differences T∆α of the arbitrary positive order α ∈ (−2, 0)0 has the property of the
Liouville fractional integral of the arbitrary positive order α ∈ (0, 2).

The Fourier series transform F∆ of the exact finite-difference of the arbitrary positive order
α > −2

F∆

(
T∆α f [n]

)
(k) = (−i k)α (F∆ f [n])(k), (116)

which has the same form [4], p. 90, as the Fourier integral transform F of the Liouville fractional
derivative of the arbitrary positive order α > 0

F((Dα
+ f )(x))(k) = (−i k)α F( f (x))(k), (117)

and the Liouville fractional integral of the arbitrary positive order α ∈ (0, 2).

F((Iα
+ f )(x))(k) = (−i k)−α F( f (x))(k), (118)

where
(−i k)α = |k|α exp(i π α sgn(k)). (119)

The Liouville fractional integral is defined as

(Iα
+ f )(x) :=

1
Γ(α)

ˆ x

−∞
(x − u)α−1 f (u) du, (120)
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and the Liouville fractional derivative is defined as

(Dα
+ f )(x) :=

dn

dxn
1

Γ(n − α)

ˆ x

−∞
(x − u)n−α−1 f (u) du (121)

with n − 1 < α ≤ n (see Section 2.3 [4], pp. 87–90). For integer values of the order α = n ∈ N,
the Liouville fractional derivatives (121) are equal to the standard derivatives of integer orders

(Dn
+ f )(x) =

dn f (x)
dxn , (122)

where n ∈ N (see Equation (2.3.5) in [4]).

Remark 8. It should be noted that Equation (108) of Definition 5 for the order α = k ∈ N gives
Equation (105) of Corollary 6 that defines the E-FD of the integer orders k ∈ N. This fact can be
written by the equation

T∆α=k f [n] = T∆k f [n] if α = k ∈ N. (123)

As a result, for the integer values of the order α > 0, the fractional E-FDs gives the E-FDs of
the integer order. Therefore, the E-FDs of integer orders are special cases of the fractional E-FDs
given by Definition 5.

Remark 9. It is possible to make a mathematical hypothesis (assumption) in the form of the equality

T∆α f [n] = ((Dα
+ f )(x))x=n (124)

for all positive orders α > 0. Equation can be considered as a generalization of Equation (64).
This mathematical hypothesis is based on the following statements, which have already been proven
earlier in previous works.

The first statement says that equality (124) holds for all positive integer values of the order
α = k ∈ N as

T∆α=k f [n] =
(
(Dα=k

+ f )(x)
)

x=n
=

(
dk f (x)

dxk

)
x=n

, (125)

which is given as Corollary 2.
The second statement says that the Fourier series transform F∆ of the exact finite-difference of

the order α > 0 coincides with the Fourier integral transform F of the Liouville fractional derivative
of this order

F∆

(
T∆α f [n]

)
(k) = F((Dα

+ f )(x))(k) (126)

for all positive orders α > 0.
However, an accurate and consistent proof of this mathematical hypothesis for some space of

functions (for example, for the space of simple entire functions) has not yet been obtained.
Note that this proof allows for us to consider examples of calculations of E-FDs of non-integer

orders that are similar to equations for the Liouville fractional derivative of the arbitrary positive
order given in Table 9.2 in [1], p. 174, and Section 2.3 in [4], pp. 87–90.

Remark 10. Note that the kernel of the fractional exact finite-difference that is expressed through
the Lommel function has been proposed in the 2006 papers [88,89], and in the 2010 book [90]. It
has been given by Equation (41) in [89], p. 092901-7; in the table on page 14900 in [88], and the
appendix on page 14908 in [88]; in Definition 8.2 and Example 1 in [90], pp. 166–167, and the
table on page 170 of [90]. Note that the Lommel function can be expressed through the generalized
hypergeometric function 1F2(a; b, c; x), which is used in the exact finite-difference of arbitrary
order [69], and described by equations in [98], p. 372, [99], p. 428, and [100], p. 682.
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Remark 11. For the integer values of α = 2s and α = 2s − 1 with s ∈ N, Equation (108) gives
the exact finite-differences of the integer orders (95) and (96) with kernels (97) and (98).

Remark 12. Note that the fractional exact finite-differences

( T∆α,+ f )[n] :=
+∞

∑
m=−∞

K+
α (n − m) f [m], (127)

where α > −1 are the exact discrete analog of the Riesz fractional derivatives and integrals.
The fractional exact finite-differences

( T∆α,− f )[n] :=
+∞

∑
m=−∞

K−
α (n − m) f [m] =

+∞

∑
m=−∞

K−
α (m) f [n − m], (128)

where α > −2 are exact discrete analog of the conjugated Riesz fractional derivatives and
integrals [102].

Note that exact discrete (finite-difference) analog of the fractional Laplacian of the Riesz form
for N-dimensional space is proposed in paper [110].

3.8. Exact Finite-Difference of Negative Order

Using Definition 5, it is clear that the order α can be negative α ∈ (−2, 0). Therefore,
one can consider the exact finite-difference of the integer negative order α = −1. The exact
finite-difference of the order α = −1 has been proposed in the papers [69,103,109]. Note
that a possibility to use the finite-differences for negative orders is not unique. For example,
the Grünwald–Letnikov derivatives can be used for orders α < 0 (see Section 20 in [1] and
Section 2.2 in [3]), if the functions f (x) satisfies the condition | f (x)| < c(1 + |x|)−µ, where
µ > |α|.

Let us consider the exact finite-difference for α = −1. Using Equation (108) of the E-FD

T∆−1 f [n] :=
+∞

∑
m=−∞

K−1(m) f [n − m] (129)

with kernel (110) in the form

K−1(m) = −K−
−1(m) = m 1F2

(
1
2

;
3
2

,
3
2

;−π2 m2

4

)
=

1
π

ˆ π

0
k−1 sin(m k) dk =

1
π

Si(π m), (130)

and Si(z) is the sine integral. Note that the function x 1F2
(
1/2; 3/2, 3/2;−π2 x2/4

)
is the

anti-derivative of the cardinal sine. As a result, one can define the following
exact finite-difference.

Definition 6. Let the function f (x) belong to space f (x) ∈ L1(R) and satisfy the condition
f [n] = f (n) ∈ E(Z).

The exact finite-difference of first negative order is defined as

T∆−1 f [n] :=
+∞

∑
m=−∞

m ̸=0

Si(π m)

π
f [n − m], (131)

where Si(z) is the sine integral.

The finite-difference can be interpreted as anti-derivative [69,103,109].

Theorem 6 (Fundamental theorem of E-FD calculus). Let function f (x) belong to space
f (x) ∈ L1(R) and satisfy the condition T∆1 f [n] ∈ E(Z), where f [n] = f (x = n) and n ∈ Z.
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Then, the following equality is satisfied:

T∆1 T∆−1 f [n] =
+∞

∑
m=−∞

δm,0 f [n − m] = f [n], (132)

where

δn,0 :=

{
0, n ̸= 0,

1, n = 0,
(133)

Proof. Let us define the convolution

( f ∗ g)(n) :=
+∞

∑
m=−∞

f [m] g[n − m] =
+∞

∑
m=−∞

g[m] f [n − m] = (g ∗ f )(n). (134)

Then, Equation (108) can be written as

T∆α f [n] = (Kα ∗ f )(n). (135)

Therefore
T∆−1 T∆1 f [n] =

(K1 ∗ (K−1 ∗ f ))(n) = ((K1 ∗ K−1) ∗ f )(n) =
+∞

∑
m=−∞

(K1 ∗ K−1)(m) f [n − m], (136)

where

(K1 ∗ K−1)(n) =
+∞

∑
m=−∞

K1(m) ∗ K−1(n − m) =
+∞

∑
m=−∞

m ̸=0, m ̸=n

K1(m)K−1(n − m), (137)

since K±1(0) = 0.
The substitution of expression of the kernels K±(x) gives

(K1 ∗ K−1)(n) =
+∞

∑
m=−∞

m ̸=0, m ̸=n

K−1(m)K1(n − m) =

+∞

∑
m=−∞

m ̸=0, m ̸=n

1
π

Si(π m)
(−1)n−m

n − m
=

1
π

+∞

∑
m=−∞

m ̸=0, m ̸=n

(−1)n−m

n − m

ˆ π m

0

sin(z)
z

dz. (138)

Using the variable t = z/m (z = m t, z = m t, dz = m dt), we obtain the following:

(K1 ∗ K−1)(n) =
1
π

ˆ π

0

dt
t

 +∞

∑
m=−∞

m ̸=0, m ̸=n

(−1)n−m sin(m t)
n − m

 =

1
π

ˆ π

0

dt
t

 +∞

∑
m=−∞

m ̸=n

(−1)n−m sin(m t)
n − m

− (−1)n sin(0 t)
n

, (139)
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where the second term is equal to zero. Making the change in variable k = m − n, and then
using that (−1)−k−1 = (−1)k−1 for k ∈ Z and sin(−x) = − sin(x), we obtain

(K1 ∗ K−1)(n) =
1
π

ˆ π

0

dt
t

 ∞

∑
k=−∞

k ̸=0

(−1)k−1 sin(k t + n t)
k

 =

1
π

ˆ π

0

dt
t

(
+∞

∑
k=1

(−1)k−1 sin(k t + n t)
k

+
−∞

∑
k=−1

(−1)k−1 sin(k t + n t)
k

)
=

1
π

ˆ π

0

dt
t

(
+∞

∑
k=1

(−1)k−1 sin(k t + n t)
k

+
+∞

∑
k=1

(−1)k−1 sin(k t − n t)
k

)
. (140)

Using Equation (5.4.2.10) of [143], where we replace a = n t and x = t, in the form

+∞

∑
k=1

(−1)k−1 sin(k t ± n t)
k

=
t
2

cos(n t)± ln
(

2 cos(t/2)
)

sin(n t), (141)

we obtain

(K1 ∗ K−1)(n) =
1
π

ˆ π

0

dt
t
(t cos(n t)) =

1
π

ˆ π

0
dt cos(n t), (142)

where terms with logarithms are canceled. Using sin(π n) = 0 and cos(0) = 1, we obtain

(K1 ∗ K−1)(n) =
1
π

ˆ π

0
dt cos(n t) =


sin(π n)

π n
= 0, n ̸= 0,

1
π

ˆ π

0
dt = 1, n = 0,

= δn,0 (143)

Therefore, we obtain
(K1 ∗ K−1)(n) = δn,0. (144)

As a result, we prove the following equation:

T∆1 T∆−1 f [n] =
+∞

∑
m=−∞

δm,0 f [n − m] = f [n]. (145)

Remark 13. Theorem can be considered as an exact finite-difference analog of Lemma 2.20 [4],
p. 89, for α = 1.

It can be assumed that an exact finite-difference analog of Lemma 2.20 [4], p. 89 is satisfied for
the arbitrary values of the order α ∈ (0, 2) in the form of the following equation:

T∆α T∆−α f [n] =
+∞

∑
m=−∞

δm,0 f [n − m] = f [n], (146)

where −α ∈ (−2, 0).

Remark 14. The Fourier series transform F∆ of this difference is

F∆

(
T∆−1 f [n]

)
(k) = (−i k)−1 F∆( f [n])(k), (147)



Mathematics 2024, 12, 972 23 of 37

which has the same form [4], p. 90, as the Fourier integral transform F of the Liouville frac-
tional derivative of the arbitrary positive the Liouville fractional integral of the order α = 1 (see
Property 2.15 in [4], p. 90).

3.9. Exact Finite-Difference Laplacian of Arbitrary Positive Order

The exact finite-difference form of the fractional Laplacian is proposed in [110].

Definition 7. The exact finite-difference fractional Laplacian of the Riesz form T∆N,α
h is defied by

the equation
T∆N,α

h f [n] := ∑
m

TKN,α(m) f [n − m], (148)

where n, m ∈ ZN , α > −N, the kernel TKN,α,h(m) is

TKN,α,h(m) =
1
hα

πα+N/2

(α + N) 2N−1 Γ(N/2) 1F2

(
α + N

2
;

N
2

,
α + N + 2

2
;−π2 |m|2

4

)
, (149)

and 1F2[a; b, c; z] is the generalized hypergeometric function. Here we assume that hj = h for all
j = 1, · · · , N.

The important property of the exact finite-difference fractional Laplacian (148) is
equation of the Fourier series transform

Fh,∆

(
T∆N,α

h f [n]
)

= (|k|α)Fh,∆ ( f [n]). (150)

The Fourier series transform Fh,∆{ f [n]} is defined as

Fh,∆{ f [n]} =
+∞

∑
n=−∞

f [n] e−i k x(n). (151)

Here x(n) = n h, and h > 0 is step of differences. In the general case, f [n] ̸= f (n) and
f [n] ̸= f (x(n)). The functions f [n] and f (x) are connected by the relation f [n] = h f (hn).
For h = 1, we have f [n] = f (n).

Remark 15. The exact finite-difference fractional Laplacian (148) satisfies the property

T∆N,2
h f [n] = −

N

∑
j=1

T∆2
j f [n], (152)

where T∆2
j is the exact E-FDs of the second order with respect to the variable nj that is represented

by the equation

T∆2
j f [nj] := −

+∞

∑
mj=−∞

mj ̸=0

2 (−1)mj

m2
j

f [nj − mj]−
π2

3
f [nj]. (153)

The suggested exact finite-difference fractional Laplacian allows us to consider and
solve various equations with such operators.

Let us give particular solutions of some linear equations with the exact finite-difference
fractional Laplacians [110].

Theorem 7. The linear nonhomogeneous equation with the exact finite-difference fractional Laplacians

m

∑
j=1

aj
T∆

N,αj
h f [n] + a0 f [n] = g[n], (154)
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where αn > (N − 1)/2, αm > · · · > α1 > 0, aj ∈ R (j = 0, 1, 2..., m), a0 ̸= 0, am ̸= 0, has the
particular solution

f [n] = ∑
m

Gα[n − m] g[m], (155)

where

Gα[n] =
1

(2 π)N/2 |r(n)|(N−2)/2

ˆ π/|h|

0

(
m

∑
j=1

aj λαj + a0

)−1

λN/2 JN/2−1(λ|r(n)|) dλ, (156)

and Ja(z) is the Bessel function of the first kind.

The proof of Theorem 7 is given in [110] as proof of Theorem 4.

Theorem 8. The linear nonhomogeneous equation with the exact finite-difference fractional Laplacians

m

∑
j=1

aj
T∆

N,αj
h f [n] = g[n] (m ≥ 2), (157)

where αn > (N − 1)/2, a1 < N, αm > · · · > α1 > 0, aj ∈ R (j = 1, 2..., m), a1 ̸= 0, am ̸= 0,
has the particular solution of the form

f [n] = ∑
m

Gα[n − m] g[m], (158)

where

Gα[n] :=
1

(2 π)N/2 |r(n)|(N−2)/2

ˆ π/|h|

0

(
m

∑
j=1

aj λαj

)−1

λN/2 JN/2−1(λ|r(n)|) dλ, (159)

where Ja(z) is the Bessel function of the first kind.

The proof of Theorem 8 is similar to proof of Theorem 7 that is given in [110].

Example 4. If α > (N − 1)/2, n ∈ ZN , ω ∈ R and ω2 ̸= 0, the difference equation

T∆N,α
h f [n]− ω2 f [n] = g[n] (160)

is solvable, and its particular solution has the form

f [n] = ∑
m

Gα[n − m] g[m], (161)

where

Gα[n] :=
1

(2 π)N/2 |r(n)|(N−2)/2

ˆ π/|h|

0

(
λα − ω2

)−1
λN/2 JN/2−1(λ|r(n)|) dλ. (162)

For the case α = 2, Equation (160) can be considered as a fractional Helmholtz equation with
E-FDs in N-dimensional space.

Example 5. If α > (N − 1)/2, α > β > 0, β < N, n ∈ ZN , ω ̸= 0, then the exact finite-
difference equation

T∆N,α
h f [n] + ω T∆N,β

h f [n] = g[n] (163)

has the particular solution
f [n] = ∑

m
Gα,β[n − m] g[m], (164)



Mathematics 2024, 12, 972 25 of 37

where

Gα,β[n] :=
1

(2 π)N/2 |r(n)|(N−2)/2

ˆ π/|h|

0

(
λα + ωλβ

)−1
λN/2 JN/2−1(λ|r(n)|) dλ. (165)

Example 6. If N = 1, α > β > 0, β < 1, ω ̸= 0, then the difference equation

T∆N,α
h f [n] + ω T∆N,β f [n] = g[n], (166)

has the particular solution

f [n] =
∞

∑
m=−∞

Gα,β[n − m] g[m], (167)

where

Gα,β[n] :=
1
π

ˆ π/h

0

cos(λ h |n|)
λα + ω λβ

dλ. (168)

Example 7. If N = 1, α > 0, and ω ̸= 0, then the difference equation

T∆N,α
h f [n] + ω f [n] = g[n], (169)

has the particular solution

f [n] =
∞

∑
m=−∞

Gα[n − m] g[m], (170)

with the Green’s function

Gα[n] :=
1
π

ˆ π/|h|

0

cos(λ h |n|)
λα + ω

dλ, (171)

where we use

J−1/2(x) =

√
2

π z
cos(z) (172)

for a one-dimensional case (N = 1).

4. Exact Finite-Differences for Non-Entire Functions

Theorem 1, which describes the connection between the E-FDs and the standard
derivatives of integer orders, holds for functions f [n] that belong to the set E(Z) of the
simple entire functions. In the general case, when the functions do not belong to the set of
simple entire functions, we can obtain the following inequality:

T∆1 f [n] ̸=
(

d f (x)
dx

)
x=n

. (173)

This fact will lead to the need to generalize the equation, defining the exact finite-
differences to the sets of functions outside the space E(Z).

In this section, a generalization of equation, which defines the exact finite-difference
of the first order for simple, entire functions, is proposed.

Theorem 9. Let C be a contour enclosing the all points z = ±n, where n ∈ N (except the point
z = 0).

Let f (z) be analytic inside and on C, except possibly for a number of poles a1, · · · , aN none of
which coincide with z ∈ Z.

Then, the following equation is satisfied:

∞

∑
k=−∞, k ̸=0

(−1)k

k
f [n − k] =

(
∂ f (z)

∂z

)
z=n

+ D( f , n), (174)
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where

D( f , n) =
1

2 π i

ˆ
C

f (n − z)
z

π dz
sin π z

−
N

∑
j=1

Resz=aj

(
π f (n − z)
z sin(π z)

)
, (175)

where Resz=aj g(z) is the residue of g(z) at z = aj.

Proof. Let us use the residues for the summation of the series (for example, see Section
7.7-4. of [144]). Given a contour C enclosing the points z = m, z = m + 1, z = m + 2 , . . . ,
z = n, where m is an integer, let f (z) be analytic inside and on C, except possibly for a
number of poles a1, . . . , aN none of which coincide with z = m, z = m + 1, z = m + 2 , . . . ,
z = n. Then

n

∑
k=m

(−1)k f [k] =
1

2 π i

ˆ
C

f (z)
π dz

sin π z
−

N

∑
j=1

Resz=aj

(
π f (z)

sin(π z)

)
, (176)

where Resz=aj g(z) is the residue of g(z) at z = aj.
For the calculation of the sum of the series ∑∞

k=−∞(−1)k f [k] one can use the Cauchy
formula (see Section 4.5 of [145]). Let us first replace the series by a contour integral. For
this aim, we need a function that has simple poles at the points z = n, and it is bounded on
the infinity beyond the real axis. As such a function of this type we use π/ sin(π z), which
has simple poles at z = 0,±1,±2, · · · .

As a corollary of Theorem 9, we proposed the following generalization of the first-order
exact finite-difference for non-entire functions.

Definition 8. Let C be a contour enclosing the all points z = ±n, where n ∈ N (except the point
z = 0). Let f (z) be analytic inside and on C, except possibly for a number of poles a1, · · · , aN none
of which coincide with z ∈ Z.

Then, the generalized exact finite-difference (GE-FD) of the first order is defined as

GT∆1 f [n] := T∆1 f [n] − D( f , n), (177)

and
GT∆m+1 f [n] := GT∆1 GT∆m f [n], (m ∈ N), (178)

where D( f , n) is defined by Equation (175).

Remark 16. Note that for functions f [n] that belong to the set E(Z) of simple entire function, we
have D( f , n) = 0.

As a corollary of Theorem 9, we have a generalization of Theorem 1 from a exact
finite-difference to a generalized exact finite-difference.

Theorem 10. Let C be a contour enclosing the all points z = ±n, where n ∈ N (except the point
z = 0).

Let f (z) be analytic inside and on C, except possibly for a number of poles a1, · · · , aN none of
which coincide with z ∈ Z.

Then, the generalized first-order exact finite-difference satisfies the equality

GT∆1 f [n] :=
(

∂ f (z)
∂z

)
z=n

(179)

for all n ∈ Z and all h > 0, where ∂ f (z)/∂z is the standard first-order derivative.

Using Theorem 10, the following properties of the generalized exact finite-differences
GT∆k of the positive integer order k ∈ N can be proved similar to the proofs of the properties
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of the exact finite differences T∆k. Instead of simple entire functions, we can consider
functions that are described in Theorem 10.

(1) The Leibniz rule

GT∆1
(

f [n] g[n]
)

= ( GT∆1 f [n]) g[n] + f [n] ( GT∆1 g[n]) (n ∈ Z), (180)

GT∆k
(

f [n] g[n]
)

=
k

∑
j=0

(
k
j

)
( GT∆k−j f [n]) ( GT∆j g[n]) (n ∈ Z, k, j ∈ N). (181)

(2) The chain rule

GT∆1 f (g[n]) = ,
(

GT∆1 f (g)
)

g=g(n)
GT∆1g[n] (n ∈ Z). (182)

(3) The semi-group property

GT∆1( GT∆1 f [n]) = GT∆2 f [n] (n ∈ Z), (183)

GT∆k( T∆j f [n]) = GT∆k+j f [n] (n ∈ Z, k, j ∈ N). (184)

(4) The equations for power-law functions

GT∆1 nj = j nj−1 (n ∈ Z, j ∈ N j ≥ 1), (185)

GT∆k nj =
j!

(j − k)!
nj−k (n ∈ Z, k, j ∈ N j ≥ k). (186)

(5) If functions f (z) and g(z) satisfy the equation

dk f (z)
dzk = g(z), (187)

where k ∈ N, then the equation

GT∆k f (n) = g(n) (188)

holds for n ∈ Z and k ∈ N.

Let us consider an example of the calculation of generalized exact finite-differences
without using Theorem 10. As such, an example of non-entire function, one can consider the
square root function. It should be emphasized that there is no need to carry out calculations
in the way described below, since Theorem 10 strictly proves the connection between the
generalized exact finite-difference and the standard first-order derivative.

The standard partial derivative of the square root f (x, y) =
√

x2 + y2 of the form

∂

∂x

√
x2 + y2 =

x√
x2 + y2

, (189)

where x y ̸= 0 and x, y ∈ R.
Let us consider discretization f (x, y) → f [n, m], when the partial derivative is replaced

by the exact finite-difference. Then,

∂

∂x

√
x2 + y2 → T∆1

x

√
n2 + m2, (190)
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where n m ̸= 0 and n, m ∈ Z. Using the equation of the exact finite-difference in the form

T∆1
x f [n] =

∞

∑
k=1

(−1)k

k
( f [k − n] − f [−k − n]), (191)

we obtain

T∆1
x

√
n2 + m2 =

∞

∑
k=1

(−1)k

k

(√
(k − n)2 + m2 −

√
(k + n)2 + m2

)
. (192)

To calculate (192), we can use the complex analysis. Let us consider the following
integral:

DN( f , n) :=
1

2 π i

ˆ
CN

(√
(z − n)2 + m2 −

√
(z + n)2 + m2

)
π dz

z sin(π z)
, (193)

where CN is the square contour |x| < N + 1/2, |y| < N + 1/2 with vertical cuts from
points ±n + i m upwards and from points ±n − i m downwards. The branches of the roots
are chosen so that the roots were positive for real z. Calculating this integral through the
residues, we obtain

DN( f , n) = − 2 n√
n2 + m2

+ 2
N

∑
k=1

(−1)k

k

(√
(k − n)2 + m2 −

√
(k + n)2 + m2

)
. (194)

On the other hand, using the oddness of the integrand and the fact that the conjugate
points it takes the conjugated values, we obtain

DN( f , n) = 4 Re
1

2 π i

ˆ
C′

N

(√
(z − n)2 + m2 −

√
(z + n)2 + m2

)
π dz

z sin π z
, (195)

where C′
N is a part of the contour CN that lies in the first quarter.

Then, it is necessary to show that the integrals over the horizontal and vertical sides of
C′

N tend to zero with a growth of N. For the horizontal side, it is quite simply because there
is a sine that increases exponentially. For the vertical side, it is enough that the difference
roots in the brackets will be bounded, and this can be seen since their arguments are very
close at large N.

Thus, when N → ∞ we have only the integral along the section from the point n + i m
upwards. The second root takes the same values on both edges of the cut, so it does not give
the contribution to the integral since these boundaries are traversed in opposite directions.
The values of the first root on the boundary of cuts differ in sign, so it will give a double
contribution to the integral. It remains to substitute z = n + i t, where t ∈ [m, ∞) and
one considers that roots is equal to − i

√
t2 − m2 on the left side of the cut, and to use the

reduction formula for sine and select the real part.
As a result, we obtain

∞

∑
k=1

(−1)k

k

(√
(k − n)2 + m2 −

√
(k + n)2 + m2

)
=

n√
n2 + m2

+ 2 n (−1)n+1
ˆ ∞

m

√
t2 − m2

(t2 + n2) sinh(π t)
dt, (196)

where sinh(z) is the hyperbolic sine.

Therefore, we have
GT∆1

√
n2 + m2 =

n√
n2 + m2

. (197)
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The absolute values of difference between the results, which is given by right side of
Equation (196), and the initial sum, which is given by the left part of Equation (196), have
been calculated for n, m from 1 to 10. These absolute values are presented by the following
two tables:

m = 1 m = 2 m = 3 m = 4 m = 5
n = 1 2.343 · 10−14 5.551 · 10−16 3.009 · 10−14 1.565 · 10−14 2.473 · 10−13

n = 2 4.108 · 10−14 4.663 · 10−15 2.220 · 10−16 3.014 · 10−13 7.772 · 10−16

n = 3 6.473 · 10−14 4.319 · 10−14 1.366 · 10−14 2.428 · 10−11 5.299 · 10−13

n = 4 8.027 · 10−14 6.950 · 10−14 7.452 · 10−13 1.499 · 10−13 5.833 · 10−13

n = 5 3.675 · 10−14 3.886 · 10−14 3.191 · 10−11 7.413 · 10−12 5.503 · 10−13

n = 6 2.529 · 10−13 2.928 · 10−12 7.151 · 10−13 1.567 · 10−12 3.457 · 10−11

n = 7 1.116 · 10−13 7.317 · 10−11 5.211 · 10−12 1.222 · 10−11 9.166 · 10−9

n = 8 8.162 · 10−13 3.802 · 10−12 1.859 · 10−12 3.386 · 10−9 7.526 · 10−10

n = 9 2.145 · 10−10 8.797 · 10−12 2.037 · 10−10 5.725 · 10−8 5.067 · 10−10

n = 10 1.695 · 10−11 1.545 · 10−11 9.187 · 10−8 6.296 · 10−10 5.311 · 10−11



, (198)



m = 6 m = 7 m = 8 m = 9 m = 10
n = 1 1.541 · 10−13 1.837 · 10−13 4.337 · 10−9 3.850 · 10−12 4.633 · 10−12

n = 2 1.280 · 10−13 1.384 · 10−12 4.989 · 10−9 9.842 · 10−13 1.454 · 10−12

n = 3 3.519 · 10−14 2.228 · 10−11 4.562 · 10−9 2.020 · 10−12 6.582 · 10−13

n = 4 2.633 · 10−12 8.793 · 10−9 2.069 · 10−11 1.101 · 10−10 3.110 · 10−13

n = 5 1.147 · 10−10 1.359 · 10−10 6.487 · 10−12 1.762 · 10−12 1.619 · 10−11

n = 6 4.815 · 10−9 1.377 · 10−12 1.048 · 10−11 4.489 · 10−12 1.925 · 10−10

n = 7 6.341 · 10−11 7.431 · 10−11 3.444 · 10−12 3.630 · 10−10 9.514 · 10−12

n = 8 2.506 · 10−9 5.160 · 10−12 5.195 · 10−10 2.632 · 10−11 2.025 · 10−11

n = 9 1.518 · 10−11 5.442 · 10−9 2.659 · 10−11 6.951 · 10−11 1.703 · 10−11

n = 10 1.302 · 10−9 4.240 · 10−12 5.527 · 10−10 2.449 · 10−11 2.996 · 10−13



. (199)

In Tables (198) and (199), the absolute values of difference represent the errors of
summation and integration (196).

Note that there is no need to consider calculations by the method described above,
since Theorem 10 strictly proves the connection between the generalized exact finite-
difference (GE-FDs) and the standard first-order derivative. Therefore, using Theorem 10
and the properties of the GE-FDs described above, one can give the other examples of
calculations of the GE-FDs.

(a) First example of the action of the GE-FD

GT∆1
(

n2 + m2
)s/k

=
2 s n

k

(
n2 + m2

)−(k−s)/k
, (200)

where n, m ∈ Z and k, s ∈ N.
(b) Second example of the action of the GE-FD

GT∆1
(

n2 + m2
)s/k

eλ n2
=

2 s n
k

(
n2 + m2

)−(k−s)/k
eλ n2

+ 2 λ n
(

n2 + m2
)s/k

eλ n2
, (201)

where n, m ∈ Z and k, s ∈ N, λ ∈ R.
(c) Third example of the action of the GE-FD

GT∆k Eα,β[n] = k! Ek+1
α,β+αk[n], (202)

where α, β > 0, n, m ∈ Z, k ∈ N, λ ∈ R, and Eα,β[z] is two-parameter Mittag–Leffler
function and Ek

α,β[z] is generalized two-parameter Mittag–Leffler function [4,146,147].
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(d) The linear equation with GE-FD in the form

n GT∆2 f [n] + (c − n) GT∆1 f [n] − a f [n] = 0 (203)

has the solution

f [n] = 1F1(a, c; n) =
∞

∑
k=0

(a)k
(ck)

nk

k!
, (204)

where n ∈ Z, k ∈ N, and (z)k = Γ(z + k)/Γ(z) is the Pochhammer symbol. Note that

GT∆k
1F1(a, c; n) =

(a)k
(ck)

1F1(a, c; n), (205)

where 1F1(a, c; z) is the confluent hypergeometric Kummer function [4,148].
(e) The linear equation with GE-FD in the form

n2 GT∆2 f [n] + n GT∆1 f [n] + (n2 − m2) f [n] = 0 (206)

has the solution

f [n] = Jm[n] =
∞

∑
j=0

(−1)j

2j+m j! Γ(m + j + 1)
n2j+m, (207)

where n ∈ Z, m ∈ N and Jm[z] is the Bessel function of the first kind [4,149].

Remark 17. It should be emphasized that the proposed Tables (198) and (199) are not intended to
approximately prove Equations (197) and (179) or Theorem 10, since these equation is exact and it
has been proven analytically using well-known formulas for example, see Section 7.7-4 of [144] and
Section 4.5 of [145]).

In fact, Theorems 1 and 10, prove that exact finite-differences and generalized exact finite-
differences of an integer order are algebraic analogs of the derivatives of an integer order, in
contrast to the standard finite-differences [8–10] and non-standard finite-differences proposed in
works [11–16,19].

5. Examples of Difference and Differential Equations with Its Solutions

In this section, we give examples of equations with the exact finite-differences (E-FDs)
(Tables 1–3). These equations are compared with the equations that contains the standard
integer-order derivatives (Der), standard finite-differences (S-FDs), and non-standard finite-
differences (NS-FDs) in the form of tables [69].

Table 1. Examples of linear equations of the first order.

Operator Type Equation and Operator Solution

Der
D1 f (x) = −λ f (x)

f (x) = f (0) e−λ x
D1 f (x) :=

d f (x)
dx

S-FD
f ∆1 f [n] = −λ f [n] f [n] = f [0] (1 − λ)n

f ∆1 f [n] := f [n + 1]− f [n] f [n] ̸= f [0] e−λ n

NS-FD

M∆1
λ f [n] = −λ f [n]

f [n] = f [0] e−λ n
M∆1

λ f [n] :=
f [n + 1]− f [n]
(1 − eλn)/λ

E-FD

T∆1 f [n] = −λ f [n]
f [n] = f [0] e−λ n

T∆1 f [n] :=
+∞

∑
m=−∞

m ̸=0

(−1)m

m
f [n − m]
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Table 2. Examples of linear equations of second order.

Operator Type Equation, Operator, and Solution

D2 f (x) + λ2 f (x) = 0

Der D2 f (x) :=
d2 f (x)

dx2
f (x) = A cos(λ x + ϕ)

f ∆2 f [n] + λ2 f [n] = 0
S-FD f ∆1 f [n] := f [n + 1]− 2 f [n] + f [n − 1]

f [n] ̸= A cos(λ n + ϕ)

M∆2
λ f [n] + λ2 f [n] = 0

NS-FD M∆2
λ f [n] :=

f [n + 1]− 2 f [n] + f [n − 1]
4 sin(λ/2)/λ2

f [n] = A cos(λ n + ϕ)

T∆2 f [n] + λ2 f [n] = 0

E-FD T∆2 f [n] := −
+∞

∑
m=−∞

m ̸=0

2 (−1)m

m2 f [n − m]− π2

3
f [n]

f [n] = A cos(λ n + ϕ)

Table 3. Examples of nonlinear equations of the first order.

Differential Equation and Solution Equation with E-FD and Solution

1.

d f (x)
dx

− a2
(

f (x)
)k/(k+1)

= 0 T∆1 f [n]− a2
(

f [n]
)k/(k+1)

= 0

f (x) =
(

a2

k + 1
x + C

)k+1

f [n] =
(

a2

k + 1
n + C

)k+1

2.
d f (x)

dx
+ λ f (x) ln

(
f (x)

)
= 0 T∆1 f [n] + λ f [n] ln

(
f [n]

)
= 0

f (x) = exp(exp(−λ x + C)) f [n] = exp(exp(−λ n + C))

3.

d f (x)
dx

− λ exp(x) f k/(k+1)(x) = 0 T∆1 f [n]− λ exp(n) f k/(k+1)[n] = 0

f (x) =
(

λ

k + 1
exp(x) + C

)k+1
f [n] =

(
λ

k + 1
exp(n) + C

)k+1

4.

d f (x)
dx

− λ xk f (k−1)/k(x) = 0 T∆1 f [n]− λ nk f (k−1)/k[n] = 0

f (x) =
(

λ

k (k + 1)
xk+1 + C

)k
f [n] =

(
λ

k (k + 1)
nk+1 + C

)k

5.
d f (x)

dx
− λ cos(x/k) f (k−1)/k(x) = 0 T∆1 f [n]− λ cos(n/k) f (k−1)/k[n] = 0

f (x) = (λ sin(x/k) + C)k f [n] = (λ sink(n/k) + C)k

6. Conclusions

In this article, a short review of exact finite-differences calculus of integer orders is proposed.
The standard finite-differences [8–10] and non-standard finite-differences [11–15] cannot be
considered as exact discrete (difference) analogs of the standard derivatives of integer
orders. The proposed exact finite-differences are exact algebraic analogs of derivatives; that
is, they satisfy the same characteristic relationships as the standard derivatives in the space
of the simple entire functions. In this regard, the question arises of the behavior of these
final differences outside this space. As an answer to this question, a generalized equation
that defines the exact finite-differences for non-entire functions is proposed. As an example
of calculation, the square root function is considered.

It should be noted that a fractional generalization of the exact finite-differences of
integer orders to non-integer orders has been proposed in the papers [69,110]. In prelimi-
nary form in [101–103], where the kernel of the exact finite-difference operators, which is
expressed through the Lommel function was proposed in the 2006 papers by Equation (41)
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and the Table in [89], in the Appendix of [88] and by Definition 8.2 and Example 1 in [90].
One can emphasize that there are many interesting open mathematical questions about
the properties of such fractional operators that are exact fractional finite-difference of
non-integer orders.

It should be noted that there are many interesting applications of the exact finite-
differences of integer orders in continuum mechanics [97,104,105,117], statistical mechan-
ics [106,107], economics [118–120], quantum mechanics [121–123], and quantum field
theory [108,124,125]. The results and methods proposed in these works were developed in
article on quantum theory [126–129]. We assume that these applications and others possible
applications [90,150–161] can be generalized for fractional exact finite-difference to describe
processes and systems with non-locality in space and time.
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