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Abstract. Recent developments have shown that superconducting undulators, mainly NbTi-
based, outperform the existing devices. However, cooling these undulators is a challenge.
REBCO (RE = rare earth, barium copper oxide) coated conductors (CCs) have been found to
be a promising alternative to these materials due to their larger temperature stability margin
and high engineering current densities. Here, we have investigated the feasibility of building an
undulator magnetic structure using REBCO coated conductors and conducted experiments to
evaluate their performance. The undulator coil has been wound with no inter-layer insulation.
The critical current measurements at 77K showed that the winding of the undulator does not
noticeably deteriorate the performance of the tape. Transient behaviour of the undulator has
also been investigated and found to be characterized by long magnetic field decay times that
result from current sharing between the windings. Steady-state operation was found to be very
suitable for most undulator applications.

1. Introduction

Undulators are the heart of light sources (3rd and 4th generation) and free electron lasers (FELs) as
they are the source of high—brilliance partly coherent x-ray beams. Undulators produce spatially
periodically magnetic field patterns as shown in Figure 1 that interact with the charged particles. When
the electrons travel in a periodic magnetic field, they experience oscillatory deflections around their
average trajectory which leads to the emission of electromagnetic radiation. The wavelength of the
synchrotron radiation, 4, is given by 1=A.,/2y°(1+K?/2+y’¢’) where y is the relativistic factor, @ is the
polar radiation angle with respect to beam axis, A, is period of the magnetic pattern in the undulator,
K=0.09344, [mm] By [T] is the deflection parameter. Typically, high values of K are desired for
achieving highly brilliant and widely tunable x-ray beams. Superconducting undulator (SCU)
technology (primarily NbTi-based) has been successfully demonstrated and has surpassed the
performance of the existing devices, enabling substantial increases in brilliance especially at high
photon energies (i.e., > 20keV) [1]. As NbTi superconductors reach their material limitation, different
materials need to be evaluated to further enhance the performance of undulators. Nbs;Sn
superconductors are well-established material allowing for enhanced performance as compared to
NbTi, but it requires a reaction step at high-temperature (650700 °C) after the winding. Dimensional
deformations of the undulator core can occur at these temperatures and the wire becomes brittle which
might result in performance degradation. Recently, tremendous improvements have been made in the
critical current density of REBCO (RE=rear earth, barium copper oxide) coated conductors (CCs) with
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zirconium doping [2-4]. For example, in research samples, REBCO coated conductors containing 15
mol-% Zr, a critical current density as high as 30 MA/cm? at 4.2 K and in a magnetic field of ~4 T
perpendicular to the REBCO layer has been demonstrated [3]. This current density corresponds to an
engineering current density of J, ~ 3000 A/mm?, a value that is substantially higher than that of NbTi
(~1.43 kA/mm? at 3.6 T [5]), indicating that at least a factor of two increase in the on-axis field
appears feasible with coated conductors compared to NbTi-based undulators. In addition, due their
larger temperature margins, they can be operated at higher temperatures than NbTi which simplifies
the cryogenic design. Although some attempts were made to fabricate REBCO undulators [6, 7], the
behaviour of REBCO CCs in an undulator coil is still unknown. Here, we have successfully built two-
period undulator magnetic structure using REBCO CCs pancake coils with opposing current directions
(see Figure 1). Critical current (/) and field performances along with dynamic behaviour of such a
magnetic structure have been evaluated at 77 K. In total, there are four pancake coils and each pancake
coil is dry-wound with 55 turns.

Poles Winding stacks

Electron
beam axis

N7/

- 2m
By =By sm(Tz)

A,=16 mm

Figure 1. A sketch of an undulator showing only the major
components near the electron beam.

2. Experimental

2.1. REBCO tapes

The REBCO coated conductors used in this work were fabricated by SuperPower Inc (SP). The
conductor architecture consists of buffer layers of alumina, yttria, MgO and LaMnO; (LMO),
deposited on 12 mm wide, non-magnetic electro-polished Hastelloy substrates followed by deposition
of ~1 pum thick REBCO by metal organic chemical vapour deposition (MOCVD) [8]. Then, the tape is
sliced into two 4 mm wide tapes with a U-shaped header portion. This U-slitting was implemented to
have a superconducting path at the bottom of the winding stacks and further detail can be found in [9].
The superconducting film was capped by a 1-2 um annealed Ag stabilizer and 20 pm copper
electroplated on both sides totalling 40 um.

2.2. Measurements
The electrical characterization of the resistance samples was carried out by a conventional four-contact
method. The voltage drop across each lap joint was measured with a Hewlett Packard (HP) 3458A
digital multi-meter (DMM) using voltage taps that spanned the entire lap joint by gradually increasing
the current above the critical current of the tape and recorded. The splice resistance was then
calculated by taking the value of the voltage and dividing it by the measured transport current.

Field measurements were performed with three hall probes located inside a fiberglass tube — two
of the hall probes measure the component of the field in the y direction (~1 mm apart from each other)
and one in x direction. This fiberglass tube is inserted in a guide tube at a distance of ~7.5 mm from
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the centre of pole face of the undulator core. The hall probes can slide easily inside this guide tube.
The motion is provided by a linear stage and a high-resolution encoder was used for positioning the
hall probe as shown in Figure 2. The system allows for field scans along the magnet core length at a
fixed current and also for field measurements versus current at a fixed location. The dynamic
behaviour of the coil during fast discharging was obtained using fast data acquisition with a 24-bit
Dynamic Signal Analyser (DSA) module.

2.3. Undulator winding and undulator core

The undulator magnet core was machined from a low-carbon-steel and a photo is provided in Figure 3.
The width and depth of the winding grooves are 4 and 6 mm respectively. The outer connection
between the double pancakes is made by a resistive double lap joint as shown in Figure 3. The
pancake winding layers can also be seen in the figure. This structure has pancake coils with alternating
current directions, thus creating a periodic on-axis magnetic field pattern as shown in Figure 1. For
winding the core, a home-made winder was used. The tape motion and tension are provided by a
stepper and two torque motors, respectively. Two tapes, the legs of the U-sliced conductor, were
wound simultaneously into two neighbouring grooves. A custom-made soldering station is used to
make the soldering connections on the outer windings.

il.-

Currentin

>

Resistive]oint‘

Figure 2. A photo of linear stage Figure 3. Undulator core with
showing the hall probe tube connected winding stacks and the current flow
to the stage, ready for scan. directions.

Electrical insulation of the windings is an important issue in the design of electromagnets.
Conventional magnets wound with resistive wires cannot generate the targeted field without proper
insulation because of current shorting between layers [10]; however, in superconducting DC magnets
where the electrical current is ramped up and down slowly, the insulation may not be necessary. This
is due to the fact that the operating current is less than the /. of the superconducting tape and the
current follows a racetrack or circular path without shorting between the layers in steady-state
operation conditions due to the resistive stabilizer. Recently, this technique (no-insulation, NI) has
been actively studied [11-14]. The idea was to eliminate inter-layer insulations thereby creating more
compact magnet structures. The total thickness of the coated conductors used here is around 100 pm,
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and a typical insulation layer might have similar thickness. Thus, eliminating the interlayer insulation
effectively yields a doubling of the engineering current density. The equivalent circuit model and the
difference between NI and insulation coils are highlighted in Figure 4. The figure shows an additional
resistive component from the NI winding arising from eddy currents in the ferromagnetic core which
is ignored in the following since the current ramp rate is low. In an insulated coil, usually Rz is very
high and current flow through this path is negligible even at current values above the /.. However, if
there is no insulation, the applied-current is redistributed according to the resistance in the circuit at
current values above the /.. The total voltage across the coil obeys the following formulae when the
magnet is slowly charged;

dly Ve (Ip\" _
Leou ar +I_ ) = IRRp Iy > 1¢
v — 6 Mc
Total dlg (1)
Leoir ar Iy <I¢

where Leoi, Ips, 1o, Ir, Ro, Rr, Rrow are the inductance of the coil, power supply current, current in
azimuthal direction, current in the radial direction, resistance in the azimuthal direction, resistance in
the radial direction and total resistance respectively.

In addition to the benefit of having a more compact system, NI winding also improves the coil
protection. The specific heat and temperature margin of the HTS conductors are relatively higher than
LTS conductors and n-values are lower. They have a slow normal zone propagation velocity (NZPV =
several millimetres per second after a quench) [15]; therefore, upon a quench, the released heat
remains in a relatively small hot spot inside the HTS coil for considerable times which might lead a
rapid temperature increase and possibly a catastrophic failure. It was found that in NI coil, the magnet
current was automatically shunted through neighbouring layers in the radial direction from its original
path and the magnet is self-protected even though the operating current is higher than the magnet /.
[12, 14, 16]. Because of the aforementioned extensive benefits and also the fact that the undulator will
be operated below the /., we chose to wind the undulator coils without inter-layer insulation (NI).
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Figure 4. An equivalent circuit model for a no-insulation (NI) coil (a)
and the resistances in such a coil (b).

3. Results and Discussions

The initial /.-values of the all the tapes were almost identical (119 A). Total number of turns per
pancake is 56. Figure 5 shows the I-V curve of the entire magnet. The /. of the tape was obtained using
a 1uV/cm criterion as shown in the figure with a straight horizontal line. The /. after winding has
dropped to 33.5 A indicating that only ~28 % of the /. is retained. Due to the pronounced flux-creep at
high temperatures, the /. is effected heavily by the externally applied field [2, 17]. Very sharp decrease
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in /. with respect to applied magnetic field is typically observed up to 0.4 T at 77 K and the decrease
gradually becomes less beyond the field of 0.4 T. L. retention is found to be around 30 % at 0.52 T and
77 K in 7.5% Zr doped sample [2], having the same composition as the tape used in this study. The
maximum externally applied field on the conductor is numerically calculated to be around 0.58 T. The
1. retention in the coil pack and the experimentally obtained retention reported in reference [2] almost
match, implying that the tape was not noticeably damaged during the winding and cooling process.

The resistive junctions have very low resistance, R /= 6 nQ per one lap-joint which corresponds to
resistivity value of 36 nQ-cm? which is lower than the manufacturer specifications [18]. The
inductance of the coil increases slightly at low current values (~5A-15A) due to the core effect and is
almost constant (4 mH) up-to 36 A. The n value of the [V-curve has been extracted from power law
fits using the maximum and minimum voltage criteria and found to be about 21 for the entire magnet.
These thresholds are indicated in Figure 5 with two dashed horizontal lines.

8

L2
T
1

1 pV/cm

Voltage [mV]
-y

o0 5 10 15 2 25 30 35
Current [A]

Figure 5. I-V characteristic of the undulator coil. /. is obtained using

the criterion of 1 pV/cm and the »n value is calculated taking the

maximum and minimum criteria as shown with the dashed lines.

Magnetic field scans are performed at different current values at a distance of 7.4 mm from the
magnet core along the beam axis (see Figure 1 for location of the beam axis) and shown in Figure 6.
We measured only one partial magnetic structure with four pancake coil windings. These pancake
coils are connected with resistive joints on the outside and through the header section of the U-slit
tapes inside of the winding pack. Field scans show five magnetic peaks that correspond to the poles of
the magnetic core. The generated magnetic field is stable (no fluctuations are observed in the scans). A
non-symmetric field component at lower magnetic fields can be seen in the figure. This is due to the
non-symmetric winding of the core. In other words, the length of the ferromagnetic core on one side is
longer than on the other side which results in non-symmetric field profiles along the z direction at a
distance of 7.4 mm in the y direction. Field versus current measurements were also performed and are
displayed in Figure 7. These data was taken from Figure 6 at a distance of 7.4 cm from the left edge of
the undulator magnet core. Up to the /. of the coil, the magnetic field versus current curve is perfectly
linear (R*=1); however, it approaches saturation at currents beyond /.. This deviation from the linear B
vs. I curve at 1 > [ is caused by current sharing and shorting between the winding layers.

To understand the dynamic or transient behaviour of the undulator coil, sudden discharge tests
were performed. Before the electrical measurement, the coil was in the steady-state (below Ic) and then
the current was cut off suddenly as shown in Figure 8. In the figure, the left y-axis is related to the
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Figure 6. Magnetic field scans at a distance of Figure 7. Field versus curent that was obtained
7.4 mm from the magnet pole along the z form the straight line at 7.5 cm in Figure 6.
direction at different currents. Beyond /., the field approaches saturation.

normalized field and current. The right y-axis is related to the normalized voltage on the coil pack.
The decay of the current externally supplied to the coil is considerably faster than the magnetic field
decay. It can be seen from the figure, although it takes few milliseconds for current to decay (time
constant, =2.88 ms), the decay time for the magnetic field and the voltage take considerably longer
(z=0.7 s). This is due to the current sharing between the layers, which enables current to keep
circulating on closed trajectories and maintaining the magnetic flux according to Lenz’s law. There is
also a contribution of the eddy current in the ferromagnetic core to the signal at some degree as the
core and coil packs are inductively coupled. Complete relaxation of all three variables takes about 10
seconds. Such behaviour is highly undesired in devices where fast switching of the current is required
for example for fast switching of the polarization of the x-ray beam.

1 T T T 0
Voltage
0.8 1-0.2
0.6 1-0.4
> »
£ £
@ 2
m >
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0 -
0 2 8 10
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Figure 8. Sudden discharging test from 28 A steady-state operation showing
voltage (across the undulator coil), current and field profiles. Inset shows
magnified initial current decay portion of the overall performance.
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4. Conclusions

We have investigated the feasibility of using REBCO coated conductors in planar undulator
applications and shown that an undulator magnetic structure can actually be built using RECO coated
conductors with no significant degradation in the performance of the REBCO CCs. The performance
of the undulator has been evaluated at 77 K. The /. retention has been found to be reasonable after the
undulator core winding indicating that the undulator winding and cooling cycles do not deteriorate the
performance of the undulator significantly. The dynamic behaviour of the undulator core is
characterized by long time constants of the field decay which result from current sharing in the NI
windings and which poses limits in switching applications. However, steady-state mode performances
have been found to be suitable for most of the undulator applications. The generated field is very
stable and desired magnetic field can be obtained with no fluctuation. This would suggest that NI
windings are perfect for most of undulators.
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