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Abstract: In recent years, optical fibers have found extensive use in special environments, including

high-energy radiation scenarios like nuclear explosion diagnostics and reactor monitoring. However,

radiation exposure, such as X-rays, gamma rays, and neutrons, can compromise fiber safety and

reliability. Consequently, researchers worldwide are focusing on radiation-resistant fiber optic tech-

nology. This paper examines optical fiber radiation damage mechanisms, encompassing ionization

damage, displacement damage, and defect centers. It also surveys the current research on radiation-

resistant fiber optic design, including doping and manufacturing process improvements. Ultimately,

it summarizes the effectiveness of various approaches and forecasts the future of radiation-resistant

optical fibers.

Keywords: radiation damage; radiation-resistant; optical fibers

1. Introduction

As technologies like laser cutting [1–4] and fiber optic communication [5–8] rapidly
evolve, optical fibers are seeing increasingly widespread applications across various fields.
Beyond traditional communication, optical fibers have found extensive use in recent years
in cutting-edge areas such as sensing [9–11], measurement [12,13], control [14,15], and
data collection [16,17]. These applications extend to diverse environments, including
high-energy radiation scenarios [18] like nuclear explosion diagnostics [19], internal moni-
toring of nuclear reactors [20–22], nuclear fuel reprocessing [23], disinfection of medical
endoscopes [24,25], underwater fiber optic cable communication [26], and aerospace tech-
nology [27], among others.

Clearly, optical fibers are utilized not only in prolonged exposure to low-dose radiation
environments but also in high-dose-rate, high-level radiation environments. In these scenar-
ios, radiation such as X-rays, gamma rays, and neutron radiation can induce damage to the
optical fibers, leading to a reduction in their capabilities and overall performance [28–30]. In
severe instances, this radiation-induced damage can directly compromise the safety and
reliability of the optical fibers [31]. Therefore, it is paramount to investigate the charac-
teristics of optical fibers in various radiation environments, understand the mechanisms
of defect formation, and diligently work towards improving and enhancing the radiation
resistance of optical fibers.

This paper delves into the mechanisms of radiation-induced loss in optical fibers,
encompassing ionization damage at the microscale, displacement damage, and macroscopic
effects. Additionally, it surveys the current landscape of research on radiation-resistant
fiber optic design, including methods such as doping for enhanced radiation resistance
and advancements in manufacturing processes to bolster radiation resilience. Ultimately,
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it consolidates the efficacy of these methods in enhancing radiation resistance and offers
insights into the future trajectory of radiation-resistant optical fibers.

2. Radiation Damage Mechanisms in Optical Fibers

2.1. Microscopic Effects of Irradiation Damage

The micro-level impact of radiation on optical fibers primarily arises from two phe-
nomena: ionization damage and displacement damage, resulting in the formation of point
defects. These radiation-induced defects are predominantly associated with the optical
absorption (OA) bands. Consequently, they can induce structural modifications in both
the core and cladding of the optical fiber, ultimately influencing its performance [32,33].
The damage inflicted on optical fibers by radiation predominantly manifests in two forms:
displacement damage and ionization damage, arising from the energy exchange process
between radiation and fibers [34,35]. Displacement damage stems primarily from high-
energy particles, while ionization damage is primarily attributable to charged particles and
electromagnetic waves. However, the energy threshold for displacement damage is usually
significantly higher than that for ionization damage. Consequently, practical research tends
to focus more on ionization damage.

2.1.1. Ionization Damage

For optical fibers, ionization damage primarily involves the ionization of atomic nuclei
by high-energy charged particles or electromagnetic waves, resulting in the creation of
electron–hole pairs. Subsequently, due to the capture of electrons or holes by precursor
defects, color center defects are generated. Charged particles, such as β particles and α par-
ticles, interact with outer atomic electrons via the Coulomb force, leading to the absorption
of energy by the outer electrons and their transition to higher energy levels, a phenomenon
known as excitation. If the energy absorbed by the outer electrons exceeds their binding en-
ergy, they become ionized, forming free-moving electrons [36]. Furthermore, the ionization
process also generates secondary electrons, which, when their energy is sufficiently high,
interact with other electrons, causing additional ionization damage [37].

Griscom et al. provided a comprehensive insight into the mechanism of self-trapped
holes (STHs) in α-SiO2 [38]. They conducted analyses using electron spin resonance
spectroscopy on various samples including high-OH flame hydrolytic, low-OH O2-plasma
fused, sol–gel, and less pure isotopically enriched materials. Their findings revealed that
under X-ray irradiation at 100 keV or excimer-laser illumination at 77 K and 6.4 eV, STHs
could be considered as holes trapped on normal bridging oxygen in the α-SiO2 lattice when
stabilized below ~180 K. However, when stabilized below ~140 K, STHs were perceived as
holes trapped on two normal oxygens, akin to the VK center in alkali halides. Furthermore,
Devine et al. elaborated on five potential defects serving as sources of positive fixed
oxide charge.

2.1.2. Displacement Damage

Displacement damage primarily occurs when high-energy particle beams interact
with the crystalline structure of optical fibers. In spatial irradiation, even electron beams
with sufficiently high energy can induce displacement damage [39]. Although gamma
rays can cause some displacement damage, their effect is minimal compared to particles
like neutrons [40]. During elastic or inelastic collisions of high-energy particles with the
lattice, if the lattice absorbs enough energy, the atoms within it will shift from their original
positions and undergo rearrangement, leading to the formation of defects [41].

From a microscopic standpoint, displacement damage manifests through either elastic
or inelastic collisions between incident particles or electrons and the network structure.
When atoms absorb sufficient collision energy, they deviate from their original positions,
forming interstitial atoms and vacancies, which, through cascade collisions, prompt re-
arrangements in the atomic structure. These interstitial and vacancy atoms induced by
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displacement damage may either recombine or further aggregate into defect clusters such
as dislocation loops, voids, and stacking fault tetrahedra.

Displacement damage induces alterations in the glass network structure. Consider
quartz glass, for instance, where the ground state energy level of silicon nuclei is 1.779 MeV
and that of oxygen nuclei is 6.049 MeV. Only when the energy of incident particles reaches a
sufficiently high level can the atomic nuclei attain higher excited states during collisions [40],
resulting in atomic displacement. Inelastic collisions, prevalent in displacement damage,
involve the transfer of energy from incident particles to atoms, causing atomic displace-
ment and the formation of interstitial atoms and vacancies, known as non-paramagnetic
defects [41]. This process can also trigger the displacement of oxygen atoms within the
intrinsic structure of quartz glass, forming E’ centers [35].

Given that the energy required to induce displacement damage exceeds that of ion-
ization damage, ionization damage stands as the primary mechanism behind radiation-
induced damage in active optical fibers. Point defects stemming from this damage can
lead to radiation-induced losses in fibers, thereby diminishing system gain and elevating
background losses. At higher doses (>1 MGy) and dose rates, radiation-induced emis-
sion (RIE) and radiation-induced refractive index changes (RIRIC) may emerge, severely
compromising the stability of optical systems.

2.1.3. Color Center Defects

Color center defects arise from the ionization of outer atomic electrons and atomic
displacement within optical fibers due to radiation exposure, leading to the generation of
electron–hole pairs, atomic vacancies, and interstitial atoms [33,42]. Electron–hole pairs,
carrying opposite charges, are easily captured by defects of opposite charge, thereby form-
ing paramagnetic defects. Atomic vacancies and interstitial atoms cause the rearrangement
of the atomic structure, resulting in the formation of new lattice structures. Additionally,
defects formed by the rupture of chemical bonds under intense irradiation also fall into the
category of paramagnetic defects [43].

2.1.4. Point Defect Generation

In bulk glass and optical fibers, the properties of glass become more intricate due
to the presence of intrinsic or extrinsic point defects induced during glass processing or
specific treatment procedures. The defect structure relates to atoms with coordination
deficiencies or excesses, substitution or interstitial impurities, or similar atoms (such as
Si-Si or Si-O-O-Si) bonded within the silicon dioxide matrix. These defects correlate with
absorption bands within the silica gap, resulting in reduced transparency of the glass or
fiber. These defects may emerge during manufacturing processes, transform from existing
centers under irradiation, or be directly generated by radiation from “perfect” positions.

Fused quartz boasts excellent optical properties. However, owing to its brittle nature,
the mechanical processing of optical surfaces unavoidably leads to a significant number of
surface defects, including pits, cracks, and scratches [44–46]. These surface defects substan-
tially increase the absorption of optical components, thereby significantly diminishing their
resistance to laser-induced damage under intense laser irradiation. It is widely believed
that under the influence of mechanical force, point defects appear in the regions of surface
defects [47]. Previous studies have demonstrated that point defects can serve as precursors
to laser damage. Additionally, point defects are considered significant contributors to
increased laser absorption and a decreased resistance of mechanically processed optical
surfaces to laser-induced damage [48]. The density of point defects in surface defect re-
gions closely correlates with the laser-induced damage threshold (LIDT) of mechanically
processed optical surfaces, a notion widely accepted [49,50].
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2.2. Macroscopic Effects of Radiation Damage

2.2.1. Radiation-Induced Attenuation (RIA) mechanism

The macroscopic effects of radiation on the performance of optical fibers are specifically
evident in three aspects: (1) radiation-induced attenuation (RIA), which affects the fibers’
transmission performance [51–55]; (2) radiation-induced emission (RIE), characterized by
increased noise during fiber transmission, primarily observed when RIA is minimal [56,57];
and (3) influence on their optical and mechanical properties. The impact on the optical
properties mainly manifests in changes to the fiber’s refractive index after irradiation.
Irradiation can cause a reduction in the distance between silicon atoms within the fiber,
leading to a decrease in silicon–oxygen bond angles, ion volume contraction, and an
increase in the refractive index. The effect on the mechanical properties primarily arises
from atomic structural rearrangement due to ionization and displacement damage caused
by irradiation, resulting in alterations in the fiber density and volume [58–62].

Radiation-induced attenuation (RIA), affecting optical fibers exposed to radiation, is
influenced by a multitude of factors: radiation dose (Gy) [63], dose rate (Gy/s) [64,65],
radiation temperature [66,67], injected optical power [68], operating wavelength [69],
composition of fiber core and cladding [51,70,71], fiber manufacturing processes [72–74],
optical geometric parameters [75], and fiber optical conductivity [76].

During optical fiber irradiation at room temperature, it is common to observe an
increase in RIA levels. However, after the irradiation ceases, most fibers experience a
subsequent decrease in RIA levels, stabilizing at a nearly permanent level, dependent on
the irradiation temperature. This behavior can be attributed to the generation of competing
defects during irradiation and subsequent bleaching mechanisms post-irradiation. The
primary parameters governing RIA effects in such fibers under irradiation conditions are
the composition of the fiber core and cladding [77–82]. Consequently, current optimization
strategies for RIA effects in optical fibers typically revolve around two approaches: one
involves designing the fiber profile to alter its refractive index, while the other aims
to ensure the fiber exhibits low attenuation levels. To achieve these goals, dopants are
often introduced during the fiber manufacturing process, with common ones including
germanium, fluorine, phosphorus, aluminum, nitrogen, erbium, and ytterbium [83].

In 2009, research employed polymethyl methacrylate (PMMA) fibers to monitor var-
ious radiation doses [84]. These fibers exhibited a linear response to radiation-induced
attenuation across different wavelengths, consistent with the Beer–Lambert law. Due
to PMMA plastic fibers’ inherent properties, they effectively monitored light between
500 nanometers and 700 nanometers. Sensitivity to radiation dose varied with wave-
length, decreasing as the wavelength increased. Additionally, the dose range was found to
be wavelength-dependent; while the fibers completely attenuated at lower wavelengths,
higher wavelengths exhibited lower RIA sensitivity but still yielded measurable signals.
Demonstrating excellent sensitivity, up to 0.6 dBm−1/kGy, the PMMA fibers could monitor
dose ranges from 30 Gy to 45 kGy, surpassing the sensing capabilities of current sensors.
By carefully selecting monitoring wavelengths, precise sensitivity and dose ranges can
be achieved, allowing PMMA fibers to serve various applications from low-dose mea-
surements in space and medical fields to high-dose measurements in the sterilization and
nuclear industries.

Moreover, research explored gamma radiation responses based on fiber Bragg gratings
(FBGs) [85]. Exposure to gamma radiation resulted in a shift in the Bragg wavelength (BW),
correlating with the received dose. However, the sensitivity of the silica fiber Bragg gratings
decreased with the increasing received dose, leading to reduced sensitivity. Additionally,
their sensitivity was highly dependent on temperature.

2.2.2. Densification Mechanism

Given the extensive applications of amorphous silica (α-SiO2) in fields like optical
fibers and optical sensors, it has garnered significant attention from researchers [86]. The
phenomenon of densification in α-SiO2, crucial in irradiation environments, has been ex-
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tensively investigated. Research suggests that ionization or displacement damage induced
by irradiation can trigger internal structural rearrangement or the formation of numerous
defects within α-SiO2 materials. This process can result in the dissociation of intrinsic
silicon–oxygen–silicon bonds, leading to an increase in the density of α-SiO2 materials.
As the α-SiO2 density rises, so does its refractive index, thereby impacting its optical
properties [87–89]. Consequently, this phenomenon has become a compelling subject for
researchers in related fields. Buscarino et al. conducted further studies on the densification
phenomenon of silica glass under irradiation environments [90]. They employed electron
paramagnetic resonance (EPR) techniques to measure the 29Si hyperfine structure of E’γ
centers. Their experimental findings suggested that structural alterations in the α-SiO2

under irradiation resulted from the nucleation of confined, highly defective, and densified
regions dispersed statistically throughout the material’s volume.

3. Research Status of Radiation-Resistant Fiber Design

3.1. Radiation-Resistant Fluorine-Doped Fibers

In earlier studies on radiation-resistant optical fibers, undoped pure silica fibers were
regarded as having the best radiation resistance until fluorine-doped fibers were devel-
oped [70,91,92]. Some researchers observed that fluorine-doped fibers showed remarkable
radiation resistance. They proposed that incorporating fluorine atoms into the fiber’s
cladding formed stronger bonds with silicon, thus reducing the fiber’s susceptibility to
radiation [93–95]. As a result, fluorine-doped fibers have broad prospects for application
in the sensor and communication fiber fields. Additionally, it is noteworthy that reports
indicate that radiation detectors made from fully perfluorinated polymer optical fibers
(PF-POFs) also exhibit outstanding performance [96,97].

Gusarov et al. successively investigated the transmission characteristics of cyclic
transparent amorphous fluoropolymer (CYTOP) fibers exposed to gamma radiation doses
of 1, 5, 20, and 50 kGy over an extended period (5 months after irradiation) [98]. They
measured the changes in radiation-induced attenuation (RIA) for POF samples subjected to
doses of 5 kGy and 17.5 kGy from 1–2 h to 80 h post-irradiation and compared them with
long-term results. Their findings revealed that the fiber transmission partially recovered
with the increasing irradiation time in the short-wavelength region (below 1000 nm), a
phenomenon commonly observed in various types of fibers. Conversely, the RIA in the
wavelength range above 1300 nanometers continued to rise post-irradiation and reached
saturation, becoming permanent. The RIA value showed a close correlation with the
time elapsed after irradiation. Furthermore, in dose determination applications, it is
essential to consider the wavelength range; RIA stability requires time, but RIA values
are permanent [99].

In 2008, Wijnands et al. published findings on the radiation resistance of fluorine-
doped fibers [100]. Conducting irradiation experiments, they compared fluorine-doped
fibers from Fujikura, Japan, with standard communication germanium-doped fibers and
PSC fibers, as shown in Figure 1. The results revealed that fluorine-doped fibers dis-
played outstanding radiation resistance in both gamma radiation and high-energy-physics
radiation environments.

In 2016, Pal et al. presented a radiation-resistant fiber Bragg grating sensor utilizing
fluorine-doped fibers [101]. Through experiments, they discovered that silicon-core fibers
with fluorine-doped cladding, produced using an improved Modified Chemical Vapor
Deposition (MCVD) method, exhibited exceptional transmission and radiation-resistant
properties in the near-infrared region. After 180 min of gamma radiation exposure, the
radiation-induced attenuation (RIA) level of the silicon-core fluorine-doped cladding fibers
used could rapidly recover to its pre-irradiation RIA level, as illustrated in Figure 2.
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Figure 1. Comparative experiment by Wijnands et al. [100].

                   
 

 

 
                 

                         
                   

                   
               
                         

  tt                
                             

 
      tt                

                     

                  tt        
                     
                       

                             
                           
                       
                             

                   

Figure 2. Radiation-induced attenuation (RIA) levels of silicon-core fluorine-doped cladding fibers

used by Pal et al. before and after gamma irradiation [101].

In 2017, Stajanca et al. reported on the radiation-induced attenuation (RIA) levels
of PF-POFs (perfluorinated polymer optical fibers) used for radiation monitoring [102].
They compared and evaluated the RIA levels of two commercial PF-POFs under gamma
irradiation in the visible light spectrum and studied the influence of the irradiation dose
rate and temperature on their RIA. At lower irradiation doses, both types of PF-POFs
exhibited lower RIA levels, as shown in Figure 3. However, the copolymer-catalyst-type
PF-POFs showed a lower dependence on the irradiation dose rate, with a greater increase in
the RIA level as the irradiation dose increased. Therefore, copolymer-catalyst-type PF-POFs
are more suitable for radiation monitoring applications, providing a new direction for
developing novel radiation sensors.

While it is widely acknowledged that pure silicon-core fluorine-doped cladding silica
fibers have the best radiation resistance, determining the optimal fluorine content and
understanding the mechanism of fluorine’s action remain unclear. Consequently, fluorine-
doped fibers continue to be a research direction that requires further development.

In 2017, Blanc et al. conducted a study on the attenuation behavior of two types
of radiation-resistant fluoride-doped single-mode optical fibers under room-temperature
(297 K) and low-temperature (16 K) conditions at wavelengths of 1312 nm and 1570 nm [103].
Apart from a notable increase in optical attenuation at 16 K, it was observed that the fibers
in the frozen state ceased to undergo thermal bleaching and defect recombination. However,
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prolonged recovery, including heating the fibers from low temperature to room temperature,
facilitated the annealing of numerous defects, resulting in an almost complete restoration
of the fibers to their initial performance. As the fibers were in a frozen state at 16 K,
the primary mechanism for defect recovery was inhibited, leading to a significant rise in
radiation-induced attenuation. At room temperature, the tested F-doped fibers exhibited
only a few dB/km of radiation-induced attenuation, whereas at low temperature, the
radiation-induced attenuation at 1312 nm surpassed 600 dB/km, with a total induced
dose of 10 kGy. Nonetheless, despite employing a two-step annealing process, the fibers
recovered over 90% of their performance, although some residual attenuation persisted.
These findings underscore the importance of considering optical bleaching effects, typically
deemed negligible at room temperature, even at low temperatures. Additionally, it is
well established that optical fibers demonstrate a “memory” effect, wherein radiation-
induced attenuation rapidly returns to values close to pre-annealing levels upon radiation
recovery. Further investigation into this phenomenon, particularly under low-temperature
conditions, is warranted to elucidate the role of annealing.
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Figure 3. The variation curves of RIA with increasing irradiation dose for two types of PF-POFs

compared in the experiment by Stajanca et al. [102]. (a) Copolymer-catalyst-type PF-POFs; (b) non-

copolymer-catalyst-type PF-POFs.

3.2. Radiation-Resistant Erbium-Doped Fibers

Erbium-doped fibers (EDFs) find widespread applications in the aerospace industry as
laser sources and optical amplifiers [104]. In the space environment, where such equipment
is frequently exposed to high-energy radiation, ensuring radiation resistance becomes
a critical consideration during their design phase [105,106]. Studies have revealed that
compared to traditional pure silica-core fibers and germanosilicate fibers, EDFs exhibit
superior resistance to radiation [107].

In 1992, G. M. Williams et al. published research on radiation effects in EDFs [108].
Their experiments demonstrated that doping Er3+ ions into the fiber core, along with
aluminum and germanium, resulted in enhanced radiation-induced darkening compared
to conventional germanium-doped fibers. The extent of the darkening may be correlated
with the stoichiometry of Er3+/Al2O3.

In 2001, Todd S. Rose et al. reported their investigation into the radiation sensitivity of
erbium-doped fibers (EDFs) used in low-noise optical amplifiers for space applications [109].
Due to the longer fiber paths of EDFs used in space and the sensitivity enhancement
resulting from Er3+ doping, even low doses of radiation can lead to significant signal
attenuation. Moreover, in space environments, minor fluctuations in the front-end inversion
of low-noise amplifiers (LNAs) can cause substantial variations in the noise figure (NF),
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thereby severely impacting fiber performance. Hence, understanding the mechanism
underlying the degradation of fiber performance caused by radiation becomes crucial.

The team simulated high-energy radiation in space using gamma rays and measured
both the passive transmission of EDFs and the gain and noise figure in active amplifiers.
Their experiments revealed that the performance degradation of EDFs is primarily at-
tributed to the absorption of 980 nm pump light induced by radiation. This issue can
be mitigated by using sufficiently high pump power levels in the amplifier to achieve
inversion saturation. Additionally, operating the amplifier in a pumped state can induce
continuous optical annealing in the fiber, thereby alleviating performance degradation.

In 2007, S. Girard et al. reported a study on the impact of proton- and gamma-
induced effects on erbium-doped fibers (EDFs) [110]. By measuring the radiation-induced
attenuation (RIA) from the visible range to the infrared range, the group characterized
the proton- and gamma-induced effects on three types of EDFs. The doping of Er3+ in the
fibers was enhanced by controlling the doping level of Al2O3 in Ge-P silica fibers (Table 1).
The changes in the RIA compared to the best linear fit of the RIA at 980 nm versus dose D
(in Gy) were measured with two different energy levels (50 MeV and 105 MeV) of protons
or gamma rays (Table 2). It was observed that the fiber performance degradation decreased
consistently from the visible spectrum to the infrared spectrum. Using these measurements,
the RIA curves were spectrally decomposed, revealing that the RIA phenomenon in EDFs
is mainly correlated with the doping level of aluminum, while the presence of Er3+ ions
appears unaffected by proton radiation. This may be attributed to the formation of a
protective solvated shell around Er3+ by Al2O3, offering shielding against proton radiation.

Table 1. Three types of fibers used by S. Girard et al. [110].

Fiber [Er3+]aa [Al2O3]

#1 ~290 ppm 10 wt.%
#2 ~240 ppm 8 wt.%
#2 ~290 ppm 7 wt.%

Table 2. Changes in fiber RIA under measurements of two different energy levels of proton radiation.

Fiber #1 χ (dBm−1Gy−1, 50 Mev) χ (dBm−1Gy−1, 105 Mev)

3 mW - 1.1 × 10−2

23 mW - 1.1 × 10−2

54 mW - 1.1 × 10−2

Fiber #2 χ (dBm−1Gy−1, 50 Mev) χ (dBm−1Gy−1, 105 Mev)

3 mW 1.1 × 10−2 1.6 × 10−2

23 mW 1.1 × 10−2 1.6 × 10−2

54 mW 1.1 × 10−2 1.6 × 10−2

Fiber #3 χ (dBm−1Gy−1, 50 Mev) χ (dBm−1Gy−1, 105 Mev)

3 mW 9.6 × 10−3 1.1 × 10−2

23 mW 9.4 × 10−3 1.1 × 10−2

54 mW 8.8 × 10−3 1.2 × 10−2

In 2009, A. Gusarov et al. reported on the radiation sensitivity of amplifiers utiliz-
ing highly doped Er3+ fibers [111]. The group employed nano-deposition techniques to
fabricate several erbium-doped fiber amplifiers (EDFAs) with similar gain characteristics.
They utilized a 60Co γ-radiation source and measured the small-signal gain and noise
figure during post-radiation annealing processes. Significant performance degradation
was observed in these fibers. However, when the fiber gain remained sufficiently high,
exceeding 10 dB, the reduction in the noise figure was negligible. The EDFA with the lowest
Er3+ concentration exhibited the most pronounced performance degradation, primarily
due to increased fiber background absorption induced by radiation. Increasing the Er3+
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concentration allowed for shortening the fiber length, thereby reducing radiation-induced
background absorption and enhancing the fiber’s radiation resistance. However, exces-
sively high Er3+ concentrations required additional dopants to prevent Er3+ ion clustering,
which, in turn, exacerbated the degradation of the fiber performance.

In the same year, Li et al. reported a study on the radiation effects of EDFAs with
different densities [112]. Under the irradiation of a 60Co γ-radiation source at the same
rate and total radiation dose, amplifiers using EDFs with two different densities were
able to achieve the same output power. Experimentally, it was found that in the irradi-
ation environment, the length factor of the EDF had a greater impact on the radiation
sensitivity of the fiber compared to the density factor. In other words, under the same
output power conditions, the performance of short EDFs with a high Er3+ concentration
was superior to that of long EDFs with a low density. This experimental result further
confirms that the Er3+ concentration is the primary factor affecting the performance of
EDFs in radiation environments.

In 2012, Thomas et al. reported on a highly radiation-resistant erbium-doped pure
silica fiber containing erbium-doped nanoparticles [113]. The group initially compared the
radiation resistance of five different chemically composed erbium-doped fiber amplifiers
(EDFAs) under irradiation from a 60Co γ-radiation source. They measured the optical
gain and noise figure in saturated amplifiers as well as the radiation-induced attenuation
(RIA) at pump and signal wavelengths in the small-signal state. The experimental findings
revealed that EDFAs doped with aluminum, whether conventional or nanoparticle-based,
exhibited a higher gain degradation and RIA. Conversely, nanoparticle-based EDFAs
without aluminum doping showed a lower gain degradation and RIA.

Previous studies on EDFs have primarily focused on high-dose irradiation conditions,
generally suggesting that EDFs’ radiation-induced attenuation (RIA) increases with higher
irradiation doses [114,115]. However, some reports indicate an anomalous phenomenon
known as Enhanced Low-Dose-Rate Sensitivity (ELDRS) in EDFs under low-dose irradi-
ation conditions [116]. In 2012, Gilard et al. presented a theoretical framework model to
explain ELDRS in EDFs [117]. The group proposed that the competition between recom-
bination centers and charge trapping in silica might be the primary factor contributing to
ELDRS. Additionally, the observed dose and dose rate ranges of ELDRS are significantly
influenced by the recombination kinetics of the fiber carrier. It is noteworthy that under
specific irradiation dose conditions, the presence of deep fiber defects and dispersed trans-
mission, limiting de-trending occurrence, often reduces the dose rate threshold for ELDRS.
Hence, in low-dose-rate environments (such as on the ground), some conventional fibers
with dose rate sensitivity, like germanium-doped fibers and pure silica fibers, do not exhibit
the ELDRS phenomenon due to their low recombination center density and high dose rate
threshold. In contrast, EDFs, with their higher recombination center density and lower
dose rate threshold, are more susceptible to ELDRS.

In 2014, S. Girard et al. introduced a novel radiation-resistant erbium-doped fiber
amplifier (EDFA) [118]. Unlike conventional EDFAs utilizing standard EDFs, this new
type of EDFA employs Hole-Assisted Carbon-Coated (HACC) EDFs. The unique HACC
structure enables the fiber core to achieve optimal gas loading (with either H2 or D2) while
reducing its radiation sensitivity without compromising the performance of the EDFA.

In 2021, Yan et al. systematically investigated the spectral properties and radiation
resistance behavior of Er/Al/Ge co-doped silica glass and fibers under the influence
of germanium dioxide [119]. The team further elucidated the principle of color center
formation in the glass and fibers under gamma-ray irradiation and speculated on the
mechanism behind the radiation hardening. The experimental results confirmed that co-
doping with Er/Al/Ge did not affect the spectral properties of the Er3+ and significantly
enhanced the radiation resistance of the glass and fiber samples. Moreover, the degree of
performance enhancement was directly proportional to the content of germanium dioxide
in the glass and fibers.
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In summary, research on EDFs has matured, with a well-developed understanding of
related mechanisms being obtained, indicating substantial potential for further development.

3.3. Radiation-Resistant Ytterbium-and-Erbium Co-Doped Fibers

Research on ytterbium-doped fiber (YDF) has a history spanning several decades.
Thanks to its wide gain bandwidth, long upper-state fluorescence lifetime, low quantum
defects, and high quenching concentration, optical amplifiers made with YDF, known as
erbium-doped fiber amplifiers (EDFAs), offer higher output power. Consequently, mature
EDFA technology has become one of the mainstream amplifiers used in ground-based
communications [117,120,121]. With the increasing demand for space communication, high-
performance EDFAs have attracted attention from researchers [122]. Previously, EDFAs
were mainly used in ground-based communications, which differ from space environments
with more severe radiation conditions. Therefore, developing radiation-resistant YDF has
become a focus of researchers, with significant achievements, particularly in the field of
erbium–ytterbium co-doped fibers (EYDFs) [113,123].

In 2009, Li et al. reported experimental studies on the radiation effects of erbium–
ytterbium co-doped fiber amplifiers (EYDFAs) for space optical communication in low-
dose-radiation environments [124]. Using 60Co as the radiation source, EYDFAs were
irradiated at a total dose of 50 krad with a dose rate of 40 krad/s. Measurements were
conducted on the wavelength peak and full width at half maximum (FWHM) of the fiber
signal. The results indicated no significant changes in the wavelength peak and FWHM at
five experimental breakpoints, demonstrating the stability of EYDFAs for communication
in radiation environments.

In the same year, S. Girard et al. reported their study on the effects of YDF and EYDF
under irradiation [125]. Through exposure to 105 MeV proton and gamma-ray irradiation
tests on five different fiber groups (YbP, YbAl, YbPAl, YbErAl, YbErPAl), the RIA was
measured, as shown in Figure 4. The experimental results indicate that, compared to YDF,
except for ytterbium–phosphorus–aluminum co-doped fibers, EYDF exhibits better spectral
performance under irradiation, demonstrating that EYDF is an excellent candidate material
for radiation-resistant EDFAs.
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Figure 4. RIA of the five types of fibers measured by S. Girard et al. under irradiation conditions [125].

In 2018, Ladaci et al. reported on the changes in the spectral properties of Er3+ and Yb3+

ions in phosphate–silicate-based fiber matrices under X-ray, γ-ray, electron, and proton
irradiation [28]. The experimental results indicated that both Er3+ and Yb3+ ions exhibited
a significant decrease in their infrared emission lifetimes with increasing irradiation dose.
Specifically, the emission lifetime of the Er3+ ion’s 4I13/2 level decreased from approximately
9 ms before irradiation to around 6.3 ms, while that of the Yb3+ ions’ 2F5/2 level decreased
from about 1.8 ms to approximately 0.65 ms before irradiation. Additionally, Ladaci et al.
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also tested the RIA changes after doping cerium ions into EYDF. The experimental results
showed that the inclusion of cerium ions not only enhanced the RIA tolerance of the EYDF
but also reduced the impact of radiation on the Er3+ ions’ 4I13/2 level, providing a new
avenue for developing radiation-resistant EYDF.

In summary, compared to traditional YDF, EYDF exhibits better radiation resistance
and is more suitable for use in the harsh radiation environment of space. However, there
are relatively few reports on the mechanism of EYDF, and further research on the relevant
radiation-resistant mechanisms of EYDF is still needed for its commercial application.

3.4. Radiation-Resistant Nitrogen-Doped Fibers

There is limited research on radiation-resistant nitrogen-doped fibers, but existing
reports suggest that core-doped nitrogen-doped silica fibers show promising performance
in radiation resistance. Some studies even propose them as highly potential materials for
optical-induced fiber Bragg and long-period grating coupling.

In 1995, Dianov et al. reported on a radiation-resistant core-doped nitrogen-doped
silica fiber [126]. Under gamma-ray irradiation of 10 kGy for 1–2 h, the experimental results
showed that the radiation-induced losses of the core-doped nitrogen-doped silica fiber in
the range of 1300–1600 nm were very close to the optimal data from previous radiation
experiments on pure silica fibers, as shown in Figure 5. This study suggests that core-doped
nitrogen-doped silica fibers hold promise as radiation-resistant fibers.
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Figure 5. The experimental results of radiation-induced losses in radiation-resistant core-doped

nitrogen-doped silica fibers tested by Diano et al. Solid line represents nitrogen-doped silica core

fiber under investigation; Dash line represents MCVD single-mode pure silica core fluorine-doped

silica cladding fiber; Densely dash line represents MCVD single-mode germanium-doped silica core

fluorine-doped silica cladding fiber [126].

Optical fiber Bragg gratings (FBGs) and long-period grating (LPG) sensors within
radiation-resistant core-doped nitrogen-doped silica fibers are promising candidates for
sensor applications in nuclear and other radiation environments [127,128]. These materials
demand high radiation resistance from the optical fibers employed [129,130]. In 1998,
Vasiliev et al. reported on the performance of FBGs and LPGs made from core-doped
nitrogen-doped silica fibers under gamma-ray irradiation [131]. The experimental results
demonstrated the excellent radiation resistance of both the FBGs and LPGs fabricated using
core-doped nitrogen-doped silica fibers under a dose of 1.46 MGy gamma-ray irradiation.

In 2004, S. Girard et al. reported on the irradiation effects of core-doped nitrogen-
doped silica fibers under gamma-ray and pulsed X-ray irradiation [132]. Throughout
most of the irradiation experiments, the core-doped nitrogen-doped silica fibers exhibited
minimal radiation-induced losses at both 1.55 µm and 1.31 µm wavelengths. Additionally,
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the core-doped nitrogen-doped silica fibers demonstrated outstanding radiation resistance
at 1.55 µm, comparable to the best experimental data for pure silica fibers.

In summary, nitrogen-doped fibers have been shown to exhibit better radiation re-
sistance compared to pure silica fibers. However, there is still limited research on their
underlying mechanisms, and further studies are needed for nitrogen-doped fibers to realize
their full potential in practical applications.

3.5. Radiation-Resistant Germanium-Doped Fibers

Ge-doped fibers are not the primary focus of research in radiation-resistant fiber optics.
Some researchers argue that germanium ions are one of the primary causes of radiation-
induced defect structures in conventional communication-grade silica fibers [133]. Ge
replaces silicon in the silica tetrahedron, causing distortion in the regular tetrahedral struc-
ture within the fiber and generating internal stress, ultimately leading to defect formation.
Additionally, these impurity atoms have a strong electron affinity, easily capturing the
charges generated after irradiation to form color centers, which absorb specific wavelengths
of light signals and increase losses [134]. S. Girard et al. studied the radiation resistance of
pure silica-core and Ge-doped silica-core fibers in steady-state gamma and pulsed X-ray
irradiation environments [135]. A comparison revealed that the radiation resistance of
pure silica-core fibers is significantly better than that of Ge-doped silica-core fibers, and the
performance of Ge-doped silica-core fibers is mainly determined by the material of their
cladding. T. Shikama et al. investigated the effects of F and Cl on the radiation resistance of
Ge-doped silica fibers [136,137]. The results indicate that both can effectively suppress light
absorption related to Ge at 240 nm and the corresponding intensity of the ESR spectrum,
suggesting that F and Cl are beneficial for improving the radiation resistance of Ge-doped
silica fibers. However, some researchers believe that Ge-doped fibers can be applied in
certain specialized fields.

In 2013, Benabdesselam et al. reported on the performance of germanium-doped fibers
as thermoluminescent dosimeters for luminescence radiation dosimetry [138]. Through
experiments, the dose–response characteristics of three germanium-doped fiber dosimeters
under X-ray irradiation were compared, and the capabilities of these dosimeters were
evaluated for monitoring different doses and dose rates of gamma rays as well as differ-
ent particles (0.8 and 14 MeV neutrons and 63 MeV protons). The experimental results
demonstrated that the dosimeters made from germanium-doped fibers exhibited good
neutron and proton detection efficiency and high sensitivity to gamma radiation. Moreover,
the position of the dosimetric peaks storing information about the absorbed dose on the
thermally stimulated luminescence (TSL) growth curves of the three dosimeters was nearly
perfect, being both high enough to measure absorbed dose at high temperatures and low
enough to fully determine the absorbed dose. Therefore, germanium-doped fibers have
great potential for applications in TSL dosimetry, meeting all the major standards for clinical
dosimetry requirements in the medical field and providing superior performance compared
to two commercially available TSL dosimeters. Additionally, germanium-doped fibers
exhibit a good linear response to photons and show no dose rate dependence, suggesting
potential applications in the field of physics. It is worth mentioning that germanium-doped
fibers can quantify the single-energy radiation flux of neutrons and protons and, if their
energy distributions are known, can also be used for neutron spectrum measurements.

In 2021, Eronyan et al. reported on a 20% germanium-doped elliptical-core fiber em-
bedded in a Germanosilicate Optical Fiber with an Elliptical Core (GOFEC) [139]. Through
experiments conducted at temperatures of 25 ◦C and −60 ◦C with a wavelength of 1550 nm
and a dose rate of 1 Gy/s of gamma radiation, the radiation resistance of the GOFEC
was investigated. The experimental results indicated that the GOFEC exhibited excellent
radiation resistance, particularly outperforming most existing fibers at −60 ◦C.

In summary, the current research developments indicate that germanium-doped fibers
are only applicable in certain specialized fields, making them not the mainstream direction
for radiation-resistant fibers.
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3.6. Radiation-Resistant Cerium-Doped Fibers

Cerium is commonly used to manufacture radiation-resistant glasses. In these glasses,
trivalent and tetravalent cerium ions undergo oxidation–reduction reactions by capturing
electrons and holes generated during irradiation. Trivalent cerium ions capture holes,
inhibiting the formation of hole-capturing color centers, while tetravalent cerium ions
suppress the formation of electron-capturing color centers, effectively enhancing the glass’s
radiation resistance [140–142]. This has prompted some researchers to explore cerium
doping in optical fibers to enhance their radiation resistance.

In 2016, Francesca et al. conducted a study on the effects of cerium doping on the radi-
ation resistance of germanosilicate and phosphosilicate optical fibers [57]. The experimental
findings revealed that the cerium doping did not improve the radiation resistance of the
germanosilicate optical fibers in the ultraviolet-visible range but did enhance the radiation
resistance of the phosphosilicate optical fibers within the same range. Electron param-
agnetic resonance (EPR) spectroscopy confirmed that the cerium played a pivotal role in
determining the type and density of the radiation-induced defects. Regardless of whether it
was the germanosilicate or phosphosilicate optical fibers, the cerium ions acted as electron
donors under irradiation, significantly reducing the number of radiation-induced hole
centers. Therefore, cerium-doped optical fibers with enhanced radiation resistance show
considerable potential for further research and development.

3.7. Radiation-Resistant Aluminum-Doped Fibers

Aluminum plays a crucial role in optimizing amplifier performance and is commonly
used in the production of rare-earth-doped optical fibers [143]. However, compared to
pure silica fibers, aluminum-doped optical fibers exhibit increased sensitivity to radiation-
induced attenuation (RIA) [144–146]. Therefore, in order to enable the application of
aluminum-doped optical fibers in harsh radiation environments, some researchers have
conducted studies on the radiation effects of these fibers.

In 2018, Alessi et al. reported on the influence of radiation on aluminum silicate
fibers [147]. They conducted online X-ray RIA experiments on aluminum silicate fibers
with different aluminum concentrations and observed absorption bands associated with
aluminum defects in the UV–visible spectrum. Interestingly, these bands were found to be
independent of the radiation dose rate. Furthermore, factors such as the aluminum content
in the preform materials, core size, manufacturing processes, and drawing parameters did
not significantly affect the RIA levels and kinetics of the fibers. Notably, Alessi et al. delved
into the mechanism of radiation effects on aluminum silicate fibers and confirmed the
presence of Aluminum–Oxygen Hole Centers (Al–OHC) through their 2.3 eV absorption
band and electron paramagnetic resonance (EPR) characteristics. They demonstrated that
the growth kinetics of the Al–OHC concentration was linearly correlated with the radiation
dose, but a significant saturation of the EPR data occurred at higher doses, indicating a
precursor reaction in the formation process of the Al–OHC.

In 2021, Alessi et al. further investigated the radiation effects on aluminum silicate
fibers [148]. They conducted online X-ray RIA experiments on these fibers in the near-
infrared (NIR) range to assess their dosimetric potential. The growth rate of the RIA
remained constant as the radiation dose rate increased from 0.073 to 6.25 Gy(SiO2)S-1.
However, when the dose reached 2 kGy(SiO2), the RIA began to linearly increase. Addi-
tionally, at a radiation temperature of 50 ◦C, small but significant changes in the RIA were
observed during continuous irradiation. This phenomenon is particularly important for
the application of aluminum silicate fibers as dosimeters, as it can affect the accuracy of
measurement results. Furthermore, through spectral analysis, Alessi et al. found no signifi-
cant dependence between the fibers’ spectral shape and radiation parameters. Therefore,
the data obtained at 1310 nm and 1550 nm not only provide dynamic information on the
RIA for telecommunications and sensor fibers but also serve as a reference for commonly
used NIR ranges in related fiber technologies.
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3.8. Radiation-Resistant Phosphorus-Doped Fibers

Research into using the radiation-induced attenuation (RIA) effect of optical fibers for
radiation dosimeters has been ongoing for several decades [149,150]. Phosphorus doping
in optical fibers has been shown to significantly enhance fiber RIA sensitivity to radiation,
enabling the fabrication of high-performance radiation dosimeters [151,152]. Both pure
phosphorus-doped fibers and germanium/phosphorus co-doped fibers have been demon-
strated to manufacture dosimeters suitable for use in high-radiation-dose environments [153].

In 2013, Gusarov et al. compared the γ-radiation-induced attenuation effects among
phosphorus-doped, aluminum-doped, and germanium-doped optical fibers at irradiation
temperatures ranging from 30 ◦C to 80 ◦C using 60Co as the γ-radiation source [153]. The ex-
periments revealed that, compared to the germanium-doped fibers, the phosphorus-doped
and aluminum-doped fibers exhibited superior radiation sensitivity, meeting dosimetric
requirements. Additionally, as the irradiation temperature increased from 30 ◦C to 80 ◦C,
the fibers doped with different materials showed varying responses in RIA levels with
temperature. The absorption level of the aluminum-doped fibers decreased by 25%, while
that of the phosphorus-doped fibers increased by 10%, indicating the excellent potential
application of phosphorus-doped fibers in radiation dosimeters.

In 2018, Francesca et al. investigated the effect of irradiation on phosphorus-doped
fibers at different temperatures [154]. Within the temperature range from 25 ◦C to 100 ◦C,
there was a slight increase in damage induced by irradiation in the super-visible range.
However, as the temperature exceeded 150 ◦C up to 280 ◦C (the highest temperature
achievable under the experimental conditions of Francesca et al.), the RIA induced by
irradiation in the same spectral range decreased with increasing temperature. Notably,
Francesca et al. also studied the combined effect of ionizing radiation and irradiation tem-
perature on phosphorus-doped fibers at doses of 3 MGy using online RIA measurements
and post-mortem EPR measurements at irradiation temperatures ranging from 25 ◦C to
280 ◦C. Both the RIA and EPR data indicated that increasing the irradiation temperature led
to an increase in point defects and associated absorption bands, providing important theo-
retical references for the future development of phosphorus-doped fibers for applications
in radiation environments.

In 2019, Francesca et al. reported further research on single-mode phosphosilicate
optical fibers [155]. Through experiments involving irradiation with 60Co γ-rays, X-rays,
and protons, various characteristics of single-mode phosphosilicate optical fibers in irra-
diation environments were studied: (1) the fibers’ RIA strictly monotonically depends on
the radiation dose (linearity up to 500 Gy); (2) the fibers’ RIA does not recover after the
irradiation ends; (3) the fibers’ RIA does not depend on the radiation dose rate; (4) the
fibers’ irradiation sensitivity is independent of whether the fibers have been previously
irradiated; (5) the fibers exhibit stable resistance to photobleaching; and (6) within the
irradiation temperature range from 20 ◦C to 45 ◦C, the fibers’ performance shows no tem-
perature dependency. Considering these characteristics, Francesca et al. concluded that the
single-mode phosphosilicate optical fibers used in the experiments are highly suitable for
applications in Total Ionizing Dose (TID) sensors and Distributed Optical Fiber Radiation
Sensors (DORFS). Moreover, they are fully compatible with commercially available single-
mode OTDRs. Additionally, these fibers will be selected for use in six dispersion suppressor
regions of the Large Hadron Collider (LHC) at the European Organization for Nuclear
Research (CERN) and in three circular accelerators of the LHC injector chain: the proton
synchrotron booster, the proton synchrotron, and the super proton synchrotron’s DORFS.

In 2020, Vecchi et al. demonstrated the reusability of near-infrared RIA using phos-
phosilicate optical fibers for point or distributed dose measurements in irradiation envi-
ronments [156]. By injecting a continuous visible laser into the fibers and utilizing the
photobleaching (PB) effect to regenerate the fibers, the most effective PB was achieved with
a laser injection at 405.5 nm. Under these conditions, using a 1 m long phosphosilicate opti-
cal fiber irradiated with 1170 Gy after 1 h of laser injection at 5 mW, an approximately 75%
recovery rate was achieved. When using a 30 m long phosphosilicate optical fiber irradiated
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with 100 Gy after the injection of a 514 nm laser at 430 mW, a recovery rate as high as 97%
was attained. These results demonstrate, for the first time, the possibility of regenerating
phosphorus-doped optical fiber dosimeters in the infrared region. Importantly, during this
regeneration process, the fibers’ irradiation sensitivity remained unchanged, indicating
that under the same optical response conditions, phosphorus-doped fiber dosimeters can
reset the sensor for successive applications. This technology can effectively prolong the
sensor’s lifespan and reduce maintenance costs.

3.9. Influence of the Fiber Structure on Its Radiation Response

Commercial optical fibers are available in various categories: Commercial Off-The-
Shelf (COTS) multimode (MM) or single-mode (SM) fibers. Despite their similar optical
and structural properties before irradiation, the different categories of fibers can exhibit
markedly different radiation sensitivities. Most previous studies have focused on fibers
based on Total Internal Reflection (TIR) technology to ensure guided light propagation.
These fibers typically feature a silica core surrounded by polymer or metal coatings. The
doping methods employed for different signal transmission media vary to ensure that the
resulting Radial Index Profile (RIP) effectively guides the light.

Microstructured or photonic crystal fibers are increasingly utilized for sensor appli-
cations [157,158]. Two distinct types of fibers have been commercialized. The first type
comprises TIR solid-core fibers with microstructured cladding, as illustrated in Figure 6a.
The second type are Hollow-Core Fibers (HCFs), as illustrated in Figure 6b. HCFs consist
of a core with air holes and a microstructured cladding. The light-guiding mechanism of
these fibers differs significantly from TIR fibers, resulting in narrow transmission windows
centered around wavelengths determined by the structural parameters.

ff
ff

ff

 

ff

ff

Figure 6. Schematic diagrams of (a) TIR microstructured fiber [157] and (b) Hollow-Core Fiber

(HCF) [158].

Research findings regarding the radiation response of microstructured fibers are cur-
rently limited. For TIR solid-core fibers, their susceptibility to radiation appears to be
comparable to that of all-silica fibers made from the same glass. In contrast, Hollow-Core
Fibers (HCF) exhibit higher radiation resistance under steady-state gamma-ray irradiation,
but their transient radiation response under pulsed X-rays is more complex. Apart from
their unique optical properties, one advantage of these fibers is their ability to be man-
ufactured using only one type of glass, reducing the complexity of the fiber’s radiation
response. Additionally, the unique guiding properties of HCFs can be utilized for hardened
waveguides, enabling adaptation to radiation environments and leading to compaction
phenomena within the silica.

3.10. Radiation-Resistant Fibers Fabricated by a Pretreatment Method

Many studies have demonstrated that the radiation resistance of optical fibers can be
significantly enhanced through the use of specialized pretreatment methods, including gas
loading, pre-irradiation, and dehydration.
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In 1985, Nagasawa et al. proposed a method to improve the radiation resistance of
pure silica optical fibers through hydrogen loading pretreatment [159]. When subjected
to gamma-ray irradiation, pure silica optical fibers with glass cladding exhibit notable
absorption in the visible light range. This phenomenon can be particularly detrimental for
image-guiding fibers, as it can substantially affect the fiber transmission. Such absorption
may arise from non-bridging oxygen defect centers induced by irradiation or oxygen radi-
cals resulting from chemical bond breakage. However, pretreating pure silica optical fibers
with hydrogen gas can effectively mitigate this radiation-induced absorption phenomenon,
as illustrated in Figure 7.
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Figure 7. A comparison of radiation-induced losses before and after hydrogen gas pretreatment in

the optical fibers used by Nagasawa et al. [159].

In 1996, Griscom reported a method to enhance the radiation resistance of optical
fibers through pre-irradiation treatment [160]. Pre-irradiating pure silica optical fibers with
gamma rays greater than 1 MGy can effectively reduce the radiation-induced attenuation in
the visible light spectrum under gamma-ray irradiation. This attenuation in the visible light
range is primarily caused by radiation-activated impurities (mainly chlorides) and precur-
sor formation of non-bridging oxygen bonds in the fiber. When the concentration is less than
100 ppm, these precursor defect centers undergo chemical neutralization reactions with
oxygen molecules under gamma-ray irradiation, thereby reducing the radiation-induced
absorption. Griscom’s experimental results showed that the pre-irradiation treatment of
pure silica optical fibers resulted in a hardening level of about 10 dB/km at 610 nm, with
the level exponentially decreasing with the increasing pre-irradiation dose, indicating the
potential for the further hardening of pure silica optical fibers.

In 2014, Ito et al. presented a method to significantly enhance the radiation resistance of
optical fibers by meticulously eliminating water during fiber manufacturing and elevating
the hydroxyl concentration inside the fiber to 1000 ppm [161]. Utilizing 60Co as the gamma
radiation source, the fibers employed in the experiment exhibited minimal absorption
in the infrared region, as shown in Figure 8, coupled with a noticeable reduction in the
radiation-induced transmission loss within the range from 600 nm to 800 nm, as shown
in Figure 9. These findings suggest that fibers processed using this method demonstrate
outstanding radiation resistance. Furthermore, Ito et al. speculated that the mechanism
behind this approach might involve the increase in the hydroxyl concentration within
the fiber, consequently reducing the initial concentration of precursors responsible for
color center formation and thereby mitigating radiation-induced damage caused by color
center defects.
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Ito et al. [161].

In 2020, Shao et al. introduced a novel pre-treatment method for YDF consisting of
three steps: deuterium loading, pre-irradiation, and thermal annealing, which effectively
enhances the radiation resistance of YDF [162]. Through irradiation experiments, they
compared the influence of the deuterium loading pre-treatment on the optical loss at
1200 nm and the laser refractive index of YDF under gamma-ray irradiation, demonstrating
a significant improvement in the radiation resistance of YDF using this pre-treatment
method. Vacuum experiments confirmed that YDF treated with this method maintains
stable radiation resistance in a vacuum environment. Shao et al. also investigated the
mechanism behind this pre-treatment method. CW-EPR spectra showed that the pre-
treated YDF effectively suppressed the formation of color centers, and Raman and Fourier
transform infrared (FTIR) spectra confirmed that the reduction in color center formation
may be due to the inhibition of color center precursors by deuterium radicals.
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In 2022, Jiao et al. reported a similar pre-treatment method using deuterium loading,
pre-irradiation, and thermal annealing, effectively enhancing the radiation resistance of
EDF [163]. Further investigation into the mechanism by Jiao et al. revealed that the pre-
treatment method resulted in the formation of new chemical bonds (such as OD-) within
the fiber, as evidenced by FTIR and absorption spectra. RIA and EPR spectra indicated a
significant decrease in the concentration of radiation-induced color centers after the pre-
treatment, attributed to the presence of OD- functional groups and D- radicals. However,
there was also a decrease in the hydroxyl concentration, which may not be conducive to
reducing the initial concentration of precursors that lead to color center formation.

In summary, the current pre-treatment methods for radiation-resistant fibers have
matured, with deuterium loading pre-treatment showing promise in improving fiber radi-
ation resistance. Mechanistic studies are relatively comprehensive, indicating significant
development potential and suggesting that it may become the mainstream pre-treatment
method for radiation-resistant fibers in the future.

4. Summary and Prospects

Currently, the development approaches for radiation-resistant optical fibers can be
broadly categorized as follows:

(1) Fluorine doping: Fluorine-doped optical fibers represent one of the mainstream de-
velopment approaches for radiation-resistant fibers. Although the underlying mecha-
nisms and optimal doping concentrations are not yet fully understood, the current
research indicates that fluorine doping can significantly enhance the radiation resis-
tance of optical fibers.

(2) Metal element doping: Metal-element-doped optical fibers represent another main-
stream development approach for radiation-resistant fibers. Among them, erbium-
doped, ytterbium-doped, and erbium/ytterbium co-doped fibers have been well
developed and are widely used in deep space exploration, ground communications,
and other fields. It is worth noting that cerium doping has also been reported to
improve the radiation resistance of certain types of optical fibers, showing some de-
velopment potential. However, germanium doping does not effectively enhance the
radiation resistance of optical fibers and is only applicable to certain specialized areas.
Therefore, germanium-doped fibers may not be the mainstream direction for future
radiation-resistant fiber development.

(3) Nitrogen doping: There are relatively few reports on nitrogen-doped optical fibers
currently, but limited studies suggest that nitrogen doping can effectively improve
the radiation resistance of optical fibers. Particularly, fiber Bragg gratings made from
nitrogen-doped fibers have shown excellent performance in radiation environments.

(4) Various pre-treatment methods: Pre-treatment methods for radiation-resistant optical
fibers mainly include gas loading, pre-irradiation, and pre-dehydration. Gas loading
pre-treatment has matured and can effectively enhance the radiation resistance of
optical fibers, with relatively well-understood mechanisms.

(5) Aluminum-doped and phosphorus-doped fibers: These types of fibers exhibit good
sensitivity to radiation-induced attenuation (RIA), making them suitable for manufac-
turing high-performance radiation dosimeters. Although this characteristic does not
meet the requirements for excellent radiation resistance, as needed for communication
fibers, leveraging this property enables the production of excellent radiation dosime-
ters. It is worth noting that radiation dosimeters made from phosphorus-doped fibers
not only possess many desirable characteristics but have also been demonstrated to
have the potential for recovery and reuse. This indicates that phosphorus-doped fiber
radiation dosimeters have a longer lifespan and lower maintenance costs, showcasing
significant development potential.

Prospects: The development of radiation-resistant optical fibers has spanned several
decades, during which researchers in relevant fields have developed various manufac-
turing processes for these fibers. Among them, erbium-doped fibers (EDFs) have been
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widely applied, with relatively well-understood mechanisms. Additionally, there are re-
ports indicating that certain specialized manufacturing processes can further enhance the
radiation resistance of EDFs, demonstrating their potential for further development. It is
worth noting that erbium/ytterbium co-doped fibers (EYDFs) have also exhibited excellent
radiation resistance. Compared to traditional YDFs, EYDFs demonstrate more stable com-
munication performance in harsh radiation environments, such as outer space. However,
the mechanisms of EYDFs are not yet fully understood, and further research is needed to
achieve their commercial application.

Furthermore, fluorine-doped fibers have proven to be highly radiation-resistant and
have already achieved some commercial applications. However, the underlying mecha-
nisms of fluorine doping remain to be fully explored. The optimal doping concentration
and specific mechanisms of fluorine’s action require further investigation and discussion.
With an improved understanding of fluorine-doped fiber mechanisms, fluorine-doped
fibers are expected to find broader commercial applications in the future.

In addition to the aforementioned reports, pre-treatment methods are also extensively
reported in the manufacturing of radiation-resistant optical fibers. Several pre-treatment
methods have been developed, with gas loading pre-treatment being the most significant.
However, this method still has certain limitations. For example, deuterium loading pre-
treatment may increase the loss of hydroxyl groups in optical fibers. While the presence of
hydroxyl groups can reduce the initial concentration of precursors leading to color center
formation, this phenomenon does not contribute to improving the radiation resistance of
optical fibers and requires further improvement in subsequent research.

Other methods, such as the cerium doping, germanium doping, and nitrogen doping
of fibers, started relatively later compared to traditional EDFs, YDFs, and fluorine-doped
fibers. They have not yet matured in research, and some have only been proven to be
applicable to certain specialized fields (e.g., germanium-doped fibers). Although cerium-
doped fibers and nitrogen-doped fibers have been reported to possess excellent radiation
resistance, research in these areas is still limited, and significant strides need to be made
before achieving mature commercial applications.
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