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Abstract: The long-distance and non-local parts of the form factors describing the single-photon-

mediated KS,L → π0γ∗ → π0ℓ+ℓ− (ℓ = e, µ) transitions in the standard model are addressed in QCD

regarding the limit where the number Nc of colours becomes infinite. It is shown that this provides a

suitable theoretical framework to study these decay modes and that it enables predicting the decay

rates for KS → π0ℓ+ℓ−. It also unambiguously predicts that the interference between the direct and

indirect CP-violating contributions to the decay rate for KL → π0ℓ+ℓ− is constructive.

Keywords: high-energy physics; kaon decays

1. Introduction

Rare kaon decays remain a very active domain of research, with quite interesting
perspectives for the future, as attested by several recent reports [1–8]. Since they are
mediated by neutral currents, these processes are naturally suppressed in the standard
model [9,10] and provide various ways to test the standard model’s flavour structure. The
fruitful completion of this research program requires a high level of precision regarding
both the experimental measurements and theoretical predictions. This goal is about to
be fulfilled on the theory side [5,11,12] in the case of the rare decay modes K → πνν̄,
which are dominated by short-distance contributions, and the prospects to improve on the
present experimental results [13,14] also appear to be quite promising [4,8]. Unfortunately,
the situation is in a less satisfactory state, at least from the theoretical point of view, in the
case of other rare kaon decay modes, whose amplitudes are instead dominated by a long-
distance and non-local component that is governed by the non-perturbative dynamics of
the strong interactions (QCD) at low energies.

In the present study, we wish to address this issue in the case of the decay modes of
neutral kaons KS and KL into a neutral pion and a pair of charged leptons. In the case
of the short-lived neutral kaon, we will consider the CP-conserving transition mediated
by the exchange of a single virtual photon, KS → π0γ∗ → π0ℓ+ℓ−, with ℓ = e, µ, and KS

being identified with the CP-even combination K0
1 of K0 and K0, i.e., using the convention

CP|K0⟩ = −|K0⟩,
|KS⟩ ≃ |K0

1⟩ =
|K0⟩ − |K0⟩√

2
. (1)

In the case of the long-lived kaon, defined as

|KL⟩ ≃ |K0
2⟩+ ϵ̄|K0

1⟩, |K0
2⟩ =

|K0⟩+ |K0⟩√
2

, (2)

the situation is reversed: while CP conservation requires the exchange of two virtual
photons, K0

2 → π0γ∗γ∗ → π0ℓ+ℓ−, the transition K0
2 → π0γ∗ → π0ℓ+ℓ− corresponds to a
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direct violation of CP [15]. It has been argued [16] and is usually admitted [17,18] that the
corresponding contribution to the amplitude is dominated by short distances and is thus
proportional, in the standard model, to Im λt > 0, with λt ≡ VtdV∗

ts being a product of CKM
matrix elements [19]. Finally, the amplitude for this process receives a third component
due to the CP violation in the mixing, which results from the non-vanishing parameter ϵ̄.
For the latter, we will take [15,20,21]

ϵ̄ ∼ 1 + i√
2
|ϵ|, |ϵ| = 2.228 · 10−3. (3)

The branching ratio thus takes the form [16–18,22]

Br(KL → π0
ℓ
+
ℓ
−) = 10−12

[

C
(ℓ)
mix + C

(ℓ)
int

Im λt

10−4
+ C

(ℓ)
dir

(

Im λt

10−4

)2

+ C
(ℓ)
γ∗γ∗

]

. (4)

The last term in this expression is the CP-conserving component. Phenomenological

estimates have found that it is small in the case of ℓ = e, C
(e)
γ∗γ∗ = O(10−2) [15,16,23]

and substantial in the case ℓ = µ, C
(µ)
γ∗γ∗ = 5.2(1.6) [17,18]. The first term in Equation (4)

provides the contribution from the indirect CP violation alone and can be expressed in
terms of experimental quantities [16], the lifetimes τ(KS,L) of the neutral kaons, and the
branching ratio for the CP-conserving transition KS → π0ℓ+ℓ−,

C
(ℓ)
mix = 1012|ϵ̄|2 τ(KS)

τ(KL)
Br(KS → π0

ℓ
+
ℓ
−). (5)

The third term in Equation (4) is the contribution from the direct CP violation, while
the second term provides the interference between the direct and indirect CP-violating
contributions. Their dependence with respect to λt is shown explicitly. The coefficient

C
(ℓ)
int is provided as a phase-space integral whose integrand involves the amplitude of

the decay KS → π0ℓ+ℓ−. A crucial issue is whether this interference is constructive or
destructive; from an experimental point of view, a constructive interference will be a
key feature in order to overcome the important irreducible background induced by the
KL → γγℓ+ℓ− decay [24] and thus provide access to an independent determination of
Im λt. This brief description of the decays KS,L → π0ℓ+ℓ− leaves us with a short list of
questions to be answered:

• Can one predict Br(KS → π0ℓ+ℓ−) (or even the decay distribution) in the standard model?
• Can the sign of Cint be predicted?
• Can one confirm that the long-distance component of the amplitude induced by the

direct CP-violating contribution K0
2 → π0γ∗ → π0ℓ+ℓ− indeed remains negligible

once the non-perturbative QCD effects are taken into account?

Answering these questions requires obtaining quantitative control of the non-perturbative
aspects of QCD at low energies, a notoriously difficult task. The purpose of this paper is
to show that this goal can be met in the limit where the number of colours Nc becomes
infinite [25,26], a limit that has often provided relevant insights into the physical case
Nc = 3. It turns out that in this large-Nc limit QCD leads to unambiguous positive answers
for all three of the questions listed above. In order to demonstrate this, it is necessary that
we first state more precisely how the large-Nc limit of QCD can be implemented in the case
at hand.

2. Theoretical Framework

Long-distance-dominated rare kaon decays are traditionally addressed within the
framework of the three-flavour low-energy expansion (ChPT) [27] extended to weak
decays [28–32]. The lowest-order (one loop in this case) expressions of the amplitudes
for K → πℓ+ℓ−, (K, π) = (K±, π±), (KS, π0) were obtained in Ref. [33] (see also [34]) and
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given in terms of form factors W+(s) and WS(s), where s denotes the square of the invari-
ant mass of the di-lepton pair. A ‘beyond-one-loop’ representation of these form factors,
accounting only for part of the pion loops at next-to-lowest order, was proposed in Ref. [22]
and reads

W+,S(s) = GF(M2
Ka+,S + b+,Ss) + Vππ

+,S(s). (6)

The neglected contributions from pion loops were shown to indeed be smallish in the whole
range of energies corresponding to the relevant kinematic region [35]. The counter-terms at
lowest and at next-to-lowest orders as well as the loops also involving kaons, i.e., from KK
intermediate states (already at one loop) or from Kπ intermediate states (starting at two
loops), corresponding to higher thresholds sufficiently far away from the decay region, are
described by a first-order polynomial in s. The expressions for the contributions Vππ

+ (s)
and Vππ

S (s) from the pion loops are provided in Ref. [22]. Focusing on KS → π0ℓ+ℓ−,
it turns out that Vππ

S (s) is suppressed since it proceeds through a ∆I = 3/2 transition
KS → π0π+π−. Predicting the decay distribution and decay rate therefore amounts,
in practice, to being able to predict the values of the two unknown parameters aS and bS.
Quantitative information about aS and bS is not provided by ChPT itself and needs to be
looked for in the non-perturbative regime of full QCD. This is where we can expect that the
limit of a large number of colours may become useful. Indeed, these two constants, or more
precisely the contributions from the counter-terms to them, are precisely what survives
from the amplitude (6) at leading order in the limit Nc → ∞ since

a+,S, b+,S ∼ O(Nc), Vππ
+,S(s) ∼ O(N0

c ). (7)

Obtaining the representation of the form factor WS(s) in the large-Nc limit of QCD should
therefore provide a good description of the amplitude in the decay region. In the remainder
of this paper, we will outline the main steps of this endeavour, relying partly on Ref. [36],
where a more detailed account will be provided, while here we merely discuss some
phenomenological consequences. Before proceeding, let us mention that a similar procedure
can be applied to the amplitude W+(s) as well, and we briefly comment on it before
concluding this study. A more detailed discussion of W+(s) in the large-Nc limit will be
provided in Ref. [36].

In the standard model, the structure of the amplitude AS of the decay KS(k) →
π0(p)ℓ+(p+)ℓ−(p−), with k − p = p+ + p− and s = (k − p)2, reads

AS = ASD;A

S − e2ū(pℓ−)γρv(pℓ+)(k + p)ρ × WS(s)

16π2M2
K

. (8)

Let us for the moment leave aside the short-distance part ASD;A

S and concentrate on the
form factor WS(s). It comprises another local short-distance part but also a long-distance-
dominated, non-local component,

WS(s) = W loc
S (s; ν) +Wnon-loc

S (s; ν). (9)

The latter is provided by

[

s(k + p)ρ − (M2
K − M2

π)(k − p)ρ

]

× Wnon-loc
S (s; ν)

16π2M2
K

= i
∫

d4x ⟨π0(p)|T{jρ(0)L|∆S|=1
non-lept(x)}|KS(k)⟩MS, (10)

where jρ denotes the three-flavour electromagnetic current,

jρ(x) =
2

3
(ūγρu)(x)− 1

3
[(d̄γρd)(x) + (s̄γρs)(x)], (11)
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and L|∆S|=1
non−lept is the order O(GF) effective Lagrangian for |∆S| = 1 weak non-leptonic

transitions below the charm-quark threshold,

L|∆S|=1
non−lept = − GF√

2
VusVud

6

∑
I=1

CI(ν)QI(ν) + H.c. (12)

The current–current four-quark operators Q1 and Q2 read (i and j are colour indices)

Q1 = (s̄iuj)V−A(ū
jdi)V−A, Q2 = (s̄iui)V−A(ū

jdj)V−A. (13)

The QCD-penguin operators Q3,4,5,6 are provided in, e.g., Ref. [37]. In this same reference,
the anomalous dimensions of these four-quark operators are also computed at next-to-
leading order, which enables evolving the Wilson coefficients CI(ν) from the electroweak

scale ν = MW , where they are computed to order O(αs), down to the low scale ν
>

∼1 GeV,
thus including, in a renormalisation-group-improved perturbative way, with resummation
of leading and next-to-leading logarithms, all contributions generated by the degrees of
freedom between MW and ν. For ν below 1 GeV, this perturbative treatment can no longer
be trusted, and the contributions from degrees of freedom below 1 GeV are then provided
by the non-perturbative matrix elements of the four-quark operators between hadronic
states. While ChPT provides the contributions of the light pseudoscalar mesons to these
matrix elements, it cannot account fully, that is otherwise than by largely unknown counter-
terms [33,34], for those of the hadronic resonances in the 1 GeV region. As we will see, this
is where the large-Nc limit steps in as an interesting alternative.

Notice that, although L|∆S|=1
non−lept does not depend on the separation scale ν, the decom-

position (9) does depend on it. This is a consequence of the fact that the definition of the
non-local part Wnon-loc

S of the form factor involves a time-ordered product that is singular at
short distances [35,38], for instance (square brackets indicate colour-singlet quark bilinears)

lim
x→0

T{jρ(x)Q1(0)} ∼ − Nc

18π4
[s̄γµ(1 − γ5)d](0)

(

δ
µ
ρ□− ∂ρ∂µ

) 1

(x2)2
+ · · · , (14)

where the ellipsis denotes subdominant corrections. This requires that the time-ordered
product in Equation (10) first be regularised (here, we have used dimensional regularisation)
and eventually renormalised, here in the MS scheme, as indicated by the subscript on the
right-hand side of Equation (10), leaving behind a dependence with respect to the associated
renormalisation scale ν in Wnon-loc

S (s; ν). In this renormalisation process, the divergent part
in the time-ordered product in Equation (10) has to be absorbed by a local counter-term.
The latter is provided by the Gilman–Wise operator Q7V [39,40]; for a complete description
of the form factor WS(s) in the standard model, one also needs to consider contributions
from

L|∆S|=1
lept (ν) = − GF√

2
VusVud[C7V(ν)Q7V + C7AQA] + H.c. (15)

involving two additional local four-fermion operators with a mixed quark×lepton content,

Q7V = (ℓ̄γµℓ)[s̄γµ(1 − γ5)d], Q7A = (ℓ̄γµγ5ℓ)[s̄γµ(1 − γ5)d]. (16)

These operators are both finite, and the scale dependence of the Wilson coefficient C7V(ν)
can be interpreted as resulting from the absorption by a ‘bare coupling’ Cbare

7V of the local
divergence of the time-ordered product in Equation (10). The scale dependence has to
cancel between the two contributions once they are added up to form the physical form
factor WS(s) in Equation (9). A general discussion of how this happens, at least at next-to-
leading order in perturbative QCD, can be found in Refs. [35,41], and it carries over to the
limit Nc → ∞ [36]. Finally, the operator Q7A and its Wilson coefficients C7A are defined at
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the electroweak scale and need not be renormalised in the standard model. This operator
provides the contribution ASD;A

S to the amplitude that was introduced in Equation (8),

ASD;A

S =
GF√

2
VudVusRe C7A × ū(pℓ−)γργ5v(pℓ+)× [(k + p)ρ f+(s) + (k − p)ρ f−(s)]. (17)

The form factors f±(s) are defined through (the minus sign is chosen such that the normali-
sation is f+(0) = 1 in the limit of mass-degenerate u, d and s quarks)

⟨π0(p)|[s̄γµd](0)|KS(k)⟩ = −[(k + p)µ f+(s) + (k − p)µ f−(s)]. (18)

Having properly defined the form factor WS(s) in terms of QCD matrix elements, we can
now proceed with the evaluation of the latter, in the limit Nc → ∞.

For the purpose of this study, we will concentrate on the contributions from the four-
quark operators Q1 and Q2. Indeed, from the results provided in Ref. [37], one infers that
the absolute values of the Wilson coefficients C3,4,5,6(ν) at ν = 1 GeV are smaller by at
least one order of magnitude than the ones of the current–current operators at the same
scale, so the contributions of the former can be neglected unless some of the corresponding
matrix elements are enhanced. A more complete analysis [42], including all six operators,
shows that this is not the case and that, in the large-Nc limit, the contribution from the
QCD-penguin operators to the form factor WS(s) is indeed marginal. Our task then
reduces to computing the leading contributions, of order O(Nc), to the matrix elements
⟨π0|T{jµ(x)Q1,2(0)}|KS⟩ when Nc becomes large. What makes this task possible is the
fact that, in this limit, the four-quark operators factorise into the product of two-quark
bilinears; gluon configurations that would break this factorisation are sub-leading in
the 1/Nc expansion. To keep things as simple as possible, we only show the expressions
obtained when the matrix γ5 is handled in the ’t Hooft–Veltman scheme [43,44]. Using naive
dimensional regularisation [45] leads to additional terms in some of the matrix elements [36],
to some extent compensated by the scheme dependence of the Wilson coefficients. For
operator Q1, one then obtains (from now on, all expressions, unless otherwise specified,
will be understood to hold in the large-Nc limit, and the presence of sub-leading terms in
the 1/Nc expansion will not be indicated explicitly)

⟨π0(p)|T{jρ(0)Q1(x)}|K0(k)⟩ =

= −2

3
⟨π0(p)|[s̄γνd](0)|K0(k)⟩ × ⟨0|T{[ūγρu](x)[ūγνu](0)}|0⟩

− 2

3
⟨0|[s̄γµγ5d](0)|K0(k)⟩ × ⟨π0(p)|T{[ūγρu](x)[ūγµ(1 − γ5)u](0)}|0⟩

+
1

3
⟨π0(p)|[ūγµγ5u](0)|0⟩ × ⟨0|T{[d̄γρd + s̄γρs](x)[s̄γµ(1 − γ5)d](0)}|K0(k)⟩. (19)

The correlator appearing in the first term on the right-hand side of this expression, of the
vacuum-polarization type, is divergent. This divergence reflects the short-distance singu-
larity of time-ordered product (14) and has to be subtracted in the MS scheme, as explained
previously. One also immediately notices that Q2 cannot contribute to WS(s) in the large-Nc

limit. The reason for this is easy to understand: as can be seen from Equation (13), the oper-
ator Q2 factorises into the product of two colour-singlet charged currents, [s̄γµ(1 − γ5)u]
and [ūγµ(1 − γ5)d], and it is not possible to construct non-vanishing matrix elements
for these currents with only a neutral pion and a neutral kaon at disposal. After having
used invariance under parity, charge conjugation, isospin symmetry, and applied Ward
identities [36], the matrix element of the operator Q1 in the large-Nc limit can be expressed
in terms of the pion and kaon decay constants Fπ and FK, respectively, together with

(i) the properly renormalised vacuum-polarisation correlation function

i
∫

d4x eiq·x⟨0|T{[ūγµu](x)[ūγνu](0)}|0⟩MS = (qµqν − q2ηµν)ΠMS(q
2; ν); (20)
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(ii) the form factor f+(s) already defined in Equation (18);
(iii) the two vertex functions

Γρ(q, k) = i
∫

d4x eiq·x⟨0|T{[d̄γρd](x)[s̄iγ5d](0)}|K0(k)⟩,
(21)

Γ̃ρ(q, k) = i
∫

d4x eiq·x⟨0|T{[s̄γρs](x)[s̄iγ5d](0)}|K0(k)⟩.

These vertex functions each have a kaon pole at (q − k)2 = M2
K, whose residues in-

volve kaon form factors FK0

d (q2) and FK0

s (q2), defined through the two matrix elements

⟨K0|d̄γρd|K0⟩ and ⟨K0|s̄γρs|K0⟩, respectively, with normalisations chosen such that FK0

d (0)

= −FK0

s (0) = 1. Combined with the Ward identities these vertex functions satisfy, this
leads to the convenient representations (ms stands for the mass of the strange quark, while
m̂ denotes the common mass of the up and down quarks in the isospin limit)

(ms + m̂)Γρ(q, k) =
√

2FK M2
K

(2k − q)ρ

(q − k)2 − M2
K

FK0

d (q2)

+
√

2FK M2
K

FK0

d (q2)− 1

q2
qρ

+
√

2[q2kρ − (q · k)qρ]P(q2, (q − k)2),

(22)

(ms + m̂)Γ̃ρ(q, k) =
√

2FK M2
K

(2k − q)ρ

(q − k)2 − M2
K

FK0

s (q2)

+
√

2FK M2
K

FK0

s (q2) + 1

q2
qρ

+
√

2[q2kρ − (q · k)qρ]P̃(q2, (q − k)2).

Putting everything together, the expression of the form factor WS(s) at leading-order in the
1/Nc expansion reads

WS(s)

16π2 M2
K

= − GF√
2

VusVud

{

f+(s)

[

2

3
C1ΠMS(s; ν) +

ReC7V(ν)

4πα

]

+
2

3
C1

[

Fπ FK M2
K

M2
K − M2

π

FK0

d (s) + FK0

s (s)

s
− Fπ

2
P(s, M2

π)−
Fπ

2
P̃(s, M2

π)

]}

. (23)

It can be shown that, in the large-Nc limit, this last expression does not depend

on ν [36]. Moreover, the three form factors f+(q2), FK0

d (q2), FK0

s (q2) and the vacuum-
polarisation function ΠMS(s; ν) consist of an infinite number of poles due to zero-width
mesonic resonances [25,26]. The three form factors behave in QCD like ∼ 1/q2 for large
space-like values of q2. Due to this smooth asymptotic behaviour, it is justified to retain
only the lowest-lying resonance in each case [46], i.e., K∗(892) for f+, ρ(770)/ω(782) for

FK0

d , and ϕ(1020) for FK0

s , i.e., (we take Mω = Mρ),

f+(q
2) =

M2
K∗

M2
K∗ − q2

, FK0

s (q2) =
M2

ϕ

q2 − M2
ϕ

, FK0

d (q2) =
M2

ρ

M2
ρ − q2

. (24)

On the other hand, the function ΠMS(q2; ν) behaves as ∼ ln(−q2/ν2) when q2 → −∞.
Clearly, such logarithmic behaviour cannot be reproduced by a single resonance pole,
and not even by a finite number of such poles, so a representation in terms of an infinite
number of JPC = 1−− states cannot be avoided [26]. Fortunately, such representations have
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been discussed and constructed in the literature; see for instance Ref. [41] and the articles
quoted therein. We will adopt the expression

ΠMS(q
2; ν) =

f 2
ρ M2

ρ

M2
ρ − q2

+
9 f 2

ω M2
ω

M2
ω − q2

+
Nc

12π2

{

− ln(M2/ν)

+
5

3
− ψ

(

3 − q2

M2

)}

, (25)

where ψ denotes the di-gamma function, and we have not shown O(αsNc) corrections,
which are known and included in the numerical analysis. The poles (in the large-Nc limit)
due to the ρ and ω states have been shown explicitly. The couplings f 2

ρ,ω can be determined

from the experimental decay widths Γ(ρ, ω → e+e−). For q2 < 0, ψ(3− q2/M2) is a smooth
function, which has logarithmic asymptotic behaviour when q2 → −∞,

ψ

(

3 − q2

M2

)

∼ ln(−q2/M2)− 5

2

M2

q2
+O(M4/q4) (26)

thus reproducing the leading perturbative expression of ΠMS(q2; ν). For q2 > 0, the di-
gamma function sums a series of equidistant poles located at the values q2 = M2

n ≡
(n + 2)M2,

ψ

(

3 − q2

M2

)

= −γE +
3

2
+ ∑

n≥1

1

n + 2

q2

q2 − M2
n

, (27)

where γE is the Euler constant. We still need to fix the value of the mass scale M. This
can be accomplished upon using the following constraint on the Adler function A(q2) ≡
−q2(∂Π(q2)/∂q2); for large Euclidian values of momentum q, the behaviour of A(q2) in
QCD cannot display a term ∼ 1/q2 in the chiral limit [46]. Neglecting O(αsNc) corrections,
this condition requires (we have taken fω Mω ∼ fρ Mρ/3, as required in the combined
large-Nc and isospin limits and as also reproduced by data)

M2 =
16π2

5

3

Nc
f 2
ρ M2

ρ. (28)

For Nc = 3 and fρ Mρ ∼ 154 MeV, this yields M ∼ 0.87 GeV and M1 ∼ 1.5 GeV, which are
quite reasonable values, the last one being comparable to the mass of the ρ(1450), the first
JPC = 1−− resonance after the ρ(770) [21].

It remains to discuss the functions P(q2, (q − k)2) and P̃(q2, (q − k)2). These two
functions account for the poles produced by zero-width radial excitations of the kaon,
i.e., K′, K′′,. . . . The first of these states can, for instance, be identified with the K(1460)
resonance in the real world where Nc = 3. Two important observations concerning them
can be made and exploited [42]. First, the behaviour of Γρ(q, k) and Γ̃ρ(q, k) at large
space-like values of q2, as determined by the operator-product expansion, shows that
the leading short-distance term is saturated by the contribution due to their longitudinal
parts, i.e., the kaon poles. Therefore, the functions P(q2, (q − k)2) and P̃(q2, (q − k)2)
provide only subdominant contributions at short distances. Second, the poles due to
the radial excitations of the kaon will come with the factors of the kaon poles replaced by
FK′ M2

K′/[((q− k)2 − M2
K′ ], where FK′ is the decay constant of the radial excitation K′ of mass

MK′ . Since these states do not become Goldstone bosons in the chiral limit, FK′ must vanish
linearly with vanishing quark masses. Indeed, estimates based on QCD sum rules [47–49]
provide values much smaller than the kaon decay constant FK for the first of these radial
excitations, e.g., FK′ = 21.4(2.8) MeV [48,49], and an even smaller value for the second
radial excitation. In addition, the factor M2

K′ in the residue of the pole is cancelled by the
denominator when one eventually takes q = k − p, so FK′ M2

K′/[((q − k)2 − M2
K′ ] becomes

∼ −FK′ . Barring any large enhancement due to the electromagnetic transition form factors

FK0K′
u,s (q2) that replace FK0

u,s (q
2), this indicates that the contributions of P(q2, (q − k)2) and
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P̃(q2, (q − k)2) are highly suppressed as compared to the contributions from the kaon poles,
which leads us to make the approximations P(q2, (q − k)2) ≃ 0, P̃(q2, (q − k)2) ≃ 0.

3. Phenomenological Consequences

We now have all the elements at our disposal in order to answer the three questions
listed at the beginning of this paper. We use the values of the Wilson coefficients at the
scale ν = 1 GeV provided in Ref. [37], and the values of the remaining quantities are taken
from Ref. [21]. The values shown below result from the average of those obtained with the
’t Hooft–Veltman scheme and with the naive dimensional regularisation scheme.

• The predictions for the branching ratios read

Br(KS → π0e+e−)|mee>165 MeV = 2.9(1.0) · 10−9

Br(KS → π0e+e−) = 5.1(1.7) · 10−9,

Br(KS → π0µ+µ−) = 1.3(0.4) · 10−9, (29)

where a conservative relative uncertainty of O(1/Nc) ∼ 30%, accounting for sub-leading
effects in the 1/Nc expansion, has been applied with Nc = 3. The first value agrees well
with the measurement in the NA48/1 experiment [50] (the first error comes from statistics
and the second from systematics)

Br(KS → π0e+e−)|mee>165 MeV = (3.0+1.5
−1.2 ± 0.2) · 10−9. (30)

When extrapolated to the full range of the di-lepton invariant mass mee with a form factor
equal to unity (i.e., with aS = 1, bS = 0, and no pion loop), the total branching fraction
is quoted as Br(KS → π0e+e−) = (5.8+2.8

−2.3 ± 0.8) · 10−9 [50], which also agrees rather well
with the value in Equation (29). The agreement is less optimal in the case of the decay into a
muon pair, where the experimental value obtained by the NA48/1 collaboration is provided
as [51] Br(KS → π0µ+µ−) = (2.9+1.5

−1.2(stat) ± 0.2(syst)) · 10−9, but the uncertainties are

still large. Finally, we also mention that, within the range s ∈ [0, M2
K], which covers the

phase space of the KS,L → π0ℓ+ℓ− decays, the form factor (23) is well described by the
quadratic polynomial

WS(s) ∼ GF[0.92M2
K + 0.64s + 0.39s2/M2

K]. (31)

• The function WS(s) being positive, cf. Equation (31), the coefficients C
(ℓ)
int in Equation (4)

are also positive. Numerically, we obtain

C
(e)
int = +7.8(2.6)

y7V

α
, C

(µ)
int = +1.9(0.6)

y7V

α
, (32)

where we have written (y7V is positive [37])

VudVusIm C7V(ν = 1 GeV) = −(Im λt)y7V . (33)

The interference between direct and indirect CP violation in the branching ratio for
KL → π0ℓ+ℓ− is therefore unambiguously predicted to be constructive in the large-Nc

limit of QCD.
• The amplitude of the CP-violating transition K0

2 → π0γ∗ → π0ℓ+ℓ− has the same
structure as provided in Equation (8), provided one makes the replacements C1 → 0,
Re C7X → iIm C7X, X = V, A, in Equations (17) and (23). In addition, as already
mentioned, the matrix elements of the QCD penguin operators show no particular
enhancement as compared to the matrix element of Q1 [42], while the imaginary
parts of their Wilson coefficients at the scale ν = 1 GeV are about one order of
magnitude smaller (in absolute value) than |Im C7X |/α at the same scale [37]. The
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approximation consisting of keeping only the contribution from the Gilman–Wise
operators is therefore also supported by the large-Nc limit of QCD.

Before concluding, let us briefly discuss the case of W+(s) in the context of the large-Nc

limit. The main difference with WS(s) lies in the fact that now operator Q2 will contribute.
Actually, the contribution of operator Q1 to W+(s) is now limited to the term proportional
to ΠMS(s; ν) in Equation (23), whereas expressions similar to the remaining terms in this
equation will instead be produced by Q2. Since C1(ν) ≃ −C2(ν)/2 at ν ≃ 1 GeV, this leads
to an almost complete numerical cancellation between the two contributions [36], leaving
only the small contributions from the QCD penguin operators as a remainder. The almost
vanishing values of a+ and b+ predicted by the large-Nc limit thus do not at all account
for the measured values [52], and sub-leading terms in the 1/Nc expansion must become
important in this case. This is quite in line with the result of Ref. [35], where a crude
unsubtracted dispersive evaluation of the contribution from two-pion states to W+(s),
suppressed in the large-Nc limit but this time enhanced by the ∆I = 1/2 rule, produced
values of a+ and b+ already reasonably close to the experimental ones.

4. Summary and Conclusions

To summarise, we have outlined the computation of the amplitudes for the kaon
decay modes, KS,L → π0γ∗ → π0ℓ+ℓ−, in the large-Nc limit of QCD. We have shown
that this framework is predictive as it enables answering a few questions of phenomeno-
logical relevance for the possibility to experimentally probe the standard model’s flavour
structure at short distances. A more detailed account of the calculations and further im-
plications will be provided in Ref. [36]. For completeness, let us also mention that the
proposal [38,53,54] to investigate the K → πℓ+ℓ− decay modes in the framework of lattice
QCD is being actively pursued by the RBC and UKQCD collaborations. A first result for
W+(s) at s/M2

K = 0.013(2) with physical values of the pion and kaon masses was pub-
lished recently [55]. It corresponds to only a single lattice spacing and still shows quite
large uncertainties due to the difficulty in extracting the signal from the statistical noise.
Substantial improvements are, however, expected during the next decade for this and for
other rare kaon decay modes [3,6]. In the meantime, the quest for a better theoretical and
phenomenological understanding of rare kaon decay modes is certainly worth pursuing
as well. The large-Nc limit may shed light on other processes than the ones studied here
and bring to the fore interesting dynamical aspects and/or quantitative information. Of
course, cancellations can also occur in other amplitudes than the one for K± → π±ℓ+ℓ−,
but a case-by-case study is probably required to eventually reveal which observables are
actually affected.
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