IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 72, NO. 3, MARCH 2025

301

Fault Detection and Diagnosis Software
of LHAASO

Hangchang Zhang™, Minhao Gu, and Shaoshuai Fan

Abstract— The Large High Altitude Air Shower Observatory
(LHAASO) is a mega-scale dual-task facility designed to study
cosmic rays and y-rays. Online computing system of LHAASO
supports its online operation and computation. Physical phe-
nomena such as cosmic rays occur unpredictably and therefore
require the online computing system to run uninterruptedly.
LHAASO is large and the environment is harsh, so the online
computing system is subject to failure. Once a system fails,
maintenance personnel are required to quickly analyze the
cause of the failure and repair it. The fault detection and
diagnosis software (FADD) is designed to quickly detect and
analyze system faults. The software implements comprehensive
monitoring of each component of LHAASO’s online computing
system (computing nodes, switches, and data flow software) and
collects real-time status information. When a fault occurs, FADD
can quickly analyze the cause of the fault and provide alarm
information to the on-call staff as soon as possible. In addition,
it can also analyze historical data within a specified period and
generate data reports as needed. FADD is designed to fully
consider the characteristics of large-scale high-energy physics
experiments and satisfy the requirements of high throughput and
high efficiency by using a distributed architecture. The software
consists of the following layers: information collection layer, data
analysis layer, and result layer, and contains metrics detection
software, fault monitoring module, fault diagnosis module, and
other functional modules. FADD has been applied to LHAASO
and can diagnose operational faults quickly and accurately,
helping to reduce the burden on maintenance personnel.

Index Terms— Fault detection, fault diagnosis, Large High
Altitude Air Shower Observatory (LHAASQO), monitoring data,
root cause.

I. INTRODUCTION

HE Large High Altitude Air Shower Observatory

(LHAASO) is a high-energy physics experiment that
aims to investigate the origins of high-energy cosmic rays,
as well as related research on cosmic evolution, high-energy
astrophysical phenomena, and dark matter [1]. It is installed
at 4410-m above sea level in Sichuan Province, China [2].
The online computing system for such experiments consists

Manuscript received 19 May 2024; revised 18 July 2024 and 29 August
2024; accepted 31 August 2024. Date of publication 5 September 2024;
date of current version 17 March 2025. This work was supported by the
State Key Laboratory of Particle Detection and Electronics under Grant
SKLPDE-ZZ7202414. (Corresponding author: Minhao Gu.)

The authors are with the Institute of High Energy Physics, CAS, Beijing
100049, China, also with the School of Nuclear Science and Technology,
University of Chinese Academy of Sciences, Beijing 100049, China, and
also with the State Key Laboratory of Particle Detection and Electron-
ics, Beijing 100049, China (e-mail: zhanghc@ihep.ac.cn; gumh@ihep.ac.cn;
fanss @ihep.ac.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNS.2024.3454806.

Digital Object Identifier 10.1109/TNS.2024.3454806

of a large distributed computing cluster. LHAASO’s online
computing system hardware consists of 170 computing nodes
and 400 network switches. During operation, around 200 pro-
cesses need to run simultaneously to achieve real-time data
processing at a rate of 3 GB/s.

One of the physical objectives of LHAASO is to detect
unpredictable phenomena such as gamma-ray bursts and cos-
mic rays, which have short detection windows [3]. This
imposes high stability requirements on the online system.
However, hardware or software failures in the online system
can lead to abnormal termination of experiments in practical
operation. When such terminations occur, the system generates
a large number of fault phenomena and logs, which often
require maintenance personnel to manually inspect the logs
of various subsystems to determine the cause of the fault and
repair it based on their experience. In some cases, manual
diagnosis can be time-consuming, leading to long experiment
downtime. Therefore, LHAASO needs a real-time fault moni-
toring and diagnostic system to monitor the operational status
of the system and promptly notify maintenance personnel of
any faults that occur.

The typical structure of this kind of a high-energy physics
experiment is illustrated in Fig. 1. The detector system con-
verts particle signals into electrical signals, which are then
transformed into digital signals by the electronics system and
sent to the online computing system in the form of data
packets [4]. The online computing system is responsible for
data acquisition, online processing, and storage. It sends valu-
able data to the offline system for preservation. LHAASO’s
online computing system is a large-scale distributed software
and hardware system. It is composed of data flow software,
computing nodes, and switches. The system monitors various
types of data generated by different subsystems and conducts
unified fault diagnosis, which poses a significant challenge.
In high-energy physics experiments, the data flow software
operates as a stream processing system, where data are pro-
cessed in time slices across various software components. It is
important to consider the mutual influence between software
system components when analyzing the causes of errors, as an
anomaly in one component can lead to abnormalities or errors
in the entire data flow.

Locating faults is based on comprehensive monitoring of the
online computing system, especially the state of the data flow
software. The software accurately detects the data flow status
by collecting the length of time that each data slice is being
processed by the data flow software. Node status and switch
status are monitored through parameter collectors distributed
at each node.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0009-3882-878X
https://orcid.org/0009-0009-5880-7388

302

Particle
Detectors]—»[FEEs J_. [Computing
Nodes

Dataflow
Softwares

-

—{Ofﬂine Analysis]

\,—

Online Computing
System

Fig. 1. Structure of the typical high-energy physics experiment.

The control and monitoring system of LHAASO imple-
mented the monitoring of data streaming software, web page
display, and basic data flow software’s auto-recovery function
by collecting information from Redis and Kafka [5]. We found
that the failures of online computing systems include both
hardware and software, and there are obvious dependencies
between the failures, so we decided to develop fault detection
and diagnosis software (FADD). From the beginning of the
design, FADD was positioned separately from other monitor-
ing software. The purpose of FADD is to discover the root
causes of failures based on the dependencies between the faults
when the online computing system (not only the data flow
software) fails. Thus, the core of FADD is fault diagnosis and
fault dependencies.

Currently, there are several fault analysis methods for
such systems, including analyzing metrics [6], mining log
files [7], [8], and tracking system executions [9]. This article
presents a software solution that includes monitoring metrics,
fault detection, and fault root cause analysis. To analyze the
root causes of faults, we propose a data structure based on
a directed acyclic graph, named fault directed acyclic graph
(Fault DAG).

The main contributions of this article are as follows.

1) Comprehensive monitoring of the software and hard-
ware implementation of the online computing system
of LHAASO was conducted.

2) An algorithm was implemented to analyze the funda-
mental causes of faults based on Fault DAG dependen-
cies, which is a data structure for analyzing fault causes
based on a directed acyclic graph.

3) The software has been applied at LHAASO, providing
assistance in experimental operations.

II. DESIGN OF THE SOFTWARE

The FADD collects data metrics from the online system’s
software and hardware, analyses them, identifies faults, and
determines their real cause based on causal relationships. The
software consists of several layers, including collect layer,
analysis layer, and result layer, as shown in Fig. 2.

The system architecture needs to consider the key points as
follows.

1) Comprehensive status data collection for the online com-

puting system instead of collecting logs. Unlike other
monitoring software, FADD does not collect text logs.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 72, NO. 3, MARCH 2025

We believe that the amount of data in text logs is too
large for subsequent analysis, and most of the logs or
error reporting information is also obtained by analyzing
the changes in the data, so a comprehensive collection
of data can be used instead of logs.

2) Small granularity monitoring of data flow software. Data
flow software is the software implementation of online
computing and the core of the online computing system.
We hope to realize the performance monitoring of each
component within the data flow software and also follow
up the study of data flow performance fluctuation caused
by other parts of the online computing system.

3) High throughput information collection and preserva-
tion. The scale of monitoring data can reach 100000
entries per second, with the annual storage exceeding the
TB level. The software needs to implement collection,
process, and preservation of data. From the adminis-
trative management of the experimental point of view,
the permanent preservation and regular trace-back of the
collected operational parameters are very important.

The collect layer collects operational metrics from various
components of the online computing system and consists of
a distributed information collection program, Monitor Agent,
and a management program, Monitor Master. By deploying
Monitor Agent in nodes and switches, it collects operational
metrics and statuses at regular intervals, and the collected data
are sent and saved to the database through Kafka, a messaging
middleware [10]. The management program manages the
collection process distributed in each node through HyperText
Transfer Protocol (HTTP). State collection of the data flow
software is achieved by adding probes to the software and
sending the timestamps of the data slices being processed at
different stages through Kafka.

The analysis layer provides the determination of faults and
root cause analysis of faults, which mainly consists of the
fault detection module and the root causes analysis module.
The data collected from the information collection layer into
the database will go through the fault detection module to
determine whether the parameters are within a reasonable
range. When the online computing system suddenly fails to
operate because of a component problem, a large number of
associated fault phenomena and alarms will be generated, and
the root causes analysis module will utilize automated methods
to find the root cause of the fault with the reference of the
expert database.

The result layer is responsible for human—computer inter-
action with the user, and its main functions include generating
alarms by various means when a fault occurs and a web-based
front-end interaction page for operation and maintenance
personnel.

III. IMPLEMENTATION OF THE SOFTWARE
A. Information Collection

The state information to be collected by the software
includes: CPU utilization and memory utilization occupied
by the online computing software, CPU temperature of each
computing device in the online computing system, switch port

ZHANG et al.: FAULT DETECTION AND DIAGNOSIS SOFTWARE OF LHAASO

Collect Layer

Agent

Analysis Layer

Expert Database

303

Result Layer

Agent

Agent

Fault Detection
Threshold/SMA

Root Causes
Analysis

Alerts: Email, Wechat, etc

M

Fig. 2. Structure of FADD.

Master

Distributed Process
Management Software

Agent
Monitoring Metrics
Capture Software

Database

Fig. 3. Implementation of fault detection module.

ON/OFF status, and performance (throughput rate and process-
ing latency) of the data flow software.

Metrics other than software performance are acquired by a
collection program called Monitor Agent. The Monitor Agent
is responsible for collecting information on node metrics
and switch metrics and sends the information periodically.
Through the modularization of monitoring metrics, the Mon-
itor Agent collects information including processes, disks,
CPUs, memory, and simple network management protocol
(SNMP). The Monitor Agent is deployed on various nodes that
need monitoring. Monitor Master is the management program
for Monitor Agent, responsible for the deployment of agents.
The relationship between the Monitor Agent and the Monitor
Master is shown in Fig. 3.

How to collect and analyze the software performance of
online computing software is a key point of FADD, and
the implementation of this part can be seen in Fig. 4.
LHAASO’s online computing software is a stream process-
ing, which includes data readout, assembly, processing, and

Web

storage. A performance change in one component may cause
anomalies or errors in the whole flow. Data are read from
the electronics and segmented into time fragments (TFs)
with unique time fragment IDs (TFIDs) based on absolute
timestamps. TFIDs remain constant during processing. For
such a stream processing system, performance is evaluated
using two metrics: latency and throughput. Latency is the time
elapsed from the start of a TF to the completion of processing
in a component. Throughput is the number of TFs processed
by a component per second. Latency and throughput cannot
be obtained directly by FADD, but need to be counted and
calculated.

By adding probe code to the software, the software sends
all the TFIDs and timestamps to FADD’s message structure
via Kafka after processing the data slices in different stages,
so that the timestamps of the data slices in each stage are
obtained. By parsing the timestamps of the same TFIDs,
the time consumed by the data slice in different phases,
i.e., the latency of different phases, is obtained. The throughput
of the software is calculated by analyzing the number of data
slices processed per second in each stage.

The detection time interval also needs to be discussed. If the
interval is too short, the amount of data will surge and bring
in a lot of interfering information, making subsequent data
analysis more difficult. If the interval is too long, it will
result in some fault information not being detected. After the
study, the collected parameter information and configuration
information are shown in Table I.

As discussed in Section II, the software has to collect data
at a high rate and also for archiving. For that purpose, we have
implemented a three-level message structure based on the
messaging middleware Kafka, as shown in Fig. 5. The first
level is the message directly from the data flow software.
Because of the high data rate, it cannot be saved to the

304

TFID Information Collected TFID-RO-Timestamp

TFID-DA-Timestamp

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 72, NO. 3, MARCH 2025

TFID-DP-Timestamp TFID-DS-Timestamp

Time Time Time Time

Fragment Fragment Fragment Fragment

Generated Builded Processed Strored
r——-.______—.-____——_.-___—___-_——
I |
Dataflow of LHAASO 1 Readout »| Data Assemble > Data Process » Data Store 1
|

1

|

Fig. 4. Collecting TFID information from dataflow of LHAASO.

TABLE I
TIME INTERVALS SETTINGS OF METRICS

Metrics Source Time Interval (sec-
ond)

CPU utilization Software 5

Memory utilization Software 5

CPU temperature Computing Node 5

Switch Port Connec- | Switch 5

tion

Throughput rate Software -

Processing latency Software -

database in real time, so the second-level message structure
is responsible for aggregating the data from the first level in
1-s units. In addition, node parameters and switch parameters
can be sent directly to the second level because the message
rate is not high. All the messages of the second level will be
saved in the database. The fault detection module will find
the exceptions and faults from the database and save them in
a new table for easy interaction with the user. This part of the
analysis will be done at the third level.

FADD uses Cassandra, a distributed NoSQL database man-
agement system, as a permanent data store [12]. Cassandra
can manage and manipulate large amounts of data, as well
as being highly available and fault-tolerant. FADD deploys
Cassandra using three nodes, which is guaranteed to work
if one node fails. MongoDB was chosen for the temporary
database because of its variable table structure and simple user
interface that makes it easy to use.

B. Fault Detection

The software categorizes outliers that deviate from the
normal range into two categories: exceptions and faults.
Exceptions are data that are out of the standard range but
the data flow software can still consistently produce data that
is usable for physical analysis. Faults, on the other hand, are
data that are out of the standard range and cause the online
computing system to operate abnormally or even interrupt.
Exceptions have the potential to evolve into faults. Exceptions
and faults are detected by the fault detection module, but
the discussion in this article focuses on faults. In order to
determine faults in time, it is necessary to establish evaluation
judgment criteria. By choosing different evaluation criteria for
different hardware or software, a systematic evaluation system
can be formed.

A threshold-based approach is utilized to monitor the tem-
perature of the CPU and the status of the switch. Upper and

lower limits are set for the parameters, and when the
parameters exceed the preset thresholds, they are considered
abnormal. The accuracy of this method depends on the rea-
sonable setting of the thresholds.

To effectively identify and evaluate the fluctuation of
parameters, we use a simple moving average (SMA) analysis
method [11]. The formula for calculating the simple moving
average is given as follows:

z;’:n—L Xi
=7 1

The parameter value at the ith time point is represented
by X;. The window size of the moving average, which is the
number of time points considered, is denoted by L, and n
represents the current time point. The simple moving average
can smooth short-term fluctuations, reflecting the average
utilization over a period of time. However, it can also be
used to calculate the ratio of the current value to the previous
window’s SMA to identify exceptional fluctuations. We use the
SMA method to evaluate CPU utilization, memory utilization,
and software performance.

In operation, some details of fault detection have to be
considered. The first is to avoid false alarms, which is why we
are saving the data in the database to consider the whole rather
than using stream processing to make real-time judgments.
We found that some metrics will occasionally produce data
out-of-standard range, but in fact, it may be a collection error
rather than a real error report. In the real application, only
continuous out-of-standard value will be considered as fault.
Second, we use stream processing to judge whether the data
flow software is working properly in real time. The data flow
is considered to have stopped working when no messages from
it are received by FADD within 1 s. The algorithm is simple,
consumes little computational resources, and works efficiently
and quickly. Immediately after determining that the data flow
has stopped, a fault diagnosis is initiated to reduce the time
spent on fault analysis.

SMA =

C. Fault Diagnosis

When the online computing software fails to operate nor-
mally, it is crucial to rapidly and accurately analyze the root
cause of the fault. The root causes analysis module in the
analysis layer of FADD has designed and implemented a fault
analysis method based on a directed acyclic graph, called Fault
DAG, aimed at locating the root cause of faults.

ZHANG et al.: FAULT DETECTION AND DIAGNOSIS SOFTWARE OF LHAASO

Switch

— — Message
ata Flow Streaming
Monitoring | [ouapces —

Ouasiore |

Node Metrics
Monitoring

Fig. 5. Three-level message design.

The analysis of faults can have different scopes. If the scope
is too fine, for example, a specific computing node’s CPU
temperature is too high, it can be challenging for operations
personnel to determine what caused the high CPU temperature.
If the scope is too coarse, it may not provide enough informa-
tion for operations personnel to recover from the fault. FADD,
informed by LHAASQO'’s operations, targets the analysis on the
nexus of component failure and fault type, clearly delineating
the component and fault for personnel.

The root causes analysis module acts as an expert system,
consisting of system structure graph, fault dependence graph,
and Fault DAG, as shown in Fig. 6. When a fault occurs,
the fault detection module identifies the failure component
and failure phenomenon, combining this information with the
system structure graph to form the Fault DAG. By algorithmi-
cally analyzing the fault dependence graph designed based on
operational experts’ experience, the root cause of the fault is
determined and informed to operations personnel. Operations
personnel use the system notification as a reference for fault
resolution.

An online computing system contains a large number
of various types of components, such as computing nodes,
switches, and software processes. These components have
complex dependence relationships with each other, which
mainly contain calling relationships and deployment relation-
ships. The calling relationship is mainly between software,
and in LHAASO, it mainly refers to the process relation-
ship during the data flow process. Deployment relationship
refers to the connection between hardware and hardware or
between hardware and software, for example, a computing
node is connected to a port of a switch, or a process is
deployed on a certain computing node. The system structure
graph is constructed based on the deployment relationship and
calling relationship of the online computing system, and the
algorithm for constructing the system structure graph is as
follows.

1) Form three sets of computing nodes, switches, and

software processes, denoted as N, S, and P, respectively.

2) Define a directed graph G = (V, E), where V is the set

of vertices and E is the set of directed edges.
a) V=PUNUS, which means V includes all soft-
ware processes, computing nodes, and switches.

Metrics
Monitoring
Readout —_—

305

Fault Detection I \

Save Module save

Batch Computing
[
Permanent

Storage

P Y
Storage Faults

Root Causes
Analysis
Module

b) E is a subset that contains directed edges of the
form (N;, P;) and (S, Ny).

3) The rules for adding directed edges are as follows.

a) For all P, € P, N; € N, if software P; runs on
computing node N;, then (N;, P;) € E.

b) Forall Ny € N, §, € §, if there is a network cable
connecting computing node N, to switch S,, then
(Sy. Ny) € E.

During the running of the online computing system, the
Fault DAG is formed by combining the anomalies with the sys-
tem structure graph. The process of generating the Fault DAG
is as follows: there is a system structure graph S = (V, E),
with V denoted as the set of nodes and E denoted as the set
of directed edges. If there is a fault phenomenon, A occurs
in component B € V and the event A occurs at time ¢.
Define the Fault DAG F = (V', E’), where V' = V U A and
E’ = EU(A, B,t). That is, a new node A and a directed
edge pointing from A to B with weight ¢ are added to the
graph S. The process of adding nodes and edges cuts off when
the online computing system stops working.

The fault dependence graph is compiled from the duty logs
of the LHAASO online computing system over the last few
years and from the experience of operation and maintenance
specialists. The nodes of the fault dependence graph consist
of system components and the corresponding fault phenomena
of the system components, and the directed edges are the
reflection of the fault dependence relationships. For instance,
a case that frequently causes system operational anomalies
is a computing node responsible for data processing with a
high CPU temperature (the deeper cause being the failure
of the rack cooling system in which the computing node
is located, but this is not considered in FADD). Based on
this, the fault dependence graph for this case is designed
as shown in Fig. 7, which reflects the failure dependence
that causes the online computing system to cease operation.
In implementation, FADD store graph data by saving node and
edge information in the database.

When a system failure occurs, the system combines the
real-time generated fault phenomena with the fault nodes to
construct a real-time Fault DAG until the online comput-
ing system fails to work. Subsequently, this Fault DAG is

306

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 72, NO. 3, MARCH 2025

r- Root Causes

Analysis module

|
! |
1
. . | System Structure |
: Graph 1
! |
! |
! |
! |
! |
! |
] 1
Fault Detection | Trigger, .___|Fault Dependency| |
Module 99 1 Fault DAG €—Analysis Graph :
1
|
[A :
! : |
! |
H Design and Update
Operation
Personnel

Fig. 6. Workflow of fault diagnosis.

CPU
Temperature
High in Data

Processing
node.

l

Throughput of
data processing
decrease

l

Memory
overflow of Data
Readout nodes

sy\stem Faiyd‘

Fig. 7. Example of a fault dependence graph.

algorithmically matched with the fault dependence graph to
determine the root cause of the fault occurrence. The algorithm
utilizes a priority queue, a data structure that arranges elements
according to specific priorities (in FADD, the hierarchy and
time of the nodes). In this context, each “element” corresponds

to a fault phenomenon, which is also the node in Fault DAG.
By updating and maintaining the priority queue, it is possible
to obtain the node with the deepest hierarchy and earliest time
that matches the fault dependence graph within the fault DAG.

Finally, the root causes analysis module outputs which
component failed and what kind of failure it was. This happens
within a matter of seconds.

IV. APPLICATION IN LHAASO
A. Notification and Display

Notifications are sent in conjunction with LHAASO’s actual
on-call requirements. Alarms occur when errors are detected
by the monitoring module. The online computing system at
LHAASO is tightly interconnected, and the faults in a single
component can cause many correlated error reports, so also
considering their independence from each other, only the
important alarms are reported. After the root causes analysis
module determines the root cause of the fault, the system gives
a notification of which factor of which component caused the
fault. These notifications make it easy for the duty personnel to
judge the phenomenon and the root cause of the fault. Alarms
are immediately triggered when the data flow stops working,
and they are retracted if the fault is recovered and the state of
the data flow returns to normal.

In terms of notifications, we have developed a generic
notification module called message publisher interface shown

ZHANG et al.: FAULT DETECTION AND DIAGNOSIS SOFTWARE OF LHAASO

Notification
| Web E
E Wechat
nalysis Resutts| M@SSAGE H i
Diroult " Publisher ; :
9 Interface ! !
> Email .
Kafka Database
Fig. 8. Message publisher interface.

05/10/202407:19 PM

Fig. 9. Web page of FADD.

in Fig. 8, which supports alerting by multiple tools, including
web, WeChat, and email. In addition, for archiving purposes,
the module also sends and saves the messages to the database
using Kafka at the same time.

The software’s user interface is designed for on-duty per-
sonnel, featuring a multidimensional display of monitoring
information and status information. The page mainly includes
configuration for selecting and displaying dimensions, includ-
ing source, host names, and metrics to be displayed. After the
selection is completed, the page will draw the charts. The web
page is shown in Fig. 9.

B. Reports

Regular operation reports are an important requirement for
experiment operation management. The operation report of
LHAASO includes on-duty time, on-duty personnel, online
computing system operation status, and start and end times
of operation, especially records of faults occurring during
operation and their repair. This software is well-suited to meet
such requirements. First, the software can accurately determine
the start and end times of each operation by analyzing the
occurrence of time slices in the data flow. Second, it can help
maintenance personnel provide fault information. In addition,
because the collected data are permanently stored, it is suitable
for retrospective analysis at different timescales, statistical
analysis of fault frequency, and other information.

307

V. FUTURE WORK

FADD is still under development and there are many areas
where FADD needs to be further developed or researched.

In terms of monitoring, we plan to expand the scope of
monitoring. By collecting data on White Rabbit switches of
the time synchronization system, the power supply system,
detector status, and other aspects, we can achieve the moni-
toring of the entire LHAASO experimental system, not just the
online computing system. This will provide valuable assistance
for comprehensive fault analysis.

Improvements in fault monitoring and diagnostics are still
possible. The first is the use of unsupervised modeling to
monitor anomalies. Our current choice of mathematical statis-
tics is a reasonable method when the sample size is small.
However, with FADD continuously collecting information and
processing it, we can train the model using enough samples
to make the process of monitoring it smarter. Second, failure
root cause analysis can be aided by the use of neural networks.
We have already noted the advantages of graph as a data
structure in terms of dependence representation. Utilizing
neural networks to assist expert systems is an approach worth
trying in the future.

VI. CONCLUSION

The online computing system of LHAASO guarantees the
operation of the experiment, data acquisition, and online
computing. When the online computing system of LHAASO
fails, it is an urgent need in the operation of LHAASO to
analyze it quickly and give the root cause of the failure to the
duty personnel.

From the actual on-duty needs of LHAASO, we designed
and developed the FADD. The goal of FADD software is
to quickly analyze the root causes of faults in the event of
a failure by comprehensively monitoring the hardware and
software of the online computing system. One of the highlights
of FADD is that it captures the operational quality of the
online computing software in a more detailed way, which
allows for in-depth performance study and monitoring of the
data flow software. In addition, by deploying the collection
program in a distributed cluster, additional states of the hard-
ware and software can be monitored. The collected data are
permanently stored in the distributed database Cassandra. The
status parameters are analyzed using two methods, threshold,
and SMA, to determine whether a failure has occurred. We use
a continuously running stream processing to determine if
the data flow software is abnormal, and in the event of an
abnormality, the fault diagnosis module automatically starts
the analysis.

We use directed acyclic graphs to describe the system, the
system’s fault relationships, and the dependencies between
faults, forming a system structure graph, a Fault DAG, and
a fault dependence graph, respectively. The system structure
graph reflects the interdependencies between hardware and
software of the online computing system; the Fault DAG
reflects the dependencies between components and their faults;
and the fault dependence graph reflects the experience of the
experts. The root cause of a failure can be determined using

308

Fault DAG and fault dependence graph. The results are notified
to the on-duty personnel in a web visualization and a variety
of ways.

At present, FADD has been applied in the operation of
LHAASO. We believe the software can effectively reduce the
time of personnel to analyze the causes of faults and reduce the
burden of the duty personnel of the online computing system
of LHAASO.

REFERENCES

[1]1 C. Zhen et al., “Introduction to large high altitude air shower observatory
(LHAASO),” Chin. Astron. Astrophys., vol. 43, no. 4, pp. 457478,
Oct. 2019, doi: 10.1016/j.chinastron.2019.11.001.

[2] L. Collaboration, “An ultrahigh-energy y-ray bubble powered by a
super PeVatron,” Sci. Bull., vol. 69, no. 4, pp. 449457, Feb. 2024, doi:
10.1016/j.5¢ib.2023.12.040.

[3] The LHAASO Collaboration, “LHAASO collaboration. Very high-
energy gamma-ray emission beyond 10 TeV from GRB 221009A,”
Sci. Adv., vol. 9, no. 46, Nov. 2023, Art. no. eadj2778, doi: 10.1126/
sciadv.adj2778.

[4] X. Lu, M. Gu, and K. Zhu, “Online real-time distributed data process
of LHAASO ground shower particle array,” Nucl. Techn., vol. 43,
no. 4, pp. 76-84, Apr. 2020, doi: 10.11889/j.0253-3219.2020.hjs.43.
040402.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 72, NO. 3, MARCH 2025

[51 Z. Yu, K. Zhu, M. Gu, F. Li, and M. Zhang, “Control and monitoring
software of LHAASO DAQ,” Radiat. Detection Technol. Methods, vol. 6,
no. 2, pp. 227-233, Jun. 2022, doi: 10.1007/s41605-022-00327-3.

[6] H. Wang et al., “GRANO: Interactive graph-based root cause analysis for
cloud-native distributed data platform,” Proc. VLDB Endowment, vol. 12,
no. 12, pp. 1942-1945, Aug. 2019, doi: 10.14778/3352063.3352105.

[7]1 A. Kazarov, G. L. Miotto, and L. Magnoni, “The AAL project: Auto-
mated monitoring and intelligent analysis for the ATLAS data taking
infrastructure,” J. Phys., Conf. Ser., vol. 368, Jun. 2012, Art. no. 012004,
doi: 10.1088/1742-6596/368/1/012004.

[8] P. Liu et al., “FluxRank: A widely-deployable framework to automati-
cally localizing root cause machines for software service failure mitiga-
tion,” in Proc. IEEE 30th Int. Symp. Softw. Rel. Eng. (ISSRE), Berlin,
Germany, Oct. 2019, pp. 35-46, doi: 10.1109/ISSRE.2019.00014.

[91 M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “AutoMAP:
Diagnose your microservice-based web applications automatically,” in
Proc. Web Conf., Apr. 2020, pp. 246-258.

[10] M. Raza, J. Tahir, C. Doblander, R. Mayer, and H.-A. Jacobsen,
“Benchmarking apache Kafka under network faults,” in Proc. 22nd
Int. Middleware Conf. Demos Posters, vol. 9, New York, NY, USA,
Dec. 2021, pp. 5-7, doi: 10.1145/3491086.3492470.

[11] W. Mu, A. Zhang, W. Gao, and X. Huo, “Application of ARIMA
model in fault diagnosis of TEP” in Proc. IEEE 9th Data Driven
Control Learn. Syst. Conf. (DDCLS), Nov. 2020, pp. 393-398, doi:
10.1109/DDCLS49620.2020.9275054.

[12] J. Carpenter and E. Hewitt, Cassandra:
Sebastopol, CA, USA: OReilly Media, 2020.

The Definitive Guide.

http://dx.doi.org/10.1016/j.chinastron.2019.11.001
http://dx.doi.org/10.1016/j.scib.2023.12.040
http://dx.doi.org/10.1126/sciadv.adj2778
http://dx.doi.org/10.1126/sciadv.adj2778
http://dx.doi.org/10.1126/sciadv.adj2778
http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.040402
http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.040402
http://dx.doi.org/10.11889/j.0253-3219.2020.hjs.43.040402
http://dx.doi.org/10.1007/s41605-022-00327-3
http://dx.doi.org/10.14778/3352063.3352105
http://dx.doi.org/10.1088/1742-6596/368/1/012004
http://dx.doi.org/10.1109/ISSRE.2019.00014
http://dx.doi.org/10.1145/3491086.3492470
http://dx.doi.org/10.1109/DDCLS49620.2020.9275054

