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Abstract An investigation of black hole thermodynamics
based on Tsallis statistical mechanics is explored through
the study of the thermodynamics of a gas system located
near the horizon of a black hole. In spite of the difficulty
in exploring black hole thermodynamics through statistical
mechanics, the entropy of the nearby gas system is found to
be proportional to the black hole’s horizon area using Gibbs–
Boltzmann statistical mechanics. This allows us to study
black hole thermodynamics by using statistical mechanics
through the thermodynamic behaviors of the gas system.
Since the entropy of the black hole is proportional to the
horizon area, it is more suitable to use non-extensive statis-
tical mechanics instead of the usual Gibbs–Boltzmann ones.
In this work, the black hole entropy is derived based on Tsal-
lis statistical mechanics, one of well-known non-extensive
statistical mechanics. It is found that the black hole entropy
gets a modification due to non-extensivity. By using such
an entropy, the black hole can be stabilized due to the non-
extensivity, and the bound on the non-extensive parameter is
also determined.

1 Introduction

One of the important properties of black holes is the laws of
black hole mechanics [1], such as Hawking’s area theorem,
etc. Based on these laws, their formulae are similar to those
of thermodynamic laws and then they inspire physicists to
study black holes in terms of thermodynamics. Bekenstein
had considered a black hole as just a thermodynamic system
and found that the black hole entropy must be proportional
to the black hole’s surface area [2,3]. By considering the
quantum effect, a black hole can behave like a black body
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emitting radiation with a certain temperature, TH , known as
Hawking temperature [4]. Based on the first law of black
hole mechanics, the corresponding entropy is also obtained
as SBH , called the Bekenstein–Hawking entropy. As a result,
it is possible to interpret the black hole as a thermodynamic
system carrying certain entropy and temperature. The study
of thermodynamic properties of black holes has been inten-
sively investigated in order to explore characteristic phenom-
ena and the quantum nature of spacetime.

One of the important issues in the study of black hole ther-
modynamics is the physical interpretation of the black hole
entropy or what the black hole entropy actually measures. By
considering the same manner of the interpretation of matter
entropy which is quantified by using statistical mechanics,
it might be worthwhile to interpret the black hole entropy
from a description of statistical mechanics. However, one of
the obstructions to this manner is the lack of knowledge of
the gravitational entropy [5–7]. Moreover, for the thermo-
dynamic system in curved spacetime, it is unclear how the
usual thermodynamic entropy of matter precisely relates to
the gravitational entropy. Note that for a specific example in
string theory such that a collection of branes turns into an
extremal black hole, the Bekenstein–Hawking entropy can
be derived by counting the degeneracy of BPS soliton bound
states [8]. Remarkably, the entropy of a system of gas near
the black hole’s horizon can be calculated by using statisti-
cal mechanics and found to be proportional to the horizon
area [9–13]. In this work, we investigate the possible way
to interpret such matter entropy as the black hole entropy
[14,15].

The black hole entropy is proportional to its area; SBH ∝
Ah rather than its volume; SBH ∝ V . Accordingly, the black
hole entropy is non-extensive and non-additive. The effect of
non-extensivity and non-additivity on entropy can be char-
acterized by the emergence of long-range interaction. Since
Gibbs–Boltzmann (GB) statistical mechanics does not rely
on long-range interaction, the black hole entropy should be
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evaluated by using other statistical mechanics associated with
long-range interaction.

One of the non-extensive entropies is Tsallis entropy
[16], compatible with thermodynamic systems including
gravitational interaction. Tsallis entropy obeys the pseudo-
additive composition rule; Sq(1+2) = Sq(1) + Sq(2) + [

(1 −
q)/kB

]
Sq(1)Sq(2) where q > 0 is a non-extensive param-

eter. With the pseudo-additivity, the empirical temperature
obtained from Tsallis entropy is not compatible with the
zeroth law of thermodynamics. This implies that a system
described by Tsallis statistical mechanics must belong to one
with hydrostatic equilibrium instead of thermal equilibrium.
Consequently, Tsallis statistical mechanics has been widely
applied to investigate physical systems with long-range
interactions, including self-gravitating systems [17–22], and
cosmology [23–28]. Moreover, the applications of Tsallis
entropy in black hole physics have been intensively inves-
tigated. By treating Bekenstein–Hawking entropy as Tsal-
lis entropy, the black holes’ thermodynamic properties have
been explored [29–37]. Black hole thermodynamics with
Tsallis entropy including quantum effect have been investi-
gated via the generalized uncertainty principle [38,39]. Using
Tsallis entropy (instead of Bekenstein-Hawking entropy) to
characterize the black hole’s entropy may lead to a thermody-
namic inconsistency. It is based on the argument that a black
hole emits Hawking radiation while maintaining a Hawk-
ing temperature [40]. However, in the framework of general-
ized statistical mechanics, the temperature does not necessar-
ily correspond to the Hawking temperature [41]. The black
hole’s temperature associated with the generalized entropy
should be defined in such a way that the algebraic relation
among geometric quantities (Smarr formula) and the first law
of black hole thermodynamics can be satisfied [42]. Besides
the Tsallis entropy, other generalized entropies have been
extensively investigated [43–51].

As suggested in Refs. [14,15], the entropy of the black
hole may be investigated by using matter entropy near the
black hole’s horizon. This allows us to explore the black
hole entropy via statistical mechanics. In fact, the matter
entropy near the horizon has been investigated by using GB
statistical mechanics [9–13], while there has not been any
investigation of non-extensive statistical mechanics in such
a context. Among the various types of generalized entropies,
e.g., Rényi [52], Barrow [53], and Sharma-Mittal entropies
[54], Tsallis entropy is a suitable candidate for non-extensive
entropy since it is directly compatible with non-extensive sta-
tistical mechanics. Note that the Barrow entropy is relevant
to quantum correction, rather than derived from a statisti-
cally mechanical point of view. For Rényi entropy, it is a
formal logarithm map of Tsallis one [55], and then they are
in fact based on the same statistical mechanics. The Sharma-
Mittal entropy is more complicated than Tsallis and Rényi

ones since it is the two-parameter extension of the Gibbs–
Boltzmann entropy.

Therefore, in this work, we restrict our consideration to
the one-parameter extension of Gibbs–Boltzmann statisti-
cal mechanics and aim to explore the black hole entropy
through the matter entropy near the black hole’s horizon by
using Tsallis statistical mechanics. Note that, by considering
a system of the interacting bosonic gas near the horizon via
Tsallis statistical mechanics, the black hole entropy still be
in the form of the Bekenstein-Hawking entropy [56]. This
suggests that for quantum gas, the non-extensivity does not
alter the form of black hole entropy. In our case, we found
that the black hole entropy will get the correction due to the
non-extensivity.

For GB statistical mechanics, the entropy of the gas sys-
tem is claimed to be the Bekenstein–Hawking entropy of the
black hole by requiring that the number of particles corre-
sponds to the area at the black hole’s horizon in the unit of
the Planck area and the gas should also be sufficiently closed
to the horizon. We discuss this issue in Sect. 2. In Sect. 3, we
investigate the thermodynamic properties of classical gas by
using Tsallis statistical mechanics. To achieve this, we have
to propose a suitable relation between the internal energies
for in the GB and Tsallis gas. The black hole’s q-entropy can
be obtained by the similar manner as the GB case. In Sect. 4,
the black hole thermodynamic phase space is constructed
based on Tsallis statistical mechanics. The thermodynamic
stability is also investigated for various processes. We find
that the black hole can be stable in a certain situation. It may
imply that there exists some classical correlation of the gas
near the horizon in order to maintain the black hole to be
thermodynamically stable. In Sect. 5, we summarize impor-
tant results and discuss the effect of the non-extensivity on
black hole thermodynamics. The units used in this work are
set as the Boltzmann constant, the universal constant of grav-
itation, the reduced Planck constant, and the speed of light
being unity, kB = G = h̄ = c = 1, only in Sect. 4.

2 Black hole entropy based on Gibbs–Boltzmann
statistical mechanics

In this section, we briefly review and devote to summarize the
important results of the thermodynamic properties of the gas
system described by usual GB statistical mechanics in curved
spacetime [9]. Let us begin by assuming that there is a fancy
isolated system with two subsystems, namely, a gas system
and a black hole, undergoing the quasi-static process. In addi-
tion, they are in thermal contact with each other so there is
heat transfer between them. This implies that the consid-
ered isolated system belongs to the canonical ensemble, in
which all possible states of the system are in thermodynamic
equilibrium. To demonstrate the aforementioned system, we
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impose that N -indistinguishable classical gas particles with
a temperature T = 1/(kBβ) form as a thin spherical shell
with a thickness of H . It is located in a static and spherically
symmetric spacetime characterized by the interval:

ds2 = −g(r)c2dt2 + g−1(r)dr2 + r2(dθ2 + sin2 θdφ2),

(1)

where g(r) is a horizon function. Note that the interval can be
taken in the form of Eq. (1) (i.e., the (00) and (11) components
of metric tensor are dependent) when the energy-momentum
tensor Tμ

ν satisfies a condition: T 0
0 = T 1

1.
A phase-space volume element for a single particle of the

gas with mass m and energy E in the curved spacetime can
be expressed as [57]

dV(E) = (4π)2

3h3

[
r2

√
g(r)

(
E2

c2g(r)
− m2c2

)3/2
]

dr, (2)

where h is the Planck constant. It is noted that in the above
expression, the volume elements for both 3-position and 3-
momentum spaces obey the spherical symmetry so that the
angular sectors can be integrated out. The leftover part of the
position space is the radial one described by the coordinate
r . For the (leftover) radial sector of the momentum space, the
volume element is equivalent to that of the spherical hyper-
surface with a certain radius associated with the 4-momentum
constraint: p2 = E2/(c2g(r))−m2c2 where p2 is the square
norm of the spatial components of the 4-momentum. In addi-
tion, this volume element is invariant under the general coor-
dinate transformation.

We are interested in the scenario that the shell of the gas
with a thickness of H is located close to the the black hole’s
horizon. The distance between the black hole’s horizon and
the inner radius of the shell is L which is assumed to be very
small compared to the thickness of the shell H and horizon
radius rbh . Very close to the horizon; r → rbh , the horizon
function g(r) can be approximated:

g(r → rbh) ≈ dg(r)

dr

∣∣∣∣
rbh

(r − rbh) = 2κ

c2 (r − rbh), (3)

where κ is the surface gravity of the static and spherically
symmetric black hole [58]. As a result, the phase-space vol-
ume of the gas particle with the energy E near the black
hole’s horizon can be approximately computed as

V(E) ≈ 4π2c

3h3κ2

∫ rbh+L+H

rbh+L
dr

r2

√
r − rbh

×
(

E2

r − rbh
− 2m2c2κ

)3/2

≈ πcE3Ah

3h3κ2L
, (4)

where Ah = 4πr2
bh is the black hole’s surface area at its

horizon. The last approximation is obtained from the series
expansion of the result with the small distance L .

Based on GB statistical mechanics, the partition function
of the N -indistinguishable particles associated with the total
energy of the system, denoted by Etot can be written as

Z = 1

N !
∫

dV exp(−βEtot )

= 1

N !
N∏

i=1

[∫
dVi exp(−βEi )

]

= 1

N ! (Z
(1))N , (5)

where the quantities with a subscript i denote those belong-
ing to the i-th particle and Z (1) is the one-particle partition
function defined by

Z (1) =
∫

dV exp(−βE). (6)

It is important to emphasize that the partition function and
the one-particle partition function are also invariant under
general coordinate transformation since the quantities βE
and βEtot are invariant. According to the expression of the
phase-space volume in Eq. (4), the integration over phase-
space can be done for all possible states of energy. Thus, the
one-particle partition function is further expressed as

Z (1) = πcAh

h3κ2L

∫ ∞

0
dEE2 exp(−βE)

= πc

h3

Ah

β3κ2L
Γ (3) (7)

where Γ (z) is the gamma function. It is also noticed that we
keep the above expression in terms of the gamma function
for the sake of considering generalized statistical mechanics
as will be discussed in the next section.

In the rest frame of the gas particle, the distance between
the inner shell and the horizon L can be measured as the
particle’s proper length:

lloc =
∫ rbh+L

rbh

dr√
g(r)

≈
√

2c2L

κ
. (8)

The approximation for the horizon function (3) is employed
in the above result. Another quantity that depends on the
frame of reference is the gas temperature. The relation
between the temperature measured by a local observer in
the gravitational field Tloc and the temperature measured by
an observer located far from the source of the gravitational
field T is described by Tolman’s law [59]: Tloc = Tloc(r) =
T/

√−g00(r). In other words, at the inner shell of the gas
system, the position-dependent (local) inverse temperature
of static fluid βloc can be expressed in terms of the position-
independent one β as

βloc(rbh + L) = β
√
g(rbh + L) ≈ β

√
2κL

c2 . (9)
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Again, Eq. (3) is used in the last approximation. Using all of
the approximations in Eqs. (7)–(9), the partition function in
Eq. (5) is then written in terms of the local quantities as

Z = 1

N !

(
2π

h3c3

Ahlloc
β3
loc

Γ (3)

)N

. (10)

According to the fact that the partition function is the same
for all observers, we can choose to consider it as the quantity
measured by the local observer. In the thermodynamic limit,
i.e., the number of the gas particles N is extremely large, the
logarithmic function of Z can be obtained by using Stirling’s
approximation as

ln Z ≈ N ln

(
2π

h3c3

Ahlloc
β3
locN

Γ (3)

)

+ N . (11)

Following the framework for the canonical ensemble, ln Z is
thought of as a function of the inverse temperature βloc and a
volume Vloc; ln Z = ln Z(βloc, Vloc). To obtain the standard
result for an ultra-relativistic gas [60], the volume Vloc must
be taken in the form of Vloc = Ahlloc/2. One can notice
that the volume Vloc is a very thin shell with a thickness of
lloc/2, and the inner and outer radii are approximately the
black hole’s horizon radius. It can be interpreted that when
the gas particles closely approach the black hole’s horizon,
their volume becomes very small as Vloc instead of the shell
one 4π

[
(rbh + L + H)3 − (rbh + L)3

]
/3. This feature arises

due to the gravitational field near the horizon, affecting how
to count the number of microstates. As a result, the partition
in Eq. (11) can be rewritten as

ln Z(βloc, Vloc) = N ln

(
4π

h3c3

Vloc
β3
locN

Γ (3)

)

+ N . (12)

The thermodynamic mean energy, mean pressure, and
entropy are, respectively, given by

Uloc = −∂ ln Z

∂βloc
= 3N

βloc
, (13)

Ploc = 1

βloc

∂ ln Z

∂Vloc
= N

Vlocβloc
, (14)

Sloc = kB

(
1 − βloc

∂

∂βloc

)
ln Z

= kBN

[

ln

(
4π

h3c3

Vloc
β3
locN

Γ (3)

)

+ 4

]

. (15)

It is very important to note that the above Uloc and Ploc
depend on the frame of references while the entropy Sloc
does not. This is reasonable because the entropy in GB statis-
tical mechanics is proportional to the number of microstates
which should be the same for all observers. These quantities
obey the first law of thermodynamics:

dUloc = 1

kBβloc
dSloc − PlocdVloc. (16)

In the frame of the observer at the asymptotically far region,
the gas system also satisfies the first law of the quantities
measured by that observer.

From the fact that the asymptotically far observer cannot
know whether the gas crosses the black hole’s horizon. Con-
sequently, due to the very small (proper) distance between
the inner radius of the gas’ shell and the event horizon (sup-
posed to be in the order of Planck length), it is not possible to
distinguish them [9,12]. This may imply that the gas particles
of the gas system can be thought of as sitting on the black
hole’s surface area. However, the number of the gas particles
is constrained by the argument that each particle can occupy
the smallest area of the Planck area l2P . The maximum num-
ber of gas particles is then counted as the surface area of the
black hole in the unit of the Planck area:

N = Ah

l2P
. (17)

Using this argument, we can establish a link between the
black hole and its surroundings (i.e., the gas shell). Via the
thermal contact, these two systems can be in thermal equilib-
rium so that the temperature of the gas equals the Hawking
temperature TH = hκ/(4π2ckB) of the black hole [4], or
equivalently,

β = 4π2c

hκ
. (18)

Note that the Hawking temperature is measured by the
observer at an asymptotically far region. As a result, the
entropy of the gas in equilibrium S(0)

loc is expressed as

S(0)
loc = kB Ah

l2P

[

ln

(
l2PΓ (3)

32π5l2loc

)

+ 4

]

. (19)

As the entropy of the gas shell is identical to that of the system
located at the horizon, it is then equal to the black hole entropy
S(0)
bh by setting the proper length being extremely small as

lloc = e15/8√Γ (3)

4
√

2π5/2
lP = e15/8

4π5/2
lP ∼ 10−1lP . (20)

Note that this length scale can be promoted as a cut-off
scale, at which the quantum effect is significant so that quan-
tum description of gravitation has to be required [61]. In
other words, the entropy in Eq. (19) becomes the Bekenstein-
Hawking entropy SBH [2,4];

SBH ≡ S(0)
bh = kB

Ah

4l2P
. (21)

It has been seen that the Bekenstein–Hawking entropy can
be derived as the statistical entropy of the black hole based
on GB statistical mechanics. In a standard manner, the GB
entropy at equilibrium is written as S(0)

bh = kB ln Ω , where
Ω is the number of microstates. The number of microstates
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is straightforwardly obtained as

Ωbh = exp

(
Ah

4l2P

)

. (22)

Remarkably, one can only derive the entropy via the thermal
equilibrium condition. Based on this point of view, the other
thermodynamic quantities for black holes cannot be defined
as those belonging to the gas system. This may imply that
to obtain the complete set of thermodynamic variables, the
geometric relation of the black hole needs to be realized.
For example, it is not possible to define the thermodynamic
volume and pressure for the Schwarzschild black hole with
GB statistical mechanics [1]. However, the two aforemen-
tioned quantities can be constructed for the black holes with
the cosmological constant [62]. Consequently, after defining
the entropy of black holes, the thermodynamic phase-space
can be constructed by adopting the relations among the black
holes’ geometric quantities (it will be discussed in Sect. 4).

From Eq. (21), it is worthwhile to point out that the sig-
nificant feature of the black hole entropy is scaled by its area
instead of its volume. This property, however, contradicts
the extensive (and also volume-scaling) entropy in conven-
tional GB statistical mechanics. Therefore, the black hole
entropy is not suitable to be described by the conventional
GB entropy. A framework of statistical mechanics based on
generalized entropy may be more appropriate to study the
thermodynamic properties of black holes instead of using
GB statistical mechanics. Since the derivation of the black
hole entropy is general and can be applied to other types of
statistical mechanics, the black hole entropy will be derived
by following the procedure discussed in this section. The
purpose of the next section is to achieve this objective.

3 Generalized entropy of black holes based on Tsallis
statistical mechanics

In this section, by using a similar manner to the previous sec-
tion, we will determine the black hole entropy in the aspect of
statistical mechanics associated with one of the generalized
entropies namely, Tsallis entropy (q-entropy). The q-entropy
with non-extensive parameter, q > 0, can be written in terms
of one-particle distribution function f as [16]

Sq = −kB

∫
dV f q lnq f, (23)

where lnq f is the q-logarithmic function of f . In fact, the q-
entropy is generalized from GB entropy by replacing normal
logarithm with q-logarithm and promoting f to be f q . The
q-logarithm and its inverse function (i.e., the q-exponential)

are, respectively, expressed as [63,64]

lnq Y = 1

1 − q
(Y 1−q − 1),

expq Y = [
1 + (1 − q)Y

] 1
1−q . (24)

The Tsallis entropy obeys the non-additive composition rule,
for example, Sq(1+2) = Sq(1)+Sq(2)+

[
(1−q)/kB

]
Sq(1)Sq(2)

where the subscript “(1 + 2)′′ refers to the combined system
of two subsystems, while subscript “(1)′′ and “(2)′′ refer to
each subsystem. Moreover, at the limit q → 1, the Tsallis
entropy is reduced to the GB entropy, where the additive
composition rule: S(1+2) = S(1) + S(2) is restored.

For GB statistical mechanics, the distribution function can
be obtained by maximizing the entropy, subjecting to the nor-
malization condition:

∫
dV f = 1, and then thermodynamic

quantities, for example, the internal energy can be obtained
by using the expectation value. For Tsallis statistical mechan-
ics, the distribution function can be calculated by using the
same manner as performed in the GB case. However, it is not
unique to evaluate the expectation value in Tsallis statisti-
cal mechanics. There are various choices for the expectation
value of internal energy [16,65–83]. However, there exists a
transformation to link between such the various definitions
[84]. In this work, we choose the choice, for convenience, by
following [65] as
∫

dV f = 1,

∫
dV f q E = Uq . (25)

To obtain the q-distribution function, one can extremize
the Tsallis entropy, δSq = 0, subjecting to the above con-
straints by using the Lagrange multiplier, a1 and a2 as fol-
lows

δ

[
kB

1 − q

∫
dV( f q − f ) − a1

(∫
dV f − 1

)

−a2

(∫
dV f q E −Uq

)]
= 0, (26)

∫
dV

[
kB

1 − q
(q f q−1 − 1) − a1 − a2q f

q−1E

]
δ f = 0.

(27)

Since Eq. (27) does not depend on the choice of δ f , one
obtains

kB
1 − q

(q f q−1 − 1) − a1 − a2q f
q−1E = 0, (28)

and then the q-distribution function can be expressed as

f = Bq

(
1 − (1 − q)a2

kB
E

) 1
1−q

, (29)

where Bq is a constant determined from the normalization
condition found in Eq. (25). As a result, the constant Bq can
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be obtained in terms of partition function, Zq , as

Bq = 1
∫

dV
(

1 − (1 − q)a2

kB
E

) 1
1−q

= 1

Zq
, (30)

where the q-partition function plays the role of a constant
for tuning the probability as in the appropriate range [0, 1]
defined explicitly by

Zq ≡
∫

dV
(

1 − (1 − q)a2

kB
E

) 1
1−q =

∫
dV expq(−βq E).

(31)

Note that we have set a2 = 1/Tq in order to recover the GB
partition function at limit q → 1.

Using Eq. (30), Eq. (29), the q-distribution function can
be rewritten as

f = 1

Zq
(1 − (1 − q)βq E)

1
1−q = 1

Zq
expq(−βq E), (32)

where βq = 1/(kBTq) and Tq is q-temperature. For the N -
indistinguishable particles with the total energy Etot , the q-
partition function has to be scaled by N !:

Zq = 1

N !
∫

dV expq(−βq Etot )

= 1

N !
N∏

i=1

[∫
dVi expq(βq Ei )

]

= 1

N ! (Z
(1)
q )N , (33)

where Z (1)
q is the one-particle partition function defined by

Z (1)
q =

∫
dV(1 − (1 − q)βq E)

1
1−q . (34)

Note that at the limit q → 1, the q-partition function is
reduced to the conventional GB partition function. It is impor-
tant to emphasize that in order to write the partition function
to be factorized form shown in Eq. (33), the total energy must
be non-additive expressed as [85]

Etot =
N∑

i=1

Ei +
N∑

j=2

[(q − 1)βq ] j−1
N∑

n1<n2<...<n j

j∏

l=1

El .

(35)

Note that the additive form of the total energy can be obtained
by using the formal logarithm map given by [55,86]

Eadd = − 1

(1 − q)βq
ln |1 − (1 − q)βq Etot |

= − 1

(1 − q)βq

N∑

i=1

ln |1 − (1 − q)βq Ei |. (36)

From the phase-space volume in Eq. (7), one can see that
the contribution from the non-extensive effect does not alter
the phase-space volume. In fact, the phase-space volume
depends only on spacetime geometry, i.e., g(r). In addition,
the partition function is invariant under the general coordi-
nate transformation, let us choose to consider it in the local
frame as done for the GB case in the previous section. Con-
sequently, using Eqs. (4) and (8), Eq. (34) can be rewritten
as

Z (1)
q = 2πc3Ah

h3κ3l2loc

∫ ∞

0
dEE2(1 − (1 − q)βq E)

1
1−q . (37)

Actually, the integration on the right-hand side of Eq. (37) is
the q-Laplace transform [87]:

Lq( f (E)) =
∫ ∞

0
dE f (E)(1 − (1 − q)βq E)

1
1−q , (38)

where E > 0 and βq ∈ C with Re(βq) > 0. For the algebraic
function f (E) = Eα−1, the q-Laplace transform is given by
L(Eα−1) = Γq(α)/βα

q where α, βq ∈ C, Re(βq) > 0 and
q �= 1, and Γq(α) is the q-gamma function given by [87]

Γq(α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(1 − q)α

Γ (α)Γ

(
1

1 − q
+ 1

)

Γ

(
1

1 − q
+ α + 1

) , for q < 1

Γ (α), for q = 1

1

(q − 1)α

Γ (α)Γ

(
1

q − 1
− α

)

Γ

(
1

q − 1

) , for q > 1.

(39)

As a result, Eq. (37) can be written as

Z (1)
q = 4πc3

h3

Vloc
(βqκlloc)3 Γq(3), (40)

where an explicit form of Γq(3) in terms of the non-extensive
parameter is given by

Γq(3) = 2

(2 − q)(3 − 2q)(4 − 3q)
. (41)

Note that the above expression is valid for both q < 1 and
q > 1. Generally, we have βq �= β for q �= 1, hence it is
worthwhile to introduce a mathematical relation as

βq = J (q)β, (42)

where J (q) is a positive-valued function satisfied limq→1

J (q) = 1. Using this relation together with Tolman’s law
for q-thermodynamics βq,loc = J (q)βloc as performed in
the GB case, the q-partition function for N particles can be
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expressed as

Zq ≈ 1

N !

[
4π

h3c3

Vloc
β3
q,loc

Γq(3)

]N

. (43)

At the thermodynamic limit: N � 1, using Stirling’s approx-
imation: N ! ≈ (N/e)N , the q-logarithmic function of Zq can
be obtained as

lnq Zq = 1

1 − q

(
Z1−q
q − 1

)

≈ 1

1 − q

⎡

⎣
(

4πe

h3c3

Vloc
β3
q,locN

Γq(3)

)N (1−q)

− 1

⎤

⎦ .

(44)

Again, one can check that the above results reduce to that
of the GB case in the limit q → 1. To obtain the thermo-
dynamic quantities of the gas system, by using Eq. (44), the
mean energy and the mean pressure of the gas system can be
computed as follows (see 1, for a detailed derivation)

Uq,loc = − ∂

∂βq,loc
lnq Zq

= 3N

βq,loc

(
4πe

h3c3

Vloc
β3
q,locN

Γq(3)

)N (1−q)

, (45)

and

Pq,loc = 1

βq,loc

∂

∂Vloc
lnq Zq

= N

Vlocβq,loc

(
4πe

h3c3

Vloc
β3
q,locN

Γq(3)

)N (1−q)

. (46)

Furthermore, the gas q-entropy can be obtained as follows

Sq,loc = kB

(
1 − βq,loc

∂

∂βq,loc

)
lnq Z ,

= kB
1 − q

[{
1 + 3N (1 − q)

}

×
(

4πe

h3c3

Vloc
β3
q,locN

Γq(3)

)N (1−q)

− 1

⎤

⎦ . (47)

The q-thermodynamic quantities, namely, Pq,loc, Uq,loc and
Sq,loc, satisfy the first law of q-thermodynamics:

dUq,loc = 1

kBβq,loc
dSq,loc − Pq,locdVloc. (48)

As seen in Eq. (42), we have introduced the auxiliary func-
tion J (q) characterizing how βq differs from β. It is not
unique to choose this function. For example, one can choose
the function J (q) satisfying a condition of identical internal
energy Uq,loc = Uloc and one can also find that the function
J can be solved exactly. Even though this choice is simple,
it provides reasonable results since J (q) → 1 at the limit

q → 1 and Uq,loc taken as a linear function of Uloc is com-
patible with the description of Tsallis statistics. It should be
noted that the function J (q) will, despite initially appearing
to be arbitrary, actually reflect the thermodynamic proper-
ties of the black hole. For example, for the simple choice,
Uq,loc = Uloc, the black hole entropy cannot be written in
terms of a homogeneous function, and then the Smarr for-
mula or the first law of black hole thermodynamics cannot
be properly defined via a scaling law. Therefore, the form
of the function J is also constrained by the condition that
the consequent black hole’s entropy must be a homogeneous
function. In order to obtain a proper form of J (q) and the
consistent thermodynamic properties of the black hole, let us
consider a more general form as

Uq,loc = u1Γq(3)u2Uloc, (49)

where u1 and u2 are arbitrary constants. As will be discussed
in Sect. 4, by choosing u2 = −1/3, Γq(3) is eliminated in the
q-entropy and then the q-entropy can be treated as a homoge-
neous function. As a result, black hole thermodynamics can
be properly investigated. Note also that the q-internal energy
is additive. As a result, using Eqs. (13) and (45), the function
J (q) can be obtained as follows:

J (q) =
⎡

⎣Γq(3)1/3

u1

(
4πe

h3c3

Vloc
β3
locN

Γq(3)

)N (1−q)
⎤

⎦

1
1+3N (1−q)

.

(50)

To satisfy the condition: lim
q→1

J (q) = 1, the constant is set

as u1 = 21/3. Due to the fact that the factor u1Γq(3)u2 in
Eq. (49) is always positive. It leads to the constraint on the
non-extensive parameter as follows:

0 < q <
4

3
,

3

2
< q < 2. (51)

Moreover, since the mean pressure in Eq. (46) can be writ-
ten in terms of the q-internal energy in Eq. (45), the condi-
tion (49) also leads to a relation between the mean pressures
for both GB and Tsallis statistical mechanics as

Pq,loc = Uq,loc

3Vloc
=

(
2

Γq(3)

)1/3

Uloc

3Vloc
=
(

2

Γq(3)

)1/3

Ploc.

(52)

According to Eq. (41), one can check that for q > 1 (in fact,
the range is 1 < q < 4/3, and 3/2 < q < 2, but let us keep
this regime as q > 1 for simplicity), the pressure of the non-
extensive gas system is less than the pressure of the ideal gas
one: Pq,loc < Ploc. We may argue that a gas molecule attracts
other molecules due to its non-extensivity. This causes the
gas molecules to effectively exhibit a lower force hitting the
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boundary of the system (corresponding to a lower pressure)
compared to the GB case. In contrast, for q < 1, the pressure
of the non-extensive gas system is less than that of the GB
case, i.e., Pq,loc > Ploc due to the gas molecules repelling
each other in this regime of non-extensivity. As a conse-
quence of the first law (48), the heat term obeys

δQq,loc = Tq,locdSq,loc =
(

2

Γq(3)

)1/3

TlocdSloc

=
(

2

Γq(3)

)1/3

δQloc. (53)

Again, the heat transfer also gets a modification due to the
non-extensivity. The efficiency in transferring the heat by
the molecules of the non-extensive gas system is less (more)
than that of the traditional extensive gas system caused by
the attractive (repulsive) behavior of the non-extensive gas
molecules with q > 1 (q < 1).

Let us turn our attention back to the q-entropy. This
entropy can be expressed in terms of βloc by substituting
Eq. (50) into Eq. (47) as

Sq,loc = kB
1 − q

[{
1 + 3N (1 − q)

}

×
(

8πe

h3c3

Vloc
β3
locN

) N (1−q)
1+3N (1−q)

− 1

⎤

⎦ . (54)

As expected, this resulting entropy is independent of Γq(3).
The behavior of the gas entropy can be illustrated in Fig. 1.
It can be seen that the behavior of the entropy depends on
the parameter q and the base of the exponential function
8πe
h3c3

Vloc
β3
locN

. For q < 1, the entropy grows smoothly as the

number of particles increases (see the dashed lines in Fig. 1).
However, divergent and local extremum points can emerge
when q > 1. In the regime q > 1, the key feature of the
entropy is affected by the value of the base X/ρ where
X ≡ 8πe/(h3c3β3

loc) and ρ ≡ N/Vloc describe how hot
and dense the gas is, respectively. The density ρ of the gas is
assumed to be a constant in this consideration (this assump-
tion is applicable to the q-entropy of a black hole as will be
discussed soon). It can be split into three regimes:

(i) Sufficiently cold or dense gas (X/ρ < 1): as increasing
N , Sq,loc first reaches its local maximum and then drops
to minus infinity (see the solid blue line in Fig. 1).

(ii) Sufficiently hot or loose gas (X/ρ > 1): as increasing N ,
Sq,loc diverges first to infinity, and then drops to its local
minimum (see the solid red line in Fig. 1).

(iii) Critical point (X/ρ = 1): the entropy does not depend
on q, but linearly depends on N as Sq,loc = 3kBN .

The existence of the extremum and divergence of the
entropy could be argued as a result of taking the self-

Fig. 1 The profiles of the gas entropy versus N for various values of
the non-extensive parameter and the base X/ρ

gravitating effect (long-range interaction) into account, and
this effect becomes significantly stronger. In fact, these
results are in agreement with the ones of applying the Tsallis
entropy in astrophysics (see, e.g., [68,88]). With GB statis-
tical mechanics, the thermodynamic description of the self-
gravitating system leads to a conclusion that the system is
isothermal with negative heat capacity, referring to thermo-
dynamic instability. Therefore, GB statistical mechanics may
not be properly described in such a system. One needs sta-
tistical mechanics compatible with a non-isothermal system
in hydrostatic equilibrium instead of thermal equilibrium,
for example, Tsallis statistical mechanics [89]. We will see
in the next section that a thermal system associated with a
black hole is not well-defined when the number N is too
large. This is because the system’s temperature is diverging
and becomes negative. Therefore, it is worthwhile to con-
sider the system with a sufficiently small number of particles
in order to restrict our consideration to the thermal system
characterized by well-behaved temperatures.

Following the argument mentioned in the previous section,
the number of particles, the inverse temperature and volume
of the gas shell are set as N = Ah/ l2P , βloc = 4π2lloc/hc,
Vh = Alloc/2, respectively. In addition, the proper distance
between the inner shell of the gas and the black hole’s hori-
zon is also fixed as lloc = lP exp(15/8)/4π5/2. The gen-
eralized Bekenstein–Hawking entropy corresponding to the
black hole entropy in q-thermodynamics can be obtained as

Sq,BH ≡ S(0)
q,loc(bh)

= kB
1 − q

[{

1 + 3(1 − q)
Ah

l2P

}
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× exp

⎧
⎨

⎩
−

11(1 − q)
Ah
l2P

4
(
1 + 3(1 − q)

) Ah
l2P

⎫
⎬

⎭
− 1

⎤

⎦ . (55)

One can straightforwardly check that the base X/ρ is less
than unity so that the behavior of the black hole entropy is
similar to the entropy represented as the solid and dashed blue
lines Fig. 1. The form of the black hole entropy expressed in
Eq. (55) is complicated, and not easy to capture its phys-
ical meaning. By keeping q closed to 1, the generalized
Bekenstein–Hawking entropy can be approximated as the
power series around q = 1:

Sq,BH ≈ kB
Ah

4l2P
+ kB

121A2
h

32l4P
(1 − q) + O[(1 − q)2]. (56)

From Eq. (56), it is seen that the black hole entropy is written
as the usual Bekenstein–Hawking entropy with the correc-
tion term due to the non-extensivity. Furthermore, the Tsal-
lis entropy at q-thermodynamic equilibrium is expressed as
S(0)
q = kB lnq Ω . Using Eq. (55), we can calculate the num-

ber of microstates of the black hole as

Ωbh =
⎡

⎣
{

1 + 3(1 − q)
Ah

l2P

}

exp

⎧
⎨

⎩
−

11(1 − q)
Ah
l2P

4
(
1 + 3(1 − q)

) Ah
l2P

⎫
⎬

⎭

⎤

⎦

1
1−q

.

(57)

Expanding Eq. (57) around q = 1, one obtains

Ωbh ≈ exp

(
Ah

4l2P

)

+ 15A2
h

4l4P
exp

(
Ah

4l2P

)

(1 − q)

+O[(1 − q)2]. (58)

From this expression, one can see that for q > 1, the number
of microstates is decreased due to the non-extensive nature of
the system. Therefore, if black hole thermodynamics is sup-
posed to rely on the non-extensive system, available states
in which particles can occupy are less than one for the usual
case. In this case, we can imagine that the Planck area units
are partially overlapped and then there are over-counting
states. As a result, the actual number of microstates is less
than one counted from GB statistical mechanics. Oppositely,
for q < 1, the number of microstates will be increased due
to the Planck area units moving away from each other.

It is important to note that there are various applications of
Tsallis entropy which take the form Sδ = αδAδ

h [90] where
Ah denotes the horizon area and, αδ and δ are constants.
However, it is not perfectly clear what the form of the Tsallis
entropy for the black hole is. This argument is still debatable
[91–94]. Our result suggests that the form of Tsallis entropy
does not satisfy the power-law form as argued in the literature.
This may provide a hint to naturally include the non-extensive
effect to study black hole thermodynamics as well as in a
cosmological context.

4 Thermodynamic properties of black hole

In this section, we try to construct the thermodynamic quan-
tities of the black hole by replacing the Bekenstein–Hawking
entropy with the generalized Bekenstein–Hawking entropy,
as well as investigate the thermodynamic properties of the
black hole, e.g., the stability. In this section, we will work
in the unit of kB = G = h̄ = c = 1 (the Planck length lP
is also unity in this unit) for convenience. The first law of
thermodynamics can be obtained by treating the black hole
mass as a homogeneous function. In addition, by employ-
ing Euler’s theorem, one hence obtains the algebraic relation
known as Smarr formula [95]. Let us introduce the afore-
mentioned procedure by starting with the definition of the
homogeneous function. An arbitrary function f̃ (xi ), where
xi ∈ R, is said to be a homogeneous function of degree
n ∈ R, if and only if it satisfies that f̃ (I xi ) = I n f̃ (xi ), with
I ∈ R. According to Euler’s theorem for the homogeneous
function, the function f̃ (xi ) satisfies the following relation:

n f̃ (xi ) = x j
∂ f̃ (xi )

∂x j
. (59)

For the simple case in consideration, we choose the static
and spherically symmetric black hole as the Schwarzschild
(Sch) black hole. The interval is taken in the form found in
Eq. (1) with the horizon function given by

g(r) = 1 − 2M

r
, (60)

where M is the black hole mass. The black hole mass can be
obtained by solving g(rbh) = 0 as

M = rbh
2

. (61)

Furthermore, the Bekenstein–Hawking entropy can be writ-
ten as

SBH (Sch) = Ah

4
= πr2

bh . (62)

By substituting Eq. (62) into Eq. (61), the black hole mass
can be rewritten as

M = 1

2

√
SBH (Sch)

π
. (63)

The Smarr formula for the black hole mass written in
the form of a homogeneous function of degree 1/2, i.e.,
M(I SBH (Sch)) = I 1/2M(SBH (Sch)), can be obtained by
employing the Euler’s theorem as

M = 2SBH (Sch)TH (Sch), (64)

where the conjugate quantity of SBH (Sch) is given by

TH (Sch) =
(

∂M

∂SBH (Sch)

)
= 1

4πrbh
. (65)
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In fact, the above equation is the Hawking temperature. Fur-
thermore, the first law of thermodynamics can be written as

dM = TH (Sch)dSBH (Sch). (66)

Here, we have employed Euler’s theorem to the black hole
mass regarded as a homogeneous function of degree 1/2. By
identifying the suitable expressions of thermodynamic quan-
tities of the black hole, we obtain the thermodynamic rela-
tions that are equivalent to those obtained from the geometric
approach. Moreover, the mentioned relations are obtained
by considering the black hole entropy as the Bekenstein-
Hawking entropy. In other words, the thermodynamic rela-
tions are rooted in GB statistical mechanics. However, as
we have known, GB statistical mechanics is not suitable to
describe the thermodynamic properties of the black hole due
to the non-extensivity. In this work, in order to solve the
aforementioned issue, the generalized Bekenstein–Hawking
entropy is chosen to construct the thermodynamic relations
instead of the usual one.

The Smarr formula with the generalized Bekenstein–
Hawking entropy can be constructed by following the same
manner done in the GB framework. Unfortunately, the
expression of rbh in terms of the generalized Bekenstein–
Hawking entropy is not easy to display. We may write the gen-
eralized Bekenstein–Hawking entropy in terms of the black
hole mass instead. As mentioned, by substituting Eq. (61)
into Eq. (55), we can treat the generalized Bekenstein–
Hawking entropy, with a re-defined non-extensive parameter:
η = (1 − q):

Sη,BH (Sch) = 1

η

[
(1 + 3ηAh) exp

{
− 11ηAh

4(1 + 3ηAh)

}
− 1

]
,

= 1

η

[

(1+48πM2η) exp

{

− 44πM2η

1+48πM2η

}

−1

]

,

(67)

as a homogeneous function of degree 1, i.e., Sη,BH (Sch)(I M2,

Iη−1) = I Sη,BH (Sch)(M2, η−1). As mentioned in the previ-
ous section, this is the reason for choosing the entropy to be
independent of Γq(3). If the term Γq(3) appears in the black
hole entropy, it is not possible to treat such an entropy as the
homogeneous function. Furthermore, by using Euler’s the-
orem, the generalized Bekenstein–Hawking entropy can be
expressed as

Sη,BH (Sch) = 1

2
M

(
∂Sη,BH (Sch)

∂M

)

η

− η

(
∂Sη,BH (Sch)

∂η

)

M
.

(68)

The generalized Smarr formula can be obtained by rearrang-
ing the above equation as

M = 2Sη,BH (Sch)

(
∂M

∂Sη,BH (Sch)

)

η

+2η

(
∂Sη,BH (Sch)

∂η

)

M

(
∂M

∂Sη,BH (Sch)

)

η

. (69)

The last term on the right-hand side of Eq. (69) can be rewrit-
ten by using the cyclical relation, and hence the generalized
Smarr formula reads

M = 2Sη,BH (Sch)Tη,H (Sch) − 2ηΦη(Sch), (70)

where the conjugate thermodynamic quantities are properly
defined by

Tη,H (Sch) =
(

∂M

∂Sη,BH (Sch)

)

η

,

Φη(Sch) =
(

∂M

∂η

)

Sη,BH (Sch)

. (71)

Note that the black hole mass in Eq. (70) is the same as the
one in Eq. (64). Furthermore, the first law of thermodynamics
can be written as follows

dM =
(

∂M

∂Sη,BH (Sch)

)

η

dSη,BH (Sch) +
(

∂M

∂η

)

Sη,BH (Sch)

dη,

= Tη,H (Sch)dSη,BH (Sch) + Φη(Sch)dη. (72)

Note that at the limit η → 0, the generalized Smarr formula
(70) and the first law of thermodynamics (72) can be, respec-
tively, reduced to Eqs. (64) and (66) as expected. It is also
important to note that the generalized Smarr formula found
in Eq. (70) is derived from the fact that black hole entropy is
thought of as the homogeneous function instead of consid-
ering the black hole mass. However, it is still written in the
appropriate form and reduced to one in the GB case at limit
η → 0. Furthermore, the thermodynamic relations obtained
from the same procedure with the Rényi entropy for the var-
ious kinds of black holes have been shown in Ref. [42].

In this part of our work, let us first consider the Sch black
hole undergoing a process of fixing η. The first law of ther-
modynamics is, therefore, reduced to

dM = Tη,H (Sch)dSη,BH (Sch). (73)

The behaviors of the black hole entropy in Eq. (67) for various
values of η can be illustrated in Fig. 2. It is very important to
point out that the entropy with negative η has an extremum
point, while there is no such a point for one with η ≥ 0.
In addition, the entropy with negative η is unfortunately not
well-behaved for the whole range of horizon radius, e.g. it
becomes at a certain horizon radius as seen in the top panel
of Fig. 2. It is also noticed that the greater the negative value
of the non-extensive parameter, the smaller the area at which
the entropy drops to zero. On the other hand, the entropy with
positive η is a monotonically increasing function of the hori-
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Fig. 2 The black hole entropy versus Ah with negative η (top) and
positive η (bottom)

zon area. The contribution due to the non-extensivity makes
the q-entropy grow faster than the GB one.

For the temperature of the black hole, it can be straight-
forwardly computed by using the first relation in Eq. (71)
as

Tη,H(Sch) =
(1 + 3ηAh) exp

[
11ηAh

4(1 + 3ηAh)

]

2
√

π Ah(1 + 36ηAh)
. (74)

Again, it is easy to check that at limit η → 0, Eq. (74) can
be reduced to the Hawking temperature: lim

η→0
Tη,H(Sch) =

1/
(

2
√

π Ah

)
. According to the definition in the first rela-

tion of Eq. (71), the temperature with negative η diverges
when the entropy reaches its local maximum. It implies that
the black hole’s temperature in this regime of η cannot be
defined for a sufficiently large size. This issue is relevant to
the argument mentioned in the previous section that for large
enough N , the temperature associated with Tsallis entropy is
not easily defined for the self-gravitating system in general
since the system is no longer in thermodynamic equilibrium.
In order to restrict our attention to the thermodynamic equi-
librium system, we will set the upper bound limit of N at

the local maximum of the entropy. Such an upper bound of
N corresponds to the largest surface area of the mentioned
maximum point denoted as Amax, in which the temperature
in the range 0 < Ah < Amax is well-behaved.

The local maximum of the entropy in Eq. (67) is simply
obtained from the condition dSη,BH (Sch)/d Ah |Amax = 0. As
a result, the area at the local maximum is obtained as

Amax = − 1

36η
. (75)

The profiles of the temperature are illustrated in Fig. 3.
According to the first relation in Eq. (71) together with the
fact that the derivative of the black hole’s mass with respect
to Ah is always positive, the trend of the temperature depends
only on the change in entropy. For the asymptotic values of
the temperature, one can also check thatdM/d Ah ∝ 1/

√
Ah .

Therefore, the temperature approaches infinity as Ah → 0.
For negative η, the temperature drops to its minimum at a cer-
tain area denoted as ACη , then grows to infinity again due to
the maximum of the entropy. The area ACη is indeed the point
at which the heat capacity diverges as will be discussed soon.
By using the minimum condition:dTη,BH (Sch)/d Ah = 0, one
can solve for an explicit form of ACη as follows:

ACη = 1

108η

[
112/3

(
3
√

7869 + 236
)1/3

−55

(
11

3
√

7869 + 236

)1/3

− 25

]

,

≈ 0.359Amax. (76)

It is interestingly found that this behavior of the tempera-
ture with negative η does not depend on the magnitude of η.
Therefore, as seen in the top panel of Fig. 3, the temperature
for negative η profiles can be plotted without identifying the
value of η. For the positive η regime, the temperature mono-
tonically decreases from infinity to zero as the horizon area
increases (see the bottom panel of Fig. 3) straightforwardly
caused by the behavior of the entropy. In addition, since the
area Ah is indeed in the unit of the Planck area, the non-zero
area should be at least one (the black hole’s horizon area is
equal to the Planck area). It yields a bound to the magni-
tude of the negative η. As a result, the constraint (51) can be
further restricted as

− 1

36
< η < 1. (77)

Next, let us investigate the thermodynamic stability of the
Sch black hole based on the Tsallis statistical mechanics. A
thermal system is said to be locally stable if its heat capacity is
positive. In addition, the phrase “local” in this context means
that the black hole can exist by itself. When the black hole is
locally unstable (characterized by negative heat capacity), it
will evaporate due to thermal radiation and eventually disap-
pear. For simplicity, we consider the process with fixing η,
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Fig. 3 Profiles of the temperature of the black hole with negative η

(top) and positive η (bottom)

the heat capacity of the black hole undergoing this process
is defined by

Cη(Sch) =
(

∂M

∂Tη,H(Sch)

)

η

= −
Ah exp

[
11ηAh

4(1 + 3ηAh)

]
(1 + 3ηAh)(1 + 36ηAh)2

2 + ηAh
[
205 + 18ηAh(25 + 36ηAh)

] .

(78)

The behavior of the heat capacity is illustrated in Fig. 4. It is
found that the heat capacity in the GB limit is always negative,
limη→0 Cη(Sch) = −Ah/2, implying that the Sch black hole
is locally unstable based on GB statistical mechanics. Due to
the fact that the change under the process of fixing η is that
with respect to the change of Ah . As previously mentioned,
the change of the black hole mass is always positive so that the
sign of the heat capacity is identified by the sign of the slope
of the temperature dTη,H(Sch)/d Ah (see the first equality in
Eq. (78)). According to the analysis of the behavior of the
temperature, the black hole with positive η is always locally

Fig. 4 Profiles of heat capacity for negative η (top) and positive η

(bottom)

unstable. On the other hand, the black hole with negative η

can be both locally unstable and stable for sufficiently small
size and large size, respectively. The transition between these
two phases is at ACη . One can conclude that the non-extensive
parameter is constrained by the local stability condition as

− 1

36
< η < 0. (79)

The black hole with the above negative η is locally stable
in the region: ACη < Ah < Amax (large-sized black hole
phase).

Apart from the local stability, the global stability can be
determined by analyzing the free energy. The phrase “global”
refers to comparing the black hole with other possible states.
A black hole is preferred to exist when its free energy must be
less than the free energy of a state without a black hole, i.e.,
radiation or hot gas. A black hole with free energy greater
than radiation’s free energy cannot form. Suppose that the
radiation has zero free energy, the global stability condition
for the black hole is thus the phase with negative free energy.
With η kept constant, the Gibbs free energy is defined by
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G(Sch) = M − Tη,H(Sch)Sη,BH(Sch),

=
−2 − 11ηAh + 18η2A2

h + 2(1 + 3ηAh) exp

[
11ηAh

4(1 + 3ηAh)

]

4η
√

π Ah(1 + 36ηAh)
.

(80)

The behavior of the free energy is illustrated on the top panel
of Fig. 5. Remarkably, the free energy in Eq. (80) can be
reduced to one in the GB limit as lim

η→0
G(Sch) = √

Ah/(8
√

π),

which is always positive implying that the Sch black hole is
globally unstable based on GB statistical mechanics. For the
black hole described by Tsallis statistical mechanics (with
negative η), the free energy can be negative due to the exis-
tence of non-extensivity. A lower bound on the area denoted
as AG of the globally stable black hole is straightforwardly
obtained from the vanishing of the numerator of the sec-
ond line of Eq. (80). Unfortunately, it is very complicated to
analytically solve for AG because of dealing with the expo-
nential functions with different bases and exponents. Instead,
we solve numerically and then obtain as

AG ≈ 0.695Amax. (81)

Comparing to the bound on Ah in Eq. (76), there always exists
the phase of both locally and globally stable black holes with
the area: (ACη <) AG < Ah < Amax.

Furthermore, the behavior of the free energy versus the
temperature of the black hole can be illustrated in the bot-
tom panel of Fig. 5. From this figure, there exists a cusp
corresponding to the area AC at which the temperature is
minimized, the heat capacity diverges and the Gibbs free
energy is maximized. The red and blue dashed lines repre-
sent the locally unstable and locally stable but globally unsta-
ble phases of the black hole, respectively. The radiation or
non-black hole and stable black hole phases are represented
as the green line of zero free energy and the solid blue line,
respectively. In addition, there exists a temperature, called the
Hawking-Page temperature, denoted by THP , which can be
obtained from the condition G(Sch) = M−THP Sη,BH (Sch) =
0 as

THP ≈ 5.935
√−η. (82)

At this temperature, the first-order phase transition from the
thermal radiation to the stable large-sized black hole emerges.
It is well-known as the Hawking-Page phase transition [96].
Note that the aforementioned phase transitions occur due to
the existence of the non-extensivity.

Another possible process, in which the heat transfer exists,
is the process of fixing Φη(Sch). The conjugate variable
Φη(Sch) can be computed using the definition in the second
relation of Eq. (71) or the Smarr formula (70) as

Fig. 5 The top panel shows the profiles of the heat capacity and Gibbs
free energy for negative η. The bottom panel shows the Gibbs free
energy versus the temperature of the black hole with negative η

Φη(Sch) =
4 + 23ηAh − 4(1 + 3ηAh) exp

[
11ηAh

4(1 + 3ηAh)

]

8η2
√

π Ah(1 + 36ηAh)
.

(83)

The behavior of Φη(Sch) is illustrated in Fig. 6. It is noticed
that Φη(Sch) always has negative valued for all possible values
of η and Ah .

According to the fact that Φη(Sch) depends on both η and
Ah , in principle, the behavior of a quantity under the process
of fixing Φη(Sch) should be expressed in the terms of Φη(Sch)

and η (or Ah) obeying the constraint (83). Practically, it is
very complicated to solve the above constraint analytically,
so a numerical technique may be required to achieve our
purpose. For any change under this process, the derivative
d Ah/dη must be fixed as
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Fig. 6 The profiles of Φη(Sch) with negative η (top) and positive η

(bottom

d Ah

dη
= 2Ah

(3ηAh + 1)(ηAhb1 + 8) − e
11ηAh

4(1+3ηAh )

[
ηAh

(
72ηAhb2 + 457

) + 8
]

2ηe
11ηAh

4(1+3ηAh )

[
ηAh

(
18ηAhb2 + 205

) + 2
]

− η(3ηAh + 1)
(
ηAhb3 + 4

) . (84)

where b1 = 1656ηAh + 455, b2 = 36ηAh + 25 and b3 =
828ηAh + 409. In this part of this work, we will use these
manners to deal with computing the relevant thermodynamic
quantities.

To investigate the thermodynamic stability, let us intro-
duce a new thermodynamic potential M−η Φη(Sch) in which
its change corresponds to

d(M − η Φη(Sch)) = Tη,BH (Sch)dSη,BH (Sch) − ηdΦη(Sch).

(85)

Therefore, the heat capacity under the process of fixing
Φη(Sch)) can be computed as follows

CΦ(Sch) =
(
d(M − η Φη(Sch))

dTη,BH (Sch)

)

Φη(Sch)

,

= − (1 + 3ηAη) e
− 11ηAh

4(1+3ηAh )

η

×
⎡

⎣c1 + 8 c2 e
11ηAh

2(1+3ηAh ) − 8 c3 e
11ηAh

4(1+3ηAh )

c4 − 16 c5 e
11ηAh

4(1+3ηAh )

⎤

⎦ , (86)

where

c1 = 119232η4A4
h + 55116η3A3

h

+14205η2A2
h + 1744ηAh + 16,

c2 = 648η3A3
h + 450η2A2

h + 205ηAh + 2,

c3 = 7776η4A4
h + 5508η3A3

h + 2205η2A2
h + 423ηAh + 4,

c4 = 59616η4A4
h + 56124η3A3

h

+26181η2A2
h + 3464ηAh + 32,

c5 = 1944η4A4
h + 1998η3A3

h + 1065η2A2
h + 211ηAh + 2.

The corresponding Helmholtz free energy is given by

F(Sch) = M − ηΦη(Sch) − Tη,BH (Sch)Sη,BH (Sch),

= −
8 + 9ηAh(5 − 4ηAh) − 8(1 + 3ηAh) exp

[
11ηAh

4(1 + 3ηAh)

]

8η
√

π Ah(1 + 36ηAh)
.

(87)

The behaviors of the thermodynamic quantities are illustrated
in the top panels of Fig. 7. As mentioned, we employ the
numerical technique to find the pairs of (η, Ah) with fixing
Φη(Sch). Then, substituting these pairs into Eqs. (74), (78)
and (87), one can obtain the temperature, heat capacity, and
free energy in terms of a suitable variable along the fixed-
Φη(Sch) process, respectively. According to the examples in
the top panels of Fig. 7, the black hole cannot be both locally

and globally stable in the process of fixing Φη(Sch). These
thermodynamic instabilities are confirmed by the plot in the
bottom panel of Fig. 7. It is obviously seen that there is no
overlapped region at which all the valid Φη(Sch), locally stable
black hole phase (CΦ(Sch) > 0) and globally stable black hole
phase (F(Sch) < 0) exist.

Before ending this section, let us move our attention to
Φη(Sch). At the small η regime, the quantity Φη in Eq. (83)
can be expanded around η = 0 as

Φη(Sch) ≈ −121

8
πr3

bh + 55297

24
π2r2

bhη + O(η2). (88)

The leading term of the above expression is proportional to
the three-dimensional volume. Accordingly, it is worthwhile
to introduce, respectively, the thermodynamic pressure and
volume as

Pη(Sch) = −363

32
η, Vη(Sch) = − 32

363
Φη(Sch). (89)

At the limit η → 0, one obtains limη→0 Vη(Sch) = 4
3πr3

bh .
Note that Vη(Sch) can behave properly as a positive-valued
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Fig. 7 The top panels show the
profiles of the black hole
thermodynamic quantities under
Φη(Sch)-fixed process with
negative η (left) and positive η

(right). The bottom panel shows
the regions of existence of
Φη(Sch), locally stable and
globally stable black hole
phases

volume since Φη(Sch) is always negative. Regarding the non-
extensive parameter as a state variable, the thermodynamic
Pη(Sch) behaves as a proper pressure for negative η and as a
tension for positive η.

Remarkably, the thermodynamic pressure Pη(Sch) is differ-
ent from the pressure of gas found in Eq. (46). It is because
the pressure Pη(Sch) = 0, while Pq,loc �= 0, at limit η → 0.
Furthermore, according to Pη(Sch) and Vη(Sch) expressed in
Eq. (89), the Smarr formula and the first law of thermody-
namics of the Sch black hole can be rewritten, respectively,
as follows

M = 2Tη,H (Sch)Sη,BH (Sch) − 2Pη(Sch)Vη(Sch), (90)

dM = Tη,H (Sch)dSη,BH (Sch) + Vη(Sch)dPη(Sch). (91)

The above first law is reminiscent of the change of the chem-
ical enthalpy. Hence, one can interpret the black hole’s mass
as the enthalpy, and M − Pη(Sch)Vη(Sch) = M − ηΦη(Sch)

as the internal energy. In addition, η and Φη(Sch) can also
be thought of as the chemical potential and number of par-
ticles, respectively. No matter how η and its conjugate are
interpreted, the stability analysis done previously will still
be reliable.

5 Conclusion and discussion

In the first part of this work, we proposed the black hole
entropy based on q-statistical mechanics. Based on tradi-
tional GB statistical mechanics, the Bekenstein–Hawking
entropy can be derived by treating the system near a black
hole as the shell of the indistinguishable classical gas with the
maximum number of gas particles, i.e., N = Ah/ l2P . The sig-
nificant conditions are imposed as follows: (i) the gas system
is in thermal equilibrium with the black hole, i.e. the gas tem-
perature is equal to the Hawking one, (ii) it approaches very
closely the black hole’s horizon with a distance of one-tenth
of the Planck length. For Tsallis statistical mechanics, it can
be thought of as the one-parameter extension of GB statis-
tical mechanics which is characterized by the non-extensive
entropy. With Tsallis statistical mechanics, the gas q-entropy
was derived as found in Eq. (47). Moreover, we proposed that
the internal energy is written as Uq,loc = 21/3Γq(3)−1/3Uloc

in order to obtain the unknown functionJ (q), from which the
term Γq(3) in the gas q-entropy can be eliminated. Accord-
ing to the Γq(3)-independent entropy of gas, it is possible
to formulate the black hole entropy as a homogeneous func-
tion. By following a similar manner in deriving the black hole
entropy as done for the GB case, the resulting black hole q-
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entropy has been shown in Eq. (55). Note that in our deriva-
tion, we also employ the formal logarithm map for the sake of
factorization of the gas distribution function. With Taylor’s
series around the GB limit (q → 1), the leading order term
of the q-entropy is the standard Bekenstein–Hawking one.
The non-extensivity of non-extensive statistical mechanics
affects the number of microstates of black holes. Accord-
ing to the principle of the maximization of the entropy, the
non-extensive parameter q must be positive, and then the
non-extensivity can both reduce and increase the number of
black hole’s microstates (see Eq. (58)).

Thermodynamic stabilities of the Sch black hole have been
investigated in the second part of this work. The thermody-
namic phase-space associated with q-statistical mechanics
can be constructed by adopting Euler’s theorem for the q-
entropy which is the homogeneous function of degree 1. As a
result, the Smarr formula and the first law of thermodynamics
were derived in Eqs. (70) and (72), respectively. It is empha-
sized that the non-extensive parameter η = (1−q) automat-
ically plays a role as the thermodynamic variable. To realize
the thermodynamic stability, we firstly focused on the sce-
nario that the thermal system associated with Sch black hole
undergoes the process of fixing η. We found that, unlike the
consideration based on the GB entropy, the non-extensivity
can stabilize the black hole. In particular, the system can
be both locally and globally stable when the non-extensive
parameter lies in the range −1/36 < η < 0. Furthermore,
we considered another possible process that Φη(Sch) is fixed.
It is found that for such a process, the black hole cannot be
both locally and globally stable confirmed by the plot in the
bottom panel of Fig. 7.

According to Eq. (58), the black hole with negative η has
a number of microstates less than the system described by
GB statistical mechanics. In this case, we can imagine that
the Planck area units are partially overlapped and then there
are over-counting states. As a result, the actual number of
microstates is less than the one counted from GB statistical
mechanics. Furthermore, in the viewpoint of the total energy,
the non-extensive system has non-additive total energy, for
example, for N = 2, E = E1 + E2 − (1 − q)βq E1E2.
The non-additive term, i.e., −(1 − q)βq E1E2, can be inter-
preted as the classical correlation between particles due to
long-range interaction. This correlation might correspond to
the overlapping region of the Planck area units as we have
argued previously. The aforementioned argument may pro-
vide insight into the thermodynamic nature of black holes
via statistical mechanics.

One of the key results of the present work is the outcome
of black hole entropy, q-entropy, found in Eq. (67). Up to
our knowledge, it is not expressed in the well-known form
as found in the literature. In fact, this entropy is quite unique
due to its complicated form as the exponential function of
the horizon area. In order to compare our result to the other,

it is worthwhile to use an approximation where η → 0 and
then analyze the resulting correction by comparing it to one
of the quantum corrections. One of the usual quantum cor-
rections of the area law entropy is the logarithmic correction
given by α ln(A/4) [97,98] where α is a dimensionless con-
stant which is usually α = −1/2 or α = −3/2 [99,100].
One can see that the quantum correction is always negative
which is consistent with our result where the correction can
be written as η

2 (11A/4)2. As a result, it may be inferred that
quantum correction influences the number of microstates in
the same way as non-extensivity does. This may shed light
on the connection between the quantum nature of the black
hole and the non-extensivity behavior of the black hole.

In the manner presented in this work, the black hole
entropy is derived independently of the type of black hole
solution and different types of gas near the black hole. There-
fore, it is worthwhile to apply this manner to investigate the
thermodynamic implications based on non-extensive statisti-
cal mechanics for other black holes. This may pave the way to
exploring the effect of non-extensivity on black hole thermo-
dynamics. Moreover, the thermodynamic stability analysis in
our consideration corresponds to the system undergoing the
processes of fixing η and its conjugate, Φη.

It is important to note that our investigation is mainly
involved in the development of black hole thermodynam-
ics which seems to be interested only in theoretical aspects.
In order to capture such properties of the black hole, it is nat-
ural to ask whether it is possible to find some observational
signatures to identify the black hole’s thermodynamic prop-
erties. In fact, it is possible to characterize the behavior of the
quasinormal modes (QNMs) by analyzing the signature in the
gravitational waves emitted from a black hole during the ring-
down stage [101–104]. Moreover, some intrinsic properties
of the black hole can be identified by using null geodesics of
test particles moving near the black hole [105–109]. Unfortu-
nately, such direct signatures of black hole thermodynamics
are still difficult to detect from recent observations. How-
ever, recent investigation into the geodesic instability of the
test particles, specifically the Lyapunov exponents of both
massless and massive particles, serves as an order parame-
ter to investigate the thermodynamic phase transition of the
black hole [110–115]. This might be a possible way to con-
nect the observational signature to the properties of black
hole thermodynamics. The further investigation of the ther-
modynamic phase transition of the black hole with Tsallis
entropy considered in this work in order to link to the Lya-
punov exponents may shed light on the interplay between the
non-extensive nature of the black hole and the observational
signatures. This is an interesting issue to investigate and we
will leave this investigation for further work.
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Appendix A: The first law of thermodynamics and con-
sistent thermodynamic quantities

The first law of thermodynamics relating the thermodynamic
quantities, e.g., the internal energy, can be constructed in the
following manner. Let us begin with calculating the total
differential of Uq :

dUq = q
∫

dV f q−1Eδ f +
∫

dV f qδE . (A.1)

Moreover, the total differential of Sq can be written as

dSq = kB
1 − q

∫
dV(q f q−1 − 1)δ f

= kBq

1 − q

∫
dV f q−1δ f. (A.2)

The leftover term on the right-hand side in Eq. (A.2) is
obtained by using the variation of the normalization con-
dition: δ

∫
dV f = 0 = ∫

dVδ f . From Eq. (32), it can be
rearranged as

E = 1

(1 − q)βq
(1 − f 1−q Z1−q

q ). (A.3)

According to Eq. (A.3), the first term on the right-hand side
of Eq. (A.1) can be expressed as

q
∫

dV f q−1Eδ f = q

(1−q)βq

∫
dV f q−1(1− f 1−q Z1−q

q )δ f

= q

(1 − q)βq

∫
dV f q−1δ f. (A.4)

Substituting Eq. (A.2) in Eq. (A.4), it reads

q
∫

dV f q−1Eδ f = TqdSq . (A.5)

Obviously, the first term on the right-hand side of Eq. (A.1)
is a heat-term, i.e., δQ = TqdSq . Immediately, the second
(leftover) term can be interpreted as a work term:
∫

dV f qδE = δWq . (A.6)

Substituting Eqs. (A.5) and (A.6) in Eq. (A.1), the first law
of thermodynamics can be expressed as [66]

dUq = TqdSq + δWq , (A.7)

Specially, for the hydrostatic system described by (Pq , V, Tq),
the first law of thermodynamics can be expressed as

dUq = TqdSq − PqdV, (A.8)

with setting the work term as δWq = −PqdV where Pq is
the mean q-pressure. Furthermore, the consistent thermody-
namic quantities are defined by

Tq =
(

∂Uq

∂Sq

)

V

, Pq = −
(

∂Uq

∂V

)

Sq

. (A.9)

Instead of expressing the thermodynamic quantities in
terms of the distribution function, e.g., Uq = ∫

dV f q E ,
those can be written in terms of the partition function as fol-
lows. Let us start with considering the internal energy:

Uq =
∫

dV f q E . (A.10)

Using Eq. (31), the derivative of Zq with respect to βq can
be obtained as

∂Zq

∂βq
= −

∫
dVE(1 − (1 − q)βq E)

q
1−q . (A.11)

Substituting Eq. (A.11) in Eq. (A.10), the internal energy
reads

Uq = − 1

Zq
q

∂Zq

∂βq
= − ∂

∂βq
lnq Zq . (A.12)

Note that one obtains lim
q→1

Uq = −∂ ln1 Z/∂β as expected.

Furthermore, the mean q-pressure is defined by

Pq =
∫

dV f q P ′
q . (A.13)

By following the same manner done for the internal energy,
we have
∫

dV f q P ′
q = 1

βq

∂

∂V
lnq Zq . (A.14)
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Note that we have employed the thermodynamic relation
P ′
q = −∂E/∂V in Eq. (A.14). Substituting Eq. (A.14) in

Eq. (A.13), one hence obtains

Pq = 1

βq

∂

∂V
lnq Zq . (A.15)

Again, we can check that the mean q-pressure can be reduced
to one in the GB case at limit q → 1.

For the q-entropy related to those quantities expressed in
Eqs. (A.12) and (A.15) via the first law of thermodynam-
ics, it can be constructed as follows. Let us consider the
partition function depending on βq and V , i.e., lnq Zq =
lnq Zq(βq , V ), and hence the total differential of lnq Zq can
be written as follows

d lnq Zq =
(

∂

∂βq
lnq Zq

)

V

dβq +
(

∂

∂V
lnq Zq

)

βq

dV,

= d

(
βq

∂

∂βq
lnq Zq

)

V

− βqd

(
∂

∂βq
lnq Zq

)

V

+
(

∂

∂V
lnq Zq

)

βq

dV,

×d

[(
1 − βq

∂

∂βq

)
lnq Zq

]

= βqd

(
− ∂

∂βq
lnq Zq

)
+
(

∂

∂V
lnq Zq

)

βq

dV .

(A.16)

The total differential of the internal energy is obtained as

dUq = Tqd

[
kB

(
1 − βq

∂

∂βq

)
lnq Zq

]
− PqdV . (A.17)

From Eq. (A.17), it is obviously seen that the q-entropy can
be properly defined by

Sq = kB

(
1 − βq

∂

∂βq

)
lnq Zq . (A.18)

Note that, the q-entropy can reduce to one in GB statistics:

lim
q→1

Sq = kB

(
1 − β

∂

∂β

)
ln Z . (A.19)

Besides the internal energy, the other thermodynamic
potentials, e.g., Gibbs free energy, can be constructed by
using the Legendre transform. As seen from Eq. (A.7), the
quantities Sq and Tq are the Legendre pair of one another.
Accordingly, the Helmholtz free energy can be defined by
using the Legendre transform of the internal energy with the
Legendre pair Sq and Tq as [66]

Fq = Uq − Tq Sq . (A.20)

Remarkably, the thermodynamic Legendre structure remains
valid for all values of q. By employing the same manner as
done for the those thermodynamic quantities, the Helmholtz

free energy can be written in terms of the partition function
as

Fq = −kBTq lnq Zq . (A.21)

The first law of thermodynamics with the Helmholtz free
energy can be expressed as follows

dFq = dUq − TqdSq − SqdTq = −SqdTq − PqdV .

(A.22)

In addition, the corresponding thermodynamic quantities can
be defined by

Sq = −
(

∂Fq

∂Tq

)

V

, Pq = −
(

∂Fq

∂V

)

Tq

. (A.23)

Apart from the Legendre pair Sq and Tq , the leftover pair
are V and Pq . The Gibbs free energy can be constructed
by adopting the Legendre transform of Uq together with the
Legendre pair Sq and Tq , and V and Pq as

Gq = Uq − Tq Sq + PqV = Hq − Tq Sq , (A.24)

where Hq is a chemical enthalpy defined by

Hq = Uq + PqV . (A.25)

In addition, the first law of thermodynamics with the Gibbs
free energy and the chemical enthalpy can be, respectively,
written as follows

dGq = −SqdTq + VdPq , (A.26)

and

dHq = TqdSq + VdPq . (A.27)

The thermodynamic quantities corresponding to the Gibbs
free energy and the chemical enthalpy are, respectively,
defined by

Sq = −
(

∂Gq

∂Tq

)

Pq

, V =
(

∂Gq

∂Pq

)

Tq

, (A.28)

and

Tq =
(

∂Hq

∂Sq

)

Pq

, V =
(

∂Hq

∂Pq

)

Sq

. (A.29)
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