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Abstract: The long-distance and non-local parts of the form factors describing the single-photon-
mediated Kg; — Oy — 7t (L =e, ) transitions in the standard model are addressed in QCD
regarding the limit where the number N, of colours becomes infinite. It is shown that this provides a
suitable theoretical framework to study these decay modes and that it enables predicting the decay
rates for Kg — 719¢* ¢~ It also unambiguously predicts that the interference between the direct and
indirect CP-violating contributions to the decay rate for K; — 7%¢* ¢~ is constructive.

Keywords: high-energy physics; kaon decays

1. Introduction

Rare kaon decays remain a very active domain of research, with quite interesting
perspectives for the future, as attested by several recent reports [1-8]. Since they are
mediated by neutral currents, these processes are naturally suppressed in the standard
model [9,10] and provide various ways to test the standard model’s flavour structure. The
fruitful completion of this research program requires a high level of precision regarding
both the experimental measurements and theoretical predictions. This goal is about to
be fulfilled on the theory side [5,11,12] in the case of the rare decay modes K — mv7,
which are dominated by short-distance contributions, and the prospects to improve on the
present experimental results [13,14] also appear to be quite promising [4,8]. Unfortunately,
the situation is in a less satisfactory state, at least from the theoretical point of view, in the
case of other rare kaon decay modes, whose amplitudes are instead dominated by a long-
distance and non-local component that is governed by the non-perturbative dynamics of
the strong interactions (QCD) at low energies.

In the present study, we wish to address this issue in the case of the decay modes of
neutral kaons Kg and Kj into a neutral pion and a pair of charged leptons. In the case
of the short-lived neutral kaon, we will consider the CP-conserving transition mediated
by the exchange of a single virtual photon, Ks — 7%* — 7%¢*¢~, with ¢ = e, 1, and K
being identified with the CP-even combination Kg’ of KYand K, i.e., using the convention
CP|K?) = —[K?),

KO o KO
Ks) = i) = FEL L, (1)
In the case of the long-lived kaon, defined as
i} K% + |K°
Ke) = K9) +&lK9), Ky = KK @

V2

the situation is reversed: while CP conservation requires the exchange of two virtual
photons, K — 7%y *y* — 701 ¢, the transition KJ — 71%9* — 7% ¢~ corresponds to a
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direct violation of CP [15]. It has been argued [16] and is usually admitted [17,18] that the
corresponding contribution to the amplitude is dominated by short distances and is thus
proportional, in the standard model, to Im A; > 0, with A; = V};V} being a product of CKM
matrix elements [19]. Finally, the amplitude for this process receives a third component
due to the CP violation in the mixing, which results from the non-vanishing parameter €.
For the latter, we will take [15,20,21]

c 1+i
V2

The branching ratio thus takes the form [16-18,22]

le|, |e] =2.228-1073. 3)

_ _ ¢ o Im Ay o (Im A\ ¢
Br(K, — 00 ) =102l + A o) (1) +cg,),,*]. @

The last term in this expression is the CP-conserving component. Phenomenological
estimates have found that it is small in the case of { = ¢, CEYE*)V* = 0(107?) [15,16,23]

and substantial in the case ¢ = p, Cﬂ(f,f)v* = 5.2(1.6) [17,18]. The first term in Equation (4)
provides the contribution from the indirect CP violation alone and can be expressed in
terms of experimental quantities [16], the lifetimes 7(Kg ) of the neutral kaons, and the

branching ratio for the CP-conserving transition Kg — ¢+ ¢~
Ks)
= 102eP TS gy (kg s 000y, 5
e T 7Bk ) ®
The third term in Equation (4) is the contribution from the direct CP violation, while

the second term provides the interference between the direct and indirect CP-violating
contributions. Their dependence with respect to A; is shown explicitly. The coefficient

)

mix

Cl(rft) is provided as a phase-space integral whose integrand involves the amplitude of
the decay Kg — 700t ¢~. A crucial issue is whether this interference is constructive or
destructive; from an experimental point of view, a constructive interference will be a
key feature in order to overcome the important irreducible background induced by the
Ky — yy0T¢~ decay [24] and thus provide access to an independent determination of
Im A;. This brief description of the decays Kg; — 00+ ¢~ leaves us with a short list of

questions to be answered:

*  Canone predict Br(Ks — 700*¢7) (or even the decay distribution) in the standard model?

*  Can the sign of Cit be predicted?

*  Can one confirm that the long-distance component of the amplitude induced by the
direct CP-violating contribution K3 — 7%y* — 7%/ ¢~ indeed remains negligible
once the non-perturbative QCD effects are taken into account?

Answering these questions requires obtaining quantitative control of the non-perturbative
aspects of QCD at low energies, a notoriously difficult task. The purpose of this paper is
to show that this goal can be met in the limit where the number of colours N, becomes
infinite [25,26], a limit that has often provided relevant insights into the physical case
N, = 3. It turns out that in this large-N, limit QCD leads to unambiguous positive answers
for all three of the questions listed above. In order to demonstrate this, it is necessary that
we first state more precisely how the large-N, limit of QCD can be implemented in the case
at hand.

2. Theoretical Framework

Long-distance-dominated rare kaon decays are traditionally addressed within the
framework of the three-flavour low-energy expansion (ChPT) [27] extended to weak
decays [28-32]. The lowest-order (one loop in this case) expressions of the amplitudes
for K — (=, (K, ) = (K*, %), (Ks, 1°) were obtained in Ref. [33] (see also [34]) and
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given in terms of form factors W, (s) and Ws(s), where s denotes the square of the invari-
ant mass of the di-lepton pair. A ‘beyond-one-loop’ representation of these form factors,
accounting only for part of the pion loops at next-to-lowest order, was proposed in Ref. [22]
and reads

W, 5(s) = GE(Mgay s + by ss) + V(). (6)

The neglected contributions from pion loops were shown to indeed be smallish in the whole
range of energies corresponding to the relevant kinematic region [35]. The counter-terms at
lowest and at next-to-lowest orders as well as the loops also involving kaons, i.e., from KK
intermediate states (already at one loop) or from K7 intermediate states (starting at two
loops), corresponding to higher thresholds sufficiently far away from the decay region, are
described by a first-order polynomial in s. The expressions for the contributions V77 (s)
and VI (s) from the pion loops are provided in Ref. [22]. Focusing on Kg — 7%¢*¢~,
it turns out that VI (s) is suppressed since it proceeds through a AI = 3/2 transition
Ks — n’ntr~. Predicting the decay distribution and decay rate therefore amounts,
in practice, to being able to predict the values of the two unknown parameters ag and bg.
Quantitative information about as and bg is not provided by ChPT itself and needs to be
looked for in the non-perturbative regime of full QCD. This is where we can expect that the
limit of a large number of colours may become useful. Indeed, these two constants, or more
precisely the contributions from the counter-terms to them, are precisely what survives
from the amplitude (6) at leading order in the limit N, — co since

ays,bys~O(N), VIE(s) ~ O(N). (7)

Obtaining the representation of the form factor Ws(s) in the large-N, limit of QCD should
therefore provide a good description of the amplitude in the decay region. In the remainder
of this paper, we will outline the main steps of this endeavour, relying partly on Ref. [36],
where a more detailed account will be provided, while here we merely discuss some
phenomenological consequences. Before proceeding, let us mention that a similar procedure
can be applied to the amplitude W, (s) as well, and we briefly comment on it before
concluding this study. A more detailed discussion of YW, (s) in the large-N, limit will be
provided in Ref. [36].

In the standard model, the structure of the amplitude Ag of the decay Kg(k) —
0 (p) et (p ) (p-), withk —p = p1 + p— and s = (k — p)?, reads

Ws(s)

As = AS = Ealp v (peo) (4 ) X 750

®)

Let us for the moment leave aside the short-distance part .A3™* and concentrate on the
form factor Ws(s). It comprises another local short-distance part but also a long-distance-
dominated, non-local component,

Ws(s) = WE<(s;v) + WEoc (5;v), 9)
The latter is provided by
ynon-loc (S' 1/)
2 2 S 4
{S(k +p)p = (Mg — M7) (k — P)p} “TlemME
= i [ (70 () [T (0) Ll (5) HKs () s, (10)

where j, denotes the three-flazvour electromagnetic current,
jolx) = 5 () () = 3[(drpd) () + (575 ()], ay
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and ELAOil_:épt is the order O(Gg) effective Lagrangian for [AS| = 1 weak non-leptonic

transitions below the charm-quark threshold,

6
AS|=1 G
L:I‘wn'flept = _7%Vusvud ; Cr (V) Qr (U) + H.c. (12)

The current—current four-quark operators Q1 and O, read (i and j are colour indices)

Q1 = (S'uj)y_a(@d;)y_a, Q2 = (S'u;)y_a(Wd;j)y_a. (13)

The QCD-penguin operators Q3 45 are provided in, e.g., Ref. [37]. In this same reference,
the anomalous dimensions of these four-quark operators are also computed at next-to-
leading order, which enables evolving the Wilson coefficients C;(v) from the electroweak

scale v = My, where they are computed to order O(as), down to the low scale v.1 GeV,
thus including, in a renormalisation-group-improved perturbative way, with resummation
of leading and next-to-leading logarithms, all contributions generated by the degrees of
freedom between My, and v. For v below 1 GeV, this perturbative treatment can no longer
be trusted, and the contributions from degrees of freedom below 1 GeV are then provided
by the non-perturbative matrix elements of the four-quark operators between hadronic
states. While ChPT provides the contributions of the light pseudoscalar mesons to these
matrix elements, it cannot account fully, that is otherwise than by largely unknown counter-
terms [33,34], for those of the hadronic resonances in the 1 GeV region. As we will see, this
is where the large-N; limit steps in as an interesting alternative.

. |AS|=1

Notice that, although £ " ot
position (9) does depend on it. This is a consequence of the fact that the definition of the
non-local part W2°"I¢ of the form factor involves a time-ordered product that is singular at

short distances [35,38], for instance (square brackets indicate colour-singlet quark bilinears)

does not depend on the separation scale v, the decom-

limy Ty (1)01(0)) ~ g 55 (1 = 1901 0) (0= 0,2 gy +---, (19
where the ellipsis denotes subdominant corrections. This requires that the time-ordered
product in Equation (10) first be regularised (here, we have used dimensional regularisation)
and eventually renormalised, here in the MS scheme, as indicated by the subscript on the
right-hand side of Equation (10), leaving behind a dependence with respect to the associated
renormalisation scale v in WE°™1°¢(s;v). In this renormalisation process, the divergent part
in the time-ordered product in Equation (10) has to be absorbed by a local counter-term.
The latter is provided by the Gilman-Wise operator Qyy [39,40]; for a complete description
of the form factor Ws(s) in the standard model, one also needs to consider contributions

from
_Gr

V2

involving two additional local four-fermion operators with a mixed quark xlepton content,

Qv = (Uyul) 57" (1 —y5)d],  Qza = (Lyuyst)[57" (1 — vs)d]. (16)

218811y =

lept VisVia [C7V (V)Q7V + C7AQA} +H.c. (15)

These operators are both finite, and the scale dependence of the Wilson coefficient C;y (v)
can be interpreted as resulting from the absorption by a ‘bare coupling’ C53 of the local
divergence of the time-ordered product in Equation (10). The scale dependence has to
cancel between the two contributions once they are added up to form the physical form
factor Ws(s) in Equation (9). A general discussion of how this happens, at least at next-to-
leading order in perturbative QCD, can be found in Refs. [35,41], and it carries over to the
limit N, — oo [36]. Finally, the operator Q74 and its Wilson coefficients C;4 are defined at
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the electroweak scale and need not be renormalised in the standard model. This operator
provides the contribution A3 to the amplitude that was introduced in Equation (8),

A = ZEV,VasRe Cra x 8lpe Yo 15v (pes) X [(k+ p)P£1(9) + (k= p)Pf-(5)). (17)

The form factors f+ (s) are defined through (the minus sign is chosen such that the normali-
sation is f{(0) = 1 in the limit of mass-degenerate u, d and s quarks)

(7 (p)|[57ud) (0)|Ks (R)) = —~[(k + p)pufs(s) + (k= p)uf-(s)]. (18)

Having properly defined the form factor Ws(s) in terms of QCD matrix elements, we can
now proceed with the evaluation of the latter, in the limit N, — oo.

For the purpose of this study, we will concentrate on the contributions from the four-
quark operators Q7 and Q». Indeed, from the results provided in Ref. [37], one infers that
the absolute values of the Wilson coefficients C3456(v) at v = 1 GeV are smaller by at
least one order of magnitude than the ones of the current-current operators at the same
scale, so the contributions of the former can be neglected unless some of the corresponding
matrix elements are enhanced. A more complete analysis [42], including all six operators,
shows that this is not the case and that, in the large-N; limit, the contribution from the
QCD-penguin operators to the form factor Ws(s) is indeed marginal. Our task then
reduces to computing the leading contributions, of order O(N), to the matrix elements
(| T{ju(x)Q1,2(0)}|Ks) when N becomes large. What makes this task possible is the
fact that, in this limit, the four-quark operators factorise into the product of two-quark
bilinears; gluon configurations that would break this factorisation are sub-leading in
the 1/ N, expansion. To keep things as simple as possible, we only show the expressions
obtained when the matrix <5 is handled in the 't Hooft-Veltman scheme [43,44]. Using naive
dimensional regularisation [45] leads to additional terms in some of the matrix elements [36],
to some extent compensated by the scheme dependence of the Wilson coefficients. For
operator 1, one then obtains (from now on, all expressions, unless otherwise specified,
will be understood to hold in the large- N, limit, and the presence of sub-leading terms in
the 1/ N, expansion will not be indicated explicitly)

(T (p) | T{jp(0)Qu(x) }[K (k) =
= —§<7TO(P)|[§%d](0)\1<0(k)> x (O T{[@ypu] (x) [ayyu](0) }|0)
- §<0|[§7y')’5d] (0)|K°(k)) x (7 (p) | T{[@ypu) (x) [@y" (1 — 75)u](0) }|0)
+ %<7TO(P) |[@y,v5u] (0)[0) x (O|T{[dypd + 57,s] (x) [57" (1 — 75)d] (0) }| K° (k). (19)

The correlator appearing in the first term on the right-hand side of this expression, of the
vacuum-polarization type, is divergent. This divergence reflects the short-distance singu-
larity of time-ordered product (14) and has to be subtracted in the MS scheme, as explained
previously. One also immediately notices that Q» cannot contribute to Ws(s) in the large-N,
limit. The reason for this is easy to understand: as can be seen from Equation (13), the oper-
ator Q, factorises into the product of two colour-singlet charged currents, [57, (1 — v5)u]
and [iy"(1 — 75)d], and it is not possible to construct non-vanishing matrix elements
for these currents with only a neutral pion and a neutral kaon at disposal. After having
used invariance under parity, charge conjugation, isospin symmetry, and applied Ward
identities [36], the matrix element of the operator Q; in the large-N, limit can be expressed
in terms of the pion and kaon decay constants F,; and F, respectively, together with

(i) the properly renormalised vacuum-polarisation correlation function

i/d4x€iq'x<0|T{[ﬂwu](X)[ﬁ%u] (0)}0)ws = (quv — * 1) s (45 v); (20)
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(i) the form factor f; (s) already defined in Equation (18);
(iii) the two vertex functions
Tplg k) = i [ dbx e (O[T {[dypd) () s} 0) K (K)),
(21)

Fpa k) = i [ dxe (0] T{[57,5])(x) 507 (0)HKO (k).

2 = MIZ<, whose residues in-

These vertex functions each have a kaon pole at (g — k)
volve kaon form factors F fo (%) and FX°(4%), defined through the two matrix elements
(K°|dy,d|K°) and (K°|57,5|K?), respectively, with normalisations chosen such that Flfo (0)
= —FSKO (0) = 1. Combined with the Ward identities these vertex functions satisfy, this
leads to the convenient representations (1, stands for the mass of the strange quark, while
11t denotes the common mass of the up and down quarks in the isospin limit)

. (2k — q) 0
(ms +1i)Tp(q,k) = ﬁFKMime ()
FK(g2) — 1
V2R MR M) T (22> 9

+V2[5%ky = (9-k)gp) P (47, (9 — K)),
(22)

(g + )T (9,) = ﬁ&MﬁMPE%qZ)

FK°(g2) +1
+V2RME ) (ZZH "
+V2[q%k, — (7 K)gp] P (4% (7 — k)).

Putting everything together, the expression of the form factor Ws(s) at leading-order in the
1/ N, expansion reads

Ws (S) o Gr 2 ) ReCyy (1/)
lerMZ eV fr(o) |3CMs(s;v) + —,~ =
0 0
2 [ FxFxM% FN(s)+FEX(s)  Fy . Fra )
+§C1 [M% — M% s - 77’(5, Mz) — 77’(5, MZ)| 5. (23)

It can be shown that, in the large-N, limit, this last expression does not depend
on v [36]. Moreover, the three form factors f (g2), Ffo (7%), FSKO(qz) and the vacuum-
polarisation function I'l(s; v) consist of an infinite number of poles due to zero-width
mesonic resonances [25,26]. The three form factors behave in QCD like ~ 1/ qz for large
space-like values of g2. Due to this smooth asymptotic behaviour, it is justified to retain
only the lowest-lying resonance in each case [46], i.e., K*(892) for f., p(770)/w(782) for
F;O, and ¢(1020) for FSKO, ie., (wetake My, = M),

M2, 0 M?) 0 M
fr(@?) = N, ) = 55— () = ot (24)
Mg, —q?" °° 9? — M; M3 — g2
On the other hand, the function ITgs(q% v) behaves as ~ In(—4?/v?) when ¢ — —oo.
Clearly, such logarithmic behaviour cannot be reproduced by a single resonance pole,
and not even by a finite number of such poles, so a representation in terms of an infinite

number of JP’¢ = 17~ states cannot be avoided [26]. Fortunately, such representations have
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been discussed and constructed in the literature; see for instance Ref. [41] and the articles
quoted therein. We will adopt the expression

fZM2 9f2M2 N, )
M2 po Mﬁ,—q2+12 2{—ln(M /v)

5 2
£

where ¢ denotes the di-gamma function, and we have not shown O(a;N,) corrections,
which are known and included in the numerical analysis. The poles (in the large-N, limit)
due to the p and w states have been shown explicitly. The couplings fpzw can be determined
from the experimental decay widths T'(o,w — e*e™). For g> < 0,4(3 — ¢*/ M?) is a smooth
function, which has logarithmic asymptotic behaviour when g* — —co,

HMS(CI V) =

2 2

q 202y _ 2 M 4,4

thus reproducing the leading perturbative expression of Ilys(¢%v). For g> > 0, the di-
gamma function sums a series of equidistant poles located at the values ¢> = M2 =

(n+2)M?,
2

2
N R q

where ¢ is the Euler constant. We still need to fix the value of the mass scale M. This
can be accomplished upon using the following constraint on the Adler function A(g?) =
—q*(3T1(g?)/3q?); for large Euclidian values of momentum g, the behaviour of .A(4?) in
QCD cannot display a term ~ 1/4? in the chiral limit [46]. Neglecting O (asN,) corrections,
this condition requires (we have taken f, My ~ fyM,/3, as required in the combined
large-N; and isospin limits and as also reproduced by data)

16772 3

2
M_5N

foMp. (28)
For N. = 3 and f,M, ~ 154 MeV, this yields M ~ 0.87 GeV and M; ~ 1.5 GeV, which are
quite reasonable values, the last one being comparable to the mass of the p(1450), the first
JP€ = 17~ resonance after the p(770) [21].

It remains to discuss the functions P (g2, (g — k)?) and P (4%, (g — k)?). These two
functions account for the poles produced by zero-width radial excitations of the kaon,
i.e., K/, K”,.... The first of these states can, for instance, be identified with the K(1460)
resonance in the real world where N; = 3. Two important observations concerning them
can be made and exploited [42]. First, the behaviour of Ty(g,k) and T'(q, k) at large
space-like values of 4%, as determined by the operator-product expansion, shows that
the leading short-distance term is saturated by the contribution due to their longitudinal
parts, i.e., the kaon poles. Therefore, the functions P(q?, (g — k)?) and P(4?, (g — k)?)
provide only subdominant contributions at short distances. Second, the poles due to
the radial excitations of the kaon will come with the factors of the kaon poles replaced by
FieM2,/[((q — k)*> — MZ%,], where Fy is the decay constant of the radial excitation K’ of mass
My Since these states do not become Goldstone bosons in the chiral limit, Fxs must vanish
linearly with vanishing quark masses. Indeed, estimates based on QCD sum rules [47-49]
provide values much smaller than the kaon decay constant Fx for the first of these radial
excitations, e.g., Fxr = 21.4(2.8) MeV [48,49], and an even smaller value for the second
radial excitation. In addition, the factor Mi, in the residue of the pole is cancelled by the
denominator when one eventually takes g = k — p, so FxxM2,/[((q — k)*> — M%,] becomes
~ —Fys. Barring any large enhancement due to the electromagnetic transition form factors

FLIEEK/ (g%) that replace Fffg (g%), this indicates that the contributions of P(g?, (g — k)?) and
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P (%, (g — k)?) are highly suppressed as compared to the contributions from the kaon poles,
which leads us to make the approximations P (g2, (9 — k)?) ~ 0, P(q%, (g — k)?) ~ 0.

3. Phenomenological Consequences

We now have all the elements at our disposal in order to answer the three questions
listed at the beginning of this paper. We use the values of the Wilson coefficients at the
scale v = 1 GeV provided in Ref. [37], and the values of the remaining quantities are taken
from Ref. [21]. The values shown below result from the average of those obtained with the
"t Hooft-Veltman scheme and with the naive dimensional regularisation scheme.

¢ The predictions for the branching ratios read

Br(Ks — %" e™ )|, >165 Mev = 2.9(1.0) - 1077
Br(Ks — n’ete™) =5.1(1.7) - 1077,
Br(Ks — n’utu~) =1.3(0.4)-1077, (29)

where a conservative relative uncertainty of O(1/N,) ~ 30%, accounting for sub-leading
effects in the 1/ N, expansion, has been applied with N, = 3. The first value agrees well
with the measurement in the NA48/1 experiment [50] (the first error comes from statistics
and the second from systematics)

Br(Ks — 7' e ™) |, >165 Mev = (3.01]5 £0.2) - 1077 (30)

When extrapolated to the full range of the di-lepton invariant mass ., with a form factor
equal to unity (i.e., with ag = 1, bs = 0, and no pion loop), the total branching fraction
is quoted as Br(Ks — n¥ete™) = (5.83:3 +0.8) - 1077 [50], which also agrees rather well
with the value in Equation (29). The agreement is less optimal in the case of the decay into a
muon pair, where the experimental value obtained by the NA48/1 collaboration is provided
as [51] Br(Ks — moutu~) = (2.9f%:g(stat) +0.2(syst)) - 1077, but the uncertainties are
still large. Finally, we also mention that, within the range s € [0, M%}, which covers the
phase space of the K5 — 7’4 ¢~ decays, the form factor (23) is well described by the
quadratic polynomial

Ws(s) ~ Gg[0.92M% + 0.64s + 0.3952/ MZ]. (31)
*  The function Ws(s) being positive, cf. Equation (31), the coefficients Cj(lft) in Equation (4)
are also positive. Numerically, we obtain
Ciol = +7.8(26) 72, ¢l = +1.9(0.6) ¥, (32)
where we have written (y7y is positive [37])
Vg VisIm Cry (v = 1 GeV) = —(Im A )yyy. (33)

The interference between direct and indirect CP violation in the branching ratio for
Kp — 71°0* ¢~ is therefore unambiguously predicted to be constructive in the large-N,
limit of QCD.

e  The amplitude of the CP-violating transition K9 — 7%y* — 7%/*¢~ has the same
structure as provided in Equation (8), provided one makes the replacements C; — 0,
ReCyx — ilmCyx, X = V, A, in Equations (17) and (23). In addition, as already
mentioned, the matrix elements of the QCD penguin operators show no particular
enhancement as compared to the matrix element of Q; [42], while the imaginary
parts of their Wilson coefficients at the scale v = 1 GeV are about one order of
magnitude smaller (in absolute value) than |Im Cyx|/« at the same scale [37]. The
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approximation consisting of keeping only the contribution from the Gilman-Wise
operators is therefore also supported by the large-N, limit of QCD.

Before concluding, let us briefly discuss the case of W, (s) in the context of the large-N,
limit. The main difference with Ws(s) lies in the fact that now operator Q, will contribute.
Actually, the contribution of operator Q; to W (s) is now limited to the term proportional
to T (s; v) in Equation (23), whereas expressions similar to the remaining terms in this
equation will instead be produced by Q5. Since C;(v) >~ —Cy(v)/2 at v ~ 1 GeV, this leads
to an almost complete numerical cancellation between the two contributions [36], leaving
only the small contributions from the QCD penguin operators as a remainder. The almost
vanishing values of 2, and b, predicted by the large-N, limit thus do not at all account
for the measured values [52], and sub-leading terms in the 1/ N, expansion must become
important in this case. This is quite in line with the result of Ref. [35], where a crude
unsubtracted dispersive evaluation of the contribution from two-pion states to W, (s),
suppressed in the large-N, limit but this time enhanced by the Al = 1/2 rule, produced
values of a4 and b already reasonably close to the experimental ones.

4. Summary and Conclusions

To summarise, we have outlined the computation of the amplitudes for the kaon
decay modes, Kg — my* — 70t ¢~, in the large-N, limit of QCD. We have shown
that this framework is predictive as it enables answering a few questions of phenomeno-
logical relevance for the possibility to experimentally probe the standard model’s flavour
structure at short distances. A more detailed account of the calculations and further im-
plications will be provided in Ref. [36]. For completeness, let us also mention that the
proposal [38,53,54] to investigate the K — 71/ ¢~ decay modes in the framework of lattice
QCD is being actively pursued by the RBC and UKQCD collaborations. A first result for
W, (s) at s/ M2 = 0.013(2) with physical values of the pion and kaon masses was pub-
lished recently [55]. It corresponds to only a single lattice spacing and still shows quite
large uncertainties due to the difficulty in extracting the signal from the statistical noise.
Substantial improvements are, however, expected during the next decade for this and for
other rare kaon decay modes [3,6]. In the meantime, the quest for a better theoretical and
phenomenological understanding of rare kaon decay modes is certainly worth pursuing
as well. The large-N, limit may shed light on other processes than the ones studied here
and bring to the fore interesting dynamical aspects and/or quantitative information. Of
course, cancellations can also occur in other amplitudes than the one for K* — gFete,
but a case-by-case study is probably required to eventually reveal which observables are
actually affected.
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