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Abstract: The aim of this work is to demonstrate that all linear derivatives of the tensor al-

gebra over a smooth manifold M can be viewed as specific cases of a broader concept—the

operation of derivation. This approach reveals the universal role of differentiation, which

simplifies and generalizes the study of tensor derivatives, making it a powerful tool in Dif-

ferential Geometry and related fields. To perform this, the generic derivative is introduced,

which is defined in terms of the quantities Q
(i)
k (X). Subsequently, the transformation law

of these quantities is determined by the requirement that the generic derivative of a tensor

is a tensor. The quantities Q
(i)
k (X) and their transformation law define a specific geometric

object on M, and consequently, a geometric structure on M. Using the generic derivative,

one defines the tensor fields of torsion and curvature and computes them for all linear

derivatives in terms of the quantities Q
(i)
k (X). The general model is applied to the cases of

Lie derivative, covariant derivative, and Fermi derivative. It is shown that the Lie deriva-

tive has non-zero torsion and zero curvature due to the Jacobi identity. For the covariant

derivative, the standard results follow without any further calculations. Concerning the

Fermi derivative, this is defined in a new way, i.e., as a higher-order derivative defined in

terms of two derivatives: a given derivative and the Lie derivative. Being linear derivative,

it has torsion and curvature tensor. These fields are computed in a general affine space from

the corresponding general expressions of the generic derivative. Applications of the above

considerations are discussed in a number of cases. Concerning the Lie derivative, it is been

shown that the Poisson bracket is in fact a Lie derivative. Concerning the Fermi derivative,

two applications are considered: (a) the explicit computation of the Fermi derivative in a

general affine space and (b) the consideration of Freedman–Robertson–Walker spacetime

endowed with a scalar torsion field, which satisfies the Cosmological Principle and the

computation of Fermi derivative of the spatial directions defining a spatial frame along

the cosmological fluid of comoving observers. It is found that torsion, even in this highly

symmetric case, induces a kinematic rotation of the space axes, questioning the interpre-

tation of torsion as a spin. Finally it is shown that the Lie derivative of the dynamical

equations of an autonomous conservative dynamical system is equivalent to the standard

Lie symmetry method.

Keywords: derivation; Lie derivative; covariant derivative; Fermi derivative; torsion;

metricity; Poisson derivative; Poisson bracket; curvature; Friedman-Robertson-Walker
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1. Introduction

In Differential Geometry and in Physics, the derivatives mainly used on smooth

manifolds are the Lie derivative and the covariant derivative. This is due to their crucial

role in studying differential equations and stating the dynamic equations. Specifically, the

Lie derivative is the main tool for the determination of symmetries of geometric objects like

metric, connection, etc., for the invariance of differential equations and their classification

according to their invariance under a specific Lie algebra. On the other hand, the covariant

derivative is used in the formulation of dynamic equations and the conserved currents.

Both derivatives are entangled in applications in Differential Geometry and in Physics,

for example, in the determination of the first integrals of differential equations and the

conserved currents of dynamic equations.

Apart from these derivatives, in practice, other derivatives have been introduced, each

one serving special purposes. A few of them are as follows:

a. The Fermi derivative. To study the kinematics of a spacetime fluid, one has to adopt

along the 4-velocity ua of the observers a non-rotating frame, which is the closest to an

inertial frame [1]. The condition for that is that the Fermi derivative with respect to ua of

the spatial vectors defining the 3D-frame vanishes.

b. The exterior derivative defined on the exterior algebra of differential forms over

a smooth manifold. This is the unique linear map which satisfies a graded version (of

grade 1) of the Leibnitz law and squares to zero, i.e., d2 = 0. For a function f , it is the

standard differential d f . For a 1-form θ = aidxi, the exterior derivative is the 2-form

dθ = a[i,j]dxidxj, where square brackets denote antisymmetrization. The exterior derivative

is used in the Cartan formulation of Differential Geometry to define the connection 1-form,

and from that, the torsion 2-form and the curvature 3-form. Further applications are the

study of the geometry of surfaces and the determination of independence of vector fields.

The applications of the exterior derivative in Physics cover the whole field of Physics. In

Classical Mechanics, the exterior derivative defines the symplectic structure of phase space.

In Electromagnetism, the Faraday 2-form F is introduced, in terms of which Maxwell’s

equations are stated very compactly as exterior derivatives of F. In Fluid Dynamics, the

vorticity 2-form ω, which is used to study the rotational motion of fluid particles, is defined

as the exterior derivative of the velocity 1-form v. Other applications concern the geometric

theory of defects [2] and certain formulations of topological quantum field theory, where the

exterior derivative is used to describe topological invariants of the spacetime manifold [3].

c. The interior product, which is a degree −1 derivation on the exterior algebra,

is defined by the contraction of a form with a vector field. Together with the exterior

derivative and the Lie derivative, it forms a Lie superalgebra.

d. The Fréchet derivative, defined on Banach spaces, generalizes the derivative of

a real-valued function of a single real variable to the case of a vector-valued function of

multiple real variables, and is widely used to define the functional derivative in the calculus

of variations [4].

Apart from these derivatives, others have been introduced for special needs. It is

important to formulate these derivatives under a common scheme so that the deeper

significance of each and the real purpose for its introduction will be revealed. Furthermore,

the interrelation of different derivatives will lead to new derivatives and applications.

Finally, it is possible that derivatives which are believed to be new are in fact combinations

of existing derivatives.

A striking example in that direction is the Fermi derivative. It is widely believed

that this derivative is relevant to the covariant derivative of the Riemannian spacetime

of General Relativity. As will be shown, this is not true. The Fermi derivative is the

combination of a general linear derivative and the Lie derivative; therefore applies to all
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linear derivatives and all affine spaces, which are not necessarily Riemannian. Because the

Fermi derivative concerns the generalization of inertial frames in General Relativity, its

generalization to affine spaces means that it can be used to define the inertial frames in the

alternative theories of gravitation, where the geometry of spacetime is not assumed to be

Riemannian, e.g., in the Einstein–Cartan theory.

The aim of the present work is to demonstrate that all linear derivatives of the tensor

algebra can be viewed as specific cases of a broader concept—the operation of derivation.

The focus is thus on derivation as a fundamental operation rather than on the specific

derivatives. In particular, it demonstrates that all linear derivatives have torsion and

curvature; therefore, these tensor fields are not exclusively a property of the covariant

derivative, as it is commonly believed.

It is apparent that it is not possible to address all the linear derivatives in a single

work; therefore, in order to proceed, one has to select a subset of relevant linear derivatives.

In the present work, we select the fundamental and the most widely used derivatives,

namely the Lie derivative, the covariant derivative, and the Fermi derivative. This choice

is justified by their complementary significance in the study of applications. Indeed,

the Lie derivative is used for the invariance (i.e., symmetry) of geometric objects, which

define the differential structure of the “configuration” space, i.e., the manifold where the

dynamical system evolves. The covariant derivative is used in the formulation of dynamics,

that is, the evolution of a dynamical system in the given “configuration” space; and the

Fermi derivative is used in the kinematics of a dynamical system along the world line of

the observers in “configuration” space. Furthermore, in the study of Lie symmetries of

differential equations and the determination of their first integrals, a combination of the Lie

derivative and the covariant derivative is used.

As a rule, these three linear derivatives are defined and studied separately. For

example, the Lie derivative and its applications have been studied in depth in the classical

book of Yano [5]. On the other hand, both derivatives are studied in different levels of

detail in all textbooks on Differential Geometry and General Relativity [6–9]. Finally, the

Fermi derivative, being an element of relativistic kinematics, is studied only in General

Relativity books (e.g., [1]).

The scenario for the development of these three derivatives within the concept of

linear derivation proceeds with the following steps:

a. The linear derivation along a vector field X is defined by a set of linear maps over a

smooth manifold M. This defines the generic derivative abstractly.

b. To associate the generic derivative with a geometric object and make calculations

possible, one considers a coordinate system xi in M and assigns the components of the

generic derivative in the chart xi to be the quantities Q
(i)
k (X).

c. Requiring that the generic derivative of a tensor results in a tensor, the transfor-

mation law of the components Q
(i)
k (X) is determined. This transformation associates the

generic linear derivative with a geometric object whose components are the quantities

Q
(i)
k (X). It is found that the geometric object associated with the generic derivative is not

necessarily a tensor. This is why the upper index in Q
(i)
k is enclosed in parentheses.

d. With each linear derivative over M, two tensor fields are associated, corresponding

to the commutativity properties of partial differentiation, that is, ∂x∂y = ∂y∂x and ∂2
xy = ∂2

yx.

One field is the torsion tensor, which measures the failure of the derivative to commute,

and the second field is the curvature tensor, which measures the deviation from “flatness”.

e. A particular linear derivative is defined by a specific set of quantities Q
(i)
k (X), which

transform as the components of the generic derivative.
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Steps a and b are discussed in Section 2, step c in Section 3, and step d in Section 4.

Following this, we consider special linear derivatives over M by defining special sets of

quantities Q
(i)
k (X).

In Section 5.1, the Lie derivative is defined. It is shown that it has non-vanishing

torsion and zero curvature, with the latter being equivalent to the Jacobi identity for the

Lie bracket.

In Section 5.2, the covariant derivative is introduced and discussed briefly because it

is very well known.

The main new result of the present work is in Section 5.3, where the Fermi derivative

is introduced from a completely new perspective. It is shown that this derivative is a

higher-order derivative in the sense that it is defined in terms of two derivatives: one

general derivative (not necessarily the covariant derivative) and the Lie derivative. In

Sections 5.3.1 and 5.3.2, we compute the torsion and the curvature tensors of the Fermi

derivative. It is found that, in general, the torsion of the Fermi derivative does not vanish

even when the torsion tensor of the general derivative defining the Fermi derivative

vanishes. We continue with special Fermi derivatives by specifying the general linear

derivative defining the Fermi derivative. In Section 6, we consider the Fermi derivative

defined by the Lie derivative and the covariant derivative. Using the Fermi derivative as

the second derivative, one may consider the Fermi derivative of the Fermi derivative, and

so on. This is performed in Section 7. It follows that the Fermi derivative is not a single

derivative but a derivative generating Fermi derivatives.

The remaining sections refer to applications of the previous general results.

In Section 8.1, we introduce the general Poisson bracket of two functions h, f by setting

(h, f ) = ωij(x)h,i f,j

where ωij is an arbitrary constant tensor field, which is not necessarily antisymmetric, and

the comma indicates partial derivatives. It is shown that this derivative is a Lie derivative

and satisfies a Jacobi-like identity due to the vanishing of the curvature of the Lie derivative.

If one specializes further to ωij =

(
0 In

−In 0

)
, where In is the n × n unit matrix, then one

finds the standard Poisson bracket, and ωij defines a symplectic structure on the manifold.

In Section 8.2, we demonstrate the general approach to the Fermi derivative in two

cases. In the first case, we compute the Fermi derivative in a general 2D affine space. In the

second case, we consider a problem from cosmology. Specifically, we assume the Friedman–

Robertson–Walker spacetime endowed with a scalar torsion, which is in agreement with the

Cosmological Principle. We calculate the Fermi derivative for the comoving observers and

show that the torsion, even in this highly symmetric spacetime, produces a rotation which,

however, is of a kinematic nature. This shows that torsion is not necessarily a dynamic

field associated with spin as proposed in the Einstein–Cartan theory [10].

In Section 9, the role of the Lie derivative in the determination of the symmetries of

dynamical equations is shown to be equivalent to the standard Lie symmetry methods

used in the determination of the Lie symmetries of differential equations.

Finally, in Section 10, we draw our conclusions.

2. Definition of the General Derivative

We start with the well-known and standard definition of the linear derivative of

tensor algebra.



Symmetry 2025, 17, 81 5 of 20

Definition 1. On the tensor algebra T(M) of a manifold M, we define the derivative DX with

respect to the vector field X to be the automorphism

DX : T(M) → T(M)

satisfying the following properties:

1. DX : Tr
s (M) → Tr

s (M), that is, DX preserves the type of tensor fields.

2. The function DX is R-linear, that is, ∀a ∈ R and ∀S, N ∈ Tr
s (M), and the following

relation holds:

DX(aS + N) = aDXS + DX N

3. It satisfies the Leibnitz rule with respect to the tensor product, that is, ∀ S ∈ Tr
s (M) and

N ∈ Tm
n (M)

DX(S ⊗ N) = DXS ⊗ N + S ⊗ DX N.

4. DX (constant tensor) = 0 for all constant tensor fields.

The quantity DXT ∀T ∈ Tr
s (M) is called the D-derivative of the tensor field T with

respect to X.

From Definition 1 (properties 2, 3), it follows that in order to define a derivative DX

on the tensor algebra T(M), it is sufficient to define its action on the elements of the ring of

functions F(M) and the elements (vector fields) of the module T1
0 (M).

Definition 2. Consider a chart (U, φ) in M with coordinates xi and the vector field X = Xi∂i. We

define the action of DX on the functions in F(M) and on the vector fields Y = Yi∂i in (U, φ) by

the relations

DX( f ) = X( f ) ∀ f ∈ F(M) (1)

DX(Y) = Q
(i)
k (X)Yk∂i, ∀X, Y ∈ T1

0 (M). (2)

The index (i) is enclosed in parentheses because, as will be shown, in general, it is not

a tensorial index. This means that the n2 quantities Q
(i)
k are not generally components of a

tensor field of type (1, 1) (this is possible but it is not relevant to the present discussion). The

quantities Q
(i)
j define a geometric object on M which is identified by their transformation

rules (to be determined).

It is easy to show that a linear derivation satisfies the following properties:

Qi
.sj(X + Y) = Qi

.sj(X) + Qi
.sj(Y)

Qi
.sj(αX) = αQi

.sj(X)

or, in an obvious notation,

D1
(X+Y)Z = D1

XZ + D1
YZ

D1
αXZ = αD1

XZ

all Z ∈ F1
0 (M).

From (1) and (2), we have the following results:

D∂j
xi = δi

j (3)

DX(∂k) = Q
(i)
k (X)∂i. (4)
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DX(dxi) = −Q
(i)
j dxj (5)

Using the above and applying the Leibnitz rule, one computes the derivative DXT of

an arbitrary tensor field T = T
i1 ...ir
j1 ...js

∂i1 ⊗ . . . ⊗ ∂ir ⊗ dxj1 ⊗ . . . ⊗ dxjs of type (r, s) defined in

the chart (U, φ):

(DXT)i1 ...ir

j1 ...js
= [Ti1 ...ir

j1 ...js ,k
Xk + Tk...ir

j1 ...js
Q
(i1)
k (X) + . . . + Ti1 ...k

j1 ...js
Q
(ir)
k (X)

−Ti1 ...ir

k...js
Q
(k)
j1

(X)− . . . − Ti1 ...ir

j1 ...k Q
(k)
js

(X)]∂i1
⊗ . . . ⊗ ∂ir

⊗ dxj1 ⊗ . . . ⊗ dxjs . (6)

3. The Transformation of the Quantities Q
(i)
k

The transformation of the basis vectors is ∂i′ = Ji
i′∂i, where Ji

i′ is the Jacobian. We compute

DX(∂i′) = DX(Ji
i′∂i) = DX(Ji

i′)∂i + Ji
i′DX(∂i) = Ji

i′ ,jX
j∂i + Ji

i′Q
(j)
i (X)∂j.

We define the transformed quantities by the following requirement:

DX(∂i′) = Q
(j′)
i′ (X)∂j′ = Q

(j′)
i′ (X)Ji

j′∂i.

Equating the two expressions of DX(∂i′) in the last two relations and using the fact

that X is arbitrary follows the transformation rule:

Q
(j′)
i′ (X) = J

j′

i

(
Ji
i′ ,kXk + J

j
i′Q

(i)
j (X)

)
(7)

Relation (7) defines the type of geometric object Q
(j)
i (X). We infer that the quantities

Q
(i)
(j)k

define a geometric object, which in general, is not a tensor field.

4. The Torsion Tensor and the Curvature Tensor of the Generic Derivative

We continue with the commutation of the first and the second derivatives of a general

derivative Q
(i)
k .

4.1. The Torsion Tensor

Consider the derivative with components Q
(i)
j and two vector fields V and W,

which define the derivations DV : (Vi, Q
(i)
j (V)) and DW : (Wi, Q

(i)
j (W)) (with the same

Q
(i)
j !). We consider the commutator (this corresponds to the property ∂x∂y = ∂y∂x of

partial derivative)

DVW − DWV.

We compute:

DVW − DWV = [Wi
,jV

j + Q
(i)
j (V)W j − Vi

,jW
j − Q

(i)
j (W)V j]∂i

= [W, V] + [Q
(i)
j (V)W j − Q

(i)
j (W)V j]∂i (8)

where [W, V] = [Wi
,jV

j − Vi
,jW

j]∂i is the Lie bracket of the vector fields V, W.

We define the tensor field of type (1, 2):

TD(V, W) = DVW − DWV − [V, W] (9)

which is called the torsion of the derivative D.
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In terms of the quantities Q
(i)
j (V), Q

(i)
j (W) from (8) and (9), we have

TD(V, W) = [Q
(i)
j (V)W j − Q

(i)
j (W)V j]∂i. (10)

4.2. The Curvature Tensor

We consider two vector fields V = Vi∂i, W = Wi∂i and the commutator (this is the

analog of the property of the partial derivative
∂2 f
∂x∂y

= ∂2 f
∂y∂x

):

DVDW − DWDV

Let U = Ui∂i be a third vector field. A rather long computation gives (see Appendix A):

(DVDW − DWDV)U=DVDWU − DWDVU = Ui
,j[V, W]j + Hi

jU
j∂i (11)

where

Hi
j = Qi

j(W),kVk − Qi
j(V),kWk + Qk

j (W)Qi
k(V)− Qk

j (V)Qi
k(W).

The derivative D[V,W] defined by the vector field [V, W] = (V jWi
,j − W jVi

,j)∂i =

[V, W]i∂i is

D[V,W]U = Ui
,j[V, W]j∂i + U jQi

j([V, W])∂i.

We define the geometric object

RD(V, W) = DVDW − DWDV − D[V,W] (12)

and obtain the general result:

RD(V, W)U = [Q
(i)
j (W),kVk − Q

(i)
j (V),kWk + Q

(k)
j (W)Q

(i)
k (V)− Q

(k)
j (V)Q

(i)
k (W)− Q

(i)
j ([V, W])]U j∂i. (13)

The geometric object RD(V, W) is a tensor of type (1,3), which is called the curvature

tensor of the derivation D.

5. Specific Derivatives

Every set of quantities Q
(i)
j that transform according to (7) defines a linear deriva-

tive over the chart (U, φ) of M. In the following subsections, we consider special linear

derivatives that play a major role in Geometry and Physics.

5.1. The Lie Derivative

The Lie derivative is the only derivative that is defined on a manifold without intro-

ducing an extra structure (equivalently geometric object). This is the reason that it is used

in the study of fundamental structures over M.

Consider a coordinate chart with coordinates xi and let the vector field X = Xi∂xi .

Define the quantities

Q
L(i)
j (X) = −Xi

,j (14)

so that

DL
X(∂j) = −Xi

,j∂i. (15)

In order the quantities Q
L(i)
j (X) to define a derivation on M, they must transform in

accordance to (7).
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To prove this, we note that because Xi are the components of a vector field, they

transform as follows:

Xi′ = Ji′

i Xi.

Using this, we find

Xi′

,j′ = (Ji′

i Xi),j′ = Ji′

i,j′X
i + Ji′

i Xi
,j′ = Ji′

i J
j
j′X

i
,j − Ji′

k Jk
j′ ,iX

i ⇒

(−Xi′

,j′) = Ji′

i J
j
j′(−Xi

,j) + Ji′

i Ji
j′ ,kXk

which is compatible with (7). Therefore, the quantities −Xi
,j define a derivative called the

Lie derivative with respect to the vector field X = Xi∂xi . We denote the Lie derivative as

DX = LX.

Using the general result (6), we write

LXT = [Ti1 ...ir
j1 ...js ,k

Xk − Tk...ir
j1 ...js

X
i1
,k − . . . − T

i1 ...k
j1 ...js

Xir
,k + T

i1 ...ir
k...js

Xk
,j1

+ . . . + T
i1 ...ir
j1 ...k Xk

,js
]∂i1 ⊗ . . . ⊗ ∂ir ⊗ dxj1 ⊗ . . . ⊗ dxjs . (16)

In order to compute the torsion tensor and the curvature tensor of the Lie derivative,

we use the general results of (10) and (13).

Concerning the torsion, we have

Ti
L(V, W) = Q

(i)
j (V)W j − Q

(i)
j (W)V j = −Vi

,jW
j + Wi

,jV
j = [W, V]i. (17)

that is, the torsion of the Lie derivative is the commutator of the involved vector fields.

Concerning the curvature of the Lie derivative, using (12) and (14) we find:

RL(X, Y)Z = LXLYZ − LYLXZ − L[X,Y]Z

= [X, [Y, Z]] + [Y, [Z, X]] + [Z,[X, Y]].

The rhs is zero according to the Jacobi identity. Therefore, the curvature of the Lie

derivative vanishes. This shows the deeper geometric meaning of the Jacobi identity.

The Lie derivative is used in the study of Lie symmetries of geometric objects (includ-

ing differential equations) [11–13].

5.2. The Covariant Derivative

The covariant derivative is a linear derivative defined in terms of the connection

coefficients Γi
jk as follows:

Q
∇(i)
j (X) = Γi

kjX
k. (18)

In order the quantities Q
∇(i)
j (X) to define a linear derivation, they must transform

according to (7). This requires that the functions Γi
jk must transform as follows:

Γ
j′

i′k′ = J
j′

i

(
Jk
k′ J

i
i′ ,k + Jk

k′ J
j
i′Γ

i
jk

)
. (19)

We denote the covariant derivative with respect to the vector field X by ∇X. For the

covariant derivative, we have the well-known results obtained directly from (6), (10)

and (13):

Ti
∇jk = Γi

kj − Γi
jk (20)

Ri
∇jmk = Γi

jk,m − Γi
jm,k + Γi

msΓs
kj − Γi

ksΓs
mj. (21)
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∇XT = (Ti1 ...ir
j1 ...js ,h + Tk...ir

j1 ...js
Γ

i1
hk + . . . − T

i1 ...ir
j1 ...k Γk

hjs
)Xh∂i1 ⊗ . . . ⊗ ∂ir ⊗ dxj1 ⊗ . . . ⊗ dxjs . (22)

The covariant derivative is used in the formulation of the dynamic equations, whereas

the Lie derivative is used in the study of symmetries of differential equations and numerous

other applications.

5.3. The Fermi Derivative

Consider a coordinate chart (U, φ) with coordinates xi and let the vector field X =

Xi∂xi . Suppose in (U, φ) , we define a derivation with components Q
(i)
j (X), and let Q

L(i)
j (X)

be the components of the Lie derivative in (U, φ) defined by X. Using the two derivatives,

one defines a new derivative, the Fermi derivative:

DF
X(∂i) = QF(j)

i(X)∂j, ∀X ∈ T1
0 (M) (23)

where the quantities, i.e., components, Q
F(i)
j (X) are given by the following formula:

QF(j)
i(X) = Q(j)

i(X) + Xsgsr(Q
(r)
t (X)− QL(r)

t(X))(gtjXi − δt
i X j). (24)

The Fermi derivative is a “higher-order linear derivative” because it is defined in

terms of pairs of other types of linear derivatives.

In order the Fermi derivative to be well defined, the quantities QF(j)
i(X) must trans-

form as in (7), that is, it must hold

QF(j)
i(X) = J

j
j′ J

i′

i QF(j)′
i′(X) + J

j
j′ J

j′

i,k′X
k′ . (25)

In Appendix B, it is shown that this is satisfied.

We have the obvious relations:

DF
X f = f,iX

i = X( f ), ∀ f ∈ F(M)

DF(xi) = xi
,jX

j = δi
jX

j = Xi

DF
X(∂k) =

[
Q(i)

k(X) + Xsgsr(Q
(r)
j − Q

L(r)
j )(gjiXk − δ

j
kXi)

]
∂i. (26)

DF(dxj) = −QF(j)
idxi. (27)

As an application and for comparison with the existing results, we compute the Fermi

derivative DF
X(Y) of the vector field Y = Yi∂i.

We set QL
st(X) = gsrQLr

t (X), and after a formal calculation (see Appendix C), we find

DF
X(Y) = DX(Y) + g(X, Y)DX(X)− g(Y, DX(X))X. (28)

This formula coincides with the definition given in p. 80 of [1] in the special case that

the derivation Q(j)
i is the Riemann covariant derivative. However, the present result holds

for a general linear derivative D and it is not restricted to the covariant derivative only

(e.g., [14–22]).

5.3.1. The Torsion of the Fermi Derivative

We have from relation (9)

TD(V, W) = DF
VW−DF

WV − [V, W] =[Qi
j(V)W j − Qi

j(W)V j]∂i.
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where V, W are vector fields. In index-free notation, we find

TDF (V, W) = DF
VW−DF

WV − [V, W]

= DV(W) + g(V, W)DV(V)− g(W, DV(V))V

− DW(V)− g(W, V)DW(W) + g(V, DW(W))W − [V, W]

= TD(V, W) + g(V, W)[DV(V)− DW(W)]+g(V, DW(W))W − g(W, DV(V))V.

We note that even if TD = 0, TDF ̸= 0, unless it holds that DV(V) = DW(W) = 0; that

is, the vector fields V, W are autoparallel in the derivation D.

5.3.2. The Curvature of the Fermi Derivative

In the case of the Fermi derivative, the general relation (12) gives:

RDF (V, W)U = [QF
j
i(W),kVk − QF

j
i(V),kWk + QF

j
k(W)QFi

k (V)− QFk
j (V)QFi

k (W)

− QFi
j ([V, W])]U j∂i

The detailed calculation in terms of RD(V, W)U is cumbersome and it is better to be

performed in each specific case.

6. The Fermi Derivative of the Lie and the Covariant Derivative

We consider the Fermi derivative defined by the Lie and the covariant derivative. For

the Lie derivative, the Fermi derivative reduces to the Lie derivative, as expected. For the

covariant derivative, we have Q∇(i)
k(X) = Γ

j
kiX

k and QL(i)
k(X) = −X

j
,i. Then, from (24),

we obtain the following:

QF(∇)(j)
i(X) = Γ

j
kiX

k + Xsgsr(Γ
r
ktX

k + Xr
,t)(gtjXi − δt

i X j)

= Xk
(

Γ
j
ki + XsXigsrgtjΓr

kt − XsX jgsrΓr
ki + XigkrgtjXr

,t − X jgkrXr
,i

)
.

The terms:

XkXsXigsrgtjΓr
kt + XkXigkrgtjXr

,t

= Xig
tj(XkXsgsrΓr

kt + XkgkrXr
,t)

= Xig
tjXsgsr(Xr

,t + XkΓr
kt) = Xig

tjXsgsrXr
|t

where Xr
|t

denotes the covariant derivative. The terms:

−XsXkX jgsrΓr
ki − XkX jgkrXr

,i

= −XsXkX jgsrΓr
ki − XsX jgsrXr

,i = −XsX jgsr(Xr
,i + Γr

ki)

= −XsX jgsrXr
|i.

Therefore, the components of the Fermi derivative of the covariant derivative are:

QF(∇)(j)
i(X) = XkΓ

j
ki + Xig

tjXsgsrXr
|t − XsX jgsrXr

|i = Xk
[
Γ

j
ki + gkr(Xig

tjXr
|t − X jXr

|i)
]

(29)

The general Formula (29) produces the result (28) when applied to the vector field Y.

The Fermi derivative of the covariant derivative has been considered extensively in

Gravitational Physics.
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7. The Fermi Derivative of the Fermi Derivative

The Fermi derivative is itself a linear derivative; therefore, it is possible to define

the Fermi derivative by using it as the second linear derivative. The determination of

the components QF2

X i
j of the Fermi derivative along the Fermi derivative is given by the

following expression:

QF2

i
j = QF

i
j + Xs(QF

st − QL
st)(gtjXi − δt

i X j)

where QF
i
j(X) = Qi

j(X) + Xs(Qst − QL
st)(gtjXi − δt

i X j). We compute (see Appendix D)

QF2

i
j = (2 + XrXr)Q

F
i
j − (1 + XrXr)Qi

j. (30)

We note that the Lie derivative cancels out.

It is evident that one may follow the same routine and introduce the QFm

i
j, where

m = 2, 3, 4, . . .

In the following in order to appreciate the above results, we consider a number

of applications.

8. Applications

8.1. The Poisson Derivative as a Lie Derivative

Consider a chart (U, φ) on a smooth 2n−dimensional manifold M with coordinates

{xi}. For every C∞ function f , we define a vector field Pi
f on M by the rule

Pi
f ≡ ωij ∂ f

∂xi
∂j (31)

where ωij is a constant tensor field of type (0, 2) (not necessarily antisymmetric!). The

Lie derivative in (U, φ) defined by the vector field P
µ
f is given by the quantities Q

µ
ν ( f ) ≡

−
∂P

µ
f

∂xν = ωµρ ∂2 f
∂xρ∂xν . This new Lie derivative is called the general Poisson derivative gener-

ated by f , or simply, the general Poisson derivative.

The general Poisson derivative of a smooth function h ∈ F(M) is computed as follows:

DPf
h = h,iP

i
f = ωij(x)h,i f,j = [h, f ]. (32)

Being a Lie derivative, the torsion of this derivative gives nothing new. However, the

vanishing of the curvature of the Lie derivative gives the Jacobi identity:

[[h, f ], g] + [[ f , g], f ] + [[g, f ], h] = 0. (33)

Two main possibilities arise. One is to assume that ωij is symmetric, and the other,

that ωij is antisymmetric. To our knowledge, the first case has not been considered in the

literature. The latter defines the well-known Poisson geometry and ωij defines a symplectic

structure on the manifold M.

If we specialize the manifold M to be the configuration space of a dynamic system with

the coordinates xi = pi, xn+i = qi i = 1, 2, . . . , n (= dim M) to be the canonical conjugate

pairs and define

ωij =

(
0 In

−In 0

)
(34)
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we recover the well-known result

DPf
h = (P

µ
f ∂µ)h = ωµν(ξ)

∂h

∂xµ

∂ f

∂xν
=

n

∑
i=1

[
∂h

∂qi

∂ f

∂pi
−

∂h

∂pi

∂ f

∂qi

]
= {h, f } (35)

and the subsequent Jacobi identity:

{ f , {g, h}}+ {g, {h. f }}+ {h, { f , g}} = 0. (36)

In order to compute the generalized Poisson derivative of a tensor field, one applies the

general Formula (16) of Lie derivative. For example, for a vector field V = Vµ ∂
∂xµ , one has

DPf
Vµ =




{Vµ, f } − f,(n+i)νVν, for µ = i

{Vµ, f }+ f,iνVν, for µ = n + i.
. (37)

8.2. The Fermi Derivative in a Metric Affine Space with Torsion and Metricity

Consider a 2D space M with coordinates {x1, x2} endowed with the Euclidean metric

δij and the covariant derivative with connection coefficients Γi
jk i, j = 1, 2, which are not all

zero. Because Γi
jk ̸= 0, this space is not Riemannian and, in general, has non-zero torsion

and metricity. Therefore, this case is not covered by the standard Riemannian approach. To

compute the components of the Fermi derivative, we use the general Formula (29). We find

QF(∇)(j)
i(X) = XkΓ

j
ki + Xig

tjXsgsrXr
|t − XsX jgsrXr

|i = Xk
[
Γ

j
ki + gkr(Xig

tjXr
|t − X jXr

|i)
]

(38)

Let us compute the quantities QF(∇)(j)
i(X), where X = ∂1, ∂2, assuming that

g(∂1, ∂2) = 0; that is, ∂1 is normal in the Euclidean metric to the vector ∂2. We note

that the components of ∂1 are δi
1; therefore,

QF(∇)(j)
i(∂1) = XkΓ

j
ki + Xig

tjXsgsrXr
|t − XsX jgsrXr

|i

= δk
1Γ

j
ki + Xig

tjXsgsr(Γ
r
mtX

m)− XsX jgsr(Γ
r
miX

m)

= Γ
j
1i + δ1iδ

tjδs
1δsr(Γ

r
mtδ

m
1 )− δs

1δ
j
1δsrΓr

miδ
m
1

= Γ
j
1i + δ1iδ

tjΓ1
1t − δ

j
1Γ1

1i.

From this, it follows that

QF(∇)(1)
1(∂1) = Γ1

11 + Γ1
11 − Γ1

11 = Γ1
11

QF(∇)(1)
2(∂1) = Γ1

12 + δ12δt1Γ1
t1 − Γ1

12 = 0

QF(∇)(2)
1(∂1) = Γ2

11 + δ11δt2Γ1
1t − δ2

1Γ1
11 = Γ2

11 + Γ1
12

QF(∇)(2)
2(∂1) = Γ2

12 + δ12δt2Γ1
t1 − δ2

1Γ1
21 = Γ2

12.

Concerning the vector D
F(∇)
∂1

(∂2), we have

D
F(∇)
∂1

(∂2) = Q
F(∇)(j)
2 (∂1)∂j

= QF(∇)(1)
2(∂1)∂1 + QF(∇)(2)

2(∂1)∂2

= Γ2
12∂2.

Working in a similar manner one computes the Fermi derivative of a general tensor field

over a non-Riemannian space, for example, in the spacetime of the Einstein–Cartan theory

or in non-Riemannian spacetimes of other alternative theories of gravity.
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8.3. The Freedman–Robertson–Walker Spacetime with Torsion

As a further application, we compute the Fermi derivative in the Freedman–Robertson–

Walker (FRW) spacetime with torsion. This spacetime has been considered in the litera-

ture [10], but not the Fermi derivative in this spacetime. We consider the standard FRW

spacetime metric

ds2 = −dt2 + R2(t)(dr2 + r2dΩ2) (39)

where {t, r, θ, φ} are coordinates and dΩ2 − dθ2 + sin2 θdφ2 is the 2-sphere. R(t) is the scale

factor. This spacetime has a high degree of symmetries, as follows:

a. It is conformally flat and therefore admits 1
2 (4 + 1)x(4 + 2) = 15 conformal

Killing vectors.

b. It satisfies the Cosmological Principle, which states that spacetime is 1 + 3 de-

composable by the gradient timelike Killing vector ∂t, whereas the 3-spaces normal to

the vector ∂t are 3D spacelike maximally symmetric spaces, which admit 1
2 3x(3 + 1) = 6

spacelike Killing vectors: three vectors for the homogeneity (translations) and three for the

isotropy (rotations).

The comoving observers in this model have 4-velocity ua = δa
t and the projection

tensor hab = gab + uaub projecting normal to these observers is given by the expression

hab = diag(
R2(t)

1 − kr2
, R2(t)r2, R2(t)r2 sin2 θ). (40)

In this spacetime, we assume that besides the metric, there is a torsion tensor field

Sa
bc which we require that satisfies the Cosmological Principle. This type of torsion is the

minimal requirement for the generalization of the standard FRW cosmological model. It

has been shown [23] that in this case, the torsion tensor Sa
bc must be of the form

Sa
bc = 2φ(x)ha

[buc] (41)

where φ(x) is a smooth function of the coordinates. It follows that in the coordinates

{t, r, θ, φ}, the non-zero components of Sa
bc are the S

µ
tµ=φ, where Greek indices take the

values 1, 2, 3 and correspond to the coordinates r, θ, φ, respectively.

In order to compute the Fermi derivative, we have to compute the connection coeffi-

cients. For that, it is helpful to recall the following well-known result.

Theorem 1. The connection coefficients Γi
jk in a (symmetric) metric space with metric gij(x) satisfy

the identity

Γi
jk = Γ̂a

bc + Ki
jk − ∆i

jk (42)

where the quantities Γ̂a
bc, Ki

jk, and ∆i
jk are defined as follows:

Γ̂a
bc =

1

2
gir(gjr,k + gkr,j − gjk,r) (Riemannian connection - Christofell symbols) (43)

Ki
jk = Si

jk + Skj
i + Sjk

i (Cartan’s contorsion tensor) (44)

∆i
jk =

1

2
gir(gjr|k + gkr|j − gjk|r) (Associated metricity tensor). (45)

gjr|k denotes covariant differentiation with respect to the index k. The quantities Si
jk are given by

the relation

Si
jk =

1

2
Ti

jk =
1

2
(Γi

jk − Γi
kj) (46)
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where the quantities Ti
jk are the components of the torsion tensor. Furthermore, the tensors Ki

jk, ∆i
jk

satisfy the index symmetries

Kijk = −Kjik (47)

and

∆i
jk = ∆i

kj. (48)

In a FRW spacetime with torsion given by (41), the Cartan’s contorsion tensor is

computed to be

Ka
bc = 4φ(δa

c ub − hbcua). (49)

Then, from Theorem 1, it follows that the connection coefficients are

Γa
bc = Γ̂a

bc + 4φ(δa
c ub − hbcua) (50)

where Γ̂a
bc are the Riemannian connection coefficients (Christofell symbols) given by (43).

We compute the Fermi derivative along the comoving observers with 4-velocity ua = δa
t .

The vanishing of this derivative defines the Fermi-transported (i.e., non-rotating) frames

for these observers in this spacetime.

The Fermi derivative defined by the covariant derivative is given by (29).

QF(∇)(j)
i(X) = Xk

[
Γ

j
ki + gkr(Xig

tjXr
|t − X jXr

|i)
]

Setting Xa = ua, we have

QF(∇)(j)
i(u) = uk

[
Γ

j
ki + gkr(uig

mjur
|m − ujur

|i)
]

where ur
|i
= ur

,i + Γr
siu

s =Γr
siu

s. Therefore,

QF(∇)(j)
i(u) = uk

[
Γ

j
ki + usgkl(uiΓ

l
smgmj − ujΓl

si)
]
. (51)

Replacing Γ
j
ki from (50) and using urur = −1, we find

QF(∇)(j)
i(u) = uk

[
Γ̂

j
ki + usgkl(uiΓ̂

l
smgmj − ujΓ̂l

si)
]
− 4φδ

j
i . (52)

Using ua = δa
t , this reduces to

QF(∇)(j)
i(u) = Γ̂

j
ti + gtl(uiΓ̂

l
tmgmj − ujΓ̂l

ti)− 4φδ
j
i

= Γ̂
j
ti − (uiΓ̂

t
tmgmj − ujΓ̂t

ti)− 4φδ
j
i (53)

In order to find the rotation of the radial direction along ua, we compute the Fermi derivative

of ∂r along ua. We have

QF(∇)(j)
i(u)(∂r) = QF(∇)(j)

r(u)∂j (54)

= QF(∇)(t)
r(u)∂t + QF(∇)(r)

r(u)∂r + QF(∇)(θ)
r(u)∂θ + QF(∇)(φ)

r(u)∂φ.

We compute from (53)

QF(∇)(t)
r(u) = 2Γ̂t

tr = 0

QF(∇)(r)
r(u) = Γ̂r

tr − 4φ = −4φ

QF(∇)(θ)
r(u) = Γ̂θ

tr = 0

QF(∇)(φ)
r(u) = Γ̂

φ
tr = 0
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Replacing in (54) we find:

QF(∇)(j)
i(u)(∂r) = −4φ∂r.

which implies that torsion induces the rotation of the radial direction. This associates

torsion with a kinematic phenomenon not with a dynamic field (spin), at least in the case

of the highly symmetric FRW spacetime.

9. The Distinct Role of Lie and the Covariant Derivative

As aforementioned, the role of the Lie derivative is to formulate the symmetries, i.e.,

invariance of geometric objects, whereas the main role of the covariant derivative is to

formulate the equations of a dynamical system and their first integrals. In this section, we

demonstrate how the two roles interact and lead to conditions whose solution makes the

determination of first integrals of the dynamical equations possible.

The dynamical equations of an autonomous conservative dynamical system are

q̈a = −Γa
bc q̇b q̇c − V,a (55)

where the potential V = V(q) and Γa
bc are the Riemann connection coefficients with respect

to the kinetic metric γab defined by the kinetic energy of the system. We set the velocity

ua ≡ q̇a and Equation (55) is written equivalently as

ua
;bub = −V,a. (56)

We consider the vector X = ξ(t)∂t + ηi(q)∂qi , which generates the point transformation

∆t = εξ(t) and ∆qi = εηi. A dot over a symbol indicates total derivative, for example,

η̇i =
∂ηi

∂t
+

∂ηi

∂qj
η̇ j.

Because the system is autonomous, the condition for X to be a Lie point symmetry of (56) is

Lη

(
ua

;bub + V,a
)
= 0 (57)

along solutions of (55).

We compute

εLηua = εua
,bηb − εηa

,bub = ua
,b∆qb − (∆qa)· = −ua(∆t)· = −εξ̇ua

Therefore,

Lηua = −ξ̇ua (58)

where we use the identity of the variational calculus

∆q̇a − (∆qa)· = −q̇a(∆t)·.

From the Ricci identity,

Lη⃗∇kT
i1 ...ir
j1 ...js

−∇kLη⃗T
i1 ...ir
j1 ...js

= Lη⃗

(
Γ

i1
ℓk

)
Tℓi2 ...ir

j1 j2 ...js
+ . . . + Lη⃗

(
Γ

ir
ℓk

)
T

i1 ...ir−1ℓ

j1 ...js−1 js

− Lη⃗

(
Γℓ

j1k

)
T

i1i2 ...ir
ℓj2 ...js

− . . . − Lη⃗

(
Γℓ

jsk

)
T

i1 ...ir−1ir
j1 ...js−1ℓ

(59)

we have

Lη(u
a
;b) = (Lηua);b + (LηΓa

bc)u
c.
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Then, (57), along solutions of (56), gives

0 = Lη

(
ua

;bub − V,a
)
= Lη

(
ua

;b

)
ub + ua

;bLη

(
ub
)
− Lη(V

,a)

= (Lηua);bub + (LηΓa
bc)u

buc − ξ̇ua
;bub − LηV,a

= (LηΓa
bc)u

buc − 2ξ̇;bub + ξ̇ua
;bub − LηV,a

= (LηΓa
bc)u

buc − 2φ,buaub − 2φua
;bub − 2φua

;bub − LηV,a

= [LηΓa
bc − 2ξ̇,bδa

c ]u
buc − LηV,a − 2ξ̇V,a.

This expression must be identically zero for all ua; therefore, each term for different powers

of ua must vanish. This gives the following necessary and sufficient conditions for (56) to

admit the Lie symmetry X:

LηV,a + 2ξ̇V,a = 0

LηΓi
jk = ξ̇,kδi

j + δi
k ξ̇,j

These conditions coincide with the conditions which are found if one applies the standard

Lie symmetry approach [11]. From the above, it follows that:

The Lie symmetry condition f or autonomous conservative dynamical systems is equivalent to

the Lie derivative of the dynamical equations.

From the second condition, it follows that the vector ηi∂qi is a projective collineation of

the kinetic metric with the projection function ξ̇. The first condition constrains the potential

V with the function ξ̇ and the projective vector ηi. A solution of this system of equations

can be found in many publications. Concerning the first integrals, they are the Noether

symmetries, which have been shown to coincide with the homothetic algebra (a subalgebra

of the projective algebra) of the kinetic metric [24].

10. Conclusions

The concept of a universal approach to linear derivatives of tensor algebra through the

introduction of the generic linear derivative offers a deeper understanding and profound

generalization of the notion of the concept of a derivative. The key points of this paper are

as follows:

a. The association of the generic linear derivative with a geometric object with compo-

nents Qj
(i).

b. The introduction of torsion and curvature tensors for all linear derivatives of tensor

algebra, not just for the covariant derivative as traditionally believed.

c. The definition of a specific linear derivative by the introduction of a specific set of

quantities Qj
(i), which transform according to (7).

The generic derivative approach has been applied to the main derivatives used in

practice, that is, the Lie derivative, the covariant derivative, and the Fermi derivative.

For each derivative, the following results were obtained:

Lie Derivative:

1. The Lie derivative has non-vanishing torsion.

2. The curvature of the Lie derivative vanishes due to the Jacobi identity.

3. The Poisson bracket is a manifestation of the Lie derivative. The Jacobi identity for

the Poisson bracket follows naturally from the vanishing of the curvature of the

Lie derivative.

Covariant Derivative:
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The covariant derivative involves the connection coefficients Q
(i)
j (X) = Γi

kjX
k, which

reduce to Christofell symbols in the case of the Riemannian derivative. The various

formulae of the latter follow without any extra calculation.

Fermi derivative:

The main contribution of the present work, apart from the introduction of the general

approach to derivation, is the Fermi derivative. This derivative is used in General Relativity

to define the propagation of a “non-rotating” orthonormal spatial frame along the world

line of an observer. In the standard literature, the Fermi derivative is defined in terms of

the (Riemannian) covariant derivative.

The Fermi derivative is a second-order linear derivative in the sense that it combines a

given derivative, which is not necessarily the covariant derivative, and the Lie derivative.

The Fermi derivative has both torsion and curvature. Furthermore, the Fermi derivative, be-

ing a linear derivative, can be iterated to produce a series of higher-order Fermi derivatives

for every given Fermi derivative.

Overall, the universal approach to derivation using the non-tensorial quantities Q
(i)
j

provides a versatile and powerful framework for constructing new geometric structures

on a manifold. The dynamic equations of the theories of Physics are mainly based on

the covariant derivative, whereas the Lie symmetries of these equations are mainly based

on the Lie derivative. Using the universal approach, it is possible that one could use the

present results and construct new theories of Physics. The same applies to Differential

Geometry, where already other types of derivative have been introduced.

One final point is the derivatives of non-tensorial geometric objects. These derivatives

are not—and probably cannot–be defined the way we used to define the linear derivative

of tensors. This is the case even for the tensor densities, which are geometric objects very

near to tensors [25]. For these derivatives, it makes no sense to define the torsion tensor

and the curvature tensor, which are fundamental in the development of physical theories.

However, as it is well known, these derivatives do play a major role in the studies of

Geometry and Physics.
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Appendix A

Proof of Relation (11). Consider two vector fields V = V i∂i and W = W i∂i , and

the commutator:

DVDW − DWDV
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Let U = Ui∂i be a third vector field. We compute

(DVDW − DWDV)U=DVDWU − DWDVU

= DV(U
i
,jW

j∂i + U jQi
j(W)∂i)− DW(Ui

,jV
j∂i + U jQi

j(V)∂i)

= Ui
,jkVkW j∂i + Ui

,jW
j
,kVk∂i + Ui

,jW
jQk

i (V)∂k

+U
j
,kVkQi

j(W)∂i+U jQi
j(W),kVk∂i + U jQi

j(W)Qk
i (V)∂k

− Ui
,jkWkV j∂i − Ui

,jV
j

,kWk∂i − Ui
,jV

jQk
i (W)∂k

−U
j
,kWkQi

j(V)∂i − U jQi
j(V),kWk∂i − U jQi

j(V)Qk
i (W)∂k

= Ui
,jW

j
,kVk∂i − Ui

,jV
j

,kWk∂i + U jQi
j(W),kVk∂i − U jQi

j(V),kWk∂i

+ U jQk
j (W)Qi

k(V)∂i − U jQk
j (V)Qi

k(W)∂i

= Ui
,j(V

kW
j
,k − WkV

j
,k)∂i + [Qi

j(W),kVk − Qi
j(V),kWk

+ Qk
j (W)Qi

k(V)− Qk
j (V)Qi

k(W)]U j∂i

= Ui
,j(V

kW
j
,k − WkV

j
,k)∂i + Hi

jU
j∂i

= Ui
,j[V, W]j + Hi

jU
j∂i.

where

Hi
j = Qi

j(W),kVk − Qi
j(V),kWk + Qk

j (W)Qi
k(V)− Qk

j (V)Qi
k(W).

Appendix B

Proof of (25). Note: in order to ease the notation, we omit the parentheses in the upper

index of Q(j)
i.

QFj
i = J

j
j′ J

i′

i Qj′
i′ + J

j
j′ J

j′

i,k′X
k′ + Xsgtr(Jr

r′ J
s′
s Qr′

s′ + Jr
r′ J

r′

s,k′X
k′

− Jr
l′ J

m′

s QLl′
m′ − Jr

l′ J
l′

s,k′X
k′)(gtjXi − δt

i X j)

= J
j
j′ J

i′

i Q
j′

i′ + J
j
j′ J

j′

i,k′X
k′ + Js

k′X
k′ Jt′

t Ja′
r gt′a′ J

r
r′ J

s′
s (Q

r′

s′ − QLr′
s′)(gtjXi − δt

i X j)

= J
j
j′ J

i′

i Q
j′

i′ + J
j
j′ J

j′

i,k′X
k′

+ Xs′ Jt′
t gt′r′(Q

r′

s′ − QLr′
s′)(Jt

k′ J
j
j′ g

k′ j′ Ji′

i Xi′ − Jt
k′ J

i′

i δk′

i′ J
j
j′X

j′)

= J
j
j′ J

i′

i Q
j′

i′ + J
j
j′ J

j′

i,k′X
k′ + Xs′ Jt′

t gt′r′ J
t
k′ J

j
j′ J

i′

i (Q
r′

s′ − QLr′
s′)(gk′ j′Xi′ − δk′

i′ X j′)

= J
j
j′ J

i′

i Q
j′

i′ + J
j
j′ J

j′

i,k′X
k′ + J

j
j′ J

i′

i Xs′ gk′r′(Q
r′

s′ − QLr′
s′)(gk′ j′Xi′ − δk′

i′ X j′)

= J
j
j′ J

i′

i [Qi′
j′ + Xs′ gs′r′(Q

r′

s′t′ − QLr′
s′t′)(gt′ j′Xi′ − δt′

i′ X
j′)] + J

j
j′ J

j′

i,k′X
k′

= J
j
j′ J

i′

i QFj′
i′ + J

j
j′ J

j′

i,k′X
k′ .
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Appendix C

Proof of (28). We set QL
st(X) = gsrQLr

t (X) and have

DF
X(Y) = DF

X(Y
i∂i)

= Yi
,jX

j∂i + Y jQF
j
i∂i

= Yi
,jX

j∂i + Y jQj
i∂i + Y jXs(Qst − QL

st)(gtiXj − δt
j X

i)∂i

= DX(Y) + Y jXsgtr(Qs
r − QL

s
r)(gtiXj − δt

j X
i)∂i

= DX(Y) + Y jXsgtr[Qs
r − (−Xr

,s)](gtiXj − δt
j X

i)∂i

= DX(Y) + Y jXsgtrQs
rgtiXj∂i + Y jXsgtrXr

,sgtiXj∂i

− Y jXsQs
rgtrδt

j X
i∂i − Y jXsgtrXr

,sδt
j X

i∂i

= DX(Y) + Y jXsQs
iXj∂i + Y jXsXi

,sXj∂i − Y jXsgjrQs
rX − Y jXsgjrXr

,sX

= DX(Y) + Y jXsQs
igjrXr∂i + Y jXsXi

,sgjrXr∂i − gjrY
j(XsXr

,s + XsQs
r)X

= DX(Y) + gjrY
jXr(XsQs

i∂i + XsXi
,s∂i)− gjrY

j(XsXr
,s + XsQs

r)X

= .D(Y) + g(X, Y)
[

Xs(Qs
i∂i + Xi

,s∂i)
]
− gjrY

j(XsXr
,s + XsQs

r)X

= DX(Y) + g(X, Y)DX(X)− gjrY
j(DXX)rX.

Appendix D

Proof of (30).

QF2

i
j(X) = QF

i
j + Xs(QF

st − QL
st)(gtjXi − δt

i X j)

= Qi
j + Xs(Qst − QL

st)(gtjXi − δt
i X j)

+ Xs[Qst + Xr(Qrk − QL
rk)(δ

k
t Xs − δk

s Xt)− QL
st](gtjXi − δt

i X j)

= Qi
j + Xs(gtjXi − δt

i X j)[2(Qst − QL
st)

+ XrQrtXs − XrQrsXt − XrQL
rtXs + XrQL

rsXt]

= Qi
j + 2Xs(Qst − QL

st)(gtjXi − δt
i X j) + XrXrgtjXiX

s(Qst − QL
st)

− XrXrδt
i X jXs(Qst − QL

st)

= Qi
j + 2Xs(Qst − QL

st)(gtjXi − δt
i X j) + XrXrXs(Qst − QL

st)(gtjXi − δt
i X j)

= Qi
j + (2 + XrXr)Xs(Qst − QL

st)(gtjXi − δt
i X j)

= Qi
j + (2 + XrXr)(Q

F
i
j − Qi

j)

= (2 + XrXr)Q
F

i
j − (2 + XrXr)Qi

j + Qi
j

= (2 + XrXr)Q
F

i
j − (1 + XrXr)Qi

j.
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