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Abstract: The aim of this work is to demonstrate that all linear derivatives of the tensor al-
gebra over a smooth manifold M can be viewed as specific cases of a broader concept—the
operation of derivation. This approach reveals the universal role of differentiation, which
simplifies and generalizes the study of tensor derivatives, making it a powerful tool in Dif-
ferential Geometry and related fields. To perform this, the generic derivative is introduced,
which is defined in terms of the quantities Q,(ci) (X). Subsequently, the transformation law
of these quantities is determined by the requirement that the generic derivative of a tensor
is a tensor. The quantities Q,(j) (X) and their transformation law define a specific geometric
object on M, and consequently, a geometric structure on M. Using the generic derivative,
one defines the tensor fields of torsion and curvature and computes them for all linear
derivatives in terms of the quantities Q,(Ci) (X). The general model is applied to the cases of
Lie derivative, covariant derivative, and Fermi derivative. It is shown that the Lie deriva-
tive has non-zero torsion and zero curvature due to the Jacobi identity. For the covariant
derivative, the standard results follow without any further calculations. Concerning the
Fermi derivative, this is defined in a new way, i.e., as a higher-order derivative defined in
terms of two derivatives: a given derivative and the Lie derivative. Being linear derivative,
it has torsion and curvature tensor. These fields are computed in a general affine space from
the corresponding general expressions of the generic derivative. Applications of the above
considerations are discussed in a number of cases. Concerning the Lie derivative, it is been
shown that the Poisson bracket is in fact a Lie derivative. Concerning the Fermi derivative,
two applications are considered: (a) the explicit computation of the Fermi derivative in a
general affine space and (b) the consideration of Freedman-Robertson-Walker spacetime
endowed with a scalar torsion field, which satisfies the Cosmological Principle and the
computation of Fermi derivative of the spatial directions defining a spatial frame along
the cosmological fluid of comoving observers. It is found that torsion, even in this highly
symmetric case, induces a kinematic rotation of the space axes, questioning the interpre-
tation of torsion as a spin. Finally it is shown that the Lie derivative of the dynamical
equations of an autonomous conservative dynamical system is equivalent to the standard
Lie symmetry method.

Keywords: derivation; Lie derivative; covariant derivative; Fermi derivative; torsion;
metricity; Poisson derivative; Poisson bracket; curvature; Friedman-Robertson-Walker
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1. Introduction

In Differential Geometry and in Physics, the derivatives mainly used on smooth
manifolds are the Lie derivative and the covariant derivative. This is due to their crucial
role in studying differential equations and stating the dynamic equations. Specifically, the
Lie derivative is the main tool for the determination of symmetries of geometric objects like
metric, connection, etc., for the invariance of differential equations and their classification
according to their invariance under a specific Lie algebra. On the other hand, the covariant
derivative is used in the formulation of dynamic equations and the conserved currents.
Both derivatives are entangled in applications in Differential Geometry and in Physics,
for example, in the determination of the first integrals of differential equations and the
conserved currents of dynamic equations.

Apart from these derivatives, in practice, other derivatives have been introduced, each
one serving special purposes. A few of them are as follows:

a. The Fermi derivative. To study the kinematics of a spacetime fluid, one has to adopt
along the 4-velocity u? of the observers a non-rotating frame, which is the closest to an
inertial frame [1]. The condition for that is that the Fermi derivative with respect to u” of
the spatial vectors defining the 3D-frame vanishes.

b. The exterior derivative defined on the exterior algebra of differential forms over
a smooth manifold. This is the unique linear map which satisfies a graded version (of
grade 1) of the Leibnitz law and squares to zero, i.e., 4 = 0. For a function f, it is the
standard differential df. For a 1-form 6 = a;dx’, the exterior derivative is the 2-form
do = aj; ) dx'dx/, where square brackets denote antisymmetrization. The exterior derivative
is used in the Cartan formulation of Differential Geometry to define the connection 1-form,
and from that, the torsion 2-form and the curvature 3-form. Further applications are the
study of the geometry of surfaces and the determination of independence of vector fields.
The applications of the exterior derivative in Physics cover the whole field of Physics. In
Classical Mechanics, the exterior derivative defines the symplectic structure of phase space.
In Electromagnetism, the Faraday 2-form F is introduced, in terms of which Maxwell’s
equations are stated very compactly as exterior derivatives of F. In Fluid Dynamics, the
vorticity 2-form w, which is used to study the rotational motion of fluid particles, is defined
as the exterior derivative of the velocity 1-form v. Other applications concern the geometric
theory of defects [2] and certain formulations of topological quantum field theory, where the
exterior derivative is used to describe topological invariants of the spacetime manifold [3].

c. The interior product, which is a degree —1 derivation on the exterior algebra,
is defined by the contraction of a form with a vector field. Together with the exterior
derivative and the Lie derivative, it forms a Lie superalgebra.

d. The Fréchet derivative, defined on Banach spaces, generalizes the derivative of
a real-valued function of a single real variable to the case of a vector-valued function of
multiple real variables, and is widely used to define the functional derivative in the calculus
of variations [4].

Apart from these derivatives, others have been introduced for special needs. It is
important to formulate these derivatives under a common scheme so that the deeper
significance of each and the real purpose for its introduction will be revealed. Furthermore,
the interrelation of different derivatives will lead to new derivatives and applications.
Finally, it is possible that derivatives which are believed to be new are in fact combinations
of existing derivatives.

A striking example in that direction is the Fermi derivative. It is widely believed
that this derivative is relevant to the covariant derivative of the Riemannian spacetime
of General Relativity. As will be shown, this is not true. The Fermi derivative is the
combination of a general linear derivative and the Lie derivative; therefore applies to all
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linear derivatives and all affine spaces, which are not necessarily Riemannian. Because the
Fermi derivative concerns the generalization of inertial frames in General Relativity, its
generalization to affine spaces means that it can be used to define the inertial frames in the
alternative theories of gravitation, where the geometry of spacetime is not assumed to be
Riemannian, e.g., in the Einstein—Cartan theory.

The aim of the present work is to demonstrate that all linear derivatives of the tensor
algebra can be viewed as specific cases of a broader concept—the operation of derivation.
The focus is thus on derivation as a fundamental operation rather than on the specific
derivatives. In particular, it demonstrates that all linear derivatives have torsion and
curvature; therefore, these tensor fields are not exclusively a property of the covariant
derivative, as it is commonly believed.

It is apparent that it is not possible to address all the linear derivatives in a single
work; therefore, in order to proceed, one has to select a subset of relevant linear derivatives.
In the present work, we select the fundamental and the most widely used derivatives,
namely the Lie derivative, the covariant derivative, and the Fermi derivative. This choice
is justified by their complementary significance in the study of applications. Indeed,
the Lie derivative is used for the invariance (i.e., symmetry) of geometric objects, which
define the differential structure of the “configuration” space, i.e., the manifold where the
dynamical system evolves. The covariant derivative is used in the formulation of dynamics,
that is, the evolution of a dynamical system in the given “configuration” space; and the
Fermi derivative is used in the kinematics of a dynamical system along the world line of
the observers in “configuration” space. Furthermore, in the study of Lie symmetries of
differential equations and the determination of their first integrals, a combination of the Lie
derivative and the covariant derivative is used.

As a rule, these three linear derivatives are defined and studied separately. For
example, the Lie derivative and its applications have been studied in depth in the classical
book of Yano [5]. On the other hand, both derivatives are studied in different levels of
detail in all textbooks on Differential Geometry and General Relativity [6-9]. Finally, the
Fermi derivative, being an element of relativistic kinematics, is studied only in General
Relativity books (e.g., [1]).

The scenario for the development of these three derivatives within the concept of
linear derivation proceeds with the following steps:

a. The linear derivation along a vector field X is defined by a set of linear maps over a
smooth manifold M. This defines the generic derivative abstractly.

b. To associate the generic derivative with a geometric object and make calculations
possible, one considers a coordinate system x’ in M and assigns the components of the
generic derivative in the chart x* to be the quantities Q,(:) (X).

c. Requiring that the generic derivative of a tensor results in a tensor, the transfor-
mation law of the components Q,((i) (X) is determined. This transformation associates the
generic linear derivative with a geometric object whose components are the quantities
Q,(ci) (X). Itis found that the geometric object associated with the generic derivative is not

necessarily a tensor. This is why the upper index in Ql(f) is enclosed in parentheses.
d. With each linear derivative over M, two tensor fields are associated, corresponding
to the commutativity properties of partial differentiation, that is, d,d, = d,dy and aiy = a;x.
One field is the torsion tensor, which measures the failure of the derivative to commute,
and the second field is the curvature tensor, which measures the deviation from “flatness”.
e. A particular linear derivative is defined by a specific set of quantities Q,(Cl) (X), which
transform as the components of the generic derivative.
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Steps a and b are discussed in Section 2, step ¢ in Section 3, and step d in Section 4.
Following this, we consider special linear derivatives over M by defining special sets of
quantities Q,((i) (X).

In Section 5.1, the Lie derivative is defined. It is shown that it has non-vanishing
torsion and zero curvature, with the latter being equivalent to the Jacobi identity for the
Lie bracket.

In Section 5.2, the covariant derivative is introduced and discussed briefly because it
is very well known.

The main new result of the present work is in Section 5.3, where the Fermi derivative
is introduced from a completely new perspective. It is shown that this derivative is a
higher-order derivative in the sense that it is defined in terms of two derivatives: one
general derivative (not necessarily the covariant derivative) and the Lie derivative. In
Sections 5.3.1 and 5.3.2, we compute the torsion and the curvature tensors of the Fermi
derivative. It is found that, in general, the torsion of the Fermi derivative does not vanish
even when the torsion tensor of the general derivative defining the Fermi derivative
vanishes. We continue with special Fermi derivatives by specifying the general linear
derivative defining the Fermi derivative. In Section 6, we consider the Fermi derivative
defined by the Lie derivative and the covariant derivative. Using the Fermi derivative as
the second derivative, one may consider the Fermi derivative of the Fermi derivative, and
so on. This is performed in Section 7. It follows that the Fermi derivative is not a single
derivative but a derivative generating Fermi derivatives.

The remaining sections refer to applications of the previous general results.

In Section 8.1, we introduce the general Poisson bracket of two functions &, f by setting

(h, f) = @' (x)hf,
where w' is an arbitrary constant tensor field, which is not necessarily antisymmetric, and
the comma indicates partial derivatives. It is shown that this derivative is a Lie derivative
and satisfies a Jacobi-like identity due to the vanishing of the curvature of the Lie derivative.
0 I
-1, 0
finds the standard Poisson bracket, and w defines a symplectic structure on the manifold.

If one specializes further to Wil = ( ) , where I, is the n x n unit matrix, then one

In Section 8.2, we demonstrate the general approach to the Fermi derivative in two
cases. In the first case, we compute the Fermi derivative in a general 2D affine space. In the
second case, we consider a problem from cosmology. Specifically, we assume the Friedman-—
Robertson-Walker spacetime endowed with a scalar torsion, which is in agreement with the
Cosmological Principle. We calculate the Fermi derivative for the comoving observers and
show that the torsion, even in this highly symmetric spacetime, produces a rotation which,
however, is of a kinematic nature. This shows that torsion is not necessarily a dynamic
field associated with spin as proposed in the Einstein-Cartan theory [10].

In Section 9, the role of the Lie derivative in the determination of the symmetries of
dynamical equations is shown to be equivalent to the standard Lie symmetry methods
used in the determination of the Lie symmetries of differential equations.

Finally, in Section 10, we draw our conclusions.

2. Definition of the General Derivative

We start with the well-known and standard definition of the linear derivative of
tensor algebra.
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Definition 1. On the tensor algebra T(M) of a manifold M, we define the derivative Dx with
respect to the vector field X to be the automorphism

Dy : T(M) — T(M)

satisfying the following properties:

1.  Dx:TI(M) — TI(M), that is, Dx preserves the type of tensor fields.
2. The function Dy is R-linear, that is, Va € R and ¥YS,N € T} (M), and the following
relation holds:
DX(aS + N) = aDXS + DxN

3. It satisfies the Leibnitz rule with respect to the tensor product, that is, ¥V S € T} (M) and
N e TI"(M)
Dx(S® N) = DxS® N+ S ® DxN.

4. Dx (constant tensor) = Q for all constant tensor fields.

The quantity DxT VT € T/ (M) is called the D-derivative of the tensor field T with
respect to X.

From Definition 1 (properties 2, 3), it follows that in order to define a derivative Dx
on the tensor algebra T(M), it is sufficient to define its action on the elements of the ring of
functions F(M) and the elements (vector fields) of the module T& (M).

Definition 2. Consider a chart (U, ¢) in M with coordinates x' and the vector field X = X'9;. We
define the action of Dy on the functions in F(M) and on the vector fields Y = Y'9; in (U, ¢) by
the relations

Dx(f) =X(f) VfeFM) ©)

Dx(Y) = Q' (X)Y*d;, VX, Y € T}(M). @)

The index (i) is enclosed in parentheses because, as will be shown, in general, it is not

a tensorial index. This means that the n? quantities Q](CZ) are not generally components of a
tensor field of type (1, 1) (this is possible but it is not relevant to the present discussion). The
quantities Q](.l) define a geometric object on M which is identified by their transformation

rules (to be determined).
It is easy to show that a linear derivation satisfies the following properties:

QISJ(X + Y) = QZSJ(X> + le](Y)
Q?sj(“X) = “Q?sj(X)

or, in an obvious notation,

1 1 1
Dlyz = uaD%z

all Z € F}(M).
From (1) and (2), we have the following results:

i__ sl

Dx () = Q' (X)a;. @)
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Dy(dx') = —Q\Vdx/ (5)

Using the above and applying the Leibnitz rule, one computes the derivative Dx T of
an arbitrary tensor field T = Tl1 Z’811 ®...®0, @dx' ®...®dx)s of type (r,s) defined in
the chart (U, ¢):

(OxTjyf = (T, X T Q0+ + T (%)

T,’(lls”Q](.l>(X)—...—T;11___,i O (X0)0;, ©... 00, @dd @ ... @dd. (6)

3. The Transformation of the Quantities Q(i)

The transformation of the basis vectors is 9; = ]1,81, where [} ' is the Jacobian. We compute

Dx(3r) = Dx(Jid:) = Dx(J})d; + [y Dx(3) = i X/a; + [5QY (X)a;.

We define the transformed quantities by the following requirement:

Dx(3n) = Q) (X)9; = @ ()11,

Equating the two expressions of Dx(9;) in the last two relations and using the fact
that X is arbitrary follows the transformation rule:

Q' (x) =1/ (Jhxt + 7,0 (%)) )

Relation (7) defines the type of geometric object Ql(j ) (X). We infer that the quantities

QE;; r define a geometric object, which in general, is not a tensor field.

4. The Torsion Tensor and the Curvature Tensor of the Generic Derivative

We continue with the commutation of the first and the second derivatives of a general

derivative Ql((i).

4.1. The Torsion Tensor

Consider the derivative with components Q@ and two vector fields V and W,
Wthh define the derivations Dy : (V, Q(')( V)) and Dy : (W', Q(I (W)) (with the same

Q j !). We consider the commutator (this corresponds to the property 0,0y, = 9,0 of
partial derivative)
DyW — DwV.

We compute:
DyW — DV = Wi/ + Q) (V)W — viw/ — Qi (W) v/,
= W, V] + Q" (V)W — QI (W)VI]p, ®)

where [W, V] = [Wl] Vi— V,;'»Wf ]9; is the Lie bracket of the vector fields V, W.
We define the tensor field of type (1,2):

Tp(V,W) = DyW — DwV — [V, W] 9)

which is called the torsion of the derivative D.
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In terms of the quantities Q](.i) (V), Q](.i) (W) from (8) and (9), we have
Tp(V, W) = [} (V)W — QI (W) V]2 (10)

4.2. The Curvature Tensor

We consider two vector fields V = V9;, W = W'9; and the commutator (this is the
2 2
analog of the property of the partial derivative % = aay—a{):

DyDw — DwDvy
Let U = U'9; be a third vector field. A rather long computation gives (see Appendix A):
(DyDw — DwDy)U=DyDwU — DwDyU = uj']-[v, W) + H;fuf'ai (11)

where ' ' , . ;
Hi = QH(W) xVE — QU(V) . Wk + QF (W) QL(V) — QF (V) QL(W).

The derivative Dy ) defined by the vector field [V, W] = (Vi Wij — Wi Vj.)al- =
[V, W]i9; is

Diywil = U5V, Wa; + W Qi([V, W])a;.
We define the geometric object
Rp(V,W) = DyDw — DwDv — Dy w (12)

and obtain the general result:

Rp(V, W)U = [Q\" (W) ,vF — 0 (v) Wk + 0P (w) o (v) - @ (V) W) - Qi (v, wjwa,.  (13)

]

The geometric object Rp(V, W) is a tensor of type (1,3), which is called the curvature
tensor of the derivation D.

5. Specific Derivatives

Every set of quantities Q](.i) that transform according to (7) defines a linear deriva-
tive over the chart (U, ¢) of M. In the following subsections, we consider special linear
derivatives that play a major role in Geometry and Physics.

5.1. The Lie Derivative

The Lie derivative is the only derivative that is defined on a manifold without intro-
ducing an extra structure (equivalently geometric object). This is the reason that it is used
in the study of fundamental structures over M.

Consider a coordinate chart with coordinates x' and let the vector field X = X'9,;.
Define the quantities

Qi (x) = -x} (14)

so that
D%(9)) = —X'9;. (15)

In order the quantities QJ.L(i) (X) to define a derivation on M, they must transform in
accordance to (7).
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To prove this, we note that because X' are the components of a vector field, they
transform as follows:
) , .
X' =T X

Using this, we find

Xy =Xy = IX + T X = TP X = s X =

y o , P ok
(=X5) = Ji T (=X}) + Ji T X
which is compatible with (7). Therefore, the quantities fo]. define a derivative called the

Lie derivative with respect to the vector field X = X'd,;. We denote the Lie derivative as
Dx = Ly.
Using the general result (6), we write

_ppitedr sk ke it ik gy 1107 ok
LxT = [T} XE =T X} — = T X+ T Xl
o AT X0, @00, @dd © ... @ dab. (16)

In order to compute the torsion tensor and the curvature tensor of the Lie derivative,
we use the general results of (10) and (13).
Concerning the torsion, we have

T (V,W) = Q" (V)W — QY (W)V] = —VIW/ + Wivi = [W, V], (17)

that is, the torsion of the Lie derivative is the commutator of the involved vector fields.
Concerning the curvature of the Lie derivative, using (12) and (14) we find:

RL(X,Y)Z = LxLyZ — LyLxZ — Lix y|Z
=X Y, Z]]| + Y, [Z,X]] + [Z,]X, Y]]

The rhs is zero according to the Jacobi identity. Therefore, the curvature of the Lie
derivative vanishes. This shows the deeper geometric meaning of the Jacobi identity.

The Lie derivative is used in the study of Lie symmetries of geometric objects (includ-
ing differential equations) [11-13].

5.2. The Covariant Derivative

The covariant derivative is a linear derivative defined in terms of the connection
coefficients F;.k as follows:

Q7" (x) = ry;x*. (18)

In order the quantities ij(l) (X) to define a linear derivation, they must transform

according to (7). This requires that the functions F;'k must transform as follows:

Chw =1 (JE T+ JETAT ). 19)

We denote the covariant derivative with respect to the vector field X by V. For the
covariant derivative, we have the well-known results obtained directly from (6), (10)
and (13):

Tyje =Ty — Tk (20)

lemk = r;‘k,m - 1-';'m,k + rfms Isq - récsr;snj‘ (21)
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S k...iy 1i i1.dr ok h - is
VxT = (T, + T D+ = Ty T, ) X9, @00, @dd' @ .. @dk. (22)

The covariant derivative is used in the formulation of the dynamic equations, whereas
the Lie derivative is used in the study of symmetries of differential equations and numerous
other applications.

5.3. The Fermi Derivative

Consider a coordinate chart (U, ¢) with coordinates x' and let the vector field X =
X9,i. Suppose in (U, ¢) , we define a derivation with components Q](-i) (X), and let Q];(i) (X)
be the components of the Lie derivative in (U, ¢) defined by X. Using the two derivatives,
one defines a new derivative, the Fermi derivative:

Dk(3;) = QFV;(X)a;, VX € TH(M) (23)

where the quantities, i.e., components, Qf(i) (X) are given by the following formula:

]
Q" (X) = QU,(X) + Xga (Q (X) — Q1 (X)) (g%, — 3{XT). (24

The Fermi derivative is a “higher-order linear derivative” because it is defined in
terms of pairs of other types of linear derivatives.

In order the Fermi derivative to be well defined, the quantities QF(/);(X) must trans-
form as in (7), that is, it must hold

Q(X) = T Q"0 (%) + L1 X*. (25)

In Appendix B, it is shown that this is satisfied.
We have the obvious relations:

Dif = fiX' = X(f), VfeFM)
D (x') = ¥, X1 = 6ixI = X'
Dk(3) = [QUx(X) + X*g(Q) — Q") (8 Xk — ]X7)] . (26)
DF (dx/) = —QF ) dx'. 27)

As an application and for comparison with the existing results, we compute the Fermi
derivative DX (Y) of the vector field Y = Y'9;.
We set QL (X) = ¢5-QF (X), and after a formal calculation (see Appendix C), we find

Dx(Y) = Dx(Y) + g(X,Y) Dx(X) — g(Y, Dx(X))X. (28)

This formula coincides with the definition given in p. 80 of [1] in the special case that
the derivation QU); is the Riemann covariant derivative. However, the present result holds
for a general linear derivative D and it is not restricted to the covariant derivative only
(e.g., [14-22]).

5.3.1. The Torsion of the Fermi Derivative

We have from relation (9)

To(V, W) = DEW—DjV — [V, W] =[Q}(V)W/ — Qi(W)Vila,
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where V, W are vector fields. In index-free notation, we find

Tpr(V,W) = DLW-DEV — [V, W]
= Dv(W) +g(V,W)Dy(V) — ¢(W,Dy(V))V
—Dw(V) —g(W, V)Dw(W) + g(V, Dw(W))W — [V, W]
= Tp(V,W) +g(V,W)[Dv (V) — Dw(W)]+g(V, Dw (W))W — g(W, Dy(V))V.

We note that even if Tp = 0, Tpr # 0, unless it holds that Dy (V) = Dw(W) = 0; that
is, the vector fields V, W are autoparallel in the derivation D.

5.3.2. The Curvature of the Fermi Derivative

In the case of the Fermi derivative, the general relation (12) gives:

Rpr(V, W)U = [Q (W) V* — QF (V) W* + Q7 F(W)Qf (V) — QfF (V) Qf (W)
— Q' ([v, wW))]Ule;

The detailed calculation in terms of Rp(V, W)U is cumbersome and it is better to be
performed in each specific case.

6. The Fermi Derivative of the Lie and the Covariant Derivative

We consider the Fermi derivative defined by the Lie and the covariant derivative. For
the Lie derivative, the Fermi derivative reduces to the Lie derivative, as expected. For the
covariant derivative, we have QV(), (X) = F;ka and QL (X) = fX,]l.. Then, from (24),
we obtain the following:

QY (X) = T Xk + X5 gor (T XF + X7 (8X; — 617
=Xt (F;ci + X°Xigsrg" Ty — X° X gor T} + Xigr8"1X; — ngkVeri)'

The terms:

X*X°Xigsrg Ty + X Xigr 8" X
= Xigtj(Xszgsrr]rgt + nger,rt)

Xig X5 gor (X + X'T},) = XighX°gor X,

where X"t denotes the covariant derivative. The terms:

XX XIgq, Ty — X* X g1, X,
= —X XX g Tl — XX g X = —X* X/ gar (X'; + T;)
— XX/ g X

Therefore, the components of the Fermi derivative of the covariant derivative are:

QFWIW;(X) = XFT},; + X8 X° g X, — X°Xgy, X[, = X* [r{d + g (Xig' X, — Xfxlfi)} (29)

The general Formula (29) produces the result (28) when applied to the vector field Y.
The Fermi derivative of the covariant derivative has been considered extensively in
Gravitational Physics.
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7. The Fermi Derivative of the Fermi Derivative

The Fermi derivative is itself a linear derivative; therefore, it is possible to define
the Fermi derivative by using it as the second linear derivative. The determination of
the components Qf:if of the Fermi derivative along the Fermi derivative is given by the
following expression:

QFZij — QFij + XS(QPst _ QLst)(gthi . 5ltX])
where QF /(X) = Q/(X) + X°(Qst — Q1) (8" X; — 6! X/). We compute (see Appendix D)
Q" = 2+ X7X)Q" - (1+X7X,)Q/. (30)

We note that the Lie derivative cancels out.

It is evident that one may follow the same routine and introduce the QF "1, where
m=2,3,4,...

In the following in order to appreciate the above results, we consider a number
of applications.

8. Applications
8.1. The Poisson Derivative as a Lie Derivative

Consider a chart (U, ¢) on a smooth 2n—dimensional manifold M with coordinates
{x'}. For every C* function f, we define a vector field Pi on M by the rule

where w' is a constant tensor field of type (0,2) (not necessarily antisymmetric!). The
Lie derivative in (U, ¢) defined by the vector field ij is given by the quantities Q) (f) =
oP! 2
f 0

o = whf W. This new Lie derivative is called the general Poisson derivative gener-

ated by f, or simply, the general Poisson derivative.

The general Poisson derivative of a smooth function & € F(M) is computed as follows:

Dph = h;P} = &' (x)hif = [h, f]. (32)

Being a Lie derivative, the torsion of this derivative gives nothing new. However, the
vanishing of the curvature of the Lie derivative gives the Jacobi identity:

(1, £1, 81+ [1f, 81 1 + (I8, £l h] = O. (33)

Two main possibilities arise. One is to assume that w'l is symmetric, and the other,
that w' is antisymmetric. To our knowledge, the first case has not been considered in the
literature. The latter defines the well-known Poisson geometry and w'/ defines a symplectic
structure on the manifold M.

If we specialize the manifold M to be the configuration space of a dynamic system with
the coordinates x’ = p/, x"*! = ¢’ i = 1,2,...,n (= dim M) to be the canonical conjugate

pairs and define
w'l = ( _01 IO” ) (34)
n
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we recover the well-known result

) 1 of oh of  oh of

Dph = (P?ay)h = wh E)x” T Z dqiom  apag) {h. f} (35)
and the subsequent Jacobi identity:
o Ag h} +{g Ahf1} +{h {f,g}} = 0. (36)

In order to compute the generalized Poisson derivative of a tensor field, one applies the
general Formula (16) of Lie derivative. For example, for a vector field V = V# %, one has

Dp VH = {V’l’f} - f,(n+i)yvvl for "l,l =1

! (37)
{VE fY + faVY, forpu=n+i.

8.2. The Fermi Derivative in a Metric Affine Space with Torsion and Metricity

Consider a 2D space M with coordinates {x!,x?} endowed with the Euclidean metric
d;j and the covariant derivative with connection coefficients I”;-k i,j = 1,2, which are not all

zero. Because Fj’k # 0, this space is not Riemannian and, in general, has non-zero torsion
and metricity. Therefore, this case is not covered by the standard Riemannian approach. To
compute the components of the Fermi derivative, we use the general Formula (29). We find

QF VI, (X) = XM, + Xig!/ X gsr X[, — X* Xger X[; = X [T, + ger (Xig"' X[, — XIX7,)| (38)

Let us compute the quantities QF(V)();(X), where X = 9;,9,, assuming that
g(01,02) = 0; that is, 91 is normal in the Euclidean metric to the vector d,. We note
that the components of d; are 55 ; therefore,

QfFM;(a) = x*r, +ngt]ng57’X|t XSngsrXfi
= OFT); + X;8 X" ger (T X™) — X" XI gy (T, X"™)
= T}, 461,018 (T, 80) — 636165, T7: 60"
= L+ a0t — o1,

(01) = Ti+Iy—Tj =TIy

(01) = Tip+0610"T} — T, =0
QFVIPy(3y) = T} +6110"T}, — 81T}, =T + T,

(91) T +61267T}; — 6115 =TT,

Concerning the vector D;(V) (d2), we have

DM@ = @V (@y)a

QFMW,@1)a; + QF V@, ()0,

Working in a similar manner one computes the Fermi derivative of a general tensor field
over a non-Riemannian space, for example, in the spacetime of the Einstein—Cartan theory
or in non-Riemannian spacetimes of other alternative theories of gravity.
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8.3. The Freedman—Robertson—Walker Spacetime with Torsion

As a further application, we compute the Fermi derivative in the Freedman-Robertson—
Walker (FRW) spacetime with torsion. This spacetime has been considered in the litera-
ture [10], but not the Fermi derivative in this spacetime. We consider the standard FRW
spacetime metric

ds* = —dt? + R?(t)(dr® + r?dQ¥?) (39)

where {t,7,6, ¢} are coordinates and d0)? — d6? + sin? 6d¢? is the 2-sphere. R(t) is the scale
factor. This spacetime has a high degree of symmetries, as follows:

a. It is conformally flat and therefore admits (4 + 1)x(4 +2) = 15 conformal
Killing vectors.

b. It satisfies the Cosmological Principle, which states that spacetime is 1 + 3 de-
composable by the gradient timelike Killing vector d;, whereas the 3-spaces normal to
the vector d; are 3D spacelike maximally symmetric spaces, which admit 33x(3+1) = 6
spacelike Killing vectors: three vectors for the homogeneity (translations) and three for the
isotropy (rotations).

The comoving observers in this model have 4-velocity u? = 4} and the projection
tensor h,, = g5 + Ualip projecting normal to these observers is given by the expression

R2(t
hap = diag(%, R2(t)r?, R?(t)r* sin 9). (40)

In this spacetime, we assume that besides the metric, there is a torsion tensor field
Sy which we require that satisfies the Cosmological Principle. This type of torsion is the
minimal requirement for the generalization of the standard FRW cosmological model. It
has been shown [23] that in this case, the torsion tensor S} . must be of the form

= 20 (x)llyu, (41)

where ¢(x) is a smooth function of the coordinates. It follows that in the coordinates
{t,r,6,¢}, the non-zero components of S;. are the Sfych, where Greek indices take the
values 1,2,3 and correspond to the coordinates r, 0, ¢, respectively.

In order to compute the Fermi derivative, we have to compute the connection coeffi-

cients. For that, it is helpful to recall the following well-known result.

Theorem 1. The connection coefficients F}k in a (symmetric) metric space with metric g;;(x) satisfy
the identity
Ui = Tpe + Klj = A (42)

where the quantities T* o K jk, and Aj'k are defined as follows:

Agc = % g ( Sirk + 8krj — &jk,) (Riemannian connection - Christofell symbols) — (43)

K¢ = st K+ Sk]-i + S]-ki (Cartan’s contorsion tensor) (44)
1.
b= 5 8" (&jrk + 8kr|j — 8jk|r)  (Associated metricity tensor). (45)

8jr|k denotes covariant differentiation with respect to the index k. The quantities S;k are given by

the relation 1 1
k= 5Tk = 5T —Ty) (46)
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where the quantities T' jk are the components of the torsion tensor. Furthermore, the tensors K jks A;.k
satisfy the index symmetries

Kijk = —Kjix (47)
and

b= D (48)

In a FRW spacetime with torsion given by (41), the Cartan’s contorsion tensor is
computed to be
7. = 49(87uy — hycu®). (49)

Then, from Theorem 1, it follows that the connection coefficients are
he = The + 49 (08up — hyeut”) (50)

where fg . are the Riemannian connection coefficients (Christofell symbols) given by (43).
We compute the Fermi derivative along the comoving observers with 4-velocity u* = 6f.
The vanishing of this derivative defines the Fermi-transported (i.e., non-rotating) frames
for these observers in this spacetime.
The Fermi derivative defined by the covariant derivative is given by (29).

QI (X) = XM + g (Xig "X, — XIX])]

Setting X = u?, we have
Q VW;(u) = k[T, + g (wig"uf,, — wiu)|

where u|’l. = u'; + TT.u® =I'_u°. Therefore,

QFVMIW);(u) = uk [l"{d + g (T4, 8™ — ”jréi)]‘ (51)
Replacing F;Ci from (50) and using u"u, = —1, we find
Q" VI, (ar) = [T, + ugua(Thyug™ — wTL) | — 4], (52)

Using u® = 47, this reduces to
QfFMIWi(u) = T+ gu(uilh,g" — wTh;) — 4¢0]
= T = (wilg" — w/Th;) — 49 (53)

In order to find the rotation of the radial direction along u?, we compute the Fermi derivative
of 9, along u”. We have

QFVIW;(u)(ay)

QF(V)(f),(u)aj (54)
QF™M® ()3 + QFV) (1), + QFV®) (1)9, + QF(V)(‘”r(u)a(/,.

We compute from (53)
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Replacing in (54) we find:
QM (u)(3r) = —4¢0r.

which implies that torsion induces the rotation of the radial direction. This associates
torsion with a kinematic phenomenon not with a dynamic field (spin), at least in the case
of the highly symmetric FRW spacetime.

9. The Distinct Role of Lie and the Covariant Derivative

As aforementioned, the role of the Lie derivative is to formulate the symmetries, i.e.,
invariance of geometric objects, whereas the main role of the covariant derivative is to
formulate the equations of a dynamical system and their first integrals. In this section, we
demonstrate how the two roles interact and lead to conditions whose solution makes the
determination of first integrals of the dynamical equations possible.

The dynamical equations of an autonomous conservative dynamical system are

§' = ~Tj'3" = V” (55)

where the potential V = V(q) and I'j_ are the Riemann connection coefficients with respect
to the kinetic metric ,; defined by the kinetic energy of the system. We set the velocity
u® = 4° and Equation (55) is written equivalently as

whu? = —v. (56)

We consider the vector X = &()d; + 7’ (q)0,:, which generates the point transformation
At = ¢¢(t) and Aq' = eyj’. A dot over a symbol indicates total derivative, for example,

.9t ot .
.,_17+i.

T T

Because the system is autonomous, the condition for X to be a Lie point symmetry of (56) is
L, (ufbub + V’“) =0 (57)

along solutions of (55).
We compute

eLyu’ = suf’bnb - snf’bub = uf’bAqb — (Aq") = —u"(At) = —elu”

Therefore,
Lyu® = —¢u" (58)

where we use the identity of the variational calculus
AT — (D) = —4" (At
From the Ricci identity,

1oy ioir i1\ rlia..i i\ it oniy_1
LpViT = Vil Tt = Ly(TR) T 4 1y (T T

s Jija-Js J1eJs—1]s
N f iip...0y _ T, E i...0p_1iy
Ly (rhk) TR - (rjsk) T (59)

we have
Ly(ufy) = (Lyu®)p + (LyThe)uc.

’
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Then, (57), along solutions of (56), gives

0 = Ly(uut = v) =L, (uf)ut +ubL,7( ")~ Ly(v#)

(Lyu” )bu + (Ly bc)” ut (;‘u u —L,YV”

( bc)u ut —Zcf,bu +§ubu —L,v*

= Dulut —2¢ yutub — 2¢ut ub — 20u ub — L, VA
Pp pu, Puyp 7

[ —2¢ 0% ubuc —qu/“—zg'w.

This expression must be identically zero for all u”; therefore, each term for different powers
of u” must vanish. This gives the following necessary and sufficient conditions for (56) to
admit the Lie symmetry X:

L,V +2¢V7 =0
Lyl = E 40} + 6

These conditions coincide with the conditions which are found if one applies the standard
Lie symmetry approach [11]. From the above, it follows that:

The Lie symmetry condition for autonomous conservative dynamical systems is equivalent to
the Lie derivative of the dynamical equations.

From the second condition, it follows that the vector 7 9, is a projective collineation of
the kinetic metric with the projection function §. The first condition constrains the potential
V with the function ¢ and the projective vector 5. A solution of this system of equations
can be found in many publications. Concerning the first integrals, they are the Noether
symmetries, which have been shown to coincide with the homothetic algebra (a subalgebra
of the projective algebra) of the kinetic metric [24].

10. Conclusions

The concept of a universal approach to linear derivatives of tensor algebra through the
introduction of the generic linear derivative offers a deeper understanding and profound
generalization of the notion of the concept of a derivative. The key points of this paper are
as follows:

a. The association of the generic linear derivative with a geometric object with compo-
nents Q j(i).

b. The introduction of torsion and curvature tensors for all linear derivatives of tensor
algebra, not just for the covariant derivative as traditionally believed.

c. The definition of a specific linear derivative by the introduction of a specific set of
quantities Q j(i), which transform according to (7).

The generic derivative approach has been applied to the main derivatives used in
practice, that is, the Lie derivative, the covariant derivative, and the Fermi derivative.

For each derivative, the following results were obtained:

Lie Derivative:

1.  The Lie derivative has non-vanishing torsion.
The curvature of the Lie derivative vanishes due to the Jacobi identity.

3. The Poisson bracket is a manifestation of the Lie derivative. The Jacobi identity for
the Poisson bracket follows naturally from the vanishing of the curvature of the
Lie derivative.

Covariant Derivative:
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The covariant derivative involves the connection coefficients Q](.i) (X) = F;'(ij, which
reduce to Christofell symbols in the case of the Riemannian derivative. The various
formulae of the latter follow without any extra calculation.

Fermi derivative:

The main contribution of the present work, apart from the introduction of the general
approach to derivation, is the Fermi derivative. This derivative is used in General Relativity
to define the propagation of a “non-rotating” orthonormal spatial frame along the world
line of an observer. In the standard literature, the Fermi derivative is defined in terms of
the (Riemannian) covariant derivative.

The Fermi derivative is a second-order linear derivative in the sense that it combines a
given derivative, which is not necessarily the covariant derivative, and the Lie derivative.
The Fermi derivative has both torsion and curvature. Furthermore, the Fermi derivative, be-
ing a linear derivative, can be iterated to produce a series of higher-order Fermi derivatives
for every given Fermi derivative.

Overall, the universal approach to derivation using the non-tensorial quantities Q](-i)
provides a versatile and powerful framework for constructing new geometric structures
on a manifold. The dynamic equations of the theories of Physics are mainly based on
the covariant derivative, whereas the Lie symmetries of these equations are mainly based
on the Lie derivative. Using the universal approach, it is possible that one could use the
present results and construct new theories of Physics. The same applies to Differential
Geometry, where already other types of derivative have been introduced.

One final point is the derivatives of non-tensorial geometric objects. These derivatives
are not—and probably cannot-be defined the way we used to define the linear derivative
of tensors. This is the case even for the tensor densities, which are geometric objects very
near to tensors [25]. For these derivatives, it makes no sense to define the torsion tensor
and the curvature tensor, which are fundamental in the development of physical theories.
However, as it is well known, these derivatives do play a major role in the studies of
Geometry and Physics.
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Appendix A

Proof of Relation (11). Consider two vector fields V = Vi9; and W = W9;, and
the commutator:
DyDw — DwDvy
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Let U = U'9; be a third vector field. We compute

(DyDw — DwDy)U=DyDwU — DywDyU
= Dy (U;W/3; + W Q) (W)9;) — Dw (U5 V79 + W QH(V)9;)
= UL VEWIa, + UL W Vo, + LW QK (V)
+ULVEQI(W)9;+ L QI(W)  VFD; + LT QY (W) QF (V) 3y
- uf].kwkvfai — ULV, — UL VIQE (W),
—UW,WEQi(V)9; — W QH(V) xWHa; — LT QI (V) Qf (W),

= USW] VR0, — U VI WK, + LT QU(W) V9, — LUQI(V) x W59,

+ U QE(W)QL(V)d; — LTQE (V) QL (W)9;
] ]

= U (VEW = WAV})9; + [QU(W) ,VE — Q) (V) WF
+QF(W)QL(V) — QF(V)QL(W)]Uo;

= U (VAW — WhV))9; + HiWo;

= U5V, W)/ + HIW9;.

where ‘ ‘ ‘ ‘ 4
Hi = QI(W) . VE — QI(V) ,WF + QX (W) QL(V) — QX(V) QL(W).
O
Appendix B

Proof of (25). Note: in order to ease the notation, we omit the parentheses in the upper
index of QU7;.

QUi = QL+ T XF + Xogu (L JE QU + Tl T x¥
— QM = T X (811X — 81X
= Q- I XE 4 T X¥ I I8 gua TS (Q) = Q') (87X — 61X0)
= Q)+ T X"
+ XY g (QG = QY ) T b T X =TT} 65 11 XT)
= T QI XY+ X Y gu L (QU = QM) (€7 X — 8 XT)
= QA T X¥ 4 T X g (QU = QM) (87 Xy — o X
= I 1Qr + X g (QUw — Q) (87 Xy — 85 X)) + L X¥

i i ~Ei' i 4! K
= I QT + T} XS
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Appendix C
Proof of (28). We set QL (X) = ¢5»QF (X) and have

Dy(Y) = Dy(Y'9;)
= Y’ XI9; + YIQ /'9;
= YiXI9; + Y Qj'9; + Y/ X*(Qut — Q) (8" X; — 81 X")0;
= Dx(Y) + Y X°¢1(Qs" — Q") (8" X; — 61X")9;
= Dx(Y) + Y/ X°gir[Qs" — (= X%))(g"X; — 81X")0;
= Dx(Y) + Y/ X°¢1Qs"8" X;0; + Y/ X° g1 X", 8" X;0;
— YIX*Qy" g1t X0 — YIX* g1 X6 X'9;
= Dx(Y) + Y/ X°Q,'X;0; + Y X* X\ X;0; — Y/ X°g;,Qs'X — Y/ X°g;, X/ X
= Dx(Y) + Y/ X°Q4'g;: X"9; + Y X*X',g;, X'0; — g;s Y (X° X/, + X°Q,")X
= Dx(Y) + g Y/ X"(X°Q4'9; + X°X'0;) — i Y/ (XX, + X°Qs")X
= DY) + (X Y)[X7(Qs'0; + X49;) | — gV (XX, + XQ,")X
= Dx(Y) +8(X, Y)Dx(X) — &Y/ (DxX)'X.

O

Appendix D
Proof of (30).

QF/(X) = QF/ + X*(QF — Qar) (811X; — 61X))
= Q/ + X*(Qst — QFst) (87X; — 81 X7)
+ X°[Qst + X7 (Quic — Q") (6 Xs — 05 X1) — Qi) (87X — 61 X7)
= Q/ + X°(8"X; — 61X)) [2(Qst — QL)
+ X" Qi Xs — X' Qrs Xi — X" Qi Xs + X" QL X/
= Q/ +2X°(Qst — Q1) (87X — 6/X7) + X" X8 X; X°(Qst — Q"st)
— X" X, 0 XI X5 (Qst — QFt)
= Q/ +2X°(Qst — Q") (87 X; — 6/ X)) + X" X, X*(Qst — Qlt) (87X — 61XT)
= Q + (24 X"X,) X*(Qst — QL) (§7X; — 6! X7)
=Q/+ 2+ XX)(QF/ — Q/)
=2+ X'X)Q" - 2+ X'X,)Q/ + Q/
=(2+XX)QN — (1+X"X,)Q/.

O]
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