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RESUMO

Nesse trabalho calculamos correcoes para a constante de acoplamento do modelo
NJL na presenca de um campo magnético uniforme. Comecando com a lagrangiana do
modelo de Nambu-Jona-Lasinio acoplada com um campo magnético externo, separamos
os campos de quarks em duas componentes: uma correspondendo aos quarks que con-
densam e outra correspondendo as quase-particulas interagentes. Integrando a primeira
componente, uma ac¢ao efetiva em termos dos quarks interagentes é obtida. Em seguida,
expandimos o determinante em termos das correntes de quarks e mostramos que o termo
de primeira ordem produz uma correcao para as massas dos quarks dada pela equacao do
gap. Os valores obtidos para as massas dos quarks constituintes aumentam com o campo
magnético, o que sinaliza o aprimoramento da quebra de simetria quiral pelo campo ex-
terno e, portanto, mostrando que o sistema exibe catalise magnética. O termo de segunda
ordem da expansao do determinante produz uma corre¢do para a constante de acopla-
mento do modelo NJL. que decresce com o campo magnético para as interagoes escalares
e cresce com o campo magnético para as pseudoescalares. Em seguida consideramos o
modelo NJL com os acoplamentos dependentes do sabor e de B obtidos da polarizagao
do vacuo e calculamos as massas dos quarks e dos mésons. Enquanto os acoplamentos
escalares parecem melhorar a conciliacao com os resultados da rede para as massas dos
quarks, o mesmo nao pode ser dito sobre os acoplamentos pseudoescalares que alteram
as massas dos mésons de uma maneira diferente daquela conhecida na literatura devido

a seu comportamento com o campo aplicado.

Palavras - chave: Nambu-Jona-Lasinio, Campo magnético, Catalise magnética, Acopla-

mento dependente do campo magnético.



ABSTRACT

In this work we calculate corrections to the NJL model coupling constant in the
presence of a uniform magnetic field. Starting with the Nambu-Jona-Lasinio Lagrangian
coupled with an external magnetic field, we separate the quark field into two components:
one corresponding to the condensed quarks and the other corresponding to the interacting
quasiparticle quarks. By integrating out the former, an effective action in terms of the
interacting quarks is obtained. We then expand the quark determinant in terms of the
quark currents and show that the first-order term provides a correction to the quark masses
given by the gap equation. The values obtained for the constituent quark masses increase
with the magnetic field, which signals the enhancement of chiral symmetry breaking by
the external field and therefore showing that the system exhibits magnetic catalysis.
The second-order term of the quark determinant expansion provides a correction to the
NJL coupling constant, which decreases with increasing magnetic field for the scalar
interactions and increases with increasing magnetic field for the pseudoscalar ones. We
then consider a NJL model with the flavor- and B-dependent couplings obtained from
vacuum polarization and compute quark and meson masses. While the scalar couplings
seem to improve the conciliation with lattice results for the quark masses, the same cannot
be said about the pseudoscalar couplings which alters the pseudoscalar meson masses in

a different way than what is known in the literature due to its behavior with the applied
field.

Key - words: Nambu-Jona-Lasinio, Magnetic field, Magnetic catalysis, Magnetic field
dependent coupling.
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NOTATIONS AND CONVENTIONS

We will work in natural units, where
h=c=1.

Here h is Planck constant divided by 27 and c is the speed of light. With our choice of
units, we have

[length] = [time] = [energy] ™" = [mass] ',

where the bracket refers to the unit of the quantity inside it.

The metric tensor that we use has sign convention

with Greek indices running over 0,1,2,3. Roman indices, i,j, etc., run over 1,2,3.
Repeated indices are summed unless said otherwise. Contractions with the Dirac matrices

~* will sometimes be denoted by the Feynman slash,

}” = VHpu-
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CHAPTER

INTRODUCTION

In the past years, the properties of strongly interacting magnetized matter have
been attracting a lot of attention. The complicated nature of quantum chromodynamics
(QCD) inspires the investigation of this theory under external conditions which provide
a controllable dynamics [1, 2]. An applied magnetic field is one example of such external
parameters and one which is relevant to many applications. Magnetic fields play an
important role in physical systems such as noncentral heavy ion collisions, neutron stars
and the early universe [3]. In heavy ion collisions, for example, the magnetic field produced
can be of the order of eB ~ 15m? for LHC [4], where e is the proton electric charge, B is
the magnetic field strength and m, ~ 135MeV is the 7% meson mass. Such value of the
magnetic field is strong enough to influence the strongly interacting matter significantly
[1].

One very important property of QCD is chiral symmetry breaking, for which
the chiral condensate <1Z¢> is an order parameter. In the theory of strong interactions,
dynamical breaking of chiral symmetry leads to the definition of massive constituent
quarks which are responsible for most part of the hadron masses, as described by the
constituent quark model [5].

It has been established that an applied magnetic field has a tendency to enhance
spin-zero fermion-antifermion condensates, which are associated with the breaking of
global symmetries and lead to a dynamical generation of masses [6, 7]. This mechanism
is called magnetic catalysis [6, 8]. It is a model-independent effect since its essence is the
dimensional reduction in the dynamics of fermion pairing in a magnetic field. In fact, a
constant magnetic field was shown to be a strong catalyst of dynamical chiral symmetry
breaking even at the weakest attractive interaction between fermions [7].

Serving as a low energy effective theory for QCD, the Nambu-Jona-Lasinio (NJL)
model [9, 10] is excellent for describing the effects of the approximate chiral symmetry
and its breaking to generate the dynamical quark masses [5, 11, 12]. This makes the

model great for giving a clear illustration of the general effect that is magnetic catalysis.



Additionally, the NJL model successfully describes meson properties allowing us to study
the effects of the magnetic field on the masses of hadrons, for example.

The NJL model is one of the many approaches to understand the effects of
a magnetic field on strong interactions. Particularly, the structure of the QCD phase
diagram in a magnetic field is a topic that have been receiving increasing attention,
both in effective models predictions and lattice calculations [3]. While effective models
exhibiting the magnetic catalysis phenomenon predict that the critical temperature
for chiral symmetry restoration should increase with B, lattice simulations support its
decrease with increasing magnetic field strength [13, 14]. This latter effect is known as
inverse magnetic catalysis.

It seems like this contradiction between effective models and lattice predictions
lies in the fact that the couplings in those models are fixed and independent of the
applied magnetic field, which is not the case for QCD [2, 15, 16]. It has been established
that the lattice results can be reproduced by the NJL model, in particular, if the coupling
constant of the theory decreases with both the magnetic field strength and the temperature
[16, 17]. Particularly, a B-dependent effective coupling in the NJL model has been shown
to reproduce results in good agreement with lattice QCD simulations [18, 19, 20, 21].

In this work, our main goal is to obtain a mechanism for which the NJL coupling
acquires a B-dependence. This will be done by investigating vacuum polarization effects
in the presence of a strong magnetic field [22, 23|, like it was done in Ref. [24] for the
weak magnetic field case. Consequently, one may expect to obtain effective B-dependent
couplings that receive flavor-dependent contributions [25] since quarks have different
masses and electric charges, and thus may respond to the applied field with different
intensities. The U(3) NJL Lagrangian minimally coupled with an Abelian gauge field,
namely a uniform magnetic field in the z—direction, B = Bé&,, will be our departure
point. Working at zero temperature, we split the quark field bilinears into one component
that condenses and another for the interacting quarks. We then integrate out the former
and obtain an effective action in terms of interacting quark fields [22]. Then, the quark
determinant can be expanded in terms of the quark field bilinears. Particularly of interest
to this work will be the second-order term, which provides an effective coupling that
depends on the magnetic field.

This work is organized as follows. In Chapter 2 we present a brief discussion on the
properties of QCD and introduce the NJL model in the absence of external fields. Applying
the background field method, we obtain the effective action, the chiral condensate and
the gap equation for the dynamically generated quark masses. A word on different
regularization schemes is mentioned and we compute some meson properties at B = 0 in
order to fix the free parameters of the model. In Chapter 3, we couple the NJL. Lagrangian
with the uniform magnetic field and obtain expressions for the chiral condensate and the

gap equation as functions of B. The effect of the magnetic field in enhancing the chiral
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Chapter 1. Introduction 3

condensate is discussed. We then expand the quark determinant in terms of the quark field
bilinears and obtain expressions for the B—dependent effective couplings. In Chapter 4
we consider the effects of the new flavor- and B-dependent couplings in quark and meson
masses. Finally, Chapter 5 concludes with some final remarks. Some useful mathematical
results are presented in Appendix A as well as some properties regarding Pauli, Dirac
and Gell-Mann matrices in Appendix B. Appendix C presents a derivation of the fermion
propagator in a uniform magnetic field following Schwinger proper time method [26, 27],
which is used several times in the text. Lastly, Appendix D lists some details on the flavor

trace of the second order term in the quark determinant expansion.
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CHAPTER

THE NAMBU-JONA-LASINIO MODEL

2.1 The theory of strong interactions

One may say that high-energy physics is one of mankind greatest efforts to pursue
the ultimate structure of matter. This is done by looking for the smallest constituents of
matter, the elementary particles, and describing how they interact with one another to
construct the world we live in. Our current knowledge tells us that the fundamental
building blocks of matter are quarks and leptons, which are fermions having spin 1/2,
and that the interactions between particles are mediated by gauge bosons. The four
known fundamental interactions are the electromagnetic, weak, strong and gravitational
forces (with the latter being negligibly weak at elementary particle level). While all
particles are affected by the weak force, only electrically charged particles interact with
the electromagnetic field. Furthermore, leptons are not affected by the strong force, which
is the interaction that binds quarks to form composite states called hadrons, and also
binds protons and neutrons to form the nucleus.

The theoretical framework of particle physics falls under the dominion of quantum
field theory (QFT) since it must be guided by the principles of special relativity and
quantum mechanics if is to describe the microscopic world of particles moving at speeds
comparable to the speed of light. Except for gravity, all of the known elementary
particle interactions are described by the Standard Model, which encompasses quantum
electrodynamics (QED), the Glashow-Weinberg-Salam theory of electroweak processes
and quantum chromodynamics (QCD) [28, 29].

Quantum chromodynamics is the theory describing the strong interaction between
quarks, which is based on the gauge group SU(3) acting on a degree of freedom called
color. Quarks come in six flavors, up (u), down (d), strange (s), charm (c¢), bottom (b)
and top (t), and they are equipped with what we call color charge, which generates the
force field just as the electromagnetic field is generated by an electric charge. There are

three kinds of color charges, which we label by R (red), B (blue) and G (green), and only
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color neutral combinations are observed. We then describe the strong interaction by a
SU(3) Yang-Mills theory with each quark flavor transforming as the fundamental triplet
representation [30, 31].

The QCD Lagrangian is given by [31, 32]

L= —m)y - ingFgﬂ (2.1)

where ¢ = (u,d, s, . .. )T is the quark field with three colors, m = diag(m,, mq, ms, ... ) is

the current quark mass matrix and

A
D,=0, - zgs?Au,
is the covariant derivative, with g, representing the strong coupling constant and the
colored gauge field A}, representing the gluon field. The gluon field strength tensor is
given by
a a a b pc
Fi, = 0,A7 — 0, AL + gsfave AL A

Here a,b,c are SU(3) adjoint representation indices running from 1 to 8 and a sum
over repeated indices is implicit. The matrices A\* are the Gell-Mann matrices and the
coefficients fup. are the SU(3) structure constants.

The computation of the propagator for the gauge boson follows the usual
procedure of introducing the gauge fixing term and the associated Faddeev-Popov ghost
fields [33, 34]. However, the usual calculational procedure of renormalized perturbation
theory that works so well for QED cannot be used for QCD since it is a strong interaction
theory. The most crucial difference between the electromagnetic and strong interactions is
the confinement of color exhibited by the latter. While electrons and photons are observed
as free particles, quarks and gluons are not; instead, they are bound into hadrons and the
only observed states are those that are singlets of color SU(3) [32, 33].

A renormalization group analysis shows that the QCD coupling effectively de-
creases with energy, which is a property exhibited by non-Abelian gauge theories called
asymptotic freedom'. This property was the reason for the success of the parton model in
explaining deep inelastic scattering phenomena by treating the particles inside hadrons
as freely moving; it also enables us to use the QED perturbative techniques in the high
energy regime [30].

But perturbation theory does not work in the regime of strong coupling and al-

1.For the discovery of asymptotic freedom in the theory of the strong interaction the Nobel prize in
physics was awarded to D. J. Gross, H. D. Politzer and F. Wilczek in 2004 [31, 35].
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ternative approaches are required. One such example is lattice QCD, an approximation
scheme in which the continuum gauge theory is replaced by a discrete statistical mechani-
cal system on a four-dimensional Euclidean lattice [33]. However, limited computer power
and difficulty in transforming numerical data into essential physics is enough inspiration
for the investigation of another approach. That is where the effective models of QCD come
in.

The construction of an effective model of QCD must be guided by the symmetry
properties of the theory, and so it is instructive to list those properties before introducing

such a model.

2.1.1 QCD symmetries

Let us now restrict ourselves to the case of QCD with three quark flavors, so that

the quark field is given by

Y(x) = | d(z) |, (2.2)

and each quark flavor exits in three colors. The local color SU(3) gauge symmetry of
the Lagrangian (2.1), which is exact, will not be important for our considerations on the
effective model to be introduced [11, 12], and thus it will not be discussed.

The QCD Lagrangian can be written as

£ =L — (myiu+ madd + m,ss), (2.3a)
where .
L£O) = ilpop — L (2.3b)

The Lagrangian £ is invariant under the group
Uv(?)) ® UA(S) = SUv(S) & SUA(?)) X Uv(l) X UA(l), (24)
where the transformations are specified by

Up(1): ¢ — e,
SUV(3) : ¢ — e ""/2y,
Ua(1): o — e 5,
SUA(3) : o — e X" /2y,

with a and § denoting arbitrary transformation parameters. The unitary transformations

Uy (1) correspond to baryon conservation while SUy (3) is associated with the eightfold
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way [11]. The Uy(1) and SU4(3) transformations, which include the 5 matrix, are called
chiral or azxial transformations.

However, the axial symmetries are not manifest in particle degeneracies, and so
we must assume that the dynamics is such that the QCD vacuum breaks these symmetries
[31]. Now, we know that the spontaneous breaking of a continuous global symmetry
implies the existence of associated massless bosons as stated by the Goldstone theorem.
In fact, the spontaneous breaking of the chiral symmetry SU,4(3) is corroborated by the
observation of the Goldstone modes of the 7 octet. However, the breaking of U 4(1) requires
a ninth pseudoscalar meson that is not observed in nature. This is the so-called axial U(1)
problem. It was solved by 't Hooft who showed that, due to instanton effects, the U4(1)
symmetry should not result in physical manifestations [11]. Nevertheless, chiral symmetry
breaking is an important QCD feature that we expect our effective model to share with
the fundamental theory.

Let us note that the total Lagrangian £, which includes the mass term, breaks
the chiral symmetry explicitly and also the symmetry under SUy (3) if m,, # mgq # ms.
For this reason, we say that £ is the QCD Lagrangian in the chiral limit, and sometimes
the notation L. is used. However, current quark masses are known to have the values
listed below [36]

m, = 2.167052 MeV,
mg = 4.671515 MeV,
ms = 931 MeV,

which are relatively small when compared to typical hadron mass scales of about 1 GeV.
This means that chiral symmetry is a good approximation in the regime of low energy
where we consider only the three quark flavors listed above. Furthermore there is evidence
both from low-energy hadron phenomenology and from lattice QCD that chiral symmetry
is spontaneously broken [12], which is why we emphasize that it is important that an
effective model exhibits this property.

Spontaneous chiral symmetry breaking is signaled by non-vanishing quark pair
condensates, <@Z31/}> [12]. If we consider two flavors, u and d, the Gell-Mann-Oakes-Renner
relation gives [5]

f2m2 ~ —W <au + Jd> ,

™ ™

where f, is the pion decay constant and m, is the pion mass. The pion is the Goldstone
boson associated with the chiral symmetry breaking, but it is not massless because the
chiral symmetry is not exact for m, # 0 and my # 0. The equation above then indicates
that <ﬂu + Jd> # 0 as a consequence of the spontaneous breaking of chiral symmetry.
This means that the QCD ground state has condensation of quark and antiquark pairs

[5]. The vacuum expectation value <@E¢> is called the chiral condensate and the fact that
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<1ELZJ> = 0 suggests the generation of dynamical quark masses. As a matter of fact, the
constituent quark model describes many of hadron properties by assuming that massive
quarks with M, ~ M, ~ 300 MeV and M, ~ 500 MeV interact weakly inside hadrons [5].

Having briefly discussed some QCD properties, we are now ready to introduce
a low-energy effective model, which we expect to be simpler to work with than the
fundamental theory. The effective Lagrangian must contain the same symmetry structure
of QCD, namely the SUy(3) ® Uy (1) symmetry in the chiral limit as well as chiral
symmetry SU,4(3) and its spontaneous breakdown. Furthermore we want the effective
theory to be a basis of the constituent quark model, so we write a Lagrangian with no
gluons and where the basic degrees of freedom will be the quarks u, d and s. We should also
keep in mind that we are interested in the low-energy properties of the quark dynamics
where the energy scale is smaller that some cutoff scale A ~ 1 GeV [5, 12]. At last, let us
now introduce such an effective theory, namely the Nambu-Jona-Lasinio (NJL) model of

quantum chromodynamics.

2.2 The NJL Lagrangian

Historically, the Nambu-Jona-Lasinio model was introduced as a theory of nucle-
ons in analogy with the BCS theory of superconductivity [9, 10]. Its construction came
before the development of quantum chromodynamics and, after the arrival of the funda-
mental theory, it was soon realized that the NJL model shares some conceptually impor-
tant features with low energy QCD [12]; in particular, the dynamic generation of fermion
masses due to the spontaneous chiral symmetry breaking is one important property ex-
hibited by the model [11].

Although the nucleonic NJL model is still used to this day [37], it is usually
reinterpreted as a theory with quark degrees of freedom instead of the original nucleons.
It shall serve as an effective low energy model of the strong interaction, but it should
be kept in mind that it does not exhibit color confinement as does QCD. This limits
its application to hadronic and nuclear phenomena that do not depend on details of
the confinement mechanism [12]. In the NJL model the interaction between quarks and
antiquarks are assumed to be attractive, without specifying the complicated processes of
gluon exchange, and leads to a quark-antiquark pair condensation in the vacuum [11].

The U(3) NJL (chiral) Lagrangian is given by [5, 11, 12]

£ = didh + 5| (03) + (i), (2.5)

where g is the NJL coupling constant, the quark field ¢ is given in (2.2) and the index
a takes on the values 0,...,8. As we can see, the coupling constant has dimension of

[energy] > and the model is, in fact, nonrenormalizable, meaning that we need to add
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an infinite number of terms to the Lagrangian in order to absorb the divergences that
arise [38]. However, it is worth mentioning that even a nonrenormalizable theory is able
to make useful predictions at energies below some ultraviolet cutoff, like A ~ 1GeV for
the NJL model.

It should be noted that the Lagrangian (2.5) exhibits the same symmetries as
£ in Eq. (2.3b), namely the invariance under the group (2.4). The unwanted U,(1)
symmetry can be removed by the addition of the 't Hooft determinant interaction [12, 39|
or equivalently by considering a third order interaction term from vacuum polarization
[22]. Since our goal is to obtain a four-fermion effective coupling from polarization effects
in the quark determinant expansion up to second order in the quark currents, the 't Hooft
term will not play an important role in this work, as it would if we were to compute the
third order term in the expansion. Therefore, we shall not consider this term throughout
this work.

Adding the mass term, which breaks the chiral symmetry as before, as well as

the SUy (3) symmetry if m,, # mg # ms, the NJL Lagrangian reads
i g ya 2 T a 2
Ly = (it = m)i + 2| (930) + (dinshw)]. (2.6)

The interaction term can also be rewritten in terms of the fundamental SU(3) represen-

tation as
Lo =v(id—m)+g > [(Vr) (Cotly) + (Vrinatty) (dgivstiy) ] (27)
f,.9=u,d,s

Having introduced the Nambu-Jona-Lasinio Lagrangian, we now proceed to
obtain a 1-loop effective action for the NJL model in terms of the interacting quark
fields. Since this procedure does not depend on the minimally coupled U(1) gauge field,
namely the magnetic field we are interested in, we will compute the effective action from
the Lagrangian (2.6). Then, in Chapter 3, we add the contribution of the magnetic field

to the NJL Lagrangian and make the necessary modifications.

2.3 The effective action and the gap equation

2.3.1 The effective action

The generating functional of the local U(3) NJL model is given by

2l = [ DDy exp {i[Snldvvl + [ dia (n+ 0]} (2.
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where Sxy = [ d*x Lxyr, D, D1 are the fermion functional measures and 77 and 7 are
fermion and antifermion sources, respectively [11].

In order to obtain an effective action in terms of interacting quark fields we
separate the quark field bilinears into two components [22, 24, 23|: one corresponding to

the condensed quarks, (@an) , and the other to the interacting quasiparticle quarks, ¥,

O — (V) + 9. (2.9)

We also consider that the functional measure of the generating functional will be
decomposed analogously. The separation of the kinetic and mass terms of Sy is
straightforward, while the resulting interaction term in the Lagrangian can be written
as L1 = L, + L.+ Lin [22], where

Lo= 3 [N+ (i 9]
L= 5 [(BX) + (BirsA)]
Lot =5 [(BX0)e - (DX + (0A4) - (SX"0).

Wiy P)e - ($ins A" ) + (PigsX) - (PisX¢)e]
We may now integrate out the quark component (1)), with the help of the usual

SU(3) auxiliary fields S,, P, by recalling that the path integral of Gaussian functions can
be performed exactly [11, 40],

N/Dcpexp[/d‘L +AD — B )}—exp( /d4 A2>

where N is an unimportant normalization constant. We may then write the identities

i [ ded @ew] = [Ds,en{s [0 |-eo.s, - 552 b

N/DP exp{ /d4 —(QZZ'%)\“@D)CPG - 219le }

which allow us to drop the fourth order quark interaction L£.. The generating functional

exp[ /d4x7 (YiysA%)

becomes
Zlin) = [ DIDUDS,DE, exp {i [ d'w [u(it = m — S\ — s PN
+Ling — 219(52 + PH + (i — m)y + g [(@E)\a@/)y + (@bz’%)\w})ﬂ] } :

As we can see, the introduction of the auxiliary fields into the generating functional leads
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to contributions to the mass term. We then define the constituent quark mass matrix by

the expression
M =m + S, \* + iy P, A (2.10)

Defining
S Ha —y) = {z@ —M+yg {)\“(&)\“zﬂ) + )\ai’y5(7;’i'}/5)\aw)] } 5z —y), (2.11)

the generating functional can be written as

) 1
Zlin] = [ DUDEDS,DP, 27, ] exp {i/d4$ [—29(53 +Fa) (2.12)

960 = m) + S [N + (@i )] + o + 7| |

where
— [DéDve exp{i [d'a | [ d'ydu@)S o = y)ualy) + den + i | (219
Eq. (2.13) is a Gaussian integral on the Grassmann variables 1), 1. of the form
[40]
/ [] do:dg; e 2M0+in'0+i0"n — qeg(—ipg) e~ M, (2.14)
J
where 6q,...,0,,07,...,0% are the generators of a 2n-dimensional Grassmann algebra.

Using (2.14) to integrate out the component (¢))., with the identification M = S~
where S™! = [dty S~ (z — y), we get

Zulin] = det (—i§™) e # A
_ eTrln(—iS’l) e—ifd4xd4yﬁ(x)5(x—y)n(y)7 (215)
where Tr stands for trace over flavor, color and Dirac indices, and also an integration over
the spacetime coordinates (or, equivalently, momentum coordinates).
By plugging the result (2.15) into the generating functional (2.12) one finds the
resulting effective action for the quasiparticle quarks with the auxiliary variables to be

given by
Set = —iTr In (—z's*)

_ 2.16
b [t {4 i - o+ S [Oeer + o]} 210

The expansion of the fermion determinant in terms of the quark bilinears (in the

presence of the uniform magnetic field) will be left for Chapter 3. In the remainder of
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this section we shall provide a further discussion on the constituent quark masses defined
back in Eq. (2.10).

2.3.2 The mass matrix

Assuming that only the scalar auxiliary fields S, have nonvanishing vacuum
expectation value and dropping the contribution of the pseudoscalar fields P,, we write

the constituent quark mass matrix as [11, 22]
M =m + S\ (2.17)

Regardless of its form, the mass matrix can be brought to diagonal form through flavor-
mixing transformations [11]. Since we are interested in a diagonal matrix, we may only
consider the contributions of the term S,A* that come from the diagonal Gell-Mann

matrices, namely, a = 0, 3, 8. Therefore, we have

M =m+ Sa>\a =m+ S())\O + 53)\3 + Sg)\s

m, + oy 0 0
= 0 mg + 0yg 0 )
0 0 Mg + 0

where

2 1
Oy = \/;So + S3 + \/;387
2 1
04 = \/;So — Sz + \/;587
2 1
Og = \/;SO — 2\/;58,

Si=55+55+55 =

from which we find

L, 2 2
§<O—u + 04 + Us)‘
Thus, we see how the effective action depends explicitly on the corrections to the quark

masses.

2.3.3 The gap equation

In order to obtain the effective quark masses, we impose the stationary condition

aSef‘f
80']0

= 0.
O’f—)<0'f>
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Since quasiparticle fields are zero in the ground state, v, 1) — 0, the stationary condition

i [ (;f’)ﬁrw (p_lM) - 2lg<af> 0,

or, writing (os) = My — my,

yields

My =my + 2gtrpe[iSf (0)], (2.18)

where trpe denotes the trace over color and Dirac indices, and S}O) (x—y) is the free quark
propagator of flavor f, with f = u,d,s. This is the gap equation of the NJL model.

In the mean field approximation, the chiral condensate is given by [12]

(Dps) = —trpe[iS(0)], (2.19)

and so the gap equation can be written as

My =my — 29 (Vsiy). (2.20)

Eq. (2.20) shows the dynamical quark mass generation due to chiral symmetry
breaking, which is signaled by the nonvanishing chiral condensate. We thus need to obtain
an expression for the condensate <1/_Jf¢f> in order to solve the gap equation for the
constituent quark masses.

The free quark propagator in the absence of external fields is given by

d4p p + My 4
SOy — ) = / i (2-y), 991
f (z =) (2m)4 p? — MJ% + 2'66 ( )

It then follows from Eq. (2.19) that

(bpioy) = 4ZN/ (2m)1 2 —MQ’ (2.22)

where the ie prescription is now implicit. The Dirac trace resulted in a factor of 4 while
the color trace resulted in a factor of N., which is the number of colors (N, = 3).

The integral in (2.22) is divergent and thus a regularization scheme must be
adopted. Since the NJL model is nonrenormalizable, it depends on the regularization
procedure chosen, which is not unique. Here we present two different schemes: the four-
momentum cutoff in Euclidean space and the regularization in proper time. Although
we wish to adopt the former, the latter will prove to be the most convenient choice
when dealing with magnetic field effects. However, since the magnetic field dependent
terms introduces no new divergences to the equations, we will be able to separate these

contributions from the divergent ones and then adopt any other regularization scheme. It
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is important, then, to obtain the expression for the chiral condensate by adopting both

procedures.

Four-momentum cutoff In order to solve the integral in (2.22) we rotate the momen-
tum coordinates to Euclidean space by letting p° — ip% and p' — pi, so that d*p — id'pg

and p? — —p%. Hence, the condensate becomes

d4pE MfN
4N/ =— /dQ/ d ;
<¢f¢f (27) pE—FM2 4m4 4 PE 22 E+M2

where df)y is the differential solid angle in four dimensions in Euclidean space. The angular

integral yields

™ s 2
/dQ4 = / dyq sin? gol/ dps sin o des
0 0 0
=272,

and, by letting & = p%, we are left with

(s =~ 4772/ 5§+Mf‘

Since this integral diverges in its upper limit, we introduce a cutoff on £ = p% < A?:

(dsy) = AL /OA d¢ :

47 E+ M2
M N, A%+ M?

Regularization in proper time The integral in (2.22) can also be solved by introduc-

ing a proper time variable s and writing

(o) = -ty [ 22, [

As it was done for the regularization using a four-momentum cutoff, the momentum

integral can be performed by rotating to Euclidean space. The result is

- iMfNC o (s _isM?2
<¢f¢f>: 472 /O ?6 I

We now make the variable change s — —is and introduce a proper time cutoff A to

account for the integral divergence in its lower limit to obtain

. MyNe (= ds
<¢f¢f>:— 12 /1/A2 2¢
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By using the result (A.22) with n = 1 as well as the expansion in Eq. (A.12), we find

0 dS M2 _ M2
= A2 e MM 4 MBI~
/ 1/A2, 52 M Agt

. M3 1
P

and the chiral condensate becomes

— M2
<¢f¢f> = _]\i;];[c [A2 + M7 (hl A2, + Ve — 1)] (2.25)

As we can see, both regularization procedures exhibit the expected quadratic and
logarithmic divergences. The gap equation is written in terms of the chiral condensate in
Eq. (2.20). Then, by using Egs. (2.23) and (2.25) we find that, in the four-momentum
cutoff and proper time regularization procedures, respectively, the constituent quark

masses are the solutions of

N.M A%+ M7
Mf—mf:gcfl/\?—Mfln (fﬂ

272

2
My —my = %[ﬁ —l—Mf(lnj/\é +7E—1>]

We notice that the gap equations depend on five free parameters, namely the
cutoff A, or Ay, the coupling constant g and the current quark masses m,, my and
ms. Since m, =~ mg, we can take m, = myg = m,q which then leaves us with four
parameters to be fixed. This can be done by computing observables and setting them to
their experimental values, such as meson masses and decay constants. This will be the
subject of Section 2.4, where we will compute the neutral pion and kaon masses, as well
as the pion and kaon decay constants. However, in order to do so, we need to choose
a regularization procedure and stick to it. In this work, we choose the four-momentum

cutoff regularization scheme, so our gap equation in the absence of external fields reads

GANM [ MF (A% 4 M

where we have defined the dimensionless coupling constant gy = gAZ.

Eq. (2.26) is a self-consistent or transcendental equation for M, and one must
look for its solution by using numerical methods. Figure 2.1 shows the solution for the
three quark flavors as a function of the dimensionless coupling constant g,. For the current
quark masses we used m,q = 6 MeV and m, = 165.7 MeV, and for the cutoff we have set
A =914.6 MeV (see Section 2.4).

From Figure 2.1 we see how the constituent quark masses increase with increasing
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Solution of the gap equation as a function of the dimensionless coupling constant
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Figure 2.1: Solution of the gap equation (2.26). Here we used A = 914.6 MeV, m,q = 6 MeV
and my; = 165.7 MeV.

coupling constant. Particularly for gy ~ 8.16 (g ~ 9.76 GeV 2 for A = 914.6 MeV) we find
Mg ~ 262.8 MeV and M, ~ 516.4 MeV. The nonvanishing values of the constituent quark
masses show that the NJL model indeed exhibits the dynamical generation of fermion
masses due to the spontaneous chiral symmetry breaking. Once we include the magnetic
field in the NJL Lagrangian in Chapter 3 we shall see how this field contributes to enhance
the values of the dynamically generated masses, and thus the breaking of chiral symmetry;,
which is the phenomenon of magnetic catalyses. But before that, let us now discuss about

the procedure of parameter fixing.

2.4 Meson properties and parameter fixing

We saw in Section 2.3 that the NJL model contains some free parameters, such
as the regularization parameter, which here is the four-momentum cutoff A, the coupling
constant ¢ and the current quark masses. Since we are considering m, = mg = Myq, We
have, together with my, four free parameters in our model. To fix those we are required to
compute four observable quantities and set them equal to their experimental values. That
is where meson properties come in. For the three-flavor NJL model, the pseudoscalar-
meson spectrum consists of the m, K, n and 1’ mesons [11]. In this work, we shall treat
only the first two cases. Specifically, we choose to fix our parameters by computing the
masses of the neutral pion and kaon mesons, as well as pion and kaon decay constants.
Furthermore, the procedure developed in this section may also be extended to compute
the pseudoscalar neutral meson masses in the presence of a uniform magnetic field in
Chapter 4.
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2.4.1 Bound state equation

In the framework of the NJL model, the basic idea is to consider the mesons
as collective excitations of quark/antiquark pairs. Methods to examine these excitations
include the auxiliary-field path integrals, Bethe-Salpeter equations, usually in the frame-
work of the Random Phase Approximation (RPA) [11, 41, 42], and so on [5]. Naturally,
we will employ the auxiliary-field method.

In Section 2.3 we obtained an effective action given by
Set = —iTrIn (=i {iff — m — S, A" — insPaA" + g [\ (DA") + Mins (Vigs ™) | )

#fate {o sz 2y B - w4 S Geo + @ineaen?]

Since the scalar auxiliary fields have nonvanishing vacuum expectation value, we can shift
the variables S, to a field S, = S, — 0,, where o, stands for the expectation value of S,
[11, 12]. Then, while the o,A* term leads to the contribution to the effective mass, we can

relabel the field S/ — S, and write and the effective action, in the ground state, as
1
Sett(Say Pa) = —iTrIn [—i(if — M — S,0" — ins PA") | + / d'z l—z(sg + Pf)]
g
C Tl |14 — (S + i A" +/d4x _ L2y py
Za M a 54 a 29 a all>

where we dropped a constant term which would lead to an unimportant constant in the

generating functional. We may then use the expansion (A.10) to write
Seit(Sa, o) = / d*z [—219(52 +Pf)] —iTe[SO(S, + iys Pu)A"]
+;Tr (SO (S0 +ins P)X"SO(S, + i BN + ...,
where S = (z@ - M >_1. Dropping the terms with vanishing Dirac trace leads to
Seft(Sa, Py) / d'z l (52 +P2)] —iTr(SO85,\") + ;Tr(S(O)Sa)\“S(O)SbAb)
+ %Tr(S Oirgs PAS Diys PLAY) +

Note that the first order term is of the form Tr[F'(P)H (X)], that is, the trace of a
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product of operators that are local in p and z [40]. Therefore, the trace can be separated,

T [F(P)H(X)] = [ 2P (P HOX) )

(2m)*
:tr/(;ljr / di: /d4 /d4 (p|F(P)|p') (|2 | H (X)) |2) (z|p)
) / = / d's / d*z’ F(p){(plp')e " H(2') (x]z')e??

:tr/ (2m)*
m/&wﬂu>

=tr
where now the trace tr no longer denotes an integral over spacetime (or momentum)

variables. Similarly, for the second-order terms we have

d*p

(2m)t

:tr/ p /d4 v /d4 /d4x’F P H(x)H (")
6( .

x et p)w i(p—p')x

Tr[F(P)H(X)F(P)H (X)] = tr/ {p|F(P)H(X)F(P)H(X)|p)

If we assume the local limit on H, H(z') ~ H(x), we write

Te[F(P)H(X)F(P)H(X)] = tr / &z [ =L F(p)H2 ().

Applying the results above and considering only the terms dependent on the
pseudoscalar auxiliary fields (since we are interested only in the pseudoscalar meson

spectrum) we write
Sui(Py) = /d4 gTIR (k)| P2 + ... (2.27)

where we are considering only diagonal terms for the meson polarization functions,

4

[ d : : : :
I1P(k?) = —z/ (27:))4‘51" {25(0) (p)ivsAaiS© (p — k:)z%)\a},

which is given by the diagram shown in Figure 2.2, with k£ being the meson four-

momentum.

p—k

Figure 2.2: Meson polarization diagram.
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Therefore, we have found a Lagrangian for the pseudoscalar auxiliary fields given

by
1
Log(P,) = —@FQ(H)PC?, (2.28)

where F,(k?) = 1 — gII*»*(k?). For the physical propagating meson fields P!, we wish to

a’

write a Lagrangian (in momentum space) of the form
1
Lon(P) = 5 (K —mp,) P2, (2.29)

where m’, stands for the particle mass. To do so, we expand Fy(k?) and write (2.28) as

Le(Pa) = —21g Fu(m2) + (K = m,) jg . s P
1 Fo(m2, 1 dF,
=-3 l;@ —mZ, + Féémgsi + .. .]g Tl P?
2 s
Sl g o B
Defining
Gosaa = ddiz - (2.30)

and re-scaling the pseudoscalar field, P, — P, = P,/gpsqq, We find

1 Fa(m23>
Les(Py) = 5 lk? —m2, + ,(mg ) + ... | P2
a Ps

Comparison with the Lagrangian in Eq. (2.29) leads to the conclusion F' (mf)s) =0, or,
1 — gII*(m2,) = 0. (2.31)

This is the bound state equation, from which we can obtain the pseudoscalar meson

masses. To do so, we first need to obtain an expression for the meson polarization tensors.

2.4.2 Meson polarization tensors

The pseudoscalar meson polarization tensor is given by

4

[ d'p . . . .
1% (12 . 7450 T.iS50) () —
% (k ) ! / (271')4tr|: lZS (p)Z'VB JZS (p ]{5)2')/5} ’ (232)

where k, = (ko,0) is the meson four-momentum, tr is the trace over Dirac, flavor and

color indices, and S (p) is the quark propagator matrix in momentum space. Here, T;
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and T select the appropriate flavor channel [11],

()\1 +i)y) for

for 7"
()\4 +i);) for K*
()\6 +i\;) for KO K°

&S

S-S

For the 7° meson, we set T; = T; = A3 and denote IT§;(k?) = II% (k?). Then, we

have
() = “V/ i S @)s8Y 0~ By + 5 2)insS{Y (0 — Ky

where trp denotes the Dirac trace. Similarly, for the K° meson, we set T; = %(AG —i\7)
and T = %(AG +iA7) in Eq. (2.32), which leads to

ps 2 . d4p (0) . (0) .
nw@>—mm/@>gmws@wwd@—m%]

The meson polarization tensors can be written as

I (k) = ; [T, (%) + TT55(k), (2.33a)
I (k*) = II55(K?), (2.33b)

where
%% (k?) = 2iN, / et [P ()i S (p — k)ivs). (2.34)

In momentum space, the quark propagator is given by

p+ My

S¢(p) = m;

from which we find
p* —p - k+ MM,

1p|Sf(P)ivsSg(p — k)ivs| = —4 ’ |
tp[S5(p)iv5 S (p — k)is) (r? = M3) (0 — k)" = M2]

Then, rewriting

p2—p-k+Mf]\/[g
(r2 = M3)[(p— k) — M2
p*—p-k+ M;M, [ 1 N 1 ]
202 —p-k+ 5 — S(MF+M2)| [P = M} (p— k)P = MZ ]

g
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and
2 2 1

k 1 k
2 _ .2 2 2
p°—p-k+MiMy,=p p~k+2 72<Mf M) 2+72(Mf—Mg),

we find

S . d4p 1 1 . 2
117 (k?) = 4ch/ i [pQ Ve + T MQ] — 4ch[k2 — (M; — M,) }Ifg(kﬂ)
g9

— 4iN, / lp Bt jM;] — 4iN[k? — (Mg — M| I1y(K?), (2.35)

where
I (K?) / d*p 1
fg - :
2o (=) [ 7~ ]
The first two integrals in (2.35) can be written in terms of the gap equation by
noticing from Egs. (2.20), (2.22) and (2.23) that

_ My-m N, A% 4 M?
4iN, / ;T A2 — M2 (00 2.37
(2m)4 p? —Mf 29 M 47r2[ P\ (2:37)

In order to solve Eq. (2.36), we rotate the momenta to Euclidean space, py — ipog
and ko — tkog, so that

(2.36)

d4pE 1
(2m)* (p + M3?)[(p — ke)* + M2]

Ifg(k’E) /

We can solve the integral above with the aid of the Feynman parameter z, introduced via

the formula
dx

AB ~ Jo [zA+ (1-2)Bf

This allows us to write

1 1 .
(0% + M) [(pe — k)® + M2] | o {a[(pe — ko) + M| + (1 =) (ph + 2)}
_ 01 dx — 2$pE kE + xkE + fo (1 . -T>Mg2} -2
1 1
= dx
°  (e+D3)
where
(= PE — xkE,

D3, = x(l — x)ky + aM7 + (1 — x) M.
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Since d*py = d*¢ we have

4
1
]fg /dl’/ dg 2
€2+D2>
2
2/d:v/
167T €2+D)
1 1 A2+D D2
= dz |1 fo 2.
167r2/o xh( D3, >+A2+D§g ] (2.38)

where A is the usual four-momentum cutoff.
Substituting Eqgs. (2.37) and (2.38) back in Eq. (2.35), and rotating the momen-
tum k back to Minkowski space, we find

My —my My —m,

I (k2
(k )= 2gMy 29M,
N 1 A2+D2 <k2) D2 (k2>
k2 — (M—M)Q/d:c{ln[ 19 ]+ 19 —1},
T 3l 7= 4,7 0 D3, (k?) A2+ D2 (k?)
(2.39)
with
D7, (k) = —x(1 — 2)k* + o M7 + (1 —x) M. (2.40)

Therefore, to find the neutral pseudoscalar meson masses one is required to solve

the equations

1 —gIl5(m2) =

! (2.41)
1 — g% (m%) =0 '

with 175 (k%) and I1%, (k) given by Egs. (2.33) in terms of the quark polarization functions
given by Eq. (2.39). Before we obtain the values of those masses, let us first tackle the
question of obtaining the other two necessary observables quantities: the pion and kaon

decay constants.

2.4.3 Meson decay constants

A minimal local interaction Lagrangian capable of describing the coupling of the

meson fields to quark fields is given by [11]

psqq 77Z}Zr75/\ Paw
= gpsqqd}ivS)‘ P;¢, (242)

where gpsqq 1 the coupling strength of the mesons to the quarks defined back in Eq. (2.30).
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The pseudoscalar meson decay constants, f,s with ps = 7, K, are calculated from

the vacuum to one-meson axial-vector matrix element [5, 11, 31],
. ab __ a b _
i fosk 0 = <O’AM(O)’ps > , ps=m, K.

The matrix element on the right-hand side is given by the diagram shown in Figure 2.3,

with T = g, 75\°, in the framework of the interaction Lagrangian (2.42).

Fb

(0142(0)|ps”) = i, 75 % -

Figure 2.3: Vacuum to one pseudoscalar meson axial-vector current matrix element as a
Feynman diagram. Here I'’ = gpsqug,)\b is the vertex factor.

Translating the diagram in Figure 2.3 according to the Feynman rules leads to

4

) “ d _ A k\ . , k
@ fpskud b — —/ (275;4‘51" l27u75225 (p + 2>ngsqq’y5)\b25 (p - 2)]

Gpsqq d4p a k b k
S v _z 2.4

where tr denotes the trace over Dirac, flavor and color indices. It is clear from Eq. (2.43)

that we need to obtain an expression for the meson-quark-quark couplings gpsqq-

2.4.3.1 Meson-quark-quark couplings

The meson-quark-quark couplings are given by Eq. (2.30). For the 7 meson we
choose T; = %()\1 — i) and T = %(Al +1iXg) in Eq. (2.32), so that the polarization
tensor becomes

I (k°) = I (k7),
with TI%} (k*) given by Eq. (2.39). Then, at zero momentum transfer, one finds

2 a-,Z.ud
ok?

., N

C
Irqq = 42

liud(O) + (My — M,)

], (2.44)

where

= [ A? + D37, (k?) D3, (k?)
Lrg(k) —/0 dx {ln [ DJ%Q(JI;Q) ] + e —|—fDJ2cg(k2) — 1},

with D7, (k?) given by Eq. (2.40). A direct calculation yields

0Ly,
Ok?

[0 |
= — Tr\L—x .
K2—0 0 D3,(0) | A2 + D3,(0)
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Similarly, for the K™ meson we choose T; = %()\4 —iXs) and T = %2()\4 +iXs),
which corresponds to the same calculations for the pion, but with the exchange d — s.
Thus, we conclude

N, [ o1,
-2 c 2 us
IKqq = ) Zus(0) + (M5 — M,) k2

] , (2.45)

at zero momentum transfer.

2.4.3.2 Decay constants

Eq. (2.43) can be written as

. Gps d4p a k @ k
i fosky = — p2qq (27T)4tr [7#75)\ S(p + 2)75)\ S( -3/

Choosing the appropriate channels for computing the flavor trace, we find

. d*p k k
i fosku = —Gpsqq!Ve / WtrD l%ﬁSSf <p + 2)755'9 (p o 2)17

where f =u and g =d for ps =7, and f =u and g = s for ps = K.

The computation of the Dirac trace is analogous to the one for the polarization

tensors in Section 2.4.2, only with the extra 7, matrix. The result is

(My+ M,) d* 1
— k“/(27r)4 [(er,;)z_Mﬂ [(p—’“)Q—MZ}j

2 g

fpskp = 4GpsggNe

and we find
_ gﬂquc (Mu + Md)

fo = St G A7 0), (2.462)
GrcqqNe (M, + M) -

= 7.,5(0), 2.46b

e () (2.46D)

at zero-momentum transfer, with g, given by Eq. (2.44) and gk, given by Eq. (2.45).

2.4.4 Parameter fixing

Now that we have the expressions for obtaining four observables quantities from
our model, we can fix the free NJL parameters. The neutral meson masses are found by
solving Eqgs. (2.41) while the pion and kaon decay constants are given by Eqgs. (2.46).
Table 2.1 shows, in the first column, the values for the NJL parameters that reproduce

the values shown in the second column for the observable meson properties.
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Parameters Meson properties

A | 914.6MeV | m, | 135.0 MeV
g |9.76GeV 2| mg | 498.0 MeV
Muyd 6.0 MeV fr 93.0 MeV
ms | 165.7MeV | fx | 111.0 MeV

Table 2.1: Parameter fixing and meson properties.

Having fixed the free parameters by setting meson properties to their physical

values, we shall now proceed to consider the NJL. model in the presence of a uniform

magnetic field with the free parameters set to the values from Table 2.1.
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CHAPTER

NJL MODEL AT STRONG UNIFORM
MAGNETIC FIELD

3.1 Introduction

With quarks interacting with one another via the NJL Lagrangian, let us now
investigate their coupling with a uniform magnetic field. Quarks interact with the
electromagnetic field since they possess flavor-dependent electric charges. While the
influence of an electric field serves to restore chiral symmetry by destroying the condensate
[43], the magnetic field tends to enhance its breaking by aiding in antialigning the helicities
which are bound by the NJL interaction [11]. In this work, we shall consider only the effects
of a uniform magnetic field.

By minimally coupling a U(1) gauge field A, into the NJL Lagrangian, the action

becomes
n (s g ya e a
Sxauld,v] = [ {06D - myp+ L [Gx0) + GinshwP]}, @)
with a = 0,...,8. Here m = diag (m,, mg, ms) is the current quark mass matrix as before,
D, =0, —1QA, is the covariant derivative with () = diag (%, -3, —g) being the electric

charge matrix and we are considering the gauge field A, to be an electromagnetic field.
The only thing that is new in the action (3.1) is the minimal coupling with the
electromagnetic field through the covariant derivative in the kinect term. Since we are not
considering any a priori dependence of the coupling constant g on the external field, the
only difference with respect to our analysis from Chapter 2 will be on the propagation of
the quark fields. Therefore, we only need to modify the expression for the quark propagator
to apply to the case of a uniform magnetic field B = Bé,. For that purpose, we derive
an expression for the free fermion propagator in Appendix C following Schwinger proper

time method [26, 27], both in coordinate and momentum spaces. With these expressions
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at hand, we can compute the gap equation in the presence of the magnetic field similar
to what we did in Chapter 2.

3.2 Magnetic catalyses in the NJL model

Recall that the chiral condensate is given by Eq. (2.19) as
(¥rr) = —trpeiS(0)],

where trpc denotes the trace over color and Dirac indices, and S](co) (x — y) is the free
quark propagator of flavor f, with f = u,d, s.

In order to obtain an expression for the condensate we need the quark propagator
computed in the presence of a uniform magnetic field. Using the proper time representation

for the propagator from Egs. (C.11a) and (C.18), we see that

_ ©ds |qBls
S (0) = (am) 2 ay [ 5 S
70 (4m) Tl &2 sin (|g;B|s)

q B M o dS —1 25 -
_ _‘1(047r’)2f/0 —e M5[cot(|qrBs) — mye sign(qyB)].

exp (—iMﬁs + isign(qu)]qu|30'3)

Then, substituting this result back into the expression for the chiral condensate and taking
the Dirac trace using the properties listed in Appendix B, and also the color trace which

yields a factor N,, we find

- iNMelqeB| > ds _jpezs
(rtr)y =g — |, ¢ "1 cotllarBls).

Changing to imaginary proper-time, s — —is, leaves us with

2 _ NeMylgg Bl o ds g
(Vsir) , = — iz Jy ¢ | coth(lgrBls)
N.M¢lqrB| [o°d 2
_ _ NeMylag Bl > dT _yizrs|ogB| gy, . (3.2)
472 o T
where 7 = |g;B|s and we used cot(ix) = —icothx.

However, the proper time integral does not converge, since its integrand is
undetermined for 7 = 0. It is important to isolate the divergences into the vacuum term
before introducing the regularization parameter [44, 45, 46]. By using the expansion (A.9),

we can separate the integrand of Eq. (3.2) into a divergent and a finite part as 7 — 0,

o d 00 d o d
/ OT =93 coth 7 = /| T 4 / —Te_a?‘T(T cotht — 1),
0 0

2 2
arB|/A2, T T

where we introduced a proper time cutoff Af,t to account for the integral divergence and
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we are denoting af = My/4/|qsB|. From Eq. (2.24), we know that

oo dr 2 1 M 1
AT — A2+ M?{In - -1 0] .
AMWTf mml +f<%v+” )y*<v>

Similarly, using Eq. (A.24), we obtain

©dr _,2 lqrB| 9 M?
—e U7 thr7 —1 B|In 2|lqrB| — M7)1
fy et 1) = o |bf' magg * (Gl =) g
M2
+2|qu|lnF< s ‘> +M§] :
Using the results above, the chiral condensate becomes
(bpiby) S Ay — M7 | In Ay — g | +l¢sBlIn M
191/ g A I\ 2g Bl T2 4rqs B

M2
+2|qu\1nr< 3T |)]

One may check if the expression above reproduces the known result for B = 0 by
taking the limit B — 0 in (3.3). In this limit, the argument of the Gamma function goes

to infinity and we may use the expansion (A.18) to write

2|q;B|1 F( Mj >—>M (1 A +1 My 1) lqsB|1 My B —0
q n n n—— —lq n as .
d 2|¢;B] f T2V dr|gs B

This leads to

%;linm <¢f¢f> ]\ijr\gf [AQ (ln % +v — 1)]
which matches the expression for the chiral condensate in the absence of external fields
that we found in Eq. (2.25) by using the proper time regularization scheme.

It is worth noticing that the magnetic field introduces no new divergences in the
chiral condensate, as the expression in the B — 0 limit contains all cutoff-dependent
terms. Therefore, a cutoff independent quantity is obtained if we subtract the expression
for <@Z_Jf¢f>B:0 from Eq. (3.3). The result is

_ - N M; M3 M?
<¢f¢f>3 - <¢f¢f>B:0 == [Mf (1 —1In ol B|> + |¢sB|In 0B

M2
+2|q B\ln[’( )]
! 2|q; B

which contains no explicit dependence on the regularization scheme. We also note that this

(3.4)
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quantity indeed vanishes in the limit B — 0. This allows us to write the chiral condensate
as a sum of two terms: one divergent contribution that needs to be regularized and another
that depends on the applied magnetic field but is finite and regularization independent,
and that vanishes in the limit B — 0. Although we have computed the chiral condensate
by using the proper time regularization scheme, which was appropriate since our departure
point was the Schwinger proper time representation for the propagator, we now have the
freedom to choose the expression for <7Ef¢f>B:0 in any other regularization scheme we

would like. For instance, we can take

- N My | 5 A%+ MJ%
<¢f¢f>B:0 = A2 [A - Mf In < MJ% )

which was obtained using the four-momentum cutoff regularization, and write

() - -2 o ()

472 M]%
ey o ()|
— M?[1—1In +qun +2|¢sB|InT
m M slqgB]) B g A BT g
(3.5)

The gap equation in the presence of the magnetic field is given by

My =my — 29 (vsty)

Then, substituting Eq. (3.5) gives

gNMy | 2 AZ"'MJ%

3.6
. : : (3.6)

M M M2
- M:{1—1n +qun —I—2qunF< )]
P l f( 2|qu\> g Bl gy + 2B 5

Just like Eq. (2.26), Eq. (3.6) is a self-consistent equation for M; and we must

look for its solution by employing numerical methods. Figure 3.1 shows the solution

for the three quark flavors as a function of eB. The four-momentum cutoff was taken

as A = 914.6 MeV once again and the coupling constant value was chosen to be
= 9.76 GeV 2.

As we can see from Figure 3.1, the magnetic field breaks the degenerescence
between the effective masses of the quarks up and down due to their different electric
charges. Furthermore, the response of the quark up to the magnetic field is greater than
that of the other light quarks due to the value of its electric charge, |q.| = 2|qa| = 2|qs|.
In general, the increasing values of the constituent masses with eB is a clear sign of the

enhancement of chiral symmetry breaking by the presence of the external magnetic field.
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Solution of the gap equation as a function of the magnetic field
T T T T

T

Quark up

| Quark down
Quark strange

750

700

M [MeV]

0 0.2 0.4 0.6 0.8 1 1.2
eB [GeV?]

Figure 3.1: Solution of the gap equation as a function of the applied magnetic field, Eq. (3.6).
Here we used A = 914.6 MeV, g = 9.76 GeV 2, myq = 6 MeV and m, = 165.7 MeV.

0.02 The renormalized condensate as a function of the magnetic field
. T T T T

T
Quark up
| Quark down i
0.018 Quark strange

0.016 - 4

0.014 N

0.012 |- .

0.01 |- 4

0.008 - b

0.006 -

Renormalized condensate [GeV3]

0.004 -

0.002 -

0 0.2 0.4 0.6 0.8 1 1.2
eB [GeV?]

Figure 3.2: Absolute value of the renormalized condensate, Eq. (3.4), as a function of the
magnetic field. The values of the effective quark masses used were the ones displayed in Figure
3.1.

The effect of magnetic catalysis is more evident in Figure 3.2, where we plot the

<12f@/)f>3 - <7’Efwf>3:0‘ given in Eq. (3.4),

against the magnetic field. The increasing value of the chiral condensate with B signals

absolute value of the renormalized condensate,

the enhancement of chiral symmetry breaking.
This concludes our discussion on dynamical mass generation by the breaking of
chiral symmetry and its enhancement by the external magnetic field. Let us now turn our

attention to the quark determinant and its expansion in terms of quark field bilinears.
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3.3 The quark determinant expansion

In Chapter 2 we obtained an expression for the effective action for the quasipar-
ticle quarks by separating the quark fields into a component corresponding to the quarks
that condense in the ground state and another corresponding to the interacting quarks.

In the presence of a uniform magnetic field, this effective action reads

Se = Saa+ [ d' { (S2+ P2+ 0 —m)y + S [(@X0)* + (DinsA)’] } . (37)

1
2
where

Saet = —iTeln (=i {il) — M + g [A"(PX°P) + Ains (i) }) (3.8)

is the quark determinant. Here we have included the coupling with the external magnetic
field through the covariant derivative. Our next task is to expand this determinant in
terms of the quark field bilinears and to interpret the lowest order terms of the expansion

as corrections to the original NJL Lagrangian.

3.3.1 Expansion and first-order term

The quark determinant is of the form
Saet = —1TrIn {—i(S’(O))_l —ig\"j*(x)|,
where (S(O))_l = i) — M and
= (YA) + iy (VinsA™Y) = 5§ + s,

stands for the quark-current terms. Here the scalar and pseudoscalar currents are

represented by j¢ and j7, respectively. The determinant can be written as
-1
Suet = —iTrIn {—z’(S(O)) } —iTrln (1 4+ gSONj*)

and the first term can be dropped since it yields a constant in the generating functional.
We now proceed to expand the determinant in powers of the quark currents j* by using
Eq. (A.10),

Saet = —igTr(SON) + ;gQTr(S<°>A“jas<°>Abjb) S

Following a similar procedure to the one applied in Section 2.4 for dealing with
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the trace over continuum indices, we find the first order term to be given by
Sdet = —z'gTr(S(O))\a '“)

:—gtr{/d4 / T 'Mv[(qp( )Aw(x))+m5(¢(x)m5v¢(x))}}
— —gu{is®0) d% A [(Pax (@) + i (P v(@)] | (3.9)

where II, = p, + QA,, SO (2 — y) is the quark propagator matrix and tr denotes the
trace over Dirac, flavor and color indices. Explicitly, the flavor structure of the quark

propagator reads

Sz —y) 0 0
SOz —y) = 0 SP(a —y) 0
0 0 SOz —y)

trp[SO)N] = ﬁ [5(0) + 5(0) + 8(0)],

trp[SO(0)XF] = $(0) — 517(0), (3.10)
tre [S©(0)] = = [517(0) + 517(0) ~ 257(0)]

while the traces for a = 1,2,4,5,6,7 all vanish. Then, the only (scalar) currents that will

contribute to the first-order term are
= PNy = \/E(uu +dd + 55)
3 )
= N = qu — dd, (3.11)

= P\ = \/§ (uu +dd — 233)

while the term with the pseudoscalar currents has vanishing Dirac trace. The first-order

term becomes

det__i/d4

Z Amf Z wf’gbf —|— Amu Amd) (ﬂu - CZd)

+§(Amu + Amg — 2Ams)(ﬂu +dd — 253)] :

where

Amy = My —my = 2gtepc[iS(0)] = —29 (Vs0y) . (3.12)
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is simply the gap equation in the presence of a uniform magnetic field. By rearranging

the terms in Sdet one finds

Sdet /d4 Amuuu + Amgdd + Amsss = —/d4x S Amppiy. (3.13)
f

Therefore the first-order term of the expansion produces a correction to the quark masses
given by the gap equation, Eq. (3.6), which was already discussed in Section 3.2. We now

proceed to compute the contribution of the second-order term.

3.3.2 Second-order term

The second-order term of the quark determinant reads
S2 = %g2Tr(S(O)>\“j“S(O))\bjb).

Assuming the local limit, we find

Sdet *QQtT/le ;”; S(O)( ) a{(@z/\ad)) +W5(@EW5X1¢)]

x SO IN[(PAP) + i (Pirs ')

(3.14)

where S©(p) is the quark propagator in momentum space. The integrand in Eq. (3.14)

can be written as

SOp)Aj2SO (p)AP5* = SO (p)A*SO ()N 50 + SO (p)Aiv5 SO (p) AP0
+ SO(pIA1SO () AV j2 30 + SO (p)Ai755) (p) Nirys i

Then, by dropping the terms with vanishing Dirac trace, we are left with

s = st [dte XSO ()N (5A) (5X0)
+8© (p) Z%S( (p)Nins (Virs X0) (Pins ') |

(3.15)

We see how the second-order term in the determinant expansion contributes to an effective

coupling for an interaction of the form
- - L s = \a -
Lo = fG;b<B>(ww) (@X0) + SGHB) (i) (VinsAw),  (3.16)

with
Gin(B) = gous + g’ / ptr[ SO A SO )N, (3.17a)
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4
G (B) = g6 Lor[SO (p)AtinsS© (p) Aoins |, (3.17b)

and we recall that tr denotes the trace over Dirac, flavor and color indices.
The next task is to compute the trace over flavor indices, which involves long and

tedious calculations (see Appendix D for some details). The result is

52 . 2ig2thrD/d4x
det 271')4 f9=u,d,s (318)

where trp stands for the trace over Dirac indices. Since the original NJL Lagrangian is

given by

=g(iB—m)e+ Y [9(dry) (Gttr) + g(Wrinsy) (Pginsyr))],

Jrg=u,d,s

we denote the effective couplings in the fundamental SU(3) representation as

G;Q(B) =g+ QQH;g(B)7 (3.19a)
Gfy(B) =g+ g"TI})(B), (3.19b)
where
I1},(B) = 2iN. / —=trn[SF () SO ()], (3.20a)
11}, (B) = 2iN. / Bt [S0(0)ins S (w)ins) (3.20b)

with SJ(CO) (p) representing the quark propagator in momentum space in the presence of the
uniform magnetic field B.
Therefore, up to second order in the quark currents the effective action (3.7)

becomes
S [ s {—i{l(sz £ P2+ 0D — M)
(3.21)
b T (G ) ) + G o) (o) |

Thus we have seen how the model acquires an effective flavor- and B-dependent coupling
from vacuum polarization.
By using the definitions (3.17) and (3.19) as well the results listed in the Appendix
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D, we may write the relations

GialB) = 5(G2.(B) + GLu(B) + GL(B)) (3.220)
Gir(B) = Gi(B) = Gi(B), (3.220)

G35(B) = [Giu(B) + Giu(BY), (3.22)

Giu(B) = G55(B) = Go(B), (3.220)

Gis(B) = G3:(B) = Gi.(B), (3.22)

Gi(B) = S[GL(B) + GL(B) +1GL(B)], (3.221)
Gis(B) = G3y(B) = Z2[GL(B) = GiulB)., (3.228)
Gi(B) = Gyl B) = 3 5(Giu(B) + G B) = 2G5,(B). (3.220)
G3u(B) = G(B) = -~ [G1.(B) ~ Giu(B)) (3.22)

2v/3
so that .

1 s 1)\ a n s n N

5 2 G3(B) (ox") (bA") = f > G3,(B) (s, (gy).

a,b0= ,g=u,a,s
All the other couplings G3,(B) vanish and analogous relations holds for the pseudoscalar
couplings.
The relations listed in Eq. (3.22) will be useful in Chapter 4. For now, let us

proceed to obtain explicit expressions for the couplings G'},(B) and G §,(B).

3.4 The effective couplings

3.4.1 The polarization functions

In order to compute the effective couplings from Egs. (3.19) we need to evaluate
the polarization functions from Egs. (3.20). This requires the expression for the quark
propagator in momentum space in the presence of the uniform magnetic field. From
Eq. (C.11a) in Appendix C, we know that the propagator is given by the product of
a phase, called Schwinger phase, and a translation invariant term. In the general case,
performing a complete momentum-space calculation is hard due to the presence of the
Schwinger phases. Although there are ways to deal with these phases, like employing the
Ritus eigenfunction method [47], deriving the correlation functions in coordinate space by
adopting linear response theory based on imaginary-time path integral formalism [48], or

simply discarding the phases, we will be focusing on the polarization functions for which
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f = g, or, more generally, on the polarization functions that involve quark flavors with
the same electric charge, since in those cases the Schwinger phases cancel out. Therefore,
from now on we simply ignore the Schwinger phase and write the quark propagator in

momentum space as [see Eq. (C.19)]
[ : tan(|qB]s)
sS40 (p) = —z/ ds exp {—zs [MQ —pi + P
d 0 oA agBls TS (3.23)
{11~ sign(a By tanlarBIs))(My +7-py) — 7o 1+ tan® (g Bls)]

where, for two arbitrary 4—vectors a* and b*, we denote

a-b) =a’t’ — a®v?,
[

a-b), =a'd' + a?b?,
L

and also

sign(x) =

+1 ifz>0
—1 ifx<0

Directly perfoming the Dirac trace leads to

trp[S1 () S (p)]

oo [0 —isM2—i : | tan(|gsB|s)  tan(|g,B|r)| 5
:_4/ / ds dr e~*M7 ”’M-gexp{z s+rp2—z[ + ! P
o Jo s+ la B 4Bl |7

x {[1 — sign(qs,) tan(lay Bs) tan(|g, BIr)} (MM, + p})
—p3 [1+ tan? (Jqs Bls)] [1 + tan® (Jg, B|r)| }

and

trp[S) (p)ins S (p)ivs]

o 4 [tan(lqsBls)  tan(|g,Blr)
:—4/ / ds dr e~ M7 ”Mgexp{z s+rp2—z[ + v P’
o Jo ( ) | lgsB| g, B *

x {[1  sign(qsq,) tan(|qs Bs|) tan(|g, BIr)] (—M; M, + p})
—p2 [1+ tan® (jq; Bls)| [1 + tan? (g, BIr)] }

The polarization functions become

pss . d4p R —isM?2—irM?
% (B) = —SZNC/ /0 /0 dsdre """ e

(2m)*
| Ttan(lg;Bls) _ tan(lg,BIn)] ,
X exp z(s+r)p2—z[ +
{ | |qs B |44 B| *

x {[1 — sign(qrqy) tan(|g; Bs|) tan(|q, BIr)] (M, M, + p})
—p? sec? (|g; Bls) sec (|ggBIr) }
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After rotating the momentum to Euclidean space by letting py — ipor so that
d*p — id*pg = id®ppd®pLE, Pf — —pjp and p7 — p?y, and introducing the imaginary

proper time variables s — —is and r — —ir, we find

N o[ pii &Ppip
HpS B —_ _ Nc/ / d d —SMJ%—’I‘M? / ”
7ol B) i o Jo (2m)2 (2m)?

tanh(|qsB|s) tanh(\qu\T)] 5 }
lqsB] I E

x {[1 + sign(qsqy) tanh(|qs Bls) tanh(|g, B|r)} (£ MM, — pi ;)
—p? ysech’(|g; Bls) sech®(|gy B|r) }

X exp {—(S + T)pﬁE - [

where we used the identities tan(—iz) = —i tanh x and sec(—iz) = sech z. The momentum

integrals are straightforward to compute,

/ d2p||E e—(s—i—r)pﬁE _ 1
(27)2 A(s+71)’
Epip 5 ey, L
/ (2m)? Pise o dr(s 4 1)*
Ppip 5 1 1
/ (277')2 exXp {_[7}<3) + E(T)]pLE} - 471'[7}(8) + 7;(7,)]7
1

Poip o exp §—|7T¢(s Npigt =
[ e ST T = s

where we are denoting

tanh(|q;B|s)
lqs B

tanh(|g, BJr)

and Ty(r) =

Then, we write the polarization functions as

2 2
Nc —st—ng

1% (B) — — /Oo/mddei
fg( ) 272 Jo Jo sar s+r
1 + sign(qyrqy) tanh(|gsBls) tanh(|qu\r)< 1 )
+M:M, —

_[Sech<|qf3|s> Sech('qumr
Ti(5) + T,00) |

As we mentioned, we shall be focusing on the polarization functions that involve

quark flavors with the same electric charge, meaning that we will now set ¢; = ¢,. In that
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specific case, the polarization functions become

Hps( N|qu|/ / e ¢ s Mf-rM; 1F MyMy(s+7)
fg 2 sar
27 s+ (s +r)tanh (|grBl(s + 1)) (3.25)
|45 B|

+
sinh” (| B|(s + 1))

where we used the relations (A.7) and (A.8).
It is interesting to take the limit B — 0 in Eq. (3.25). From Egs. (A.9) and (A.11)

we see that )
T ) T

lim = lim ——— =1,
z—0tanhz  =—0sinh”z

leaving us with

I (B =

/ / dsdr e *M; M3 lz My My(s + 7“)] (3.26)

" o2 (s+71)3

This result allows us to write Eq. (3.25) in a more convenient way,

Ss Ss N|QfB| TMQQ
I (B) = I (B = | asar S —
13FMfMg(S+T) |gsB| B 2¢MfMg(8+7“)]
(s +r)tanh (lgrB|(s + 1)) sinh®(|g;B|(s + 7)) g Bl(s +7)?

(3.27)

When written like in Eq. (3.27), the polarization functions consist of the the sum of
two terms, the vacuum and the pure magnetic contributions. Just as in the case of the
chiral condensate, the vacuum contribution carries all the divergences that need to be
regularized while the pure magnetic contribution is finite and regularization independent.

Before we proceed, let us now stop to evaluate the polarization functions for
B =0.

3.4.2 The polarization functions for B =0

In the absence of the external magnetic field, the polarization functions are given

by Eqgs. (3.20) with the quark propagator in momentum space written as

_ Pt M
p* — M

Then, a direct calculation yields

: d 24 MM,
I (B = 0) = 8iN, / (%p b= (3.28)

! (v - M7) (- 243)
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We can even check Eq. (3.26) by writing Eq. (3.28) as

/ ds e (»?-113) / dr e (?* —M;)
d*
= 8Nc/ / dsdr e_SMJ%_TMHQ/ (271:;54 (p% F MfMg)e_(s”)p%E
/ dsd,re—sMQ—TM2 2:FMfMg(S+7’)
(s+7)3 ’

7 (B =

o2

where, in the second line, we rotated the momentum to Euclidean space and introduced
the imaginary proper time variables. The result is exactly Eq. (3.26).

We can compute the polarization functions (3.28) by making an analogy with
the result (2.39) from Section 2.4. For the pseudoscalar polarization function we simply
set k? = 0 while for the scalar polarization function we additionally make the exchange

My, — —M,. Then, we find

Ne o o [N+ M7 Nelio oo, [A*+ M2
M2P>‘”@m<zm; B Rl (v
N. 1 A? + D3 (0) D3 ,(0)

(M + M,)>? / dx{ln[ i ] i —1},
C4e D3,(0) A2+ D3, (0)

where D?,(0) = M7 + (1 — )M [see Eq. (2.40)]. In the special case where f = g, Eq.
(3.29) becomes

1% (B = 0) =

(3.29)

. _ Ne o o [N+ MJ% A2
ps NC 2 2 A + MJ%
3.4.3 The polarization functions for f =g
Let us now turn our attention back to Eq. (3.27) and denote
(17,) =155) - 1558 = 0)
Making the change of variables [7]
= S(1+v),  r=Z1-w), (3.31)
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with 0 < u < oo and —1 < v < 1, so that dsdr = (u/2)dudv, leaves us with

Ss NCquB|
(H?Q)B = 92 / / dv
1:F’LLMfMg ‘QfB| _ 2:|:quMg
utanh (|g;Blu)  sinh® (|q;Bu) |y B|u?

2
e —5(14+v)M f 5 (1—v) Mg

(3.32)

The integrals in these new variables can be performed in closed form when f = g.

In that case, we have

(Hps> N.|qsB| /00 Fp—T 1 F uM; lq¢B] 27 uM?
11 2 we . 2
2 utanh (|gsBlu)  sinh® (|¢fBlu)  |gsBlu

which can be rewritten as

s Nc|qu|2 0o e—qu% 1
HPS) e A th(j¢;Blu) — ———
( )y 272 0 u|q Blu coth(|qs Blu) lgrBlu
M3

1
/ due™™ f[coth(|qu|u) \qu]u]

1 1
+ due“M?[ — — 2]}
: sinb? (s Blw)  (|asBu)

Now let 7 = |¢sB|u so that

S N |qu|
(m57), =

272

2 2
— —asT
ayT oo ¥

/ dr 5 (TCOthT—l):FCL?c/ dr
0 0

T

tht —1
. (T cothT )

[ ()
Te — = =,
0 sinh?7 72

where ay = M qrB|. As we can see from the expansions (A.9) and (A.11), all the
f f f

integrands in the expression above are finite for 7 — 0, rendering the integrals convergent

and avoiding the necessity of introducing a proper time cutoff. This would not be the case
if we had not subtracted the vacuum contribution.
Using the results (A.24), (A.25) and (A.27) from Appendix A and rearranging

the terms leads to

s N, M? ] M? 2|q; B M?
HPS) — ¢ f 1 / 1 f f InT f
( I5) " o2 [+ a7 “\arlgB)) T Mz M\ 20,8
M? M? lq;B|
+1i1¢< f>—2illn< f)+1j:1 / ]

More explicitly, we have, for the pure magnetic contribution to the scalar and pseudoscalar
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polarization functions, respectively,

N.M2T |gB] M3 2lq; B M
HS _ ctVif 1 f 1 f / 1 F 7](
( ff)B 272 [ + M? " 47lqs B * M3 ! 2|qsB|

M3 M3 lq;B|
+2zp< ) 31n< ! >+2 ! ]
2|q; B 2|q; B M?

N.M? lq; B M? 2|qs B M? M2
) = —¢ f[1+ f ln< ! >+ T I ) _n ).
( ff)B o2 M? 4r|q; B M3 2|q;B| 2[qs B
(3.33b)

Now that we have the expressions for the polarization functions, we can find the

(3.33a)

effective flavor- and B-dependent couplings.

3.4.4 Numerical results

The effective couplings, in the fundamental SU(3) representation, are given by
Egs. (3.19), with the polarization functions being given by Eq. (3.27) in our case of interest
where ¢y = ¢,. Here we have two possible approaches: consider the full polarization
functions, which includes both the vacuum and the pure magnetic contribution (V+B),
or consider only the contribution from the external field (Only B) by simply dropping the
vacuum regularization-dependent term, since we are interested only in the effects of the

magnetic field in the NJL coupling. For completeness, we present both approaches.

3.44.1 V4B

Let us begin by considering the simplest case: the couplings G'3;(B) and G[}(B).
From Egs. (3.19), (3.30) and (3.33) we find

2 2 2 2
s g Nc 2 2 A +Mf A
2 2 2 2
g~ NMj [ g7 B ( My ) 2|qs B ( My )
+— |1+ In + InT (3.34a)
272 M7 47|qs B| M7 2|qsB|
M2 M? lq;B|
+2w< ) 3ln< ! ) 9141 ]
2[q; B 2|q B M3
2 2 2
s g"Ne| o 2 A +Mf
2N.M? B M? 2lg:B M? M?
g 2f[1+'qf2’1n< ; >+ '%‘mr( f)—ln( f)]
2m Mj Arlqs B M7 2|qy B 2|qy B
(3.34Dh)
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These couplings are plotted in Figures 3.3 and 3.4 as functions of the magnetic field. Like
before, we used A = 914.6 MeV and g = 9.76 GeV 2, as well as the solutions of the gap

equations for the constituent quark masses displayed in Figure 3.1.

Effective scalar coupling as a function of the magnetic field (V+B)
T T T T T

Gi® (B) - g [GeV?]

4 I I I
0 0.2 0.4 0.6 0.8 1 1.2

eB [GeV?]

Figure 3.3: Correction to the effective scalar coupling as a function of the magnetic field,
G} f(B )—g, given by Eq. (3.34a), which considers both vacuum and pure magnetic contributions.

Here we used A = 914.6MeV and g = 9.76 GeV 2 as well as the values of the effective quark
masses displayed in Figure 3.1.

Effective pseudoscalar coupling as a function of the magnetic field (V+B)
T T T T T

10
9.5 .
9 - -~
%
& 85} i
= f=u
e f=d
o f=s
:  8F 1
2
=
(G]
75| .
7 /
65 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2

eB [GeV?]

Figure 3.4: Correction to the effective pseudoscalar coupling as a function of the magnetic field,
G]I?;(B )—g, given by Eq. (3.34b), which considers both vacuum and pure magnetic contributions.
Here we used A = 914.6 MeV and g = 9.76 GeV~2 as well as the values of the effective quark
masses displayed in Figure 3.1.
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Figures 3.3 and 3.4 show that we obtain, from polarization effects, an effective
scalar coupling which decreases and an effective pseudoscalar coupling that increases with
the magnetic field. For the scalar coupling, this decrease is stronger for the quark up,
which again exhibits a greater response to the magnetic field due to its electric charge
being double (in absolute value) the electric charge of the quarks down and strange.
Furthermore, we also note that the corrections to the couplings are greater for the quarks
up and down for low field strengths. The reason for that can be inferred from the first
line of Eq. (3.34a), specifically from the term with the minus sign that leads to a negative
contribution proportional to the constituent quark mass, which is greater for the quark
strange in the weak field regime. Same thing happens for the pseudoscalar coupling.
However, we now have an increase which is greater for the quark strange, signaling that,
in this case, the behavior of the correction is mostly dictated by the vacuum contribution,
as there is little difference between the curves for the quarks up and down.

Another case of interest is the one of the couplings G (B) and GJ.(B), which
involve quarks of different flavors but with same electric charge. From Egs. (3.19), (3.29)
and (3.32) we have

s 2 2 2 2 2 2
5;(3)—g+ I lAZ M21n (A +Md>]+ Ne lA — M?In (A +MS>]

M2 4r2 M2
#N. ! A2 4 D2 (0 D2,(0
g [ |2 *A? o 335
9 N]qu]/ / o e 5 (1+v) M3 —4% (1-v) M, (3.
272 2
1 F uMygM, |qaB| 2 F uMyM,
lutanh(|qu|u) sinh? (|gaB|u) a |qa B|u? ]

where D3.(0) = xM37 + (1 — ) M?2. Unfortunately, the integrals in Eq. (3.35) cannot be
solved in closed form and we need to rely on numerical methods. Choosing to apply the
trapezoidal rule, we find the results shown in Figures 3.5 and 3.6 for the correction to the
effective couplings as functions of the magnetic field.

Like in the case where f = g, Figures 3.5 and 3.6 show a decreasing effective
scalar coupling and an increasing effective pseudoscalar coupling. We also note that the
corrections to the pseudoscalar coupling assume high values even for small field strengths.

The high values for the corrections to the effective couplings in Figures 3.3, 3.4
and 3.6 in the weak field regime could be a consequence of our parameter choice, which
was made by fitting meson properties back in Section 2.4. These values can be compared
with the results from Ref. [22], where another set of parameters was chosen and smaller
values for the corrections to the NJL coupling constant were obtained. We could change
our parameter choice in an attempt to obtain more reliable results for those corrections.

However, since the scope of our work is to analyze the consequences of a B-dependent
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Effective scalar coupling as a function of the magnetic field for fg = ds (V+B)
T T T T T

3.5 1
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2.5 | —
3 2r 1
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Figure 3.5: Correction to the effective scalar coupling as a function of the magnetic field,
G5.(B) — g, given by Eq. (3.35), which considers both vacuum and pure magnetic contributions.
Here we used A = 914.6 MeV and g = 9.76 GeV 2 as well as the values of the effective quark
masses displayed in Figure 3.1.

Effective pseudoscalar coupling as a function of the magnetic field for fg = ds (V+B)
T T T T T

8.3

Ggs™ (B) - g [Gev2]

0 0.2 0.4 0.6 0.8 1 1.2
eB [GeV?]

Figure 3.6: Correction to the effective pseudoscalar coupling as a function of the magnetic field,
GJ2(B) — g, given by Eq. (3.35), which considers both vacuum and pure magnetic contributions.
Here we used A = 914.6 MeV and g = 9.76 GeV~2 as well as the values of the effective quark
masses displayed in Figure 3.1.

coupling, we might as well simply discard the vacuum terms and consider only the pure

magnetic contributions to the effective coupling.
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3.4.4.2 Only B

By dropping the vacuum regularization-dependent contribution, Egs. (3.34)

become

2N]W B M? 2lqsB M?

Gi,(B) =g+ f[ | larBl, ( ! >+ 4 |111F< f)
2
7

Mj 4r|q; Bl M; 2|qy B

M; lqs B
+2¢) —3ln< ! ) +2 1 :
<2|QfB|> 2|qsB| M3

9> N.M7? B M; 2|¢;B M3 M3
P(B) =g+ f[1+|qf |1n< ! )+ 4 |lnF< ! )—111( ! )]

(3.36a)

2m? M3 4m|qs B M 2[qs B 2|qy B

(3.36D)
while, for Eq. (3.35), we have
5 2N quB —%(1+v)M§—%(1—v)M§2
G(B) = g+ B g [

2m 2 (3.37)

1:FUMdM5 |qu| _ 2$uMdMS ’

wtanh (|ggBlu)  sinh? (|gaB|u) |qq B|u?

Note that none of the equations above contain explicit dependence of the cutoff parameter.
For the couplings containing only the pure magnetic contribution to their correc-

tions, we have the results shown in Figures 3.7, 3.8, 3.9 and 3.10.

Effective scalar coupling as a function of the magnetic field (Only B)
T T T T

-0.5

G (B) - g [GeV?]
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0 0.2 0.4 0.6 0.8 1 1.2

eB [GeV?]

Figure 3.7: Correction to the effective scalar coupling as a function of the magnetic field,
G} f(B) — g, given by Eq. (3.36a), which considers only the pure magnetic contribution. Here we

used g = 9.76 GeV~2 as well as the values of the effective quark masses displayed in Figure 3.1.
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Effective pseudoscalar coupling as a function of the magnetic field (Only B)
T T T T T

— —h —h

u
| d
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Figure 3.8: Correction to the effective pseudoscalar coupling as a function of the magnetic
field, G }’;(B) — g, given by Eq. (3.36b), which considers only the pure magnetic contribution.
Here we used ¢ = 9.76 GeV~2 as well as the values of the effective quark masses displayed in
Figure 3.1.

Effective scalar coupling as a function of the magnetic field for fg = ds (Only B)
T T T T T

02} .
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Figure 3.9: Correction to the effective scalar coupling as a function of the magnetic field,
G5.(B) — g, given by Eq. (3.37), which considers only the pure magnetic contribution. Here we
used g = 9.76 GeV~2 as well as the values of the effective quark masses displayed in Figure 3.1.

Just like in the previous case, Figures 3.7 and 3.9 show decreasing effective scalar
couplings, while Figures 3.8 and 3.10 show increasing effective pseudoscalar couplings.
Both in the scalar and pseudoscalar cases, for f = g, the quark up exhibits a greater

response to the applied field, since now there is no vacuum contribution to compete with.
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Effective pseudoscalar coupling as a function of the magnetic field for fg = ds (Only B)
T T T T T

15 F 1

Gas™ (B) - g [GeV2]

0.5 4

0 I I I I I
0 0.2 0.4 0.6 0.8 1 1.2

eB [GeV?]

Figure 3.10: Correction to the effective pseudoscalar coupling as a function of the magnetic
field, G}7(B) — g, given by Eq. (3.37), which considers only the pure magnetic contribution.
Here we used ¢ = 9.76 GeV~2 as well as the values of the effective quark masses displayed in
Figure 3.1.

We have now shown how vacuum polarization naturally leads to a flavor- and
B-dependent coupling in the NJL model in the presence of a uniform magnetic field, thus
serving as a mechanism for obtaining such dependence. Since we are interested in the
effects of the external field in the NJL coupling, from now on we shall consider only the
pure magnetic contributions to the coupling constant corrections. Hence, in the remainder
of this work, when we talk about B-dependent couplings we are considering them to be

given by the ones displayed in Figures 3.7, 3.8, 3.9 and 3.10.
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CHAPTER

(QUARK AND MESON MASSES WITH
B-DEPENDENT COUPLINGS

In Chapter 3 we showed how a flavor- and B-dependent coupling arises in the
NJL model from vacuum polarization. Having proposed a mechanism for the dependence
of the coupling constants on the external field, let us now consider a NJL. Lagrangian with
such couplings and see the effects on the constituent quark masses as well as on meson

masses.

4.1 Quark masses with B-dependent couplings

We start with the following Lagrangian,
Lhogr, = 0(i) —m)v + ;G;b (9A0) (vA0) + ;Gcﬁf (Pirs A w) (PinsA),  (4.1)

where, like before, 1 is the quark field, m is the current quark mass matrix and
D, = 0, —1QA, is the covariant derivative. The B-dependence of the couplings is left
implicit for now.

We may proceed exactly as we did in Section 2.3 to obtain an effective action
in terms of interacting quark fields by separating the quark field bilinears into two

components like in Eq. (2.9). Then, the Lagrangian becomes
Ly, = Ge(i = m)de+ (i) — m)
fGSb(Ww)c(Wb)ﬁ % (913°), (Vivs\'),
Gy (0Amp) (92 + 5 5 (Vigs A (Dins X
+3Ga[(0x0) (9300) + (930) (5)
SGH[(0insX0) (DigsX') + (DinsX0) (PinsAy) |.
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In order to integrate out the quark component (1)), with the help of the usual
SU(3) auxiliary fields, we introduce the identities

1= [ D5 e {50 o (5r00) | S0 - o(0000) ]|

P = g(dinsA) | }

ps

1= N [ DPexp {—; P = g(dinA0) | C;Zb

in the generating functional

2l = [ DDy exp { i

Sl ¥] + /d4x (V0 + mﬁ)} } ;

where Si;;, = [ d*z L. Then, we repeat the procedure of Section 2.3, which now leads

us to obtain the effective action given by

o= —iTrIn ( / d'z ( b gagh 4 gag P“Pb> -
+ [ dt [@E (ip —m)v + 5G:b (9x0) (9X) + 5@5; ($insAe) (mww)},
where
SHa—y) = {UD — M+ ;Gjb A (BA) + A (YAt | )
OB e (Bt + X (Finshw)] } 84w — ), |
and the effective mass matrix is
M =m+ (;ib (SN 4 S°A%) + ¢75G2agp; (PP + PXY). (4.4)

To obtain the new gap equation, we can proceed as in Section 2.3 by imposing the
stationary condition. However, a simpler strategy may be adopted. Recall from Section
3.3 that the first order term in the quark determinant expansion resulted in a correction
to mass term given by the gap equation. Since this mechanism did not depend on the
coupling constant it naturally applies to our present case. The only difference we can
expect to obtain is on which coupling enters the gap equation. Thus, in order to find the
new constituent quark masses we expand the quark determinant up to first order in the
quark currents, leading us to the mass corrections M} — my which now take into account
the effects of the flavor- and B-dependent couplings.

Hence, we write

St =—iTrln {1 + 50 {;G;b A (BAP) + A (YA |
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1 psivya(, j: b b(,7.: a
+5GH N (ins\w) + X (dinsrw)]
. 1 S af,l 7\a
~ Ty {s<0> {2Gab X (9A7) + X (A%
1 ps|ya(, .z b b(. 7., a
565 N (ins\w) + X (dinsrw)]
1 _ _
— ) (0) 4, ~ s a b b a
. tr{zS (O)/d v 3G X (8270 + X (A w)}}
in analogy with Eq. (3.9). Additionally, we used the fact that the term with the
pseudoscalar currents has vanishing Dirac trace.
In order to compute the flavor trace in the expression above, we use the relations

(3.10). Then, it follows from Egs. (3.11) and (3.22), and after some long and tedious
algebra, that

;ggb{trF[¢S<0>(0)Aa] (9X0) + trp [iSOON] (VA") } =2 3 G3iS (0) sy,
f=u,d,s

Therefore, the contribution of the quark determinant is simply

St == 3 [ A0 2G3trpe[iSP(0)dpy

f=u,d,s

= > /d49‘f 2G5 (bpios) , sty

f=u,d,s

which simply yields an effective mass given by

Mj = my —2G3(B) (v5ty) - (4.5)

This has the same form as the gap equation (2.20) with g replaced by G3;(B) given by
Eq. (3.36a). Taking the chiral condensate to be given by Eq. (3.5) with M replaced by

M3, the new constituent quark masses become the solutions of

G3 4 (B)N,M| A2 4 M2
(4.6)
+ M]'?(l—ln M7 >+|qu|ln My +2|qu|1nF< My )1
2|qs B 4r|q; B 2|gs B

The solutions of Eq. (4.6) are shown in Figure 4.1, where we included the solutions
of the gap equation with B-independent coupling, Eq. (3.6), for comparison. As we can
see, the effect of the B-dependent coupling, which decreases with the magnetic field, is to
slow down the increase of the effective masses with B. This effect becomes more evident
for higher field strengths and is greater for the quark up. In general, the phenomenon of

magnetic catalysis is still observed when considering the new couplings, but it is reduced.
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750

Solution of the gap equation as a function of the magnetic field
T T T T T
Quark up (B-dependent coupling)

Quark up (B-independent coupling) — - —-
Quark down (B-dependent coupling)
Quark down (B-independent coupling) -
650 |- Quark strange (B-dependent coupling) —— e 4
Quark strange (B-independent coupling) - - -~ s T

M' [MeV]

0 0.2 0.4 0.6 0.8 1 1.2
eB [GeV?]

Figure 4.1: Solution of the gap equation as a function of the magnetic field with B-dependent
couplings, Eq. (4.6). The dashed lines refer to the effective masses obtained from the gap equation
with B-independent coupling. Here we used A = 914.6 MeV, g = 9.76 GeV 2, myq = 6 MeV and
mg = 165.7 MeV.

In order to investigate if, and to what extent, the inclusion of such flavor- and
B-dependence in the NJL coupling leads to an improvement, we now proceed to compare
our results with lattice QCD results.

4.2 Comparison with LQCD

In this section, we shall compare our results from the NJL model with B-
dependent couplings with the lattice QCD results from Ref. [49]. To do so, we define
the quantity

m2 £2 <1Efwf>3 - <1Zf¢f>3:0‘ +1 f =u,d, (4'7)

where m, and f, are the zero-field pion mass and decay constant, respectively. Here, we
take m, = 135MeV and f, = 86 MeV [49].

In the NJL model with an applied external magnetic field, the renormalized quark
condensate was found to be given by Eq. (3.4) in terms of the constituent quark masses
and as a function of B. Then, we can compute the quantity 3 ;(B) by using the effective
masses calculated either with or without B-dependent couplings and compare the results.

In Figures 4.2 and 4.3 we plot the quantities (3, + X;)/2 and ¥, — X4, respec-
tively, as functions of the magnetic field. The points refer to LQCD results taken from

Ref. [49], while the curves refer to the NJL model predictions, being that the yellow curve
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2.4 T T T T T
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55 With B-dependent coupling i
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Figure 4.2: Comparison with LQCD results for (X, + £4)/2, with ¥(B) given by Eq. (4.7).
The points stand for lattice results while the curves stand for the NJL predictions. Here we took
Myqg = 6 MeV, m; = 135 MeV and f, = 86 MeV. The quark effective masses were obtained with
the parameters A = 914.6 MeV and g = 9.76 GeV 2.

1.4 T T T T T
Lattice —+—
With B-independent coupling
12k With B-dependent coupling i
1 - -~
0.8 [~ 4
W
I:I
W
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0.4 -
0.2 |- -
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0 0.2 0.4 0.6 0.8 1 1.2
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Figure 4.3: Comparison with LQCD results for ¥, — ¥4, with ¥;(B) given by Eq. (4.7). The
points stand for lattice results while the curves stand for the NJL predictions. Here we took
Myqg = 6 MeV, m,; = 135 MeV and f, = 86 MeV. The quark effective masses were obtained with
the parameters A = 914.6 MeV and g = 9.76 GeV 2.

considers the effective quark masses to be given by the gap equation with B-independent
coupling, Eq. (3.6), while the black curve considers the effective masses to be given by the
gap equation with B-dependent couplings, Eq. (4.6). While the effect of the B-dependent
coupling is to slow down the increase of the effective quark masses with B, the opposite

behavior is obtained for the condensates. This can be understood in a naive manner by
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recalling that the chiral condensate is given by the trace of the quark propagator, which
is proportional to the inverse of the effective masses.

From Figure 4.2 we see that our inclusion of the flavor- and B-dependence in
the NJL coupling was not enough to reproduce the lattice results with precision, but
it leads to a closer behavior than the curve with fixed coupling, especially for strong
fields. In contrast, in Figure 4.3 we have a better agreement between NJL and LQCD
results coming from the curve with B-dependent couplings for intermediate field strengths,

~ 0.4 — 0.8 GeV2. However, this curve begins to deviate from the lattice results for strong

fields.

2.8 ;

T
Lattice —+—
With B-independent coupling
26 With B-dependent coupling

(Zy+2g)/2

0 0.2 0.4 0.6 0.8 1 1.2
eB [GeV?]

Figure 4.4: Comparison with LQCD results for (X, + X4)/2, with X(B) given by Eq. (4.7).
The points stand for lattice results while the curves stand for the NJL predictions. Here we took
Myg = 6.5MeV, m,; = 135MeV and f; = 86MeV. The quark effective masses were obtained
with the parameters A = 400.0 MeV and g = 25.0 GeV 2.

We emphasize that the model predictions depend on our parameter choice. Since
we chose the NJL free parameters so that meson properties are set to their physical
values, one may wonder if there is another set of values that yields better comparisons
with LQCD. If, for example, we use the extremely unusual (and maybe even problematic)
set of parameters given by A = 400.0 MeV, g = 25.0 GeV 2 and myq = 6.5 MeV, we find
the results shown in Figures 4.4 and 4.5. These new set improves the comparison for the
average of the condensates in the intermediate field regime (Figure 4.4) and worsens the
comparison for the difference of the condensates (Figure 4.5). In general, we are then led
to conclude that considering couplings that depend on the external magnetic field, as well
as on the quark flavors, which arise from vacuum polarization seems to lead in the right

direction to conciliate NJL predictions and LQCD results.
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Figure 4.5: Comparison with LQCD results for ¥, — ¥4, with ¥((B) given by Eq. (4.7). The
points stand for lattice results while the curves stand for the NJL predictions. Here we took
Myqg = 6.5MeV, m; = 135MeV and f; = 86 MeV. The quark effective masses were obtained
with the parameters A = 400.0 MeV and g = 25.0 GeV 2.

4.3 Meson masses in the presence of a uniform mag-
netic field

In order to see the effects of the B-dependent couplings in observables, we now
proceed to compute pseudoscalar neutral meson masses in the presence of the applied
magnetic field. In Section 2.4 we calculated the 7° and K" masses in the absence of
external fields in order the fix the NJL model parameters. Now, all we need to do is
modify that procedure in order to obtain the meson masses in the presence of a uniform

magnetic field.

4.3.1 The meson polarization tensors

The first modification we need to do concerns the polarization tensors. Recall

that .
75 (k%) = o [, (%) + TE(K).
T (k) = Tlgg(K?),
where
PS /1.2 . d4p (0) . (0) .
I, (k%) = QZNc/ (27T)4U"D [Sf (p)ivsS,” (p — k/’)Ws},
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with k, = (ko, 0) being the meson four-momentum and S](co) (p) being the quark propagator
in momentum space. The only difference with respect to the procedure from Section 2.4
is that now S}O) (p) is the propagator in the presence of the magnetic field, namely the
one given by Eq. (3.23).

Let us denote

s : d* ‘ .
1% (B; k%) = 2iN, / (27r1;4trD [5}o><p)1755§o>(g)@75}, (4.8)

where ¢ = p — k. The procedure here is quite similar to the one from Section 3.4 where
we had to compute the quark polarization functions, with the addition that now we
have extra terms coming from the meson four-momentum £k,. Hence we shall list only
some main steps. Using the properties of the Dirac trace listed in Appendix B as well as

¢ = (py — ko, p), one finds
trp ST (p)irs S (£)iys
[
o Jo
. . [tan(lasBls) _ tan(|g,Bls)
X exp {Z(S + T)pﬁ = 2ir(p- k) — Z[ ]qffB\ " ’q9gB| :

x {[~MyM, + p? — (p- k), | [1 — sign(qsq,) tan(|qBls) tan(|g, BIr)]
—p? sec®(|g; Bls) sec’ (g, Blr) } -

We are denoting the constituent quark masses simply by M for now, as a general notation;
later we can consider the cases where these masses are obtained with and without B-
dependent couplings, separately.

After rotating the momenta to Euclidean space and introducing the imaginary

proper time variables as usual, the quark polarization functions become

o o i) [ Ppyp Ppup
=8 BkQ — _ Nc/ / dsd M <M9+k|\E) / I
ro(BiK) 8 o Jo UF (2m)? (2m)?

tanh(|q;B]s) tarlh(|qrgﬂ?|7’)] 2 }
s B| ¢y B -

x {[=M;M, — pty+ (p k) [1 + sign(qrq,) tanh(|g; Bs) tanh(|q, B|r)]
—p’, psech’(q; Bls) sech® (|, BIr) }

X exp {—(5 + )P +2r(p k) g — l

The parallel momentum integrals are given by

er2kﬁE/(s+r)

/ d2puE o P g2 k) s _
(2m)? dm(s+r)’
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/delE [pQ —(p-k) ]67(5+T)pﬁE+2r(p-k)\\E — el <1 S )
(2m)? 1= I 471'(3—1—7‘)2 st IE)

while the perpendicular momentum integrals are the same ones we computed in Section

3.4. Then, setting ¢ = ¢4, we find

I (B; 12) = Nelts Bl |7 dsart -

272 s+r (4.9)
L+ MyMy(s+r) — kg ;B '
(s+r)tanh (|grBl(s + 7))  sinh®(|g;B|(s +71))]

Note that Eq. (4.9) reduces to Eq. (3.25) when we set k% = 0, as expected. In the limit
B — 0, Eq. (4.9) becomes

S 2
7B = 0:k%) = 5

2
e [T [ s e 24 MMyl £7) — k|
(s+71)3

and we may write

AN |qu| My
S . 1.2\ S 2
I (B k%) = T1% (B = 0; 2) |7 dsar -
1+ MM, (s+r)+ﬁk2 |95 B 24+ MyMy(s + 1) + SR
(s +7)tanh (JgyB|(s + 1))  sinh®(lgzB|(s + 7)) (s +7)° ’
(4.10)

after we rotated the momentum k back to Minkowski space. With II% (B = 0;?) given
by Eq. (2.39), we finally write

N [ s o N+ M7 Ne o o (AN + M?
4W2[A —Mf1n<]\4% +47T2 A —Mgln ngg

Ne (k2 — (M) — M,)’] /ld:c {m [A”Dgg(m)] P 1) —1}

% (B k*) =

472 D? (k2) A2 + D]%g(kQ)
N —sM TM2+SSTT]€2
‘qu| / / dsdr .
22 s+r
y L+ MpMy(s +r) + S5k lq; B 24 MyMy(s+1) + SR
(s + ) tanh (jg;B|(s + 1)) sink?® (|q;B|(s + 1) (s+ 1) |
(4.11)

where D}, (k*) = —2(1 — 2)k* + o M7 + (1 — ) M.

9

4.3.2 Neutral pion and kaon masses

Let us now return to our usual notation. Let My denote the constituent quark

masses that are obtained from the gap equation with fixed coupling, Eq. (3.6), and M J,c
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denote the constituent quark masses that are obtained from the gap equation with B-
dependent coupling, Eq. (4.6). Then we denote by IT’; the neutral pion polarization tensor
computed with effective masses M and Hfos the neutral pion polarization tensor computed
with effective masses M}; similar notations will be used for the kaon polarization tensors.

In the absence of flavor-dependent couplings, the bound state equations required
to be solved in order to obtain the neutral pion and kaon masses have the same form as

we found in Section 2.4, namely

1 — g% (B;m2) =0
oLz (Birmz) (4.12)
1 — gIlRo (B;mic) = 0
where T3 = (TI%;, + IT5;) /2 and 113, = II3;, with T1% (B; k?) given by Eq. (4.11).

The bound state equations must be modified to include the flavor-dependent
couplings. Here we will not consider the couplings G, with a # b for simplicity. In fact,
as it can be see from Eqs. (3.22), we can expect to have G4, << Gg, for a # b. Then,
repeating the procedure of Section 2.4 for the effective action (4.2) with only diagonal

coupling terms, we find the new bound state equations to be given by

2
g Ips 2
1-— 571_[: (B;mﬁ) =0
Gi(B) ™
92

- GHR(B)

(4.13)
1

%5 (B;my) = 0

where G3; = (GP* + G1))/2 and G§; = G2 = GJ:.

Egs. (4.12) and (4.13) need to be solved numerically, as well as the integrals
in Eq. (4.11). Once again, we choose to apply the trapezoidal rule. The results for the
pseudoscalar neutral meson masses as a function of the applied magnetic field are shown
in Figure 4.6.

For the ¥ meson mass when the B-dependent coupling is used, Figure 4.6 shows
an increase of m, with the magnetic field for weak and intermediate field strengths,
followed by a slight decrease for strong fields. This behavior is in contrast with LQCD
results [50] and also with NJL predictions that employ a magnetic field dependent coupling
which decreases with B [19]. For the K° meson mass, the B-dependent coupling calculation
still results in a decreasing behavior with the magnetic field. However, this decrease
is weaker than the one for the B-independent coupling calculation, which again is in
contrast with LQCD results [51] and NJL with decreasing coupling G(B) predictions
[21]. This is because the vacuum polarization corrections to the NJL coupling found in
Chapter 3 leads to pseudoscalar effective couplings that increase with the magnetic field,
in contrast with the scalar ones. Since the reproduction of LQCD results with the NJL

model requires a decreasing coupling with B [52], the disagreement between the results for
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500 Pseudoscalar neutral meson masses as a function of the magnetic field
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Figure 4.6: Pseudoscalar neutral meson masses as a function of the applied magnetic field.
Here we used A = 914.6 MeV and g = 9.76 GeV 2.

using an increasing pseudoscalar coupling and the results from the literature is somewhat

expected.
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CONCLUDING REMARKS

Motivated by recent works which concluded that the NJL model is able to
reproduce lattice QCD results provided a magnetic field dependent coupling is employed,
we obtained a mechanism for which this dependence is acquired by considering vacuum
polarization effects.

Starting with the U(3) NJL Lagrangian minimally coupled with a uniform mag-
netic field, we separated the quark field bilinears into two components, one corresponding
to the quarks that condense in the ground state into scalar quark-antiquark condensates,
and other corresponding to the interacting quasiparticle quarks. We then integrated out
the first component with the introduction of the usual SU(3) auxiliary fields and an ef-
fective action in terms of the interacting quarks was obtained.

The gap equation for the constituent quark masses was derived by extremizing the
effective action with respect to the auxiliary variables at zero quark field. This equation
was solved by using the four-momentum cutoff regularization scheme and its solution
showed the increase of mass with the magnetic field strength, exhibiting the phenomenon
of magnetic catalysis.

The next step was the expansion of the quark determinant in powers of the
quark currents. While the first-order term provided a correction to the quark masses
given by the gap equation, the second-order term yielded corrections to an effective
coupling dependent on the magnetic field strength and also on the flavors of the interaction
term involved. Discarding the vacuum terms in order to exclusively analyze the magnetic
explicit regularization-independent contribution to the effective coupling, we have found
scalar couplings which decrease with increasing magnetic field strength, and pseudoscalar
couplings with the opposite behavior.

Considering a NJL model with these flavor- and B-dependent couplings, we have
found new expressions for the constituent quark masses, which now depended on the scalar
couplings, and for the bound state equation whose solutions yields the pseudoscalar meson
masses, which now depended on the pseudoscalar couplings. For the new constituent

quark masses, the scalar B-dependent couplings served to make the increase of the
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effective masses with B weaker than the case with fixed coupling. Comparisons with
lattice QCD results show that the inclusion of these scalar B-dependent couplings from
vacuum polarization is a step in the right direction to conciliate NJL predictions and
LQCD simulations.

As for the meson masses, the inclusion of the pseudoscalar coupling, which we

O meson mass that increases with B

found to increase with the magnetic field, led to a =
for weak and intermediate field strengths, and to a K° meson mass that decreases with B
weaker than it does when the B-dependent coupling is not considered. Both these results
seem to be in contrast with the literature. However, this was somewhat expected since it
has been established that the reproduction of LQCD results with the NJL model requires
a decreasing coupling with B.

Thus, we have concluded that the vacuum polarization corrections to the NJL
coupling in the presence of a uniform magnetic field may improve the results that involve
the couplings of the scalar currents, but not the ones that involve the couplings of the
pseudoscalar ones. Further investigations may include the computation of the third-order
term in the quark determinant expansion, which shall result in corrections to the coupling
of the U(3) 't Hooft determinant term and are expected to play an important role in
computing the meson masses. Additionally, one may also compute the charged meson
masses and the meson decay constants in the presence of the applied magnetic field,
which requires to carefully deal with the Schwinger phases that do not cancel out in those
cases. Finally, our entire analyses can be also done at finite temperature in order to obtain

effective couplings that depend on B and T, for example.
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APPENDIX

USEFUL RELATIONS, INTEGRALS AND
EXPANSIONS

In this Appendix we list some useful results, such as expansions and integrals that
were needed at some point in the text, as well as some definitions of special functions. Most
of these equations were taken from Ref. [53] while others are well-known relations listed for
reference purposes. A few results that were not found in the literature are demonstrated
in Section A .4.

A.1 Definitions of special functions and constants

FEuler constant

' n—1 1
vp = lim Lz_jl i In n] = 0.57721566490 . . . (A1)

Exponential integral function

Ei(z) = — / C at (A.2)

Gamma function

(z) = /0 Tty (A.3)

Generalized zeta function

s 1
xr,a) = A4
) =3 (A1)
Euler psi function
$(z) = S InT() (A5)



A.2. Useful relations and expansions
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Beta function

A.2 Useful relations and expansions

tanh a + tanh b
tanh b) =
anh(a +b) 1 + tanha tanhb

tanh a + tanh b

inh b) =
sinh(a +) sech a sech b

x xd  2ab

th 1—1— +
cothr =—+-— —+ — — ...
r 3 45 945

ZEQ 1'3 o]

111(1+x):x——+7_...:Z(_1)k+1 ¥

2 3 1

L 1 1 2 %
sinh?z 22 3 15 189 7

Bi(z) = vp + In(—2) + Y ——, 2<0

¢ =1—¢elnz+ O()
1 2
M) = 6+ 0(e)

1
Le—1) =+~ 1+0()

Ll il 2
C(e,x) 5 :U—i—edEC(e,x) €:0+O(€)
d =Inl In2
£C(a:,a) - nl'(a) — =In2n

1

1 1
Inl'(z) = (:U—2>ln:c—x—{—21n27r+0<), T — 00

X

Y+ 1) +9() = - +20(z)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)
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B(Ci—;—l—l,e—l) — —a;(iﬂ—w) +Cﬂw<a;> +¢<a22+1>1 +0(e) (A-20)

A.3 Useful integrals

22 T
/_Ooe dx = \/? (A.21)

) e~ Pt B . 1an1(_pu> e~ PU n—1 (_1)kpkuk
/u dxa:”“ = (=0 n! L mnn—1)...(n—k) (A.22)
/OOO 2" te P coth o da = T'(p) lQl_“( <u, §> - ﬁ_“l (A.23)

©dr _ 2, B 1 9 N a?\ |
/0 —e (xcothx—l)—lnﬁ—i-a +(2—a)ln2+2lnf<2 (A.24)

T2

/0 % e P*(1 — zcotha) = ¢<§> — lng + 3 (A.25)
oo 1
/0 dx e " sinh” fr = WB (2/; — g, v+ 1> (A.26)

o el 1 I a? a?

1.See proof in Section A.4.
2.8See proof in Section A.4.
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A.4 Some demonstrations

Eq. (A.24) Let us denote

o dx 2
Ia :/ —e v th _1 .
2t (x cothz — 1)

Although this integral has a finite value, we will solve it by separating it into two divergent

integrals and showing that the divergences cancel each other [54, 55]. We begin by writing
o d % d
I, = / —xefa% cothz — / —fe’a%
0o 0
= lim (/ dr 27 "% coth 1 — / dx x_2+"e_a2””)
0 0
: o -1 _—d’x 1 o -2 _—x
= lim drz" e cothx — 7/ dr x" "e
0 (a2)7=1 Jo

= lim {F(n) lzlﬂc (n, a;) - (az)"] - (QZ;W_IFM - 1)} :

where we used the definition of the Gamma function and the result in Eq. (A.23). Using

Egs. (A.13) to (A.17) in order to properly take the limit  — 0 in the expression above,

we write

I, — Tim (2 -omm2) (-l (D) = Lo 1+ nlna?
o= lim | — — —2nln - — — nl'l — | —-ln2n| | — na
woo\p  F g 2 o T 2) 732 g

1
— lim (a2 —na®In a2) (— +vE — 1)
n—0 n

2 2 2 2 2
= lim —a——|—21nF a@ —1n27r+lna——a21na—+a27E+a——a27E+a2
n—0 n 2 2 2 n
1 0\ a? a? 5
:ln7m2—|—(2—a)1n2—|—21nf<2>+a.

Eq. (A.27) Let us denote

oo 1 1
Y, = / dr e~ 2 ( 5 — )
0 sinh“z 22

We proceed as we did for Eq. (A.24) by separating the finite integral into two divergent

ones,

2
00 e v o©dr
Ya:/ dl‘ 3 —/ —2€ax
0 sinh” z 0o x

oo 1 00
= lim / dr e "% sinh" 2z — — / dr 2" 2%
n—01.Jo (ag)n 0
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) 1 a? n 1
:71]1{)1(1) l2771B<2_2+1’n_1> —(az)nlf(n—l)],

where we used the definition of the Gamma function and Eq. (A.26). The limit 7 — 0 can
be taken by using expansions (A.13), (A.15) and (A.20) with relation (A.19). The result

is

. 211 1 a2
%Z%grg){@—%ln?)Q [—n—1+vE++¢<2>]

—(a* = a*nina )(—717+7E—1>}

:1+a2l¢<‘§> —mCﬂ.
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APPENDIX

PauLi, DIRAC AND GELL-MANN
MATRICES

In this Appendix, we list some properties of the Pauli, Dirac and Gell-Mann
matrices that may have been used in the text. Here the traces will be simply be denoted
by tr as there is no potential to confusion regarding on which space the trace acts on.

Additionally, we denote the n x n identity matrix as 1,,x,.

Pauli matrices The Pauli sigma matrices o;, 1 = 1,2, 3, satisfy the following relations

[56]:
1. a% = 0% = a§ = loyo;
2. det(o;) = —1;
3. tr(o;) =0;

4. [0y, 0] = 2i€;j,0%;
5. {O’i, O'j} = 26ij12><2;
6. 0,05 = 61’]’ —+ iEiijk.

Explicitly, they are given by

01
o1 = ,
o
For an arbitrary vector a = a€&,, we have

e*? =1y,5cosa+i(é, - o)sina.
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Dirac matrices The Dirac matrices v are a set of four 4 x 4 matrices satisfying the

anticommutation relations [33]:

{”Y“a’YV} = 29" 14xa.

The Weyl or chiral representation of the Dirac matrices, in 2 x 2 block form, reads

0_01 i_Oai
7 1 0/ 7 -0t 0/

We also introduce an additional gamma matrix,

7’ =iy

which satisfies
1 (79 = Ly
2. {°,v"} =0.
Useful trace relations involving the gamma matrices are listed below:
1. tr(any odd number of ~'s) = 0;
2. tr(y"y") = 49"

3. tr(y1y"P7) = 4(g" g% — "9 + g"7g"");

5. tr(y"y"y°) = 0
6. tr(y*y’yPy0) = —4ietvro,

Gell-Mann matrices The eight 3 x 3 independent traceless Hermitian Gell-Mann

matrices \,, a = 1,...,8, satisfy [57]

[)\aa )\b] = 2ifabc)\c;
4
{/\aa )\b} = 2dabc)\c + §5Gb13><37
where the completely antisymmetric coefficients f,p. (the SU(3) structure constants) are

given by .
1
fabc - _Ztr([)\aa )\b])\c)a
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and the completely symmetric coefficients d,;. are given by
1
dabc - Ztr({)\aa )‘b}/\c>

Explicitly, the Gell-Mann matrices read

010 0 —i 0 1 0 0
AM=110 0f, =i 0 0], As=10 -1 0],
0 00 0 0 0 0 0 O
0 01 00 —i 0 00
AM=1(0 0 0], =10 0 0|, =10 0 1],
100 i 0 0 010
00 O . 1 0 O
=10 0 —il, Ag = 75 01 0|,
0 ¢ O 0 0 =2
and we define the additional Ao matrix as
5 5 100
Ao = \/;13><3 = \/; 01 0].
0 01

The trace of the pairwise product of Gell-Mann matrices satisfies

tr()\a)\b) = 25ab'
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APPENDIX

'THE FERMION PROPAGATOR IN A
UNIFORM MAGNETIC FIELD

In this Appendix we derive an expression for the fermion propagator in a uniform

magnetic field following Schwinger’s proper-time method [26].

C.1 Fermion propagator in a constant electromag-
netic field

The propagator of the Dirac field in the presence of the gauge field A,, G(z,y),
is formally defined by

(i) — m)G(,y) = 6"(x - y), (C.1)

where D, = 0, —iqA,, is the covariant derivative, with ¢ being the fermion electric charge
and m standing for its mass. Schwinger’s technique begins by regarding G(x,y) as the
matrix element of an operator G [26, 27], namely G(z,y) = (y|G|z). Then, in terms of
this operator, Eq. (C.1) is written as

(M—m)G =1, (C.2)

where I, = P, + ¢A, denotes the conjugated momentum operator. Eq. (C.2) can be

formally solved by writing the following integral representation for G:

1 M+m o0 2

G = = :—i/ ds (L +m)exp|—i(m? -~ —ie)s|.
W —m ]712 —m? + i€ 0 ( ) { ( ) }

Here we used the Feynman prescription and introduced the factor ie in order to compute

the integral. It is understood that the limit € — 0 is to be taken and we will simply omit

this factor from now on.
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Then, for G(z,y) = (y|G|x) we have
— _g o d —im?s
Gla,y) = =i [ dse™™ (y|(H+m)U(s)]a).

where

U(s) =e M with H= ~1.

The operator H = —]7[2 can be regarded as an effective Hamiltonian while s can be
interpreted as a time variable, which is known as the Schwinger proper-time. Therefore
the unitary operator U(s) can be viewed as the time-evolution operator whose action on

the state |x) may be written as

We now rewrite G(z,y) as

Glay) = =i [ dse™™* (y(0)| (1 + m) a(s)

— =i [T dse " OILOle() + m yOx(s)).  (C3)

The transformation function (y(0)|z(s)), fundamental to the evaluation of G(z,y) in Eq.

(C.3), is characterized by the following equations:

A O(s)) = WO Hlx(s)). (C.da)
19, + 0 Au ()] (4(O)|2(5)) = (y(O)|TL,(5)[(s)) . (C.4b)
(i, + a4,)] W(O0)]2()) = HO)[TL,(0)[x(s)) (C.do)

with the boundary condition

lim (y(0)]z(s)) = 6*(z — ). (C.5)

s—0

The first equation in (C.4) is simply the Schrodinger equation for the time-evolution of
the state |z(s)) while the others follow from the definition of the conjugated momentum
operator II,,. Here we have assumed that II,(s) operates on |z(s)) and II,(0) operates on
|(0)) [27].

In order to evaluate Egs. (C.4), we first use the commutation relations

[Hu’ :EV] = igu“

(11,11, = iqF,

ns
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Appendix C. The fermion propagator in a uniform magnetic field 71

to write the Hamiltonian H as

H=-1=_1m—4pmwp

9 Qs

where F),, = 0,A, — 0, A, is the field-strength tensor of the gauge field and

v Z v
o = [y, 7]

2

The operators z,, and II,, satisfy the equations of motion

d

% =i[H,z,] = i[x#’ HZ} = i[x,, 11, ]211" = 211, (C.6a)
S

daim, . : Y

T; =i[H, Hu] = Z[Huaﬂﬂ + Eqa)\ [I‘Iw )

= i([Hua IT, 11" + HV[H;M IL]) + %QUAV[H/M xp]apFAV

= —2¢F, 11", (C.6b)

where, in the last step, we assumed a constant field strength F),,, in which case 0°F), = 0
and [II,, F\,] = 0. In matrix notation, Eqs. (C.6) read
dx dIT

X _on, L8 _agFm
ds ’ ds C

for which the solutions are
II(s) = e 2F*T1(0),

x(s) = x(0) = (1 — ¢ (¢F) "' TI(0) = 2¢~""*sinh (¢F's) (¢F) " T1(0).

If we write IT(0) in terms of x(s) — x(0) in the second equation and substitute the result

into the first one, we find
1
I’ (s) = [x(s) — X(O)]Tin sinh ™' (¢F's) ¥,

after using the antisymmetry of F. With this expression, we can write the Hamiltonian
as
H=-I?- gaWFW = [x(s) — x(0)]" K [x(s) — x(0)] + gtr (oF),

where
1 2 .02
K= 1 (¢F)”sinh™= (¢Fs) ,

and here the trace tr is over the indices u, v, . ...

Now, let us note that x(s) does not commute with x(0) due to the dependence
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C.1. Fermion propagator in a constant electromagnetic field 72

of x(s) on IT(0). Then, since the Hamiltonian is to be evaluated in position eigenstates
like in Eq. (C.4a), it will be useful to write it so that x(s) is on the left and x(0) is on
the right [34]. To do that, we use

(x(s),x(0)] = —2ie~*sinh (¢Fs) (¢F) ",

to write

IT%(s)

x"(s)Kx(s) — 2x"(s)Kx(0) + x" (0)Kx(0) + K" [x,(s), 2, (0)]
x7 (s)Kx(s) — 2x7 (s)Kx(0) + x7 (0)Kx(0) + tr (K [x(s),x(0)])

i 6—QFs
=7 (5)Kx(s) — 25 (5)Kx(0) + X" ()Kx(0) ~ Ltn lQFsmh(QFs)] |

Then, since £~ = cothz — 1 and tr (F) = 0, we find the matrix element in Eq. (C.4a)

sinh z
to be

((O)|HJa(5)) = { Lo (o) — (x = y) K x — y) = or [4F coth (6F5)] | (5(0)](9))

Substituting this result back into Eq. (C.4a) and solving the differential equation

leads to

In ((y(0)}(5))) = —tr (F) s — +(x — y)7gF coth (¢Fs) (x ~ y)
1

gtr In [(qF)_1 sinh (qu)} + constant,

where we add In s? on both sides to obtain [27]

L 1 —1 .
W(O)]()) = Cx.y) 572 exp {~trn [(qFs) ™" sinb (gFs)] } )

l

X eXp {—i(x —y)TqF coth (¢Fs) (x —y) + 5

qo L B s} .

To determine the factor C'(x,y), we can use Egs. (C.4b) and (C.4c). The right-

hand side of these two equations are given by

OT(E)(3)) = (y(O)][ 3aF sinh* (gFs) e (x(5) — x(0))]la(s))

— 2 l4F coth (¢Fs) — gF)] (x — y) (y(O)](s)). (C80)

(y(0)[TL(0)|z(s)) = (y(0)| BQF sinh ™" (¢Fs) e (x(s) — x(0))| [a(s))

— 2 l4F coth (qFs) + F) (x — y){y(0) (s)). (C8)
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Appendix C. The fermion propagator in a uniform magnetic field 73

Therefore, substituting Eq. (C.7) into Eqgs. (C.4b) and (C.4c), and using Eqgs.

(C.8), one arrives at
. 1 y
[za,u + un(aj) - §qF;w(y - .1') ] C('Ta y) = 07

. 1 v
{—Z% + qAu(y) + §qFW(y — ) } C(x,y) =0,

from which we find C(z,y) to be

Clay) = Coxp {ia ["d" [4,9)+ 5P €~ )]} (©9)
Lastly, we apply the boundary condition (C.5) to determine the constant C'. We are
interested in the behavior of the solution (C.7) as s — 0. Since sinhz — z for z << 1,
we have In[z ! sinh 2] — In(1) = 0. Also, cothz — % as z — 0, so that in order to find C
we write
O exp [—i(fﬂ — i@ —y) } — 'z —y).
s? 4 s a

This condition is equivalent to
4 9 i x?
/d rCs“exp|—— ] =1,
4 s

C = —i(4m) 2, (C.10)

from where we find C to be

after using the result (A.21).
At last, we are ready to put the pieces together. From Egs. (C.3), (C.7), (C.8),
(C.9) and (C.10), we find
Gz, y) = ®(z,y)9(x —y), (C.11a)

where

B(z,y) = exp {iq [ det {Au(f) + ;FW (€ — y)”} } , (C.11D)

Gz —y) =~ (4m)* [ % [+ Sy [qF coth (¢Fs) + gF] (x ~ )]

1
X exp {—z’mzs — itr In [(qu)_1 sinh (qu)} } (C.11c)
X exp [—i(x —y)TqF coth (¢Fs) (x —y) + %qam,F‘“’ S] :

Note that the phase factor ®(z,y) is explicitly gauge dependent and breaks the translation

invariance of the propagator.
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C.2 Propagator in the presence of a uniform mag-
netic field

Now, let us specialize to the case where the background field is a homogeneous
magnetic field B = Bé, such that Fij5 = —F5; = B. Then we can write the propagator in

terms of B. To do so, we begin by analyzing

!

O—NVFMV = 9

i . ‘ 10
(71, 72] F12+§[’72>’Yl] F?' =iy, v F? = i[o2,01] ( 01 ) F®

0 F" = 2B ( os 0 ) . (C.12)

0 03

Next we evaluate exp {—%tr In (F~!sinh F)] First, we write

0o F2k+1 F3 F5 F7 FQ
mhF=S —  =F+4 -+ 4+ ...
=) oy Pttt et

sinh x
T

Now, lim,_,q = landIn1 = 0. Thus, the only contributions to the exponent will come

from the non-zero terms in F*, namely p,v = 1, 2. So, working with two dimensions, we

~1
T (" ,
10

define the matrix

so that
F =BT, F)=-BT, F°=DBT,....
Thus,
sinhF:T<B—§;}+£§—€;+...> = Tsin B,
and

inB sinB(1 0
FlsinhF =T T = — .
sin 5 5 \o 1
With this result, we find

B
sin B

exp {—;tr In (F*1 sinh F)] = (C.13)

Now consider the expression 7 - (FcothF + F)x = ~, (F* coth F,, + F') x,,.
Once again the elements of F vanish for y = p =0 or p = p = 3, and since FcothF — 1

as F — 0, we can simply separate these contributions to the expression and write

7 (FeothF +F)x = (y-2), — v [BT coth(BT)]z, + Y F2xy + v F a2y,
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where, for two arbitrary 4—vectors a* and b*, we denote

a-b), =a’t® — a®b®
( )|| )
(a-b), =a'd" + a®b*

Explicitly, we have

(BT)~!sinh(BT) = (2k)'\0 1

B 1 0
= B
sin B o8 (0 1) ’

1 B & B* (1 0
BT coth(BT) = cosh(BT) = e > (—1)F ( )
S111

and

1WF%2y + v F?' 2y = B (Mmz2 —72x1) = =B (M1727%222 — Y2717171)
= =By (et +n11) = =By (v 1), =iBos(y- 1),

since

0
o3 = ( 73 ) = i1Ys. (C.14)

0 03

We then arrive at

B
sin B

v (FeothF + F)x = (y-2), — (y-x), e B3, (C.15)

Lastly, proceeding as we did for the last expression, we obtain
x? (FcothF)x = xf — Beot Ba?. (C.16)
Using the relations (C.12), (C.13), (C.15) and (C.16), we can write

Gla—y) =~ (am) 2 [~ B 1

. 9 .
0 ?m exp (—Zm S+ ZqBSO'g)

X exp {_4@3 [(x - y)ﬁ — qBscot (¢Bs) (v — y)ﬂ } (C.17)

This is the expression for the translation invariant propagator function in the presence
of a homogeneous background magnetic field. Since quarks can have either positive or

negative electric charges it will be useful to rewrite this expression in terms only of the
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magnitude of that charge, namely,

Gz —y) = — (4m) 2 /OOo ds|qB|s) exp (—im23 + isign(qB)|qB]sa'3>

SQSln(|qB|s
xexp {1 [(o =)} = laBlscot (4Bls) (o = p)3] | (C19)

2
J_
—isign(gB)|qB|so3
N )aB| ]}

where

, { +1 itz >0
sign(z) =

—1 ifx<0

Eq. (C.18) is the final result we need for the propagator. However, we eventually
may find more convenient to write an expression for the propagator in momentum space,

which will be done in the next section.

C.3 Propagator in momentum space

The expression for the translation invariant propagator function, Eq. (C.18), can

be cast in the form

4
G ) = [ e 0.

(2m)*
with
= /d4x e G(x)
— (4m) 2 /OOO ijrm’ag‘;]s) exp (—im23 + isign(qB)\qB|sa'3) (1 + I, + Is) ,
where

1
7, = m/deH/d%LeWHe PTL exp{ 1 (x” |gB|s cot (|¢B|s) xi)

= i(dm)’s” mexp |is | pT — PL
|qB|s cot(|qB|s) I |gB]|scot(|gBls) ) |’

1 . - 1
Ty = — | x| Pz P e P Ly x) exp (a:” lgB|scot (|¢B|s) z )
2s s

i(47)2s2 - [Z,s <p2 Il )1
= v - )
[qBscot(|gBls) I 1¢Bls cot(j¢B]s)

1 |¢Bls !
T — —— 712 isign(¢B)|qBlsos /d2 |:_ ( 2 . )
’ 2s Sin(|qB|s)e B IR VP
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1
X /dZ:UL’Y-xl exp [_i <_45’qB’500t(\qB|5>x2l +p.$L>

—i(4m)?s? . P, o, 7
= sin(|¢B|s)e isien(aB)laBlsos Ly exp |is [ p? —
|gB|s cos?(|qB]s) I lgB|s cot(|gB|s)

Putting the pieces together leaves us with

o ds Cooloa o tan(lgBls) ,
9(p) =i | cos<|qB|s>eXp{ s [m Pt ms P

i sign sa B
y [e &n(qB)laB] 3(m+vpu)—ms<|qB|s>1'

By using

73 = cos B + io sin 6,

and Eq. (C.14), we can also write

i [y, tan(gBls)
G(p) = —i [~ ds exp{—w[m —pn+|qB|spiH (C.19)

x{[l — sign(q¢B)y172 tan(\qB\s)](m + 7 'p||) —7-pL [1 + tan? (]qB|s)] }
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APPENDIX

FLAVOR TRACE OF THE SECOND ORDER
TERM IN THE QUARK DETERMINANT
EXPANSION

In this Appendix we give a few details on the flavor trace of the second order
term in the quark determinant expansion. Both terms in Eq. (3.15) have the general form
KX KX, where K is a combination of the quark propagator matrix and some flavor
identity operator and A%, = 0,...,8, represents the Gell-Mann matrices. The important

feature of the operator K is its flavor structure,

K, 0 0
K=10 Kg4 0
0 0 K
Since the indices a, b can each take on the values 0, . . ., 8, we have 81 possible combinations

of the product K \*K \b. Fortunately, a lot of them have vanishing trace and we list below

only the nonzero results,

trp (KAKNY) = £ (K2 4+ K2+ K?),
trp (KA KA) = trp (KA KA°) = ;(KZ - K3),
trp(KAKN®) = trp (KAPKA®) = \f (K2 + K3 - 2K2),
tr e (KAlKAl) = trp (K)\QK)\Q) = 2K, K,

trp(KAKNY) = K2+ K,
trp (K)\3K)\8) = trp (K)\BK)\?’) = \}3 (Kg - Kg),
trp(KNEN) = trp (KN KN) = 2K, K,
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tr e (K)\6K>\6) = trp (K>\7K)\7) = 2K, K,
1
87-18) _ (2 2 2
trp(KASK ) = B(Ku + K3 +4K2).
Now consider the term with the scalar currents, trp (K N K )\b) 7%5°, where j¢ =
YA, 1h = (u,d, s)T and a sum over repeated indices is implicit. We can work only with

this term since the one with the pseudoscalar currents is completely analogous. Explicitly,

we have
trp (KA KA"250) = §(K5 + K3+ K2)(30)? + 2K, Ka (1) + (2] + (K2 + K2) (52)
VR [GA? o G27] + 2B [0 + D) + 5 (K2 + K + 482) (5

ooy 20t )it (1t 1 o) (1K)

Using the results below,

(j?)2 = g[(uu)z + (dd)2 + (55)° + 2(au) (dd) + 2(uu)(5s) + 2(dd)(ss)],

(j;)2 = (ud)® + (Ju)2 +2(ud)(du),

(72)" = —(ud)® - (du)” + 2(ud)(du),

()" = (@w)?* + (dd)” — 2(aw) (dd),

(71)° = (@s)* + (5u)* + 2(as)(3u),

(72)" = —(@s)* — (5w)* +2(us) (su).

(j§)2 = (73)2 + (5d)” + 2(ds) (5d),

(37)" = —(ds)” — (5d)* + 2(ds) (s4),

(j§)2 = ;{(uu)Q + (dd)2 +4(5s)” + 2(1w) (dd) — A(Tw)(5s) — 4(dd)(ss)],
o = z :(uu)2 — (dd)” + () (55) — (dd) (ss)},

Jsds = ? :(ﬂu)2 + (’d)2 — 2(55)” + 2(iw) (dd) — (iiu)(5s) — (dd) (53)},
38 = ;g :(ﬂu)Q — (dd)’ - 2(au)(ss) + 2(dd)(§s)},

we obtain, after some long and tedious but straightforward algebra,

trp (KA j250) = 4 [K2(au)? + K3(dd)? + K2(5s)? + 2K, Ky(tid)(du)
2K K (1) (5u) + 2K K (ds)(5d)]
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or simply,

trF(K)\aK)\bjs]s>_4 Z KK, ¢f¢g>(¢g¢f)

f.9=u,d,s

Taking K = S (p) for the term with the scalar currents, we have

trF{S(O)( ))\aS () }—4 Z Sf Séo)(p)(&fwg)(&g@bf)-

f,9=u,d,s

Similarly, for the term with the pseudoscalar currents we find

trp [ SO (p)ins A" SO (p)insAieit] =4 >0 S (p)ins S (p)ivs (Wrivsthy) (Yyinsidy)-

f.9=u,d,s
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