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Resumo

Nesse trabalho calculamos correções para a constante de acoplamento do modelo
NJL na presença de um campo magnético uniforme. Começando com a lagrangiana do
modelo de Nambu-Jona-Lasinio acoplada com um campo magnético externo, separamos
os campos de quarks em duas componentes: uma correspondendo aos quarks que con-
densam e outra correspondendo às quase-partículas interagentes. Integrando a primeira
componente, uma ação efetiva em termos dos quarks interagentes é obtida. Em seguida,
expandimos o determinante em termos das correntes de quarks e mostramos que o termo
de primeira ordem produz uma correção para as massas dos quarks dada pela equação do
gap. Os valores obtidos para as massas dos quarks constituintes aumentam com o campo
magnético, o que sinaliza o aprimoramento da quebra de simetria quiral pelo campo ex-
terno e, portanto, mostrando que o sistema exibe catálise magnética. O termo de segunda
ordem da expansão do determinante produz uma correção para a constante de acopla-
mento do modelo NJL que decresce com o campo magnético para as interações escalares
e cresce com o campo magnético para as pseudoescalares. Em seguida consideramos o
modelo NJL com os acoplamentos dependentes do sabor e de B obtidos da polarização
do vácuo e calculamos as massas dos quarks e dos mésons. Enquanto os acoplamentos
escalares parecem melhorar a conciliação com os resultados da rede para as massas dos
quarks, o mesmo não pode ser dito sobre os acoplamentos pseudoescalares que alteram
as massas dos mésons de uma maneira diferente daquela conhecida na literatura devido
a seu comportamento com o campo aplicado.

Palavras - chave: Nambu-Jona-Lasinio, Campo magnético, Catálise magnética, Acopla-
mento dependente do campo magnético.



Abstract

In this work we calculate corrections to the NJL model coupling constant in the
presence of a uniform magnetic field. Starting with the Nambu-Jona-Lasinio Lagrangian
coupled with an external magnetic field, we separate the quark field into two components:
one corresponding to the condensed quarks and the other corresponding to the interacting
quasiparticle quarks. By integrating out the former, an effective action in terms of the
interacting quarks is obtained. We then expand the quark determinant in terms of the
quark currents and show that the first-order term provides a correction to the quark masses
given by the gap equation. The values obtained for the constituent quark masses increase
with the magnetic field, which signals the enhancement of chiral symmetry breaking by
the external field and therefore showing that the system exhibits magnetic catalysis.
The second-order term of the quark determinant expansion provides a correction to the
NJL coupling constant, which decreases with increasing magnetic field for the scalar
interactions and increases with increasing magnetic field for the pseudoscalar ones. We
then consider a NJL model with the flavor- and B-dependent couplings obtained from
vacuum polarization and compute quark and meson masses. While the scalar couplings
seem to improve the conciliation with lattice results for the quark masses, the same cannot
be said about the pseudoscalar couplings which alters the pseudoscalar meson masses in
a different way than what is known in the literature due to its behavior with the applied
field.

Key - words: Nambu-Jona-Lasinio, Magnetic field, Magnetic catalysis, Magnetic field
dependent coupling.
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Notations and conventions

We will work in natural units, where

ℏ = c = 1.

Here ℏ is Planck constant divided by 2π and c is the speed of light. With our choice of
units, we have

[length] = [time] = [energy]−1 = [mass]−1,

where the bracket refers to the unit of the quantity inside it.
The metric tensor that we use has sign convention

gµν =


1

−1
−1

−1

,

with Greek indices running over 0, 1, 2, 3. Roman indices, i, j, etc., run over 1, 2, 3.
Repeated indices are summed unless said otherwise. Contractions with the Dirac matrices
γµ will sometimes be denoted by the Feynman slash,

/p = γµpµ.
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Introduction

In the past years, the properties of strongly interacting magnetized matter have
been attracting a lot of attention. The complicated nature of quantum chromodynamics
(QCD) inspires the investigation of this theory under external conditions which provide
a controllable dynamics [1, 2]. An applied magnetic field is one example of such external
parameters and one which is relevant to many applications. Magnetic fields play an
important role in physical systems such as noncentral heavy ion collisions, neutron stars
and the early universe [3]. In heavy ion collisions, for example, the magnetic field produced
can be of the order of eB ∼ 15m2

π for LHC [4], where e is the proton electric charge, B is
the magnetic field strength and mπ ≃ 135 MeV is the π0 meson mass. Such value of the
magnetic field is strong enough to influence the strongly interacting matter significantly
[1].

One very important property of QCD is chiral symmetry breaking, for which
the chiral condensate

〈
ψ̄ψ

〉
is an order parameter. In the theory of strong interactions,

dynamical breaking of chiral symmetry leads to the definition of massive constituent
quarks which are responsible for most part of the hadron masses, as described by the
constituent quark model [5].

It has been established that an applied magnetic field has a tendency to enhance
spin-zero fermion-antifermion condensates, which are associated with the breaking of
global symmetries and lead to a dynamical generation of masses [6, 7]. This mechanism
is called magnetic catalysis [6, 8]. It is a model-independent effect since its essence is the
dimensional reduction in the dynamics of fermion pairing in a magnetic field. In fact, a
constant magnetic field was shown to be a strong catalyst of dynamical chiral symmetry
breaking even at the weakest attractive interaction between fermions [7].

Serving as a low energy effective theory for QCD, the Nambu-Jona-Lasinio (NJL)
model [9, 10] is excellent for describing the effects of the approximate chiral symmetry
and its breaking to generate the dynamical quark masses [5, 11, 12]. This makes the
model great for giving a clear illustration of the general effect that is magnetic catalysis.
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Additionally, the NJL model successfully describes meson properties allowing us to study
the effects of the magnetic field on the masses of hadrons, for example.

The NJL model is one of the many approaches to understand the effects of
a magnetic field on strong interactions. Particularly, the structure of the QCD phase
diagram in a magnetic field is a topic that have been receiving increasing attention,
both in effective models predictions and lattice calculations [3]. While effective models
exhibiting the magnetic catalysis phenomenon predict that the critical temperature
for chiral symmetry restoration should increase with B, lattice simulations support its
decrease with increasing magnetic field strength [13, 14]. This latter effect is known as
inverse magnetic catalysis.

It seems like this contradiction between effective models and lattice predictions
lies in the fact that the couplings in those models are fixed and independent of the
applied magnetic field, which is not the case for QCD [2, 15, 16]. It has been established
that the lattice results can be reproduced by the NJL model, in particular, if the coupling
constant of the theory decreases with both the magnetic field strength and the temperature
[16, 17]. Particularly, a B-dependent effective coupling in the NJL model has been shown
to reproduce results in good agreement with lattice QCD simulations [18, 19, 20, 21].

In this work, our main goal is to obtain a mechanism for which the NJL coupling
acquires a B-dependence. This will be done by investigating vacuum polarization effects
in the presence of a strong magnetic field [22, 23], like it was done in Ref. [24] for the
weak magnetic field case. Consequently, one may expect to obtain effective B-dependent
couplings that receive flavor-dependent contributions [25] since quarks have different
masses and electric charges, and thus may respond to the applied field with different
intensities. The U(3) NJL Lagrangian minimally coupled with an Abelian gauge field,
namely a uniform magnetic field in the z−direction, B = Bêz, will be our departure
point. Working at zero temperature, we split the quark field bilinears into one component
that condenses and another for the interacting quarks. We then integrate out the former
and obtain an effective action in terms of interacting quark fields [22]. Then, the quark
determinant can be expanded in terms of the quark field bilinears. Particularly of interest
to this work will be the second-order term, which provides an effective coupling that
depends on the magnetic field.

This work is organized as follows. In Chapter 2 we present a brief discussion on the
properties of QCD and introduce the NJL model in the absence of external fields. Applying
the background field method, we obtain the effective action, the chiral condensate and
the gap equation for the dynamically generated quark masses. A word on different
regularization schemes is mentioned and we compute some meson properties at B = 0 in
order to fix the free parameters of the model. In Chapter 3, we couple the NJL Lagrangian
with the uniform magnetic field and obtain expressions for the chiral condensate and the
gap equation as functions of B. The effect of the magnetic field in enhancing the chiral
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condensate is discussed. We then expand the quark determinant in terms of the quark field
bilinears and obtain expressions for the B−dependent effective couplings. In Chapter 4
we consider the effects of the new flavor- and B-dependent couplings in quark and meson
masses. Finally, Chapter 5 concludes with some final remarks. Some useful mathematical
results are presented in Appendix A as well as some properties regarding Pauli, Dirac
and Gell-Mann matrices in Appendix B. Appendix C presents a derivation of the fermion
propagator in a uniform magnetic field following Schwinger proper time method [26, 27],
which is used several times in the text. Lastly, Appendix D lists some details on the flavor
trace of the second order term in the quark determinant expansion.
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The Nambu-Jona-Lasinio model

2.1 The theory of strong interactions

One may say that high-energy physics is one of mankind greatest efforts to pursue
the ultimate structure of matter. This is done by looking for the smallest constituents of
matter, the elementary particles, and describing how they interact with one another to
construct the world we live in. Our current knowledge tells us that the fundamental
building blocks of matter are quarks and leptons, which are fermions having spin 1/2,
and that the interactions between particles are mediated by gauge bosons. The four
known fundamental interactions are the electromagnetic, weak, strong and gravitational
forces (with the latter being negligibly weak at elementary particle level). While all
particles are affected by the weak force, only electrically charged particles interact with
the electromagnetic field. Furthermore, leptons are not affected by the strong force, which
is the interaction that binds quarks to form composite states called hadrons, and also
binds protons and neutrons to form the nucleus.

The theoretical framework of particle physics falls under the dominion of quantum
field theory (QFT) since it must be guided by the principles of special relativity and
quantum mechanics if is to describe the microscopic world of particles moving at speeds
comparable to the speed of light. Except for gravity, all of the known elementary
particle interactions are described by the Standard Model, which encompasses quantum
electrodynamics (QED), the Glashow-Weinberg-Salam theory of electroweak processes
and quantum chromodynamics (QCD) [28, 29].

Quantum chromodynamics is the theory describing the strong interaction between
quarks, which is based on the gauge group SU(3) acting on a degree of freedom called
color. Quarks come in six flavors, up (u), down (d), strange (s), charm (c), bottom (b)
and top (t), and they are equipped with what we call color charge, which generates the
force field just as the electromagnetic field is generated by an electric charge. There are
three kinds of color charges, which we label by R (red), B (blue) and G (green), and only
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color neutral combinations are observed. We then describe the strong interaction by a
SU(3) Yang-Mills theory with each quark flavor transforming as the fundamental triplet
representation [30, 31].

The QCD Lagrangian is given by [31, 32]

L = ψ̄
(
i /D −m

)
ψ − 1

4F
a
µνF

µν
a , (2.1)

where ψ = (u, d, s, . . . )T is the quark field with three colors, m = diag(mu,md,ms, . . . ) is
the current quark mass matrix and

Dµ = ∂µ − igs
λa

2 A
a
µ,

is the covariant derivative, with gs representing the strong coupling constant and the
colored gauge field Aa

µ representing the gluon field. The gluon field strength tensor is
given by

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsfabcA

b
µA

c
ν .

Here a, b, c are SU(3) adjoint representation indices running from 1 to 8 and a sum
over repeated indices is implicit. The matrices λa are the Gell-Mann matrices and the
coefficients fabc are the SU(3) structure constants.

The computation of the propagator for the gauge boson follows the usual
procedure of introducing the gauge fixing term and the associated Faddeev-Popov ghost
fields [33, 34]. However, the usual calculational procedure of renormalized perturbation
theory that works so well for QED cannot be used for QCD since it is a strong interaction
theory. The most crucial difference between the electromagnetic and strong interactions is
the confinement of color exhibited by the latter. While electrons and photons are observed
as free particles, quarks and gluons are not; instead, they are bound into hadrons and the
only observed states are those that are singlets of color SU(3) [32, 33].

A renormalization group analysis shows that the QCD coupling effectively de-
creases with energy, which is a property exhibited by non-Abelian gauge theories called
asymptotic freedom1. This property was the reason for the success of the parton model in
explaining deep inelastic scattering phenomena by treating the particles inside hadrons
as freely moving; it also enables us to use the QED perturbative techniques in the high
energy regime [30].

But perturbation theory does not work in the regime of strong coupling and al-

1.For the discovery of asymptotic freedom in the theory of the strong interaction the Nobel prize in
physics was awarded to D. J. Gross, H. D. Politzer and F. Wilczek in 2004 [31, 35].
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2.1. The theory of strong interactions 6

ternative approaches are required. One such example is lattice QCD, an approximation
scheme in which the continuum gauge theory is replaced by a discrete statistical mechani-
cal system on a four-dimensional Euclidean lattice [33]. However, limited computer power
and difficulty in transforming numerical data into essential physics is enough inspiration
for the investigation of another approach. That is where the effective models of QCD come
in.

The construction of an effective model of QCD must be guided by the symmetry
properties of the theory, and so it is instructive to list those properties before introducing
such a model.

2.1.1 QCD symmetries

Let us now restrict ourselves to the case of QCD with three quark flavors, so that
the quark field is given by

ψ(x) =


u(x)
d(x)
s(x)

, (2.2)

and each quark flavor exits in three colors. The local color SU(3) gauge symmetry of
the Lagrangian (2.1), which is exact, will not be important for our considerations on the
effective model to be introduced [11, 12], and thus it will not be discussed.

The QCD Lagrangian can be written as

L = L(0) −
(
muūu+mdd̄d+mss̄s

)
, (2.3a)

where
L(0) = ψ̄i /Dψ − 1

4F
a
µνF

µν
a . (2.3b)

The Lagrangian L(0) is invariant under the group

UV (3) ⊗ UA(3) = SUV (3) ⊗ SUA(3) ⊗ UV (1) ⊗ UA(1), (2.4)

where the transformations are specified by

UV (1) : ψ → e−iαψ,

SUV (3) : ψ → e−iλaαa/2ψ,

UA(1) : ψ → e−iβγ5ψ,

SUA(3) : ψ → e−iλaβaγ5/2ψ,

with α and β denoting arbitrary transformation parameters. The unitary transformations
UV (1) correspond to baryon conservation while SUV (3) is associated with the eightfold
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way [11]. The UA(1) and SUA(3) transformations, which include the γ5 matrix, are called
chiral or axial transformations.

However, the axial symmetries are not manifest in particle degeneracies, and so
we must assume that the dynamics is such that the QCD vacuum breaks these symmetries
[31]. Now, we know that the spontaneous breaking of a continuous global symmetry
implies the existence of associated massless bosons as stated by the Goldstone theorem.
In fact, the spontaneous breaking of the chiral symmetry SUA(3) is corroborated by the
observation of the Goldstone modes of the π octet. However, the breaking of UA(1) requires
a ninth pseudoscalar meson that is not observed in nature. This is the so-called axial U(1)
problem. It was solved by ’t Hooft who showed that, due to instanton effects, the UA(1)
symmetry should not result in physical manifestations [11]. Nevertheless, chiral symmetry
breaking is an important QCD feature that we expect our effective model to share with
the fundamental theory.

Let us note that the total Lagrangian L, which includes the mass term, breaks
the chiral symmetry explicitly and also the symmetry under SUV (3) if mu ̸= md ̸= ms.
For this reason, we say that L(0) is the QCD Lagrangian in the chiral limit, and sometimes
the notation Lchiral is used. However, current quark masses are known to have the values
listed below [36]

mu = 2.16+0.49
−0.26 MeV,

md = 4.67+0.48
−0.17 MeV,

ms = 93+11
−5 MeV,

which are relatively small when compared to typical hadron mass scales of about 1 GeV.
This means that chiral symmetry is a good approximation in the regime of low energy
where we consider only the three quark flavors listed above. Furthermore there is evidence
both from low-energy hadron phenomenology and from lattice QCD that chiral symmetry
is spontaneously broken [12], which is why we emphasize that it is important that an
effective model exhibits this property.

Spontaneous chiral symmetry breaking is signaled by non-vanishing quark pair
condensates,

〈
ψ̄ψ

〉
[12]. If we consider two flavors, u and d, the Gell-Mann-Oakes-Renner

relation gives [5]

f 2
πm

2
π ≃ −(mu +md)

2
〈
ūu+ d̄d

〉
,

where fπ is the pion decay constant and mπ is the pion mass. The pion is the Goldstone
boson associated with the chiral symmetry breaking, but it is not massless because the
chiral symmetry is not exact for mu ̸= 0 and md ̸= 0. The equation above then indicates
that

〈
ūu+ d̄d

〉
̸= 0 as a consequence of the spontaneous breaking of chiral symmetry.

This means that the QCD ground state has condensation of quark and antiquark pairs
[5]. The vacuum expectation value

〈
ψ̄ψ

〉
is called the chiral condensate and the fact that

Instituto de Física – UFG
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〈
ψ̄ψ

〉
̸= 0 suggests the generation of dynamical quark masses. As a matter of fact, the

constituent quark model describes many of hadron properties by assuming that massive
quarks with Mu ≃ Md ≃ 300 MeV and Ms ≃ 500 MeV interact weakly inside hadrons [5].

Having briefly discussed some QCD properties, we are now ready to introduce
a low-energy effective model, which we expect to be simpler to work with than the
fundamental theory. The effective Lagrangian must contain the same symmetry structure
of QCD, namely the SUV (3) ⊗ UV (1) symmetry in the chiral limit as well as chiral
symmetry SUA(3) and its spontaneous breakdown. Furthermore we want the effective
theory to be a basis of the constituent quark model, so we write a Lagrangian with no
gluons and where the basic degrees of freedom will be the quarks u, d and s. We should also
keep in mind that we are interested in the low-energy properties of the quark dynamics
where the energy scale is smaller that some cutoff scale Λ ≃ 1 GeV [5, 12]. At last, let us
now introduce such an effective theory, namely the Nambu-Jona-Lasinio (NJL) model of
quantum chromodynamics.

2.2 The NJL Lagrangian

Historically, the Nambu-Jona-Lasinio model was introduced as a theory of nucle-
ons in analogy with the BCS theory of superconductivity [9, 10]. Its construction came
before the development of quantum chromodynamics and, after the arrival of the funda-
mental theory, it was soon realized that the NJL model shares some conceptually impor-
tant features with low energy QCD [12]; in particular, the dynamic generation of fermion
masses due to the spontaneous chiral symmetry breaking is one important property ex-
hibited by the model [11].

Although the nucleonic NJL model is still used to this day [37], it is usually
reinterpreted as a theory with quark degrees of freedom instead of the original nucleons.
It shall serve as an effective low energy model of the strong interaction, but it should
be kept in mind that it does not exhibit color confinement as does QCD. This limits
its application to hadronic and nuclear phenomena that do not depend on details of
the confinement mechanism [12]. In the NJL model the interaction between quarks and
antiquarks are assumed to be attractive, without specifying the complicated processes of
gluon exchange, and leads to a quark-antiquark pair condensation in the vacuum [11].

The U(3) NJL (chiral) Lagrangian is given by [5, 11, 12]

L(0)
NJL = ψ̄i/∂ψ + g

2

[(
ψ̄λaψ

)2
+
(
ψ̄iγ5λ

aψ
)2
]
, (2.5)

where g is the NJL coupling constant, the quark field ψ is given in (2.2) and the index
a takes on the values 0, . . . , 8. As we can see, the coupling constant has dimension of
[energy]−2 and the model is, in fact, nonrenormalizable, meaning that we need to add
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Chapter 2. The Nambu-Jona-Lasinio model 9

an infinite number of terms to the Lagrangian in order to absorb the divergences that
arise [38]. However, it is worth mentioning that even a nonrenormalizable theory is able
to make useful predictions at energies below some ultraviolet cutoff, like Λ ≃ 1GeV for
the NJL model.

It should be noted that the Lagrangian (2.5) exhibits the same symmetries as
L(0) in Eq. (2.3b), namely the invariance under the group (2.4). The unwanted UA(1)
symmetry can be removed by the addition of the ’t Hooft determinant interaction [12, 39]
or equivalently by considering a third order interaction term from vacuum polarization
[22]. Since our goal is to obtain a four-fermion effective coupling from polarization effects
in the quark determinant expansion up to second order in the quark currents, the ’t Hooft
term will not play an important role in this work, as it would if we were to compute the
third order term in the expansion. Therefore, we shall not consider this term throughout
this work.

Adding the mass term, which breaks the chiral symmetry as before, as well as
the SUV (3) symmetry if mu ̸= md ̸= ms, the NJL Lagrangian reads

LNJL = ψ̄
(
i/∂ −m

)
ψ + g

2

[(
ψ̄λaψ

)2
+
(
ψ̄iγ5λ

aψ
)2
]
. (2.6)

The interaction term can also be rewritten in terms of the fundamental SU(3) represen-
tation as

LNJL = ψ̄
(
i/∂ −m

)
ψ + g

∑
f,g=u,d,s

[(
ψ̄fψg

)(
ψ̄gψf

)
+
(
ψ̄f iγ5ψg

)(
ψ̄giγ5ψf

)]
. (2.7)

Having introduced the Nambu-Jona-Lasinio Lagrangian, we now proceed to
obtain a 1-loop effective action for the NJL model in terms of the interacting quark
fields. Since this procedure does not depend on the minimally coupled U(1) gauge field,
namely the magnetic field we are interested in, we will compute the effective action from
the Lagrangian (2.6). Then, in Chapter 3, we add the contribution of the magnetic field
to the NJL Lagrangian and make the necessary modifications.

2.3 The effective action and the gap equation

2.3.1 The effective action

The generating functional of the local U(3) NJL model is given by

Z[η̄, η] =
∫

Dψ̄Dψ exp
{
i
[
SNJL[ψ̄, ψ] +

∫
d4x (ψ̄η + η̄ψ)

]}
, (2.8)
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where SNJL =
∫
d4xLNJL, Dψ, Dψ̄ are the fermion functional measures and η̄ and η are

fermion and antifermion sources, respectively [11].
In order to obtain an effective action in terms of interacting quark fields we

separate the quark field bilinears into two components [22, 24, 23]: one corresponding to
the condensed quarks,

(
ψ̄ψ

)
c
, and the other to the interacting quasiparticle quarks, ψ̄ψ,

ψ̄ψ →
(
ψ̄ψ

)
c

+ ψ̄ψ. (2.9)

We also consider that the functional measure of the generating functional will be
decomposed analogously. The separation of the kinetic and mass terms of SNJL is
straightforward, while the resulting interaction term in the Lagrangian can be written
as LI = Lq + Lc + Lint [22], where

Lc = g

2
[
(ψ̄λaψ)2

c + (ψ̄iγ5λ
aψ)2

c

]
,

Lq = g

2
[
(ψ̄λaψ)2 + (ψ̄iγ5λ

aψ)2
]
,

Lint =g2
[
(ψ̄λaψ)c · (ψ̄λaψ) + (ψ̄λaψ) · (ψ̄λaψ)c

+(ψ̄iγ5λ
aψ)c · (ψ̄iγ5λ

aψ) + (ψ̄iγ5λ
aψ) · (ψ̄iγ5λ

aψ)c

]
.

We may now integrate out the quark component (ψ̄ψ)c with the help of the usual
SU(3) auxiliary fields Sa, Pa by recalling that the path integral of Gaussian functions can
be performed exactly [11, 40],

N
∫

DΦ exp
[
i
∫
d4x

(
±AΦ −BΦ2

)]
= exp

(
i
∫
d4x

A2

4B

)
,

where N is an unimportant normalization constant. We may then write the identities

exp
[
i
∫
d4x

g

2 (ψ̄λaψ)2
c

]
= N

∫
DSa exp

{
i
∫
d4x

[
−(ψ̄λaψ)c Sa − 1

2gS
2
a

]}
,

exp
[
i
∫
d4x

g

2 (ψ̄iγ5λ
aψ)2

c

]
= N

∫
DPa exp

{
i
∫
d4x

[
−(ψ̄iγ5λ

aψ)c Pa − 1
2gP

2
a

]}
,

which allow us to drop the fourth order quark interaction Lc. The generating functional
becomes

Z[η̄, η] =
∫

Dψ̄DψDSaDPa exp
{
i
∫
d4x

[
ψ̄c

(
i/∂ −m− Saλ

a − iγ5Paλ
a
)
ψc

+Lint − 1
2g (S2

a + P 2
a ) + ψ̄(i/∂ −m)ψ + g

2
[
(ψ̄λaψ)2 + (ψ̄iγ5λ

aψ)2
]]}

.

As we can see, the introduction of the auxiliary fields into the generating functional leads
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to contributions to the mass term. We then define the constituent quark mass matrix by
the expression

M = m+ Saλ
a + iγ5Paλ

a. (2.10)

Defining

S−1(x− y) =
{
i/∂ −M + g

[
λa(ψ̄λaψ) + λaiγ5(ψ̄iγ5λ

aψ)
]}
δ4(x− y), (2.11)

the generating functional can be written as

Z[η̄, η] =
∫

Dψ̄DψDSaDPa Zc[η̄, η] exp
{
i
∫
d4x

[
− 1

2g (S2
a + P 2

a )

+ψ̄(i/∂ −m)ψ + g

2
[
(ψ̄λaψ)2 + (ψ̄iγ5λ

aψ)2
]

+ ψ̄η + η̄ψ
]}
,

(2.12)

where

Zc[η̄, η] =
∫

Dψ̄cDψc exp
{
i
∫
d4x

[∫
d4y ψ̄c(x)S−1(x− y)ψc(y) + ψ̄cη + η̄ψc

]}
. (2.13)

Eq. (2.13) is a Gaussian integral on the Grassmann variables ψ̄c, ψc of the form
[40] ∫ ∏

j

dθ∗
jdθj e

iθ†Mθ+iη†θ+iθ†η = det(−iM) e−iη†M−1η, (2.14)

where θ1, . . . , θn, θ
∗
1, . . . , θ

∗
n are the generators of a 2n-dimensional Grassmann algebra.

Using (2.14) to integrate out the component (ψ̄ψ)c, with the identification M ≡ S−1,
where S−1 ≡

∫
d4y S−1(x− y), we get

Zc[η̄, η] = det
(
−iS−1

)
e−i

∫
d4x d4y η̄(x)S(x−y)η(y)

= eTr ln(−iS−1) e−i
∫

d4x d4y η̄(x)S(x−y)η(y), (2.15)

where Tr stands for trace over flavor, color and Dirac indices, and also an integration over
the spacetime coordinates (or, equivalently, momentum coordinates).

By plugging the result (2.15) into the generating functional (2.12) one finds the
resulting effective action for the quasiparticle quarks with the auxiliary variables to be
given by

Seff = − iTr ln
(
−iS−1

)
+
∫
d4x

{
− 1

2g (S2
a + P 2

a ) + ψ̄(i/∂ −m)ψ + g

2
[
(ψ̄λaψ)2 + (ψ̄iγ5λ

aψ)2
]}
.

(2.16)

The expansion of the fermion determinant in terms of the quark bilinears (in the
presence of the uniform magnetic field) will be left for Chapter 3. In the remainder of
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this section we shall provide a further discussion on the constituent quark masses defined
back in Eq. (2.10).

2.3.2 The mass matrix

Assuming that only the scalar auxiliary fields Sa have nonvanishing vacuum
expectation value and dropping the contribution of the pseudoscalar fields Pa, we write
the constituent quark mass matrix as [11, 22]

M = m+ Saλ
a. (2.17)

Regardless of its form, the mass matrix can be brought to diagonal form through flavor-
mixing transformations [11]. Since we are interested in a diagonal matrix, we may only
consider the contributions of the term Saλ

a that come from the diagonal Gell-Mann
matrices, namely, a = 0, 3, 8. Therefore, we have

M = m+ Saλ
a = m+ S0λ

0 + S3λ
3 + S8λ

8

=


mu + σu 0 0

0 md + σd 0
0 0 ms + σs

 ,

where

σu =
√

2
3S0 + S3 +

√
1
3S8,

σd =
√

2
3S0 − S3 +

√
1
3S8,

σs =
√

2
3S0 − 2

√
1
3S8,

from which we find
S2

a = S2
0 + S2

3 + S2
8 = 1

2(σ2
u + σ2

d + σ2
s).

Thus, we see how the effective action depends explicitly on the corrections to the quark
masses.

2.3.3 The gap equation

In order to obtain the effective quark masses, we impose the stationary condition

∂Seff

∂σf

∣∣∣∣∣
σf →⟨σf⟩

= 0.
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Since quasiparticle fields are zero in the ground state, ψ, ψ̄ → 0, the stationary condition
yields

i
∫ d4p

(2π)4 trDC

(
1

/p−Mf

)
− 1

2g ⟨σf⟩ = 0,

or, writing ⟨σf⟩ = Mf −mf ,

Mf = mf + 2g trDC

[
iS

(0)
f (0)

]
, (2.18)

where trDC denotes the trace over color and Dirac indices, and S(0)
f (x−y) is the free quark

propagator of flavor f , with f = u, d, s. This is the gap equation of the NJL model.
In the mean field approximation, the chiral condensate is given by [12]

〈
ψ̄fψf

〉
= −trDC

[
iS

(0)
f (0)

]
, (2.19)

and so the gap equation can be written as

Mf = mf − 2g
〈
ψ̄fψf

〉
. (2.20)

Eq. (2.20) shows the dynamical quark mass generation due to chiral symmetry
breaking, which is signaled by the nonvanishing chiral condensate. We thus need to obtain
an expression for the condensate

〈
ψ̄fψf

〉
in order to solve the gap equation for the

constituent quark masses.
The free quark propagator in the absence of external fields is given by

S
(0)
f (x− y) =

∫ d4p

(2π)4
/p+Mf

p2 −M2
f + iϵ

eip·(x−y). (2.21)

It then follows from Eq. (2.19) that

〈
ψ̄fψf

〉
= −4iNc

∫ d4p

(2π)4
Mf

p2 −M2
f

, (2.22)

where the iϵ prescription is now implicit. The Dirac trace resulted in a factor of 4 while
the color trace resulted in a factor of Nc, which is the number of colors (Nc = 3).

The integral in (2.22) is divergent and thus a regularization scheme must be
adopted. Since the NJL model is nonrenormalizable, it depends on the regularization
procedure chosen, which is not unique. Here we present two different schemes: the four-
momentum cutoff in Euclidean space and the regularization in proper time. Although
we wish to adopt the former, the latter will prove to be the most convenient choice
when dealing with magnetic field effects. However, since the magnetic field dependent
terms introduces no new divergences to the equations, we will be able to separate these
contributions from the divergent ones and then adopt any other regularization scheme. It
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2.3. The effective action and the gap equation 14

is important, then, to obtain the expression for the chiral condensate by adopting both
procedures.

Four-momentum cutoff In order to solve the integral in (2.22) we rotate the momen-
tum coordinates to Euclidean space by letting p0 → ip0

E and pi → pi
E, so that d4p → id4pE

and p2 → −p2
E. Hence, the condensate becomes

〈
ψ̄fψf

〉
= −4Nc

∫ d4pE

(2π)4
Mf

p2
E +M2

f

= −MfNc

4π4

∫
dΩ4

∫ ∞

0
dpE

p3
E

p2
E +M2

f

,

where dΩ4 is the differential solid angle in four dimensions in Euclidean space. The angular
integral yields

∫
dΩ4 =

∫ π

0
dφ1 sin2 φ1

∫ π

0
dφ2 sinφ2

∫ 2π

0
dφ3

= 2π2,

and, by letting ξ = p2
E, we are left with

〈
ψ̄fψf

〉
= −MfNc

4π2

∫ ∞

0
dξ

ξ

ξ +M2
f

.

Since this integral diverges in its upper limit, we introduce a cutoff on ξ = p2
E < Λ2:

〈
ψ̄fψf

〉
= −MfNc

4π2

∫ Λ2

0
dξ

ξ

ξ +M2
f

= −MfNc

4π2

[
Λ2 −M2

f ln
(

Λ2 +M2
f

M2
f

)]
. (2.23)

Regularization in proper time The integral in (2.22) can also be solved by introduc-
ing a proper time variable s and writing

〈
ψ̄fψf

〉
= −4NcMf

∫ d4p

(2π)4

∫ ∞

0
ds eis(p2−M2

f ).

As it was done for the regularization using a four-momentum cutoff, the momentum
integral can be performed by rotating to Euclidean space. The result is

〈
ψ̄fψf

〉
= iMfNc

4π2

∫ ∞

0

ds

s2 e
−isM2

f .

We now make the variable change s → −is and introduce a proper time cutoff Λpt to
account for the integral divergence in its lower limit to obtain

〈
ψ̄fψf

〉
= −MfNc

4π2

∫ ∞

1/Λ2
pt

ds

s2 e
−sM2

f .
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Chapter 2. The Nambu-Jona-Lasinio model 15

By using the result (A.22) with n = 1 as well as the expansion in Eq. (A.12), we find

∫ ∞

1/Λ2
pt

ds

s2 e
−M2

f s = Λ2
pte

−M2
f /Λ2

pt +M2
f Ei

(
−
M2

f

Λ2
pt

)

= Λ2
pt +M2

f

(
ln
M2

f

Λ2
pt

+ γE − 1
)

+O

(
1

Λ2
pt

)
, (2.24)

and the chiral condensate becomes

〈
ψ̄fψf

〉
= −MfNc

4π2

[
Λ2

pt +M2
f

(
ln
M2

f

Λ2
pt

+ γE − 1
)]
. (2.25)

As we can see, both regularization procedures exhibit the expected quadratic and
logarithmic divergences. The gap equation is written in terms of the chiral condensate in
Eq. (2.20). Then, by using Eqs. (2.23) and (2.25) we find that, in the four-momentum
cutoff and proper time regularization procedures, respectively, the constituent quark
masses are the solutions of

Mf −mf = gNcMf

2π2

[
Λ2 −M2

f ln
(

Λ2 +M2
f

M2
f

)]
,

Mf −mf = gNcMf

2π2

[
Λ2

pt +M2
f

(
ln
M2

f

Λ2
pt

+ γE − 1
)]
,

We notice that the gap equations depend on five free parameters, namely the
cutoff Λ, or Λpt, the coupling constant g and the current quark masses mu, md and
ms. Since mu ≃ md, we can take mu = md ≡ mud which then leaves us with four
parameters to be fixed. This can be done by computing observables and setting them to
their experimental values, such as meson masses and decay constants. This will be the
subject of Section 2.4, where we will compute the neutral pion and kaon masses, as well
as the pion and kaon decay constants. However, in order to do so, we need to choose
a regularization procedure and stick to it. In this work, we choose the four-momentum
cutoff regularization scheme, so our gap equation in the absence of external fields reads

Mf −mf = gΛNcMf

2π2

[
1 −

M2
f

Λ2 ln
(

Λ2 +M2
f

M2
f

)]
, (2.26)

where we have defined the dimensionless coupling constant gΛ = gΛ2.
Eq. (2.26) is a self-consistent or transcendental equation for Mf and one must

look for its solution by using numerical methods. Figure 2.1 shows the solution for the
three quark flavors as a function of the dimensionless coupling constant gΛ. For the current
quark masses we used mud = 6 MeV and ms = 165.7 MeV, and for the cutoff we have set
Λ = 914.6 MeV (see Section 2.4).

From Figure 2.1 we see how the constituent quark masses increase with increasing
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Figure 2.1: Solution of the gap equation (2.26). Here we used Λ = 914.6 MeV, mud = 6 MeV
and ms = 165.7 MeV.

coupling constant. Particularly for gΛ ≃ 8.16 (g ≃ 9.76 GeV−2 for Λ = 914.6 MeV) we find
Mud ≃ 262.8 MeV and Ms ≃ 516.4 MeV. The nonvanishing values of the constituent quark
masses show that the NJL model indeed exhibits the dynamical generation of fermion
masses due to the spontaneous chiral symmetry breaking. Once we include the magnetic
field in the NJL Lagrangian in Chapter 3 we shall see how this field contributes to enhance
the values of the dynamically generated masses, and thus the breaking of chiral symmetry,
which is the phenomenon of magnetic catalyses. But before that, let us now discuss about
the procedure of parameter fixing.

2.4 Meson properties and parameter fixing

We saw in Section 2.3 that the NJL model contains some free parameters, such
as the regularization parameter, which here is the four-momentum cutoff Λ, the coupling
constant g and the current quark masses. Since we are considering mu = md ≡ mud, we
have, together with ms, four free parameters in our model. To fix those we are required to
compute four observable quantities and set them equal to their experimental values. That
is where meson properties come in. For the three-flavor NJL model, the pseudoscalar-
meson spectrum consists of the π, K, η and η′ mesons [11]. In this work, we shall treat
only the first two cases. Specifically, we choose to fix our parameters by computing the
masses of the neutral pion and kaon mesons, as well as pion and kaon decay constants.
Furthermore, the procedure developed in this section may also be extended to compute
the pseudoscalar neutral meson masses in the presence of a uniform magnetic field in
Chapter 4.
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Chapter 2. The Nambu-Jona-Lasinio model 17

2.4.1 Bound state equation

In the framework of the NJL model, the basic idea is to consider the mesons
as collective excitations of quark/antiquark pairs. Methods to examine these excitations
include the auxiliary-field path integrals, Bethe-Salpeter equations, usually in the frame-
work of the Random Phase Approximation (RPA) [11, 41, 42], and so on [5]. Naturally,
we will employ the auxiliary-field method.

In Section 2.3 we obtained an effective action given by

Seff = −iTr ln
(
−i
{
i/∂ −m− Saλ

a − iγ5Paλ
a + g

[
λa(ψ̄λaψ) + λaiγ5(ψ̄iγ5λ

aψ)
]})

+
∫
d4x

{
− 1

2g (S2
a + P 2

a ) + ψ̄(i/∂ −m)ψ + g

2
[
(ψ̄λaψ)2 + (ψ̄iγ5λ

aψ)2
]}
.

Since the scalar auxiliary fields have nonvanishing vacuum expectation value, we can shift
the variables Sa to a field S ′

a = Sa − σa, where σa stands for the expectation value of Sa

[11, 12]. Then, while the σaλ
a term leads to the contribution to the effective mass, we can

relabel the field S ′
a → Sa and write and the effective action, in the ground state, as

Seff(Sa, Pa) = −iTr ln
[
−i
(
i/∂ −M − Saλ

a − iγ5Paλ
a
)]

+
∫
d4x

[
− 1

2g (S2
a + P 2

a )
]

= −iTr ln
[
1 + 1

i/∂ −M
(Sa + iγ5Pa)λa

]
+
∫
d4x

[
− 1

2g (S2
a + P 2

a )
]
,

where we dropped a constant term which would lead to an unimportant constant in the
generating functional. We may then use the expansion (A.10) to write

Seff(Sa, Pa) =
∫
d4x

[
− 1

2g (S2
a + P 2

a )
]

− iTr
[
S(0)(Sa + iγ5Pa)λa

]
+ i

2Tr
[
S(0)(Sa + iγ5Pa)λaS(0)(Sb + iγ5Pb)λb

]
+ . . . ,

where S(0) =
(
i/∂ −M

)−1
. Dropping the terms with vanishing Dirac trace leads to

Seff(Sa, Pa) =
∫
d4x

[
− 1

2g (S2
a + P 2

a )
]

− iTr
(
S(0)Saλ

a
)

+ i

2Tr
(
S(0)Saλ

aS(0)Sbλ
b
)

+ i

2Tr
(
S(0)iγ5Paλ

aS(0)iγ5Pbλ
b
)

+ . . . .

Note that the first order term is of the form Tr[F (P )H(X)], that is, the trace of a
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2.4. Meson properties and parameter fixing 18

product of operators that are local in p and x [40]. Therefore, the trace can be separated,

Tr [F (P )H(X)] = tr
∫ d4p

(2π)4 ⟨p|F (P )H(X)|p⟩

= tr
∫ d4p

(2π)4

∫ d4p′

(2π)4

∫
d4x

∫
d4x′ ⟨p|F (P )|p′⟩⟨p′|x′⟩⟨x′|H(X)|x⟩⟨x|p⟩

= tr
∫ d4p

(2π)4

∫ d4p′

(2π)4

∫
d4x

∫
d4x′ F (p′)⟨p|p′⟩e−ip′·x′

H(x′)⟨x|x′⟩eip·x

= tr
∫ d4p

(2π)4F (p)
∫
d4xH(x),

where now the trace tr no longer denotes an integral over spacetime (or momentum)
variables. Similarly, for the second-order terms we have

Tr[F (P )H(X)F (P )H(X)] = tr
∫ d4p

(2π)4 ⟨p|F (P )H(X)F (P )H(X)|p⟩

= tr
∫ d4p

(2π)4

∫ d4p′

(2π)4

∫
d4x

∫
d4x′ F (p)F (p′)H(x)H(x′)

× e−i(p−p′)·xei(p−p′)·x′
.

If we assume the local limit on H, H(x′) ≃ H(x), we write

Tr[F (P )H(X)F (P )H(X)] = tr
∫
d4x

∫ d4p

(2π)4F
2(p)H2(x).

Applying the results above and considering only the terms dependent on the
pseudoscalar auxiliary fields (since we are interested only in the pseudoscalar meson
spectrum) we write

Seff(Pa) = − 1
2g

∫
d4x

[
1 − gΠps

a (k2)
]
P 2

a + . . . , (2.27)

where we are considering only diagonal terms for the meson polarization functions,

Πps
a (k2) = −i

∫ d4p

(2π)4 tr
[
iS(0)(p)iγ5λaiS

(0)(p− k)iγ5λa

]
,

which is given by the diagram shown in Figure 2.2, with k being the meson four-
momentum.

Figure 2.2: Meson polarization diagram.
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Therefore, we have found a Lagrangian for the pseudoscalar auxiliary fields given
by

Leff(Pa) = − 1
2gFa(k2)P 2

a , (2.28)

where Fa(k2) ≡ 1 − gΠps
a (k2). For the physical propagating meson fields P ′

a, we wish to
write a Lagrangian (in momentum space) of the form

Leff(P ′
a) = 1

2
(
k2 −m2

ps

)
P ′2

a , (2.29)

where m2
ps stands for the particle mass. To do so, we expand Fa(k2) and write (2.28) as

Leff(Pa) = − 1
2g

Fa(m2
ps) +

(
k2 −m2

ps

) dFa

dk2

∣∣∣∣∣
k2=m2

ps

+ . . .

P 2
a

= −1
2

[
k2 −m2

ps +
Fa(m2

ps)
F ′

a(m2
ps)

+ . . .

]
1
g

dFa

dk2

∣∣∣∣∣
k2=m2

ps

P 2
a

= 1
2

[
k2 −m2

ps +
Fa(m2

ps)
F ′

a(m2
ps)

+ . . .

]
dΠps

a

dk2

∣∣∣∣∣
k2=m2

ps

P 2
a .

Defining

g−2
psqq = dΠps

dk2

∣∣∣∣∣
k2=m2

ps

(2.30)

and re-scaling the pseudoscalar field, Pa → P ′
a = Pa/gpsqq, we find

Leff(P ′
a) = 1

2

[
k2 −m2

ps +
Fa(m2

ps)
F ′

a(m2
ps)

+ . . .

]
P ′2

a .

Comparison with the Lagrangian in Eq. (2.29) leads to the conclusion F (m2
ps) = 0, or,

1 − gΠps(m2
ps) = 0. (2.31)

This is the bound state equation, from which we can obtain the pseudoscalar meson
masses. To do so, we first need to obtain an expression for the meson polarization tensors.

2.4.2 Meson polarization tensors

The pseudoscalar meson polarization tensor is given by

Πps
ij (k2) = −i

∫ d4p

(2π)4 tr
[
TiiS

(0)(p)iγ5TjiS
(0)(p− k)iγ5

]
, (2.32)

where kµ = (k0,0) is the meson four-momentum, tr is the trace over Dirac, flavor and
color indices, and S(0)(p) is the quark propagator matrix in momentum space. Here, Ti
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and Tj select the appropriate flavor channel [11],

Ti =



1√
2(λ1 ± iλ2) for π±

λ3 for π0

1√
2(λ4 ± iλ5) for K±

1√
2(λ6 ± iλ7) for K0, K̄0

.

For the π0 meson, we set Ti = Tj = λ3 and denote Πps
33(k2) = Πps

π0(k2). Then, we
have

Πps
π0(k2) = iNc

∫ d4p

(2π)4 trD

[
S(0)

u (p)iγ5S
(0)
u (p− k)iγ5 + S

(0)
d (p)iγ5S

(0)
d (p− k)iγ5

]
,

where trD denotes the Dirac trace. Similarly, for the K0 meson, we set Ti = 1√
2(λ6 − iλ7)

and Tj = 1√
2(λ6 + iλ7) in Eq. (2.32), which leads to

Πps
K0(k2) = 2iNc

∫ d4p

(2π)4 trD

[
S(0)

s (p)iγ5S
(0)
d (p− k)iγ5

]
.

The meson polarization tensors can be written as

Πps
π0(k2) = 1

2
[
Πps

uu(k2) + Πps
dd(k2)

]
, (2.33a)

Πps
K0(k2) = Πps

sd(k2), (2.33b)

where
Πps

fg(k2) = 2iNc

∫ d4p

(2π)4 trD

[
S

(0)
f (p)iγ5S

(0)
g (p− k)iγ5

]
. (2.34)

In momentum space, the quark propagator is given by

Sf (p) = /p+Mf

p2 −M2
f

,

from which we find

trD[Sf (p)iγ5Sg(p− k)iγ5] = −4 p2 − p · k +MfMg(
p2 −M2

f

)[
(p− k)2 −M2

g

] .
Then, rewriting

p2 − p · k +MfMg(
p2 −M2

f

)[
(p− k)2 −M2

g

]
= p2 − p · k +MfMg

2
[
p2 − p · k + k2

2 − 1
2

(
M2

f +M2
g

)][ 1
p2 −M2

f

+ 1
(p− k)2 −M2

g

]
,
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and

p2 − p · k +MfMg = p2 − p · k + k2

2 − 1
2
(
M2

f +M2
g

)
− k2

2 + 1
2(Mf −Mg)2,

we find

Πps
fg(k2) = 4iNc

∫ d4p

(2π)4

[
1

p2 −M2
f

+ 1
(p− k)2 −M2

g

]
− 4iNc

[
k2 − (Mf −Mg)2

]
Ifg(k2)

= 4iNc

∫ d4p

(2π)4

[
1

p2 −M2
f

+ 1
p2 −M2

g

]
− 4iNc

[
k2 − (Mf −Mg)2

]
Ifg(k2), (2.35)

where
Ifg(k2) =

∫ d4p

(2π)4
1(

p2 −M2
f

)[
(p− k)2 −M2

g

] . (2.36)

The first two integrals in (2.35) can be written in terms of the gap equation by
noticing from Eqs. (2.20), (2.22) and (2.23) that

4iNc

∫ d4p

(2π)4
1

p2 −M2
f

= Mf −mf

2gMf

= Nc

4π2

[
Λ2 −M2

f ln
(

Λ2 +M2
f

M2
f

)]
. (2.37)

In order to solve Eq. (2.36), we rotate the momenta to Euclidean space, p0 → ip0E

and k0 → ik0E, so that

Ifg(k2
E) = i

∫ d4pE

(2π)4
1(

p2
E +M2

f

)[
(pE − kE)2 +M2

g

] .
We can solve the integral above with the aid of the Feynman parameter x, introduced via
the formula

1
AB

=
∫ 1

0

dx

[xA+ (1 − x)B]2
.

This allows us to write

1(
p2

E +M2
f

)[
(pE − kE)2 +M2

g

] =
∫ 1

0
dx
{
x
[
(pE − kE)2 +M2

f

]
+ (1 − x)

(
p2

E +M2
g

)}−2

=
∫ 1

0
dx
[
p2

E − 2xpE · kE + xk2
E + xM2

f + (1 − x)M2
g

]−2

=
∫ 1

0
dx

1(
ℓ2 +D2

fg

)2 ,

where
ℓ ≡ pE − xkE,

D2
fg ≡ x(1 − x)k2

E + xM2
f + (1 − x)M2

g .
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Since d4pE = d4ℓ we have

Ifg(k2
E) = i

∫ 1

0
dx
∫ d4ℓ

(2π)4
1(

ℓ2 +D2
fg

)2

= i

16π2

∫ 1

0
dx

∫ ∞

0
d
(
ℓ2
) ℓ2(
ℓ2 +D2

fg

)2

= i

16π2

∫ 1

0
dx

[
ln
(

Λ2 +D2
fg

D2
fg

)
+

D2
fg

Λ2 +D2
fg

− 1
]
, (2.38)

where Λ is the usual four-momentum cutoff.
Substituting Eqs. (2.37) and (2.38) back in Eq. (2.35), and rotating the momen-

tum k back to Minkowski space, we find

Πps
fg(k2) =Mf −mf

2gMf

+ Mg −mg

2gMg

+ Nc

4π2

[
k2 − (Mf −Mg)2

] ∫ 1

0
dx

{
ln
[

Λ2 +D2
fg(k2)

D2
fg(k2)

]
+

D2
fg(k2)

Λ2 +D2
fg(k2) − 1

}
,

(2.39)

with
D2

fg(k2) = −x(1 − x)k2 + xM2
f + (1 − x)M2

g . (2.40)

Therefore, to find the neutral pseudoscalar meson masses one is required to solve
the equations

1 − gΠps
π0(m2

π) = 0

1 − gΠps
K0(m2

K) = 0
(2.41)

with Πps
π0(k2) and Πps

K0(k2) given by Eqs. (2.33) in terms of the quark polarization functions
given by Eq. (2.39). Before we obtain the values of those masses, let us first tackle the
question of obtaining the other two necessary observables quantities: the pion and kaon
decay constants.

2.4.3 Meson decay constants

A minimal local interaction Lagrangian capable of describing the coupling of the
meson fields to quark fields is given by [11]

Lpsqq = ψ̄iγ5λ
aPaψ

= gpsqqψ̄iγ5λ
aP ′

aψ, (2.42)

where gpsqq is the coupling strength of the mesons to the quarks defined back in Eq. (2.30).
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The pseudoscalar meson decay constants, fps with ps = π,K, are calculated from
the vacuum to one-meson axial-vector matrix element [5, 11, 31],

ifpskµδ
ab =

〈
0
∣∣∣Aa

µ(0)
∣∣∣psb

〉
, ps = π,K.

The matrix element on the right-hand side is given by the diagram shown in Figure 2.3,
with Γb = igpsqqγ5λ

b, in the framework of the interaction Lagrangian (2.42).

Figure 2.3: Vacuum to one pseudoscalar meson axial-vector current matrix element as a
Feynman diagram. Here Γb = gpsqqiγ5λb is the vertex factor.

Translating the diagram in Figure 2.3 according to the Feynman rules leads to

ifpskµδ
ab = −

∫ d4p

(2π)4 tr
[
iγµγ5

λa

2 iS
(
p+ k

2

)
igpsqqγ5λ

biS

(
p− k

2

)]

= −gpsqq

2

∫ d4p

(2π)4 tr
[
γµγ5λ

aS

(
p+ k

2

)
γ5λ

bS

(
p− k

2

)]
, (2.43)

where tr denotes the trace over Dirac, flavor and color indices. It is clear from Eq. (2.43)
that we need to obtain an expression for the meson-quark-quark couplings gpsqq.

2.4.3.1 Meson-quark-quark couplings

The meson-quark-quark couplings are given by Eq. (2.30). For the π+ meson we
choose Ti = 1√

2(λ1 − iλ2) and Tj = 1√
2(λ1 + iλ2) in Eq. (2.32), so that the polarization

tensor becomes
Πps

π+(k2) = Πps
ud(k2),

with Πps
fg(k2) given by Eq. (2.39). Then, at zero momentum transfer, one finds

g−2
πqq = Nc

4π2

[
Ĩud(0) + (Md −Mu)2 ∂Ĩud

∂k2

∣∣∣∣∣
k2=0

]
, (2.44)

where
Ĩfg(k2) =

∫ 1

0
dx

{
ln
[

Λ2 +D2
fg(k2)

D2
fg(k2)

]
+

D2
fg(k2)

Λ2 +D2
fg(k2) − 1

}
,

with D2
fg(k2) given by Eq. (2.40). A direct calculation yields

∂Ĩfg

∂k2

∣∣∣∣∣
k2=0

= −
∫ 1

0
dx x(1 − x) 1

D2
fg(0)

[
Λ2

Λ2 +D2
fg(0)

]2

.
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Similarly, for the K+ meson we choose Ti = 1√
2(λ4 − iλ5) and Tj = 1√

2(λ4 + iλ5),
which corresponds to the same calculations for the pion, but with the exchange d → s.
Thus, we conclude

g−2
Kqq = Nc

4π2

[
Ĩus(0) + (Ms −Mu)2 ∂Ĩus

∂k2

∣∣∣∣∣
k2=0

]
, (2.45)

at zero momentum transfer.

2.4.3.2 Decay constants

Eq. (2.43) can be written as

ifpskµ = −gpsqq

2

∫ d4p

(2π)4 tr
[
γµγ5λ

aS

(
p+ k

2

)
γ5λ

aS

(
p− k

2

)]
.

Choosing the appropriate channels for computing the flavor trace, we find

ifpskµ = −gpsqqNc

∫ d4p

(2π)4 trD

[
γµγ5Sf

(
p+ k

2

)
γ5Sg

(
p− k

2

)]
,

where f = u and g = d for ps = π, and f = u and g = s for ps = K.
The computation of the Dirac trace is analogous to the one for the polarization

tensors in Section 2.4.2, only with the extra γµ matrix. The result is

ifpskµ = 4gpsqqNc
(Mf +Mg)

2 kµ

∫ d4p

(2π)4
1[(

p+ k
2

)2
−M2

f

][(
p− k

2

)2
−M2

g

] ,
and we find

fπ = gπqqNc

4π2
(Mu +Md)

2 Ĩud(0), (2.46a)

fK = gKqqNc

4π2
(Mu +Ms)

2 Ĩus(0), (2.46b)

at zero-momentum transfer, with gπqq given by Eq. (2.44) and gKqq given by Eq. (2.45).

2.4.4 Parameter fixing

Now that we have the expressions for obtaining four observables quantities from
our model, we can fix the free NJL parameters. The neutral meson masses are found by
solving Eqs. (2.41) while the pion and kaon decay constants are given by Eqs. (2.46).
Table 2.1 shows, in the first column, the values for the NJL parameters that reproduce
the values shown in the second column for the observable meson properties.

Instituto de Física – UFG



Chapter 2. The Nambu-Jona-Lasinio model 25

Parameters Meson properties
Λ 914.6 MeV mπ 135.0 MeV
g 9.76 GeV−2 mK 498.0 MeV
mud 6.0 MeV fπ 93.0 MeV
ms 165.7 MeV fK 111.0 MeV

Table 2.1: Parameter fixing and meson properties.

Having fixed the free parameters by setting meson properties to their physical
values, we shall now proceed to consider the NJL model in the presence of a uniform
magnetic field with the free parameters set to the values from Table 2.1.
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NJL model at strong uniform
magnetic field

3.1 Introduction

With quarks interacting with one another via the NJL Lagrangian, let us now
investigate their coupling with a uniform magnetic field. Quarks interact with the
electromagnetic field since they possess flavor-dependent electric charges. While the
influence of an electric field serves to restore chiral symmetry by destroying the condensate
[43], the magnetic field tends to enhance its breaking by aiding in antialigning the helicities
which are bound by the NJL interaction [11]. In this work, we shall consider only the effects
of a uniform magnetic field.

By minimally coupling a U(1) gauge field Aµ into the NJL Lagrangian, the action
becomes

SNJL[ψ̄, ψ] =
∫
d4x

{
ψ̄(i /D −m)ψ + g

2
[
(ψ̄λaψ)2 + (ψ̄iγ5λ

aψ)2
]}
, (3.1)

with a = 0, . . . , 8. Here m = diag (mu,md,ms) is the current quark mass matrix as before,
Dµ = ∂µ − iQAµ is the covariant derivative with Q = diag

(
2e
3 ,−

e
3 ,−

e
3

)
being the electric

charge matrix and we are considering the gauge field Aµ to be an electromagnetic field.
The only thing that is new in the action (3.1) is the minimal coupling with the

electromagnetic field through the covariant derivative in the kinect term. Since we are not
considering any a priori dependence of the coupling constant g on the external field, the
only difference with respect to our analysis from Chapter 2 will be on the propagation of
the quark fields. Therefore, we only need to modify the expression for the quark propagator
to apply to the case of a uniform magnetic field B = Bêz. For that purpose, we derive
an expression for the free fermion propagator in Appendix C following Schwinger proper
time method [26, 27], both in coordinate and momentum spaces. With these expressions
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at hand, we can compute the gap equation in the presence of the magnetic field similar
to what we did in Chapter 2.

3.2 Magnetic catalyses in the NJL model

Recall that the chiral condensate is given by Eq. (2.19) as

〈
ψ̄fψf

〉
= −trDC

[
iS

(0)
f (0)

]
,

where trDC denotes the trace over color and Dirac indices, and S
(0)
f (x − y) is the free

quark propagator of flavor f , with f = u, d, s.
In order to obtain an expression for the condensate we need the quark propagator

computed in the presence of a uniform magnetic field. Using the proper time representation
for the propagator from Eqs. (C.11a) and (C.18), we see that

S
(0)
f (0) = − (4π)−2 Mf

∫ ∞

0

ds

s2
|qfB|s

sin (|qfB|s) exp
(
−iM2

f s+ i sign(qfB)|qfB|sσ3
)

= −|qfB|Mf

(4π)2

∫ ∞

0

ds

s
e−iM2

f s[cot(|qfB|s) − γ1γ2 sign(qfB)].

Then, substituting this result back into the expression for the chiral condensate and taking
the Dirac trace using the properties listed in Appendix B, and also the color trace which
yields a factor Nc, we find

〈
ψ̄fψf

〉
B

= iNcMf |qfB|
4π2

∫ ∞

0

ds

s
e−iM2

f s cot(|qfB|s).

Changing to imaginary proper-time, s → −is, leaves us with

〈
ψ̄fψf

〉
B

= −NcMf |qfB|
4π2

∫ ∞

0

ds

s
e−M2

f s coth(|qfB|s)

= −NcMf |qfB|
4π2

∫ ∞

0

dτ

τ
e−M2

f τ/|qf B| coth τ, (3.2)

where τ = |qfB|s and we used cot(ix) = −i coth x.
However, the proper time integral does not converge, since its integrand is

undetermined for τ = 0. It is important to isolate the divergences into the vacuum term
before introducing the regularization parameter [44, 45, 46]. By using the expansion (A.9),
we can separate the integrand of Eq. (3.2) into a divergent and a finite part as τ → 0,

∫ ∞

0

dτ

τ
e−a2

f τ coth τ =
∫ ∞

|qf B|/Λ2
pt

dτ

τ 2 e
−a2

f τ +
∫ ∞

0

dτ

τ 2 e
−a2

f τ (τ coth τ − 1),

where we introduced a proper time cutoff Λ2
pt to account for the integral divergence and
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we are denoting af = Mf/
√

|qfB|. From Eq. (2.24), we know that

∫ ∞

|qf B|/Λ2
pt

dτ

τ 2 e
−a2

f τ = 1
|qfB|

[
Λ2

pt +M2
f

(
ln
M2

f

Λ2
pt

+ γE − 1
)]

+O

(
1

Λ2
pt

)
.

Similarly, using Eq. (A.24), we obtain

∫ ∞

0

dτ

τ 2 e
−a2

f τ (τ coth τ − 1) = 1
|qfB|

[
|qfB| ln |qfB|

πM2
f

+
(
2|qfB| −M2

f

)
ln

M2
f

2|qfB|

+2|qfB| ln Γ
(

M2
f

2|qfB|

)
+M2

f

]
.

Using the results above, the chiral condensate becomes

〈
ψ̄fψf

〉
B

= −NcMf

4π2

[
Λ2

pt −M2
f

(
ln

Λ2
pt

2|qfB|
− γE

)
+ |qfB| ln

M2
f

4π|qfB|

+2|qfB| ln Γ
(

M2
f

2|qfB|

)]
.

(3.3)

One may check if the expression above reproduces the known result for B = 0 by
taking the limit B → 0 in (3.3). In this limit, the argument of the Gamma function goes
to infinity and we may use the expansion (A.18) to write

2|qfB| ln Γ
(

M2
f

2|qfB|

)
→ M2

f

(
ln

Λ2
pt

2|qfB|
+ ln

M2
f

Λ2
pt

− 1
)

− |qfB| ln
M2

f

4π|qfB|
as B → 0.

This leads to

lim
B→0

〈
ψ̄fψf

〉
= −NcMf

4π2

[
Λ2

pt +M2
f

(
ln
M2

f

Λ2
pt

+ γE − 1
)]
,

which matches the expression for the chiral condensate in the absence of external fields
that we found in Eq. (2.25) by using the proper time regularization scheme.

It is worth noticing that the magnetic field introduces no new divergences in the
chiral condensate, as the expression in the B → 0 limit contains all cutoff-dependent
terms. Therefore, a cutoff independent quantity is obtained if we subtract the expression
for

〈
ψ̄fψf

〉
B=0

from Eq. (3.3). The result is

〈
ψ̄fψf

〉
B

−
〈
ψ̄fψf

〉
B=0

= −NcMf

4π2

[
M2

f

(
1 − ln

M2
f

2|qfB|

)
+ |qfB| ln

M2
f

4π|qfB|

+2|qfB| ln Γ
(

M2
f

2|qfB|

)]
,

(3.4)

which contains no explicit dependence on the regularization scheme. We also note that this
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quantity indeed vanishes in the limit B → 0. This allows us to write the chiral condensate
as a sum of two terms: one divergent contribution that needs to be regularized and another
that depends on the applied magnetic field but is finite and regularization independent,
and that vanishes in the limit B → 0. Although we have computed the chiral condensate
by using the proper time regularization scheme, which was appropriate since our departure
point was the Schwinger proper time representation for the propagator, we now have the
freedom to choose the expression for

〈
ψ̄fψf

〉
B=0

in any other regularization scheme we
would like. For instance, we can take

〈
ψ̄fψf

〉
B=0

= −NcMf

4π2

[
Λ2 −M2

f ln
(

Λ2 +M2
f

M2
f

)]
,

which was obtained using the four-momentum cutoff regularization, and write

〈
ψ̄fψf

〉
B

= −NcMf

4π2

[
Λ2 −M2

f ln
(

Λ2 +M2
f

M2
f

)]

− NcMf

4π2

[
M2

f

(
1 − ln

M2
f

2|qfB|

)
+ |qfB| ln

M2
f

4π|qfB|
+ 2|qfB| ln Γ

(
M2

f

2|qfB|

)]
.

(3.5)

The gap equation in the presence of the magnetic field is given by

Mf = mf − 2g
〈
ψ̄fψf

〉
B
.

Then, substituting Eq. (3.5) gives

Mf = mf + gNcMf

2π2

[
Λ2 −M2

f ln
(

Λ2 +M2
f

M2
f

)]

+ gNcMf

2π2

[
M2

f

(
1 − ln

M2
f

2|qfB|

)
+ |qfB| ln

M2
f

4π|qfB|
+ 2|qfB| ln Γ

(
M2

f

2|qfB|

)]
.

(3.6)

Just like Eq. (2.26), Eq. (3.6) is a self-consistent equation for Mf and we must
look for its solution by employing numerical methods. Figure 3.1 shows the solution
for the three quark flavors as a function of eB. The four-momentum cutoff was taken
as Λ = 914.6 MeV once again and the coupling constant value was chosen to be
g = 9.76 GeV−2.

As we can see from Figure 3.1, the magnetic field breaks the degenerescence
between the effective masses of the quarks up and down due to their different electric
charges. Furthermore, the response of the quark up to the magnetic field is greater than
that of the other light quarks due to the value of its electric charge, |qu| = 2|qd| = 2|qs|.
In general, the increasing values of the constituent masses with eB is a clear sign of the
enhancement of chiral symmetry breaking by the presence of the external magnetic field.
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Figure 3.1: Solution of the gap equation as a function of the applied magnetic field, Eq. (3.6).
Here we used Λ = 914.6 MeV, g = 9.76 GeV−2, mud = 6 MeV and ms = 165.7 MeV.
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Figure 3.2: Absolute value of the renormalized condensate, Eq. (3.4), as a function of the
magnetic field. The values of the effective quark masses used were the ones displayed in Figure
3.1.

The effect of magnetic catalysis is more evident in Figure 3.2, where we plot the
absolute value of the renormalized condensate,

∣∣∣〈ψ̄fψf

〉
B

−
〈
ψ̄fψf

〉
B=0

∣∣∣ given in Eq. (3.4),
against the magnetic field. The increasing value of the chiral condensate with B signals
the enhancement of chiral symmetry breaking.

This concludes our discussion on dynamical mass generation by the breaking of
chiral symmetry and its enhancement by the external magnetic field. Let us now turn our
attention to the quark determinant and its expansion in terms of quark field bilinears.
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3.3 The quark determinant expansion

In Chapter 2 we obtained an expression for the effective action for the quasipar-
ticle quarks by separating the quark fields into a component corresponding to the quarks
that condense in the ground state and another corresponding to the interacting quarks.
In the presence of a uniform magnetic field, this effective action reads

Seff = Sdet +
∫
d4x

{
− 1

2g (S2
a + P 2

a ) + ψ̄(i /D −m)ψ + g

2
[
(ψ̄λaψ)2 + (ψ̄iγ5λ

aψ)2
]}
, (3.7)

where
Sdet = −iTr ln

(
−i
{
i /D −M + g

[
λa(ψ̄λaψ) + λaiγ5(ψ̄iγ5λ

aψ)
]})

(3.8)

is the quark determinant. Here we have included the coupling with the external magnetic
field through the covariant derivative. Our next task is to expand this determinant in
terms of the quark field bilinears and to interpret the lowest order terms of the expansion
as corrections to the original NJL Lagrangian.

3.3.1 Expansion and first-order term

The quark determinant is of the form

Sdet = −iTr ln
[
−i
(
S(0)

)−1
− igλaja(x)

]
,

where
(
S(0)

)−1
= i /D −M and

ja = (ψ̄λaψ) + iγ5(ψ̄iγ5λ
aψ) ≡ ja

s + iγ5j
a
p

stands for the quark-current terms. Here the scalar and pseudoscalar currents are
represented by ja

s and ja
p , respectively. The determinant can be written as

Sdet = −iTr ln
[
−i
(
S(0)

)−1
]

− iTr ln
(
1 + gS(0)λaja

)
and the first term can be dropped since it yields a constant in the generating functional.
We now proceed to expand the determinant in powers of the quark currents ja by using
Eq. (A.10),

Sdet = −igTr
(
S(0)λaja

)
+ i

2g
2Tr

(
S(0)λajaS(0)λbjb

)
+ . . . .

Following a similar procedure to the one applied in Section 2.4 for dealing with
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the trace over continuum indices, we find the first order term to be given by

S
(1)
det = −igTr

(
S(0)λaja

)
= −g tr

{∫
d4x

∫ d4p

(2π)4
i

/Π −M
λa
[(
ψ̄(x)λaψ(x)

)
+ iγ5

(
ψ̄(x)iγ5λ

aψ(x)
)]}

= −gtr
{
iS(0)(0)

∫
d4xλa

[(
ψ̄(x)λaψ(x)

)
+ iγ5

(
ψ̄(x)iγ5λ

aψ(x)
)]}

, (3.9)

where Πµ = pµ + QAµ, S(0)(x − y) is the quark propagator matrix and tr denotes the
trace over Dirac, flavor and color indices. Explicitly, the flavor structure of the quark
propagator reads

S(0)(x− y) =


S(0)

u (x− y) 0 0
0 S

(0)
d (x− y) 0

0 0 S(0)
s (x− y)

.

A direct calculation of the flavor trace yields

trF

[
S(0)(0)λ0

]
=
√

2
3
[
S(0)

u (0) + S
(0)
d (0) + S(0)

s (0)
]
,

trF

[
S(0)(0)λ3

]
= S(0)

u (0) − S
(0)
d (0),

trF

[
S(0)(0)λ8

]
= 1√

3
[
S(0)

u (0) + S
(0)
d (0) − 2S(0)

s (0)
]
,

(3.10)

while the traces for a = 1, 2, 4, 5, 6, 7 all vanish. Then, the only (scalar) currents that will
contribute to the first-order term are

j0
s = ψ̄λ0ψ =

√
2
3
(
ūu+ d̄d+ s̄s

)
,

j3
s = ψ̄λ3ψ = ūu− d̄d,

j8
s = ψ̄λ8ψ = 1√

3
(
ūu+ d̄d− 2s̄s

)
,

(3.11)

while the term with the pseudoscalar currents has vanishing Dirac trace. The first-order
term becomes

S
(1)
det = −1

2

∫
d4x

2
3
∑

f

∆mf

∑
f

ψ̄fψf + (∆mu − ∆md)
(
ūu− d̄d

)
+1

3(∆mu + ∆md − 2∆ms)
(
ūu+ d̄d− 2s̄s

)]
,

where
∆mf = Mf −mf = 2g trDC

[
iS

(0)
f (0)

]
= −2g

〈
ψ̄fψf

〉
B
, (3.12)
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is simply the gap equation in the presence of a uniform magnetic field. By rearranging
the terms in S

(1)
det one finds

S
(1)
det = −

∫
d4x

(
∆muūu+ ∆mdd̄d+ ∆mss̄s

)
= −

∫
d4x

∑
f

∆mf ψ̄fψf . (3.13)

Therefore the first-order term of the expansion produces a correction to the quark masses
given by the gap equation, Eq. (3.6), which was already discussed in Section 3.2. We now
proceed to compute the contribution of the second-order term.

3.3.2 Second-order term

The second-order term of the quark determinant reads

S
(2)
det = i

2g
2Tr

(
S(0)λajaS(0)λbjb

)
.

Assuming the local limit, we find

S
(2)
det = i

2g
2tr

∫
d4x

∫ d4p

(2π)4S
(0)(p)λa

[
(ψ̄λaψ) + iγ5(ψ̄iγ5λ

aψ)
]

×S(0)(p)λb
[
(ψ̄λbψ) + iγ5(ψ̄iγ5λ

bψ)
]
,

(3.14)

where S(0)(p) is the quark propagator in momentum space. The integrand in Eq. (3.14)
can be written as

S(0)(p)λajaS(0)(p)λbjb = S(0)(p)λaS(0)(p)λbja
s j

b
s + S(0)(p)λaiγ5S

(0)(p)λbja
pj

b
s

+ S(0)(p)λaS(0)(p)λbiγ5j
a
s j

b
p + S(0)(p)λaiγ5S

(0)(p)λbiγ5j
a
pj

b
p.

Then, by dropping the terms with vanishing Dirac trace, we are left with

S
(2)
det = i

2g
2tr

∫
d4x

∫ d4p

(2π)4

[
S(0)(p)λaS(0)(p)λb

(
ψ̄λaψ

)(
ψ̄λbψ

)
+S(0)(p)λaiγ5S

(0)(p)λbiγ5
(
ψ̄iγ5λ

aψ
)(
ψ̄iγ5λ

bψ
)]
.

(3.15)

We see how the second-order term in the determinant expansion contributes to an effective
coupling for an interaction of the form

Leff
int = 1

2G
s
ab(B)

(
ψ̄λaψ

)(
ψ̄λbψ

)
+ 1

2G
ps
ab (B)

(
ψ̄iγ5λ

aψ
)(
ψ̄iγ5λ

bψ
)
, (3.16)

with
G s

ab(B) = gδab + ig2
∫ d4p

(2π)4 tr
[
S(0)(p)λaS(0)(p)λb

]
, (3.17a)
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Gps
ab (B) = gδab + ig2

∫ d4p

(2π)4 tr
[
S(0)(p)λaiγ5S

(0)(p)λbiγ5
]
, (3.17b)

and we recall that tr denotes the trace over Dirac, flavor and color indices.
The next task is to compute the trace over flavor indices, which involves long and

tedious calculations (see Appendix D for some details). The result is

S
(2)
det = 2ig2NctrD

∫
d4x

∫ d4p

(2π)4

∑
f,g=u,d,s

[
S

(0)
f (p)S(0)

g (p)
(
ψ̄fψg

)(
ψ̄gψf

)
+S(0)

f (p)iγ5S
(0)
g (p)iγ5

(
ψ̄f iγ5ψg

)(
ψ̄giγ5ψf

)]
,

(3.18)

where trD stands for the trace over Dirac indices. Since the original NJL Lagrangian is
given by

L = ψ̄
(
i /D −m

)
ψ +

∑
f,g=u,d,s

[
g
(
ψ̄fψg

)(
ψ̄gψf

)
+ g

(
ψ̄f iγ5ψg

)(
ψ̄giγ5ψf

)]
,

we denote the effective couplings in the fundamental SU(3) representation as

G s
fg(B) = g + g2Π s

fg(B), (3.19a)

Gps
fg(B) = g + g2Π ps

fg(B), (3.19b)

where
Π s

fg(B) = 2iNc

∫ d4p

(2π)4 trD

[
S

(0)
f (p)S(0)

g (p)
]
, (3.20a)

Π ps
fg(B) = 2iNc

∫ d4p

(2π)4 trD

[
S

(0)
f (p)iγ5S

(0)
g (p)iγ5

]
, (3.20b)

with S(0)
f (p) representing the quark propagator in momentum space in the presence of the

uniform magnetic field B.
Therefore, up to second order in the quark currents the effective action (3.7)

becomes

Seff =
∫
d4x

{
− 1

2g (S2
a + P 2

a ) + ψ̄(i /D −M)ψ

+
∑

f,g=u,d,s

[
G s

fg(B)
(
ψ̄fψg

)(
ψ̄gψf

)
+Gps

fg(B)
(
ψ̄f iγ5ψg

)(
ψ̄giγ5ψf

)] .
(3.21)

Thus we have seen how the model acquires an effective flavor- and B-dependent coupling
from vacuum polarization.

By using the definitions (3.17) and (3.19) as well the results listed in the Appendix
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D, we may write the relations

G s
00(B) = 1

3[G s
uu(B) +G s

dd(B) +G s
ss(B)], (3.22a)

G s
11(B) = G s

22(B) = G s
ud(B), (3.22b)

G s
33(B) = 1

2[G s
uu(B) +G s

dd(B)], (3.22c)

G s
44(B) = G s

55(B) = G s
us(B), (3.22d)

G s
66(B) = G s

77(B) = G s
ds(B), (3.22e)

G s
88(B) = 1

6[G s
uu(B) +G s

dd(B) + 4G s
ss(B)], (3.22f)

G s
03(B) = G s

30(B) = 1√
6

[G s
uu(B) −G s

dd(B)], (3.22g)

G s
08(B) = G s

80(B) = 1
3
√

2
[G s

uu(B) +G s
dd(B) − 2G s

ss(B)], (3.22h)

G s
38(B) = G s

83(B) = 1
2
√

3
[G s

uu(B) −G s
dd(B)], (3.22i)

so that
1
2

8∑
a,b=0

G s
ab(B)

(
ψ̄λaψ

)(
ψ̄λbψ

)
=

∑
f,g=u,d,s

G s
fg(B)

(
ψ̄fψg

)(
ψ̄gψf

)
.

All the other couplings G s
ab(B) vanish and analogous relations holds for the pseudoscalar

couplings.
The relations listed in Eq. (3.22) will be useful in Chapter 4. For now, let us

proceed to obtain explicit expressions for the couplings G s
fg(B) and Gps

fg(B).

3.4 The effective couplings

3.4.1 The polarization functions

In order to compute the effective couplings from Eqs. (3.19) we need to evaluate
the polarization functions from Eqs. (3.20). This requires the expression for the quark
propagator in momentum space in the presence of the uniform magnetic field. From
Eq. (C.11a) in Appendix C, we know that the propagator is given by the product of
a phase, called Schwinger phase, and a translation invariant term. In the general case,
performing a complete momentum-space calculation is hard due to the presence of the
Schwinger phases. Although there are ways to deal with these phases, like employing the
Ritus eigenfunction method [47], deriving the correlation functions in coordinate space by
adopting linear response theory based on imaginary-time path integral formalism [48], or
simply discarding the phases, we will be focusing on the polarization functions for which
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f = g, or, more generally, on the polarization functions that involve quark flavors with
the same electric charge, since in those cases the Schwinger phases cancel out. Therefore,
from now on we simply ignore the Schwinger phase and write the quark propagator in
momentum space as [see Eq. (C.19)]

S
(0)
f (p) = −i

∫ ∞

0
ds exp

{
−is

[
M2

f − p2
∥ + tan(|qfB|s)

|qfB|s
p2

⊥

]}
×
{
[1 − sign(qfB)γ1γ2 tan(|qfB|s)]

(
Mf + γ · p∥

)
− γ · p⊥

[
1 + tan2 (|qfB|s)

]}
,

(3.23)

where, for two arbitrary 4−vectors aµ and bµ, we denote

(a · b)∥ = a0b0 − a3b3,

(a · b)⊥ = a1b1 + a2b2,

and also

sign(x) =

 +1 if x > 0
−1 if x < 0

.

Directly perfoming the Dirac trace leads to

trD

[
S

(0)
f (p)S(0)

g (p)
]

= −4
∫ ∞

0

∫ ∞

0
ds dr e−isM2

f −irM2
g exp

{
i(s+ r)p2

∥ − i

[
tan(|qfB|s)

|qfB|
+ tan(|qgB|r)

|qgB|

]
p2

⊥

}
×
{
[1 − sign(qfqg) tan(|qfBs|) tan(|qgB|r)]

(
MfMg + p2

∥

)
−p2

⊥

[
1 + tan2 (|qfB|s)

][
1 + tan2 (|qgB|r)

]}
,

and

trD

[
S

(0)
f (p)iγ5S

(0)
g (p)iγ5

]
= −4

∫ ∞

0

∫ ∞

0
ds dr e−isM2

f −irM2
g exp

{
i(s+ r)p2

∥ − i

[
tan(|qfB|s)

|qfB|
+ tan(|qgB|r)

|qgB|

]
p2

⊥

}
×
{
[1 − sign(qfqg) tan(|qfBs|) tan(|qgB|r)]

(
−MfMg + p2

∥

)
−p2

⊥

[
1 + tan2 (|qfB|s)

][
1 + tan2 (|qgB|r)

]}
.

The polarization functions become

Π
s

ps
fg(B) = −8iNc

∫ d4p

(2π)4

∫ ∞

0

∫ ∞

0
ds dr e−isM2

f −irM2
g

× exp
{
i(s+ r)p2

∥ − i

[
tan(|qfB|s)

|qfB|
+ tan(|qgB|r)

|qgB|

]
p2

⊥

}
×
{
[1 − sign(qfqg) tan(|qfBs|) tan(|qgB|r)]

(
±MfMg + p2

∥

)
−p2

⊥ sec2 (|qfB|s) sec2 (|qgB|r)
}
.
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After rotating the momentum to Euclidean space by letting p0 → ip0E so that
d4p → id4pE = id2p∥Ed

2p⊥E, p2
∥ → −p2

∥E and p2
⊥ → p2

⊥E, and introducing the imaginary
proper time variables s → −is and r → −ir, we find

Π
s

ps
fg(B) = − 8Nc

∫ ∞

0

∫ ∞

0
dsdr e−sM2

f −rM2
g

∫ d2p∥E

(2π)2
d2p⊥E

(2π)2

× exp
{

−(s+ r)p2
∥E −

[
tanh(|qfB|s)

|qfB|
+ tanh(|qgB|r)

|qgB|

]
p2

⊥E

}
×
{
[1 + sign(qfqg) tanh(|qfB|s) tanh(|qgB|r)]

(
±MfMg − p2

∥E

)
−p2

⊥E sech2(|qfB|s) sech2(|qgB|r)
}
,

where we used the identities tan(−ix) = −i tanh x and sec(−ix) = sech x. The momentum
integrals are straightforward to compute,

∫ d2p∥E

(2π)2 e
−(s+r)p2

∥E = 1
4π(s+ r) ,

∫ d2p∥E

(2π)2 p
2
∥Ee

−(s+r)p2
∥E = 1

4π(s+ r)2 ,

∫ d2p⊥E

(2π)2 exp
{
−[Tf (s) + Tg(r)]p2

⊥E

}
= 1

4π[Tf (s) + Tg(r)] ,∫ d2p⊥E

(2π)2 p
2
⊥E exp

{
−[Tf (s) + Tg(r)]p2

⊥E

}
= 1

4π[Tf (s) + Tg(r)]2
,

where we are denoting

Tf (s) ≡ tanh(|qfB|s)
|qfB|

and Tg(r) ≡ tanh(|qgB|r)
|qgB|

.

Then, we write the polarization functions as

Π
s

ps
fg(B) = − Nc

2π2

∫ ∞

0

∫ ∞

0
dsdr

e−sM2
f −rM2

g

s+ r

×
{

1 + sign(qfqg) tanh(|qfB|s) tanh(|qgB|r)
Tf (s) + Tg(r)

(
±MfMg − 1

s+ r

)

−
[

sech(|qfB|s) sech(|qgB|r)
Tf (s) + Tg(r)

]2
 .

(3.24)

As we mentioned, we shall be focusing on the polarization functions that involve
quark flavors with the same electric charge, meaning that we will now set qf = qg. In that
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specific case, the polarization functions become

Π
s

ps
fg(B) = Nc|qfB|

2π2

∫ ∞

0

∫ ∞

0
dsdr

e−sM2
f −rM2

g

s+ r

[
1 ∓MfMg(s+ r)

(s+ r) tanh (|qfB|(s+ r))

+ |qfB|
sinh2 (|qfB|(s+ r))

]
,

(3.25)

where we used the relations (A.7) and (A.8).
It is interesting to take the limit B → 0 in Eq. (3.25). From Eqs. (A.9) and (A.11)

we see that
lim
x→0

x

tanh x = lim
x→0

x2

sinh2 x
= 1,

leaving us with

Π
s

ps
fg(B = 0) = Nc

2π2

∫ ∞

0

∫ ∞

0
dsdr e−sM2

f −rM2
g

[
2 ∓MfMg(s+ r)

(s+ r)3

]
. (3.26)

This result allows us to write Eq. (3.25) in a more convenient way,

Π
s

ps
fg(B) = Π

s
ps
fg(B = 0) + Nc|qfB|

2π2

∫ ∞

0

∫ ∞

0
dsdr

e−sM2
f −rM2

g

s+ r

×
[

1 ∓MfMg(s+ r)
(s+ r) tanh (|qfB|(s+ r)) + |qfB|

sinh2 (|qfB|(s+ r))
− 2 ∓MfMg(s+ r)

|qfB|(s+ r)2

]
.

(3.27)

When written like in Eq. (3.27), the polarization functions consist of the the sum of
two terms, the vacuum and the pure magnetic contributions. Just as in the case of the
chiral condensate, the vacuum contribution carries all the divergences that need to be
regularized while the pure magnetic contribution is finite and regularization independent.

Before we proceed, let us now stop to evaluate the polarization functions for
B = 0.

3.4.2 The polarization functions for B = 0

In the absence of the external magnetic field, the polarization functions are given
by Eqs. (3.20) with the quark propagator in momentum space written as

S
(0)
f (p) = /p+Mf

p2 −M2
f

.

Then, a direct calculation yields

Π
s

ps
fg(B = 0) = 8iNc

∫ d4p

(2π)4
p2 ±MfMg(

p2 −M2
f

)(
p2 −M2

g

) . (3.28)
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We can even check Eq. (3.26) by writing Eq. (3.28) as

Π
s

ps
fg(B = 0) = −8iNc

∫ d4p

(2π)4

(
p2 ±MfMg

) ∫ ∞

0
ds eis(p2−M2

f )
∫ ∞

0
dr eir(p2−M2

g )

= 8Nc

∫ ∞

0

∫ ∞

0
dsdr e−sM2

f −rM2
g

∫ d4pE

(2π)4

(
p2

E ∓MfMg

)
e−(s+r)p2

E

= Nc

2π2

∫ ∞

0
dsdr e−sM2

f −rM2
g

[
2 ∓MfMg(s+ r)

(s+ r)3

]
,

where, in the second line, we rotated the momentum to Euclidean space and introduced
the imaginary proper time variables. The result is exactly Eq. (3.26).

We can compute the polarization functions (3.28) by making an analogy with
the result (2.39) from Section 2.4. For the pseudoscalar polarization function we simply
set k2 = 0 while for the scalar polarization function we additionally make the exchange
Mg → −Mg. Then, we find

Π
s

ps
fg(B = 0) = Nc

4π2

[
Λ2 −M2

f ln
(

Λ2 +M2
f

M2
f

)]
+ Nc

4π2

[
Λ2 −M2

g ln
(

Λ2 +M2
g

M2
g

)]

− Nc

4π2 (Mf ±Mg)2
∫ 1

0
dx

{
ln
[

Λ2 +D2
fg(0)

D2
fg(0)

]
+

D2
fg(0)

Λ2 +D2
fg(0) − 1

}
,

(3.29)

where D2
fg(0) = xM2

f + (1 − x)M2
g [see Eq. (2.40)]. In the special case where f = g, Eq.

(3.29) becomes

Πs
ff (B = 0) = Nc

2π2

[
Λ2 − 3M2

f ln
(

Λ2 +M2
f

M2
f

)
+ 2M2

f

Λ2

Λ2 +M2
f

]
, (3.30a)

Πps
ff (B = 0) = Nc

2π2

[
Λ2 −M2

f ln
(

Λ2 +M2
f

M2
f

)]
. (3.30b)

3.4.3 The polarization functions for f = g

Let us now turn our attention back to Eq. (3.27) and denote
(

Π
s

ps
fg

)
B

≡ Π
s

ps
fg(B) − Π

s
ps
fg(B = 0).

Making the change of variables [7]

s = u

2 (1 + v), r = u

2 (1 − v), (3.31)
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with 0 ≤ u < ∞ and −1 ≤ v ≤ 1, so that dsdr = (u/2)dudv, leaves us with

(
Π

s
ps
fg

)
B

= Nc|qfB|
2π2

∫ ∞

0
du
∫ 1

−1
dv

e− u
2 (1+v)M2

f − u
2 (1−v)M2

g

2

×
[

1 ∓ uMfMg

u tanh (|qfB|u) + |qfB|
sinh2 (|qfB|u)

− 2 ∓ uMfMg

|qfB|u2

]
.

(3.32)

The integrals in these new variables can be performed in closed form when f = g.
In that case, we have

(
Π

s
ps
ff

)
B

= Nc|qfB|
2π2

∫ ∞

0
du e−uM2

f

[
1 ∓ uM2

f

u tanh (|qfB|u) + |qfB|
sinh2 (|qfB|u)

−
2 ∓ uM2

f

|qfB|u2

]
,

which can be rewritten as

(
Π

s
ps
ff

)
B

= Nc|qfB|2

2π2


∫ ∞

0
du

e−uM2
f

|qfB|u

[
coth(|qfB|u) − 1

|qfB|u

]

∓
M2

f

|qfB|

∫ ∞

0
du e−uM2

f

[
coth(|qfB|u) − 1

|qfB|u

]

+
∫ ∞

0
du e−uM2

f

[
1

sinh2 (|qfB|u)
− 1

(|qfB|u)2

]}
.

Now let τ = |qfB|u so that

(
Π

s
ps
ff

)
B

= Nc|qfB|
2π2

∫ ∞

0
dτ

e−a2
f τ

τ 2 (τ coth τ − 1) ∓ a2
f

∫ ∞

0
dτ

e−a2
f τ

τ
(τ coth τ − 1)

+
∫ ∞

0
dτ e−a2

f τ
( 1

sinh2 τ
− 1
τ 2

)]
,

where af = Mf/
√

|qfB|. As we can see from the expansions (A.9) and (A.11), all the
integrands in the expression above are finite for τ → 0, rendering the integrals convergent
and avoiding the necessity of introducing a proper time cutoff. This would not be the case
if we had not subtracted the vacuum contribution.

Using the results (A.24), (A.25) and (A.27) from Appendix A and rearranging
the terms leads to

(
Π

s
ps
ff

)
B

=
NcM

2
f

2π2

[
1 + |qfB|

M2
f

ln
(

M2
f

4π|qfB|

)
+ 2|qfB|

M2
f

ln Γ
(

M2
f

2|qfB|

)

+(1 ± 1)ψ
(

M2
f

2|qfB|

)
− (2 ± 1) ln

(
M2

f

2|qfB|

)
+ (1 ± 1) |qfB|

M2
f

]
.

More explicitly, we have, for the pure magnetic contribution to the scalar and pseudoscalar
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polarization functions, respectively,

(
Π s

ff

)
B

=
NcM

2
f

2π2

[
1 + |qfB|

M2
f

ln
(

M2
f

4π|qfB|

)
+ 2|qfB|

M2
f

ln Γ
(

M2
f

2|qfB|

)

+2ψ
(

M2
f

2|qfB|

)
− 3 ln

(
M2

f

2|qfB|

)
+ 2 |qfB|

M2
f

]
,

(3.33a)

(
Π ps

ff

)
B

=
NcM

2
f

2π2

[
1 + |qfB|

M2
f

ln
(

M2
f

4π|qfB|

)
+ 2|qfB|

M2
f

ln Γ
(

M2
f

2|qfB|

)
− ln

(
M2

f

2|qfB|

)]
.

(3.33b)
Now that we have the expressions for the polarization functions, we can find the

effective flavor- and B-dependent couplings.

3.4.4 Numerical results

The effective couplings, in the fundamental SU(3) representation, are given by
Eqs. (3.19), with the polarization functions being given by Eq. (3.27) in our case of interest
where qf = qg. Here we have two possible approaches: consider the full polarization
functions, which includes both the vacuum and the pure magnetic contribution (V+B),
or consider only the contribution from the external field (Only B) by simply dropping the
vacuum regularization-dependent term, since we are interested only in the effects of the
magnetic field in the NJL coupling. For completeness, we present both approaches.

3.4.4.1 V+B

Let us begin by considering the simplest case: the couplings G s
ff (B) and Gps

ff (B).
From Eqs. (3.19), (3.30) and (3.33) we find

G s
ff (B) = g + g2Nc

2π2

[
Λ2 − 3M2

f ln
(

Λ2 +M2
f

M2
f

)
+ 2M2

f

Λ2

Λ2 +M2
f

]

+
g2NcM

2
f

2π2

[
1 + |qfB|

M2
f

ln
(

M2
f

4π|qfB|

)
+ 2|qfB|

M2
f

ln Γ
(

M2
f

2|qfB|

)

+2ψ
(

M2
f

2|qfB|

)
− 3 ln

(
M2

f

2|qfB|

)
+ 2 |qfB|

M2
f

]
,

(3.34a)

Gps
ff (B) = g + g2Nc

2π2

[
Λ2 −M2

f ln
(

Λ2 +M2
f

M2
f

)]

+
g2NcM

2
f

2π2

[
1 + |qfB|

M2
f

ln
(

M2
f

4π|qfB|

)
+ 2|qfB|

M2
f

ln Γ
(

M2
f

2|qfB|

)
− ln

(
M2

f

2|qfB|

)]
.

(3.34b)
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These couplings are plotted in Figures 3.3 and 3.4 as functions of the magnetic field. Like
before, we used Λ = 914.6 MeV and g = 9.76 GeV−2, as well as the solutions of the gap
equations for the constituent quark masses displayed in Figure 3.1.
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Figure 3.3: Correction to the effective scalar coupling as a function of the magnetic field,
G s

ff (B)−g, given by Eq. (3.34a), which considers both vacuum and pure magnetic contributions.
Here we used Λ = 914.6 MeV and g = 9.76 GeV−2 as well as the values of the effective quark
masses displayed in Figure 3.1.
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Figure 3.4: Correction to the effective pseudoscalar coupling as a function of the magnetic field,
G ps

ff (B)−g, given by Eq. (3.34b), which considers both vacuum and pure magnetic contributions.
Here we used Λ = 914.6 MeV and g = 9.76 GeV−2 as well as the values of the effective quark
masses displayed in Figure 3.1.
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Figures 3.3 and 3.4 show that we obtain, from polarization effects, an effective
scalar coupling which decreases and an effective pseudoscalar coupling that increases with
the magnetic field. For the scalar coupling, this decrease is stronger for the quark up,
which again exhibits a greater response to the magnetic field due to its electric charge
being double (in absolute value) the electric charge of the quarks down and strange.
Furthermore, we also note that the corrections to the couplings are greater for the quarks
up and down for low field strengths. The reason for that can be inferred from the first
line of Eq. (3.34a), specifically from the term with the minus sign that leads to a negative
contribution proportional to the constituent quark mass, which is greater for the quark
strange in the weak field regime. Same thing happens for the pseudoscalar coupling.
However, we now have an increase which is greater for the quark strange, signaling that,
in this case, the behavior of the correction is mostly dictated by the vacuum contribution,
as there is little difference between the curves for the quarks up and down.

Another case of interest is the one of the couplings G s
ds(B) and Gps

ds (B), which
involve quarks of different flavors but with same electric charge. From Eqs. (3.19), (3.29)
and (3.32) we have

G
s

ps
ds(B) = g + g2Nc

4π2

[
Λ2 −M2

d ln
(

Λ2 +M2
d

M2
d

)]
+ g2Nc

4π2

[
Λ2 −M2

s ln
(

Λ2 +M2
s

M2
s

)]

− g2Nc

4π2 (Md ±Ms)2
∫ 1

0
dx

{
ln
[

Λ2 +D2
ds(0)

D2
ds(0)

]
+ D2

ds(0)
Λ2 +D2

ds(0) − 1
}

+ g2Nc|qdB|
2π2

∫ ∞

0
du
∫ 1

−1
dv

e− u
2 (1+v)M2

d − u
2 (1−v)M2

s

2

×
[

1 ∓ uMdMs

u tanh (|qdB|u) + |qdB|
sinh2 (|qdB|u)

− 2 ∓ uMdMs

|qdB|u2

]
,

(3.35)

where D2
ds(0) = xM2

d + (1 − x)M2
s . Unfortunately, the integrals in Eq. (3.35) cannot be

solved in closed form and we need to rely on numerical methods. Choosing to apply the
trapezoidal rule, we find the results shown in Figures 3.5 and 3.6 for the correction to the
effective couplings as functions of the magnetic field.

Like in the case where f = g, Figures 3.5 and 3.6 show a decreasing effective
scalar coupling and an increasing effective pseudoscalar coupling. We also note that the
corrections to the pseudoscalar coupling assume high values even for small field strengths.

The high values for the corrections to the effective couplings in Figures 3.3, 3.4
and 3.6 in the weak field regime could be a consequence of our parameter choice, which
was made by fitting meson properties back in Section 2.4. These values can be compared
with the results from Ref. [22], where another set of parameters was chosen and smaller
values for the corrections to the NJL coupling constant were obtained. We could change
our parameter choice in an attempt to obtain more reliable results for those corrections.
However, since the scope of our work is to analyze the consequences of a B-dependent
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Figure 3.5: Correction to the effective scalar coupling as a function of the magnetic field,
G s

ds(B)−g, given by Eq. (3.35), which considers both vacuum and pure magnetic contributions.
Here we used Λ = 914.6 MeV and g = 9.76 GeV−2 as well as the values of the effective quark
masses displayed in Figure 3.1.
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Figure 3.6: Correction to the effective pseudoscalar coupling as a function of the magnetic field,
G ps

ds (B)−g, given by Eq. (3.35), which considers both vacuum and pure magnetic contributions.
Here we used Λ = 914.6 MeV and g = 9.76 GeV−2 as well as the values of the effective quark
masses displayed in Figure 3.1.

coupling, we might as well simply discard the vacuum terms and consider only the pure
magnetic contributions to the effective coupling.
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3.4.4.2 Only B

By dropping the vacuum regularization-dependent contribution, Eqs. (3.34)
become

G s
ff (B) = g +

g2NcM
2
f

2π2

[
1 + |qfB|

M2
f

ln
(

M2
f

4π|qfB|

)
+ 2|qfB|

M2
f

ln Γ
(

M2
f

2|qfB|

)

+2ψ
(

M2
f

2|qfB|

)
− 3 ln

(
M2

f

2|qfB|

)
+ 2 |qfB|

M2
f

]
,

(3.36a)

Gps
ff (B) = g +

g2NcM
2
f

2π2

[
1 + |qfB|

M2
f

ln
(

M2
f

4π|qfB|

)
+ 2|qfB|

M2
f

ln Γ
(

M2
f

2|qfB|

)
− ln

(
M2

f

2|qfB|

)]
,

(3.36b)
while, for Eq. (3.35), we have

G
s

ps
ds(B) = g + g2Nc|qdB|

2π2

∫ ∞

0
du
∫ 1

−1
dv

e− u
2 (1+v)M2

d − u
2 (1−v)M2

s

2

×
[

1 ∓ uMdMs

u tanh (|qdB|u) + |qdB|
sinh2 (|qdB|u)

− 2 ∓ uMdMs

|qdB|u2

]
.

(3.37)

Note that none of the equations above contain explicit dependence of the cutoff parameter.
For the couplings containing only the pure magnetic contribution to their correc-

tions, we have the results shown in Figures 3.7, 3.8, 3.9 and 3.10.
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Figure 3.7: Correction to the effective scalar coupling as a function of the magnetic field,
G s

ff (B) − g, given by Eq. (3.36a), which considers only the pure magnetic contribution. Here we
used g = 9.76 GeV−2 as well as the values of the effective quark masses displayed in Figure 3.1.
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Figure 3.8: Correction to the effective pseudoscalar coupling as a function of the magnetic
field, G ps

ff (B) − g, given by Eq. (3.36b), which considers only the pure magnetic contribution.
Here we used g = 9.76 GeV−2 as well as the values of the effective quark masses displayed in
Figure 3.1.
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Figure 3.9: Correction to the effective scalar coupling as a function of the magnetic field,
G s

ds(B) − g, given by Eq. (3.37), which considers only the pure magnetic contribution. Here we
used g = 9.76 GeV−2 as well as the values of the effective quark masses displayed in Figure 3.1.

Just like in the previous case, Figures 3.7 and 3.9 show decreasing effective scalar
couplings, while Figures 3.8 and 3.10 show increasing effective pseudoscalar couplings.
Both in the scalar and pseudoscalar cases, for f = g, the quark up exhibits a greater
response to the applied field, since now there is no vacuum contribution to compete with.
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Figure 3.10: Correction to the effective pseudoscalar coupling as a function of the magnetic
field, G ps

ds (B) − g, given by Eq. (3.37), which considers only the pure magnetic contribution.
Here we used g = 9.76 GeV−2 as well as the values of the effective quark masses displayed in
Figure 3.1.

We have now shown how vacuum polarization naturally leads to a flavor- and
B-dependent coupling in the NJL model in the presence of a uniform magnetic field, thus
serving as a mechanism for obtaining such dependence. Since we are interested in the
effects of the external field in the NJL coupling, from now on we shall consider only the
pure magnetic contributions to the coupling constant corrections. Hence, in the remainder
of this work, when we talk about B-dependent couplings we are considering them to be
given by the ones displayed in Figures 3.7, 3.8, 3.9 and 3.10.
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Quark and meson masses with
B-dependent couplings

In Chapter 3 we showed how a flavor- and B-dependent coupling arises in the
NJL model from vacuum polarization. Having proposed a mechanism for the dependence
of the coupling constants on the external field, let us now consider a NJL Lagrangian with
such couplings and see the effects on the constituent quark masses as well as on meson
masses.

4.1 Quark masses with B-dependent couplings

We start with the following Lagrangian,

L′
NJL = ψ̄

(
i /D −m

)
ψ + 1

2G
s
ab

(
ψ̄λaψ

)(
ψ̄λbψ

)
+ 1

2G
ps
ab

(
ψ̄iγ5λ

aψ
)(
ψ̄iγ5λ

bψ
)
, (4.1)

where, like before, ψ is the quark field, m is the current quark mass matrix and
Dµ = ∂µ − iQAµ is the covariant derivative. The B-dependence of the couplings is left
implicit for now.

We may proceed exactly as we did in Section 2.3 to obtain an effective action
in terms of interacting quark fields by separating the quark field bilinears into two
components like in Eq. (2.9). Then, the Lagrangian becomes

L′
NJL = ψ̄c

(
i /D −m

)
ψc + ψ̄

(
i /D −m

)
ψ

+ 1
2G

s
ab

(
ψ̄λaψ

)
c

(
ψ̄λbψ

)
c

+ 1
2G

ps
ab

(
ψ̄iγ5λ

aψ
)

c

(
ψ̄iγ5λ

bψ
)

c

+ 1
2G

s
ab

(
ψ̄λaψ

)(
ψ̄λbψ

)
+ 1

2G
ps
ab

(
ψ̄iγ5λ

aψ
)(
ψ̄iγ5λ

bψ
)

+ 1
2G

s
ab

[(
ψ̄λaψ

)
c

(
ψ̄λbψ

)
+
(
ψ̄λaψ

)(
ψ̄λbψ

)
c

]
+ 1

2G
ps
ab

[(
ψ̄iγ5λ

aψ
)

c

(
ψ̄iγ5λ

bψ
)

+
(
ψ̄iγ5λ

aψ
)(
ψ̄iγ5λ

bψ
)

c

]
.
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In order to integrate out the quark component (ψ̄ψ)c with the help of the usual
SU(3) auxiliary fields, we introduce the identities

1 = N
∫

DS exp
{

− i

2
[
Sa − g

(
ψ̄λaψ

)
c

]G s
ab

g2

[
Sb − g

(
ψ̄λbψ

)
c

]}
,

1 = N
∫

DP exp
{

− i

2
[
P a − g

(
ψ̄iγ5λ

aψ
)

c

]Gps
ab

g2

[
P b − g

(
ψ̄iγ5λ

bψ
)

c

]}
,

in the generating functional

Z ′[η̄, η] =
∫

Dψ̄Dψ exp
{
i
[
S ′

NJL[ψ̄, ψ] +
∫
d4x (ψ̄η + η̄ψ)

]}
,

where S ′
NJL =

∫
d4xL′

NJL. Then, we repeat the procedure of Section 2.3, which now leads
us to obtain the effective action given by

S ′
eff = −iTr ln

(
−iS−1

)
−
∫
d4x

(
G s

ab

2g2 S
aSb + Gps

ab

2g2 P
aP b

)

+
∫
d4x

[
ψ̄
(
i /D −m

)
ψ + 1

2G
s
ab

(
ψ̄λaψ

)(
ψ̄λbψ

)
+ 1

2G
ps
ab

(
ψ̄iγ5λ

aψ
)(
ψ̄iγ5λ

bψ
)]
,

(4.2)

where

S−1(x− y) =
{
i /D −M ′ + 1

2G
s
ab

[
λa
(
ψ̄λbψ

)
+ λb

(
ψ̄λaψ

)]
+1

2G
ps
ab

[
λa
(
ψ̄iγ5λ

bψ
)

+ λb
(
ψ̄iγ5λ

aψ
)]}

δ4(x− y),
(4.3)

and the effective mass matrix is

M ′ = m+ G s
ab

2g
(
Saλb + Sbλa

)
+ iγ5

Gps
ab

2g
(
P aλb + P bλa

)
. (4.4)

To obtain the new gap equation, we can proceed as in Section 2.3 by imposing the
stationary condition. However, a simpler strategy may be adopted. Recall from Section
3.3 that the first order term in the quark determinant expansion resulted in a correction
to mass term given by the gap equation. Since this mechanism did not depend on the
coupling constant it naturally applies to our present case. The only difference we can
expect to obtain is on which coupling enters the gap equation. Thus, in order to find the
new constituent quark masses we expand the quark determinant up to first order in the
quark currents, leading us to the mass corrections M ′

f −mf which now take into account
the effects of the flavor- and B-dependent couplings.

Hence, we write

S ′
det = −iTr ln

{
1 + S(0)

{1
2G

s
ab

[
λa
(
ψ̄λbψ

)
+ λb

(
ψ̄λaψ

)]
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+1
2G

ps
ab

[
λa
(
ψ̄iγ5λ

bψ
)

+ λb
(
ψ̄iγ5λ

aψ
)]}}

≃ −iTr
{
S(0)

{1
2G

s
ab

[
λa
(
ψ̄λbψ

)
+ λb

(
ψ̄λaψ

)]
+1

2G
ps
ab

[
λa
(
ψ̄iγ5λ

bψ
)

+ λb
(
ψ̄iγ5λ

aψ
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= −tr
{
iS(0)(0)

∫
d4x

1
2G

s
ab

[
λa
(
ψ̄λbψ

)
+ λb

(
ψ̄λaψ

)]}
,

in analogy with Eq. (3.9). Additionally, we used the fact that the term with the
pseudoscalar currents has vanishing Dirac trace.

In order to compute the flavor trace in the expression above, we use the relations
(3.10). Then, it follows from Eqs. (3.11) and (3.22), and after some long and tedious
algebra, that

1
2G

s
ab

{
trF

[
iS(0)(0)λa

](
ψ̄λbψ

)
+ trF

[
iS(0)(0)λb

](
ψ̄λaψ

)}
= 2

∑
f=u,d,s

G s
ff iS

(0)
f (0)ψ̄fψf .

Therefore, the contribution of the quark determinant is simply

S ′
det = −

∑
f=u,d,s

∫
d4x 2G s

ff trDC

[
iS

(0)
f (0)

]
ψ̄fψf

=
∑

f=u,d,s

∫
d4x 2G s

ff

〈
ψ̄fψf

〉
B
ψ̄fψf ,

which simply yields an effective mass given by

M ′
f = mf − 2G s

ff (B)
〈
ψ̄fψf

〉
B
. (4.5)

This has the same form as the gap equation (2.20) with g replaced by G s
ff (B) given by

Eq. (3.36a). Taking the chiral condensate to be given by Eq. (3.5) with Mf replaced by
M ′

f , the new constituent quark masses become the solutions of

M ′
f = mf+

G s
ff (B)NcM

′
f

2π2

[
Λ2 −M ′2

f ln
(

Λ2 +M ′2
f

M ′2
f

)

+ M ′2
f

(
1 − ln

M ′2
f

2|qfB|

)
+ |qfB| ln

M ′2
f

4π|qfB|
+ 2|qfB| ln Γ

(
M ′2

f

2|qfB|

)]
.

(4.6)

The solutions of Eq. (4.6) are shown in Figure 4.1, where we included the solutions
of the gap equation with B-independent coupling, Eq. (3.6), for comparison. As we can
see, the effect of the B-dependent coupling, which decreases with the magnetic field, is to
slow down the increase of the effective masses with B. This effect becomes more evident
for higher field strengths and is greater for the quark up. In general, the phenomenon of
magnetic catalysis is still observed when considering the new couplings, but it is reduced.
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Figure 4.1: Solution of the gap equation as a function of the magnetic field with B-dependent
couplings, Eq. (4.6). The dashed lines refer to the effective masses obtained from the gap equation
with B-independent coupling. Here we used Λ = 914.6 MeV, g = 9.76 GeV−2, mud = 6 MeV and
ms = 165.7 MeV.

In order to investigate if, and to what extent, the inclusion of such flavor- and
B-dependence in the NJL coupling leads to an improvement, we now proceed to compare
our results with lattice QCD results.

4.2 Comparison with LQCD

In this section, we shall compare our results from the NJL model with B-
dependent couplings with the lattice QCD results from Ref. [49]. To do so, we define
the quantity

Σf (B) = 2mud

m2
πf

2
π

∣∣∣〈ψ̄fψf

〉
B

−
〈
ψ̄fψf

〉
B=0

∣∣∣+ 1, f = u, d, (4.7)

where mπ and fπ are the zero-field pion mass and decay constant, respectively. Here, we
take mπ = 135 MeV and fπ = 86 MeV [49].

In the NJL model with an applied external magnetic field, the renormalized quark
condensate was found to be given by Eq. (3.4) in terms of the constituent quark masses
and as a function of B. Then, we can compute the quantity Σf (B) by using the effective
masses calculated either with or without B-dependent couplings and compare the results.

In Figures 4.2 and 4.3 we plot the quantities (Σu + Σd)/2 and Σu − Σd, respec-
tively, as functions of the magnetic field. The points refer to LQCD results taken from
Ref. [49], while the curves refer to the NJL model predictions, being that the yellow curve
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Figure 4.2: Comparison with LQCD results for (Σu + Σd)/2, with Σf (B) given by Eq. (4.7).
The points stand for lattice results while the curves stand for the NJL predictions. Here we took
mud = 6 MeV, mπ = 135 MeV and fπ = 86 MeV. The quark effective masses were obtained with
the parameters Λ = 914.6 MeV and g = 9.76 GeV−2.
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Figure 4.3: Comparison with LQCD results for Σu − Σd, with Σf (B) given by Eq. (4.7). The
points stand for lattice results while the curves stand for the NJL predictions. Here we took
mud = 6 MeV, mπ = 135 MeV and fπ = 86 MeV. The quark effective masses were obtained with
the parameters Λ = 914.6 MeV and g = 9.76 GeV−2.

considers the effective quark masses to be given by the gap equation with B-independent
coupling, Eq. (3.6), while the black curve considers the effective masses to be given by the
gap equation with B-dependent couplings, Eq. (4.6). While the effect of the B-dependent
coupling is to slow down the increase of the effective quark masses with B, the opposite
behavior is obtained for the condensates. This can be understood in a naive manner by
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recalling that the chiral condensate is given by the trace of the quark propagator, which
is proportional to the inverse of the effective masses.

From Figure 4.2 we see that our inclusion of the flavor- and B-dependence in
the NJL coupling was not enough to reproduce the lattice results with precision, but
it leads to a closer behavior than the curve with fixed coupling, especially for strong
fields. In contrast, in Figure 4.3 we have a better agreement between NJL and LQCD
results coming from the curve with B-dependent couplings for intermediate field strengths,
∼ 0.4 − 0.8 GeV2. However, this curve begins to deviate from the lattice results for strong
fields.
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Figure 4.4: Comparison with LQCD results for (Σu + Σd)/2, with Σf (B) given by Eq. (4.7).
The points stand for lattice results while the curves stand for the NJL predictions. Here we took
mud = 6.5 MeV, mπ = 135 MeV and fπ = 86 MeV. The quark effective masses were obtained
with the parameters Λ = 400.0 MeV and g = 25.0 GeV−2.

We emphasize that the model predictions depend on our parameter choice. Since
we chose the NJL free parameters so that meson properties are set to their physical
values, one may wonder if there is another set of values that yields better comparisons
with LQCD. If, for example, we use the extremely unusual (and maybe even problematic)
set of parameters given by Λ = 400.0 MeV, g = 25.0 GeV−2 and mud = 6.5 MeV, we find
the results shown in Figures 4.4 and 4.5. These new set improves the comparison for the
average of the condensates in the intermediate field regime (Figure 4.4) and worsens the
comparison for the difference of the condensates (Figure 4.5). In general, we are then led
to conclude that considering couplings that depend on the external magnetic field, as well
as on the quark flavors, which arise from vacuum polarization seems to lead in the right
direction to conciliate NJL predictions and LQCD results.
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Figure 4.5: Comparison with LQCD results for Σu − Σd, with Σf (B) given by Eq. (4.7). The
points stand for lattice results while the curves stand for the NJL predictions. Here we took
mud = 6.5 MeV, mπ = 135 MeV and fπ = 86 MeV. The quark effective masses were obtained
with the parameters Λ = 400.0 MeV and g = 25.0 GeV−2.

4.3 Meson masses in the presence of a uniform mag-
netic field

In order to see the effects of the B-dependent couplings in observables, we now
proceed to compute pseudoscalar neutral meson masses in the presence of the applied
magnetic field. In Section 2.4 we calculated the π0 and K0 masses in the absence of
external fields in order the fix the NJL model parameters. Now, all we need to do is
modify that procedure in order to obtain the meson masses in the presence of a uniform
magnetic field.

4.3.1 The meson polarization tensors

The first modification we need to do concerns the polarization tensors. Recall
that

Πps
π0(k2) = 1

2
[
Πps

uu(k2) + Πps
dd(k2)

]
,

Πps
K0(k2) = Πps

sd(k2),

where
Πps

fg(k2) = 2iNc

∫ d4p

(2π)4 trD

[
S

(0)
f (p)iγ5S

(0)
g (p− k)iγ5

]
,
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with kµ = (k0,0) being the meson four-momentum and S(0)
f (p) being the quark propagator

in momentum space. The only difference with respect to the procedure from Section 2.4
is that now S

(0)
f (p) is the propagator in the presence of the magnetic field, namely the

one given by Eq. (3.23).
Let us denote

Πps
fg(B; k2) = 2iNc

∫ d4p

(2π)4 trD

[
S

(0)
f (p)iγ5S

(0)
g (ℓ)iγ5

]
, (4.8)

where ℓ = p − k. The procedure here is quite similar to the one from Section 3.4 where
we had to compute the quark polarization functions, with the addition that now we
have extra terms coming from the meson four-momentum kµ. Hence we shall list only
some main steps. Using the properties of the Dirac trace listed in Appendix B as well as
ℓµ = (p0 − k0,p), one finds

trD

[
S

(0)
f (p)iγ5S

(0)
g (ℓ)iγ5

]
= −4

∫ ∞

0

∫ ∞

0
dsdr e

−isM2
f −ir

(
M2

g −k2
∥

)

× exp
{
i(s+ r)p2

∥ − 2ir(p · k)∥ − i

[
tan(|qfB|s)

|qfB|
+ tan(|qgB|s)

|qgB|

]
p2

⊥

}
×
{[

−MfMg + p2
∥ − (p · k)∥

]
[1 − sign(qfqg) tan(|qfB|s) tan(|qgB|r)]

−p2
⊥ sec2(|qfB|s) sec2(|qgB|r)

}
.

We are denoting the constituent quark masses simply byMf for now, as a general notation;
later we can consider the cases where these masses are obtained with and without B-
dependent couplings, separately.

After rotating the momenta to Euclidean space and introducing the imaginary
proper time variables as usual, the quark polarization functions become

Πps
fg(B; k2) = − 8Nc

∫ ∞

0

∫ ∞

0
dsdr e

−sM2
f −r

(
M2

g +k2
∥E

) ∫ d2p∥E

(2π)2
d2p⊥E

(2π)2

× exp
{

−(s+ r)p2
∥E + 2r(p · k)∥E −

[
tanh(|qfB|s)

|qfB|
+ tanh(|qgB|r)

|qgB|

]
p2

⊥E

}
×
{[

−MfMg − p2
∥E + (p · k)∥E

]
[1 + sign(qfqg) tanh(|qfB|s) tanh(|qgB|r)]

−p2
⊥E sech2(|qfB|s) sech2(|qgB|r)

}
.

The parallel momentum integrals are given by

∫ d2p∥E

(2π)2 e
−(s+r)p2

∥E
+2r(p·k)∥E = e

r2k2
∥E

/(s+r)

4π(s+ r) ,
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∫ d2p∥E

(2π)2

[
p2

∥E − (p · k)∥E

]
e

−(s+r)p2
∥E

+2r(p·k)∥E = e
r2k2

∥E
/(s+r)

4π(s+ r)2

(
1 − sr

s+ r
k2

∥E

)
,

while the perpendicular momentum integrals are the same ones we computed in Section
3.4. Then, setting qf = qg, we find

Πps
fg(B; k2) = Nc|qfB|

2π2

∫ ∞

0

∫ ∞

0
dsdr

e−sM2
f −rM2

g − sr
s+r

k2
E

s+ r

×
[1 +MfMg(s+ r) − sr

s+r
k2

E

(s+ r) tanh (|qfB|(s+ r)) + |qfB|
sinh2 (|qfB|(s+ r))

]
.

(4.9)

Note that Eq. (4.9) reduces to Eq. (3.25) when we set k2
E = 0, as expected. In the limit

B → 0, Eq. (4.9) becomes

Πps
fg(B = 0; k2) = Nc

2π2

∫ ∞

0

∫ ∞

0
dsdr e−sM2

f −rM2
g − sr

s+r
k2

E

[2 +MfMg(s+ r) − sr
s+r

k2
E

(s+ r)3

]
,

and we may write

Πps
fg(B; k2) = Πps

fg(B = 0; k2) + Nc|qfB|
2π2

∫ ∞

0

∫ ∞

0
dsdr

e−sM2
f −rM2

g + sr
s+r

k2

s+ r

×
[ 1 +MfMg(s+ r) + sr

s+r
k2

(s+ r) tanh (|qfB|(s+ r)) + |qfB|
sinh2 (|qfB|(s+ r))

−
2 +MfMg(s+ r) + sr

s+r
k2

(s+ r)3

]
,

(4.10)

after we rotated the momentum k back to Minkowski space. With Πps
fg(B = 0; k2) given

by Eq. (2.39), we finally write

Πps
fg(B; k2) = Nc

4π2

[
Λ2 −M2

f ln
(

Λ2 +M2
f

M2
f

)]
+ Nc

4π2

[
Λ2 −M2

g ln
(

Λ2 +M2
g

M2
g

)]

+ Nc

4π2

[
k2 − (Mf −Mg)2

] ∫ 1

0
dx

{
ln
[

Λ2 +D2
fg(k2)

D2
fg(k2)

]
+

D2
fg(k2)

Λ2 +D2
fg(k2) − 1

}

+ Nc|qfB|
2π2

∫ ∞

0

∫ ∞

0
dsdr

e−sM2
f −rM2

g + sr
s+r

k2

s+ r

×
[ 1 +MfMg(s+ r) + sr

s+r
k2

(s+ r) tanh (|qfB|(s+ r)) + |qfB|
sinh2 (|qfB|(s+ r))

−
2 +MfMg(s+ r) + sr

s+r
k2

(s+ r)3

]
,

(4.11)

where D2
fg(k2) = −x(1 − x)k2 + xM2

f + (1 − x)M2
g .

4.3.2 Neutral pion and kaon masses

Let us now return to our usual notation. Let Mf denote the constituent quark
masses that are obtained from the gap equation with fixed coupling, Eq. (3.6), and M ′

f
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denote the constituent quark masses that are obtained from the gap equation with B-
dependent coupling, Eq. (4.6). Then we denote by Πps

π0 the neutral pion polarization tensor
computed with effective massesMf and Π′ps

π0 the neutral pion polarization tensor computed
with effective masses M ′

f ; similar notations will be used for the kaon polarization tensors.
In the absence of flavor-dependent couplings, the bound state equations required

to be solved in order to obtain the neutral pion and kaon masses have the same form as
we found in Section 2.4, namely

1 − gΠps
π0(B;m2

π) = 0

1 − gΠps
K0(B;m2

K) = 0
(4.12)

where Πps
π0 = (Πps

uu + Πps
dd)/2 and Πps

K0 = Πps
ds, with Πps

fg(B; k2) given by Eq. (4.11).
The bound state equations must be modified to include the flavor-dependent

couplings. Here we will not consider the couplings Gab with a ̸= b for simplicity. In fact,
as it can be see from Eqs. (3.22), we can expect to have Gab << Gaa for a ̸= b. Then,
repeating the procedure of Section 2.4 for the effective action (4.2) with only diagonal
coupling terms, we find the new bound state equations to be given by

1 − g2

Gps
33 (B)Π′ps

π0 (B;m2
π) = 0

1 − g2

Gps
66 (B)Π′ps

K0(B;m2
K) = 0

(4.13)

where Gps
33 = (Gps

uu +Gps
dd)/2 and Gps

66 = Gps
77 = Gps

ds .
Eqs. (4.12) and (4.13) need to be solved numerically, as well as the integrals

in Eq. (4.11). Once again, we choose to apply the trapezoidal rule. The results for the
pseudoscalar neutral meson masses as a function of the applied magnetic field are shown
in Figure 4.6.

For the π0 meson mass when the B-dependent coupling is used, Figure 4.6 shows
an increase of mπ with the magnetic field for weak and intermediate field strengths,
followed by a slight decrease for strong fields. This behavior is in contrast with LQCD
results [50] and also with NJL predictions that employ a magnetic field dependent coupling
which decreases withB [19]. For theK0 meson mass, theB-dependent coupling calculation
still results in a decreasing behavior with the magnetic field. However, this decrease
is weaker than the one for the B-independent coupling calculation, which again is in
contrast with LQCD results [51] and NJL with decreasing coupling G(B) predictions
[21]. This is because the vacuum polarization corrections to the NJL coupling found in
Chapter 3 leads to pseudoscalar effective couplings that increase with the magnetic field,
in contrast with the scalar ones. Since the reproduction of LQCD results with the NJL
model requires a decreasing coupling with B [52], the disagreement between the results for
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Figure 4.6: Pseudoscalar neutral meson masses as a function of the applied magnetic field.
Here we used Λ = 914.6 MeV and g = 9.76 GeV−2.

using an increasing pseudoscalar coupling and the results from the literature is somewhat
expected.
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Concluding remarks

Motivated by recent works which concluded that the NJL model is able to
reproduce lattice QCD results provided a magnetic field dependent coupling is employed,
we obtained a mechanism for which this dependence is acquired by considering vacuum
polarization effects.

Starting with the U(3) NJL Lagrangian minimally coupled with a uniform mag-
netic field, we separated the quark field bilinears into two components, one corresponding
to the quarks that condense in the ground state into scalar quark-antiquark condensates,
and other corresponding to the interacting quasiparticle quarks. We then integrated out
the first component with the introduction of the usual SU(3) auxiliary fields and an ef-
fective action in terms of the interacting quarks was obtained.

The gap equation for the constituent quark masses was derived by extremizing the
effective action with respect to the auxiliary variables at zero quark field. This equation
was solved by using the four-momentum cutoff regularization scheme and its solution
showed the increase of mass with the magnetic field strength, exhibiting the phenomenon
of magnetic catalysis.

The next step was the expansion of the quark determinant in powers of the
quark currents. While the first-order term provided a correction to the quark masses
given by the gap equation, the second-order term yielded corrections to an effective
coupling dependent on the magnetic field strength and also on the flavors of the interaction
term involved. Discarding the vacuum terms in order to exclusively analyze the magnetic
explicit regularization-independent contribution to the effective coupling, we have found
scalar couplings which decrease with increasing magnetic field strength, and pseudoscalar
couplings with the opposite behavior.

Considering a NJL model with these flavor- and B-dependent couplings, we have
found new expressions for the constituent quark masses, which now depended on the scalar
couplings, and for the bound state equation whose solutions yields the pseudoscalar meson
masses, which now depended on the pseudoscalar couplings. For the new constituent
quark masses, the scalar B-dependent couplings served to make the increase of the
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effective masses with B weaker than the case with fixed coupling. Comparisons with
lattice QCD results show that the inclusion of these scalar B-dependent couplings from
vacuum polarization is a step in the right direction to conciliate NJL predictions and
LQCD simulations.

As for the meson masses, the inclusion of the pseudoscalar coupling, which we
found to increase with the magnetic field, led to a π0 meson mass that increases with B

for weak and intermediate field strengths, and to a K0 meson mass that decreases with B
weaker than it does when the B-dependent coupling is not considered. Both these results
seem to be in contrast with the literature. However, this was somewhat expected since it
has been established that the reproduction of LQCD results with the NJL model requires
a decreasing coupling with B.

Thus, we have concluded that the vacuum polarization corrections to the NJL
coupling in the presence of a uniform magnetic field may improve the results that involve
the couplings of the scalar currents, but not the ones that involve the couplings of the
pseudoscalar ones. Further investigations may include the computation of the third-order
term in the quark determinant expansion, which shall result in corrections to the coupling
of the U(3) ’t Hooft determinant term and are expected to play an important role in
computing the meson masses. Additionally, one may also compute the charged meson
masses and the meson decay constants in the presence of the applied magnetic field,
which requires to carefully deal with the Schwinger phases that do not cancel out in those
cases. Finally, our entire analyses can be also done at finite temperature in order to obtain
effective couplings that depend on B and T , for example.

Instituto de Física – UFG



AP
PE

ND
IX A

Useful relations, integrals and
expansions

In this Appendix we list some useful results, such as expansions and integrals that
were needed at some point in the text, as well as some definitions of special functions. Most
of these equations were taken from Ref. [53] while others are well-known relations listed for
reference purposes. A few results that were not found in the literature are demonstrated
in Section A.4.

A.1 Definitions of special functions and constants

Euler constant
γE = lim

n→∞

[
n−1∑
k=1

1
k

− lnn
]

= 0.57721566490 . . . (A.1)

Exponential integral function

Ei(x) = −
∫ ∞

−x

e−t

t
dt (A.2)

Gamma function
Γ(x) =

∫ ∞

0
e−ttx−1 dt (A.3)

Generalized zeta function

ζ(x, a) =
∞∑

n=1

1
(a+ n)x (A.4)

Euler psi function
ψ(x) = d

dx ln Γ(x) (A.5)
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Beta function
B(x, y) = Γ(x)Γ(y)

Γ(x+ y) (A.6)

A.2 Useful relations and expansions

tanh(a+ b) = tanh a+ tanh b
1 + tanh a tanh b (A.7)

sinh(a+ b) = tanh a+ tanh b
sech a sech b (A.8)

coth x = 1
x

+ x

3 − x3

45 + 2x5

945 − . . . (A.9)

ln(1 + x) = x− x2

2 + x3

3 − · · · =
∞∑

k=1
(−1)k+1x

k

k
(A.10)

1
sinh2 x

= 1
x2 − 1

3 + x2

15 − 2x4

189 + . . . (A.11)

Ei(x) = γE + ln(−x) +
∞∑

k=1

xk

k · k! , x < 0 (A.12)

x−ϵ = 1 − ϵ ln x+O(ϵ2) (A.13)

Γ(ϵ) = 1
ϵ

− γE +O(ϵ2) (A.14)

Γ(ϵ− 1) = −1
ϵ

+ γE − 1 +O(ϵ) (A.15)

ζ(ϵ, x) = 1
2 − x+ ϵ

d
dϵζ(ϵ, x)

∣∣∣∣∣
ϵ=0

+O(ϵ2) (A.16)

d
dxζ(x, a)

∣∣∣∣∣
x=0

= ln Γ(a) − 1
2 ln 2π (A.17)

ln Γ(x) =
(
x− 1

2

)
ln x− x+ 1

2 ln 2π +O
(1
x

)
, x → ∞ (A.18)

ψ(x+ 1) + ψ(x) = 1
x

+ 2ψ(x) (A.19)
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B
(
a2

2 − ϵ

2 + 1, ϵ− 1
)

= −a2

2

(1
ϵ

+ 1 − γE

)
+ a2

4

[
ψ

(
a2

2

)
+ ψ

(
a2

2 + 1
)]

+O(ϵ) (A.20)

A.3 Useful integrals

∫ ∞

−∞
eia2x2

dx =
√
iπ

a2 (A.21)

∫ ∞

u
dx
e−px

xn+1 = (−1)n+1p
nEi(−pu)

n! + e−pu

un

n−1∑
k=0

(−1)kpkuk

n(n− 1) . . . (n− k) (A.22)

∫ ∞

0
xµ−1e−βx coth x dx = Γ(µ)

[
21−µζ

(
µ,
β

2

)
− β−µ

]
(A.23)

∫ ∞

0

dx

x2 e
−a2x (x coth x− 1) = ln 1

πa2 + a2 +
(
2 − a2

)
ln a

2

2 + 2 ln Γ
(
a2

2

)
1 (A.24)

∫ ∞

0

dx

x
e−βx(1 − x coth x) = ψ

(
β

2

)
− ln β2 + 1

β
(A.25)

∫ ∞

0
dx e−µx sinhν βx = 1

2ν+1β
B
(
µ

2β − ν

2 , ν + 1
)

(A.26)

∫ ∞

0
dx e−a2x

( 1
sinh2 x

− 1
x2

)
= 1 + a2

[
ψ

(
a2

2

)
− ln

(
a2

2

)]
2 (A.27)

1.See proof in Section A.4.
2.See proof in Section A.4.
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A.4 Some demonstrations

Eq. (A.24) Let us denote

Ia =
∫ ∞

0

dx

x2 e
−a2x (x coth x− 1) .

Although this integral has a finite value, we will solve it by separating it into two divergent
integrals and showing that the divergences cancel each other [54, 55]. We begin by writing

Ia =
∫ ∞

0

dx

x
e−a2x coth x−

∫ ∞

0

dx

x2 e
−a2x

= lim
η→0

(∫ ∞

0
dx x−1+ηe−a2x coth x−

∫ ∞

0
dx x−2+ηe−a2x

)
= lim

η→0

[∫ ∞

0
dx xη−1e−a2x coth x− 1

(a2)η−1

∫ ∞

0
dx xη−2e−x

]

= lim
η→0

{
Γ(η)

[
21−ηζ

(
η,
a2

2

)
− (a2)−η

]
− 1

(a2)η−1 Γ(η − 1)
}
,

where we used the definition of the Gamma function and the result in Eq. (A.23). Using
Eqs. (A.13) to (A.17) in order to properly take the limit η → 0 in the expression above,
we write

Ia = lim
η→0

(
1
η

− γE

)[
(2 − 2η ln 2)

(
1
2 − a2

2 + η

[
ln Γ

(
a2

2

)
− 1

2 ln 2π
])

− 1 + η ln a2
]

− lim
η→0

(
a2 − ηa2 ln a2

)(
−1
η

+ γE − 1
)

= lim
η→0

[
−a2

η
+ 2 ln Γ

(
a2

2

)
− ln 2π + ln a

2

2 − a2 ln a
2

2 + a2γE + a2

η
− a2γE + a2

]

= ln 1
πa2 +

(
2 − a2

)
ln a

2

2 + 2 ln Γ
(
a2

2

)
+ a2.

Eq. (A.27) Let us denote

Ya =
∫ ∞

0
dx e−a2x

( 1
sinh2 x

− 1
x2

)
.

We proceed as we did for Eq. (A.24) by separating the finite integral into two divergent
ones,

Ya =
∫ ∞

0
dx

e−a2x

sinh2 x
−
∫ ∞

0

dx

x2 e
−a2x

= lim
η→0

[∫ ∞

0
dx e−a2x sinhη−2 x− 1

(a2)η−1

∫ ∞

0
dx xη−2e−x

]
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= lim
η→0

[
1

2η−1 B
(
a2

2 − η

2 + 1, η − 1
)

− 1
(a2)η−1 Γ(η − 1)

]
,

where we used the definition of the Gamma function and Eq. (A.26). The limit η → 0 can
be taken by using expansions (A.13), (A.15) and (A.20) with relation (A.19). The result
is

Ya = lim
η→0

{
(2 − 2η ln 2)a

2

2

[
−1
η

− 1 + γE + 1
a2 + ψ

(
a2

2

)]

−
(
a2 − a2η ln a2

)(
−1
η

+ γE − 1
)}

= 1 + a2
[
ψ

(
a2

2

)
− ln a

2

2

]
.
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Pauli, Dirac and Gell-Mann
matrices

In this Appendix, we list some properties of the Pauli, Dirac and Gell-Mann
matrices that may have been used in the text. Here the traces will be simply be denoted
by tr as there is no potential to confusion regarding on which space the trace acts on.
Additionally, we denote the n× n identity matrix as 1n×n.

Pauli matrices The Pauli sigma matrices σi, i = 1, 2, 3, satisfy the following relations
[56]:

1. σ2
1 = σ2

2 = σ2
3 = 12×2;

2. det(σi) = −1;

3. tr(σi) = 0;

4. [σi, σj] = 2iϵijkσk;

5. {σi, σj} = 2δij12×2;

6. σiσj = δij + iϵijkσk.

Explicitly, they are given by

σ1 =
0 1

1 0

, σ2 =
0 −i
i 0

, σ3 =
1 0

0 −1

.
For an arbitrary vector a = aên we have

eia·σ = 12×2 cos a+ i(ên · σ) sin a.
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Dirac matrices The Dirac matrices γµ are a set of four 4 × 4 matrices satisfying the
anticommutation relations [33]:

{γµ, γν} = 2gµν14×4.

The Weyl or chiral representation of the Dirac matrices, in 2 × 2 block form, reads

γ0 =
0 1

1 0

, γi =
 0 σi

−σi 0

.
We also introduce an additional gamma matrix,

γ5 = iγ0γ1γ2γ3,

which satisfies

1. (γ5)2 = 14×4;

2. {γ5, γµ} = 0.

Useful trace relations involving the gamma matrices are listed below:

1. tr(any odd number of γ′s) = 0;

2. tr(γµγν) = 4gµν ;

3. tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ);

4. tr(γ5) = 0;

5. tr(γµγνγ5) = 0;

6. tr(γµγνγργσγ5) = −4iϵµνρσ.

Gell-Mann matrices The eight 3 × 3 independent traceless Hermitian Gell-Mann
matrices λa, a = 1, . . . , 8, satisfy [57]

[λa, λb] = 2ifabcλc,

{λa, λb} = 2dabcλc + 4
3δab13×3,

where the completely antisymmetric coefficients fabc (the SU(3) structure constants) are
given by

fabc = − i

4tr([λa, λb]λc),
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and the completely symmetric coefficients dabc are given by

dabc = 1
4tr({λa, λb}λc).

Explicitly, the Gell-Mann matrices read

λ1 =


0 1 0
1 0 0
0 0 0

, λ2 =


0 −i 0
i 0 0
0 0 0

, λ3 =


1 0 0
0 −1 0
0 0 0

,

λ4 =


0 0 1
0 0 0
1 0 0

, λ5 =


0 0 −i
0 0 0
i 0 0

, λ6 =


0 0 0
0 0 1
0 1 0

,

λ7 =


0 0 0
0 0 −i
0 i 0

, λ8 = 1√
3


1 0 0
0 1 0
0 0 −2

,

and we define the additional λ0 matrix as

λ0 =
√

2
313×3 =

√
2
3


1 0 0
0 1 0
0 0 1

.

The trace of the pairwise product of Gell-Mann matrices satisfies

tr(λaλb) = 2δab.
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IX C

The fermion propagator in a
uniform magnetic field

In this Appendix we derive an expression for the fermion propagator in a uniform
magnetic field following Schwinger’s proper-time method [26].

C.1 Fermion propagator in a constant electromag-
netic field

The propagator of the Dirac field in the presence of the gauge field Aµ, G(x, y),
is formally defined by (

i /D −m
)
G(x, y) = δ4(x− y), (C.1)

where Dµ = ∂µ − iqAµ is the covariant derivative, with q being the fermion electric charge
and m standing for its mass. Schwinger’s technique begins by regarding G(x, y) as the
matrix element of an operator G [26, 27], namely G(x, y) = ⟨y|G|x⟩. Then, in terms of
this operator, Eq. (C.1) is written as

(
/Π −m

)
G = 1, (C.2)

where Πµ = Pµ + qAµ denotes the conjugated momentum operator. Eq. (C.2) can be
formally solved by writing the following integral representation for G:

G = 1
/Π −m

=
/Π +m

/Π2 −m2 + iϵ
= −i

∫ ∞

0
ds
(
/Π +m

)
exp

[
−i
(
m2 − /Π2 − iϵ

)
s
]
.

Here we used the Feynman prescription and introduced the factor iϵ in order to compute
the integral. It is understood that the limit ϵ → 0 is to be taken and we will simply omit
this factor from now on.
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Then, for G(x, y) = ⟨y|G|x⟩ we have

G(x, y) = −i
∫ ∞

0
ds e−im2s ⟨y|

(
/Π +m

)
U(s)|x⟩ ,

where
U(s) = e−iHs with H = −/Π2

.

The operator H = −/Π2 can be regarded as an effective Hamiltonian while s can be
interpreted as a time variable, which is known as the Schwinger proper-time. Therefore
the unitary operator U(s) can be viewed as the time-evolution operator whose action on
the state |x⟩ may be written as

|x(s)⟩ = U(s) |x(0)⟩ .

We now rewrite G(x, y) as

G(x, y) = −i
∫ ∞

0
ds e−im2s ⟨y(0)|

(
/Π +m

)
|x(s)⟩

= −i
∫ ∞

0
ds e−im2s[γµ ⟨y(0)|Πµ(0)|x(s)⟩ +m ⟨y(0)|x(s)⟩]. (C.3)

The transformation function ⟨y(0)|x(s)⟩, fundamental to the evaluation of G(x, y) in Eq.
(C.3), is characterized by the following equations:

i
∂

∂s
⟨y(0)|x(s)⟩ = ⟨y(0)|H|x(s)⟩ , (C.4a)

[i∂µ + qAµ(x)] ⟨y(0)|x(s)⟩ = ⟨y(0)|Πµ(s)|x(s)⟩ , (C.4b)[
−i∂µy + qAµ(y)

]
⟨y(0)|x(s)⟩ = ⟨y(0)|Πµ(0)|x(s)⟩ , (C.4c)

with the boundary condition

lim
s→0

⟨y(0)|x(s)⟩ = δ4(x− y). (C.5)

The first equation in (C.4) is simply the Schrödinger equation for the time-evolution of
the state |x(s)⟩ while the others follow from the definition of the conjugated momentum
operator Πµ. Here we have assumed that Πµ(s) operates on |x(s)⟩ and Πµ(0) operates on
|x(0)⟩ [27].

In order to evaluate Eqs. (C.4), we first use the commutation relations

[Πµ, xν ] = igµν ,

[Πµ,Πν ] = iqFµν ,
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to write the Hamiltonian H as

H = −/Π2 = −Π2 − q

2σ
µνFµν ,

where Fµν = ∂µAν − ∂νAµ is the field-strength tensor of the gauge field and

σµν = i

2[γµ, γν ].

The operators xµ and Πµ satisfy the equations of motion

dxµ

ds = i[H, xµ] = i
[
xµ,Π2

]
= i[xµ,Πν ]2Πν = 2Πµ, (C.6a)

dΠµ

ds = i[H,Πµ] = i
[
Πµ,Π2

]
+ i

2qσ
λν [Πµ, Fλν ]

= i([Πµ,Πν ]Πν + Πν [Πµ,Πν ]) + i

2qσ
λν [Πµ, xρ]∂ρFλν

= −2qFµνΠν , (C.6b)

where, in the last step, we assumed a constant field strength Fµν , in which case ∂ρFλν = 0
and [Πµ, Fλν ] = 0. In matrix notation, Eqs. (C.6) read

dx
ds = 2Π,

dΠ
ds = −2qFΠ,

for which the solutions are
Π(s) = e−2qFsΠ(0),

x(s) − x(0) =
(
1 − e−2qFs

)
(qF)−1 Π(0) = 2e−qFs sinh (qFs) (qF)−1 Π(0).

If we write Π(0) in terms of x(s) − x(0) in the second equation and substitute the result
into the first one, we find

ΠT (s) = [x(s) − x(0)]T 1
2qF sinh−1 (qFs) eqFs,

after using the antisymmetry of F. With this expression, we can write the Hamiltonian
as

H = −Π2 − q

2σ
µνFµν = [x(s) − x(0)]T K [x(s) − x(0)] + q

2tr (σF) ,

where
K = 1

4 (qF)2 sinh−2 (qFs) ,

and here the trace tr is over the indices µ, ν, . . . .
Now, let us note that x(s) does not commute with x(0) due to the dependence
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of x(s) on Π(0). Then, since the Hamiltonian is to be evaluated in position eigenstates
like in Eq. (C.4a), it will be useful to write it so that x(s) is on the left and x(0) is on
the right [34]. To do that, we use

[x(s),x(0)] = −2ie−qFs sinh (qFs) (qF)−1 ,

to write

Π2(s) = xT (s)Kx(s) − 2xT (s)Kx(0) + xT (0)Kx(0) +Kµν [xµ(s), xν(0)]

= xT (s)Kx(s) − 2xT (s)Kx(0) + xT (0)Kx(0) + tr (K [x(s),x(0)])

= xT (s)Kx(s) − 2xT (s)Kx(0) + xT (0)Kx(0) − i

2tr
[
QF

e−QFs

sinh (QFs)

]
.

Then, since e−x

sinh x
= coth x − 1 and tr (F) = 0, we find the matrix element in Eq. (C.4a)

to be

⟨y(0)|H|x(s)⟩ =
{
q

2tr (σF) − (x − y)T K(x − y) − i

2tr [qF coth (qFs)]
}

⟨y(0)|x(s)⟩.

Substituting this result back into Eq. (C.4a) and solving the differential equation
leads to

ln (⟨y(0)|x(s)⟩) = − i

2qtr (σF) s− i

4(x − y)T qF coth (qFs) (x − y)

−1
2tr ln

[
(qF)−1 sinh (qFs)

]
+ constant,

where we add ln s2 on both sides to obtain [27]

⟨y(0)|x(s)⟩ = C(x,y) s−2 exp
{

−1
2tr ln

[
(qFs)−1 sinh (qFs)

]}
× exp

[
− i

4(x − y)T qF coth (qFs) (x − y) + i

2qσµνF
µν s

]
.

(C.7)

To determine the factor C(x,y), we can use Eqs. (C.4b) and (C.4c). The right-
hand side of these two equations are given by

⟨y(0)|Π(s)|x(s)⟩ = ⟨y(0)|
[1
2qF sinh−1 (qFs) e−qFs (x(s) − x(0))

]
|x(s)⟩

= 1
2 [qF coth (qFs) − qF] (x − y)⟨y(0)|x(s)⟩, (C.8a)

⟨y(0)|Π(0)|x(s)⟩ = ⟨y(0)|
[1
2qF sinh−1 (qFs) eqFs (x(s) − x(0))

]
|x(s)⟩

= 1
2 [qF coth (qFs) + qF] (x − y)⟨y(0)|x(s)⟩. (C.8b)
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Therefore, substituting Eq. (C.7) into Eqs. (C.4b) and (C.4c), and using Eqs.
(C.8), one arrives at

[
i∂µ + qAµ(x) − 1

2qFµν(y − x)ν
]
C(x, y) = 0,

[
−i∂µy + qAµ(y) + 1

2qFµν(y − x)ν
]
C(x, y) = 0,

from which we find C(x, y) to be

C(x, y) = C exp
{
iq
∫ x

y
dξµ

[
Aµ(ξ) + 1

2Fµν (ξ − y)ν
]}
. (C.9)

Lastly, we apply the boundary condition (C.5) to determine the constant C. We are
interested in the behavior of the solution (C.7) as s → 0. Since sinh x → x for x << 1,
we have ln[x−1 sinh x] → ln(1) = 0. Also, coth x → 1

x
as x → 0, so that in order to find C

we write
C

1
s2 exp

[
− i

4(x− y)µ 1
s

(x− y)µ

]
→ δ4(x− y).

This condition is equivalent to

∫
d4xCs−2 exp

(
− i

4
x2

s

)
= 1,

from where we find C to be
C = −i (4π)−2 , (C.10)

after using the result (A.21).
At last, we are ready to put the pieces together. From Eqs. (C.3), (C.7), (C.8),

(C.9) and (C.10), we find
G(x, y) = Φ(x, y)G(x− y), (C.11a)

where
Φ(x, y) ≡ exp

{
iq
∫ x

y
dξµ

[
Aµ(ξ) + 1

2Fµν (ξ − y)ν
]}
, (C.11b)

G(x− y) ≡ − (4π)−2
∫ ∞

0

ds

s2

[
m+ 1

2γ · [qF coth (qFs) + qF] (x − y)
]

× exp
{

−im2s− 1
2tr ln

[
(qFs)−1 sinh (qFs)

]}
× exp

[
− i

4(x − y)T qF coth (qFs) (x − y) + i

2qσµνF
µν s

]
.

(C.11c)

Note that the phase factor Φ(x, y) is explicitly gauge dependent and breaks the translation
invariance of the propagator.
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C.2 Propagator in the presence of a uniform mag-
netic field

Now, let us specialize to the case where the background field is a homogeneous
magnetic field B = Bêz such that F12 = −F21 = B. Then we can write the propagator in
terms of B. To do so, we begin by analyzing

σµνF
µν = i

2 [γ1, γ2]F 12 + i

2 [γ2, γ1]F 21 = i [γ1, γ2]F 12 = i [σ2, σ1]
 1 0

0 1

F 12,

σµνF
µν = 2B

 σ3 0
0 σ3

 . (C.12)

Next we evaluate exp
[
−1

2tr ln (F−1 sinh F)
]
. First, we write

sinh F =
∞∑

k=0

F2k+1

(2k + 1)! = F + F3

3! + F5

5! + F7

7! + F9

9! + . . . .

Now, limx→0
sinh x

x
= 1 and ln 1 = 0. Thus, the only contributions to the exponent will come

from the non-zero terms in F µν , namely µ, ν = 1, 2. So, working with two dimensions, we
define the matrix

T =
0 −1

1 0

,
so that

F = BT, F3 = −B3T, F5 = B5T, . . . .

Thus,

sinh F = T
(
B − B3

3! + B5

5! − B7

7! + . . .

)
= T sinB,

and

F−1 sinh F = T−1T
sinB
B

= sinB
B

1 0
0 1

.
With this result, we find

exp
[
−1

2tr ln
(
F−1 sinh F

)]
= B

sinB. (C.13)

Now consider the expression γ · (F coth F + F) x = γµ (F µν cothFνρ + F µρ)xρ.
Once again the elements of F vanish for µ = ρ = 0 or µ = ρ = 3, and since F coth F → 1
as F → 0, we can simply separate these contributions to the expression and write

γ · (F coth F + F) x = (γ · x)∥ − γ · [BT coth(BT)]x⊥ + γ1F
12x2 + γ2F

21x1,
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where, for two arbitrary 4−vectors aµ and bµ, we denote

(a · b)∥ = a0b0 − a3b3,

(a · b)⊥ = a1b1 + a2b2.

Explicitly, we have

BT coth(BT) = 1
(BT)−1 sinh(BT) cosh(BT) = B

sinB

∞∑
k=0

(−1)k B
2k

(2k)!

1 0
0 1


= B

sinB cosB
1 0

0 1

,
and

γ1F
12x2 + γ2F

21x1 = B (γ1x2 − γ2x1) = −B (γ1γ2γ2x2 − γ2γ1γ1x1)

= −Bγ1γ2 (γ2x2 + γ1x1) = −Bγ1γ2 (γ · x)⊥ = iBσ3 (γ · x)⊥ ,

since

σ3 ≡

 σ3 0
0 σ3

 = iγ1γ2. (C.14)

We then arrive at

γ · (F coth F + F) x = (γ · x)∥ − B

sinB (γ · x)⊥ e
−iBσ3 . (C.15)

Lastly, proceeding as we did for the last expression, we obtain

xT (F coth F) x = x2
∥ −B cotB x2

⊥. (C.16)

Using the relations (C.12), (C.13), (C.15) and (C.16), we can write

G(x− y) = − (4π)−2
∫ ∞

0

ds

s2
qBs

sin (qBs) exp
(
−im2s+ iqBsσ3

)
× exp

{
− i

4s
[
(x− y)2

∥ − qBs cot (qBs) (x− y)2
⊥

]}
×
{
m+ 1

2s

[
γ · (x− y)∥ − qBs

sin (qBs)γ · (x− y)⊥e
−iqBsσ3

]}
.

(C.17)

This is the expression for the translation invariant propagator function in the presence
of a homogeneous background magnetic field. Since quarks can have either positive or
negative electric charges it will be useful to rewrite this expression in terms only of the
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magnitude of that charge, namely,

G(x− y) = − (4π)−2
∫ ∞

0

ds

s2
|qB|s

sin (|qB|s) exp
(
−im2s+ i sign(qB)|qB|sσ3

)
× exp

{
− i

4s
[
(x− y)2

∥ − |qB|s cot (|qB|s) (x− y)2
⊥

]}
×
{
m+ 1

2s

[
γ · (x− y)∥ − |qB|s

sin (|qB|s)γ · (x− y)⊥e
−i sign(qB)|qB|sσ3

]}
,

(C.18)

where

sign(x) =

 +1 if x > 0
−1 if x < 0

.

Eq. (C.18) is the final result we need for the propagator. However, we eventually
may find more convenient to write an expression for the propagator in momentum space,
which will be done in the next section.

C.3 Propagator in momentum space

The expression for the translation invariant propagator function, Eq. (C.18), can
be cast in the form

G(x− y) =
∫ d4p

(2π)4 e
−ip·(x−y)G(p),

with

G(p) =
∫
d4x eipxG(x)

= − (4π)−2
∫ ∞

0

ds

s2
|qB|s

sin (|qB|s) exp
(
−im2s+ i sign(qB)|qB|sσ3

)
(I1 + I2 + I3) ,

where

I1 = m
∫
d2x∥

∫
d2x⊥e

ipx∥e−ipx⊥ exp
[
− 1

4s
(
x2

∥ − |qB|s cot (|qB|s)x2
⊥

)]
= i(4π)2s2

|qB|s cot(|qB|s)m exp
[
is

(
p2

∥ − p2
⊥

|qB|s cot(|qB|s)

)]
,

I2 = 1
2s

∫
d2x∥

∫
d2x⊥e

ipx∥e−ipx⊥γ · x∥ exp
[
− 1

4s
(
x2

∥ − |qB|s cot (|qB|s)x2
⊥

)]
= i(4π)2s2

|qB|s cot(|qB|s)γ · p∥ exp
[
is

(
p2

∥ − p2
⊥

|qB|s cot(|qB|s)

)]
,

I3 = − 1
2s

|qB|s
sin(|qB|s)e

−i sign(qB)|qB|sσ3
∫
d2x∥ exp

[
−i
( 1

4sx
2
∥ − p · x∥

)]
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×
∫
d2x⊥γ · x⊥ exp

[
−i
(

− 1
4s |qB|s cot (|qB|s)x2

⊥ + p · x⊥

)]
= −i(4π)2s2

|qB|s cos2(|qB|s) sin(|qB|s)e−i sign(qB)|qB|sσ3γ · p⊥ exp
[
is

(
p2

∥ − p2
⊥

|qB|s cot(|qB|s)

)]

Putting the pieces together leaves us with

G(p) = −i
∫ ∞

0

ds

cos(|qB|s) exp
{

−is
[
m2 − p2

∥ + tan(|qB|s)
|qB|s

p2
⊥

]}

×
[
ei sign(qB)|qB|sσ3

(
m+ γ · p∥

)
− γ · p⊥

cos(|qB|s)

]
.

By using
eiθσ3 = cos θ + iσ3 sin θ,

and Eq. (C.14), we can also write

G(p) = −i
∫ ∞

0
ds exp

{
−is

[
m2 − p2

∥ + tan(|qB|s)
|qB|s

p2
⊥

]}
×
{
[1 − sign(qB)γ1γ2 tan(|qB|s)]

(
m+ γ · p∥

)
− γ · p⊥

[
1 + tan2 (|qB|s)

]}
.

(C.19)
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Flavor trace of the second order
term in the quark determinant

expansion

In this Appendix we give a few details on the flavor trace of the second order
term in the quark determinant expansion. Both terms in Eq. (3.15) have the general form
KλaKλb, where K is a combination of the quark propagator matrix and some flavor
identity operator and λa, = 0, . . . , 8, represents the Gell-Mann matrices. The important
feature of the operator K is its flavor structure,

K =


Ku 0 0
0 Kd 0
0 0 Ks

.

Since the indices a, b can each take on the values 0, . . . , 8, we have 81 possible combinations
of the product KλaKλb. Fortunately, a lot of them have vanishing trace and we list below
only the nonzero results,

trF

(
Kλ0Kλ0

)
= 2

3
(
K2

u +K2
d +K2

s

)
,

trF

(
Kλ0Kλ3

)
= trF

(
Kλ3Kλ0

)
=
√

2
3
(
K2

u −K2
d

)
,

trF

(
Kλ0Kλ8

)
= trF

(
Kλ8Kλ0

)
=

√
2

3
(
K2

u +K2
d − 2K2

s

)
,

trF

(
Kλ1Kλ1

)
= trF

(
Kλ2Kλ2

)
= 2KuKd,

trF

(
Kλ3Kλ3

)
= K2

u +K2
d ,

trF

(
Kλ3Kλ8

)
= trF

(
Kλ8Kλ3

)
= 1√

3
(
K2

u −K2
d

)
,

trF

(
Kλ4Kλ4

)
= trF

(
Kλ5Kλ5

)
= 2KuKs,
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trF

(
Kλ6Kλ6

)
= trF

(
Kλ7Kλ7

)
= 2KdKs,

trF

(
Kλ8Kλ8

)
= 1

3
(
K2

u +K2
d + 4K2

s

)
.

Now consider the term with the scalar currents, trF

(
KλaKλb

)
ja

s j
b
s, where ja

s =
ψ̄λaψ, ψ = (u, d, s)T and a sum over repeated indices is implicit. We can work only with
this term since the one with the pseudoscalar currents is completely analogous. Explicitly,
we have

trF

(
KλaKλbja

s j
b
s

)
= 2

3
(
K2

u +K2
d +K2

s

)
(j0

s )2 + 2KuKd

[
(j1

s )2 + (j2
s )2
]

+
(
K2

u +K2
d

)
(j3

s )2

+2KuKs

[
(j4

s )2 + (j5
s )2
]

+ 2KdKs

[
(j6

s )2 + (j7
s )2
]

+ 1
3
(
K2

u +K2
d + 4K2

s

)
(j8

s )2

+2
√

2
3
(
K2

u −K2
d

)
j0

s j
3
s + 2

√
2

3
(
K2

u +K2
d − 2K2

s

)
j0

s j
8
s + 2√

3
(
K2

u −K2
d

)
j3

s j
8
s .

Using the results below,

(
j0

s

)2
= 2

3

[
(ūu)2 +

(
d̄d
)2

+ (s̄s)2 + 2(ūu)
(
d̄d
)

+ 2(ūu)(s̄s) + 2
(
d̄d
)
(s̄s)

]
,(

j1
s

)2
= (ūd)2 +

(
d̄u
)2

+ 2(ūd)
(
d̄u
)
,(

j2
s

)2
= −(ūd)2 −

(
d̄u
)2

+ 2(ūd)
(
d̄u
)
,(

j3
s

)2
= (ūu)2 +

(
d̄d
)2

− 2(ūu)
(
d̄d
)
,(

j4
s

)2
= (ūs)2 + (s̄u)2 + 2(ūs)(s̄u),(

j5
s

)2
= −(ūs)2 − (s̄u)2 + 2(ūs)(s̄u),(

j6
s

)2
=
(
d̄s
)2

+ (s̄d)2 + 2
(
d̄s
)
(s̄d),(

j7
s

)2
= −

(
d̄s
)2

− (s̄d)2 + 2
(
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)
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j8
s

)2
= 1

3

[
(ūu)2 +

(
d̄d
)2

+ 4(s̄s)2 + 2(ūu)
(
d̄d
)

− 4(ūu)(s̄s) − 4
(
d̄d
)
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]
,

j0
s j

3
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√
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3

[
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(
d̄d
)
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s j
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2

3

[
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]
,

we obtain, after some long and tedious but straightforward algebra,

trF

(
KλaKλbja

s j
b
s

)
= 4

[
K2

u(ūu)2 +K2
d(d̄d)2 +K2

s (s̄s)2 + 2KuKd(ūd)(d̄u)

+2KuKs(ūs)(s̄u) + 2KdKs(d̄s)(s̄d)
]
,
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or simply,
trF

(
KλaKλbja

s j
b
s

)
= 4

∑
f,g=u,d,s

KfKg(ψ̄fψg)(ψ̄gψf ).

Taking K = S(0)(p) for the term with the scalar currents, we have

trF

[
S(0)(p)λaS(0)(p)λbja

s j
b
s

]
= 4

∑
f,g=u,d,s

S
(0)
f (p)S(0)

g (p)(ψ̄fψg)(ψ̄gψf ).

Similarly, for the term with the pseudoscalar currents we find

trF

[
S(0)(p)iγ5λ

aS(0)(p)iγ5λ
bja

s j
b
s

]
= 4

∑
f,g=u,d,s

S
(0)
f (p)iγ5S

(0)
g (p)iγ5(ψ̄f iγ5ψg)(ψ̄giγ5ψf ).
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