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This thesis uses a variety of numerical and statistical techniques to perform high pre-

cision calculations in high energy physics using quantum field theory. It introduces the

experimental motivation for the calculation of B meson form factors and includes a

discussion of previous work. It then describes the modern theoretical framework de-

scribing these phenomena, outlining quantum chromodynamics and electroweak theory,

and then illustrating the procedure of gauge fixing, the quantum effective action and

background field gauge which is required for subsequent perturbative work. Details of

the basic methodology of lattice quantum field theory are given as well as the specific

formulation of the relativistic and nonrelativistic models used in this work to describe

quantum chromodynamics. A comprehensive calculation of the zero recoil B → D∗ form

factor is then presented, using state of the art lattice techniques with relativistic sea

charm quarks and light sea quarks with correct physical masses, leading to a discussion

of the dominant sources of uncertainty and possible resolutions of experimental tensions.

Also included is preliminary work towards the full calculation of nonzero recoil matrix

elements, with the aim of outlining possible future work. Finally, this thesis presents

the computation of parameters correcting for radiative one loop phenomena and correc-

tions to the kinetic coupling parameters in nonrelativistic quantum chromodynamics in

order to achieve a desirable level of precision in future calculations. This is done using

Monte-Carlo integration to evaluate integrals from diagrams generated using automated

lattice perturbation theory in background field gauge in order to match the coefficients

of the effective action between the lattice and the continuum.
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Chapter 1

Introduction

The standard model of particle physics provides a description of the universe in the form

of an SU(3) × SU(2) × U(1) gauge theory coupling six flavours of spin half fermionic

quarks and six leptons. Nuclear physics is encoded in the SU(3) sector known as Quan-

tum chromodynamics (QCD). Of the six quarks, in this thesis, we only concern ourselves

with the five lightest, the up, down, strange, charm and bottom, and neglect the top

quark which is so relatively massive as to decouple from the physics of interest. The

electroweak SU(2) × U(1) sector of the standard model couples different flavours of

quarks and leptons and lepton neutrinos to W± and Z bosons as well as coupling the

electrically charged quarks and leptons to photons.

When doing perturbative calculations in quantum field theory at energy E, away

from the renormalisation scale, µ, one encounters logarithms going like the ratio E/µ

which become large when E is much larger or smaller than µ. One could renormalise

the theory at a scale µ′ closer to E in order to avoid such logarithms. A more powerful

procedure is to use the value of the renormalised coupling defined at µ as an initial

condition from which to calculate a new coupling defined at the new scale µ′ This is

done by integrating the β−function β(g) = ∂
lnµ
g. In QCD β(g) is negative and therefore

as µ increases the magnitude of g decreases and the uncertainty coming from higher

order diagrams in perturbation theory decreases. This is known as asymptotic freedom

and the perturbative framework has been used extensively in high energy applications

at scales well above ΛQCD where the QCD coupling is small.

Flavour changing interactions, which we focus on here, are perturbative in the elec-

troweak interaction but often require the computation of matrix elements of composite

quark states when the interaction takes place in the context of mesons. These occur at

9



10 Chapter 1. Introduction

energies at which perturbation theory is ineffective and require nonperturbative methods

in order to be calculated and related to experiments.

More recently improvements in available computational power have made nonpertur-

bative calculations possible within the framework of lattice QCD, originally outlined

by Wilson [12]. Such calculations have seen much success, accurately computing such

quantities as hadronic masses [13], form factors [14] and decay constants [15], to name

a few. As the procedure of lattice regularisation involves moving the system of interest

from a continuus infinite space-time to a discrete four dimensional grid of finite size, it

is obviously important that the physics of interest take place on scales which are not so

large as to wrap around the grid nor too small to be resolved by the lattice spacing. The

first restriction is often avoided by taking artificially large up and down quark masses

such that the pion correlation length is small compared to the box. This is a frequent

compromise made by lattice theorists e.g. [16, 17], though calculations done with phys-

ical or extremely close pion masses are becoming more commonplace [18, 19, 20, 21].

The latter restriction is less straightforward to overcome, since in order for the lattice to

remain the same physical volume the number of points must grow as a−4, where a is the

lattice spacing. A proven method of overcoming this problem is to use an effective the-

ory for heavy quarks, such as HQET [22] or NRQCD. In this thesis I will use NRQCD,

performing a number of the required perturbative matching calculations, together with

physical lattices using the modern lattice formalism of highly improved staggered quarks

to compute form factors of particular physical interest to a high degree of precision.



Chapter 2

Continuum High Energy Physics

This chapter outlines the aspects of the standard model in the continuum relevant

to the physics we will later investigate on the lattice. It explains the origins of the

unitarity of the CKM matrix and gives examples of current constraints. Continuing

to discuss quantum chromodynamics, a crucial ingredient in making predictions for

meson interactions and decays, it outlines the continuum procedure of gauge fixing. It

then discusses the quantum effective action and background field gauge, both of which

will be utilised in the lattice perturbation theory calculation of one loop improvement

parameters in NRQCD in chapter 5.

2.1 Electroweak Theory and the CKM Matrix

The SU(2) gauge interaction of the standard model couples exclusively to left handed

fermions. We write

Qi
L = (uiL, d

i
L) (2.1)

where the i index indicates the generation of quark. The electroweak coupling part of

the quark action is given via the gauge covariant derivative by

Lweak,quark =
∑
i=1,2,3

Q̄i
L
/DQi

L + ūiR /Du
i
R + d̄iR /Dd

i
R. (2.2)

Dµ is the SU(2)× U(1)Υ gauge covariant derivative given by

Dµ = ∂µ + igW a
µ ta + ig′BµΥ, (2.3)

11



12 Chapter 2. Continuum High Energy Physics

where W is the SU(2) gauge field, ta are the SU(2) generators, B is the U(1)Υ gauge

field and Υ is the U(1)Υ hypercharge generator. The higgs-quark couplings are given by

Lquark,φ =
∑
i,j

λijd Q̄
i
Lφd

j
R + λiju ε

αβQ̄i,α
L φ†βujR + hermitian conjugate, (2.4)

where the higgs field φ is a scalar SU(2) doublet with hypercharge 1/2 and the Yukawa

couplings λu and λd are real.

After electroweak symmetry breaking, we transform the quark fields between genera-

tions according to the unitary transformation

uiR →
∑
j

U ij
R u

j
R (2.5)

diR →
∑
j

Dij
Rd

j
R (2.6)

uiL →
∑
j

U ij
L u

j
L (2.7)

diL →
∑
j

Dij
L d

j
L (2.8)

with

U †LλuUR = Λu (2.9)

D†LλdDR = Λd (2.10)

in order to obtain an action with mass terms diagonal in flavour. The flavour changing

currents present in
∑

i=1,2,3 Q̄
i
L
/DQi

L are not invariant under this transformation to the

“mass basis” and transform as

jµ = ūiLγ
µdiL → ūjL(U †LDL)ijγµdjL (2.11)

where the appearance of the new matrix U †LDL = VCKM, known as the Cabibbo-

Kobyashi-Maskawa matrix, is responsible for the tree level flavour changing weak in-

teraction. By construction VCKM is unitary, meaning that experimental results for each
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element must obey strong constraints if the standard model is to be consistent. The

CKM matrix does not have as many degrees of freedom as one would naively expect of a

3× 3 unitary matrix, this is a consequence of the fact that the standard model is invari-

ant under global U(1) transformations done on any quark field. Such transformations

eliminate relative phases: as such the CKM matrix has four degrees of freedom.
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2.2 QCD Action

Quantum chromodynamics is the sector of the standard model which aims to reproduce

the dynamics of quarks and the particles built from them known as hadrons. It is an

SU(3) Yang-Mills gauge theory coupling the six flavours of spin half quarks to spin one

gluons. The fields ‘live’ on Minkowski spacetime and the Lagrangian is given by

LQCD = −1

2
tr [FµνF

µν ] +
∑
f

ψ̄f (iγ
µDµ −mf )ψf . (2.12)

The covariant derivative is given by

Dµ =
∂

∂xµ
+ igAaµta (2.13)

where ta form a hermitian, traceless basis for the Lie algebra of SU(3) and Fµν = F a
µνta

with F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcA

b
µA

c
ν and fabc are structure constants ifabcta = [tb, tc].

This lagrangian is tailored so that we may change ψ and ψ̄ locally by an element of the

gauge group SU(3) and also make a related change to the gauge fields such that the

lagrangian remains invariant. Considering a local, infinitesimal change in the fermion

fields ψ → (1+iεata)ψ, ψ̄ → ψ̄(1−iεata) we see that the fermionic part of the lagrangian

transforms like

Lq →
∑
f

ψ̄f (1− iεata)(iγµ∂µ − gγµAaµta −mf )(1 + iεata)ψf

=
∑
f

ψ̄f (iγ
µ∂µ − gγµAaµta −mf − γµ∂µεata + gγµfabcA

b
µε
c)ψf . (2.14)

In order to remain invariant we must therefore also make the change

Aaµ → Aaµ −
1

g
∂µε

a + fabcA
b
µε
c. (2.15)

This gauge transformation, and the invariance of quantities under it, forms a useful tool

allowing us to simplify many calculations considerably.
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2.2.1 Gauge fixing

When we construct quantum field theories using the field integral approach as our tem-

plate for quantisation we begin by postulating a lagrangian, which we have done, and

then proceed to introduce a functional field integral over the fields. The functional inte-

gral is usually defined in terms of Feynman diagrams constructed from the propagators

coming from the quadratic part of the action and the expansion in terms of coupling

parameters of the potential terms. For gauge fields there is an obvious problem, which is

that the infinite possible gauge transformations on a given field configuration contribute

equally. What we really want to do is integrate over gauge configurations modulo gauge

transformations. Using the identity

1 =

∫
D[λ]δ(G[Aλ])det

(δG[Aλ]

δλ

)
, (2.16)

where Aλ is the field A gauge transformed with the local gauge parameter λ, we find∫
D[A]eiS[A]

=

∫
D[α]

∫
D[A]eiS[A]δ(G[Aα])det

(δG[Aα]

δα

)
. (2.17)

One typically takes a general gauge condition ∂µAaµ = ωa(x) such that G[A] = ∂µAaµ −

ωa(x) . The delta function and determinant can then be expressed in terms of bosonic

and fermionic integrals

δ(G[Aα]) =

∫
DheihG[Aα] (2.18)

det
(δG[Aα]

δα

)
=

∫
D[c̄, c]e−ic̄

δG[Aα]
δα

c (2.19)

where c and c̄ are grassman valued fields in the adjoint representation and h is a real

field, also in the adjoint representation. These additional fields are known as Faddeev-

Popov ghosts. Using the gauge condition ∂µAaµ = ωa(x) it is common to integrate over

ω(x) with gaussian weight
∫
D[ω]e−

ω2

2ε , doing so we find the expression for the gauge
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fixed field integral, in terms of the constant gauge parameter ε,∫
D[A]eiS[A]δ(G[Aα])det

(δG[Aα]

δα

)
= C

∫
D[A, h, c̄, c]ei(S[A]− ε

2
(ha)2+ha(∂µAaµ)−c̄∂µDµc). (2.20)
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2.3 Quantum Effective Action

When I come to perform the perturbative calculation of improvement factors for the

NRQCD action it will be convenient to work with the effective action in background

field gauge. I discuss these here, in the context of a general theory. The starting point

is the expression of the generating functional of the theory in terms of an exponential

of connected diagrams

Z[J ] =

∫
D[φ]eiS[φ]+i

∫
dxφJ = eiW [J ]. (2.21)

Since Z[J ], the sum of all connected and disconnected diagrams, is equal to the expo-

nential of the sum of connected diagrams, iW [J ] is the sum of all connected vacuum

diagrams in the presence of the current J . We define the expectation of φ in the presence

of J

φJ =
δ

δJ
W [J ]. (2.22)

We can invert this to find the current J for which φJ = φ′, which we call Jφ′ , and define

the quantum effective action via the Legendre transformation

Γ[φ] = W [Jφ]−
∫
dxφJφ. (2.23)

One may show [23], by considering the use of Γ in place of S in (2.21) with coefficient

g−1, that

iW [J ] =

∫
connected,tree

D[φ]ei[Γ[φ]+
∫
dxJφ] (2.24)

where, as in [23], the integral is to be interpreted in the perturbative diagrammatic

sense. The connected graphs contributing to iW [J ] can be seen as tree graphs whose

vertices are one particle irreducible (1PI) subgraphs. For (2.24) to hold the vertices in

Γ[φ] must be 1PI connected graphs with φ in place of external lines. As such we may

write

iΓ[φ0] =

∫
connected,1PI

D[φ]eiS[φ+φ0]. (2.25)
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2.3.1 Background Field Gauge

In this section I discuss the background field gauge and show, following [23], how the

background field effective action is invariant under residual gauge transformations of the

background fields.

Consider the QCD action in the presence of a classical background field denoted by

a tilde. Integrating out h, taking A→ A+ Ã, ψ → ψ + ψ̃, c→ c+ c̃ and c̄→ c̄+ ˜̄c and

choosing the gauge fixing functional

G[A]a = D̃µA
µa, D̃µA

µa = ∂µA
µa + igfabcÃ

b
µA

µc (2.26)

we see that the gauge fixing term (D̃µA
µ)2 is invariant under the infinitesimal transfor-

mations

Ãaµ → Ãa
′

µ = Ãaµ −
1

g
∂µε

a + fabcε
bÃcµ

Aaµ → Aa
′

µ = Aaµ + fabcε
bAcµ. (2.27)

Taken together, these implement a normal gauge transformation on the field A+ Ã, so

provided the background and quantum fermionic fields also transform as

ψ → ψ + itaε
aψ

ψ̃ → ψ̃ + itaε
aψ̃ (2.28)

the original action will be invariant. Invariance of the ghost action requires we also take

ca → ca − fabcεbcc

c̃a → c̃a − fabcεbc̃c

c̄a → c̄a − fabcεbc̄c

˜̄ca → ˜̄ca − fabcεb˜̄cc. (2.29)

Referring to the background fields as q̃ and the quantum fields as q we may compute

the quantum effective action in the presence of background fields q̃, Γ̃[q0, q̃],

Γ̃[q0, q̃] =

∫
1PI,connected

D[q]eiSGI [q0+q+q̃]+iSGF [q0+q,q̃]. (2.30)
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Note that we can also compute the conventional effective action Γ[q0, q̃], treating q̃ as

simply a gauge parameter

Γ[q0, q̃] =

∫
1PI,connected

D[q]eiSGI [q0+q]+iSGF [q0+q−q̃,q̃] (2.31)

where the field q̃ here only enters in the gauge fixing term and the quantum fields q are

the full fields. From these definitions it is clear that Γ̃[0, q̃] = Γ[q̃, q̃]. Using (2.23) we

write
δΓ̃[q0, q̃]

δq̃
=
δW̃ [J, q̃]

δq̃

∣∣∣
J=Jq0q̃

=
−i

Z̃[J, q̃]

δZ̃[J, q̃]

δq̃

∣∣∣
J=Jq0q̃

. (2.32)

Considering the transformations (2.27), (2.28) and (2.29), which we now write as q →

q + εF and q̃ → q̃ + εG, and using (2.21) together with the invariance of the measure

we find

Z̃[J, q̃ + εG] =

∫
D[q + εF ]eiS[q+q̃+ε(F+G),B+εG]+iJ(q+εF ) (2.33)

=

∫
D[q]eiS[q+q̃,q̃]+J(q+εF ) = Z̃[J, q̃] + iZ̃ε〈F 〉JJ (2.34)

and hence

G
δZ̃[J, q̃]

δq̃
= iZ̃〈F 〉JJ (2.35)

and

G
δΓ̃[q0, q̃]

δq̃
= 〈F 〉Jq0q̃Jq0q̃ = −〈F 〉Jq0q̃

δΓ̃[q0, q̃]

δq0

. (2.36)

The functions F are linear in the fields q0 and hence on right hand side of (2.36) 〈F 〉Jq0q̃ =

F (q0). The background field effective action is therefore invariant under the original

transformations applied to the background and effective fields:

G
δΓ̃[q0, q̃]

δq̃
+ F

δΓ̃[q0, q̃]

δq0

= 0. (2.37)

If we set q0 = 0 such that F = 0 then these transformations are just conventional

gauge transformations on the background field B. The condition that Γ̃[0, q̃] = Γ[q̃, q̃]

be gauge invariant restricts the number of terms we need to consider when matching
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continuum QCD to lattice theories, which we do by matching the coefficients of terms

in the background effective action Γ[q̃, q̃].

Following the notation of Itzykson and Zuber [24] the effective action takes the form

Γ[A, c, c̄, ψ, ψ̄] = Tr
{1

2
Z−1

3 F 2 +
λ

2
f(A)2 − gZ−1

1 Fµν [A
µ, Aν ] +

g2

2
Z−1

4 [Aµ, Aν ][A
µ, Aν ]

+Z ′−1
3 ∂µc̄∂

µc+ g∂µc̄bA
µ
accfabc − Z−1

2 ψ̄ /∂ψ + gZ−1
1F ψ̄ /Aψ − Z

−1
m ψ̄ψ

}
+ higher order terms

(2.38)

where f(A) is a general linear gauge fixing functional and the trace is understood to

be over implicit indices. Since renormalisation is linear it carries across to the effective

action. The renormalised effective fields and couplings are given by

AR = Z
− 1

2
3 A, gR = gZ−1

1F Z2Z
1
2
3

ψR = Z
− 1

2
2 ψ, ψ̄R = Z

− 1
2

2 ψ̄

cR = Z
′− 1

2
3 c, c̄R = Z

′− 1
2

3 c̄

together with the following ward identies [24]

Z4

Z1

=
Z1

Z3

=
Z ′1
Z ′3

=
Z1F

Z2

= C. (2.39)

In background field gauge the restriction of the effective action to gauge invariant

operators requires Z1F = Z2 and that, as in QED, the coupling is only renormalised by

the gauge field renormalisation. The combination gA = gRAR therefore renormalises

automatically and the vertex functions only require renormalisation due to the fermion

fields. The result is that in BFG the 1PI vertex function is UV finite.
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Lattice Field Theory

3.1 Correlation Functions and the Path Integral

In order to motivate the formulation of lattice field theory I will begin by discussing the

relation between correlation functions of operators and the Euclidean path integral. This

relation is fundamental in extracting physical information from lattice QCD and will be

discussed later when I come to extract matrix elements and energies from correlation

functions computed nonperturbatively using the path integral. Beginning with the (time

ordered) trace of some product of operators and, expressing the trace in the basis of

eigenstates of Ĥ, we find

1

ZT
tr
[
e−TĤÔ1(t1)Ô2(t2)...

]
=

∑∞
n=0〈n|Ô1(t1)Ô2(t2)...|n〉e−T (En−E0)∑∞

n=0 e
−T (En−E0)

(3.1)

where

Ôi(ti) = e−tiĤÔi(0)etiĤ (3.2)

and

ZT = tr[e−TĤ ].

In the limit that T → ∞ all terms in the sum in the denominator go to zero, except

for the n = 0 term which gives 1. Similarly in the numerator terms with n 6= 0

are exponentially suppressed. This gives the first necessary relation for relating the

Euclidean path integral to correlation functions

lim
T→∞

1

ZT
tr
[
e−TĤÔ1(t1)Ô2(t2)...

]
= 〈0|Ô1(t1)Ô2(t2)...|0〉. (3.3)

21
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The second relation involves relating the trace to a path integral. For lattice QCD

the relation is

1

Z
tr
[
e−TĤÔ1(t1)Ô2(t2)...

]
=

1

Z

∫
D[ψ, ψ̄, U ]e−SE [ψ,ψ̄,U ]O1(t1)O2(t2)... (3.4)

where the Oi(ti) on the right hand side are now functionals of the field variables ψ, ψ̄ and

U , U is in SU(3) and ψ and ψ̄ are grassman valued. The functional SE is the Euclidean

action and may be found one of two ways; either by wick rotating the Minkowski action

or by considering the derivation of (3.4). For the sake of clarity I present the latter.

3.1.1 Euclidean Field Integral for Free Fermions

We begin considering the trace on the left hand side of (3.4), with the Dirac Hamiltonian

operator expressed in terms of the anticommuting fields operators ψ̂ and ψ̂†

Ĥ =

∫
dxψ̂†γ̂0

(
−iγ̂i∂i +m

)
ψ̂ (3.5)

and we have that {
ψ̂a(x), ψ̂†b(y)

}
= δa,bδ(x− y). (3.6)

We define ˆ̄ψ = ψ̂†γ̂0, as well as coherent states

|φ〉 = e−
∫
dxφα(x)ψ̂†α(x)|−〉 (3.7)

〈φ| = 〈−|e
∫
dxφ†α(x)ψ̂α (3.8)

with ψ̂|−〉 = 〈−|ψ̂† = 0, φ and φ† independent grassman variables and with the sum

over repeated indices implicit such that

ψ̂α(x)|φ〉 = φα(x)|φ〉 (3.9)

〈φ| ˆ̄ψα(x) = 〈φ|φ̄α(x) (3.10)

〈φ′|φ〉 = e
∫
dxφ′†α(x)φα(x) (3.11)∫

D
[
φ†, φ

]
e−

∫
dxφ†αφα|φ〉〈φ| = 1. (3.12)
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The state |−〉 annihilated by the field operator may seem suspect at first, but if one

considers the deconstruction of the field operator into particle and antiparticle creation

and annihilation operators then one finds it is simply the state in which every particle

momentum and spin state is empty and every antiparticle state is full. The next step

involves breaking the trace in (3.4) into the product of many time steps of length ∆t.

using the completeness relation (3.12) we have

tr
[
e−TĤÔ1(t1)Ô2(t2)...

]
= (3.13)∫ ∏

i

D[φ†(ti), φ(ti)]e−
∫
φ†α(ti)φα(ti)

∑
n

〈n|φ(tN)〉〈φ(tN)|e−∆tĤ |φ(tN−1)〉...

× 〈φ(tk)|e−∆tĤÔk(t
k)...|n〉 =∫ ∏

i

D[φ†(ti), φ(ti)]e−
∫
φ†α(ti)φα(ti)

∑
n

〈φ(tN)|e−∆tĤ |φ(tN−1)〉...

× 〈φ(tk)|e−∆tĤÔk(t
k)...|n〉〈n| − φ(tN)〉

where in the final line the minus sign originates from the commutation of 〈n|φ(tN)〉,

defined in (3.7) as grassman valued, through the final 〈φ(t0)|n〉. This may be seen by

considering the state |n〉 as a sum over different products of field operators applied to

the state |−〉
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〈n|φ(tN)〉 =〈−|ψ̂(x1)ψ̂(x2)...|φ(tN)〉

=φ(x1, t
N)φ(x2, t

N)... (3.14)

〈φ(t0)|n〉 =〈φ(t0)|...ψ̂†(x2)ψ̂†(x1)|−〉

=...φ†(x2, t
0)φ†(x1, t

0) (3.15)

〈n|φ(tN)〉〈φ(t0)|n〉 =

=φ(x1, t
N)φ(x2, t

N)...φ†(x2, t
0)φ†(x1, t

0)

=φ(x1, t
N)φ†(x1, t

0)φ(x2, t
N)φ†(x2, t

0)...

=...φ†(x2, t
0)(−φ(x2, t

N))φ†(x1, t
0)(−φ(x1, t

N))

=...φ†(x2, t
0)φ†(x1, t

0)(−φ(x1, t
N))(−φ(x2, t

N))...

=〈φ(t0)|n〉〈n| − φ(tN)〉. (3.16)

The intermediate 〈φ|e−∆tĤ |φ′〉 terms do not contribute a sign as they are even products

of grassman numbers and therefore commute with 〈n|φ〉. The minus sign within the

rightmost state in (3.13), |−φ(tN)〉, tells us that when performing the fermionic integral

with finite time extent T we must take φ(x, T ) = −φ(x, 0). This requirement is known

as taking antiperiodic timelike boundary conditions.

In the limit ∆t→∞ we may evaluate the exponential of the Hamiltonian against the

coherent states, as well as using (3.11) to evaluate the inner products, to find

tr
[
e−TĤÔ1(t1)Ô2(t2)...

]
= (3.17)

lim
∆t→∞

∫
φ(tN )=−φ(t0)

∏
i

D[φ†(ti), φ(ti)]O1[φ†, φ]O2[φ†, φ]...

× e−
∑
i ∆t(ψ†(ti)(ψ(ti)−φ(ti−1))/∆t+H[φ†(ti),φ(ti+1)])

=

∫
φ(T )=−φ(0)

D[φ†, φ]O1O2...e
−

∫
dtφ†∂tφ+H[φ†,φ]

=

∫
φ(T )=−φ(0)

D[φ̄, φ]O1O2...e
−

∫
dtφ̄(γ̂0∂t−iγ̂i∂i+m)φ.
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Defining Euclidean gamma matrices γi = −iγ̂i, γ0 = γ̂0 we identify the Euclidean action

SE[φ̄, φ] =

∫
d4xφ̄(γµ∂µ +m)φ (3.18)

and arrive at

tr
[
e−TĤÔ1(t1)Ô2(t2)...

]
=

∫
φ(T )=−φ(0)

D[φ̄, φ]O1O2...e
−SE [φ̄,φ]. (3.19)

This is just (3.4) without the gauge fields U . One can also arrive at this expression

for euclidean correlation functions by starting with the standard Minkowski action and

making the replacement x0 = −ix4.

3.1.2 Lattice Regularisation

In order to perform calculations using (3.4) and (3.3) we must find some way of eval-

uating the path integral. In conventional perturbation theory this would be done by

expanding in the couplings, the coefficients of the greater than quadratic terms in the

action, and by adding counterterms to the action to cancel off infinities coming from

loops in some regularisation scheme. In lattice QCD, as the name suggests, we mod-

ify the space so that instead of being infinite the dimension of the integral is finite.

We typically take a hypercubic lattice with Nx points in each of the spatial directions

and Nt points in the timelike direction with isotropic lattice spacing a. In our simula-

tions we take periodic boundary conditions in time when computing propagators e.g.

φ(x, T ) = φ(x, 0) as opposed to (3.13). For the mesons we are concerned with here we

may neglect effects coming from this choice. For the D∗ meson for example, on our

lattices, MD∗T ≈ 60 is typical and so uncertainties coming from choosing periodic time

boundary conditions are extremely small.

The simplest action one typically thinks of which will naively reproduce the Dirac

action in the limit a → 0 on the lattice is found by approximating the derivative as a

finite difference.
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Snaive[ψ̄, ψ] =
∑
x

a4ψ̄(x)(γi∆i +m0)ψ(x) (3.20)

where

∆iψ(x) =
(
ψ(x+ îa)− ψ(x− îa)

)
/2a. (3.21)

The Dirac operator now takes the form of a finite matrix which can be inverted exactly.

If we write this naive lattice action as

Snaive[ψ̄, ψ] =
∑
x

a4ψ̄(x)(γi∆i +m0)ψ(x) =
∑
x,y

ψ̄(x)D(x, y)ψ(y) (3.22)

then we can compute correlation functions of fermion operators exactly. Suppose we

have some correlation function

〈0| ˆ̄ψ(x1)ψ̂(x2)...|0〉 =
1

Z

∫
D[ψ̄, ψ]ψ̄(x1)ψ(x2)...e−ψ̄Dψ (3.23)

where we now include the antisymmetric time boundary conditions in the operator

D. The path integral on the right hand side of (3.23) may be evaluated analytically,

the result is found by replacing pairs of ψ(x) and ψ̄(y) with D−1(x, y), and including

appropriate factors of the determinant. The reason for this can be seen by writing the

path integral as a set of derivatives applied to the generating functional,

1

Z

∫
D[ψ̄, ψ]ψ̄(x1)ψ(x2)...e−ψ̄Dψ

=
1

Z

∫
D[ψ̄, ψ]

d

dν(x1)

d

dν(x2)
...e−ψ̄Dψ+ν̄ψ−ψ̄ν∣∣

ν=0

=
1

Z

d

dν(x1)

d

dν(x2)
...

∫
D[ψ̄, ψ]e−(ψ̄−ν̄D−1)D(ψ+D−1ν)−ν̄D−1ν

∣∣
ν=0

=
1

Z

d

dν(x1)

d

dν(x2)
...Det[D]e−ν̄D

−1ν
∣∣
ν=0

. (3.24)

So we may evaluate fermionic correlation functions provided we can invert D.

3.1.3 Bosons

Constructing a Euclidean action for the gauge fields using coherent states is complicated

somewhat by the requirement that we must fix the gauge. For lattice calculations it is
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also not particularly useful as the discretisation of space would require us to use gauge

fields valued in the Lie algebra in the form of complicated nonlinear operators in order to

maintain gauge invariance. Instead we take the field integral as a quantisation procedure

and choose a suitable Euclidean gauge action on the lattice with fields U in the gauge

group which transform in such a way as to make the gauge invariance of the total

action clear. Of course, the physics we aim to describe is all encoded in the Hilbert

space of states and the Hamiltonian. The requirement that a theory defined in terms

of a Euclidean action can be continued back to minkowski space and that a positive

semi-definite self adjoint Hamiltionian exists can be expressed as the requirement that

the Euclidean correlation functions obey reflection positivity [25]. There are additional

subtleties associated with using a lattice, such as choosing whether to reflect about a

point or the midpoint of a link, though I will not discuss these here.

As for performing the integral over the bosonic gauge fields let us consider the general

case in which D(x, y, U) is some function of the gauge fields U and we have some gauge

action Sg[U ]. The integral over the gauge fields is a large multidimensional integral over

real variables for which exact evaluation is practically infeasible. We instead perform the

field integral over gauge fields using monte carlo methods. This is done by generating a

random distribution of field configurations for which the probability of each configuration

is

P (U) ∝ Det[D(U)]e−Sg[U ]. (3.25)

We can then calculate correlation functions, including gauge fields, as expectation values

of our contractions of D−1 on the set of gauge configurations

〈ψ̄(x1)ψ(x2)...〉 =

∫
D[U ]Det[D(U)]e−Sg[U ]〈ψ̄(x1)ψ(x2)...〉U ≈

1

n

∑
n

〈ψ̄(x1)ψ(x2)...〉Un

(3.26)

where we use the subscript U on the correlation function to indicate that only the path

integral over fermionic fields is evaluated and the sum is over n field configurations

distributed according to (3.25).
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3.1.4 Correlation functions

The expectation of the mean on the right hand side of (3.26) is just the full correlation

function, however since we evaluate it for only n field configurations what we have has

an associated error. This error has physical significance, which I will discuss shortly, for

now let us just note that for some pair of operators O and O† it goes like

σ2 =
1

n

∑
n

(〈OO†〉Un)2 −

(
1

n

∑
n

〈OO†〉Un

)2

(3.27)

and that the left part of the right hand side of (3.27), (〈OO†〉U)2, is one of the contrac-

tions we would have to evaluate in computing 〈OO†OO†〉.

Returning to (3.3), we now have all the tools required to compute 〈0|Ô1(t1)Ô2(t2)...|0〉,

provided we take T large enough. For QCD the exponential suppression in (3.1) is

governed by the lowest energy eigenstate above the ground state. As such we can use

(3.3) without taking the limit as long as TMπ � 1.

In order to extract physical information from (3.3) we again use the eigenstates of the

Hamiltonian as a basis. Let us consider a single operator and its hermitian conjugate,

with the same quantum numbers as some meson of interest, Ô = ˆ̄ψaΓψ̂b

〈0|Ô(t1)Ô†(0)|0〉 =
∑
n

〈0|Ô(t1)|n〉〈n|Ô†(0)|0〉

=
∑
n

〈0|Ô(0)|n〉e−t1En〈n|Ô†(0)|0〉

=
∑
n

AnA
∗
ne
−t1En . (3.28)

We can now compute the correlation function for many values of t1, using the methods

described above, and fit our data using Bayesian statistics against a template fit function

of the form ∑
n

AnA
∗
ne
−t1En . (3.29)

We can also compute matrix elements, provided we also compute two point functions

for each meson operator as above, by inserting a basis of energy eigenstates in a similar

manner.
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Considering (3.28) the variance (3.27) will contain a piece that has the form:∑
n

〈0|Ô(0)Ô(0)|n〉e−t1E′n〈n|Ô†(0)Ô†(0)|0〉. (3.30)

where E ′n is the energy of the nth state created by the combined operator Ô†(0)Ô†(0).

Taking t1 to be large we find that the error divided by the correlator signal goes like

e
1
2
t1(E′0−2E0). (3.31)

This means that for large times if the operator Ô†Ô† overlaps with a state with energy

less than twice the energy of the lowest energy state Ô† creates then the fractional error

of our correlation function will grow exponentially. This is usually the case, and it

restricts the size of correlation functions we can use to extract information.

It is important to understand that it is not possible to directly compute S matrix

elements using the lattice since we do not compute analytical expressions for Euclidean

correlation functions. Our fits include large errors for the contributions of high energy

states which while exponentially suppressed in the Euclidean theory would contribute

some relevant unknown phase in the Minkowski theory. Indirect determinations of

scattering information from lattice data is still possible, but one must look at the finite

volume dependence of mass spectra. Lüscher showed that the shift in energy spectrum of

two identical particles with zero total momentum confined to a finite periodic volume is

proportional to the elastic scattering amplitude [26]. This work has since been extended

considerably, for example [27, 28, 29, 30].
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3.2 Symanzik Improvement

If we consider higher orders in the expansion of the naive discretisation of the Dirac

operator (3.32) we find

∆iψ(x) =
(
ψ(x+ îa)− ψ(x− îa)

)
/2a =

∂

∂xi
ψ(x) +

a2

6

∂3

∂x3
i

ψ(x) +O(a4). (3.32)

There is no reason why we should not add terms to our discrete derivative in order to

cancel these additional higher order a2 terms. We add a term which approximates a

third derivative

Simproved[ψ̄, ψ] =
∑
x

a4ψ̄(x)(γi(∆i −
a2

6
∆3
i ) +m0)ψ(x). (3.33)

Such an addition generates higher order corrections, atO(a4) in this case, which could be

removed by introducing a higher derivative term. While in principle one could continue

this improvement indefinitely it is not typically done beyond a few orders since moving

to the quantum theory, as will be discussed later, generates n-loop corrections at lower

orders in a2. In the work done here I deal with 1-loop improved fermionic actions. The

two loop corrections potentially enter at O(α2a2). Typically α ≈ aΛQCD, as such it does

not make sense to perform the tree level Symanzik improvement beyond O(a4).
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3.3 Gauge Fields on the Lattice

3.3.1 Gauge covariant derivatives

For the purpose of introducing gauge fields let us consider the naively discretised Dirac

action (3.20)

Snaive[ψ̄, ψ] =
∑
x

a4ψ̄(x)(γi∆i +m0)ψ(x). (3.34)

All of the considerations made here will generalise to the improved fermion actions to be

discussed later. We wish to find an action with gauge fields that is invariant under local

SU(3) transformations ψ(x) → Ω(x)ψ(x), ψ̄(x) → ψ̄(x)Ω†(x) with Ω in SU(3). The

mass term is already invariant, only the kinetic term requires modification. This term

mixes the field at one lattice site with those at adjacent sites. In order to be invariant

we must insert something that looks like a gauge transporter, in the continuum this

would be the path ordered exponential of the gauge fields

UP (x, y) = Pexp

[
ig

∫ x

y

dx′ · A(x′)

]
(3.35)

which transforms as UP (x, y) → Ω(x)UP (x, y)Ω†(y). In the limit that x and y are very

close, seperated by the lattice spacing a in the direction µ, this is approximately

Uµ(y) = exp [iagAµ(y)] . (3.36)

We therefore investigate the gauge covariant derivative

Diψ(x) =
(
U †i (x)ψ(x+ îa)− Ui(x− îa)ψ(x− îa)

)
/2a. (3.37)

Taking the limit a→ 0 we find

lim
a→0

Diψ(x) = [(1− igaAi)(ψ + a∂iψ)− (1 + igaAi)(ψ − a∂iψ)] /2a

= ∂iψ(x)− igAi(x)ψ(x) (3.38)
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which is just the continuum covariant derivative of ψ. This method of producing a gauge

covariant lattice derivative, using the gauge transported finite difference, will be used in

the highly improved actions discussed later, though we will also apply smearings to the

gauge links in order to suppress unwanted high energy modes.

3.3.2 Wilson Gauge Action

We require an action for U which reproduces the continuum gauge action, together with

some appropriate measure, such that taken together (and ideally individually) they are

gauge invariant. The simplest action one can take for these gauge fields is a trace over

a plaquette summed over possible routes,

Sg[U ] =
∑
x

∑
µ<ν

2Nc

g2

[
1− 1

Nc

Re trUµν(x)

]
. (3.39)

The plaquette is defined as

Uµν = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν(x). (3.40)

This object acts to transport gauge transformations at x to x+ µ then to x+ µ+ ν to

x + ν then back to x. It closely resembles a curvature tensor and is effectively a small

discrete wilson loop. Expanding this in a and derivatives as before we find that

Sg[U ] =
1

2

∑
x

a4
∑
µ,ν

tr
[
Fµν(x)2

]
+O(a2) (3.41)

which is exactly what we want. This simple action is known as the Wilson gauge action

[31].



3.3. Gauge Fields on the Lattice 33

3.3.3 Symanzik Improved gauge action

Note that since there are no gauge invariant dimension five operators, corrections to

(3.41) must enter at order O(a2). The corresponding dimension six operators are [32]:

O1 =
∑
µν

tr [DµFµνDµFµν ] ,

O2 =
∑
µνσ

tr [DµFνσDµFνσ] ,

O3 =
∑
µνσ

tr [DµFµσDνFνσ] . (3.42)

Dimension six gauge link operators which allow cancellation of the O(a2) discretisation

errors are added to the lattice action. The resultant action is [33]

S =
∑
x

2Nc

g2

[
c0P0(x) + c1P1(x) + c2P2(x)

]
P0(x) =

∑
µ<ν

[
1− 1

Nc

Re tr
(
Uµν(x)

)]
P1(x) =

∑
µ<ν

[
1− 1

Nc

Re tr
(
Uµµν(x) + Uµνν(x)

)]
P2(x) =

∑
µ<ν<ρ

[
1− 1

Nc

Re tr
(
Uµνρ(x) + Uµρν(x) + Uρµν(x) + Uρ−µν(x)

)]
(3.43)

where −µ indicates a Hermitian conjugated gauge link. At tree level the coefficients

take values c0 = 5
3
, c1 = − 1

12
, c2 = 0.

3.3.4 Quantum Gauge fields

In order to discuss the gauge action in a quantum sense we must first define a measure

of integration for the gauge links. The unique measure for a compact group is given by

the Haar measure [31]. If we write the gauge fields as Aaµta where now Aaµ are real fields

and ta are a basis for the Lie algebra then we can define a metric ds2 on the Lie group
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as

ds2 = tr

[
∂Uµ(Aµ)

∂Aaµ
U †µ(Aµ)

(∂Uµ(Aµ)

∂Abµ
U †µ(Aµ)

)†]
dAaµdA

b
µ (3.44)

we may interpret the trace on the right hand side of 3.44 as a metric tensor

gab = tr

[
∂Uµ(Aµ)

∂Aaµ
U †µ(Aµ)

(∂Uµ(Aµ)

∂Abµ
U †µ(Aµ)

)†]
. (3.45)

The integral over Uµ is then equal to an integral over Aµ in the Lie algebra with gauge

invariant measure ∫
DUµ =

∫ √
det[g(Aµ)]

∏
a

dAaµ. (3.46)

In relation to section 2.3.1 the background field gauge is then given by taking Uµ(x) =

Qµ(x)Bµ(x), with Qµ and Bµ also in SU(3). The background field gauge transformation

on these fields is realised asQµ(x)→ Ω(x)Qµ(x)Ω†(x) andBµ(x)→ Ω(x)Bµ(x)Ω†(x+µ).

Since the Haar measure is invariant under the conjugation transformation applied to Q

the resultant background effective action is invariant under the remaining transforma-

tions of B, which are themselves just gauge transformations.

3.3.5 Tadpole Improvement

During the development of lattice QCD there was a period during which lattice perturba-

tion theory and nonperturbative numerical calculations were found to be in disagreement

when calculating short distance quantities that one would expect to agree [34]. The per-

turbative coupling used in such calculations was the bare coupling αlatt = g2/4π. This

was motivated by the idea that in a cutoff theory the running coupling evaluated at the

cutoff scale, αs(π/a), was typically roughly equal to the bare coupling, αlatt. In practice

however this is not the case, αs(π/a) is much larger than αlatt [35]. This is known as

the tadpole problem. We constructed our action (3.43) considering the classical expan-

sion of Uµ(y) = exp [iaAµ(y)]. Higher orders in a of the expansion of this exponential,

which contain equally many powers of A, contain divergences coming from diagrams in

which multiple gauge fields are contracted together which exactly cancel the factors of

a. As such rather than being suppressed by O(αnsa
2n) such terms contribute at O(αns ).
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Fortunately tadpole contributions are generally process independent [35] and so can be

removed by considering a rescaling of the gauge links

U → U

u0

. (3.47)

Several common choices for u0 exist, one definition is u0 = 〈1
3
Tr(Uµ)〉 which requires

gauge fixing since the gauge links are not gauge invariant. A more convenient gauge

invariant choice is u0 = 〈1
3
Tr(Uµν)〉

1
4 where Uµν is the plaquette [33]. One can see

immediately from the plaquette term in the gauge action that this replacement takes

αlatt → α′latt = αlatt

u40
, which is generally much closer to αs(π/a).

3.3.6 The tadpole and symanzik improved Luscher and Weisz

gauge action

Since the lattice theory omits modes with momenta p > π/a it can be considered as an

effective field theory taken with a cutoff of π/a. As with any effective field theory the

coefficients in the action must be functions of the cutoff so that physical observables

remain fixed. This dependence enters through the lattice spacing dependence of the

coupling, whose bare value determines the measured lattice spacing in our simulations

[25]. QCD is asymptotically free, so the dependence on the cutoff can be calculated

perturbatively provided π/a is well above ΛQCD, the typical QCD scale. The corrections,

which enter at O(a2αs) and change the coefficients ci at O(αs), are calculated in [36],

where also the one loop contributions of the highly improved staggered quark (HISQ)

action [37] to the coefficients ci are included. Subsuming the factor of c0/u
4
0 into the

gauge coupling we define β0 = 2c0Nc/(g
2u4

0). The coefficients in (3.43) multiplying P1

and P2 respectively are, to one loop,

β1 = − β0

20u2
0

[
1−

(12π

5
c

(1)
0 + 48πc

(1)
1 + 2u

(1)
0

)
αs

]
β2 =

12πβ0

5u2
0

c
(1)
2 αs. (3.48)
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These coefficients are modified by sea quark loops. For the HISQ action, which will be

discussed later, with Nf massless quarks the modified coefficients are

β1 = − β0

20u2
0

[1 + (0.4805− 0.899(52)Nf )αs]

β2 = −β0

u2
0

[0.033− 0.0121(23)Nf ]αs (3.49)

The procedure for generating gauge fields is then to first choose a principal parameter

β0, as well as a starting guess for u0. Then using the action 3.43 with coefficients

given by (3.49) measure u0 and adjust the value used in the action accordingly. This

tuning procedure can be done very quickly using small lattice volumes [35]. Then using

a larger lattice, whose dimensions are chosen with the aim of achieving the desired

physical dimensions based on the expected lattice spacing predicted by the running of

β, measure the lattice spacing a.
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3.4 Fermions on the Lattice

3.4.1 The doubling problem

Let us turn to discuss the naively discretised fermionic action, the problems illustrated

will be the same regardless of whether the Dirac operator is Symanzik improved so for

clarity I will discuss the simple action (3.20)

Snaive[ψ̄, ψ] =
∑
x

a4ψ̄(x)(γi∆i +m0)ψ(x). (3.50)

The fermionic propagator is then given by, in momentum space,

D−1(p) =
m− i

a

∑
µ γµsin(pµa)

m2 + 1
a2

∑
µ sin(pµa)2

. (3.51)

Provided |p| � π/a the limit a→ 0 recovers the continuum Dirac propagator. However

since −π/a < p < π/a in practical simulations, with opposite edges of the hypercubic

Brillouin zone identified, instead taking a→ 0 yields a propagator with poles in p0 near

0 with p2 = −m2 as well as near multiples of π/a at the corners of the hypercube.

The simplest process through which an on shell particle at one corner of the Brillouin

zone may change corner is the emission, and absorption by another particle which must

also change taste, of a gluon with momenta p ≈ ξπ/a. Such a gluon would be highly

virtual and perturbative at current lattice spacings. The interaction therefore looks like

an effective four quark operator which should be suppressed by p2a2 following from the

fact that a four quark operator has dimension six and p is the typical external momenta.

Therefore, in the continuum limit, the sixteen tastes (one for each possible vector ξπ/a)

decouple and one has fifteen more physical quarks than were intended. In 1981 Nielsen

and Ninomiya formulated a no-go theorem [38] which states that it is not possible to

remove the unphysical species while maintaining a chirally invariant, doubler-free, local,

translationally invariant, action.

Instead of removing the unphysical tastes at the expense of losing approximate chiral

symmetry or the introduction of highly nonlocal operators we instead aim to account
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for them. In order to do so we take the sixteenth root of the fermion determinant and

wherever we contract quarks in a loop we must divide the loop by sixteen. The validity

of this trick has been discussed in much depth [39] and while there is no conclusive proof

that taking the root before taking the continuum limit is valid there is a great deal of

evidence that this procedure reproduces continuum QCD, see for example [37, 40, 5, 41,

10, 42].
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3.4.2 Highly Improved Staggered Quarks

Taste can also be considered in terms of doubling operators acting on the naive fermion

fields [37]. The naive discretisation:

S =
∑
x

ψ̄(x)(γ ·∆(U) +m0)ψ(x) (3.52)

with

∆µ(U)ψ(x) =
1

2a

(
Uµ(x)ψ(x+ µ̂)− U †µ(x− µ̂)ψ(x− µ̂)

)
(3.53)

has a discrete, space time dependent symmetry

ψ(x)→ Bξ(x)ψ(x)

ψ̄(x)→ ψ̄(x)B†ξ(x) (3.54)

where

Bξ(x) = γ ξ̄(−1)ξ·x (3.55)

and

γm =
3∏
i=0

(γi)mi

m<
µ =

∑
η<µ

mη mod 2

m>
µ =

∑
η>µ

mη mod 2

mµ =
∑
η 6=µ

mη mod 2 = m>
µ +m<

µ . (3.56)

In momentum space this then gives the relation for the naive quark propagator:

SF (p, q) = Bξ(0)SF (p+ ξπ, q + ξπ)Bξ(0) (3.57)

telling us that the naive quark propagator contains only one sixteenth the information

we would naively expect. One can diagonalise the naive action in spin indices using a
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position dependent transformation of the fields. There are several choices for such a

transformation, here I use:

ψ(x)→ Ω(x)χ(x)

ψ̄(x)→ χ̄(x)Ω†(x) (3.58)

with Ω(x) = γx this yields the action

S =
∑
x,i

χ̄i(x)(α(x) ·∆(U) +m0)χi(x) (3.59)

with propagator

〈χκ(x)χ̄δ(y)〉 = s(x, y)δκδ. (3.60)

This operation, known as staggering, simplifies calculations considerably. We need only

do the inversion for a single component of χ and the full naive propagator can be

reconstructed trivially by inserting Ω matrices:

SF (x, y)αβ = 〈ψα(x)ψ̄β(y)〉 = Ωακ(x)〈χκ(x)χ̄δ(y)〉Ω†δβ(y) = Ωαδ(x)Ω†δβ(y)s(x, y).

(3.61)

Since in the naive case we take the sixteenth root, using the staggered action with only

one component retained we take only the fourth root of the determinant. In order to

remove discretisation errors and taste exchange violations the operator ∆µ(U) used in

simulations is more elaborate. It retains the feature that ∆µ(U)ψ(x) only contains fields

ψ(x′) located an odd number of lattice sites away from x in the µ direction, ensuring

that the spin-diagonalisation (3.59) still works. We also smear the gauge fields in order

to suppress high momentum gluons which change taste. The full, Highly Improved

Staggered SU(3) covariant derivative operator is [37]:

DHISQ
µ = ∆µ(W )− a2

6
(1 + ε)∆3

µ(X) (3.62)
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with

Wµ = FHISQ
µ Uµ (3.63)

Xµ = UFµUµ

FHISQ
µ =

(
Fµ −

∑
ρ 6=µ

a2δ2
ρ

2

)
UFµ

Fµ =
∏
ρ 6=µ

(
1 +

a2δ
(2)
ρ

4

)
symm

where ‘symm’ indicates that the product ordering is symmetrised in ρ, U is a reuinitarisa-

tion, δρ approximates a covariant first derivative on the gauge links and δ
(2)
ρ approximates

a second covariant derivative:

δρUµ(x) =
1

a

(
Uρ(x)Uµ(x+ aρ̂)U †µ(x+ aµ̂)

− U †ρ(x− aρ̂)Uµ(x− aρ̂)Uµ(x− aρ̂+ aµ̂)
)

δ(2)
ρ Uµ(x) =

1

a2

(
Uρ(x)Uµ(x+ aρ̂)U †µ(x+ aµ̂)

+ U †ρ(x− aρ̂)Uµ(x− aρ̂)Uµ(x− aρ̂+ aµ̂)− 2Uµ(x)
)
. (3.64)

The third covariant derivative term originates from the Symanzik improvement dis-

cussed in section 3.2 and removes order a2 discretisation errors coming from the approxi-

mation of the derivative. Without the epsilon term, tree level discretisation errors appear

going as (apµ)4. For the mesons we are interested in quarks are typically nonrelativis-

tic, and so the error is dominated by the energy, and ultimately the mass contribution

going as (am)4. For light quarks this is negligible, but for charm physics this must be

included since current lattice spacings have amc ≈ 0.5. The epsilon term can be calcu-

lated straightforwardly as an expansion in (am)2 by requiring the tree level dispersion

relation limp→0
E2(p)−m2

p2
= 1 to a given order. The expansion is [37]:

ε = −27

40
(am)2 +

327

1120
(am)4 − 5843

53760
(am)6 +O((am)8). (3.65)

The smearings Fµ (unrelated to smearings in the context of sources and sinks) applied to

the gauge links remove taste changing interactions, since δ
(2)
ρ ≈ −4/a2 when applied to
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a link carrying momentum qρ ≈ π/a. The µ direction needn’t be smeared as the original

interaction vanishes in this case anyway. The smearing Fµ introduces new O(a2) errors.

These are removed by replacing Fµ with [43]

FASQTAD
µ = Fµ −

∑
ρ6=µ

a2δ2
ρ

4
(3.66)

where FASQTAD
µ is the gauge link smearing employed in the widely used a-squared tad-

pole improved action. Note that similar errors originating from the smearing on the

third derivative term needn’t be corrected as these errors go as O(a4). A single smear-

ing introduces perpendicular gauge links which are themselves unsmeared. To further

suppress taste exchange we use multiple smearings. Once such smearing is:

FASQTAD
µ UFASQTAD

µ

where U is a reunitarisation. This combination ensures that each smearing does not

introduce any additional O(a2) errors and that there is no growth in the size of two

gluon vertices, since the unitarision ensures it is bounded by unity. In the HISQ operator

defined in (3.63) we have moved the entirety of the O(a2) corrections to the outermost

smearing.

In order to check the taste exchange violations in HISQ one can check for taste-

splittings of the pion masses. However since there are more allowed effective taste

exchange vertices than there are degenerate pion multiplets this does not guarantee

the theory is free of taste exchange. A better check is the explicit calculation of the

effective couplings of the vertices which would be required to remove taste exchange

interactions. These are given in [37] in which it is clear that the HISQ action is a

significant improvement over the older ASQTAD action.

The use of multiple flavours of staggered quark as well as NRQCD heavy quarks,

which I will discuss shortly, complicates the form of correlation functions described

in section 3.1.4. Suppose we are interested in the two point function made from the
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operator O =
∑

x ψ̄ΓΦ(x) where Φ is an NRQCD quark

〈O(t)O†(0)〉 =
1

Z

∫
D[ψ,Φ, U ]

∑
x,y

ψ̄ΓΦ(t, x)Φ̄Γψ(0, y)e−S[Φ,ψ,U ]. (3.67)

Fourier transforming the fields we have

〈O(t)O†(0)〉 =
1

Z

∫
D[ψ,Φ, U ]

∑
~p,p0,q0

ei(p0−q0)tψ̄p0,~pΓΦq0,~p

∑
~p′,p′0,q

′
0

Φ̄p′0,
~p′Γψq′0,~p′

e−S[Φ,ψ,U ]

(3.68)

=

∫
e−S[Φ,ψ,U ]

∑
p,q0,ξ

ei(p0+ξ0−q0)tψ̄p0+ξ0,~p+~ξ
ΓΦq0,~p+~ξ

∑
p,q′0,ζ

Φ̄q′0,
~p′+~ζΓψp′0+ζ0,~p′+~ζ

(3.69)

where in the second line we have broken the sum over naive quark momenta, p and p′,

into sixteenths of the hypercubic brillouin zone labelled by ξ and ζ. The heavy quark

resists large energies which drive it far off shell, therefore the dominant contribution to

this sum will come from the pieces in which ~ξ = ~ζ = 0 by virtue of the spatial sum. If

we suppose that our action does indeed contain no taste changing interactions then also

we will have that ξ0 = ζ0. The Correlation function then has the form

〈O(t)O†(0)〉 =

∫
e−S[Φ,ψ,U ]

∑
p,q0,ξ0

ei(p0+ξ0−q0)tψ̄p0+ξ0,~pΓΦq0,~p

∑
p,q′0

Φ̄q′0,
~p′Γψp′0+ξ0,~p′

. (3.70)

when ξ0 = 0 this is just the correlation function of the normal low energy quark. In

order to interpret the correlation function when ξ = π/a we must use the doubling

symmetry, which leaves the action invariant, to transform the high energy quark field

to a low energy field. The doubling symmetry (3.54) has the momentum space form

ψp →Mκψp+κπ/a (3.71)

ψ̄p → ψ̄p+κπ/aM
†
κ (3.72)

where Mκ = γκ̄. The ξ0 = π/a piece of the two point function then has the form

〈O(t)O†(0)〉|ξ0=π/a = (−1)t
∫
e−S[Φ,ψ,U ]

∑
p,q0

ei(p0−q0)tψ̄p0,~pM
†
ξΓΦq0,~p

∑
p,q′0

Φ̄q′0,
~p′ΓMξψp′0,~p′

(3.73)
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which is just a normal two point function constructed from low energy quarks made using

the operator Φ̄Γγ0γ5ψ, with the additional complication that there is now a factor of

(−1)t oscillating in time. Were we to have used two different tastes of staggered quark

the calculation would have been very similar, except that the oscillating piece would

come from the case when exactly one quark contributes a nonzero taste piece and the

case in which both are doubled gives us the extra factor of two bringing the total up

to sixteen times the naively expected correlation function that we expect from the loop

made of staggered quarks. In such a case the phases made from conjugating the meson

spin matrix Γ by Mκ cancel between the source and sink.
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3.5 NRQCD

While the u, d, s and c quarks can be modelled well using the relativistic HISQ action,

the b quark is too heavy. The lattice can only be expected to simulate physics involving

energies less than 1/a, since this is the order of magnitude of the maximum physical

energy on the lattice. The heavy quark mass is typically of the same order of magnitude

as this, with amb ≈ 1 and so relativistic heavy quark simulations are not feasible on

current lattices, on which a ≈ 0.1fm.1 The additional constraint LMπ � 1, required

to ensure the absence of finite volume effects, prevents us from reducing the number

of lattice sites in order to make calculations with finer lattices feasible. In order to

get around this problem we use the observation that in the heavy-light hadrons we are

interested in simulating the typical momentum transfer between heavy and light quarks

is of the order ΛQCD.

3.5.1 Foldy-Wouthuysen-Tani Transformation

In order to construct a non-relativistic action we must decouple the quark and antiquark

degrees of freedom, to some order in the inverse heavy quark mass 1/mb. This is

done by acting on the quark fields with sequential transformations, known as a Foldy-

Wouthuysen-Tani transformation, to remove the terms which do not commute with γ0.

The first is straightforward to see, starting with the continuum relativistic action:

Sb =

∫
d4xψ̄b(x)

[
iγ0D0 + iγiDi −m

]
ψb(x) (3.74)

1That being said, some work [44] has been carried out using HISQ quarks by using large masses

on lattices with a ≈ 0.09, 0.06 and 0.045fm and extrapolating to the physical b mass. This procedure,

while computationally expensive, eliminates several of the systematic uncertainties induced by using

an effective theory such as NRQCD for simulating heavy quarks.
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we make the change of variables in the fields

ψb(x) = eiγ
iDi/2mψ′b(x) (3.75)

ψ̄b(x) = ψ̄′b(x)eiγ
iDi/2m (3.76)

Such a change has determinant unity, since the exponent is traceless, and so leaves the

measure invariant. The resultant action is

Sb =

∫
d4xψ̄′b(x)eiγ

iDi/2m
[
iγ0D0 + iγiDi −m

]
eiγ

iDi/2mψ′b(x)

=

∫
d4xψ̄′b(x)

[
iγ0D0 −m− ({γiDi, γ

0D0}+ {γiDi, γ
jDj}

+ (γiDi)
2/2)/2m+O(1/m2)

]
ψ′b(x)

=

∫
d4xψ̄′b(x)

[
iγ0D0 −m−

(
igγiγ0Fi0 +

ig

4
[γi, γj]Fij +DiD

i

)
/2m

+O(1/m2)
]
ψ′b(x)

We may now make the change

ψ′b(x) = e−igγ
iγ0Fi0/2m

2

ψ′′b (x) (3.77)

ψ̄′b(x) = ψ̄′′b (x)e−igγ
iγ0Fi0/2m

2

(3.78)

in order to remove all terms of order O(1/m) which do not commute with γ0. We may

continue in such a manner to remove higher order terms which do not commute with

γ0. Ultimately the field we end up with, removing non-commuting terms to O(1/m3),

is:

ψ(x) = TFWTe
−imx0γ0Ψ(x) (3.79)

with

TFWT =eiγ
iDi/2m

×e−igγiγ0Ei/2m2

×e(
g
4
γi(Dad

0 Ei)+
1
3

(iγiDi)
3)/2m3
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where we have written the instances of the field strength in terms of the QCD equivalent

of electric and magnetic fields. The last redefinition removes the mass term, which just

shifts the definition of the energy of the meson states relative to the physical energy. This

step is necessary for our simulations as it ensures we do not run into large discretisation

errors associated with aEm being greater than unity, as it would be for meson states

constructed using b quarks had we left the mass term in the lagrangian. We still require

that Lmv2 � 1, where mv2 is the typical kinetic energy, estimated from the mass

splitting of the Υ(1S) and Υ(2S) states. Studies of the Υ gives v2 ≈ 0.1[45], which

means on current lattices Lmv2 ≈ 6.

The heavy quark lagrangian we end up with is then, decoupling the quark field into

its top two and bottom two components as Ψ = (ψ, ξ),

Lb = ψ†
[
iD0 +

D2

2m
+

g

2m
σ ·B +

g

8m2

(
Dad · E + iσ · (D × E − E ×D)

)]
ψ

+ ξ†
[
iD0 −

D2

2m
− g

2m
σ ·B +

g

8m2

(
Dad · E + iσ · (D × E − E ×D)

)]
ξ

+O(1/m3) (3.80)

3.5.2 Power Counting for Heavy-Light Mesons

For systems involving only a single heavy quark, as we are concerned with here, the

remaining light degrees of freedom are governed by the nonperturbative gluon dynamics

and hence characterised by the scale ΛQCD. For hadrons at rest we find that the covariant

derivative acting on the heavy-quark field is of order

Dψ ∼ ΛQCDψ. (3.81)

Similarly for the gluon fields

|gA| ∼ ΛQCD

|gE| ∼ |gB| ∼ Λ2
QCD. (3.82)

Dimensional analysis then tells us that each term in (3.80) which comes with a factor

of 1/m also comes with a factor of ΛQCD relative to the first. The heavy quark action
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therefore receives corrections of order O((ΛQCD/m)3).

3.5.3 Lattice NRQCD and the Evolution Equation

The next step is to discretise the NRQCD action. A convenient definition for the

NRQCD quark lattice action is:

S = a3
∑
x

[
ψ†(x)ψ(x)

−ψ†(x+ at̂)
(

1− aH0

2n

)n(
1− aδH

2

)
U †t (x)

(
1− aδH

2

)(
1− aH0

2n

)n
ψ(x)

]
.

The quark propagator then satisfies the simple evolution equation

G(x+at̂, z) = δ(x+at̂, z)+
(

1− aH0

2n

)n(
1− aδH

2

)
U †t (x)

(
1− aδH

2

)(
1− aH0

2n

)n
G(x, z)

(3.83)

with G(x, y) = 0 for xt < yt. n is referred to as the stability parameter and ensures

numerical stability when computing propagators using 3.83. Since the quark part of

the action is first order in D0 the propagator has no pole at −E(p) and so is only the

retarded part of the full propagator. This may be derived straightforwardly from the

inverse relation

D(x, y)G(y, z) = δ(x, z) (3.84)

taking the Dirac operator D directly from the action:

D(x, y) = δ(x, y)−
(

1− aH0

2n

)n(
1− aδH

2

)
U †t (y)

(
1− aδH

2

)(
1− aH0

2n

)n
δ(x, y − at̂).

(3.85)

In simulations we neglect the NRQCD determinant, since the energy scales at which the

creation of b b̄ pairs will be relevant are well above ΛQCD and well outside the range of

validity of NRQCD. None the less the terms appearing in the NRQCD lattice action will

be renormalised away from the values obtained from the FWT transformation in the

continuum. We might treat it like any effective field theory and compute the coefficients

by matching to experiment, but this would result in a substantial reduction of the

predictive power of the theory. Another method is to use perturbation theory: since the
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corrections are dominated by momenta of order π/a and π/a is typically several GeV in

simulations, we expect that these quantities can be calculated using perturbation theory,

provided we tadpole improve appropriately. The full, tadpole and Symanzik improved,

NRQCD quark action has

aH0 =−∆(2)/2am (3.86)

aδH =aδHv4 + aδHv6 (3.87)

aδHv4 =− c1
(∆(2))2

8(am)3
+ c2

ig

8(am)2

(
∆(±) · Ẽ − Ẽ ·∆(±)

)
− c3

g

8(am)2
σ ·
(
∆̃(±) × Ẽ − Ẽ × ∆̃(±)

)
− c4

g

2am
σ · B̃ + c5

a2∆(4)

24am
− c6

a(∆(2))2

16n(am)2
(3.88)

δHv6 =− f1
g

8(am)3

{
∆(2), σ · B̃

}
− f2

3g

64(am)4

{
∆(2), σ ·

(
∆̃(±) × Ẽ − Ẽ × ∆̃(±)

)}
− f3

ig2

8(am)3
σ · Ẽ × Ẽ (3.89)

where the tilded quantities are the tadpole improved versions and at tree level fi = 1.

We also replace the Ut appearing in (3.83) with its tadpole improved version. In the

simulations I perform here the stability parameter takes the value n = 4, following [10].

The evolution equation gives a straightforward way to compute the NRQCD propaga-

tor. As an initial value problem, as opposed to the boundary value problem of relativistic

QCD, the propagator can be computed efficiently and quickly requiring far less memory

or computation time than its relativistic counterpart.
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Chapter 4

B → D∗

4.1 B → D∗

Precise measurements of quark flavour-changing interactions offer one way to uncover

physics beyond the Standard Model. As successful as the Standard Model appears to

be so far, there will continue to be progress reducing experimental and theoretical un-

certainties, as well as making new measurements. Existing tensions in the global fits to

the Cabibbo-Kobyashi-Maskawa (CKM) parameters may become outright inconsisten-

cies, or new measurements of rare decays may differ significantly from Standard Model

predictions.

Measurements of the exclusive semileptonic decay B̄0 → D∗+`−ν̄ provided the first

estimations of the magnitude of CKM matrix element Vcb [46]. This channel still provides

one of three precise methods of determining |Vcb|. Measurements for the differential

branching fraction are fit to a function of q2, the lepton invariant mass-squared, and

extrapolated to the zero-recoil point (maximum q2). Then lattice QCD results for the

relevant hadronic matrix element are used to infer |Vcb|. The most recent HFLAV

experimental average [47] combined with the Fermilab/MILC lattice result [4] gives

|Vcb| = (38.71± 0.47exp ± 0.59th)× 10−3.

Measurements of the inclusive b → c decays B → Xc`ν, combined with an opera-

tor product expansion offer a complementary method. The latest estimate is |Vcb| =

(42.21 ± 0.78) × 10−3 [48, 49]. The discrepancy between the inclusive and exclusive

result described above is at the 3σ level.

One can also use the exclusive decay B → D`ν to estimate |Vcb|. Historically this has

51



52 Chapter 4. B → D∗

not given as precise a determination due to having to contend with background from

B → D∗`ν. Recent progress has come from new measurements and joint fits to exper-

imental and lattice [50, 51] data over a range of q2 using so-called z-parametrizations

[52, 53]. The latest result using B → D`ν results is |Vcb| = (40.85 ± 0.98) × 10−3 [54],

in acceptable agreement with either the B → D∗`ν or B → Xc`ν determinations.

In this chapter I present the details and results of a lattice calculation of the zero-recoil

form factor needed to extract |Vcb| from experimental measurements of the B → D∗`ν

and Bs → D∗s`ν decay rates. This work differs from the Fermilab/MILC calculation

[4] in the following respects: (1) the gauge field configurations are the next generation

MILC ensembles [55, 56, 57] which include effects of 2 + 1 + 1 flavours of sea quarks

using the highly improved staggered quark (HISQ) action [58]; (2) the fully relativistic

HISQ action is used for valence light, strange, and charm quarks; (3) the nonrelativis-

tic QCD (NRQCD) action [59] is used for the bottom quark. Therefore, this work

represents a statistically independent, complementary calculation to [4], with different

formulations in many respects. The two main advantages of using the HISQ action is

that discretization errors are reduced and that the MILC HISQ ensembles include con-

figurations with physically light u/d quark effects. Preliminary results were reported in

recent proceedings [8].
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4.2 Form factors

This section simply summarizes standard notation relating the differential decay rate,

the relevant hadronic matrix elements, and the corresponding form factors. Throughout

the section I refer to B̄0 → D∗+`−ν̄ decay, but the expressions for B̄0
s → D∗+s `−ν̄ are

the same, substituting u→ s.

The differential decay rate, integrated over angular variables, is given in the Standard

Model by

dΓ

dw
(B̄0 → D∗+l−ν̄l) =

G2
FM

3
D∗|η̄EWVcb|2

4π3

×(MB −MD∗)
2
√
w2 − 1χ(w)|F(w)|2 (4.1)

where w = v · v′ is the scalar product of the B and D∗ 4-velocities, and χ(w) is a known

kinematic function normalized so that χ(1) = 1 [4]. The coefficient η̄EW accounts for

electroweak corrections due to box diagrams in which a photon or Z boson is exchanged

in addition to a W boson as well as the Coulomb attraction of the final-state charged

particles [60, 61, 62]. The form factor F(w) is a linear combination of hadronic form

factors parametrizing the matrix elements of the V − A weak current, i.e.

〈D∗(p′, ε)|c̄γµb|B(p)〉 =
2iV (q2)

MB +MD∗
εµνρσε∗νp

′
ρpσ

〈D∗(p′, ε)|c̄γµγ5b|B(p)〉 = 2MD∗A0(q2)
ε∗ · q
q2

qµ

+ (MB +MD∗)A1(q2)
[
ε∗µ − ε∗ · q

q2
qµ
]

− A2(q2)
ε∗ · q

MB +MD∗

[
pµ + p′µ − M2

B −M2
D∗

q2
qµ
]
. (4.2)

The only contribution to F(w) at zero recoil, w = 1, is from the matrix element of the

axial vector current; this reduces to

〈D∗(p, ε)|c̄γjγ5b|B(p)〉 = (MB +MD∗)A1(q2
max)ε∗j (4.3)

for j = 1, 2, 3. It is sometimes conventional to work with form factors defined within
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heavy quark effective theory (HQET). Of relevance to this work, I write

hA1(w) =
2
√
MBMD∗

MB +MD∗

A1(q2)

1− q2

(MB+MD∗ )2

. (4.4)

At zero recoil, where w = 1 and q2 = q2
max,

F(1) = hA1(1) =
MB +MD∗

2
√
MBMD∗

A1(q2
max) . (4.5)

I will usually use the hA1 notation. When I wish to specifically refer to the Bs → D∗s

form factor, I write hsA1
, so

FB→D∗(1) = hA1(1) and FBs→D∗s (1) = hsA1
(1) . (4.6)

These are the quantities I calculate here.
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4.3 Lattice parameters and methodology

Here I give specific details about the lattice calculation. Once again many of the ex-

pressions will refer to B → D∗ matrix elements, but they apply for any spectator quark

mass.

The gluon field configurations that I use were generated by the MILC collaboration

and include 2+1+1 flavours of dynamical HISQ quarks in the sea and include 3 different

lattice spacings [55, 56, 57]. The u and d quarks have equal mass, mu = md ≡ ml, and

in these calculations I use the values ml/ms = 0.2, 0.1 and the physical value 1/27.4

[42]. The s and c quarks in the sea are also well-tuned [7] and included using the HISQ

action. The gauge action is the Symanzik improved gluon action with coefficients correct

to O(αsa
2, nfαsa

2) [36]. Table 4.1 gives numerical values for the lattice spacings, quark

masses, and other parameters describing the ensembles used.

In calculating correlation functions, I use valence s and c masses tuned slightly closer

to their physical values [7]. The d, s, and c quark propagators were computed using

the MILC code [63]. The b quark is simulated using v4 perturbatively improved non-

relativistic QCD [45, 5], including terms up to O(αsv
4) given by aδHv4 in (3.88), which

takes advantage of the non-relativistic nature of the b quark dynamics in B mesons and

produces very good control over discretization uncertainties. The parameters used in

calculating quark propagators are recorded in table 4.2.

In order to extract the form factor from lattice calculations I compute the set of

Euclidean correlation functions

CB2pt(t)ij = 〈O(t)BiO†(0)Bj〉

Cµν
D∗2pt(t)ij = 〈Oµ(t)D∗iO†ν(0)D∗j〉

Cµκ
3pt(τ, t, 0)ij = 〈Oµ(τ)D∗iJ

κ(t)O†(0)Bj〉 (4.7)

where each interpolating operator Oi is projected onto zero spatial momentum by sum-

ming over spatial lattice points and the current Jκ is one of several lattice currents (see
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Table 4.1: Details of the gauge configurations used in this work. I refer to sets 1, 2

and 3 as ‘very coarse’, sets 4, 5 and 6 as ‘coarse’ and sets 7 and 8 as ‘fine’. The lattice

spacings were determined from the Υ(2S − 1S) splitting in [5]. Sets 3, 6 and 8 use

light quarks with their physical masses. u0 is the tadpole improvement factor; here the

Landau gauge mean link is used. Mπ and MπL are also given, computed in [6]. The

final column specifies the total number of configurations multiplied by the number of

different start times used for sources on each. In order to improve statistical precision I

use random wall sources.

Set a(fm) L/a× T/a aml ams amc u0 Mπ/MeV MπL ncfg × nt

1 0.1474 16× 48 0.013 0.065 0.838 0.8195 302.4(2) 3.8 960×16

2 0.1463 24× 48 0.0064 0.064 0.828 0.8202 215.5(1) 4.0 960×4

3 0.1450 32× 48 0.00235 0.0647 0.831 0.8195 133.0(1) 3.3 960×4

4 0.1219 24× 64 0.0102 0.0509 0.635 0.8341 304.5(1) 4.6 960×4

5 0.1195 32× 64 0.00507 0.0507 0.628 0.8349 216.5(1) 4.3 960×4

6 0.1189 48× 64 0.00184 0.0507 0.628 0.8341 132.7(0) 3.9 960×4

7 0.0884 32× 96 0.0074 0.037 0.440 0.8525 306.1(2) 4.5 960×4

8 0.08787 64× 96 0.00120 0.0363 0.432 0.8518 128.4(0) 3.7 540×4

section 4.4). The indices i and j label different smearing functions. I use three different

smearing operators on each of the B and D∗ interpolating operators.

In implementing Oµ(t)D∗i I use an unsmeared operator and two gauge covariant Gaus-

sian smearings, implemented by applying
(

1− r2
D∗∇

2

n

)n
to the field. Here the derivative

is stride-2 in order not to mix the staggered-taste meson multiplets. rD∗ is the radius (in

lattice units) chosen to give good overlap with the ground state, and n is chosen to give

a good approximation to a Gaussian while maintaining numerical stability. For the B

I use a local operator as well as two Gaussian smearings, implemented as 1
N
e−(x−y)2/r2B ,

where again rB is a radius in lattice units and N is an overall normalization. Since the

B smearings are not gauge invariant, the gauge fields are fixed to Coulomb gauge. I
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Table 4.2: Valence quark masses and parameters used to calculate propagators. The s

and c valence masses were tuned using results from [7] and the b mass was taken from

[5]. (1 + εNaik) is the coefficient of the charm Naik term and ci are the perturbatively

improved coefficients appearing in the NRQCD action correct through O(αsv
4) [5]. The

last column gives the τ values used in three point functions. These have changed from

those presented in [8] on the very coarse ensembles as it was found that τ = 10, 11, 12, 13

resulted in excessive noise on Set 3, which resulted in poor fit stability and the relatively

low value of F(1) on this ensemble.

Set amval
s amval

c amb εNaik c1,c6 c5 c4 τ

1 0.0641 0.826 3.297 −0.345 1.36 1.21 1.22 6,7,8,9

2 0.0636 0.828 3.263 −0.340 1.36 1.21 1.22 6,7,8,9

3 0.0628 0.827 3.25 −0.345 1.36 1.21 1.22 6,7,8,9

4 0.0522 0.645 2.66 −0.235 1.31 1.16 1.20 10,11,12,13

5 0.0505 0.627 2.62 −0.224 1.31 1.16 1.20 10,11,12,13

6 0.0507 0.631 2.62 −0.226 1.31 1.16 1.20 10,11,12,13

7 0.0364 0.434 1.91 −0.117 1.21 1.12 1.16 15,18,21,24

8 0.0360 0.4305 1.89 −0.115 1.21 1.12 1.16 10,13,16,19

refer to the local operator as l and the Gaussian smearings as g2 and g4 correspond-

ing to radii of 2a and 4a respectively. I use the same choices of radii for both B and

D∗ smearings. The smearing parameters are given in table 4.3. Figures 4.1 and 4.2

in section 4.5 show the effectiveness of using combinations of smearings in reducing the

uncertainty of the computed form factor. The typical reduction of statistical uncertainty

by a factor of between 2 and 4 is gained for the cost of computing more propagators

and performing additional contractions. In practice, these additional contractions are

fast, and the increase in computational cost by a factor of approximately 3 is favourable

compared to using all 16 available time sources on each configuration. Using all 16 time
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Table 4.3: Values of r, taken to be the same, for the B(s) and D∗(s) Gaussian smearings on

each set and the accompanying n values for the D∗(s) smearings. I chose to fix the radii

in lattice units rather than physical units as this seemed to result in more consistent

numerical stability of the covariant Gaussian smearing operator when moving between

lattices.

Set rg2/a rg4/a ng2 ng4

1,2,3 2 4 30 30

4,5,6 2 4 30 30

7,8 2 4 30 40

sources would yield an improvement in statistical uncertainty of less than a factor of 2

due to correlations between time sources, while increasing the computational cost by a

factor of 4. The interpolating operators themselves are

OB(x) =
∑
y

ψ̄u(x)γ5∆(x, y)Ψb(y)

OiD∗(x) =
∑
y

ψ̄u(x)γi∆(x, y)ψc(y + âi) (4.8)

where ∆(x, y) is the appropriate smearing function discussed above and the D∗ interpo-

lating operator is point split. In distinction to the continuum quark fields b, c, s, and u

of section 4.2, here I denote the NRQCD b field by Ψb and the staggered fields, written

as 4-component Dirac spinors (see 3.4.2), by ψ with the appropriate flavour subscript.

I checked both the point-split and local D∗ interpolating operators on the very coarse,

physical point ensemble (Set 3) and found no significant difference in statistical noise or

central value of either the D∗ mass or the matrix element. I primarily used the point-

split current as it was simpler to implement in our framework. The results quoted below

for the B → D∗ fits use the point-split vector current, except for Set 3 where results

are given for the local vector current. The results below for Bs → D∗s form factors were

obtained using the local vector current.
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In order to improve statistics I multiply the smeared sources with random walls to

produce, on average, the effect of multiple sources. [64] compares ground state energies

for the Υ computed using random wall sources to those computed without and demon-

strates a reduction in statistical uncertainty by a factor of ≈ 4 with a low computational

cost. Taking the 2-point function, projected onto zero momentum and with symmetric

smearings as we use here, as an example:

C2pt(t, 0)ij =
∑
xy,δ

〈ψ̄1(x, t)Γψ2(x+ δsink, t)×

ψ̄2(y, 0)Γψ1(y + δsrc, 0)〉∆i(δsink)∆j(δsrc)

=
∑
xy,δ

tr
[
ΓG2(x, t; y, 0)Γ∆j(δsrc)×

G1(y + δsrc, 0;x+ δsink, t)∆i(δsink)
]
. (4.9)

Exact computation requires an inversion for each value of y being summed over. Instead

I generate N random vectors ξ satisfying

lim
N→∞

N∑
l=1

ξal(x)ξbl(y)∗ = δ(x, y)δab . (4.10)

l labels the N random colour vector sources and a and b are colour indices. The average

over configurations further suppresses violations of this relation; in practice a single

random wall per colour, setting N = Nc = 3, is sufficient. Inserting the above relation

into the 2-point function

C2pt(t, 0)ij =
∑
xyz,δ,l

tr
[
ΓG2(x, t; z, 0)ξl(z)Γ×

∆j(δsrc)ξ
†
l (y + δsrc)G1(y, 0;x+ δsink, t)∆i(δsink)

]
=
∑
xyz,δ,l

tr
[
ΓG2(x, t; z, 0)ξl(z)Γ×

γ5
[
∆i(δsink)G1(x+ δsink, t; y, 0)∆j(δsrc)ξl(y + δsrc)

]†
γ5
]

(4.11)

where γ5 hermiticity has been used. The naive propagators G are built from staggered

quarks and the full form of the correlation function contractions in terms of NRQCD

and staggered propagators is given in Appendix A.
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These correlation functions can be expressed in terms of amplitudes and decaying

exponentials by inserting a complete basis of states. Projecting onto zero momentum

and setting q = (MB −MD∗ , 0, 0, 0) this gives

CB2pt(t)ij =
∑

n,a=0,1

(−1)atBn
aiB

n
aje
−MBna

t

CD∗2pt(t)ij =
∑

n,a=0,1

(−1)atAnaiA
n
aje
−MD∗na t

C3pt(τ, t, 0)ij =
∑
ab=0,1

∑
nm

(−1)a(τ−t)+btAnaiB
m
bj

× V nm
ab e

−MD∗ma (τ−t)−MBn
b
t

(4.12)

where

Bn
ai =

〈Ω|OiB|Bn
a 〉√

2MBna

Anai =
〈Ω|OiD∗|D∗na〉√

2MD∗na

V nm
ab =

〈D∗na |J |Bm
b 〉√

2MD∗na 2MBmb

. (4.13)

Note that I have included contributions from opposite-parity states, which depend on

imaginary time like (−1)t and arise from using staggered quarks [58], by introducing

the sum over a and b. When either a or b is nonzero the corresponding term in the

sum is multiplied by a sign factor which oscillates between 1 and −1 in time. I am

only interested in the terms with a = b = 0 here; however in order to extract these,

the oscillating terms must be fit away. For my choice of operators the A, B and V

parameters are real [65]. I discuss my fits to these correlation functions in section 4.5.1.
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4.4 One-loop Matching

A lattice current with the same matrix elements as the continuum current, to a given

order, is required. The matching of lattice and continuum currents is done in [9] through

O(αs, αs/amb,ΛQCD
/mb),where Λ

QCD
is a typical QCD scale of a few hundred MeV,

following the method used in [66]. Using power counting in powers of Λ
QCD

/mb a set

of lattice currents is selected. At the order to which I work, only the following currents

contribute:

J
(0)i
latt (x) = ψ̄cγ

iγ5Ψb

J
(1)i
latt (x) = − 1

2amb

ψ̄cγ
iγ5γ ·∆Ψb . (4.14)

It is convenient for us to also compute the matrix elements of operators entering at

O(αsΛQCD
/mb)

J
(2)i
latt (x) = − 1

2amb

ψ̄cγ ·
←−
∆γ0γiγ5Ψb

J
(3)i
latt (x) = − 1

2amb

ψ̄cγ
0γ5∆iΨb . (4.15)

This allows for a configuration-by-configuration check of the code: namely that at

zero recoil, the three-point correlation functions satisfy the relation C3ptJ(1) + C3ptJ(2) −

2C3ptJ(3) = 0. This identity is derived using integration by parts and the fact that

γ0ΨQ = ΨQ.

The full matching is a double expansion in Λ
QCD

/mb and in αs. The matched current

is given by

J i = Z[(1 + αs(η − τ))J
(0)i
latt + J

(1)i
latt ] +O

(
αsΛQCD

mb

)
(4.16)

where Z is a multiplicative factor from the tree-level massive-HISQ wave function renor-

malization for the HISQ c quark. The one-loop coefficients η and τ respectively account

for the renormalization of J
(0)i
latt and for the mixing of J

(1)i
latt into J

(0)i
latt . Numerical values

for the perturbative coefficients relevant for the ensembles used are given in table 4.4

[9].
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Table 4.4: Tree-level Z factors and one-loop matching coefficients, used in (4.16), cal-

culated at lattice quark masses appropriate to each of our gauge-field ensembles. I also

give values on each ensemble for the strong coupling constant in the V scheme at a scale

of 2/a (from results in [9]).

Set Z −η τ αV (2/a)

1 0.9930 0.260(3) 0.0163(1) 0.346

2 0.9933 0.260(3) 0.0165(1) 0.344

3 0.9930 0.260(3) 0.0165(1) 0.343

4 0.9972 0.191(3) 0.0216(1) 0.311

5 0.9974 0.185(3) 0.0221(1) 0.308

6 0.9974 0.185(3) 0.0221(1) 0.307

7 0.9994 0.091(3) 0.0330(1) 0.267

8 0.9994 0.091(3) 0.0330(1) 0.267

Matrix elements of currents of order αnsΛ
QCD

/mb vanish to all orders in αs according

to Luke’s theorem [67]. I will denote by V the matrix elements of the currents Jlatt

divided by meson mass factors, as in (4.13) with a = b = 0 and n = m = 0. Luke’s

theorem implies the combination

V
(1)i

sub = V (1)i − αsτV (0)i , (4.17)

which represents the physical, sub-leading matrix element, should be very small, only

different from zero due to systematic uncertainties.



4.5. Analysis of numerical data 63

4.5 Analysis of numerical data

In this section I discuss the two main aspects of numerical analysis. First I present fits

to the correlation functions, allowing us to determine hA1(1) on each of the 8 ensembles.

Second, I discuss how I infer a physical value for hA1(1) with an error estimate for

uncertainties associated with current matching, discretization, and dependence on quark

masses.

4.5.1 Fits to correlation functions

I fit the three correlation functions defined in (4.12) simultaneously using the corrfitter

package developed by Lepage [68, 69]. This minimises

χ2(p) =
∑
t,t′

∆C(t, p)σ−2
t,t′∆C(t′, p) +

∑
i

(pi − piprior)
2

σ2
piprior

(4.18)

with respect to p. Here ∆C(t, p) = C(t)−CTH(t, p) with CTH(t, p) the theoretical value

of the correlation function at time t computed using (4.12) with parameters p and C(t) is

the measured value of the correlation function at t. pi is the ith parameter in the theory

and piprior is its prior value with error σpiprior . The correlation matrix σt,t′ includes all

correlations between data points. Fitting correlators from all smeared sources and sinks

simultaneously requires the use of an SVD cut on the eigenvalues when determining

the inverse of σ2. This is implemented by replacing eigenvalues of σ2 with magnitude

less than the SVD cut with the value of the cut. The code also provides the option of

removing the corresponding eigenvectors from the data and I have checked that choosing

this option did not change the fit results for the matrix elements. I also exclude points

close in time to the source and sink to suppress excited state contributions and speed

up the fit. The number of truncated data points and SVD cuts used to obtain our

results are given in table 4.5. For the D∗ two point function, with symmetric boundary

conditions in time, the source and sink truncations were the same. For the B two point

function only the source is truncated. Also given are the truncations used for the three
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Table 4.5: Values used for SVD cuts and truncations made near the source and sink.

Set SVD ∆tD
∗

∆tB ∆t3pt
D∗ ∆t3pt

B

1 0.01 4 4 2 2

2 0.001 4 4 2 2

3 0.001 4 4 2 2

4 0.01 2 2 2 2

5 0.01 4 4 2 2

6 0.0025 4 4 1 1

7 0.0001 4 4 2 2

8 0.001 4 4 2 2

point function.

I look at the effectiveness of the various smearings by fitting each smearing diagonal,

i.e. equal radii, set of two and three point correlator functions independently and com-

paring the result to the full fit. Figures 4.1 and 4.2 show comparisons of the fit results

for hA1(1) when varying numbers of exponentials; the points are normalized by the value

of hA1(1) taken as the result for that ensemble. Plots are shown for all 8 ensembles in

figure 4.1. In each plot, I show the full fit results to the 3 × 3 matrix of source/sink

combinations (local l, or Gaussian with 2 radii, g2 and g4), as well as “diagonal” fits

where only one source/sink is used. The statistical improvement of using all the data is

apparent. The flatness of the curves and the constancy of the error bars shows that, for

large enough Nexp, the Bayesian fits are insensitive to adding further exponential terms,

i.e. effects of excited states are accounted for. The final results typically come from the

Nexp = 5 fits to the full 3 × 3 matrix of correlators; however, on ensembles 3 and 7, I

had to include another exponential. In these plots I only include the results of fits with

χ2/dof < 1.2. I give the ground state and oscillating state two point fit parameters for

my full simultaneous fits in table 4.6 and table 4.7. The CB2pt(t) fit amplitudes, the
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Figure 4.1: Plots of Nexp fit behaviour on first four ensembles for B → D∗ (see table

4.1). In each plot 4 sets of data points are shown: the full fit including all 3× 3 source-

sink combinations, and, for comparison, separate “diagonal” fits where only one type

of source-sink smearing is used. (The notation is defined in section 4.3.) A significant

improvement is seen in the full fit. All diagonal fits show good agreement for Nexp ≥ 4,

but with the increased precision, sometimes 5 or 6 exponentials are needed to get a good

3× 3 matrix fit.
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Figure 4.2: Further plots of Nexp fit behaviour on last four ensembles for B → D∗.

energies and Bn
ai parameters of (4.12), are in good agreement with those in [10].

The values given in table 4.5 were chosen by trial and error, aiming to retain as

much of the data as possible while maintaining a stable fit. However we could have

chosen different values for these and it is good to check that our results are insensitive

to such choices. As such I perform several variations of the fit, taking all combinations

of ∆t → ∆t ± 1 for the B and D∗ two point functions and the three point function as

well as varying the SVD cut between a half and twice it’s chosen value. Some such fits

result in a χ2/dof value greater than 1 indicating that the inclusion of the additional

data includes either too large a contribution from higher energy excited states or a

sufficiently singular correlation matrix to result in an unstable fit. Those fits which

converge, plotted in figure 4.3, with a value of χ2/dof ≈ 1 are all in agreement to within
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error with the fit results I use for my analysis, demonstrating that my results are indeed

robust to such variations.

Table 4.8 gives results for matrix elements corresponding to the currents J
(1)
latt and

J
(2)
latt. One can see that Luke’s theorem holds, in that V

(1)
sub is very small. Results are

also given for V (2) as well as numerical values for αsΛQCD/mb. While it is important to

remember that there are absent mixing down factors from the current J (0) contributing

at O(αsΛQCD/mb) it is encouraging to see that V (2) is small compared to its expected

order.

On each ensemble, I obtain a value for the zero-recoil form factors h
(s)
A1

(1). As in the

continuum expressions (4.3) and (4.5) we have

hA1(1)|latt = V J ≡ 〈D∗|J |B〉√
2MD∗2MB

(4.19)

and similarly for hsA1
(1)|latt. I write V J here to make clear that I fit combinations of

three point correlators that correspond to the insertion of the current given by (4.16).

Results for hA1(1) on each ensemble are presented in table 4.9. I computed hsA1
(1) on

the physical-point lattices only, since chiral perturbation theory predicts this quantity

to be much less sensitive to the sea quark mass than the spectator quark mass. (In fact

it will be seen that the spectator quark mass dependence is also small).
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Figure 4.3: Plots showing the robustness of each fit with respect to changes in fit

parameters.
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Table 4.6: Ground state and oscillating state local amplitudes and masses from my

fits. Note that on Set 3 I use the local vector operator, otherwise I use the point-split

operator; therefore, the amplitudes A are not comparable between different operators.

Also note that the tabulated B “masses” are the NRQCD “simulation energies” aEsim,

representing the nonperturbative contribution to the B meson binding energy. The B

parameters are in good agreement with those in [10].

Set A0
0l A0

1l aMD∗00
aMD∗01

1 0.1420(12) 0.110(10) 1.5465(19) 1.815(22)

2 0.1338(17) 0.087(12) 1.5304(28) 1.742(26)

3 0.1710(14) 0.092(13) 1.5226(18) 1.675(25)

4 0.1006(23) 0.081(20) 1.2599(31) 1.499(30)

5 0.0951(14) 0.081(10) 1.2289(23) 1.459(18)

6 0.09636(52) 0.0479(87) 1.23244(99) 1.354(22)

7 0.06466(40) 0.0520(35) 0.91551(88) 1.0838(82)

8 0.05912(40) 0.0502(23) 0.89583(99) 1.0477(71)

B0
0l B0

1l aMB0
0

aMB0
1

1 0.2287(17) 0.232(14) 0.5667(14) 0.815(13)

2 0.2171(20) 0.200(24) 0.5534(18) 0.770(18)

3 0.2099(17) 0.214(14) 0.5433(15) 0.761(14)

4 0.1700(23) 0.104(54) 0.4825(21) 0.638(46)

5 0.1611(24) 0.095(54) 0.4745(22) 0.621(42)

6 0.15739(69) 0.1674(58) 0.46809(80) 0.6523(58)

7 0.10762(64) 0.1241(35) 0.37950(76) 0.5437(40)

8 0.09884(69) 0.1131(26) 0.36473(98) 0.5042(32)
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Table 4.7: Ground state and oscillating state local amplitudes and masses from my fits

for the D∗s , using the local vector operator.

As00l As01l aMD∗0s0
aMD∗0s1

3 0.1987(13) 0.136(14) 1.58655(79) 1.868(14)

6 0.13689(81) 0.0918(75) 1.28341(45) 1.5094(94)

8 0.08233(40) 0.0618(23) 0.93657(49) 1.1142(50)

Bs0
0l Bs0

1l aMB0
s0

aMB0
s1

3 0.25554(42) 0.2460(75) 0.60639(28) 0.8862(50)

6 0.18822(14) 0.1669(58) 0.51657(11) 0.7277(36)

8 0.11867(55) 0.1212(17) 0.40136(48) 0.5698(15)

Table 4.8: Matrix elements, with meson factors defined in (4.13), of currents contributing

at O(αsΛQCD
/mB) for B → D∗. Note the approximate cancellation between the mixing

down term αsτV
(0) and V (1) to give a small V

(1)
sub as expected from Luke’s theorem. Note

V (2) is numerically smaller than its parametric estimate αsΛQCD/mb ≈ 0.03.

Set V
(1)

sub V (2)

3 −0.0050(8) 0.0138(8)

6 −0.0044(5) 0.0101(4)

8 −0.0031(7) 0.0060(8)
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Table 4.9: Fit results for the zero-recoil form factor hA1(1)latt = V J for both B → D∗

and Bs → D∗s .

Set hA1(1)latt hsA1
(1)latt

1 0.8606(91)

2 0.871(13)

3 0.8819(96) 0.8667(42)

4 0.8498(94)

5 0.8570(84)

6 0.8855(50) 0.8662(61)

7 0.8709(75)

8 0.8886(63) 0.8715(44)
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4.5.2 Chiral-continuum extrapolation

By carrying out the calculation using 8 ensembles, spanning 3 values of lattice spacing

and 3 values of the light quark mass, many of the systematic uncertainties can be

quantified by performing a least-squares fit to a function which accounts for unphysical

parameters or truncation errors. Below I describe how the fits address each of these

sources of uncertainty then present results of the fits.

There are two types of systematic error which must be accounted for. The first type are

truncation errors about which the numerical data contain no information. In this class

are the higher-order (in ΛQCD/mb) current corrections truncated in the perturbative

matching described in section 4.4. The numerical data contain no information about

Λ2
QCD/m

2
b or αsΛQCD/mb corrections, so I add to each data point nuisance terms

hA1(1)|fit = hA1(1)|latt

+ e4

Λ2
QCD

m2
b

[
1 + e5∆amb + e6∆2

amb

]
(4.20)

+ e7
αsΛQCD

mb

[
1 + e8∆amb + e9∆2

amb

]
where

∆amb = (amb − 2)/2

and e4, e5, e6, e7, e8, and e9 are Gaussian distributed variables, with mean and standard

deviation µ(σ), with e4 = 0(0.5), e7 = 0(0.3) and e5,6,8,9 = 0(1), 100% correlated between

each data point. The e5, e6, e8 and e9 terms reflect the fact that the coefficients of the

truncated Λ2
QCD/m

2
b and αsΛQCD/mb terms will be slowly varying functions of amb.

The choice of e7 is motivated by the magnitude of V (2) and the expectation that Luke’s

theorem will hold at this order.

The second type of systematic uncertainties arise from truncation, discretization, or

tuning errors about which we can draw inferences from the Monte Carlo calculation.

Consider the unknown α2
s corrections to the current normalization. In contrast to the

truncation of the ΛQCD/mb expansion, the numerical data is, at least in principle, sen-
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sitive to O(α2
s) corrections through the running of the coupling on the different lattice

spacings. In addition the results have dependence on the lattice spacing and the light

quark mass that can be mapped out using theoretical expectations. For the light quark

mass dependence this is based on chiral perturbation theory.

4.5.3 Staggered chiral perturbation theory

The full expression for the form factor derived in staggered chiral perturbation theory

is given by [70]

hA1(1) = 1 +
X(Λχ)

m2
c

+
g2
π

48π2f 2

[ 1

16

∑
δ

(2F̄πδ + F̄Kδ)−
1

2
F̄πI +

1

6
F̄ηI

+a2δ′V

( M2
SV
−M2

πV

(M2
ηV
−M2

πV
)(M2

πV
−M2

η′V
)
F̄πV +

M2
ηV
−M2

SV

(M2
ηV
−M2

η′V
)(M2

ηV
−M2

πV
)
F̄ηV

+
M2

SV
−M2

η′V

(M2
ηV
−M2

η′V
)(M2

η′V
−M2

πV
)
F̄η′V

)
+ (V → A)

]
(4.21)

where F̄X = F [MX ,−∆mc/MX ] as defined below.

F [M,x] =
M2

x

{
x3 ln

M2

Λ2
χ

+
1

3
x3 − 4x+ 2π

−
√
x2 − 1(x2 + 2)

×
(

ln
[
1− 2x(x−

√
x2 − 1)

]
− iπ

)}
. (4.22)

The masses of the η and η′ are given in [41] as

M2
ηV

=
1

2

(
M2

πV
+M2

SV
+

3

4
a2δ′V − Z

)
M2

η′V
=

1

2

(
M2

πV
+M2

SV
+

3

4
a2δ′V + Z

)
ZV =

√
(M2

SV
−M2

πV
)2 − a2δ′V

2
(M2

SV
−M2

πV
) +

9(a2δ′V )2

16

= (M2
SV
−M2

πV
)− a2δ′V

4
+O((a2δ′V )2)

M2
ηI

= M2
πI
/3 + 2M2

SI
/3 . (4.23)
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MSξ is the diagonal element of the mass matrix for flavour s with taste ξ, given in [71].

I take the ss̄ pseudoscalar taste splittings equal to the pion taste splittings. This is a

good approximation in the case of HISQ [56]. I then write (to order O((a2δ′V )2) )

M2
η′V
−M2

πV
=M2

SG
−M2

πG
+ a2δ′V /4

M2
ηV
−M2

πV
=a2δ′V /2

M2
SV
−M2

πV
=M2

SG
−M2

πG
(4.24)

where G indicates the taste pseudoscalar. From these I find

M2
SV
−M2

η′V

(M2
ηV
−M2

η′V
)(M2

η′V
−M2

πV
)

=
a2δ′V /4

(M2
SG
−M2

πG
)2 − (a2δ′V /4)2

M2
ηV
−M2

SV

(M2
ηV
−M2

η′V
)(M2

ηV
−M2

πV
)

=
a2δ′V /2− (M2

SG
−M2

πG
)

(a2δ′V /4− (M2
SG
−M2

πG
))a2δ′V /2

M2
SV
−M2

πV

(M2
ηV
−M2

πV
)(M2

πV
−M2

η′V
)

=
−(M2

SG
−M2

πG
)

((M2
SG
−M2

πG
)− a2δ′V /4)a2δ′V /2

. (4.25)

The expression for hA1(1) then reduces to

hA1(1) = 1 +
X(Λχ)

m2
c

+
g2
π

48π2f 2

[
1

16

∑
δ

2F̄πδ −
1

2
F̄πI

+

(
2− a2δ′V

2(M2
SG
−M2

πG
)

)
F̄ηV +

(
2− a2δ′A

2(M2
SG
−M2

πG
)

)
F̄ηA

−
(

2 +
a2δ′V

2(M2
SG
−M2

πG
)

)
F̄πV −

(
2 +

a2δ′A
2(M2

SG
−M2

πG
)

)
F̄πA

]
+O((a2δ′V )2) (4.26)

where I have ignored terms expected to produce normal discretization errors and pion

mass dependence, as these are included elsewhere in the fit. Following [6] I take δ′A ≈

δ′V ≈ −δt, which I implement by including δ′A = δ′V = −δt× 1.0(5) as priors. I use the

pion masses computed in [6] together with the taste splittings for the pion, δt, given in

[56].
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4.5.4 Finite volume corrections

Finite volume corrections enter (4.26) through corrections to the loop integrals in the

functions F̄X . The relevant formulae are given in [70] and are formed of polynomial

terms in ∆mc/MX and MXL exponentially suppressed by factors of e−MXL. The leading

correction therefore goes like ∆mc/Mπ. Since we keep MπL approximately fixed across

our lattices we expect greater finite volume effects near the physical point. Evaluating

these expressions on our lattices, I have found that finite volume effects are at least

an order of magnitude smaller than the leading O(α2
s) error on the unphysical lattices.

On sets 3, 6 and 8 the finite volume effects are on the order of half a percent and

are significant at the order to which I work. These are incorporated into my fit by

subtracting δhA1(1), found by adding δF̄X to each F̄X appearing in (4.26), from my

data. In figure 4.4 I show finite volume effects with taste splittings. In much the

same way as the taste splitting washes out the cusp [70] the finite volume effects are

significantly reduced.

4.5.5 Full Fit Function

Based on the discussions above the fit function for the hA1(1) data takes the functional

form

hA1(1)|fit = (1 +B)δBa + C
M2

π

Λ2
χ

+ δga
g2

48π2f 2
× chiral logs

+ γ1α
2
s

[
1 +

γ5

2
(amb − 2) +

γ6

4
(amb − 2)2

]
V J (4.27)

where the chiral logarithms are the F̄ functions multiplying g2/48π2f 2 in (4.26). The

first term accounts for the deviation of the physical hA1(1) from the static quark limit

value of 1. The fit parameter B is given a prior of 0(1). I take as priors γ1 = 0(0.5),

γ5,6 = 0(1). The choice of γ1 is motivated by the observation that the one loop matching

coefficients are at most ≈ 0.25 in magnitude. We have checked that relaxing this choice

to a more conservative value of γ1 = 0(1) does not move the central value by more than
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Figure 4.4: M2
π dependence of the finite volume corrections to the staggered chiral

perturbation theory result with taste splitting effects. The vertical blue line is the

physical pion mass and the solid point at the end of each curve is at the measured value

of the pion mass on each lattice.

half a percent. Discretization and quark mass tuning errors are included in δBa , to be

described further below.

The second and third terms in (4.27) give the leading dependence on the light quark

mass, parametrized by M2
π divided by the chiral scale Λχ, which I set to be 1 GeV. The

coefficient of the chiral logs depends on the D∗Dπ coupling g, which I take as 0.53(8)

following [4], and on the pion decay constant in the chiral limit f = 130 MeV. The

D∗ − D mass splitting, ∆mc , appearing in the chiral logs is taken as 142 MeV. The
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uncertainties from f and ∆mc are negligible compared to the error on g and are not

included. I will return to discuss δga shortly.

The fourth term in (4.27) is present in the fit since the current matching has truncation

errors of O(α2
s). The truncated term would have some mild dependence on amb, which

is reflected in the ansatz for this term.

The δBa and δga in (4.27) parametrize how discretization and quark mass tuning errors

could enter the fit form. These originate from the gauge action, the NRQCD action and

the HISQ action. In all three actions discretization errors appear as even powers of a,

hence I include multiplicative factors

δXa =
(
bX0 + bX1 (aΛQCD)2 + bX2 (aΛQCD)4 + bX3 (aΛQCD)6

)
. (4.28)

Each factor bXi , with X = B, g, contains a distinct sea quark tuning error dependence

bXi = κXi δ
Xi
b δXic δXisea (4.29)

where the κi are given a Gaussian prior 0(0.5). Note that I do not include a κX0 term for

the O(a0) piece as such a term would not represent a mistuning error or discretization

effect. The product on the right-hand side allows for effects of small mistunings in the

sea quark masses and the valence charm and bottom quark masses. For the sea u/d and

s quarks I include a multiplicative factor

δXisea = 1 + cXi1 (δxsea/m
phys
sea ) + cXi2 (δxsea/m

phys
sea )2 (4.30)

where msea = 2ml + ms and δxsea = msea −mphys
sea . The physical masses are taken from

[72] and are computed using the ηs mass. I take mphys
l /mphys

s = 27.4 [42]. I also include

the multiplicative factor

δXic = 1 + dXi1 (δmc/m
phys
c ) + dXi2 (δmc/m

phys
c )2 (4.31)

where δmc = mc −mphys
c , with physical mass taken from [7], and the factor

δXib = 1 + fXi1 (δmb/m
phys
b ) + fXi2 (δmb/m

phys
b )2 (4.32)
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Figure 4.5: Fit to my data using staggered chiral perturbation theory. The blue line and

grey band are the continuum chiral perturbation theory result and error extrapolated

from my lattice data. The error band includes systematic errors coming from matching

uncertainties and hence has a much larger error than any of the data points, which are

only shown with their statistical error. The points labelled D∗s Phys are the values of

hsA1
(1) computed for Bs → D∗s on the physical point lattices.

with δmb = mb −mphys
b where mphys

b is determined from the spin-averaged kinetic mass

of the Υ and ηb[5]. ci, di, and fi are given prior values of 0(0.5). I neglect the effects of

the very small mistuning of the light quark masses from their physical value, which we

expect to be small.

The calculation on each ensemble of the form factor for Bs → D∗s decay is equivalent to
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Figure 4.6: Comparison showing data points from the Fermilab Lattice and MILC

collaborations [4] against our chiral continuum fit.

the B → D∗ calculation, with the light quark propagator replaced with a strange quark

propagator. The analysis is substantially more straightforward, both because the data

is less noisy and because no chiral extrapolation is required. Before fitting the lattice

data, I include a term to account for the absence of O(Λ2
QCD/m

2
b) and O(αsΛQCD/mb)

effects, as in (4.20), using the same Gaussian variables e4, e5, e6, e7, e8, and e9.

For the continuum-chiral fit to the hsA1
(1) I take the functional form to be the following,
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Figure 4.7: Plot showing the a2 dependence of data extracted from the fit. The blue

line with grey error band shows the physical result for the form factor determined by

the fit described in the text.

where δsBa Bs has the same form and priors as the term included for the B → D∗:

hsA1
(1)
∣∣
fit

= (1 +Bs)δsBa

+ γ1α
2
s

[
1 +

γ5

2
(amb − 2) +

γ6

4
(amb − 2)2

]
V (0) (4.33)

where γ1, γ5 and γ6 are the same as in (4.27) because these terms represent the same

higher order matching corrections. I run the Bs → D∗s fit simultaneously with the

B → D∗ fit.

The NRQCD and HISQ systematics are the same as before, and we expect negligible

isospin breaking and finite volume effects. In Figure 4.5 I show the M2
π dependence of
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Figure 4.8: Lattice spacing dependence of my results for the Bs → D∗s zero recoil form

factor. The blue line with grey error band shows the physical result for the form factor

determined by the fit described in the text.

my B → D∗ data and the extrapolated continuum chiral form.

I present results for the hA1(1) and hsA1
(1) fit parameters B, γi, κi, ci, di, fi in table

4.10. Plots showing the a2 dependence of my B → D∗ and Bs → D∗s data are shown in

Figures 4.7 and 4.8 respectively, together with the result of my fit. The O(a4) and O(a6)

parameters default to their prior values, while the O(a2) parameters are consistent with

zero. Table 4.11 presents a summary and combination of the uncertainties in the results

for hA1(1) and hsA1
(1).

In table 4.12 I give fit results for plausible variations on the chosen fit function as a

demonstration of stability under such nontrivial choices. Neglecting different powers of
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Table 4.10: Results for parameters in the chiral-continuum fits, Eq. (4.27) and (4.33).

Terms not listed retain their prior values and are not shown while κB1 = −0.17(25) and

κB1 = −0.05(42) for hA1(1) and hsA1
(1) respectively.

cB0
1 cB0

2 dB0
1 dB0

2 fB0
1 fB0

2

hA1(1) −0.15(12) 0.27(29) 0.24(40) 0.0(5) 0.24(40) 0.0(5)

hsA1
(1) −0.03(22) 0.05(35) 0.0(5) 0.0(5) 0.0(5) 0.0(5)

B C g γ1 γ5 γ6

hA1(1) −0.091(27) −0.02(24) 0.521(78) −0.14(44) 0(1) -0.15(97)

hsA1
(1) −0.117(31) – – −0.14(44) 0(1) -0.15(97)

Table 4.11: Partial errors (in percentages) for h
(s)
A1

(1). A full accounting of the breakdown

of systematic errors is made difficult by the fact that smaller priors not well constrained

by the data are mixed in a correlated way by the fitter; these are reflected in the total

systematic uncertainty. Note that the uncertainty from missing α2
s terms in the matching

for hA1(1) and hsA1
(1) is constrained somewhat by the fit; a naive estimate would give

3.5% on the fine lattices.

Uncertainty hA1(1) hsA1
(1) hA1(1)/hsA1

(1)

α2
s 2.1 2.5 0.4

αsΛQCD/mb 0.9 0.9 0.0

(ΛQCD/mb)
2 0.8 0.8 0.0

a2 0.7 1.4 1.4

gD∗Dπ 0.2 0.03 0.2

Total systematic 2.7 3.2 1.7

Data 1.1 1.4 1.4

Total 2.9 3.5 2.2
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Table 4.12: Fit results for hA1(1) for different chiral-continuum fit functions.

Fit function hA1(1) hsA1
(1)

Eq. (4.26) 0.895(26) 0.883(31)

excluding hairpin terms 0.895(26) 0.883(31)

continuum χPT formula 0.897(25) 0.882(31)

ΛQCD = 750 MeV 0.900(35) 0.882(38)

ΛQCD = 250 MeV 0.897(24) 0.890(23)

excluding polynomial O(a6) terms 0.895(26) 0.883(31)

excluding polynomial O(a4) terms 0.895(26) 0.883(31)

excluding polynomial O(a2) terms 0.898(26) 0.891(25)

excluding polynomial M2
π dependence 0.895(27) 0.883(31)

excluding (Λ/mb)
2 uncertainty 0.895(25) 0.883(31)

totally correlated (ΛQCD/mb)
2 errors 0.895(27) 0.883(31)

a2 we see that the result is only sensitive to leading O(a2) errors. The M2
π dependence

I included does not affect the central value if removed, nor do changes in the assumed

correlations between NRQCD systematics between ensembles. Removing taste splitting

terms in the chiral perturbation theory result down to the continuum formula results in

only a small change to the central value. Adding αsΛQCD/mb, which I have excluded

from my fit due to Luke’s theorem, results in a slight increase in the central value as

well as the expected increase in error. The result is also only mildly sensitive to different

choices of ΛQCD which I vary by ±50%. Note that taken collectively no tested variations

result in more than a 0.25σ change to the central value.

4.5.6 Isospin breaking effects

The effects of electromagnetic interactions and mu 6= md on hA1(1) are negligible com-

pared to the dominant uncertainties quoted in table 4.11. I find only a variation of
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0.25% in the chiral-continuum fits to hA1(1) whether the π0 or π+ mass is used as the

input value for the physical limit. Electroweak and Coulomb effects in the decay rate

(4.1) are presently accounted for at leading order by a single multiplicative factor η̄EW .

As lattice QCD uncertainties are reduced in the future, it will be desirable to more

directly calculate the effects of electromagnetism in a lattice QCD+QED calculation,

where mu 6= md can also be implemented.
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4.6 Results and Discussion

I have calculated the zero recoil form factor for B → D∗`ν decay using the most physi-

cally realistic gluon field configurations currently available along with quark discretiza-

tions that are highly improved. The final result for the form factor, including all sources

of uncertainty, is

FB→D∗(1) = hA1(1) = 0.895(10)stat(24)sys . (4.34)

It is clear from this treatment that the dominant source of uncertainty is the O(α2
s)

uncertainty coming from the perturbative matching calculation. In principle this could

be reduced by a two-loop matching calculation; however, such calculations in lattice

NRQCD have not been done before. It is worth noting that for this calculation the

uncertainty is somewhat constrained by the fit, as is reflected in table 4.11. It has also

been suggested [44] that it could be estimated using heavy-HISQ b quarks on ‘ultrafine’

lattices with a = 0.045 fm and mba < 1. There we can use the nonperturbative PCAC

relation and the absolute normalization of the pseudoscalar current to normalise J (0),

using (mb + mc)P̂ = Z∂µÂ
µ to find the matching coefficient Z and then comparing

matrix elements of this normalized current to the result using perturbation theory.

Within errors, the result presented here agrees with the result from the Fermilab Lat-

tice and MILC Collaborations [4], hA1(1) = 0.906(4)(12). The higher precision achieved

in this work is due to the use of the same lattice discretization for the b and c quarks.

This enabled them to avoid the larger current-matching uncertainties present in this

NRQCD-b, HISQ-c work. Nevertheless, the value of providing a completely indepen-

dent lattice QCD result using different formalisms is self-evident.

After combining the statistical and systematic errors in quadrature, a weighted aver-

age of the two lattice results yields hA1(1) = 0.900(11).

My result for the Bs → D∗s zero-recoil form factor is

FBs→D∗s(1) = hsA1
(1) = 0.883(12)stat(28)sys . (4.35)
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This is the first lattice QCD calculation of this quantity. No significant difference be-

tween the result for B → D∗ and Bs → D∗s is seen, showing that spectator quark mass

effects are very small. Correlated systematic uncertainties cancel in the ratio, which I

find to be

FB→D∗(1)

FBs→D∗s(1)
=
hA1(1)

hsA1
(1)

= 1.013(14)stat(17)sys . (4.36)

No significant U -spin (d↔ s) breaking effect is found at the few percent level.
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4.7 Implications for Vcb

Until recently, one would simply combine a world average of lattice data for hA1(1)

with the latest HFLAV result for the B̄0 → D∗+`−ν differential branching fraction

extrapolated to zero recoil: η̄EWF(1)|Vcb| = 35.61(11)(44) × 10−3 [47]. Doing so with

the weighted average of the Fermilab/MILC result and the one presented here yields

|Vcb|HFLAV = (38.9± 0.7)× 10−3, (4.37)

where the estimated charge-averaged value of η̄EW = 1.015(5) [4] has been used. The

uncertainty in |Vcb|HFLAV is due in equal parts to lattice and experimental error. This

method of determining Vcb relies upon the extrapolation of experimental data to zero

recoil which in turn depends in a non-trivial way upon the choice or parameterisation,

and in fact recent work [73, 74, 75, 76, 77, 78] has brought into question the accuracy

of the CLN [79] method of extrapolation and suggests that the tension between inclu-

sive and exclusive measurement may be resolved by using a different parameterisation

scheme, one proposed by Boyd, Grinstein, and Lebed (BGL) [80].

4.8 Non-zero recoil

One can also, in principle, compute Vcb in a model independent way by computing

form factors away from zero recoil. Such a calculation is complicated considerably by

the number of matrix elements one must compute in order to access all the relevant

form factors, as well as the added complication that one must fit multiple q2 values

simultaneously in order to account for the large correlations in the data.
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4.8.1 Form factor isolation

The relevant form factors are those given in (4.2), which I present again here for conve-

nience,

〈D∗(p′, ε)|c̄γµb|B(p)〉 =
2iV (q2)

MB +MD∗
εµνρσε∗νp

′
ρpσ

〈D∗(p′, ε)|c̄γµγ5b|B(p)〉 = 2MD∗A0(q2)
ε∗ · q
q2

qµ

+ (MB +MD∗)A1(q2)
[
ε∗µ − ε∗ · q

q2
qµ
]

− A2(q2)
ε∗ · q

MB +MD∗

[
pµ + p′µ − M2

B −M2
D∗

q2
qµ
]

(4.38)

where q = p− p′. I will also need the identities

〈Ω|ūγνc|D∗(p, ε(p, λ))〉 =

√
ZD∗

2MD∗
εν(p, λ) (4.39)

and ∑
λ

εν(p, λ)ε∗µ(p, λ) = gνµ −
pνpµ
M2

. (4.40)

The computational aspects of the calculation proceed in much the same way as for zero

recoil, the only significant choices are how I distribute the momenta between the two

mesons. For the sake of simplicity I choose to put the momenta on the D∗, this allows

us to use twisted boundary conditions (TBC) on the inversion of the charm propagator

and to easily insert momenta in a continuous fashion, rather than being restricted to

multiples of 2π/L. I will discuss TBC shortly. For the vector current it is easy to choose

momenta and polarisations to extract V (q2). The ground state amplitudes and matrix

element appearing in the three point function have the form

〈Ω|ūγνc|D∗(p′, ε(p′, λ))〉〈D∗(p′, ε)|c̄γµb|B(p)〉〈B(p)|b̄γ5u|Ω〉

=
∑
λ

√
ZB

2EB

√
ZD∗

2ED∗
εν(p′, λ)

2iV (q2)

MB +MD∗
εµκρσε(p′, λ)∗κp

′
ρpσ (4.41)
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I have chosen to put the B meson at rest, so only σ = 0 contributes. Using 4.40, 4.41

becomes

〈Ω|ūγνc|D∗(p′, ε(p′, λ))〉〈D∗(p′, ε)|c̄γµb|B(p)〉〈B(p)|b̄γ5u|Ω〉

=

√
ZB

2MB

√
ZD∗

2ED∗

2iV (q2)

MB +MD∗
εµκρσ(δνκ − p′νp′κ/M2

D∗)p
′
ρpσ. (4.42)

The antisymmetric sum over p′κp
′
ρ vanishes, leaving

〈Ω|ūγνc|D∗(p, ε(p, λ))〉〈D∗(p′, ε)|c̄γµb|B(p)〉〈B(p)|b̄γ5u|Ω〉

=

√
ZB

2MB

√
ZD∗

2ED∗

2iV (q2)

MB +MD∗
εµνρ0p′ρp0 (4.43)

thus all that is needed is to choose µ and ν to be two distinct spatial directions such

that p′i 6= 0 for i 6= µ 6= ν and the form factor can be read off from the matrix element in

the fit by dividing out the factor of 2iMBp
′
i/(MB +MD∗), assuming the matrix element

already includes the normalisation factors
√

2MB and
√

2ED∗ .

The other form factors may be accessed through more elaborate combinations. In my

calculation I split the momenta equally between the x and y directions, and take the D∗

operator with ν = 1, 3. The first observation that can be made is that taking the inner

product of the pseudovector expression in (4.2) with q eliminates all but the first term.

We are then left with

qµ〈Ω|ūγνc|D∗(p, ε(p, λ))〉〈D∗(p′, ε)|c̄γµγ5b|B(p)〉〈B(p)|b̄γ5u|Ω〉

=
∑
λ

√
ZB

2MB

√
ZD∗

2ED∗
εν(p′, λ)2MD∗A0(q2)ε(p′, λ)κqκ

=

√
ZB

2MB

√
ZD∗

2ED∗
2MD∗A0(q2)(gνκ − p′νp′κ/M2

D∗)qκ. (4.44)

Then choosing spatial ν such that p′ν 6= 0 the expression (gνκ− p′νp′κ/M2
D∗)qκ evaluates

to −p′νED∗MB/M
2
D∗ and again the form factor can be read off by dividing the product

of q and the matrix element by the factor

− 2p′νED∗MB/MD∗ . (4.45)
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Before I continue it should be noted that a complication has arisen. Ideally one would

fit to the combinations of various three point functions defined here such that by fitting

a single three point function each form factor could be read off. However this is not

possible in this case as prior to the fit q0 is unknown, since the D∗ energy has not yet

been measured. In order to minimise the amount of data I attempt to fit I define three

reduced currents, from which the form factors can be recovered after fitting. The first

two, which are relevant here, are

MA
X,0 = 〈Ω|ūγ1c|D∗(p, ε(p, λ))〉〈D∗(p′, ε)|c̄γ0γ5b|B(p)〉〈B(p)|b̄γ5u|Ω〉

MA
X,~q = ~qj〈Ω|ūγ1c|D∗(p, ε(p, λ))〉〈D∗(p′, ε)|c̄γjγ5b|B(p)〉〈B(p)|b̄γ5u|Ω〉 (4.46)

and the final definition, which will be useful later, is

MA
Z,3 = 〈Ω|ūγ3c|D∗(p, ε(p, λ))〉〈D∗(p′, ε)|c̄γ3γ5b|B(p)〉〈B(p)|b̄γ5u|Ω〉. (4.47)

Once I have done the fit I may take the ground state matrix elements for MA
X,0 and MA

X,~q

and combine them to find A0(q2)

− MD∗

2p′1ED∗MB

[
(MB − ED∗)MA

X,0 +MA
X,~q

]
(4.48)

again assuming the normalisation factors are already incorporated. Accessing A1 is far

more straightforward. Choosing µ in (4.2) such that p′µ = pµ = 0, ie µ = 3 in this case,

〈Ω|ūγνc|D∗(p, ε(p, λ))〉〈D∗(p′, ε)|c̄γµγ5b|B(p)〉〈B(p)|b̄γ5u|Ω〉

=
∑
λ

√
ZB

2MB

√
ZD∗

2MD∗
εν(p′, λ)(MB +MD∗)A1(q2)ε∗3(p′, λ). (4.49)

Taking ν = 3 the matrix element coming from this three point function simply reduces to

−(MB +MD∗)A1(q2). Therefore to extract A1(q2) from the ground state matrix element

of MA
Z,3 I simply take −MA

Z,3/(MB + MD∗). The final form factor, A2, is considerably

messier to access directly. Instead, following [14] I compute the combination

A12(q2) =
(MB +MD∗)

2(M2
B +M2

D∗ − q2)A1(q2)− λA2(q2)

16MBM2
D∗(MB +MD∗)

(4.50)
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where λ =
(
(MB + MD∗)

2 − q2
)(

(MB −MD∗)
2 − q2

)
. In order to project this I take

ζ = (|~q|, q0~q/|~q|), for which ζµq
µ = 0, and compute

ζµ〈Ω|ūγνc|D∗(p, ε(p, λ))〉〈D∗(p′, ε)|c̄γµγ5b|B(p)〉〈B(p)|b̄γ5u|Ω〉

=
∑
λ

√
ZB

2MB

√
ZD∗

2MD∗

[
ζµε

ν(p′, λ)ε∗µ(p′, λ)(MB +MD∗)A1(q2))

−2A2(q2)εν(p′, λ)ε∗κ(p′, λ)qκζµp
µ

MB +MD∗

]
=

√
ZB

2MB

√
ZD∗

2MD∗

8MBq
vED∗

2|q|

[(MB +MD∗)
2(M2

B −M2
D∗ − q2)

16MBM2
D∗(MB +MD∗)

A1(q2)

− λ

16MBM2
D∗(MB +MD∗)

A2

]
(4.51)

where in the last two lines I have used the choice of ν = 1. I therefore compute

A12(q2) =
|q|

8MBq1ED∗

(
|q|MA

X,0 +
q0

|q|
MA

X,~q

)
. (4.52)

4.8.2 Twisted boundary conditions

In order to put momentum on the charm propagator I use twisted boundary conditions

[81]. If instead of taking period boundary conditions we impose the boundary conditions

ψ′(x+ Lµ̂) = ei2πθµψ′(x) (4.53)

which in fourier space gives the condition (pµ − 2πθµ/L)L = 1. Momentum is thus

discretised and takes values

pµ = 2π(Nµ + θµ)/L. (4.54)

In order to implement this we rewrite the field with twisted boundary conditions in

terms of a unitary transformation of fields with periodic boundary conditions

ψ′(x)→ ei2πθ·xψ(x). (4.55)

This transformation takes

ψ̄′(x)D(x, y)ψ′(y)→ ψ̄(x)e−i2πθ·xD(x, y)ei2πθ·yψ(y) = ψ̄(x)Dθ(x, y)ψ(y) (4.56)
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which does not affect the value of the fermionic determinant and can therefore be used

with sea quarks with periodic boundary conditions. All we need to do is compute

propagators using the inverse of Dθ rather than D. For my preliminary investigation I

choose values of q2 in the full range. The maximum value of q2 is given by the mass of

the product leptons q2
min = (mνl +ml)

2 while the maximum value of q2 is given at zero

recoil when the D∗ is at rest q2
max = (MB −MD∗)

2.

The maximum value of |~q| can be computed easily by considering on shell energies

and momentum conservation. The result is

max[|~q|] =
[(M2

B +M2
D∗ − (mνl +ml)

2

2MB

)2

−M2
D∗

]− 1
2

= 2.26GeV (4.57)

where the numerical value is taken neglecting the lepton masses. Initially I take five

values of q2 including the zero recoil point, in order to investigate what range of possible

q2 values might be probed effectively.

4.8.3 Fitting nonzero recoil data

An important aspect of fits to nonzero recoil data is the retention of correlations be-

tween different q2 values and different currents - if correlations are neglected then any

further processing of the fit results will contain artificially large errors. However a full

simultaneous fit to the data is made difficult by the large numbers of parameters and the

tendency of the fitting code to stall in such circumstances. As such I employ whatever

tricks I can to simplify the fit. I use the fact that the two point functions have real

amplitudes to average between transpose elements in the matrix of correlators indexed

by source and sink smearings. I also manually exclude highly correlated data points.

For this calculation I use only set 1, specified in table 4.1, with 960 configurations using

only a single time source on each. Since I insert spatial momentum aiming for specific

values of q2 without prior knowledge of the B or D∗ energies on the lattice, I expect

to miss the intended q2 by a small amount for large recoil. In fact, on the very coarse

lattice care must be taken as the lowest value of q2 corresponds to |q|a = 1.66 > π/2
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Table 4.13: Tree-level Z factors and one-loop matching coefficients [9].

Set Z −η τ αV (2/a)

Aj 0.9930 0.260(3) 0.0165(1) 0.343

A0 0.9930 0.232(5) -0.01269(1) 0.343

V j 0.9930 0.118(5) 0.0423(1) 0.343

V 0 0.9930 0.148(3) -0.0494(1) 0.343

which has the potential to cause taste changing effects. I negate this effect by splitting

the momenta equally between the x and y directions, such that even on the very coarse

lattices all chosen momenta lie within the first quarter with −π/2a < qi < π/2a.

When I assemble lattice currents into the fully matched currents it is worth noting

that the matching coefficients differ for spatial and timelike components of the current.

Matching coefficients for the vector and axial currents following the notation of 4.16 are

given in table 4.13 and where the vector lattice currents are found from the axial vector

lattice currents given in 4.14 by making the replacement γiγ5 → γi.

4.8.4 Results

Since this preliminary nonzero recoil calculation uses only a single time source on each

configuration I am not concerned by the increase in error compared to the zero recoil

calculation. I am primarily interested in the relative precision with which each form

factor can be extracted and at what value of q2 the error becomes too large. I also

consider the size of the matrix element of J
(2)i
latt which is expected to grow considerably

as the momentum on the charm quark increases. Figure 4.9 shows plots of the four form

factors, in lattice units, against q2, as well as the D∗ ground state energy. Based on this

it might be reasonable to use a range roughly between q2
max and q2

max/2, aiming to keep

errors to the same order of magnitude as the zero recoil calculation with respect to A1.

In figure 4.10 I show the computed magnitude of the contribution of J
(2)i
latt to the
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Table 4.14: Results for the four form factors defined in 4.2, in lattice units.

q2 A0 A1 A12 V ED∗

5.572(11) − -0.799(39) − − 1.5196(24)

5.290(14) -0.63(20) -0.829(43) -0.424(51) 0.18(14) 1.5560(30)

4.491(28) -0.47(23) -0.928(88) -0.374(85) 0.25(17) 1.6582(63)

3.164(36) -0.59(20) -1.09(14) -0.490(92) 0.07(17) 1.8390(87)

1.198(73) -1.14(42) -1.33(49) -0.63(18) 0.26(47) 2.154(21)

form factors, divided by the fully matched form factor result. These results imply that

the uncertainty coming from the omission of this matched current should be less than

approximately 3% over the proposed range of q2 for the A1 and A12 form factors while

an uncertainty of roughly 5% would be expected for A0. The vector current on the other

hand appears to be considerably more noisy.

4.8.5 Outlook

We have performed the first lattice QCD calculation of these form factors away from zero

recoil. The calculation is complicated numerically by the increased number of matrix

elements required to extract the various form factors. This increases both the complexity

of the fit as well as the computing time spent evaluating correlation functions. In order

to ease this increase in complexity a study of optimising a single choice of smearing would

be valuable. The covariant gaussian smearing used in MILC introduces issues related

to normalisation as well as having an undesirably large overlap with excited states and

replacing the three smearings used with a single smearing chosen to produce maximum

overlap with theD∗ ground state with minimal excited state contamination would reduce

the number of propagators and contractions required as well as simplifying the bayesian

fitting. I have also investigated the momentum dependence of the uncertainty associated

with J
(2)i
latt and determined approximately an appropriate range of q2 to investigate.
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Figure 4.9: Plots of each form factor against aq2 as well as the D∗ energy squared against

|a~q|2. Using a simple linear fit to aE2
D∗ it is not possible to fit all of the data, while

excluding the value at maximum |a~q| gives a reasonable fit with χ2/dof = 1.4, indicating

that above |aq| ≈ 1 discretisation effects become significant.
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Figure 4.10: Plots of the contribution of αJ (2) to the uncertainty of each form factor,

using a matching coefficient of 1, divided by the form factor computed from the known

matched current against q2.

Another theoretical hurdle is how to deal with the chiral perturbation theory and

finite volume effects away from zero recoil. As I have demonstrated in the zero recoil

calculation, such effects are significant. To my knowledge the calculation of the form

factors away from zero recoil in rooted staggered chiral perturbation theory has not been

done.



Chapter 5

Radiative Improvement and Kinetic

Couplings

5.1 Matching procedure

As discussed in section 3.5.3 one must tune the parameters appearing in (3.86), which

we restate here for convenience:

S = a3
∑
x

[
ψ†(x)ψ(x)

−ψ†(x+ at̂)
(

1− aH0

2n

)n(
1− aδH

2

)
U †t (x)

(
1− aδH

2

)(
1− aH0

2n

)n
ψ(x)

]
.

with

aH0 =−∆(2)/2am (5.1)

aδH =aδHv4 + aδHv6 (5.2)

aδHv4 =− c1
(∆(2))2

8(am)3
+ c2

ig

8(am)2

(
∆(±) · Ẽ − Ẽ ·∆(±)

)
− c3

g

8(am)2
σ ·
(
∆̃(±) × Ẽ − Ẽ × ∆̃(±)

)
− c4

g

2am
σ · B̃ + c5

a2∆(4)

24am
− c6

a(∆(2))2

16n(am)2
(5.3)

δHv6 =− f1
g

8(am)3

{
∆(2), σ · B̃

}
− f2

3g

64(am)4

{
∆(2), σ ·

(
∆̃(±) × Ẽ − Ẽ × ∆̃(±)

)}
− f3

ig2

8(am)3
σ · Ẽ × Ẽ. (5.4)

97
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This tuning is necessary in order to ensure that the effective theory reproduces the

results of continuum QCD, a typical procedure is to compare a number of quantities

computed in both in order to constrain the parameters ci. c1, c5 and c6 are known as

“kinetic couplings”, and since c1 and c6 have the same form only two free parameters

require tuning. The remaining ci parameters correct for radiative processes, and must

also be tuned in order for the theory to correctly reproduce QCD to the desired order.

A convenient method for computing these parameters is to use perturbation theory

to compute the coefficients of terms in the effective action in background field gauge in

the continuum, and to match these to those computed using lattice perturbation theory

and NRQCD. The use of background field gauge restricts the number of possible terms

appearing in the effective action to those which are gauge invariant. At the end of

section 2.3.1 it was noted that the use of BFG results in a finite 1PI vertex function,

since the coupling g only receives renormalisation contributions from the gauge field

renormalisation. This is critical for our matching procedure as it means we are free to

mix UV regulators between the two calculations. The matching calculation is performed

using the Minkowski actions for both continuum and lattice NRQCD and do the integral

over temporal momentum as a contour integral. We use tree level on shell spinors for

the matching, which must be corrected for at one loop by considering the expansion of

the one loop on shell matching p = (i(E0 + ~p2/2mb), ~p) where E0(p) = Σ(p) is O(α),

where Σ(p) is the quark self energy. Throughout this chapter I use m in equations,

suppressing the b subscript on the b quark mass mb.

5.2 Automated Perturbation Theory

The application of automated perturbation theory to lattice gauge theories was first

developed by Lüscher and Weisz [82] and the algorithm I used here, based on this, is

set out in [83]. For completeness I outline the basic methodology.

A generic lattice fermion action may be expanded in the gauge fields Uµ(x) =
∑

r(agAµ(x+
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a
2
eµ))r/r! as

S[ψ,A] =
∑
r

gr

r!

∑
k1,µ1,a1

...
∑

kr,µr,ar

Aa1µ1(k1)...Aarµr(kr)×∑
p,q,b,c

ψ̄b(p)ψc(q)VF,r(p, b; q, c; k1, µ1, a1; ...kr, µr, ar) (5.5)

where, separating colour factors, the symmetrised vertex is given by

VF,r(p, b; q, c; k1, µ1, a1; ...kr, µr, ar) =

1

r!

∑
σ∈Sr

σ·CF,r(b, c; a1...ar)σ · YF,r(p, q; k1, µ1; ...kr, µr) (5.6)

with σ an element of the permutation group of r elements. C here is the Clebsch-Gordon

colour factor, given by C =
(
T a1× ...T ar

)
b,c

and Y , the reduced vertex function, is given

by

YF,r(p, q; k1, µ1; ...kr, µr) =

nr({µ})∑
n=1

Γ{µ}n f {µ}n e
i
2

(
p·x+q·y

∑r
j=1

~kj ·~v
{µ}
n,j

)
(5.7)

where for a given combination of r Lorentz indices there are nr({µ}) terms coming from

the number of ways of selecting those indices from the expansion of the links, with

~v
{µ}
n,j the position vector of the mid point of the link from which the jth Lorentz index

originated. Γ
{µ}
n and f

{µ}
n are a spin algebra factor and an amplitude respectively. We

encode the Feynman rules as an ordered list of entities, implemented in python, of the

form

E = (τ, µ1, ..., µr : x, y;~v1, ...~vr, f). (5.8)

The variable 0 ≤ τ ≤ 15 indexes the element of the spin algebra basis to which the cor-

responding monomial,f , corresponds. The set of entities is refered to as a field. From

the field it is trivial to reconstruct the Feynman rule for a particular vertex by summing

f ·exp( i
2
(p ·x+q ·y+

∑
j kj~vj)) over the entities with a given set of Lorentz indices. Orig-

inally presented in [84] the HiPPy and HPsrc packages generalise the original algorithm

conceived by Lüscher and Weisz [82] for closed traced Wilson loops. These freely avail-

able packages have since been generalised to include fermions and background fields
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[85]. The packages are implemented with provisions for diagrammatic differentiation

making them highly suitable for calculations, such as those I perform here, involving

many derivatives of multiple variables. The Feynman rules, encoded in vertex files by

HiPPy, are fed into HPsrc, written in fortran, which constructs the integrands for each

diagram and performs the momentum integrals over the Brillouin zone using the Monte

Carlo integration package Vegas [86].
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5.3 c4

The parameter c4 in (5.1) appears multiplying the chromomagnetic operator:

− c4
g

2am
σ · B̃. (5.9)

Radiative corrections to the chromomagnetic operator occur in both QCD and NRQCD

and differences between the corrections must be tuned using c4. Nonperturbative studies

have shown that the impact of this term on the hyperfine splitting of bottomonium goes

like the square of c4 [87], which has contributions at O(α). These corrections have been

calculated [11] but omit O(α) corrections from the use of tree level on shell quarks

due to the timelike gauge link appearing in the NRQCD action. This originally missed

correction has since been computed independently and incorporated, though for the v6

action c4 has only been calculated for three values of amb. As such it is desirable to

compute a full set of c4 over a wide range of amb using the v6 action.

5.3.1 Continuum calculation

In the continuum the effective action takes the form

Γ = Z−1
2 ψ̄(/∂ + /A)ψ + δZσψ̄

σµνF
µν

m
ψ + ... (5.10)

which after the FWT transformation (3.79) and multiplicative renormalisation contains

the chromomagnetic term

(1 + δZσZ2Zm)gΨ†R
σ ·B
2mR

ΨR. (5.11)

As noted above in BFG the renormalisaton of the coupling g comes only from the

wavefunction renormalisation of the gauge field. As such the 1PI vertex can be computed

using the unrenormalised coupling and background gauge field to acquire a UV finite

result. Since QCD is renormalisable the combination δZσZ2Zm is also UV finite, meaning

we can directly compare between different UV regularisation schemes. Since the action
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contains no terms of the form (5.11) the term δZσ has no tree level piece and is O(α).

This means that at one loop, in the continuum, the contribution of Z2 and Zm can be

disregarded. Note that the tree level piece coming from ψ̄ /Aψ automatically contains the

renormalised mass as the gordon decomposition is performed between on shell spinors.

The continuum QCD calculation proceeds straightforwardly, and includes the abelian

and nonabelian diagrams. The nonabelian diagram includes a contribution to the vertex

from the gauge fixing term as well as the conventional piece from the gauge action. The

result is [88]

δZ(1)
σ =

3α

2π
log

µ

m
+

13

6π
α (5.12)

where µ is a gluon mass introduced as an IR regulator. To one loop the diagrams contain

no ghosts, so this is a valid IR regulator.

5.3.2 NRQCD calculation

In NRQCD the effective action contains the term

ΓNRQCD
c4

= c4Z
NRQCD
σ gΨ†

σ ·B
2m

Ψ (5.13)

which after renormalisation becomes

ΓNRQCD
c4

= c4Z
NRQCD
σ ZNRQCD

m ZNRQCD
2 gΨ†R

σ ·B
2mR

ΨR. (5.14)

The matching requirement then reads

c4Z
NRQCD
σ ZNRQCD

m ZNRQCD
2 = 1 + δZσ. (5.15)

to O(α) this gives

c
(0)
4 = 1 (5.16)

c
(1)
4 = δZ(1)

σ − ZNRQCD(1)
m − ZNRQCD(1)

2 − ZNRQCD(1)
σ . (5.17)

Contributions to each of the NRQCD renormalisations may be seen as coming from

two sources: normal diagrammatic contributions such as those in figure 5.1 and tadpole
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Figure 5.1: Diagrams contributing to the radiative correction, clockwise from top left:

abelian, nonabelian, algae, ankh, and two swordfish diagrams.

contributions, arising from the substitution U → U/u0 with u0 = 1−αu(1)
0 . The tadpole

terms have been calculated in [88], using mathematica, and depend on the specific

details of the NRQCD action used, such as the stability parameter n. The tadpole

factors relevant for c
(1)
4 , for the v6 action, are

Ztad(1)
σ =

(
13

3
+

13

4am
− 3

8n(am)2
+

3

(am)2
− 3

4(am)3

)
u

(1)
0 (5.18)

Ztad(1)
m = −

(
2

3
+

3

(am)2

)
u

(1)
0 (5.19)

and there is no tadpole contribution to ZNRQCD
2 .

The diagrammatic contributions to c
(1)
4 are given in figure 5.1. I generate Feynman

rules for the relevant vertices automatically using the HiPPy package, for the v6 NRQCD

action. I evaluate the diagrams using the HPsrc code, which makes use of the Vegas

Monte Carlo integration routines. For c4 the diagrams contain only logarithmic di-

vergences in µ, as I will discuss shortly, which produce sufficiently little noise in the

integral that I may just compute diagrams at several different values of µ and fit the

logarithms away afterwards. Later when I compute c
(1)
2 , which is strongly IR divergent,

a subtraction function must be added to the integrals.

Each integral in figure 5.1 is projected onto the corresponding Z by considering the
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explicit form of the term in the effective action, before renormalisation of the mass and

fields,

Γc4 = ZNRQCD
σ gΨ†(p+ q)

iεijkσ
jqkAi(q)

2m
Ψ(p). (5.20)

Each integral contributes something of the form

Γdiag
c4 = Ψ†(p+ q)M(p, q)iA

i(q)Ψ(p). (5.21)

I may therefore project out its contribution to Z by taking

gZdiag = mTr

[
∂

∂q1
M(p, q)2|~p=q=0σ

3

]
(5.22)

where p0 is chosen so that the heavy quark is on shell. This is done using the tree level

equation of motion and so must be corrected for at one loop. I discuss the treatment of

poles in the numerical evaluation of diagrams in Appendix B.

I split each Z into an IR finite piece indicated by Z̃ as well as an IR divergent logarithm

Alog(aµ). The IR divergences are known from analytic results, and are given by [89]

Z
NRQCD(1)
2 + ZNRQCD(1)

σ = Z̃
NRQCD(1)
2 + Z̃NRQCD(1)

σ +
3

2π
log(aµ) (5.23)

ZNRQCD(1)
m = Z̃NRQCD(1)

m . (5.24)

I compute the sum of all diagrammatic renormalisation factors simultaneously and fit

the result to
3

2π
log(aµ) + Z̃

(1)
diag (5.25)

in order to find the diagrammatic contribution. I use values of aµ between 10−2 and 10−4

so that any lattice artefact µ dependence is negligible. In order to make the calculation

as efficient as possible, I compute the ankh diagram, which converges quickly but takes

a lot of time due to the size of the vertex, seperately from the remaining diagrams.

There is one more subtle contribution which must be included, this originates from

the point splitting in time of the tree level vertex, introducing a factor of eip0 in the
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Feynman rules. Since I use tree level on shell external quark momenta, the result must

be adjusted at one loop to recover the on shell value to this order. The one loop on

shell condition reads p = (i(−E0 + p2/2m), ~p) which yields a correction to c
(1)
4 of +E

(1)
0 .

E
(1)
0 has both diagrammatic and tadpole contributions. I include the diagrammatic

contribution, E
diag(1)
0 = Σ(0), along with the others in the monte carlo integral. The

tadpole contribution is given by

E
tad(1)
0 =

(
1 +

7

2m
− 3

4nm2
− 3

2m2

)
u

(1)
0 (5.26)

and is included in the analysis. Values for tadpole factors, as well as fit results for the

diagrammatic contributions, are given in table 5.1.

5.3.3 Results

Figure 5.2 shows fits to (5.25), using only a single parameter for Z̃
(1)
diag with gaussian prior

−3(3). It can be seen that relatively few points are necessary to extract the IR finite

piece since aµ is small and polynomial terms are suppressed. Table 5.1 gives the mass,

diagrammatic, and tadpole contributions as well as the computed value of c
(1)
4 . Figure

5.3 shows the amb dependence of c
(1)
4 , the divergent behaviour around amb ≈ 0.6 can be

explained by considering the high momentum behaviour of the fermion propagator. The

momentum k in the numerical integrals is restricted to the Brillouin zone −π < k < π,

and when amb < amcrit the pole wf =
(

1− aH0(k)
2n

)−2n

goes to infinity and becomes

negative for some values of k. This critical value can easily be found considering the

maxiumum value of k = π and setting w−1
f = 0 to find

(
1− aH0(π)

2n

)
= 0

1− π2

4nmcrit

= 0

mcrit = π2/4n.
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Table 5.1: Tadpole and diagrammatic contributions to c
(1)
4 . The error coming from the

computed value of u
(1)
0 = 0.750275(5) is not tabulated in Z

tad(1)
σ , though this is included

in the analysis and the given value of c
(1)
4 .

amb E
tad(1)
0 Z

tad(1)
σ Z

tad(1)
m Z̃

(1)
diag c

(1)
4

0.6 −0.4741 10.767 −6.752 −5.67(3) 2.112(26)

0.8 1.614 8.607 −4.017 −1.32(3) −0.858(28)

1.0 2.110 7.307 −2.751 −1.30(3) −0.459(26)

1.25 2.184 6.309 −1.940 −1.55(1) −0.051(12)

1.5 2.104 5.679 −1.501 −1.64(1) 0.066(11)

1.9 1.929 5.056 −1.124 −1.72(1) 0.1046(99)

2.8 1.618 4.374 −0.7872 −1.861(6) 0.0908(57)

3.4 1.481 4.142 −0.6949 −1.925(9) 0.0643(89)

5.0 1.260 3.822 −0.5902 −2.050(8) 0.0002(80)

I use a value for the stability parameter of n = 4 and so the smallest value of amb

I should use is π2/16 = 0.61685. This could easily be remedied by choosing a different

stability parameter, but amb = 0.6 is already comparable to charm masses on the coarse

lattices and it is likely that in such circumstances relativistic approaches to simulating

the bottom quark, such as heavy-HISQ, would be favourable.
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Figure 5.2: Plots of fits to (5.25) for various amb.
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5.4 c2

The parameter c2 in (5.1) multiplies what is refered to as the “Darwin operator”:

c2
ig

8(am)2

(
∆(±) · Ẽ − Ẽ ·∆(±)

)
. (5.27)

The Darwin operator also receives renormalisations from the diagrams in figure 5.1. The

Darwin operator is responsible for shifting the energy of s-wave states. Nonperturbative

studies [5] of the effect of varying c2 on these shifts suggests that the O(α) corrections

to c2 are not significant, however the calculation of c2 to this order is still desirable for

completeness, as well as to eliminate the need to estimate systematic errors resulting

from its omission.

5.4.1 Continuum calculation

The continuum effective action contains the terms detailed in (5.10). Following the

FWT transformation, the terms containing A0 are

ΓA0 = Z−1
2 (q2)Ψ†

(
gA0 −

g

8m2
q2A0 + ...

)
Ψ + δZσ(q2)Ψ†

(
− g

4m2
q2A0 + ...

)
Ψ. (5.28)

After renormalisation we isolate the Darwin term

Γdarwin =
(
1− 8m2Z−1′

2 (0) + 2δZσ(0)
)

Ψ†R

[
− g

8m2
R

q2A0

]
ΨR. (5.29)

Details of the analytic calculation of Z−1′
2 (0) and δZσ(0) can be found in [90]. The total

contribution to the darwin term from continuum QCD is

ZD = 1− α
(

1

π
+

7m

4µ
+
m2

πµ2
+

(
6

π
− 4

9π

)
log(µ/m)

)
. (5.30)

The 1/µ and 1/µ2 IR divergences must match and cancel between the continuum and

NRQCD calculations. These are problematic for the vegas integral and in practice they

must be subtracted prior to integration.
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5.4.2 NRQCD calculation

After renormalisation the NRQCD effective action contains the piece

ΓNRQCD
c2

= −c2Z
NRQCD
D ZNRQCD

2 ZNRQCD2
m gΨ†R

q2A0

8m2
R

ΨR. (5.31)

I work in the Breit frame in which ~p = −~q/2. The NRQCD projection for the O(α)

vertex is

V0(p, q)R = ZNRQCD
D q2/8m2 (5.32)

using the on shell condition we then have

ZNRQCD
D = 8m2 d

d(q2)
V0(p, q)|p=q=0 =

(
4m2

3

∂2

∂q2
i

+ im
∂

∂p0

)
V0(p, q)|p=q=0. (5.33)

Including both 1 particle irreducible and 1 particle reducible diagrams in the calculation

of V0(p, q), ZNRQCD
D automatically includes the contributions from the wavefunction

renormalisations of the tree level iA0 and Darwin vertices. The projection operator

(5.33) should therefore also be applied to these pieces, and the contribution of the iA0

tree level term is non-trivial. Its contribution is

ZA0,NRQCD
D = −

(
m2

3

∂2

∂p2
i

+ im
∂

∂p0

)(
Σ(p)− i ∂

∂p0

Σ(p)

) ∣∣∣
p=0

(5.34)

which I include when I evaluate and project the diagrams in figure 5.1. To make this

distinction clear I write

ZNRQCD
D = Z1PI,NRQCD

D + ZA0,NRQCD
D . (5.35)

As mentioned above a subtraction function must be included in the vegas integral in

order to remove IR divergences. I opt to use the subtraction function given in [11]

Isub(µ) = Z̃sub +
7m

4µ
+

21

4π
log(aµ) +

m2

πµ2
(5.36)

where Z̃sub includes some polynomial in aµ. This function cancels the leading IR diver-

gences pointwise, and contributes a continuum like logarithm. For each value of m I use



5.4. c2 111

to calculate c2 I therefore need to also independently compute Isub for several values of

aµ and perform a fit in order to determine Z̃sub.

The total quantity computed in the numerical integral is then

Z
1PI,NRQCD(1)
D + Z

A0,NRQCD(1)
D + Isub + Z

(1)
2 − E

(1)
0 + 2Z(1)

m =

Z̃
1PI,NRQCD(1)
D + Z̃

A0,NRQCD(1)
D + Z̃sub + Z̃

(1)
2 − E

(1)
0 + 2Z̃(1)

m +

[
4

9π
+

21

4π
− 6

π

]
log(aµ).

(5.37)

Care has been taken to ensure the terms omitted from [89], the factor of 2 from the

mass squared and the projection operator applied to Z2, have been included. In order

to fit the subtraction function for each value of am I took a quadratic in µ. The

parameters of the resultant fits are given in figure 5.4. Having done the fit to Isub I

remove its polynomial and logarithmically divergent piece analytically from the results

for the numerical integral (5.37). Adding in tadpole pieces as I did for c4 the final result

is then

c
(1)
2 = − 1

π
−
[
Z̃

1PI,NRQCD(1)
D + Z̃

A0,NRQCD(1)
D + Z̃tad

D

+Z̃
(1)
2 − E

(1)
0 − E

tad(1)
0 + 2Z̃(1)

m + 2Z̃tad(1)
m +

[
4

9π
− 6

π

]
log(am)

]
(5.38)

where

Z̃tad
D =

(
10

3
+ 2− 3

4(am)3
− 3

32(am)2
+

13

4am

)
u

(1)
0 (5.39)

and

E
tad(1)
0 =

(
1 +

7

2am
− 3

2(am)3
− 3

16(am)2

)
u

(1)
0 . (5.40)

5.4.3 Results

v6 Action

Defining

Z̃
(1)
Σ = Z̃

A0,NRQCD(1)
D + Z̃

(1)
2 − E

(1)
0 + 2Z̃(1)

m (5.41)



112 Chapter 5. Radiative Improvement and Kinetic Couplings

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
log(aµ)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Z̃
su
b

χ2 /dof=1.2

amb =1.0, Z̃sub=0.3201(45)+-2.316(24)µ+0.987(30)µ2

5 4 3 2 1 0
log(aµ)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

Z̃
su
b

χ2 /dof=1.0

amb =1.5, Z̃sub=-0.4269(88)+-1.630(47)µ+0.543(59)µ2

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
log(aµ)

1.5

1.4

1.3

1.2

1.1

1.0

0.9

Z̃
su
b

χ2 /dof=1.3

amb =1.9, Z̃sub=-0.942(17)+-1.057(63)µ

5 4 3 2 1 0
log(aµ)

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

Z̃
su
b

χ2 /dof=0.5

amb =2.65, Z̃sub=-1.626(40)+-1.08(34)µ+0.45(72)µ2

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
log(aµ)

4.5

4.0

3.5

3.0

2.5

2.0

1.5

Z̃
su
b

χ2 /dof=1.0

amb =3.4, Z̃sub=-2.97(19)+1.31(98)µ+0.9(1.8)µ2

Figure 5.4: Plots of fits to Z̃sub defined in (5.36).



5.4. c2 113

Table 5.2: Numerical results for the calculation of c2 for the v6 action.

amb Z̃sub(0) Z
tad(1)
D Z̃

(1)
Σ Z̃

1PI,NRQCD(1)
D + Z̃

(1)
Σ c

(1)
2

1.0 0.3201 (45) 5.806819(36) − -0.774(51) 2.261(51)

1.5 -0.4269 (88) 5.429076(34) − -1.825(55) 1.901(55)

1.9 -0.942 (17) 5.183311(32) 4.719(40) -1.273(76) 1.083(76)

2.65 -1.626 (40) 4.881364(31) 3.718(40) -0.12(11) -0.05(11)

3.4 -2.97 (19) 4.698242(29) − 1.78(19) -1.76(19)

Table 5.3: Numerical results for the calculation of c2 for the v4 action, using table IV of

[11] as input together with my computed values of Z̃
(1)
Σ .

amb Z
tad(1)
D Z̃

(1)
Σ Z̃

1PI,NRQCD(1)
D c

(1)
2

1.9 5.183311(32) 4.961(34) -5.95(8) 0.679(87)

2.65 4.881364(31) 3.874(34) -3.71(10) -0.41(11)

3.4 4.698242(29) 3.135(31) -1.73(12) -1.45(11)

which is the sum of IR finite pieces of diagrammatic pieces calculated from Σ(p).

Table 5.2 gives fit results for Z̃
1PI,NRQCD(1)
D + Z̃

(1)
Σ and Z̃sub(0) as well as the numerical

values of Z
tad(1)
D on the full v6 NRQCD action. For amb = 1.9, 2.65 I also give values for

Z̃
(1)
Σ . This was done in order to check my computed values for Z̃

1PI,NRQCD(1)
D against

those given in [11], with which I am in good agreement.

v4 Action

Having confirmed their diagrammatic pieces are correct, I perform the much simpler

calculation of the quantity Z̃
(1)
Σ using the v4 action and combine this with results for

the IR finite part of the diagrammatic contribution in [11] to obtain a revised value for

c2 on the v4 action.
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Figure 5.5: Plots of fits to Z̃
1PI,NRQCD(1)
D + Z̃

A0,NRQCD(1)
D + Z̃

(1)
2 −E

(1)
0 + 2Z̃

(1)
m +

(
4

9π
−

6
π

)
log(aµ) including polynomial terms in µ, which is the IR finite and logarithmic piece

of (5.37) following removal of the IR finite and logarithmic piece of the subtraction

function.



5.4. c2 115

amb Dependence of c2

It is interesting to check whether c2 has any dependence upon (amb)
2. In principle

redefinitions of the gauge fields can generate contributions to c2 going as (amb)
2, coming

from the tree level vertex. Therefore I have tried fitting my results to various fit functions

with and without quadratic pieces and find no evidence for a piece going as (amb)
2.
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5.5 c1 and c5

c1 and c5 multiply the two independent kinetic terms in the NRQCD action:

c5
a2∆(4)

24am
, − c1

(∆(2))2

8(am)3
. (5.42)

The −c6
a(∆(2))2

16n(am)2
term is proportional to the c1 term and it is conventional to absorb

them together, as we do later. They correct the dispersion relation by removing terms

which do not obey the rotational symmetry of the continuum theory such as
∑

i=1,2,3 p
4
i

as well as correcting the coefficients of those functions of p2 which do not match the

continuum.

5.5.1 1-loop, on shell dispersion relation

The one loop improvement of the kinetic couplings c1, c5 and c6 appearing in 3.86 is

done by matching the NRQCD one loop on shell dispersion relation to the continuum

relativistic expansion order by order in p2. There is no need for an IR regulator as

all the relevant quantities are IR finite. The inverse heavy quark propagator may be

written

G(p)−1 = G(0)(p)−1 − αΣ(p) (5.43)

where G(0)(p) is the tree level propagator obtained from 3.86 as
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G(0)(p)−1 =
[
1− e−ip4F (p)2nF1(p)2

]
(5.44)

F (p) = 1− 1

nm

∑
j

sin2(pj/2) (5.45)

F1(p) = 1− c5

3m

∑
j

sin4(pj/2)

+
c̃1

m3

(
1 +

m

2n

)[∑
j

sin2(pj/2)

]2

−
2c(p2)3

m5

(
1− m2

6n2

)[∑
j

sin2(pj/2)

]3

−
8cp6

45m

∑
j

sin6(pj/2)

+
2cp2p4

3m3

∑
j,k

sin2(pj/2)sin4(pk/2) (5.46)

with c̃1 = (c1 + c6m/2n)/(1 +m/2n) and c1 = c6. The on shell energy ω(p) is the value

of −ip4 which produces a pole in the full propagator, found by setting 5.43 equal to zero

ω(p) = −log[F (p)2nF1(p)2]− αΣ(ω0(p),p) (5.47)

where ω0(p) is the tree level on shell energy

ω0(p) =
p2

2m
− (p2)2

8m3
+

(p2)3

16m5

+ α

[
c

(1)
5

p4

24m
− c̃(1)

1

( 1

m
+

1

2n

)(p2)2

8m2

]
. (5.48)

The self energy is expanded in small p as

Σ(p) = Σ0(ω) + Σ1(ω)
p2

2m
+ Σ2(ω)

(p2)2

8m2
+ Σ3(ω)p4 (5.49)
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where

Σ0(ω) = Σ(ω,p)
∣∣∣
p=0

(5.50)

Σ1(ω) = m
∂2

∂p2
z

Σ(ω,p)
∣∣∣
p=0

(5.51)

Σ2(ω) = m2 ∂4

∂p2
z∂p

2
y

Σ(ω,p)
∣∣∣
p=0

(5.52)

Σ3(ω) =
1

24

[
∂4

∂p4
z

− 3
∂4

∂p2
z∂p

2
y

]
Σ(ω,p)

∣∣∣
p=0

(5.53)

Σ(l)
m = (−i)l 1

l!

∂l

∂pl4
Σm(p4)

∣∣∣
p4=0

. (5.54)

Using this Σ(ω0(p),p) is expanded as

Σ(ω0(p),p) = W0 +
p2

2m
Z(1)
m

+
(p2)2

8m2

[
W1 −

3Z
(1)
m

m

]
+W2p

4 (5.55)

where we have defined

Z(1)
m = Σ

(1)
0 + Σ

(0)
1 (5.56)

W0 = Σ
(0)
0 (5.57)

W1 = 2Σ
(2)
0 + 2Σ

(1)
1 + Σ

(0)
2 +

2

m
Σ

(1)
0 +

3

m
Σ

(0)
1 (5.58)

W2 = Σ
(0)
3 . (5.59)

Substituting 5.55 into 5.47, to one loop

ω(p) =
p2

2m
(1− αZ(1)

m )− (p2)2

8m3
(1− 3Z(1)

m ) +
(p2)3

16m5

+ α

[
c

(1)
5

p4

24m
− c̃(1)

1

( 1

m
+

1

2n

)(p2)2

8m2

]
− α

(
W0 +

(p2)2

8m2
W1 +W2p

4

)
. (5.60)

Identifying (1 + αZ
(1)
m )m = mr, the renormalised mass, we write to O(αp4,p6)



120 Chapter 5. Radiative Improvement and Kinetic Couplings

ω(p) =
p2

2mr
− (p2)2

8mr3
+

(p2)3

16mr5

+ α

[
W0 + p4

( c(1)
5

24m
−W2

)
− (p2)2

8m2

(
c̃

(1)
1

( 1

m
+

1

2n

)
+W1

)]
. (5.61)

In order to match the continuum relativistic dispersion relation I therefore take

c̃
(1)
1 = −

( 1

m
+

1

2n

)−1

W1 (5.62)

c
(1)
5 = 24mW2. (5.63)

As for c4 and c2 there are tadpole contributions to c̃1 and c5. These are computed in

mathematica by inserting factors of 1/u into the momentum space kinetic part of the

action wherever a gauge link appears, replacing u→ 1−x and then taking the coefficient

of x in an expansion about x = 0. The tadpole factors are given by

c̃
tad(1)
1

u
(1)
0

= −1

8

(
1 +

m

2n

)−1[ 6

m3
+

6

m2n
− 72

m2
+

3

2mn2
− 2

m
+

12

n2
− 1

n

]
(5.64)

c
tad(1)
5

u
(1)
0

= − 3

4m3
− 3

8m2n
+

3

m2
+

1

4m
− 4

3
. (5.65)

The full expressions for c̃1 and c5 are then

c̃
(1)
1 = −

( 1

m
+

1

2n

)−1

W1 + c̃
tad(1)
1 (5.66)

c
(1)
5 = 24mW2 + c̃

tad(1)
5 . (5.67)

5.5.2 Results

Table 5.4 gives results for c̃
(1)
1 and c

(1)
5 using the v6 NRQCD action. Much smaller

values of amb are not expected to be needed as these lattices would be sufficiently fine

for heavy-HISQ methods to be used for the bottom quark.

Figure 5.8 shows plots of the fit amb dependence of c̃1 and c5. The results I present

here were calculated using Vegas with periodic boundary conditions. However, it is
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Figure 5.8: Plots of c̃1 (top) and c5 (bottom), including the tadpole corrections, against

amb. The dashed blue line shows the result of a fit of the amb dependence of each

coupling and the shaded portion shows the error.
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Table 5.4: Results for the kinetic couplings c̃
(1)
1 and c

(1)
5 using the v6 action.

amb c̃
(1)
1 c

(1)
5

0.8 −1.740(34) −0.79(11)

1.0 −0.505(31) −0.347(41)

1.25 0.130(32) 0.158(71)

1.5 0.393(35) 0.330(37)

1.9 0.506(39) 0.471(28)

2.65 0.566(50) 0.500(19)

2.8 0.596(52) 0.516(18)

3.4 0.664(58) 0.517(15)

5.0 0.803(73) 0.5630(96)

also possible to do the calculation of the kinetic couplings, and in principle all of the

matching coefficients, using twisted boudary conditions [82] to perform the integrals.

Using twisted boundary conditions introduces a twist as an IR regulator and means

that the sum over momentum may be performed as an exact sum. The IR divergeances

of individual pieces cancel exactly in such a case to give a finite result. Being an exact

sum there are no statistical errors and uncertainty arises purely from the fit to 1/L

that must be performed in order to remove the IR regulator. In parallel to the PBC

calculation presented here, c̃
(1)
1 and c

(1)
5 were also calculated using twisted boundary

conditions [2] and the results were found to be in good agreement.
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5.6 Summary

Table 5.5 summarises my results for the v6 NRQCD action. The calculation of the

bottomonium hyperfine splittings, originally calculated in [91], can now proceed using

our correct values for the O(αsv
4, v6) improved couplings. These results also represent

a step towards the extension of NRQCD to investigations of exotic bottomonium states,

motivated by experimental evidence for such states in the charmonium spectrum [92].

Table 5.5: Results for the 1-loop couplings, ci, I have computed for the v6 action.

amb c̃
(1)
1 c

(1)
5 c

(1)
2 c

(1)
4

0.6 − − − 2.112(26)

0.8 −1.740(34) −0.79(11) 2.261(51) −0.858(28)

1.0 −0.505(31) −0.347(41) − −0.459(26)

1.25 0.130(32) 0.158(71) − −0.051(12)

1.5 0.393(35) 0.330(37) 1.901(55) 0.066(11)

1.9 0.506(39) 0.471(28) 1.083(76) 0.1046(99)

2.65 0.566(50) 0.500(19) −0.05(11) −

2.8 0.596(52) 0.516(18) − 0.0908(57)

3.4 0.664(58) 0.517(15) −1.76(19) 0.0643(89)

5.0 0.803(73) 0.5630(96) − −
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Chapter 6

Conclusions and Outlook

6.1 Conclusions and Outlook

This thesis covers several projects using lattice QCD to make predictions for hadronic

quantities involving b quarks. I have performed the calculation of the B → D∗ zero recoil

form factor using highly improved staggered quarks and nonrelativistic lattice QCD and

produced a result in good agreement with the literature and with a comparable error.

I have also carried out an exploratory calculation of the nonzero recoil form factor on

a small lattice with physically tuned parameters, demonstrating the viability of the

statistical analysis as well as highlighting potential difficulties.

The calculation of the NRQCD action parameters c1, c5, c2 and c4 using automated

perturbation theory completes the intendedO(α) improvement of the v6 NRQCD action.

As finer lattices become available the use of HISQ quarks using masses heavier than the

charm, approaching that of the bottom quark, will allow extrapolation to the physical

heavy quark mass of form factors relevant to weak and electromagnetic decays. Such

calculations will evade uncertainties arising from matching currents, but will introduce

new uncertainties associated with the extrapolation to heavier masses. In order to test

and improve our understanding of these uncertainties, a highly improved non-relativistic

action is highly desirable, and moving from the v4 action to the v6 action represents a

significant step. In the future it would be desirable to improve further upon these

calculations by computing the radiative corrections using TBC, though this will require

some means of matching IR regulators between the continuum and lattice calculations.
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Appendix A

Explicit Correlation Function

Contractions

For real, symmetric, stride-2 smearings ∆, suppressing Dirac indices for the moment,

and summing over repeated indices and spatial coordinates for zero recoil:

C3pt(x0, y0, z0) =〈ūa(x)Mstca(x+ σ1 + δst)c̄b(y)Γbb(y)b̄c(z + σ2)γuc(z)〉∆1(σ1)∆2(σ2)

=tr
[
Ω†(x)MstΩ(x+ δst)S

c
ab(x+ σ1 + δst, y)Ω†(y)Γ

]
×
[
Gb
bc(y, z + σ2)γΩ(z)Slca(z, x)

]
∆1(σ1)∆2(σ2)

=tr
[
ξ∗ea(x)Ω†(x)MstΩ(x+ δst)S

c
eb(x+ σ1 + δst, y)Ω†(y)Γ

]
×
[
Gb
bc(y, z + σ2)γΩ(z)Slcd(z, x

′)ξda(x
′)
]

∆1(σ1)∆2(σ2) (A.1)

where it is understood that when we add δst it is modulo the hypercube. I have used

the noise condition:

ξ∗ab(z)ξcb(y) = δacδxy (A.2)

to insert the random walls. Setting

Extba(y) = Gb
bc(y, z + σ2)γΩ(z)Slcd(z, x

′)ξda(x
′)∆2(σ2) (A.3)

this becomes

C3pt(x0, y0, z0) =tr
[
ξ∗ea(x)Ω†(x)MstΩ(x+ δst)S

c
eb(x+ σ1 + δst, y)Ω†(y)ΓExtba(y)

]
∆1(σ1)

=tr
[
ξ∗ea(x− σ1)Ω†(x)MstΩ(x+ δst)S

c
eb(x+ δst, y)Ω†(y)ΓExtba(y)

]
∆1(σ1) .

(A.4)
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Now, we do not have Scab(x, y), we have Scab(y, x) so we can use:

S∗ba(x, y) = (−1)ySab(y, x)(−1)x (A.5)

where (−1)x is shorthand for (−1)x0+x1+x2+x3 . Now

C3pt(x0, y0, z0) =tr
[
Ω†(y)(−1)ySc∗bc (y, x+ δst)(−1)x+δstβM(x)ξ∗ca(x− σ1)ΓExtba(y)

]
×∆1(σ1) (A.6)

where βM(x) = Ω†(x)MstΩ(x+δst) is the local spin-taste phase. Inserting Dirac indices:

C3pt(x0, y0, z0) =Ω†αβ(y)(−1)ySc∗bc (y, x)(−1)xβM(x+ δst)ξ
∗
ca(x− σ1 + δst)∆1(σ1)

× ΓβκExtba,κα(y)

=± [Ωβα(y)(−1)yScbc(y, x)(−1)xβM(x)ξca(x− σ1 + δst)∆1(σ1)]∗

× ΓβκExtba,κα(y) . (A.7)

We recognise Scbc(y, x)(−1)xβM(x)ξca(x − σ1 + δst)∆1(σ1) as the MILC KS propagator.

The naive active quark that gets made in NRQCD is then:

Activeab,αβ(y) = Ωαβ(y)(−1)yScac(y, x)(−1)xβM(x)ξcb(x− σ1 + δst)∆1(σ1) (A.8)

and the contractions to do are

Currentab,αβ(y) = Active∗ba,κα(y)Γκβ

C3pt = Currentab,αβ(y)Extba,βα(y) . (A.9)



Appendix B

Treatment of Poles in Vegas

Integration

When evaluating the diagrams in figure (5.1) we take the integral over k4 as an integral

over a circle in the complex plane w = eik4 . In order to prevent poles crossing this

contour as we vary the spatial momentum ~k it is necessary to vary the radius of the

contour. Considering first the abelian diagram there are two fermionic poles occuring

at

w−1
f1

= 1−G−1(p− k)|k4=0 =

(
1− aH0(p− k)

2n

)2n

e−ip4 (B.1)

and

w−1
f2

= 1−G−1(p− k + q)|k4=0 =

(
1− aH0(p− k + q)

2n

)2n

e−i(p4+q4) (B.2)

where the two RHS expressions illustrate the result for the unimproved NRQCD action.

The gluon poles are given by

w±g =
1

2

[
2 + k̂2 + µ2 ±

√
(k̂2 + µ2)(k̂2 + µ2 + 4)

]
(B.3)

with

k̂2 =
∑
j=1,3

4sin2(kj/2) (B.4)

and µ an infra red gluon mass regulator. For large k wf1 , wf2 and w+
g move away from

the unit circle on the outside while w−g moves towards zero. However for intermediate

values of k the fermionic poles may move inside of the unit circle. We therefore shift
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the contour of integration to ensure that no poles cross it as we vary k. We move the

contour to cross through the average of w−g and the left most right moving pole of wf1 ,

wf2 and w+
g .

In the case of the nonabelian diagram there are four gluon poles and a single fermionic

pole. The gluon poles are given by

w±1g =
e−ip4

2

[
2 + ˆ(p− k)

2
+ µ2 ±

√( ˆ(p− k)
2

+ µ2
)( ˆ(p− k)

2
+ µ2 + 4

)]
(B.5)

w±2g =
e−i(p4+q4)

2

[
2 + ˆ(p− k + q)

2
+ µ2 ±

√( ˆ(p− k + q)
2

+ µ2
)( ˆ(p− k + q)

2
+ µ2 + 4

)]
(B.6)

and the fermion pole is given by

w−1
f = 1−G−1(k)|k4=0 =

(
1− aH0(k)

2n

)2n

. (B.7)

Again it is necessary to shift the contour between the rightmost leftmoving pole and the

leftmost rightmoving pole. The two swordfish diagrams require similar treatment. The

algae and ankh diagrams have simpler pole structure with only gluon poles appearing

and moving in opposite directions away from the unit circle, as such no contour shift is

needed.
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