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Abstract: In the framework of the Polyakov quark-meson model with two flavors, the bubble

dynamics of a first-order phase transition in the region of high density and low temperature are

investigated by using the homogeneous thermal nucleation theory. In mean-field approximation,

after obtaining the effective potential with the inclusion of the fermionic vacuum term, we build

a geometric method to search two existing minima, which can be actually connected by a bounce

interpolated between a local minimum to an adjacent global one. For both weak and strong first-order

hadron quark phase transitions, as fixing the chemical potentials at µ = 306 MeV and µ = 310 MeV,

the bubble profiles, the surface tension, the typical radius of the bounce, and the saddle-point action

as a function of temperature are numerically calculated in the presence of a nucleation bubble. It

is found that the surface tension remains at a very small value even when the density is high. It

is also noticed that the deconfinement phase transition does not change the chiral phase transition

dramatically for light quarks and phase boundaries for hadron and quark matter should be resized

properly according to the saddle-point action evaluated on the bounce solution.

Keywords: Polyakov quark-meson model; bubble nucleation; chiral symmetry; deconfinement;

surface tension; quark-hadron conversion

1. Introduction

At extremely high temperatures and densities, a strong interaction theory, quantum
chromodynamics (QCDs), favors an idea that there is a phase conversion from a hadronic
matter at low energy into a deconfined and chiral-symmetry restored quark matter de-
noted as quark-gluon plasma (QGP). In an experiment, how to explore and illuminate the
fundamental properties of QGP is a current topic concerned with the physics of heavy-
ion collisions (HICs) in laboratories [1–3], as well as the structures of compact stars in
astrophysics [4–6]. On the theoretical side, although QCD is applicable for determining
the physical properties of strong-interaction matter at very high energy, to understand
the nature of the hadron-quark phase transition remains a challenging problem in actual
calculations, in particular when finite chemical potentials are related. From an ab initio
approach, Monte Carlo calculations on the lattice are still severely hampered by the no-
torious fermion sign problem and cannot be applied to study the QCD phase transition
at high density [7]. Therefore, effective models of QCD provide an alternative therapy
to capture the basic characteristics of QCD, such as two salient features intimately con-
nected with the nonperturbative properties of QCD, chiral symmetry, and the confinement.
Among these effective models, some are the Nambu–Jona-Lasinio (NJL) model [8–14],
the linear sigma model (LSM) [15], and their modern extensions included with effects of the
deconfinement, the Polyakov Nambu–Jona-Lasinio model (PNJL) [16–18], and the Polyakov
quark-meson model (PQM) [19–21] for quark matter. Others are the relativistic mean field
(RMF) model and its extrapolations incorporated with chiral symmetry, the chiral nucleon
meson model [22–25], the parity doublet model [26–31], and the relativistic mean field
including both the chiral potential and the confinement effect [32–34] for nuclear matter.
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After the observation of gravitational waves by LIGO collaboration [35], we enter a
new era of gravitational wave astronomy to directly study cosmological first-order phase
transition predicted by the standard model [36–38]. The topic has gathered a renewed inter-
est due to the fact that the present research in the cosmological first-order phase transition
can be understood by detecting a stochastic gravitational wave background in the present
or future gravitational wave experiments [39–41]. Since the gravitational wave can reveal
more information about the cosmological phase transition, once the signal of the stochastic
gravitational wave spectrum is to be confirmed, it will largely increase our capability to
probe the earliest universe. At the same time, with the direct detection of gravitational
waves from the binary neutron star merger event GW170817 [42,43], astrophysics has also
arrived at a new multimessenger age. Integrated with other observational astronomy, such
as the radius, the mass, and the tidal deformability of compact stars, there exists so far the
most stringent constraint on the equation of states (EOS) of dense QCD matter, which plays
a key role in the dynamical evolution and structure formation of compact stars [44–48]. Any
efforts to study strong interaction as well as the possible first-order QCD phase transition
are continuously deserved to be made in the field of astrophysics and cosmology.

For QCD phase transition, most models in the description of strong interactions
predict a first-order phase transition from a chiral symmetry broken hadron phase to a
chiral symmetric quark phase at high chemical potential and low temperature. However, it
is a smooth crossover conversion at low chemical potential but high temperature. Along
the first-order coexistence line, there could exist a critical endpoint (CEP) where the first-
order phase transition is to be of the second-order. In laboratories, to explore and locate
the CEP through ultra-relativistic heavy-ion collision are the ultimate targets of the Beam
Energy Scan (BES) programs at Relativistic Heavy-Ion Collider (RHIC) and other near-
future experimental facilities, the empirical identification of the CEP will be a milestone
of studying the QCD phase diagram and strong interactions [49,50]. On the theoretical
side, the presentation of the CEP guarantees the existence of the first-order phase transition
and vice versa. Since much attention has been drawn to the crossover phase conversion of
QCD over past decades, in the present work, most of our studies are focused on the topic
of a first-order hadron quark phase conversion in QCD phase diagram.

For a typical first-order phase transition, a system will go from a metastable high-
energy state (false vacuum), to a relatively stable lower energy state (true vacuum) through
the bubble nucleation, where these states are separated from a surrounding metastable
phase by an interface. The appearance of a bubble is to be considered a regular sequence
of the thermodynamic fluctuations of the system sufficiently close to a critical point of a
first-order phase conversion. According to these fluctuations, bubbles are expected to be
created. Among them, some will grow up while others will shrink and disappear, relying
on their energy competition with regard to the homogeneous preexisting metastable state.
Only the large bubbles will ultimately survive and then play a decisive role in the process of
the nucleation of bubbles. In the end, these bubbles larger than a critical radius will expand,
collide, and eventually coalesce to complete a fist-order phase transition. The most popular
theory of bubble nucleation was pioneered by the works of Langer in the context of classical
statistical mechanics in the late 1960s [51,52], and it was extended by Kobzarev et al. [53]
in the context of field theory. These primary jobs were put onto solid ground in serially
seminal works conducted by Callan and Coleman in a zero-temperature quantum field
theory [54–56]. Soon after, the studies were generalized to nonzero temperature by Af-
fect [57] and Linde [58,59]. A main target of nucleation theory is to determine the bubble
nucleation rate per unit volume per unit of time in the spirit of a semi-classical method
called saddle-point approximation. Within this method, the key point is to find the bounce
solution. The solution is actually an instanton field configuration under the extremization
of the action and interpolated between the false vacuum and true vacuum between a barrier.
Once the bounce is found, one can compute the crucial issues intimately related to the
dynamics of a first-order phase transition, such as the critical radius, the surface tension,
and the saddle point action.
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Traditionally, in the description of a first-order hadron quark conversion, the equation
of states can be technically obtained by matching the pressures in terms of quark and
hadron matters via the Maxwell construction or the Gibbs condition. The reason is that
for each aspect of matter, what we need is the absolute minimum of an effective potential,
which gives the pressure of the system. However, in order to calculate the bounce solution,
the landscape of the whole potential is necessarily requested. In other words, a unified
shape of the effective potential that contains hadron and quark phases is necessary for the
existence of the exact bounce solution. For a realistic nuclear matter, the nucleation rate
and the surface tension have been studied and investigated in Ref. [24], where the chiral
nucleon-meson (CNM) model with the nucleon degree of freedom is employed [22,23].
The CNM model incorporating chiral symmetryhas been applied to reproduce the nuclear
properties at saturation in symmetric matter. Recently, it has been utilized to study the
possible paste phase at a chiral phase transition in neutron stars [25] and a first-order
nuclear liquid–gas phase transition in nuclear matter [24]. Due to the lack of the quark
degree of freedom, the model does not include the effect of confinement and the chiral
symmetry can only be treated in a very rough approximation in the spectrum of hadron
states. On the contrary, with a similar chiral potential, a quark meson (QM) model can
be successfully used to study the restoration of chiral symmetry at high temperature and
density for two flavors [60,61] and three flavors [62,63]. In particular, within the QM
model, the order parameters for chiral symmetry restoration are well defined by quark
condensates. Apart from the phase diagram and thermodynamics, the dynamics of a
first-order chiral phase transition are also investigated in the QM model in Refs. [64–68].
Moreover, the model can be extended by combining dynamical quarks to the Polyakov loop
fields in order to study both chiral and deconfinement phase transitions simultaneously and
confront the Lattice data directly [19–21]. Furthermore, with the inclusion of the strange
quark, based on the thin-wall approximation, the surface tension and phase diagram have
been obtained in the three flavors PQM model in Refs. [69,70].

Aside from a few works in Refs. [64,68], most studies in both QM and PQM models
are applied in the thin-wall approximation, and the sea-quark contribution according to the
presence of the fermion vacuum fluctuation is normally ignored in the effective potential.
The validation of the thin-wall approximation is limited, especially when two minima of
the effective potential become separated. In particular, there exists a weak first-order phase
transition in the phase diagram in the region of high density, where the main mechanism
of a phase transition is changed to a spinodal decomposition [71] as temperatures are
close to the spinodal lines. Moreover, the sea quark contribution in the effective potential
plays an important role in the research of QCD phase transition for the sake that it will
not only soften the first-order phase transition but also decrease the surface tension of
hadron-quark phases significantly. Therefore, by including the fermionic fluctuation and
the deconfinement, we study the dynamics of the bubble nucleation related to a first-
order chiral phase transition in the PQM model from nuclear matter to quark matter and
vice versa.

The remainder of the present work is organized as follows. In Section 2, in mean
field approximation, we briefly provide an overview of the Polyakov quark-meson model
and present effective potential at different temperatures and chemical potential. Section 3
describes phase diagrams and effective potentials at two different directions of order pa-
rameter fields. In Section 4, we give a brief review of the homogeneous thermal nucleation
theory and build a method to search the local minima of the effective potential. Main results
and discussions are supplied in Section 5, and we give our summary in the last section.

2. Formulation of the Model

The Lagrangian density of the QM, which has an explicit realization of chiral SUL(2)⊗ SUR(2)
symmetry, is given by [15,60,61]

L = ψ
[

iγµ∂µ − g(σ + iγ5τ⃗ · π⃗)
]

ψ +
1

2

(

∂µσ∂µσ + ∂µπ⃗ · ∂µπ⃗
)

− U(σ, π⃗), (1)
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where the quark field ψ is a flavor doublet

ψ =

(

u

d

)

. (2)

The mesonic field π⃗ = (π1, π2, π3) is a pseudoscalar pion field, while σ is a spin-0
scalar field. g is a flavor-blind Yukawa interaction coupled with quarks and mesons.

The pure mesonic potential, which exhibits both spontaneously and explicitly broken
chiral symmetry, is given by the expression

U(σ, π⃗) =
λ

4

(

σ2 + π⃗2 − ϑ2
)2

− Hσ. (3)

Here, λ is a positive coupling constant for the mesonic fields, and the constant ϑ is a
physical quantity called the vacuum expectation value of the scalar field. The last term
in the above equation represents finite masses for current quarks, which is decided by
the partially conserved axial-vector current (PCAC) relationship with the expression as
H = fπm2

π .
Apart from the chiral symmetry, it is well known that the basic strong-interaction

theory QCD has another salient feature: the confinement. The confinement is related to
the center symmetry of the color gauge group and the center symmetry is believed to
spontaneously break in the high-energy region of quark matter. In order to incorporate
the physical aspect of the confinement–deconfinement phase transition in the QM model,
the Polyakov loop operator that is related to the free energy of a static color charge is usually
introduced and applied. In such an extension, the Polyakov loop operator is introduced as
a path-ordered Wilson loop of the gauge field in the temporal direction,

L(x⃗) = Pexp

[

i
∫ β

0
dτA4(x⃗, τ)

]

, (4)

where P denotes path ordering, β = 1/T being the inverse of temperature, and A4 = iA0.
Accordingly, the color-traced Polyakov loops are set as

Φ = (TrcL)/Nc, Φ
∗ = (TrcL†)/Nc. (5)

Accordingly, the thermal expectation values ⟨Φ⟩ and ⟨Φ∗⟩ are to be defined as the
Polyakov loop variables. However, for simplicity, we still use Φ and Φ

∗ for their arguments.
Furthermore, Φ and Φ

∗ are complex scalar fields if we take a diagonal representation as
shown in refs. [16,17]. In a pure gauge theory, the Polyakov loop variables offer an order
parameter for deconfinement phase transition. It is to vanish in the confined hadron matter
where the quarks receive infinite free energies. On the contrary, it becomes finite in the
deconfined quark matter. However, in a gauge theory with dynamical quarks, it should
be taken as a sketchy order parameter only. The situation is roughly analogous to the
chiral condensate, which is an exact order parameter for massless quarks in the chiral limit,
whereas it is only a rough order parameter for massive quarks.

When the Polyakov loop has been included in the QM model, the dynamical quarks are
now coupled with gauge fields through the following covariant derivative: Dµ = ∂µ − iAµ

and Aµ = δµ0 A0. In mean-field approximation, both meson and gauge fields are taken as
the classical fields, and their thermal and quantum fluctuations are neglected, whereas
the fermionic quarks are treated as dynamical fields. After integration over the fermions,
the grand thermodynamical potential density in the presence of the Polyakov loop can then
be written as

Ωψ̄ψ = Ω
vac
ψ̄ψ + Ω

th
ψ̄ψ = −2N f Nc

∫

d3 p⃗

(2π)3
Eq − 2N f T

∫

d3 p⃗

(2π)3

[

lng+q + lng−q

]

. (6)
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Here, N f = 2, Nc = 3, Eq =
√

p⃗2 + m2
q, and the constituent quark masses for u and d

quarks are given by mq = gσv together with σv ≡ ⟨σ⟩. In a vacuum,σv = fπ = 93.0 MeV.
The first term of Equation (6) represents the one-loop fermion vacuum contribution, which is
divergent and should be renormalized by using a regularization scheme. In order to obtain
the physical quantities independent of the renormalization scale, in what follows, we would
like to take a more convenient scheme by using dimensional regularization. The second
term of Equation (6) g+q and g−q has been defined as taking trace over color space

g+q =
[

1 + 3(Φ + Φ
∗e−(Eq−µ)/T)× e−(Eq−µ)/T + e−3(Eq−µ)/T

]

, (7)

g−q =
[

1 + 3(Φ∗ + Φe−(Eq+µ)/T)× e−(Eq+µ)/T + e−3(Eq+µ)/T
]

. (8)

The first term of Equation (6) is just the fermion vacuum one-loop contribution to the
effective potential at T = µ = 0 and the integral is ultraviolet-divergent. To regularize
this fermion vacuum term, we need to perform the dimensional regularization near three
dimensions, d = 3 − 2ϵ, in order to isolate the divergences. This yields a resulting potential
up to the zeroth order in ϵ as given by [72,73]

Ω
vac
ψ̄ψ =

N f Nc

16π2
m4

q

[

1

ϵ
+ ln

Λ
2

m2
q
+ ln(4π)− γE +

3

2

]

, (9)

where Λ is an arbitrary renormalization scale parameter. Then, the effective potential can
be renormalized by adding a proper counter term to the Lagrangian as conducted for the
two-flavor case in refs. [74,75]. Up to some irrelevant constants, the renormalized fermion
vacuum loop contribution reads

Ω
vac
ψ̄ψ = Ω

reg
ψ̄ψ

= −
NcN f

8π2
m4

qln(
mq

Λ
), (10)

It is worth pointing out that the parameters λ and ϑ are technically dependent on the
arbitrary renormalization scale Λ; however, as indicated in refs. [74–77], the Λ dependence
can be neatly canceled out by redefining the parameters in the model, and the physical
quantities in the present model are therefore free from ambiguities related to the choice of
the renormalization scale.

The phenomenological potential of the Polyakov loop U (Φ, Φ
∗, T) as a function of T,

Φ, and Φ
∗ is constructed to duplicate some physical quantities of the pure gauge theory

calculated on lattice QCD [78,79]. The first one is that the terms of the potential U must be
invariant under the Z(3) center symmetry since the pure gauge QCD theory conserves this
symmetry. Secondly, for a pure gauge theory, because there is no fundamental principle
to give out any asymmetry between Φ and Φ

∗, the potential U should have an additional
requirement with the symmetry under the exchange between Φ and Φ

∗. Finally, as men-
tioned above, Φ and Φ

∗ are treated as order parameters for the deconfinement phase
transition, and we thus require that the thermal expectation values Φ and Φ

∗ evaluated at
the minimum of the potential U are Φ = Φ

∗ = 0 when the temperature is low. On the con-
trary, when the temperature is high, these values should become finite and asymptotically
approach a constant, e.g., the unity 1 for the logarithmic form of the Polyakov loop potential.
For the specific functional form of the potential U , there still exist various possibilities in
the literature with similar properties [19,20,80–82]. For the physical interest in the present
work, we prefer to use the simplest polynomial potential based on a Ginzburg–Landau
ansatz as suggested in ref. [80]

U (Φ, Φ
∗, T)

T4
= −

b2(T)

4
(|Φ|2 + |Φ∗|2)−

b3

6
(Φ3 + Φ

∗3) +
b4

16
(|Φ|2 + |Φ∗|2)2, (11)
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with a temperature-dependent coefficient

b2(T) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

+ a3

(

T0

T

)3

. (12)

The parameters in the above potential are adopted to confront the lattice results for
the pure gauge theory. This yields the following values:

a0 = 6.75, a1 = −1.95, a2 = 2.625,

a3 = −7.44, b3 = 0.75, b4 = 7.5. (13)

Moreover, for pure SU(3) gauge theory, there is a first-order deconfinement phase
transition with a critical temperature at T0 = 270 MeV. However, by taking account of the
back action of the dynamical quarks on the gluonic sector, it is natural to let T0 = T0(N f )
in order to guarantee that the behavior in the glue sector also depends on the number of
quark flavors or even the baryon chemical potential [19,83]. In the following study, we
shall use T0 = 208 MeV for two quark flavors [19,75].

Now, the thermodynamic grand potential for the PQM model in the mean-field
approximation with the fermion vacuum one-loop is given by

ΩMF(T, µ) = U(σ, π⃗) + U (Φ, Φ
∗, T) + Ωψ̄ψ. (14)

The equations of motion for the mesonic and gluonic fields σ, Φ, and Φ
∗ can be derived

by the stationarity conditions

∂ΩMF

∂σv
= 0,

∂ΩMF

∂Φ
= 0,

∂ΩMF

∂Φ∗
= 0, (15)

which yield the order parameters σ(T, µ), Φ(T, µ), and Φ
∗(T, µ) as a function of tem-

perature and chemical potential. The parameters in the model are specified by their
vacuum properties and their physical values are set at mπ = 138 MeV, mσ = 500 MeV, and
fπ = 93 MeV. For the last coupling constant g, it is usually determined by the constituent
quark mass in the vacuum as g = 3.3.

3. Phase Structure

After solving the above coupled gap Equation (15), we can obtain the chiral condensate
σ and the Polyakov loop expectation values Φ and Φ

∗ as a function of the temperature for
different chemical potential. The temperature behaviors of these order parameters could be
used to reveal the nature of chiral and deconfinement phase transitions. For demonstra-
tion, the temperature variations in the chiral condensate and Polyakov loop expectation
values are displayed in Figure 1 when the chemical potentials are set to µ = 0 MeV and
µ = 308 MeV. In order to illustrate the subtle differences between these two types of QCD
phase transition, we would like to split our studies into two parts: one is the chiral phase
transition related to the chiral symmetry, another is the deconfinement phase transition
that is directly relevant to the Z(3) center symmetry.

Let us first study the restoration of chiral symmetry at various chemical potentials.
The chiral condensate as a function of temperature shows that the system experiences a
quite smooth crossover conversion at zero chemical potential. Conversely, for a relatively
larger chemical potential, i.e., µ = 308 MeV, the order of phase transition has been changed
to a first-order since the chiral condensate makes a sharp jump across the gap of the con-
densate when the temperature is near its critical value. Therefore, by comparing two curves
of the chiral condensate σ in Figure 1, we find that the chemical potential would make the
variation in chiral order parameter with temperatures sharper. Subsequently, the crossover
will eventually turn into a second-order phase transition at somewhere called a CEP, where
the order phase conversion is second. The appearance of the CEP guarantees the existence
of a first-order chiral phase transition, and vice versa. From Figure 1, for both kinds of phase
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transitions, the temperature derivative of the chiral condensate σ has merely one typical
peak at peculiar temperatures, which is usually defined as the critical temperature for chiral
phase transition. For vanishing chemical potential, the chiral restoration happens around
Tc

χ ≃ 187 MeV. Meanwhile, for a larger chemical potential at µ = 308 MeV, the critical
temperature of the chiral phase transition will go down to the lower temperature of about
Tc

χ ≃ 41 MeV.

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

1.2

σ/
f π

, 
Φ

, 
Φ

*

T (MeV)

 µ=0 MeV

 µ=308 MeV

σ
σ

Φ=Φ∗

Φ

Φ∗

Figure 1. The normalized chiral order parameter σ and the Polyakov loop expectation values Φ, Φ
∗

as functions of temperature for µ = 0 MeV and µ = 308 MeV. The set of solid curves are for µ = 0

MeV and the dashed curves are for µ = 308 MeV.

This is unlike the chiral phase transition, in which the critical temperature is well
defined at least in the case of a first-order phase transition. On the contrary, we are
still ambiguous to safely confirm the deconfinement phase transition through the order
parameters Φ, Φ

∗, or their temperature derivatives [21,82], even though the chemical
potential is very large. In order to explicate this problem, the temperature variations in
the Polyakov loop expectation values Φ and Φ

∗ at µ = 0 MeV and µ = 308 MeV are
demonstrated in Figure 1. From this figure, by taking the Φ as an example, we can find that
the evolution of the Polyakov loop expectation value Φ as a function of the temperature
exhibits a rather smooth behavior for zero chemical potential. For a larger chemical
potential at µ = 308 MeV, Φ becomes smoother and flatter except that there is a small
jump coincident with the jump of the chiral order parameter σ. Because the temperature
derivative Φ

′ = dΦ/dT generally has one more peak in calculations, especially when µ is
high [21,75], it is obscure to determine the critical temperature for the deconfinement phase
transition through the peaks of the Polyakov loop variation. The problem will arise again
and become worse for chiral and deconfinement phase transition when the strange quark s
is included in the POM model [20,21].

In the following study, we will use the effective potential to reveal more information
about the natural properties of the chiral and deconfinement phase transitions at finite
temperature and chemical potential. Apart from solving the equations of motion (15),
based on the shape or geometry of an effective potential, we can directly search a global
minimum of the effective potential ΩMF in Equation (14) to obtain the expectation values of
the chiral condensate and the Polyakov loop fields, or more interestingly, the local minima
of the effective potential, which correspond to the false vacua during phase transitions.
For convenience, we refer to a study based on the geometry of effective potential as a
geometric approach. For a single-order parameter, such as the QM model, a geometric
approach can precisely tell two types of chiral phase transitions and simultaneously give
out two minima of effective potential [60,84]. However, for the PQM model, there are
three order parameter variables σ, Φ, and Φ

∗ in the grand canonical potential ΩMF in
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Equation (14), so it is extremely challenging to demonstrate and reveal the thermal effective
potential via evolving these variables simultaneously in such a large number. Inspired by
previous studies in the PQM model [76,77], in order to simplify the problem and provide a
more intuitive insight into the physics, the number of the active variable in the effective
potential at finite temperature and chemical potential is to be set one at a time. This means
that the effective potential has been divided into two directions: (1) the gluonic direction
and (2) the mesonic direction. In the gluonic direction, the Polyakov loop Φ (or Φ

∗) is
considered the active variable while the σ and Φ

∗ (or Φ) fields remain on their expectation
values all the time. By contrast, in the mesonic direction, the σ field is taken as an active
variable in the grand canonical potential ΩMF, while the Polyakov loop fields are set on
their expectation values Φ and Φ

∗.
For simplicity, we firstly take the Polyakov loop Φ as a typical example in the following

discussion, and the qualitative result presented here, of course, can be applied to that of the
Φ

∗ field too. The gluonic case is shown in Figure 2, where the left panel is the scaled grand
canonical potential ΩMF over T4 as a function of the Polyakov loop Φ for zero chemical
potential, and the right panel is the scaled grand canonical potential ΩMF over T4 as a
function of the Polyakov loop Φ for µ = 310 MeV. From Figure 2, it is obvious that the
grand canonical potential for both µ = 0 MeV and µ = 310 MeV share similar behaviors,
and there is only one minimum for each of the grand canonical potentials. These minima,
which are to be identified as the expectation values Φ of the Polyakov loop field, move to
their higher values smoothly and slowly with the increase in temperature. Even though
the chemical potential is as large as µ = 310 MeV, when the chiral phase transition is of the
first order, the grand canonical potential ΩMF still exhibits a trivial feature with a single
minimum. This indicates that the disconnection of the order parameter Φ in Figure 1 for
µ = 308 MeV and T ≃ 41 MeV should be driven by that of the chiral order parameter σ.
Such a sudden jump is not supported by the grand canonical potential of the Polyakov loop
field itself. The peak in the Polyakov loop field derivative around the critical temperature at
T = Tc

χ ≃ 41 MeV is a fake signal for the definition of the deconfinement phase transition.
This is also the reason why a critical temperature of the deconfinement conversion should
be given by another pseudo peak corresponding to Φ(T)/Φ(T → ∞) > 1/2, as discussed
in Refs. [75,76].
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Figure 2. (a) The scaled grand canonical potentials ΩMF over T4 as a function of the Polyakov loop

Φ for µ = 0 MeV by fixing the σ and Φ
∗ fields on their expectation values. (b) The scaled grand

canonical potentials ΩMF over T4 as a function of the Polyakov loop Φ for µ = 310 MeV by fixing the

σ and Φ
∗ fields on their expectation values. ΩMF is scaled by a factor of T4.

Theoretically, the trivial behavior of the grand canonical potential as a function of the
Polyakov loop can be interpreted qualitatively if we go back to the original pure-gluonic
potential U in Equation (11). It is easy to show that the potential U displays only one
minimum at Φ = 0 as long as the temperature is less than the critical temperature at
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T0 = 208 MeV. Only when T is larger than the critical value T0, the potential U will develop
a typical first-order potential with two local minima separated by a global maximum (or
a barrier). It seems that the inclusion of the quark and meson fields in the grand canon-
ical potential ΩMF does not change the nature of the deconfinement phase dramatically.
As demonstrated in Figure 2, with the increase in temperature, the global minimum of the
potential moves continuously from its low value to a high one, but the characteristic shape
of the potential remains intact as long as T < T0.

Let us now investigate how the grand canonical potentials ΩMF evolve with the chiral
order parameter σ for different chemical potentials by fixing the Polyakov loops on their
expectation values. The scaled grand canonical potentials are shown in Figure 3 as a
function of σ for µ = 306 MeV and µ = 310 MeV, respectively. From Figure 3, one clearly
observes the characteristic pattern of a first-order phase transition potential when µ is
very large: two minima corresponding to phases of restored and broken chiral symmetry
are separated by a potential barrier and they will become degenerate at T = Tc

χ. Chiral
symmetry is approximately restored as T > Tc

χ, where the previous local minimum at a
relatively low σ value becomes the global/absolute minimum as shown in Figure 3. On the
other hand, when the temperature is below the critical one Tc

χ, the global minimum is
located in a relatively larger sigma and the constituent quark becomes massive. In this
time, the chiral symmetry is spontaneously broken. As a result, we can conclude that
there is a first-order chiral phase transition when chemical potentials are both at µ = 306
MeV and µ = 310 MeV. Furthermore, when the temperature is at T = Tc

χ, the height of

the potential barrier is about 0.66 MeV/fm3 as µ = 310 MeV, but it will drop sharply to
0.30 MeV/fm3 when the chemical potential reduces to µ = 306 MeV. With decreasing the
chemical potential, it is believed that the potential barrier combining two minima becomes
flatter. Consequently, the first-order chiral phase transition turns into a second-order phase
transition at a specific point called the CEP. In that moment, the barrier disappears and the
chiral phase transition exhibits a second-order quality.

0 20 40 60 80 100

-18

-16

-14

-12

-10

-8

P
o

te
n

ti
a

ls

σ (MeV)

 T=48.9 MeV

 T=28    MeV 

µ=306MeV

(a)

 T=52.1 MeV

 T=37.0 MeV

20 30 40 50 60 70 80 90 100
-17

-16

-15

-14

-13

-12

-11

-10

-9
 T=5      MeV

 T=15    MeV

 T=28.8 MeV

 T=35   MeV
 T=41.4 MeV

P
o

te
n

tia
ls

σ (MeV)

µ=310 MeV

(b)

Figure 3. (a) The grand canonical potentials ΩMF as a function of the chiral order parameter σ for

µ = 306 MeV by fixing the Polyakov loop on their expectation values. (b) The grand canonical

potentials ΩMF as a function of the chiral order parameter σ for µ = 310 MeV by fixing the Polyakov

loop on their expectation values. The unit of the effective potential ΩMF is scaled as MeV/fm3.

For a large chemical potential, the grand canonical potentials ΩMF as a function of
the chiral order parameter σ in Figure 3 really guarantee the existence of the first-order
chiral phase transition. However, the nature of the phase transition revealed by the shapes
of effective potentials is fairly distinct from each other. For T > Tc

χ, both cases show that
there are the critical spinodal temperatures Tsp since the local minima of effective potentials
are going to disappear at a certain temperature. This suggests that the hadron-quark
phase transition is a weak first-order phase transition if the system is heating up from a
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low temperature to a high one. However, while the temperature T is below the critical
value Tc

χ, the evolutions of the potential with the order parameter σ for these two chemical
potentials exhibit quite different features. From the left panel in Figure 3, for temperatures
very near the critical temperature Tc

χ ≃ 48.9 MeV, the grand canonical potentials ΩMF for
µ = 306 MeV indeed display a local minimum which is separated by a barrier from another
local minimum. However, as the temperature is lowered, the local minimum at low σ
value approaches the intervening maximum. These two minima of the potential meet and
form an inflection point at the spinodal temperature Tsp ≃ 37 MeV. Accordingly, there
is only one minimum in the grand canonical potentials ΩMF when T ≤ Tsp. Because of
the disappearance of the barrier between two local minima in the effective potential, this
kind of phase transition sometimes can be denoted as a weak first-order conversion [68,71].
On the contrary, the increase in the chemical potential normally leads to a larger barrier
between the two degenerate minima of the grand canonical potentials ΩMF when T is close
to Tc

χ. In other words, the first-order phase transition would be strengthened with the
growth of the chemical potential, and a larger barrier implies a larger latent heat. For the
case of µ = 310 MeV, the grand canonical potentials ΩMF as a function of the chiral order
parameter σ for different temperatures are shown in the right panel in Figure 3. One
significant difference from the case of µ = 306 MeV is that there always exists a potential
barrier between two minima of the potential, no matter what temperature is chosen. This
indicates that the chiral phase transition for a quark-hadron phase transition is now a
strong first-order phase transition when µ = 310 MeV [68,85].

The chiral phase transition of u and d quarks in the T − µ plane is displayed in
Figure 4. It is found that for two light flavors, there is crossover in low chemical potential
and first-order phase transition in high chemical potential, and the CEP is located at
(TE, µE) ≃ (301.4 MeV, 62.1 MeV). In the T − µ plane, a vast part of the QCD phase
diagram is a crossover; only a very small window is left for the first-order phase transition.
As compared with previous studies in the QM model, the incorporation of effects of
deconfinement in the language of the Polyakov loop fields merely increases the critical
temperature for chiral phase transition, leaving the nature of the chiral phase transition
unchanged. Since we are interested in the dynamics of the first-order phase transition in the
present study, the lines for the deconfinement crossover transitions are omitted in Figure 4.

In order to present a more detailed description of the chiral first-order phase transition,
two additional spinodal lines are also included in Figure 4. These two spinodal lines are
usually introduced to characterize the region of spinodal instability for a weak first-order
phase transition. From Figure 4, both the lower and upper spinodal lines rise up with
the reduction in the chemical potential, but the distance between these two lines becomes
smaller. In the end, the spinodal lines, together with the coexistent critical line, will bend
forward to the CEP and terminate at that point. Furthermore, according to the low spinodal
line as T < Tc

χ, the structure of the phase diagram below the coexistent critical line can
be further classified into two categories: a weak first-order phase transition and a strong
one. For a weak first-order phase transition, it is usually characterized by the low barrier
and the existence of the critical spinodal temperature Tsp, whereas for a strong first-order
phase transition, there is an effective potential with a zero-temperature potential barrier.
Therefore, as shown in Figure 4, along the horizontal axis, the corresponding chemical
potential, when a weak first-order phase transition turns into a strong one, is established as
µc = 309 MeV. For µ > µc, it is a strong first-order phase transition and a potential barrier
separating two minima never disappears with the decrease in temperature; conversely,
the local minimum aside from the global minimum will gradually disappear and there is
no potential barrier for T < Tsp. On the other side of the coexistent critical line, since there
exists the critical spinodal temperature, the hadron-quark phase conversion should always
be of weakly first order.
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Figure 4. Phase diagram in the T − µ plane in the PQM for the chiral phase transition. The dashed

curve denotes the critical line for the crossover transition. The solid curve indicates the first-order

phase transitions. The solid circle represents the CEP for chiral phase transitions of u and d quarks,

while the dashed-dotted curve and the dashed-dotted-dotted curve are the lower and upper spin-

odal lines.

4. Nucleation in the PQM Model

4.1. Homogeneous Thermal Nucleation

For a first-order phase transition, the distinguished symbol of a potential is an energy
barrier between two minima. For some potentials, a barrier already exists at the classical
tree level, while for others it could be induced by loop expansions or the integration of
other dynamical fields. When the temperature is very close to its critical value Tc, these two
minima are degenerate. However, as the temperature deviates from Tc, one of the minima
becomes an absolute/global minimum (a true vacuum), and the other is now changed to
a local minimum (a false vacuum). The decay of a false vacuum resides in a first-order
phase transition and the conversion may take place through the bubble nucleation by
quantum or thermal fluctuations, relying on the ambient temperature in comparison with
the barrier. In the present work, we assume a limit that thermal fluctuations dominate
quantum fluctuations.

Based on the theory of homogeneous thermal nucleation, at finite temperature, we
start with a four-dimensional Euclidean action for a scalar-order parameter field, e.g., a
scalar field ϕ,

SE[ϕ] =
∫ β

0
dτ

∫

dr3

[

1

2

(

∂ϕ

∂τ

)2

+
1

2
(∇ϕ)2 + V(ϕ)

]

, (16)

where the potential has a local minimum at ϕ = ϕ f and a global minimum at ϕ = ϕt.
Note that a generalization of this problem to more than one field is rather straightforward
by replacing the ϕ field with Φ = (ϕ1, ϕ2, . . . , ϕN). The path integral expression for the
partition function is given by

Z =
∫

Dϕe−SE [ϕ]. (17)

In a saddle-point approximation, the order parameter ϕ is to expand around its
classical equation of motion (EOM) as ϕ = ϕ̄ + φ. Since ϕ̄ is a solution of EOM, it will
minimize the Euclidean action and dominate the path integral. Thus, in the vicinity of
the saddle point, the Euclidean can be written in terms of a Taylor series up to the second
order as

SE[ϕ[≃ SE[ϕ̄] +
1

2
S′′

E[ϕ̄]φ
2 + . . . , (18)
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where we note that the first-order variation is absent in the equations of motion. The second
term in the above equation is a Gaussian integral, which can be evaluated exactly. After per-
forming the functional Gaussian integration in the partition function in Equation (17), one
gets the following expression:

Z ∼ e−SE [ϕ̄]
(

DetS′′
E[ϕ̄]

)−1/2
. (19)

Then, our next ultimate task is to find the solution of the EOM and substitute it back
into the partition function to obtain the free energy of the system through the standard
formula F = −T ln Z. The nucleation rate Γ could in turn be determined exactly from this
Euclidean observable, the free energy, as Γ = −2Im(F ).

To compute the classical Euclidean field equation of motion, we extremize the Eu-
clidean action

δSE[ϕ]

δϕ

∣

∣

∣

∣

ϕ=ϕ̄

= 0. (20)

Then, the classical equation of motion becomes

(

∂2

∂τ2
+∇2

)

ϕ̄ = V′(ϕ̄), (21)

and solutions of this EOM with minimum energy are expected to be spherically symmet-
ric [86], then the critical field configuration of the field ϕ has O(4) symmetry. However,
for sufficiently high temperature, as argued by Linde [59], the problem becomes approxi-
mately three dimensional by performing the integration over the Euclidean time coordinate.
Accordingly, the Euclidean action is now rewritten as

SE[ϕ̄] ≡
S3[ϕ̄]

T
, (22)

where S3[ϕ̄] is the rescaled action of a three-dimensional field theory. In this case, the saddle
point will be given by the O(3) symmetric solution of

d2ϕ̄(r)

dr2
+

2

r

dϕ̄(r)

dr
= V′(ϕ̄). (23)

This is a second-order partial differential equation and has many solutions that ex-
tremize the Euclidean action. In the semi-classical approximation for false vacuum decay,
not all saddle points are taken into account; what we are really interested in is a nontrivial
saddle-point solution that interpolated between the false vacuum ϕ f and some field value
on the other side of the barrier. The field configuration ϕb, often called bounce or instanton,
is associated with the nucleation bubble embedded in the homogeneous false vacuum.
The interior of the bubble consists of the true vacuum, whereas, outside the bubble, the field
ϕ̄ should arrive at its false vacuum. Therefore, for the bounce, it is reasonable to employ the
boundary condition of the false vacuum as lim

r→∞
ϕ̄(r) = ϕ f . Since the EOM in Equation (23)

is a second-order ordinary differential equation, another boundary condition
dϕ̄(r)

dr |r=0 = 0
should be imposed on this EOM by the requirement of finite energy at the origin.

Once we obtain the bounce ϕb, the explicit expression of the three-dimensional Eu-
clidean action S3 is given by

S3 = 4π
∫

drr2

[

1

2

(

dϕb

dr

)2

+ V(ϕb)

]

, (24)
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and the surface tension, a one-dimensional energy of the bounce, is evaluated accordingly as

Σ =
∫

dr

[

1

2

(

dϕb

dr

)2

+ V(ϕb)

]

. (25)

In the practical calculations, it is worth noting that if the false vacuum has a non-zero
potential energy, an additional term −V(ϕ f ) should be included in the S3 action and the
surface tension Σ. Finally, based on a saddle-point approximation around the bounce
solution, the false vacuum will decay to the true vacuum with the rate per unit time per
unit volume given at finite temperature by [54,55,59]

Γ =
ω−

2π

(

S3

2πT

)3/2
[

Det′(−∇2 + V′′(ϕb))

Det(−∇2 + V′′(ϕ f ))

]−1/2

e

(

−
S3
T

)

. (26)

Here, Det′ indicates that the zero eigenvalues related to the translation symmetry of
the bubble are ignored, ω− is the eigenvalue of the negative mode, and ϕb denotes the
bounce solution of the EOM. Traditionally, the evaluation and computation of the prefactor
in Equation (26) is a nontrivial work, but for the most typical situations, the Euclidean
action presented in the exponent is quite large, and consequently the exponential is very
small. Hence, the bounce solution and its action S3 are the most important ingredients for
the nucleation rate, and the prefactor can be roughly estimated by dimensional analysis
and then sketchily indicated as T4 or T4

c for simplicity [64,87].

4.2. The Minima of the Effective Potential

To give an intuitive description of the thermal phase transition in particle and nuclear
physics, the classical potential V(ϕ) should be generalized to the effective potential Veff(ϕ; T, µ)
in order to incorporate thermal and quantum corrections. Then, for a given temperature
and chemical potential, the effective potential Veff is a function of the order parameter ϕ.
The expected value or the condensate for the order parameter is decided by minimizing
the effective potential with the order parameter field, ∂Veff/∂ϕ = 0. If there are many
extrema, we need to calculate the second derivative to make sure it is a minimum point not
a maximum point in the full parameter space. This is the standard procedure to search the
minima of the effective potential for a single-order parameter field.

However, if there are many order parameters (N > 1) in the effective potential,
the above method is to be extended to a more general but complicated procedure as follows.
Firstly, the gap equations will be obtained by minimizing Veff(ϕ1, ϕ2, . . . , ϕN) with respect
to the order parameters ϕi (i = 1, 2, . . . , N),

∂Veff

∂ϕ1
=

∂Veff

∂ϕ2
= . . . = 0. (27)

The solutions of this equation give the points where the effective potential has its
extrema in the full-order parameter space. Secondly, the N × N Hessian matrix

Hi,j =
∂2Veff

∂ϕi∂ϕj
, (28)

must be evaluated at the points where the gap Equation (27) is satisfied. At last, as long
as we obtain the Hessian matrix, the points corresponding to the minima of the effective
potential can be selected by checking the signs of the eigenvalues of the Hessian matrix.
In the case of all positive values, such a point is a minimum; otherwise, it is either a saddle
point or a maximum. In a practical calculation, this method works very well while the
effective potential is a “good” potential with a large gradient around the minimum point,
but the method becomes less efficient or even fails to give out the minima when the effective
potential becomes very flat, such as the effective potential near the CEP. Apart from the
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above standard method to explore the minima of the effective potential [69], for the physical
interest in the present study, we propose an alternative method to find the minima of the
effective potential based on a geometric approach, especially the local minima existed in
the potential.

For the first step, for a potential with more than one-order parameters V(Φ), suppose
we already know one of the minima of the potential, namely Φ̄ = (ϕ̄1, ϕ̄2, . . . , ϕ̄N). Here,
we suggest choosing the point at the global minimum of the potential because it is easy
to locate by scanning the potential directly in the order parameter space. In what follows,
we denote these values as the expectation values. The standard procedure is described
as follows: (1) The N-dimensional potential can be extremely simplified by treating the
ϕ1 field as a variable while fixing other fields on their expectation values ϕ̄i (i = 2, . . . , N).
Now, the N-dimensional problem has been changed to a one-dimensional problem, and it

is easy to dig up other local minima in the ϕ1 field direction, i.e., ϕ1 = ϕα
1 , ϕ

β
1 , . . .. (2) The ϕ2

field is considered a variable, whereas other fields maintain their expectation values all the
time. Then, the local minima of the effective potential V(ϕ2) can also be found as the case
for a single-order parameter field. These minima of the potential V(ϕ2) are expressed as

ϕ2 = ϕα
2 , ϕ

β
2 , . . .. (3) By using the same algorithm, we can find all minima in the direction of

the ϕ3 field as ϕ3 = ϕα
3 , ϕ

β
3 , . . ., and so on. (4) After obtaining the minima for the potential in

every direction, the landscape of the potential can be roughly reconstructed by combining
the potentials in a different direction all together. In particular, if there is only one minimum
in some directions, those parameters can be discarded and the numbers of the dimension
reduced accordingly.

For the second step, the primary points obtained through the above algorithm in
the first step are not necessarily the true local minima of the potential. To trace a true
local minimum of the potential, we have to increase the dimension of the parameter space
or the number of the order parameter one by one. (1) Starting from the initial point at

V = V(ϕ
α(0)
1 , ϕ2, ϕ̄3, , . . .), by taking the ϕ2 field as a variable, we can find the minima of

the potential when other fields are fixed at ϕα
1 = ϕ

α(0)
1 and ϕi = ϕ̄i for i = 3, . . . , N. Let us

assume one of the minima is ϕ
α(0)
2 . (2) We treat the ϕ1 as a variable when fixing other fields

at ϕ2 = ϕ
α(0)
2 and ϕi = ϕ̄i for i = 3, . . . , N. If one of the minima of the potential at ϕ1 = ϕ

α(1)
1

is equal to the original point at ϕ1 = ϕ
α(0)
1 , we can conclude that the point (ϕ

α(0)
1 , ϕ

α(0)
2 ) at

the (ϕ1, ϕ2) plane is the true local minimum of the potential in the 2-dimensional parameter

space. Otherwise, we need to repeat the first stage again by setting ϕ1 = ϕ
α(1)
1 in the

potential in order to gain ϕ
α(1)
2 . After several iterations, we can luckily arrive at a right

point when the value of the ϕ1 satisfies ϕ
α(k)
1 = ϕ

α(k+1)
1 , then the point (ϕ

α(k)
1 , ϕ

α(k)
2 ) is the

exact local minimum that we are looking for. Otherwise, after several iterations, if the

value of the ϕ
α(k+1)
1 is far away from its previous value at ϕ1 = ϕ

α(k)
1 with the increase in

the number of iteration k, and the starting point (ϕ
α(0)
1 , ϕ

α(0)
2 ) is a saddle point, it should

be discarded accordingly. (3) In the last stage, once we obtain the minimum point in the
ϕ1 and ϕ2 plane, akin to the first and second stages, we can extract the local minimum
of the potential in a 3-dimensional order parameter space by employing the field ϕ3 as a
variable. Ultimately, one by one, step by step, we can gain all minima of the potential in the
full-order parameter space.

4.3. The Tunneling between Two Minima

Generally, for a given potential, it is a tough job to find all minima in the N-dimensional
order parameter space if N ≥ 2. As discussed in the above subsection, we can use two
different algorithms to perform calculations. For the first algorithm, it is straightforward
and easy to apply. The advantage of this algorithm is that we can use it to find all minima
of the potential very efficiently and quickly. However, for some problems, since we do not
know the geometry of the potential, even though we have exact positions of two minima, it
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does not help to find the instanton connected with these two minima. For example, there
is a two-dimensional potential in Figure 2 in ref. [88] that does not have any instanton
solution between these two local minima. On the other side, for the second algorithm
developed by us, it is complicated or even awkward to apply due to the fact that we have
to find a local minimum of the potential step by step. Nevertheless, the reward for such
a sophisticated procedure is that we can change a multi-dimensional problem to a one-
dimensional problem, which is usually easy to solve. More specifically, since the tunneling
occurs in two nearby minima, in the practical calculation, we actually do not need to know
all minima of the potential. These two minima, which are close to each other and can be
connected through the instanton, are more important and crucial. Therefore, to study the
problem of the false vacuum decay, we prefer to adopt the second algorithm to find two
minima living nearby.

To demonstrate the algorithm developed in the above section, we first take an interest-
ing two-dimensional potential which has many minima as a typical example. The potential
which is formerly proposed in ref. [88] has the form

V(ϕ1, ϕ2) = sin(ϕ1 − ϕ2) +
1

2
cos(ϕ1 + ϕ2) + cos 3(ϕ1 + ϕ2) + 2 cos 3(ϕ1 −

ϕ2

2
). (29)

There are many minima in this potential, but we need not know all of them in the
parameter space. What we are interested in are those that are close to each other. Assume
we already know one of the minima at the point p1 = (2.39338, 2.82768), our next task
is to find out the other minimum close to this one. Following the second algorithm
developed above, by taking ϕ1 as a variable, the potential V(ϕ1) has three local minima

at (ϕα
1 = 0.376583, ϕ

β
1 = 2.39338, ϕ

γ
1 = 4.56047), fixing the second-order parameter at

ϕ2 = 2.82768. This implies that there are three local minima in the direction of the ϕ1

field. In the meantime, if we fix ϕ1 = 2.39338, the potential V(ϕ2) displays three other
minima in the direction of the ϕ2 field. There probably exist four local minima around the
point p1. It is worth noting that if we start from the initial point p1, we can only find the
four minimum points around this point; however, if we run over the minimum points in
the potential one by one, the missing counting problem can be resolved and all missing
minimal points can be recovered accordingly. Next, as mentioned in above, the initial point

(ϕ
α(0)
1 = 0.376583, ϕ

α(0)
2 = 2.39338) could not be a true minimum in the potential. We need

to take the ϕ2 as a variable to search the local minima of the potential when fixing the

ϕ1 field at ϕ
α(0)
1 = 0.376583. After a simple calculation, we can find that one of the minima

of the potential is at ϕ
α(1)
2 = 2.74049. Then, by fixing the ϕ2 field at ϕ

α(1)
2 = 2.74049, we can

obtain a minimum point at ϕ
α(1)
1 = 0.376074. Through the iteration method, we can obtain

ϕ
α(2)
2 = 2.74048 and ϕ

α(2)
1 = 0.376074. In this time, since we have ϕ

α(2)
1 = ϕ

α(1)
1 , we can

conclude that the point at p2 = (ϕ
α(2)
1 , ϕ

α(2)
2 ) = (0.376074, 2.74048) is a true local minimum

of the potential in the ϕ1 − ϕ2 plane. Accordingly, the tunneling rate between these two
minima p1 and p2 is described by the system of coupled ordinary differential equations

d2ϕ1

dr2
+

2

r

dϕ1

dr
=

∂V(ϕ1, ϕ2)

∂ϕ1
, (30)

d2ϕ2

dr2
+

2

r

dϕ2

dr
=

∂V(ϕ1, ϕ2)

∂ϕ2
, (31)

with the boundary conditions at lim
r→∞

ϕ(r) = p1 and
dϕ(r)

dr |r=0 = 0 because the point p2 has

a lower potential than p1 and is regarded as a true vacuum.
For a second example, we turn back to our present study. The effective potential

ΩMF(T, µ) in Equation (14) now has three order parameters. Traditionally, it is hard to give
out an intuitive landscape picture of the potential. Hence, it is necessary to simplify a multi-
dimensional problem to a one-dimensional problem. According to the second algorithm,
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for a given temperature and chemical potential, we first find the global minimum of the
effective potential by either solving the gap equations or scanning the effective potential
directly. The exact values of the order parameters in the global minimum of the potential
are called expectation values for the σ, Φ, and Φ

∗ fields. However, the big challenge is to
find the possible local minima near this global one. Following the second algorithm, we
can treat the σ field as a variable, but fix other parameters Φ and Φ

∗ at their expectation
values. The results are depicted in Figure 3. On the contrary, the order parameter Φ can
also be taken as a variable, setting the σ and Φ

∗ fields on their expectation values instead,
as shown in Figure 2. From these figures, it can be found that the local minima of the
effective potential only exist in the direction of the σ field and there is no minimum in both
Φ and Φ

∗ directions. Therefore, we can dissociate one of the equations of motion for the σ
field from a system of three coupled ordinary differential equations very neatly. Since the
effective potentials for the Φ and Φ

∗ fields always exhibit an “U” type, the equations of
motion have two trivial solutions which are the expectation values.

Consequently, the bounce is then a solution to the equation of motion for the σ field
when taking the Φ and Φ

∗ fields on their expectation values

d2σ

dr2
+

2

r

dσ

dr
=

∂ΩMF

∂σ
, (32)

with the boundary conditions lim
r→∞

σ(r) = σF and
dσ(r)

dr |r=0 = 0. Here, σF is the false vacuum

or the local minimum of the effective potential. It is worth noting that our analyses are
different from the previous works in refs. [69,70], where the first-order hadron quark phase
transition is also considered in the three-flavor PQM model. In their works, the jumps
of the order parameters for the strange quark and the Polyakov loop fields were treated
as active variables when the temperature is close to a first-order coexistence line. Based
on the basic picture of the thin-wall approximation, they have parameterized the bounce
solution through the interpolation of two values of the order parameter corresponded to
two minima of the effective potential for four order parameters, i.e., σx for u d quarks,
σy for s quark, Φ, and Φ∗. However, according to our above analyses, the jumps of the
order parameters for the Polyakov loop fields are fake signasl to be taken as a first-order
phase transition. These sudden leaps are induced by the disconnection of the chiral order
parameter σ and do not support the effective potential. Moreover, our analyses are also in
agreement with the results in refs. [21,75,89,90], where the deconfinement phase transition
and the phase transition for the s quark are crossover. Therefore, we would like to treat
the Polyakov loop fields as a background fields rather than the active variables during the
chiral phase transition.

5. Results and Discussion

In this section, a bounce is to be gained by numerically solving the equation of motion
in Equation (32) with the proper boundary conditions, σ → σF as r → ∞ and σ′(0) = 0.
In this case, a three-dimensional problem has been simplified to a one-dimensional problem
when we constrain the order parameter space in the σ field direction. Thus, the numerical
package [88] and the discussions presented in previous studies in the QM model [68] can
be applied straightforwardly.

For a typical first-order phase transition, the effective potential ΩMF in the σ field
direction displays three distinct extrema. One is the potential barrier, and two of them are
the local minima representing the quark and hadron phases, respectively. For convenience,
the quark phase is denoted as σl , whereas the hadron phase is defined as σh. As T = Tc

χ,
these two minima are degenerate; however, with the further increase in the temperature,
the quark phase at σ = σl becomes the absolute minimum of the effective potential and
chiral symmetry is approximately restored for T > Tc

χ. Thus, the quarks lose most of their
constituent masses and become almost massless in this phase. Simultaneously, the other
minimum at σ = σh is the local minimum, and it is taken as a false vacuum. On the other
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side, as the temperature is to drop down from its critical temperature Tc
χ, the hadron phase

at σ = σh is the absolute minimum of the effective potential and should be considered the
true vacuum, whereas the quark phase becomes a metastable state and is treated as a false
vacuum. Since the false vacuum and true vacuum will get flipped when the temperature
goes across to its critical value Tc

χ, σF in the boundary conditions should be set as σF = σl

for T > Tc
χ and σF = σh for T < Tc

χ. Under these boundary conditions, in what follows, we
will divide our studies into two categories: a weak first-order phase transition and a strong
one for the sake of convenience.

5.1. A Weak First-Order Phase Transition

In the region of the weak first-order phase transition when the chemical potential is
less than µc ≃ 309 MeV, as the temperature is lowered from its critical value at Tc

χ, the local
minimum at σ = σl approaches the intervening maximum, then two extrema meet and
form an inflection point at the spinodal temperature Tsp ≡ Tc1. Thus, there only exists
one minimum in the effective potential for T < Tc1. Similar results can also be applied
to the case in another direction of the temperature. When the temperature is larger than
the critical one, Tc

χ, with the increase in the temperature, the local minimum at σ = σh

will move up to the intervening maximum and eventually these two extrema will merge
together at another spinodal temperature Tsp ≡ Tc2 so that only the global minimum
remains for T > Tc2. Correspondingly, when the temperature is among two spinodal
temperatures Tc1 and Tc2, there is a false vacuum. Therefore, there could exist a bounce
solution to connecting the false vacuum and the true vacuum; otherwise, we have only a
trivial solution for the equation of motion, i.e., the expectation value of the order parameter.

For µ = 306 MeV, the exact numerical solutions of the equation of motion (32) are
plotted in the left panel of Figure 5 as T = 40, 41, 44, 46, 47, and 48 MeV when the
temperature is below the coexistence line, T < Tc

χ ≃ 48.9 MeV. Here, the specific boundary
conditions are selected as σ → σl , r → ∞, and dσ(0)/dr = 0. From this figure, as the
temperature is very close to the critical value at T = Tc

χ, the bounce solutions show an
obvious “core” structure with σ ≃ σh inside the bubble, which is separated by a relatively
thin wall from the outside false vacuum at σ ≃ σl . While the temperature approaches
another limit for the existence of the bounce solution, Tc1 ≃ 28 MeV, the bubble profiles
usually become a “coreless” structure due to the fact that the radii of the bubbles are
comparable to the thickness of the walls, and thereby the thin-wall approximation cannot
be applied. On the other side of the coexistence line is T > Tc. The bubble profiles are
obtained by solving the equation of motion (32) with the boundary conditions σ → σh as
r → ∞ and dσ(0)/dr = 0. The results are plotted in the right panel of Figure 5 when taking
the temperatures at T = 49.5, 50, 51, and 52 MeV for µ = 306 MeV. For the temperature
between critical value at Tc

χ ≃ 48.9 MeV and the up spinodal temperature at Tc2 ≃ 52.1
MeV, the bubble profiles exhibit a uniform structure with the true vacuum inside separated
by a relatively thin wall from the outside false vacuum, and only if the temperature is very
close to its critical one at T = Tc

χ, the center of the bubble deviates from its true vacuum
value at σ = σl , largely since the thickness of the bubble wall is of the same order as
the radius.

To give a more specific description of the size of the bubble, the typical radius of the
bounce can be roughly estimated by the maximal value of the first derivative of the σ(r)
field, which gives Rc ≡ |σ′(r)|. It is worth pointing out that this kind of definition of Rc is
rather arbitrary and we should not confuse it with the critical radius Rc defined in the thin-
wall approximation. In the framework of the thin-wall approximation, when the radius is
much larger than the thickness of the bubble wall, characterized by ξ ≃ 1/mσ, the frictional
force 2σ′/r in the equation of motion (32) can be neglected and the three-dimensional
Euclidean action S3 is well approximated by the expression

S3 = 4πr2
Σ −

4

3
πr3ε, (33)
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where ε = Ω(σF)− Ω(σT) is the energy difference between the false vacuum and the true
vacuum. From Equation (33), there is an energy contest between the energy consumption
from the creation of an interface of the bubble and the energy enhancement from the phase
conversion. If the bubble is small, the energy cost is higher than the energy gain, and
the bubble will shrink and disappear. On the contrary, a very large bubble usually reflects
a larger energy increase than the energy cost. Therefore, there must exist a bubble with a
critical size according to the energy competition. The critical radius of the bubble is defined
by the minimization of the action S3 with respect to r as Rc = 2Σ/ε.
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Figure 5. (a) Bubble profiles for different temperatures when fixing the chemical potential at

µ = 306 MeV for T < Tc
χ. From left to right, the curves correspond to T = 40, 41, 44, 46, 47,

and 48 MeV. (b) Bubble profiles for different temperatures when fixing the chemical potential at

µ = 306 MeV for T > Tc
χ. From right to left, the curves correspond to T = 49.5, 50, 51, and 52 MeV.

In Figure 6, typical radii of the bounces as a function of temperature T are obtained
for µ = 306 MeV in the two metastable regions. From this figure, the typical radius goes
to zero at the spinodal line for both cases when the temperature is above or below the
coexistence line. The reason is because the false vacuum is to become unstable and the
phase conversion occurs via the spinodal decomposition process rather than the bubble
nucleation, and hence there is no bounce solution anymore as T → Tsp. This is an obvious
feature of the weak first-order phase transition and it seems this characteristicdoes not
appear in the thin-wall approximation, where the typical radius does not vanish but
only becomes very small [64,91]. However, when the temperature closes in the critical
line at T = Tc

χ, the exact numerical calculation and the thin-wall approximation show
a similar behavior: the radius of the bounce rises up sharply and becomes divergent as
T → Tc

χ. This is due to the fact that the radius of the bounce is inclined to expand very
quicklyas the temperature T approaches Tc

χ. When the radius is large enough, the thin-wall
approximation is applied, and we can end up with the consequence, Rc ∼ Rc. From the
definition of the critical radius R, noting that ε → 0 as T → Tc

χ, the radius of the bounce
should also become divergent when T = Tc

χ.
The surface tension plays a central role in determining the process of the bubble

nucleation because it represents the amount of energy per unit of area in the creation
of an interface between the two vacua. Once the bounce solutions have been obtained,
the surface tension of the nucleation bubble can be calculated using the definition in
Equation (25). In Figure 7, we show the surface tension σ as a function of the temperature
T for µ = 306 MeV as the temperature is among the up and down spinodal lines. For both
cases, as the temperature leads to its spinodal critical value Tsp, the surface tension reduces
to zero since there is no potential barrier and we can only have a trivial solution to the
equation of motion at that moment. Oppositely, the surface tension Σ shows quite different
behavior in the hadron phase by comparison with that of the quark phase. When the
temperature is below the coexistence line, with the increase in the temperature, the surface
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tension Σ starts to grow from zero dramatically and then reaches a maximal value at a
certain temperature. After that it will inflect and bend downwards. Such a nontrivial
behavior of the surface tension was also reported for a first-order hadron-quark phase
transition in the QM model [68,91] and the Friedberg–Lee model [85], where the exact
numerical method has been applied. However, the non-monotonic feature of the surface
tension did not appear in the studies based on the thin-wall approximation [69,71,84], so
the inflection point of the surface tension is usually taken as a hint for the breakdown
of the thin-wall approximation. On the contrary, when T > Tc

χ, the surface tension Σ

demonstrates a trivial character with a simply monotonic function. With the decrease in the
temperature, it will grow up almost linearly from zero to the largest value as T → Tc

χ, given
that there is the biggest potential barrier and the smallest free energy difference between
two vacua at this point.

38 40 42 44 46 48 50
0

20

40

60

80

100

R
C

T(MeV)

 µ=306 MeV

(a)

48 49 50 51 52 53
0

20

40

60

80

100

R
C

T(MeV)

 µ=306 MeV

(b)

Figure 6. (a) The radius of the bounce as a function of temperature T when T < Tc
χ for µ = 306 MeV.

(b) The radius of the bounce as a function of temperature T when T > Tc
χ for µ = 306 MeV.
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Figure 7. (a) Surface tension as a function of temperature T when T < Tc
χ for µ = 306 MeV.

(b) Surface tension as a function of temperature T when T > Tc
χ for µ = 306 MeV.

To estimate the nucleation rate for homogeneous nucleation theory, the largest contri-
bution to the result is the action S3 evaluated at a saddle point because it has the exponential
form in Equation (26), while the prefactor in the nucleation rate that comes from fluctuations
around the saddle-point solution is of negligible numerical contribution in comparison
with the term e−S3/T . It can then be estimated based on dimensional analysis, especially
when the saddle-point action S3/T is much larger than the unit one. In order to display the
saddle-point action due to the appearance of the bounce, the S3/T exponent as a function
of temperature T for µ = 306 MeV is plotted in Figure 8 when the temperature is between
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the up and down spinodal critical temperatures. From this figure, the action will begin
at the zero value as T = Tsp, then it will rise up very quickly and become divergent as
T → Tc

χ. Therefore, in the largestarea of the two metastable regions between the spinodal
lines, the action S3/T is larger than the unit one and the decay of the false vacuum is
still exponentially suppressed by the saddle-point action. Unless the temperature is very
close to the spinodal critical value Tsp, the action of S3/T is to go across and below to the
unit one. This indicates that the hadron phase can survive in the region above the critical
temperature line until the temperature is close to the up spinodal line. The quark phase
can also live in the region below the critical temperature down to another spinodal line.
Thus, we believe it is better to use the spinodal line to separate the phase boundary of
the quark and hadron phases rather than the critical coexistence line for the first-order
phase transition.
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Figure 8. (a) The saddle-point action evaluated on the bounce as a function of temperature T when

T < Tc
χ for µ = 306 MeV. (b) The saddle-point action evaluated on the bounce as a function of

temperature T when T > Tc
χ for µ = 306 MeV.

5.2. A Strong First-Order Phase Transition

As discussed in the above section, when the chemical potential µ is larger than
µc ≃ 309 MeV, there always exists a potential barrier even when the temperature goes
to zero for T < Tc

χ ≃ 28.8 MeV. Normally, we denote a phase conversion induced by an
effective potential with a zero-temperature potential barrier as a strong first-order phase
transition. Taking µ = 310 MeV as a typical example of a strong first-order hadron quark
phase transition, we have numerically solved the equation of motion (32) with the proper
boundary conditions, and the results have been depicted in Figure 9. From the picture,
as the temperature is close to the critical temperature Tc

χ, the bounce solution usually
exhibits a “core” structure with the true vacuum inside and the false vacuum outside and
the two vacua separated by a thin wall. This implies that the thin-wall approximation
is applicable for the temperature near the critical temperature. On the contrary, when
the system is far away from the critical coexistence line, the bounce solution will lose
its core structure due to the fact that the “frictional” term in the equation of motion (32)
becomes more and more important and can not be discarded as the decrease in the radius
r. Moreover, since there is no spinodal line for the strong first-order phase transition, we
can inevitably have the bounce solution which is the continued saddle-point field profile
connecting two vacua when T < Tc

χ. On the other side of the critical coexistence line as
T > Tc

χ, with the increase in temperature, the potential barrier begins to decline and finally
disappear at Tsp ≃ 41.4 MeV. Hence, there is only one minimum in the effective potential,
and thereby we have no bounce solution anymore as T ≥ Tsp.
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Figure 9. (a) Bubble profiles for different temperatures when fixing the chemical potential at

µ = 310 MeV for T < Tc
χ. From left to right, the curves correspond to T = 14, 15, 19, 20, 21,

22, and 23 MeV. (b) Bubble profiles for different temperatures when fixing the chemical potential

at µ = 310 MeV for T > Tc
χ. From right to left, the curves correspond to T = 30, 32, 34, 36, 38, and

40 MeV.

In order to reveal the size of the bounce evolving with the temperature for a strong
first-order phase transition, we have drawn the radius Rc of the bounce as a function of the
temperature T both in the hadron phase and in the quark phase as depicted in Figure 10.
In a traditional quark phase as T > Tc

χ, while the temperature reduces from the spinodal
line to a critical value, the radius of the bounce will increase sharply and become divergent
at T = Tc

χ for the reason that two vacua become degenerate and the energy difference
ε is zero at that moment. On the other hand, when the system is located at the hadron
phase, with the ascent of the temperature, the radius of the bounce climbs very slowly and
steadily until the temperature is near a specific temperature somewhere at T ≃ 20 MeV.
After that temperature, it will raise up dramatically and diverge at T = Tc

χ. This is an
apparent difference between a strong first-order phase transition and a weak first-order
phase transition in the hadron quark phase conversion.
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Figure 10. (a) The radius of the bounce as a function of temperature T when T < Tc
χ for µ = 310 MeV.

(b) The radius of the bounce as a function of temperature T when T > Tc
χ for µ = 310 MeV.

Similar to the case of a weak first-order phase transition, the surface tension in the
hadron phase also presents non-monotonic behavior, as shown in Figure 11. With the
increase in temperature, it will grow up slightly and arrive at a maximum at a certain
temperature. After that, it starts decreasing rapidly to a minimum Σ(T) ∼ 3 MeV/fm2
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at T = Tc
χ. As mentioned in the previous discussion, the turning point of the surface

in general suggests a limit for the application of the thin-wall approximation. However,
from Figure 11, there are two visible differences between a strong and a weak first-order
phase transition. One is that the surface tension Σ(T) as a function of the temperature does
not go to zero with the reduction in the temperature by reason of the existence of the bounce
for a strong first-order phase transition as T < Tc

χ. Meanwhile, according to Figure 10, since
the radius of the bounce is almost a constant when the temperature is less than 18 MeV,
the surface tension carries an analogous property: it does not change too much with the
reduction in the temperature when the temperature is smaller than 18 MeV. Furthermore,
the other obvious difference is that the value of the surface tension at µ = 310 MeV is much
larger than that of a weak first-order phase transition at µ = 306 MeV. As T = Tc

χ, the former

is about 3 MeV/fm2, whereas the latter is only about half of that around 1.6 MeV/fm2.
Therefore, we can conclude that the surface tension will increase with the enhancement of
the chemical potential due to the fact that a large chemical potential usually hints at a large
potential barrier.
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Figure 11. (a) Surface tension as a function of temperature T when T < Tc
χ for µ = 310 MeV.

(b) Surface tension as a function of temperature T when T > Tc
χ for µ = 310 MeV.

In a quark phase as T > Tc
χ, the surface tension as a function of temperature T has

been demonstrated in the right panel of Figure 11. It is shown that the surface tension Σ(T)
monotonically goes down from a maximum ∼3 MeV/fm2 to zero when the temperature
ascends up to the spinodal line at T = Tsp, where there is no potential barrier so there is
no longer any bounce solution. This trivial behavior of the surface tension is one of the
obvious characteristics of a weak first-order phase transition.

When fixing the chemical potential at µ = 310 MeV, the resulting plot of the S3/T
action as a function of the temperature T due to the appearance of the bounce is shown
in Figure 12 for both cases of the hadron phase and quark phase. From the left panel
of Figure 12, for a strong first-order phase transition, the S3/T action reduces first to a
minimal point at T ∼ 18 MeV, then it will rise up quickly and intend to diverge again as
T → Tc

χ. The non-monotonic behavior of the S3/T action is one of the special characteristics
of a strong first-order phase transition, which has been also reported in recent studies on
a strong cosmological first-order phase transition [92] and a strong hadron quark phase
transition [68,85]. Moreover, since the S3/T action evaluated on the bounce persistently
satisfies the requirement of S3/T ≫ 1 in the hadron phase, the nucleation rate of the hadron
state inside the homogeneous quark phase has been exponentially suppressed in the whole
region of the conversional hadron phase, even though the temperature is below the critical
coexistence line at T = Tc

χ. This is a meaningful result because if the system is cooling down
from very high energy, where the initial state is well prepared as a free quark, the system
is more likely to remain in a quark state rather than a hadron state in spite of the fact that
the temperature is below the critical coexistence line at T = Tc

χ for µ > µc. In other words,
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for an area of a strong first-order phase transition in a phase diagram, it is better to treat
the system as a quark matter instead of a hadron matter when T ≤ Tc

χ.
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Figure 12. (a) The saddle-point action evaluated on the bounce as a function of temperature T when

T < Tc
χ for µ = 310 MeV. (b) The saddle-point action evaluated on the bounce as a function of

temperature T when T > Tc
χ for µ = 310 MeV.

When the temperature is above the critical coexistence line at T = Tc
χ, the hadron

quark phase conversion has been changed to a weak first-order phase transition by reason
of the disappearance of the potential barrier as T → Tsp. In the right panel of Figure 12,
the S3/T action as a function of the temperature T due to the appearance of the bounce
is illustrated when the chemical potential is fixed at µ = 310 MeV. Now, it is a weak
first-order phase conversion, and the evolution of the S3/T action with the temperature
exhibits a similar result as the prior cases at µ = 306 MeV. The S3/T action tends to become
divergent when the temperature approaches the critical one at T = Tc

χ; however, in the
opposite direction, as the temperature inclines to the spinodal line, it will descend to zero
dramatically. Unless the temperature is very close to the spinodal line, the action fulfills a
critical condition such that S3/T > 1. As a result, the hadron quark phase transition dose
not take place exactly at the critical temperature, but up to a certain temperature near the
spinodal line.

6. Summary

In this work, we have investigated the dynamics of a first-order phase transition
via homogeneous thermal nucleation within the Polyakov quark-meson model at finite
temperature and density. In the framework of the mean field approximation, the effec-
tive potential with the inclusion of a fermionic vacuum term at finite temperature and
chemical potential has been calculated and the phase diagram together with the two
metastable regions has been obtained. It is found that at low density, the chiral phase
transition is a crossover; however, it will terminate and change into a first-order phase
transition at high chemical potential around the critical endpoint (CEP). By using a geo-
metric method of the effective potential, we can precisely locate the position of the CEP at
(TE, µE) ≃ (301.4 MeV, 62.1 MeV). It is worth pointing out that there is a large uncertainty
about the position of CEP for theoretical studies, and it is scattered over the region of
the baryonic chemical potential at µB = 200 ∼ 1100 MeV [49,50]. Similar to the QM and
PQM models, both the NJL and PNJL models predict a very large chemical potential at
µ = µB/3 ≃ 300 MeV, whereas the functional methods, such as the functional renormal-
ization group (FRG) approach and the Dyson–Schwinger (DS) equations, give out their
critical value only around at µB = 200∼220 MeV [93]. Since Lattice QCD calculations are
not so reliable at high density, to identify and locate the CEP in the heavy-ion collision
experiment is very crucial and important. Furthermore, in the region of a first-order phase
transition, apart from the coexistence line at T = Tc

χ, two additional spinodal lines that are
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usually ignored in the standard phase diagram of QCD have been also presented explicitly.
From the phase diagram in Figure 4, we find that the distance of these two spinodal lines
declines with the temperature descent. In the end, the spinodal lines will join together with
the coexistence line and terminate by the same point at the CEP, where the order of phase
transition is of second order.

In order to study instanton tunneling between two vacua, we need to search all minima
of the effective potential. Aside from a standard way through the calculation of the Hessian
matrix, we provided an alternative method by constraining the effective potential to the
mesonic field direction and the Polyakov loop field direction in the parameter space for
the sake of simplification. The advantage of our geometric method is that it supplies an
intuitive and vivid way to find two minima nearby which actually have the tunneling
solution. Moreover, we can change the complicated N-dimensional problem into a typical
one-dimensional problem, which will make it much easier to solve the equation of motion to
obtain the bounce solution both in an exact numerical method and an analytically thin-wall
approximation. Of course, the method in the present study has two main shortages. For the
first one, the procedure of finding the minima is usually troublesome and sophisticated,
especially when the potential has many order parameter variables and many minima, since
we have to explore all minima of the effective potential one by one. For the second, there
is an opportunity to miss some minima around a specific point of the effective potential,
but the absent minima can be recovered again if we run over all the established minima.
Fortunately, although there are three order parameters in the PQM model, the effective
potential of the model has merely two minima and the instanton tunneling is more likely to
happen in the σ field direction rather than the Polyakov loop field directions. Accordingly,
the system of the three coupled equations of motion for the bounce has been dissociated,
and what should be solved is an ordinary differential equation of the σ field in Equation (32).
Thus, the problem has been simplified completely and the method developed in a single
field can be applied directly.

With the appropriate boundary conditions, the exact bubble profiles were numerically
calculated for a first-order phase transition. For convenience, our discussions have been
separated into a weak first-order hadron quark conversion and a strong one. For both cases,
when the temperature is close to the critical coexistence line at T = Tc

χ, the bubble profile
exhibits a core structure. The kernel of the bubble stays in a true vacuum at σ = σT , while it
is separated from a homogeneous false vacuum at σ = σF by a thin wall. On the other side,
when the temperature isfar away from the critical one, the bubble profile tends to display a
coreless structure since the thickness of the bubble wall has the same order of its radius.
To give more detailed information about the size of the bounce, the typical radius has been
roughly estimated by the maximal value of the first derivative of the bubble profile. For a
weak first-order phase transition, as T → Tc

χ, the radius Rc goes to the infinite, whereas it
will drop down to zero very quickly as the temperature approaches the spinodal line. For a
strong first-order phase transition as µ > µc and T < Tc

χ, the radius becomes divergent as
T → Tc

χ, but it remains almost a constant with the descent of the temperature. This is one
of the special features of a strong first-order phase transition.

Surface tension plays an important role during the procedure of bubble nucleation
because it is an amount of the energy cost per unit area in production of the interface
between two vacua. In the scenario of a weak first-order phase transition, the surface
tension reaches to a relative larger value at T = Tc

χ, and then will continuously reduce
to zero as T → Tsp. On the other hand, in the context of a strong first-order phase
transition, the surface tension is likely to keep its constant value as T → 0 since there is
no spinodal temperature any longer. Just like the QM model [68], the inclusion of the
deconfinement effect does not change the surface tension dramatically, it remains at a
very small value below 4 MeV. This result is consistent with the predictionsof most QCD
effective models, such as the MIT bag model [94], the Friedberg–Lee model [85], the chiral
nucleon-meson model [24], and the NJL model [95–97]. Such a smallvalue of the surface
tension would not only favor a mixed phase in the cores of neutron stars, but also provide a
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possibly observable signal of the QCD first-order phase transition during the core-collapse
supernova explosions in astrophysics.

Similarly, the S3/T action evaluated on the bounce solution shows a common charac-
teristic for a weak first-order phase transition. It is divergent as the critical temperature
closes in, while in the opposite direction, it will fall down dramatically to zero as T → Tsp.
Considering the exponential dependence of the nucleation rate on the S3/T action, the de-
cay of the false vacuum is still exponentially suppressed when S3/T > 1. Hence, the false
vacuum could live as a metastable state for a relatively long time so long as the system lies
between the up and low spinodal lines. Only when the temperature is very close to the
spinodal critical line, the S3/T will go through the unity 1. As a result, the phase boundary
for a weak first-order phase transition should be resized accordingly with the results in the
present work. Moreover, for a strong first-order phase transition, the situation will become
worse since there is no down spinodal line, and the nucleation rate of the true vacuum is
always exponentially suppressed as S3/T ≫ 1. In other words, a “conventional” hadron
matter below the critical coexistence line for µ > µc should also be potentially treated as a
quark matter. Such a conclusion, together with the low values of the surface tension, will
favor a more complicated structure of strong interaction matter in high density.
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