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This thesis uses a variety of numerical and statistical techniques to perform high pre-
cision calculations in high energy physics using quantum field theory. It introduces the
experimental motivation for the calculation of B meson form factors and includes a
discussion of previous work. It then describes the modern theoretical framework de-
scribing these phenomena, outlining quantum chromodynamics and electroweak theory,
and then illustrating the procedure of gauge fixing, the quantum effective action and
background field gauge which is required for subsequent perturbative work. Details of
the basic methodology of lattice quantum field theory are given as well as the specific
formulation of the relativistic and nonrelativistic models used in this work to describe
quantum chromodynamics. A comprehensive calculation of the zero recoil B — D* form
factor is then presented, using state of the art lattice techniques with relativistic sea
charm quarks and light sea quarks with correct physical masses, leading to a discussion
of the dominant sources of uncertainty and possible resolutions of experimental tensions.
Also included is preliminary work towards the full calculation of nonzero recoil matrix
elements, with the aim of outlining possible future work. Finally, this thesis presents
the computation of parameters correcting for radiative one loop phenomena and correc-
tions to the kinetic coupling parameters in nonrelativistic quantum chromodynamics in
order to achieve a desirable level of precision in future calculations. This is done using
Monte-Carlo integration to evaluate integrals from diagrams generated using automated
lattice perturbation theory in background field gauge in order to match the coefficients

of the effective action between the lattice and the continuum.
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CHAPTER 1

Introduction

The standard model of particle physics provides a description of the universe in the form
of an SU(3) x SU(2) x U(1) gauge theory coupling six flavours of spin half fermionic
quarks and six leptons. Nuclear physics is encoded in the SU(3) sector known as Quan-
tum chromodynamics (QCD). Of the six quarks, in this thesis, we only concern ourselves
with the five lightest, the up, down, strange, charm and bottom, and neglect the top
quark which is so relatively massive as to decouple from the physics of interest. The
electroweak SU(2) x U(1) sector of the standard model couples different flavours of
quarks and leptons and lepton neutrinos to W= and Z bosons as well as coupling the
electrically charged quarks and leptons to photons.

When doing perturbative calculations in quantum field theory at energy FE, away
from the renormalisation scale, u, one encounters logarithms going like the ratio E/pu
which become large when £ is much larger or smaller than p. One could renormalise
the theory at a scale u closer to E in order to avoid such logarithms. A more powerful
procedure is to use the value of the renormalised coupling defined at p as an initial
condition from which to calculate a new coupling defined at the new scale p/ This is
done by integrating the f—function S(g) = %g. In QCD f(g) is negative and therefore
as 4 increases the magnitude of g decreases and the uncertainty coming from higher
order diagrams in perturbation theory decreases. This is known as asymptotic freedom
and the perturbative framework has been used extensively in high energy applications
at scales well above Agcp where the QCD coupling is small.

Flavour changing interactions, which we focus on here, are perturbative in the elec-
troweak interaction but often require the computation of matrix elements of composite

quark states when the interaction takes place in the context of mesons. These occur at
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energies at which perturbation theory is ineffective and require nonperturbative methods
in order to be calculated and related to experiments.

More recently improvements in available computational power have made nonpertur-
bative calculations possible within the framework of lattice QCD, originally outlined
by Wilson [12]. Such calculations have seen much success, accurately computing such
quantities as hadronic masses [13], form factors [14] and decay constants [15], to name
a few. As the procedure of lattice regularisation involves moving the system of interest
from a continuus infinite space-time to a discrete four dimensional grid of finite size, it
is obviously important that the physics of interest take place on scales which are not so
large as to wrap around the grid nor too small to be resolved by the lattice spacing. The
first restriction is often avoided by taking artificially large up and down quark masses
such that the pion correlation length is small compared to the box. This is a frequent
compromise made by lattice theorists e.g. [10, [17], though calculations done with phys-
ical or extremely close pion masses are becoming more commonplace [18, 19, 20, 21].
The latter restriction is less straightforward to overcome, since in order for the lattice to
remain the same physical volume the number of points must grow as a~*, where a is the
lattice spacing. A proven method of overcoming this problem is to use an effective the-
ory for heavy quarks, such as HQET [22] or NRQCD. In this thesis I will use NRQCD,
performing a number of the required perturbative matching calculations, together with
physical lattices using the modern lattice formalism of highly improved staggered quarks

to compute form factors of particular physical interest to a high degree of precision.



CHAPTER 2

Continuum High Energy Physics

This chapter outlines the aspects of the standard model in the continuum relevant
to the physics we will later investigate on the lattice. It explains the origins of the
unitarity of the CKM matrix and gives examples of current constraints. Continuing
to discuss quantum chromodynamics, a crucial ingredient in making predictions for
meson interactions and decays, it outlines the continuum procedure of gauge fixing. It
then discusses the quantum effective action and background field gauge, both of which
will be utilised in the lattice perturbation theory calculation of one loop improvement

parameters in NRQCD in chapter 5

2.1 Electroweak Theory and the CKM Matrix

The SU(2) gauge interaction of the standard model couples exclusively to left handed

fermions. We write
Q1 = (u, dy) (2.1)
where the ¢ index indicates the generation of quark. The electroweak coupling part of

the quark action is given via the gauge covariant derivative by

Lweak,quark = Z QZLlDQzL + ﬂlRlDu% + J%lpdiq (22)

i=1,2,3

D, is the SU(2) x U(1)y gauge covariant derivative given by

D, = 0, +igWit, +ig'B, T, (2.3)

11



12 Chapter 2. Continuum High Energy Physics

where W is the SU(2) gauge field, ¢, are the SU(2) generators, B is the U(1)y gauge
field and Y is the U(1)y hypercharge generator. The higgs-quark couplings are given by
Lonarkp = Z Ag@iqﬁdﬁ 4 NP Qzaqﬁw U;z + hermitian conjugate, (2.4)
i3
where the higgs field ¢ is a scalar SU(2) doublet with hypercharge 1/2 and the Yukawa
couplings A\, and \; are real.
After electroweak symmetry breaking, we transform the quark fields between genera-

tions according to the unitary transformation

uby — Z Uil (2.5)
J

dyp — Y Didy, (2.6)
J

uy — Z Ui, (2.7)
J

d;, > Djd) (2.8)
J

with
Ui\ Ug = A, (2.9)
DiNDg = Ay (2.10)

in order to obtain an action with mass terms diagonal in flavour. The flavour changing
currents present in Y_._, ,, Q% PQ% are not invariant under this transformation to the

“mass basis” and transform as
j* =y ytdy, — w, (UL D) " d), (2.11)

where the appearance of the new matrix U;DL = Vekwm, known as the Cabibbo-
Kobyashi-Maskawa matrix, is responsible for the tree level flavour changing weak in-

teraction. By construction Ve is unitary, meaning that experimental results for each
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element must obey strong constraints if the standard model is to be consistent. The
CKM matrix does not have as many degrees of freedom as one would naively expect of a
3 x 3 unitary matrix, this is a consequence of the fact that the standard model is invari-
ant under global U(1) transformations done on any quark field. Such transformations

eliminate relative phases: as such the CKM matrix has four degrees of freedom.



14 Chapter 2. Continuum High Energy Physics

2.2 QCD Action

Quantum chromodynamics is the sector of the standard model which aims to reproduce
the dynamics of quarks and the particles built from them known as hadrons. It is an
SU(3) Yang-Mills gauge theory coupling the six flavours of spin half quarks to spin one

gluons. The fields ‘live’” on Minkowski spacetime and the Lagrangian is given by
1 v Ty (5 ~H
Lacp = —5tr [Fu P + > (i Dy — mp )iy (2.12)
!
The covariant derivative is given by

o
DM = % + ZgA“ta (213)

where ¢, form a hermitian, traceless basis for the Lie algebra of SU(3) and F),, = Fj,t,
with F?, = 9,A% — 9,A% — g AL AS and f are structure constants ifte = [ty tc].
This lagrangian is tailored so that we may change 1 and 1 locally by an element of the
gauge group SU(3) and also make a related change to the gauge fields such that the
lagrangian remains invariant. Considering a local, infinitesimal change in the fermion
fields ¢ — (1+ie%,)1p, ¥ — (1 —ie*t,) we see that the fermionic part of the lagrangian

transforms like

ﬁq — Z@Zf(l — z'gata)(iryﬂau _ gfyMAZta _ mf)(l + ieata>wf
f

= Z Yr(iv"0, — gV Alta — myp — 10, + g’y“f,chZec)wf. (2.14)
f

In order to remain invariant we must therefore also make the change
a a 1 a a Ab _c
Al — Al — Eﬁue + [ A€ (2.15)

This gauge transformation, and the invariance of quantities under it, forms a useful tool

allowing us to simplify many calculations considerably.
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2.2.1 Gauge fixing

When we construct quantum field theories using the field integral approach as our tem-
plate for quantisation we begin by postulating a lagrangian, which we have done, and
then proceed to introduce a functional field integral over the fields. The functional inte-
gral is usually defined in terms of Feynman diagrams constructed from the propagators
coming from the quadratic part of the action and the expansion in terms of coupling
parameters of the potential terms. For gauge fields there is an obvious problem, which is
that the infinite possible gauge transformations on a given field configuration contribute
equally. What we really want to do is integrate over gauge configurations modulo gauge
transformations. Using the identity

| —/D G[AN)de t(aGé[fk]), (2.16)

where A* is the field A gauge transformed with the local gauge parameter A, we find

/ DAJ¢iSIA

_ / Dla] / D[A}eiS[A]é(G[Aa])det(562[;4&]>. (2.17)

One typically takes a general gauge condition 9" A, = w®(x) such that G[A] = " Af, —

w®(x) . The delta function and determinant can then be expressed in terms of bosonic

and fermionic integrals

5(G[A%]) = / Dheth¢A%] (2.18)

de t 5G A% / DI, e~ % e (2.19)

where ¢ and ¢ are grassman valued fields in the adjoint representation and h is a real
field, also in the adjoint representation. These additional fields are known as Faddeev-
Popov ghosts. Using the gauge Condition Ot AS = w?(x) it is common to integrate over

w(z) with gaussian weight [ Dlw]e” %, doing so we find the expression for the gauge
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fixed field integral, in terms of the constant gauge parameter e,

5G[Aa]>

(0%

/ DAY 5(G1A"] et

_ C/D[A, h,é, C]ei(S[A}—g(ha)Q—l—ha(a“Az)—Ea”Duc)' (2‘20)
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2.3 Quantum Effective Action

When I come to perform the perturbative calculation of improvement factors for the
NRQCD action it will be convenient to work with the effective action in background
field gauge. I discuss these here, in the context of a general theory. The starting point
is the expression of the generating functional of the theory in terms of an exponential

of connected diagrams
2] = [ Dlgjestasisizes v, (2.21)

Since Z[J], the sum of all connected and disconnected diagrams, is equal to the expo-
nential of the sum of connected diagrams, iW[.J] is the sum of all connected vacuum

diagrams in the presence of the current J. We define the expectation of ¢ in the presence
of J

)
Oy = EWM (2.22)

We can invert this to find the current J for which ¢, = ¢, which we call Jy, and define

the quantum effective action via the Legendre transformation

Llg] = WJy] — /dm¢J¢. (2.23)
One may show [23], by considering the use of ' in place of S in (2.21)) with coefficient
g~ ', that

W] = / gl (2.24)
connected,tree

where, as in [23], the integral is to be interpreted in the perturbative diagrammatic
sense. The connected graphs contributing to W |[J] can be seen as tree graphs whose
vertices are one particle irreducible (1PI) subgraphs. For to hold the vertices in
['[¢] must be 1PI connected graphs with ¢ in place of external lines. As such we may

write

Mo = [ st (2.25)
connected,1
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2.3.1 Background Field Gauge

In this section I discuss the background field gauge and show, following [23], how the
background field effective action is invariant under residual gauge transformations of the
background fields.

Consider the QCD action in the presence of a classical background field denoted by
a tilde. Integrating out h, taking A — A+ A, ¢ - ¢+, c — c+éand ¢ — ¢+ ¢ and

choosing the gauge fixing functional
G[A]* = D A", D, A" = 0,A" + igf,fCAZA“C (2.26)

we see that the gauge fixing term (D, A*)? is invariant under the infinitesimal transfor-
mations

1a Aa’ Aa 1 a a b fc

A Ay = A= O+ S

Al A% = A%+ fret AC (2.27)
Taken together, these implement a normal gauge transformation on the field A + A, so

provided the background and quantum fermionic fields also transform as

Y = Y+t e

b = )+ itye) (2.28)
the original action will be invariant. Invariance of the ghost action requires we also take

¢ =t — ,fcebcc

& & — frebel

&= & — frebet
& & — frebee. (2.29)

Referring to the background fields as ¢ and the quantum fields as ¢ we may compute

the quantum effective action in the presence of background fields g, I'[qo, ¢,

F[q07q~] = / 'D[q]eiSGI[QO+q+f§]+iSGF[<I0+qﬁ]_ (2.30)
1PI,connected
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Note that we can also compute the conventional effective action I'[qo, ¢, treating ¢ as

simply a gauge parameter

T[qo,q) = / D[q]eiSGz[qo+q}+iScF[qo+q—?11€i] (2.31)
1PI,connected

where the field ¢ here only enters in the gauge fixing term and the quantum fields ¢ are
the full fields. From these definitions it is clear that T'[0, ] = I'[¢,q]. Using (2.23) we

write B . B
Mg _sW1d) i i2l1g)
0q 0  =dgs Z[J,q 09 l=Jya
Considering the transformations (2.27)), (2.28) and (2.29)), which we now write as ¢ —

g+ el and ¢ — G+ €G, and using (2.21) together with the invariance of the measure
we find

. (2.32)

Z[J,§ + €G] = / Dq + eF|eSlatatelf+G).BreCltil(g+er) (2.33)
= / Dlgle"laradt/atel) = Z[] G| +iZe(F) ;] (2.34)
and hence
G5Z([5§ a _ iZ(F);J (2.35)
and ) )
G (1) i =~y e, (236

0qo
The functions F" are linear in the fields go and hence on right hand side of (2.36) (F) , , =

049

F(qo). The background field effective action is therefore invariant under the original

transformations applied to the background and effective fields:

5F[q(37 q] N F5F[q()7 q]
oq dqo

G = 0. (2.37)

If we set g9 = 0 such that ' = 0 then these transformations are just conventional
gauge transformations on the background field B. The condition that f[O, ql = T'q,4q]

be gauge invariant restricts the number of terms we need to consider when matching
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continuum QCD to lattice theories, which we do by matching the coefficients of terms

in the background effective action I'[q, q].

Following the notation of Itzykson and Zuber [24] the effective action takes the form

2
rquaﬂ%¢q:7&{%Z3Uﬂ—%gf@®2—gzlUQAA#H41+f%Z;WAM/gHA&/V]
—|—Z§_18u53“c + g0ucr AL ce fave — Zy ' + 9Zpb Ay — Z;l?ﬁw} + higher order terms
(2.38)

where f(A) is a general linear gauge fixing functional and the trace is understood to
be over implicit indices. Since renormalisation is linear it carries across to the effective

action. The renormalised effective fields and couplings are given by

_1 1
Ar=1737A, gr= 9213223

¢R = ZZ_§¢7 IER - ZQ_E&
CrR — Z3 §C, Cr = Z:l;ﬁé
together with the following ward identies [24]
Zy Zy 7y Z
122 (2.39)

7 Zy  Zy 7y

In background field gauge the restriction of the effective action to gauge invariant
operators requires 2 = Z5 and that, as in QED, the coupling is only renormalised by
the gauge field renormalisation. The combination gA = grAg therefore renormalises

automatically and the vertex functions only require renormalisation due to the fermion

fields. The result is that in BFG the 1PI vertex function is UV finite.
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Lattice Field Theory

3.1 Correlation Functions and the Path Integral

In order to motivate the formulation of lattice field theory I will begin by discussing the
relation between correlation functions of operators and the Euclidean path integral. This
relation is fundamental in extracting physical information from lattice QCD and will be
discussed later when I come to extract matrix elements and energies from correlation
functions computed nonperturbatively using the path integral. Beginning with the (time
ordered) trace of some product of operators and, expressing the trace in the basis of

eigenstates of H, we find

1 A A > (1|01 (1) Oy (ty)....|n)e~T(En—Fo)
St le 0, (0)0u(0)..] = 2ol L oAl (3.1)
where
Oi(t;) = e 0, (0)elH (3.2)
and

In the limit that T" — oo all terms in the sum in the denominator go to zero, except
for the n = 0 term which gives 1. Similarly in the numerator terms with n # 0
are exponentially suppressed. This gives the first necessary relation for relating the

Euclidean path integral to correlation functions

lim ——te[e 770, (1) On(ts)...] = (0101 (t1)Os(t2)..0). (3.3)

T—o0 T

21
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The second relation involves relating the trace to a path integral. For lattice QCD

the relation is

1 - ) 1 . ]
Ztr[eiTHol(t1>02(t2)...] = E/D[w,w,U]eSE[w’w’U]Ol(tl)OQ<t2)... (34)

where the O;(t;) on the right hand side are now functionals of the field variables v, 1) and
U, Uisin SU(3) and v and 1 are grassman valued. The functional Sg is the Euclidean
action and may be found one of two ways; either by wick rotating the Minkowski action

or by considering the derivation of (3.4)). For the sake of clarity I present the latter.

3.1.1 Euclidean Field Integral for Free Fermions

We begin considering the trace on the left hand side of (3.4]), with the Dirac Hamiltonian

operator expressed in terms of the anticommuting fields operators Qﬂ and @@T

H= / dapt30 (—i4°8; + m) ¥ (3.5)
and we have that
(@), 3() } = dusle — ). (3.6)
We define QZ = Q@WO, as well as coherent states
|¢> _ effdx¢a(x)1ﬁzx(x)|_> (3.7)
(6] = (e dwor (@b (3.8)

with ¢)|—) = (=|[¢f = 0, ¢ and ¢' independent grassman variables and with the sum

over repeated indices implicit such that

Dal(@)[0) = Pa()|0) (3.9)
(Bl ta(@) = (¢l a() (3.10)
(¢|¢) = o) 429 (2)da () (3.11)

[l 6] eyl = 1. (31
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The state |—) annihilated by the field operator may seem suspect at first, but if one
considers the deconstruction of the field operator into particle and antiparticle creation
and annihilation operators then one finds it is simply the state in which every particle
momentum and spin state is empty and every antiparticle state is full. The next step
involves breaking the trace in into the product of many time steps of length At.

using the completeness relation (3.12)) we have

tr[e "0, (t1)Os(ts)...] = (3.13)
/ [I D161, oe)e™) = 3 T nlg(t¥)) otV e |6 (t¥))...
X (B(")]e S HOK(H")...In) =
J TP, 040 S (a2 (0.

n

X ()| e AHOL(t%)...|n) (n] — o(tY))

where in the final line the minus sign originates from the commutation of (n|¢(tV)),
defined in (3.7) as grassman valued, through the final (¢(¢°)|n). This may be seen by
considering the state |n) as a sum over different products of field operators applied to

the state |—)
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(nlo(t")) =(= (@) d(ws)...|o(¢"))

= (w1, tV)p(2a, tV)... (3.14)
(D) |n) =(&(t°)]..0" (22) " (1))
=@ (22,10 (21, 1°) (3.15)

(n]o (™)) ((t%)In) =
=¢(x1, V)P, 1Y)..0" (22,1°) 01 (21,1°)
=¢(1, )" (21, 1%)p(w, ™) (2, 1°)...
=9 (9,1°) (= (2, ™)@' (1,1°) (= (1, ™))
=1 (22, °)0" (1, 1°) (=1, ™)) (= b (o, tY))..
=(o(t°)n) (n| — (t")). (3.16)

The intermediate <¢|e‘A“q |¢’) terms do not contribute a sign as they are even products
of grassman numbers and therefore commute with (n|¢). The minus sign within the
rightmost state in , | —o(tY)), tells us that when performing the fermionic integral
with finite time extent 7" we must take ¢(z,T) = —¢(x,0). This requirement is known
as taking antiperiodic timelike boundary conditions.

In the limit At — oo we may evaluate the exponential of the Hamiltonian against the

coherent states, as well as using (3.11]) to evaluate the inner products, to find

tr[e "0y (t1)Os(ts)...] = (3.17)
Altigloo » O)HD [0T(£9), (t)]O1[6', $]O2[0, ¢]...

X e S AT E) (W)=t 1)) /At+H gt (¢9),0 (¢ +1)])
= [ DI 61010y St
#(T)=—¢(0)

- / DI, $]010,...e~ | G 0=ix'ditm)o,
9(T)=—6(0)
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Defining Euclidean gamma matrices 7' = —i4%, v° = 4" we identify the Euclidean action

Sl 9] = / dwd(119, + m)o (3.18)

and arrive at

tr[e "0y (t1)Os(ts)...] = / D6, ]010,...e~ 57199 (3.19)
#(T)=—¢(0)

This is just (3.4) without the gauge fields U. One can also arrive at this expression
for euclidean correlation functions by starting with the standard Minkowski action and

making the replacement zg = —ix4.

3.1.2 Lattice Regularisation

In order to perform calculations using and we must find some way of eval-
uating the path integral. In conventional perturbation theory this would be done by
expanding in the couplings, the coefficients of the greater than quadratic terms in the
action, and by adding counterterms to the action to cancel off infinities coming from
loops in some regularisation scheme. In lattice QCD, as the name suggests, we mod-
ify the space so that instead of being infinite the dimension of the integral is finite.
We typically take a hypercubic lattice with N, points in each of the spatial directions
and N, points in the timelike direction with isotropic lattice spacing a. In our simula-
tions we take periodic boundary conditions in time when computing propagators e.g.
¢(z,T) = ¢(z,0) as opposed to (3.13)). For the mesons we are concerned with here we
may neglect effects coming from this choice. For the D* meson for example, on our
lattices, Mp-T == 60 is typical and so uncertainties coming from choosing periodic time
boundary conditions are extremely small.

The simplest action one typically thinks of which will naively reproduce the Dirac
action in the limit a — 0 on the lattice is found by approximating the derivative as a

finite difference.
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Shave [, ] = > a*P(x) (Y A; + mo)th(w) (3.20)

T

where
An(z) = (¢(x +ia) — (z — %a)) /2a. (3.21)
The Dirac operator now takes the form of a finite matrix which can be inverted exactly.

If we write this naive lattice action as
4 7 _ T
nalve Z a ¢ Az + m0)¢($) - Z 7/’(95)D<5U7 Z/)w(y) (322)
Ty

then we can compute correlation functions of fermion operators exactly. Suppose we

have some correlation function

(O (2 )b / DIG, 1) (2 ().~ PP (3.23)

where we now include the antisymmetric time boundary conditions in the operator
D. The path integral on the right hand side of may be evaluated analytically,
the result is found by replacing pairs of ¢(z) and ¢(y) with D~!(x,5), and including
appropriate factors of the determinant. The reason for this can be seen by writing the

path integral as a set of derivatives applied to the generating functional,

7 /'D[@/_)? 1/}]1/_’($1)77/)(x2)me—15D¢

d d
L[ Dby
/ [ w dv (1) dv(xs) v=0

_ 1l da d / DI, i)~ F-7DDW+Dv)=rD

Z dv(zy) dv(xg) ™ v=0

1 d I
= — ..Det[D]e """ v . 24

Z dv(xy) dv(xs) et[Dle "’:0 (3.24)

So we may evaluate fermionic correlation functions provided we can invert D.

3.1.3 Bosons

Constructing a Euclidean action for the gauge fields using coherent states is complicated

somewhat by the requirement that we must fix the gauge. For lattice calculations it is
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also not particularly useful as the discretisation of space would require us to use gauge
fields valued in the Lie algebra in the form of complicated nonlinear operators in order to
maintain gauge invariance. Instead we take the field integral as a quantisation procedure
and choose a suitable Euclidean gauge action on the lattice with fields U in the gauge
group which transform in such a way as to make the gauge invariance of the total
action clear. Of course, the physics we aim to describe is all encoded in the Hilbert
space of states and the Hamiltonian. The requirement that a theory defined in terms
of a Euclidean action can be continued back to minkowski space and that a positive
semi-definite self adjoint Hamiltionian exists can be expressed as the requirement that
the Euclidean correlation functions obey reflection positivity [25]. There are additional
subtleties associated with using a lattice, such as choosing whether to reflect about a

point or the midpoint of a link, though I will not discuss these here.

As for performing the integral over the bosonic gauge fields let us consider the general
case in which D(z,y,U) is some function of the gauge fields U and we have some gauge
action Sg[U]. The integral over the gauge fields is a large multidimensional integral over
real variables for which exact evaluation is practically infeasible. We instead perform the
field integral over gauge fields using monte carlo methods. This is done by generating a
random distribution of field configurations for which the probability of each configuration
is

P(U) o Det[D(U)]e~ %], (3.25)

We can then calculate correlation functions, including gauge fields, as expectation values

of our contractions of D~! on the set of gauge configurations

(Ba)ba2).) = [ DUIDeDE)e 0 ) blms).ho ~ - 3 (G-,

(3.26)
where we use the subscript U on the correlation function to indicate that only the path
integral over fermionic fields is evaluated and the sum is over n field configurations

distributed according to (3.25)).
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3.1.4 Correlation functions

The expectation of the mean on the right hand side of is just the full correlation
function, however since we evaluate it for only n field configurations what we have has
an associated error. This error has physical significance, which I will discuss shortly, for
now let us just note that for some pair of operators O and O it goes like

7 = = 300N, - (% Z<oo*>Un> (3.27)

n

and that the left part of the right hand side of (3.27), ((OO")y;)?, is one of the contrac-
tions we would have to evaluate in computing (OOTOOT).

Returning to , we now have all the tools required to compute (0|0 (t1)Os(t5)...|0),
provided we take T large enough. For QCD the exponential suppression in is
governed by the lowest energy eigenstate above the ground state. As such we can use
(3.3) without taking the limit as long as T'M, > 1.

In order to extract physical information from we again use the eigenstates of the
Hamiltonian as a basis. Let us consider a single operator and its hermitian conjugate,

with the same quantum numbers as some meson of interest, O = &afzﬁb
(010(#)0T(0)[0) = > _(0]0(t1)[n)(nOT(0)10)
= (0l0(0)[n)e~"F" (n]O7(0)|0)
=) A Ane P (3.28)

We can now compute the correlation function for many values of ¢;, using the methods
described above, and fit our data using Bayesian statistics against a template fit function

of the form
> A Apeh (3.29)

We can also compute matrix elements, provided we also compute two point functions
for each meson operator as above, by inserting a basis of energy eigenstates in a similar

manner.
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Considering (3.28) the variance (3.27) will contain a piece that has the form:

> (010(0)0(0)[n)e " Fa (n|OT(0)O1(0)]0). (3.30)

n

where E! is the energy of the n' state created by the combined operator Of(0)O'(0).

Taking t; to be large we find that the error divided by the correlator signal goes like
ezt (Fo—2E0) (3.31)

This means that for large times if the operator OtO" overlaps with a state with energy
less than twice the energy of the lowest energy state Ot creates then the fractional error
of our correlation function will grow exponentially. This is usually the case, and it
restricts the size of correlation functions we can use to extract information.

It is important to understand that it is not possible to directly compute S matrix
elements using the lattice since we do not compute analytical expressions for Euclidean
correlation functions. Our fits include large errors for the contributions of high energy
states which while exponentially suppressed in the Euclidean theory would contribute
some relevant unknown phase in the Minkowski theory. Indirect determinations of
scattering information from lattice data is still possible, but one must look at the finite
volume dependence of mass spectra. Liischer showed that the shift in energy spectrum of
two identical particles with zero total momentum confined to a finite periodic volume is
proportional to the elastic scattering amplitude [26]. This work has since been extended

considerably, for example [27] 28] 29, [30].
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3.2 Symanzik Improvement

If we consider higher orders in the expansion of the naive discretisation of the Dirac

operator (3.32) we find

0 2 93
axil/’(x) T %@W@ +0(a").  (3.32)

Anb(z) = <1/1(x +ia) -z — %a)) /2a =

There is no reason why we should not add terms to our discrete derivative in order to
cancel these additional higher order a? terms. We add a term which approximates a
third derivative

Simprovealth, 1] = D a' (@) (v/(A; = TAD) +mo)(a). (3.33)

Such an addition generates higher order corrections, at O(a*) in this case, which could be
removed by introducing a higher derivative term. While in principle one could continue
this improvement indefinitely it is not typically done beyond a few orders since moving
to the quantum theory, as will be discussed later, generates n-loop corrections at lower
orders in a?. In the work done here I deal with 1-loop improved fermionic actions. The
two loop corrections potentially enter at O(a?a?). Typically a &~ aAqcp, as such it does

not make sense to perform the tree level Symanzik improvement beyond O(a?).



3.3. GAUGE FIELDS ON THE LATTICE 31
3.3 (Gauge Fields on the Lattice

3.3.1 Gauge covariant derivatives

For the purpose of introducing gauge fields let us consider the naively discretised Dirac

action ([3.20)

Snaive[U, V] = Y a'th(x) (' Ay + mo)y(x). (3.34)

T

All of the considerations made here will generalise to the improved fermion actions to be
discussed later. We wish to find an action with gauge fields that is invariant under local
SU(3) transformations ¥(z) — Q(z)w(x), ¥(r) — ¥ (x)Q(x) with Q in SU(3). The
mass term is already invariant, only the kinetic term requires modification. This term
mixes the field at one lattice site with those at adjacent sites. In order to be invariant
we must insert something that looks like a gauge transporter, in the continuum this

would be the path ordered exponential of the gauge fields

Up(z,y) = Pexp [ig /y " A(f)] (3.35)

which transforms as Up(z,y) — Q(2)Up(z,y)Q(y). In the limit that = and y are very

close, seperated by the lattice spacing a in the direction p, this is approximately

Uu(y) = exp [iagA,(y)] - (3.36)
We therefore investigate the gauge covariant derivative
Ditb() = (U,T(a;)z/;(x +3a) — Uy(z — la)p(z — %a)) /2a. (3.37)

Taking the limit a — 0 we find

lim Dyp(z) = [(1 — igad;) (¥ + adi)) — (1 + igad;) (¥ — adip)] [2a

= 0ip(x) — 1gAi(2)(x) (3.38)
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which is just the continuum covariant derivative of 1. This method of producing a gauge
covariant lattice derivative, using the gauge transported finite difference, will be used in
the highly improved actions discussed later, though we will also apply smearings to the

gauge links in order to suppress unwanted high energy modes.

3.3.2 Wilson Gauge Action

We require an action for U which reproduces the continuum gauge action, together with
some appropriate measure, such that taken together (and ideally individually) they are
gauge invariant. The simplest action one can take for these gauge fields is a trace over

a plaquette summed over possible routes,

2N, 1
S,[U] = Z ; - {1 -y Re trl,, (z)| . (3.39)
The plaquette is defined as
U = Up(2)Uy(z + ap) U (x + a0)U] (). (3.40)

This object acts to transport gauge transformations at x to  + p then to x 4+ u + v to
x + v then back to x. It closely resembles a curvature tensor and is effectively a small

discrete wilson loop. Expanding this in a and derivatives as before we find that
1
SolU] = 3 > ) tr[Fu(2)’] + 0(a?) (3.41)
T v

which is exactly what we want. This simple action is known as the Wilson gauge action

31,
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3.3.3 Symanzik Improved gauge action

Note that since there are no gauge invariant dimension five operators, corrections to

(3.41) must enter at order O(a?). The corresponding dimension six operators are [32]:
Oy =Y tr[DyFuD,F.],
uv

Oy =Y tr[DuF,eD,F,,) .

uvo

O3 =Y tr[DuFuD,F,. (3.42)

uvo

Dimension six gauge link operators which allow cancellation of the O(a?) discretisation

errors are added to the lattice action. The resultant action is [33]
2N,
S = Z 9

Py(z) =) {1 - NiRe tr(UW(x)ﬂ

p<v ¢

[COPO(JC) + i Pi(x) + CQPQ(x)]

Piz) =) [1 — NiRe tr(UW(:c) + U“W(x))]

pn<v ¢

Py(z) = Z {1 — NLCRe tr(UWp(x) + Uppn(x) + Uy () + Up_W(x))

p<v<p

(3.43)

where —p indicates a Hermitian conjugated gauge link. At tree level the coefficients

take values ¢y = %, c = cy = 0.

1
12’

3.3.4 Quantum Gauge fields

In order to discuss the gauge action in a quantum sense we must first define a measure
of integration for the gauge links. The unique measure for a compact group is given by
the Haar measure [31]. If we write the gauge fields as Aft, where now A, are real fields

and t, are a basis for the Lie algebra then we can define a metric ds? on the Lie group
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as
oU,(A oU,(A t
ds? = tr [#UJ(A@(%UJ(AQ) } dA%dA" (3.44)
1 p
we may interpret the trace on the right hand side of as a metric tensor
TOUMAY o (PUnAD
Gab = tr {a—AZUu(AM) (a—AgU“(A“)) . (3.45)

The integral over U, is then equal to an integral over A, in the Lie algebra with gauge

/ DU, = / \/detlg(A)] ] ] dAs. (3.46)

In relation to section the background field gauge is then given by taking U,(z) =
Qu(x)B,(x), with @, and B,, also in SU(3). The background field gauge transformation
on these fields is realised as Q,(z) = Q(2)Q,(z)Q1(z) and B, (z) = Q(z)B,(z)Q (z+u).

invariant measure

Since the Haar measure is invariant under the conjugation transformation applied to @)
the resultant background effective action is invariant under the remaining transforma-

tions of B, which are themselves just gauge transformations.

3.3.5 Tadpole Improvement

During the development of lattice QCD there was a period during which lattice perturba-
tion theory and nonperturbative numerical calculations were found to be in disagreement
when calculating short distance quantities that one would expect to agree [34]. The per-
turbative coupling used in such calculations was the bare coupling an.y = g*/4m. This
was motivated by the idea that in a cutoff theory the running coupling evaluated at the
cutoff scale, as(m/a), was typically roughly equal to the bare coupling, aua. In practice
however this is not the case, a(m/a) is much larger than oy, [35]. This is known as
the tadpole problem. We constructed our action considering the classical expan-
sion of U,(y) = exp [iaA,(y)]. Higher orders in a of the expansion of this exponential,
which contain equally many powers of A, contain divergences coming from diagrams in
which multiple gauge fields are contracted together which exactly cancel the factors of

n2n

a. As such rather than being suppressed by O(aZa*") such terms contribute at O(a?).
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Fortunately tadpole contributions are generally process independent [35] and so can be

removed by considering a rescaling of the gauge links

v (3.47)

Ug

Several common choices for ug exist, one definition is ug = (3Tr(U,)) which requires
gauge fixing since the gauge links are not gauge invariant. A more convenient gauge
invariant choice is uy = (%Tr(UW))i where U, is the plaquette [33]. One can see

immediately from the plaquette term in the gauge action that this replacement takes

att — Wy = 0‘7‘%“, which is generally much closer to as(m/a).

3.3.6 The tadpole and symanzik improved Luscher and Weisz

gauge action

Since the lattice theory omits modes with momenta p > 7/a it can be considered as an
effective field theory taken with a cutoff of 7/a. As with any effective field theory the
coefficients in the action must be functions of the cutoff so that physical observables
remain fixed. This dependence enters through the lattice spacing dependence of the
coupling, whose bare value determines the measured lattice spacing in our simulations
[25]. QCD is asymptotically free, so the dependence on the cutoff can be calculated
perturbatively provided 7 /a is well above Aqep, the typical QCD scale. The corrections,
which enter at O(a?a;) and change the coefficients ¢; at O(ay), are calculated in [36],
where also the one loop contributions of the highly improved staggered quark (HISQ)
action [37] to the coefficients ¢; are included. Subsuming the factor of ¢o/ug into the
gauge coupling we define 8y = 2coN./(g?ug). The coefficients in (3.43) multiplying P,

and Ps respectively are, to one loop,

127
= ool |1 (20t asrd!) + 20,
0
12
by = 20 (3.48)

2
oug
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These coefficients are modified by sea quark loops. For the HISQ action, which will be

discussed later, with Ny massless quarks the modified coefficients are

Br=— 2523 [14 (0.4805 — 0.899(52) Ny )avy]
By = —% [0.033 — 0.0121(23) N/] a, (3.49)
0

The procedure for generating gauge fields is then to first choose a principal parameter
Bo, as well as a starting guess for ug. Then using the action [3.43] with coefficients
given by measure ug and adjust the value used in the action accordingly. This
tuning procedure can be done very quickly using small lattice volumes [35]. Then using
a larger lattice, whose dimensions are chosen with the aim of achieving the desired
physical dimensions based on the expected lattice spacing predicted by the running of

B, measure the lattice spacing a.
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3.4 Fermions on the Lattice

3.4.1 The doubling problem

Let us turn to discuss the naively discretised fermionic action, the problems illustrated
will be the same regardless of whether the Dirac operator is Symanzik improved so for

clarity I will discuss the simple action (|3.20))
Saive[1h, ¥] = Y a (@) (Y A; + mo)(z). (3.50)

The fermionic propagator is then given by, in momentum space,

m — é Zu Yusin(pua)
m? + = > sin(p,a)?’

D(p) = (3.51)

Provided |p| < 7/a the limit @ — 0 recovers the continuum Dirac propagator. However
since —m/a < p < 7/a in practical simulations, with opposite edges of the hypercubic
Brillouin zone identified, instead taking a — 0 yields a propagator with poles in pg near

2 as well as near multiples of m/a at the corners of the hypercube.

0 with p> = —m
The simplest process through which an on shell particle at one corner of the Brillouin
zone may change corner is the emission, and absorption by another particle which must
also change taste, of a gluon with momenta p ~ &m/a. Such a gluon would be highly
virtual and perturbative at current lattice spacings. The interaction therefore looks like
an effective four quark operator which should be suppressed by p?a? following from the
fact that a four quark operator has dimension six and p is the typical external momenta.
Therefore, in the continuum limit, the sixteen tastes (one for each possible vector 7 /a)
decouple and one has fifteen more physical quarks than were intended. In 1981 Nielsen
and Ninomiya formulated a no-go theorem [38] which states that it is not possible to
remove the unphysical species while maintaining a chirally invariant, doubler-free, local,
translationally invariant, action.

Instead of removing the unphysical tastes at the expense of losing approximate chiral

symmetry or the introduction of highly nonlocal operators we instead aim to account
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for them. In order to do so we take the sixteenth root of the fermion determinant and
wherever we contract quarks in a loop we must divide the loop by sixteen. The validity
of this trick has been discussed in much depth [39] and while there is no conclusive proof
that taking the root before taking the continuum limit is valid there is a great deal of
evidence that this procedure reproduces continuum QCD, see for example [37, 140, [5, 4T,

10, 42).



3.4. FERMIONS ON THE LATTICE

3.4.2 Highly Improved Staggered Quarks

39

Taste can also be considered in terms of doubling operators acting on the naive fermion

fields [37]. The naive discretisation:

S=) @)y AU) +mo)i(x)

with

AU (@) = o= (Uu(x)( + f) = Ul(z — @)vo(z — )

has a discrete, space time dependent symmetry

() = Be(w)y(x)
d(x) = P(a)Bl(x)

where

and

1=0
< __
m; = E m, mod 2
n<p

m; = Zmn mod 2

n>p

mM:ZmnmonZm;—l—m )

Uals

In momentum space this then gives the relation for the naive quark propagator:

Sr(p, q) = Be(0)Sp(p + &m,q + £m) B¢ (0)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

telling us that the naive quark propagator contains only one sixteenth the information

we would naively expect. One can diagonalise the naive action in spin indices using a
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position dependent transformation of the fields. There are several choices for such a

transformation, here I use:

b(x) = Qz)x(x)

U(x) = x(2)Q' () (3.58)

with Q(x) = ~* this yields the action

S =" x@)(al@) - AU) +mo)xi(a) (3.59)
with propagator
<Xﬂ(x)>26(y)> = S(I’, y)én& (360)

This operation, known as staggering, simplifies calculations considerably. We need only
do the inversion for a single component of y and the full naive propagator can be

reconstructed trivially by inserting €2 matrices:

S, W)as = (Ga(@)T5(1)) = Vo) 02X (1)) U5 (1) = Qoa (22 ()32, 9).

(3.61)
Since in the naive case we take the sixteenth root, using the staggered action with only
one component retained we take only the fourth root of the determinant. In order to
remove discretisation errors and taste exchange violations the operator A, (U) used in
simulations is more elaborate. It retains the feature that A,(U)y(z) only contains fields
(') located an odd number of lattice sites away from z in the p direction, ensuring
that the spin-diagonalisation still works. We also smear the gauge fields in order
to suppress high momentum gluons which change taste. The full, Highly Improved
Staggered SU(3) covariant derivative operator is [37]:

CL2

D% = A, (W) : (1+€¢)A%(X) (3.62)
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with
W, = F5%U, (3.63)
X, =UF,U,
a?6?
FHsQ = (]—“M - ”) UF,
pFEL

a26(2)

Fu= H (1 + 4/7
pFEL Symm

where ‘symm’ indicates that the product ordering is symmetrised in p, { is a reuinitarisa-
tion, d, approximates a covariant first derivative on the gauge links and 5;2) approximates
a second covariant derivative:

SU(w) =~ (U()Up(z + ap)ULx + at)

- U;(a: — ap)Uu(z — ap)Uy(z — ap + ajt))
1

a?

+ Ul(x — ap)Up(z — ap)Uu(x — ap + aj) — 2U,(x)). (3.64)

(U(0) Uz + ap) U (& + ai)

The third covariant derivative term originates from the Symanzik improvement dis-
cussed in section and removes order a? discretisation errors coming from the approxi-
mation of the derivative. Without the epsilon term, tree level discretisation errors appear
going as (ap,)*. For the mesons we are interested in quarks are typically nonrelativis-
tic, and so the error is dominated by the energy, and ultimately the mass contribution
going as (am)*. For light quarks this is negligible, but for charm physics this must be
included since current lattice spacings have am. =~ 0.5. The epsilon term can be calcu-

lated straightforwardly as an expansion in (am)? by requiring the tree level dispersion

relation lim,_, M =1 to a given order. The expansion is [37]:
27 5 327 4 0843 6 8
=—— — — @ . 3.65
€=~ (am)? + o (am)’ — o2 (am)® 4+ O((am)) (3.65)

The smearings F,, (unrelated to smearings in the context of sources and sinks) applied to

the gauge links remove taste changing interactions, since (59 ~ —4/a?® when applied to
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a link carrying momentum g, ~ 7/a. The p direction needn’t be smeared as the original
interaction vanishes in this case anyway. The smearing F,, introduces new O(a?) errors.

These are removed by replacing F,, with [43]

a?6?
ASQTAD
N — (3.66)
pFH
where .FjSQTAD is the gauge link smearing employed in the widely used a-squared tad-

pole improved action. Note that similar errors originating from the smearing on the
third derivative term needn’t be corrected as these errors go as O(a?). A single smear-
ing introduces perpendicular gauge links which are themselves unsmeared. To further

suppress taste exchange we use multiple smearings. Once such smearing is:

ASQTAD; ; =ASQTAD
I UFr,

where U/ is a reunitarisation. This combination ensures that each smearing does not
introduce any additional O(a?) errors and that there is no growth in the size of two
gluon vertices, since the unitarision ensures it is bounded by unity. In the HISQ operator
defined in (3.63) we have moved the entirety of the O(a?) corrections to the outermost

smearing.

In order to check the taste exchange violations in HISQ one can check for taste-
splittings of the pion masses. However since there are more allowed effective taste
exchange vertices than there are degenerate pion multiplets this does not guarantee
the theory is free of taste exchange. A better check is the explicit calculation of the
effective couplings of the vertices which would be required to remove taste exchange
interactions. These are given in [37] in which it is clear that the HISQ action is a
significant improvement over the older ASQTAD action.

The use of multiple flavours of staggered quark as well as NRQCD heavy quarks,
which T will discuss shortly, complicates the form of correlation functions described

in section [3.1.4. Suppose we are interested in the two point function made from the
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operator O = Y _¢T'®(z) where ® is an NRQCD quark
1 _ _
OO (0) = [ Dl.0.U) Y T (t,2)BLu(0,y)e S#0 (3.67)
Ty
Fourier transforming the fields we have

1 o i} )
(O()OT(0)) = E/D[w’(b’U] Z SR DLV ¥ S Z ‘I)pg),pvr%é,ﬁ@ S[®,,U]

7,P0,40 Pl
(3.68)
_ —S[@,,U] i(po+&o—qo)t,}, J . H» - Lo
= / € Z € Uporeo vl Poo ré Z Qo i+l Vnacoiiad
p,lIOaf p7Q67C
(3.69)

where in the second line we have broken the sum over naive quark momenta, p and p/,
into sixteenths of the hypercubic brillouin zone labelled by £ and (. The heavy quark
resists large energies which drive it far off shell, therefore the dominant contribution to
this sum will come from the pieces in which 5 = 5 = 0 by virtue of the spatial sum. If
we suppose that our action does indeed contain no taste changing interactions then also
we will have that &, = (y. The Correlation function then has the form

(O(t)(’)T(O)> = /es[cp,w,U] Z ei(po+£ofqo)t@poﬁoﬁrq)qo’ﬁZ (T)qé,;l;’rwpg—i-éo,};" (3.70)

P,40,£0 D,q0

when &, = 0 this is just the correlation function of the normal low energy quark. In
order to interpret the correlation function when £ = 7/a we must use the doubling
symmetry, which leaves the action invariant, to transform the high energy quark field

to a low energy field. The doubling symmetry (3.54) has the momentum space form

wp — anp—&-mr/a (371)

&p — 'QEermr/aM;r (372)

where M, = ~". The { = 7/a piece of the two point function then has the form

(OO (0))|eymra = (—1)" / e STy e Ty sMIT Dy 5 By STMct, 5

P,40 .45

(3.73)
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which is just a normal two point function constructed from low energy quarks made using
the operator ®I'v7°4, with the additional complication that there is now a factor of
(—1)" oscillating in time. Were we to have used two different tastes of staggered quark
the calculation would have been very similar, except that the oscillating piece would
come from the case when exactly one quark contributes a nonzero taste piece and the
case in which both are doubled gives us the extra factor of two bringing the total up
to sixteen times the naively expected correlation function that we expect from the loop
made of staggered quarks. In such a case the phases made from conjugating the meson

spin matrix I by M, cancel between the source and sink.



3.5. NRQCD 45

3.5 NRQCD

While the u, d, s and ¢ quarks can be modelled well using the relativistic HISQ action,
the b quark is too heavy. The lattice can only be expected to simulate physics involving
energies less than 1/a, since this is the order of magnitude of the maximum physical
energy on the lattice. The heavy quark mass is typically of the same order of magnitude
as this, with am;, ~ 1 and so relativistic heavy quark simulations are not feasible on
current lattices, on which a@ =~ 0.1fm[]] The additional constraint LM, > 1, required
to ensure the absence of finite volume effects, prevents us from reducing the number
of lattice sites in order to make calculations with finer lattices feasible. In order to
get around this problem we use the observation that in the heavy-light hadrons we are
interested in simulating the typical momentum transfer between heavy and light quarks

is of the order Aqcp.

3.5.1 Foldy-Wouthuysen-Tani Transformation

In order to construct a non-relativistic action we must decouple the quark and antiquark
degrees of freedom, to some order in the inverse heavy quark mass 1/my,. This is
done by acting on the quark fields with sequential transformations, known as a Foldy-
Wouthuysen-Tani transformation, to remove the terms which do not commute with ~°.

The first is straightforward to see, starting with the continuum relativistic action:

Sp = /d4$¢b(:v) [iv° Dy + i’ D; — m|1y() (3.74)

!That being said, some work [44] has been carried out using HISQ quarks by using large masses
on lattices with a ~ 0.09,0.06 and 0.045fm and extrapolating to the physical b mass. This procedure,
while computationally expensive, eliminates several of the systematic uncertainties induced by using

an effective theory such as NRQCD for simulating heavy quarks.
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we make the change of variables in the fields
() = 7Py (o) (3.75)

Oy(z) = () P2 (3.76)

Such a change has determinant unity, since the exponent is traceless, and so leaves the

measure invariant. The resultant action is
Sy = /d%@/_){,(x)e”i[)iﬂm [iv° Dy + 17’ D; — m] e Dil2ma! ()
- / d*zy(2)[i7" Do — m — ({4'Di; 7" Do} + {7 Dy, ' D;}
+ (' Di)*/2)/2m + O(1/m?) | ¢y ()
= /d%%(x) [WODO —m — <igvi70Fl~o + izg[vi, v Fyj + D,»D’) /2m
+O(1/m?)] ()

We may now make the change

by(w) = e Fio/2mE (3.77)
Gy(x) =y (x)e 97 Fiof2m? (3.78)

in order to remove all terms of order O(1/m) which do not commute with °. We may
continue in such a manner to remove higher order terms which do not commute with
7°. Ultimately the field we end up with, removing non-commuting terms to O(1/m?),
is:

U(z) = Tewre ™ 7" W (z) (3.79)

with

TF —eY D;/2m
ia~inO 2
xXe igv* v  E; /2m

w (47 (DRI BN+ 3 (' Di)?) /2m
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where we have written the instances of the field strength in terms of the QCD equivalent
of electric and magnetic fields. The last redefinition removes the mass term, which just
shifts the definition of the energy of the meson states relative to the physical energy. This
step is necessary for our simulations as it ensures we do not run into large discretisation
errors associated with aF,, being greater than unity, as it would be for meson states
constructed using b quarks had we left the mass term in the lagrangian. We still require
that Lmv? > 1, where mov? is the typical kinetic energy, estimated from the mass
splitting of the Y(1S5) and Y(2S) states. Studies of the T gives v* & 0.1[45], which
means on current lattices Lmv? = 6.

The heavy quark lagrangian we end up with is then, decoupling the quark field into

its top two and bottom two components as ¥ = (1), £),

D* g
T - J ad .
Ly =41 [iDy+ -+ 50 B+8 (D" E+io-(Dx E~ExD))|v
+5T[D D B+ (D E+i (DxE—ExD))}g
O o T om 8m2 .
+ O(1/m?) (3.80)

3.5.2 Power Counting for Heavy-Light Mesons

For systems involving only a single heavy quark, as we are concerned with here, the
remaining light degrees of freedom are governed by the nonperturbative gluon dynamics
and hence characterised by the scale Aqcp. For hadrons at rest we find that the covariant

derivative acting on the heavy-quark field is of order

Dy ~ Aqep¥. (3.81)
Similarly for the gluon fields
|9A] ~ Aqep
9B| ~ |9B| ~ Adcp- (3.82)

Dimensional analysis then tells us that each term in (3.80) which comes with a factor

of 1/m also comes with a factor of Aqep relative to the first. The heavy quark action
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therefore receives corrections of order O((Aqep/m)?).

3.5.3 Lattice NRQCD and the Evolution Equation

The next step is to discretise the NRQCD action. A convenient definition for the
NRQCD quark lattice action is:

S =a* Y [l (@)u(a)

it a) (1= 20)" (1= )i (1- 0 (1- ) ww)].

The quark propagator then satisfies the simple evolution equation

Glatal,z) = o(a+af, )+ (1- “Q—ij)"(l - a(;H)UtT(x)(l - a‘;H) (1- “Tfj’)”a(x, 2)
(3.83)

with G(z,y) = 0 for z; < y;. n is referred to as the stability parameter and ensures
numerical stability when computing propagators using [3.83] Since the quark part of
the action is first order in Dy the propagator has no pole at —F(p) and so is only the
retarded part of the full propagator. This may be derived straightforwardly from the
inverse relation

D(z,y)G(y, z) = d(x, 2) (3.84)

taking the Dirac operator D directly from the action:

D(z,y) =6(x,y) — (1 - a2_[i0>n<1 - CLdTH)UtT(y)O - CMS—H> (1 - a2—}£)>n5(x,y — at).

(3.85)
In simulations we neglect the NRQCD determinant, since the energy scales at which the
creation of b b pairs will be relevant are well above Aqcp and well outside the range of
validity of NRQCD. None the less the terms appearing in the NRQCD lattice action will
be renormalised away from the values obtained from the FWT transformation in the
continuum. We might treat it like any effective field theory and compute the coefficients
by matching to experiment, but this would result in a substantial reduction of the

predictive power of the theory. Another method is to use perturbation theory: since the
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corrections are dominated by momenta of order 7/a and 7 /a is typically several GeV in
simulations, we expect that these quantities can be calculated using perturbation theory,
provided we tadpole improve appropriately. The full, tadpole and Symanzik improved,
NRQCD quark action has

aHy = — AP /2am (3.86)
adH =adH, + ad Hys (3.87)
(A2)2 ig FENRPSR
OH, = — AD B FE.A®D
10w Cl8(am)3 * CQS(am)z( )
= S am)2” (A® x E— E x A®)
2 A (4) (2))2
g a*A a(A®)
e 6. B - .
“9am” T 2dam 16n(am)? (3.88)
_ 9 @ 5.1
SH,o — flg(am)3{A o B}
39 A 5 (A®) x B B x A
f264(am)4{A o (AW x B— B x A®)
—f _ig" ExE (3.89)
38(am)30 '

where the tilded quantities are the tadpole improved versions and at tree level f; = 1.
We also replace the U; appearing in with its tadpole improved version. In the
simulations I perform here the stability parameter takes the value n = 4, following [10].

The evolution equation gives a straightforward way to compute the NRQCD propaga-
tor. As an initial value problem, as opposed to the boundary value problem of relativistic
QCD, the propagator can be computed efficiently and quickly requiring far less memory

or computation time than its relativistic counterpart.
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CHAPTER 4 s ——

B — D~

4.1 B — D*

Precise measurements of quark flavour-changing interactions offer one way to uncover
physics beyond the Standard Model. As successful as the Standard Model appears to
be so far, there will continue to be progress reducing experimental and theoretical un-
certainties, as well as making new measurements. Existing tensions in the global fits to
the Cabibbo-Kobyashi-Maskawa (CKM) parameters may become outright inconsisten-
cies, or new measurements of rare decays may differ significantly from Standard Model
predictions.

Measurements of the exclusive semileptonic decay B° — D**¢~ 7 provided the first
estimations of the magnitude of CKM matrix element V,;, [46]. This channel still provides
one of three precise methods of determining |V,|. Measurements for the differential
branching fraction are fit to a function of ¢?, the lepton invariant mass-squared, and
extrapolated to the zero-recoil point (maximum ¢*). Then lattice QCD results for the
relevant hadronic matrix element are used to infer |V|. The most recent HFLAV
experimental average [47] combined with the Fermilab/MILC lattice result [4] gives
|Vip| = (38.71 £ 0.47exp & 0.59,) x 1073,

Measurements of the inclusive b — ¢ decays B — X .fv, combined with an opera-
tor product expansion offer a complementary method. The latest estimate is |V =
(42.21 4 0.78) x 1073 [48, 49]. The discrepancy between the inclusive and exclusive

result described above is at the 30 level.

One can also use the exclusive decay B — D/{v to estimate |V,;|. Historically this has

o1
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not given as precise a determination due to having to contend with background from
B — D*fv. Recent progress has come from new measurements and joint fits to exper-
imental and lattice [50, 51] data over a range of ¢ using so-called z-parametrizations
[52, [53]. The latest result using B — D/{v results is |Vy| = (40.85 £ 0.98) x 1073 [54],
in acceptable agreement with either the B — D*/v or B — X (v determinations.

In this chapter I present the details and results of a lattice calculation of the zero-recoil
form factor needed to extract |V| from experimental measurements of the B — D*{v
and B; — D*(v decay rates. This work differs from the Fermilab/MILC calculation
[4] in the following respects: (1) the gauge field configurations are the next generation
MILC ensembles [55], 56, 57] which include effects of 2 + 1 + 1 flavours of sea quarks
using the highly improved staggered quark (HISQ) action [58]; (2) the fully relativistic
HISQ action is used for valence light, strange, and charm quarks; (3) the nonrelativis-
tic QCD (NRQCD) action [59] is used for the bottom quark. Therefore, this work
represents a statistically independent, complementary calculation to [4], with different
formulations in many respects. The two main advantages of using the HISQ action is
that discretization errors are reduced and that the MILC HISQ ensembles include con-
figurations with physically light u/d quark effects. Preliminary results were reported in

recent proceedings [8].
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4.2 Form factors

This section simply summarizes standard notation relating the differential decay rate,
the relevant hadronic matrix elements, and the corresponding form factors. Throughout
the section I refer to B — D**/~i decay, but the expressions for BY — D**(~i are
the same, substituting u — s.

The differential decay rate, integrated over angular variables, is given in the Standard

Model by

ar 2 M3,
d—(BO — D**l7 ) = Crlp
w

Tew Va|?
43

x(Mp — Mp-)*Vw? = 1x(w)|F(w)[* (4.1)

where w = v - v’ is the scalar product of the B and D* 4-velocities, and x(w) is a known
kinematic function normalized so that x(1) = 1 [4]. The coefficient gy accounts for
electroweak corrections due to box diagrams in which a photon or Z boson is exchanged
in addition to a W boson as well as the Coulomb attraction of the final-state charged
particles [60, 61], 62]. The form factor F(w) is a linear combination of hadronic form
factors parametrizing the matrix elements of the V' — A weak current, i.e.

2iV (¢?)
Mpg + Mp- )

/ - € -
(D*(1/, €)|ey"*7°b| B(p)) = 2Mp- Ao(g?) qzqqﬂ

PO c*

(D*(p', €)ler*0| B(p)) = €LPyPo

* € - q
+ (M + M) () [ = ]
* M3, }

€ -q M% —
- Az(qZ)—[p“ +pht - LB - q"

4.2

The only contribution to F(w) at zero recoil, w = 1, is from the matrix element of the

axial vector current; this reduces to

(D*(p. €)ley' 70| B(p)) = (Mp + Mp-) A1 (qgra )€™ (4.3)

for 7 = 1,2,3. It is sometimes conventional to work with form factors defined within
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heavy quark effective theory (HQET). Of relevance to this work, I write

- 2\/ MBMD* Al(q2)

- 2
M+ M- 1 - G

hAl(w>

At zero recoil, where w = 1 and ¢* = ¢2,,,

F(1) = ha(1) = T2t Moy 2,

2 MB Mo max

(4.4)

(4.5)

I will usually use the hy, notation. When I wish to specifically refer to the B, — D}

form factor, I write hf , so
FP7P(1) = hay(1) and FP7Ps(1) = b3 (1).

These are the quantities I calculate here.

(4.6)
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4.3 Lattice parameters and methodology

Here 1 give specific details about the lattice calculation. Once again many of the ex-
pressions will refer to B — D* matrix elements, but they apply for any spectator quark
mass.

The gluon field configurations that I use were generated by the MILC collaboration
and include 24141 flavours of dynamical HISQ quarks in the sea and include 3 different
lattice spacings [55], 56, 57]. The u and d quarks have equal mass, m, = mg = m;, and
in these calculations I use the values m;/m; = 0.2, 0.1 and the physical value 1/27.4
[42]. The s and ¢ quarks in the sea are also well-tuned [7] and included using the HISQ
action. The gauge action is the Symanzik improved gluon action with coefficients correct
to O(asa?, nyasa?) [36]. Table [4.1] gives numerical values for the lattice spacings, quark
masses, and other parameters describing the ensembles used.

In calculating correlation functions, I use valence s and ¢ masses tuned slightly closer
to their physical values [7]. The d, s, and ¢ quark propagators were computed using
the MILC code [63]. The b quark is simulated using v* perturbatively improved non-
relativistic QCD [45, ], including terms up to O(a,v?) given by adH,a in (3.88)), which
takes advantage of the non-relativistic nature of the b quark dynamics in B mesons and
produces very good control over discretization uncertainties. The parameters used in
calculating quark propagators are recorded in table [4.2]

In order to extract the form factor from lattice calculations I compute the set of

Euclidean correlation functions

Chopi(t)ij = <O(t)BiOT(0)Bj>
CPlope(t)i = (O*(t) p+: O™ (0) pej)
Clyy(7,1,0)5; = (O*(7) p+iJ* () O7(0) ) (4.7)

where each interpolating operator O; is projected onto zero spatial momentum by sum-

ming over spatial lattice points and the current J* is one of several lattice currents (see
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Table 4.1: Details of the gauge configurations used in this work. I refer to sets 1, 2
and 3 as ‘very coarse’, sets 4, 5 and 6 as ‘coarse’ and sets 7 and 8 as ‘fine’. The lattice
spacings were determined from the Y(2S — 15) splitting in [5]. Sets 3, 6 and 8 use
light quarks with their physical masses. ug is the tadpole improvement factor; here the
Landau gauge mean link is used. M, and M, L are also given, computed in [6]. The
final column specifies the total number of configurations multiplied by the number of
different start times used for sources on each. In order to improve statistical precision I

use random wall sources.

Set a(fm) L/axT/a amy ams ame uQ My /MeV  MzL neg X ng

1 0.1474 16 x 48 0.013 0.065 0.838 0.8195 302.4(2) 3.8  960x16

(
2 0.1463 24 x 48 0.0064 0.064 0.828 0.8202 215.5(1) 4.0 960x4
3 0.1450 32 x48  0.00235 0.0647 0.831 0.8195 133.0(1) 3.3 960x4
4 0.1219 24 x 64 0.0102 0.0509 0.635 0.8341 304.5(1) 4.6 960x4
5  0.1195 32 x 64  0.00507 0.0507 0.628 0.8349 216.5(1) 4.3 960x4
6  0.1189 48 x 64 0.00184 0.0507 0.628 0.8341 132.7(0) 3.9 960x4
7 0.0884 32 x 96 0.0074  0.037 0.440 0.8525 306.1(2) 4.5 960 x4
8 0.08787 64 x96  0.00120 0.0363 0.432 0.8518 128.4(0) 3.7 540x4

section [4.4). The indices i and j label different smearing functions. I use three different

smearing operators on each of the B and D* interpolating operators.

In implementing O*(t) p+; I use an unsmeared operator and two gauge covariant Gaus-

. . . . r2,v?
sian smearings, implemented by applying (1 - L

>n to the field. Here the derivative
is stride-2 in order not to mix the staggered-taste meson multiplets. 7p- is the radius (in
lattice units) chosen to give good overlap with the ground state, and n is chosen to give
a good approximation to a Gaussian while maintaining numerical stability. For the B
I use a local operator as well as two Gaussian smearings, implemented as %e*(“yw 7"123,

where again rp is a radius in lattice units and N is an overall normalization. Since the

B smearings are not gauge invariant, the gauge fields are fixed to Coulomb gauge. I
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Table 4.2: Valence quark masses and parameters used to calculate propagators. The s
and ¢ valence masses were tuned using results from [7] and the b mass was taken from
[5]. (1 + €enaix) is the coefficient of the charm Naik term and ¢; are the perturbatively
improved coefficients appearing in the NRQCD action correct through O(a,v?) [5]. The
last column gives the 7 values used in three point functions. These have changed from
those presented in [8] on the very coarse ensembles as it was found that 7 = 10, 11,12, 13
resulted in excessive noise on Set 3, which resulted in poor fit stability and the relatively

low value of F(1) on this ensemble.

Set am‘s’a1 am;’al amy ENaik  C1,C6  Cs C4 T
1 0.0641 0.826 3.297 —0.345 1.36 1.21 1.22 6,7,8,9
0.0636 0.828 3.263 —0.340 1.36 1.21 1.22 6,7,8,9
0.0628 0.827 3.25 —0.345 1.36 1.21 1.22 6,7,8,9
0.05622 0.645 2.66 —0.235 1.31 1.16 1.20 10,11,12,13
0.0505 0.627 2.62 —0.224 1.31 1.16 1.20 10,11,12,13
0.0507 0.631 2.62 —-0.226 1.31 1.16 1.20 10,11,12,13
0.0364 0434 191 —-0.117 1.21 1.12 1.16 15,18,21,24

0.0360 0.4305 189 —0.115 1.21 1.12 1.16 10,13,16,19

o J | O Ot =W N

refer to the local operator as [ and the Gaussian smearings as g2 and g4 correspond-
ing to radii of 2a and 4a respectively. I use the same choices of radii for both B and
D* smearings. The smearing parameters are given in table 4.3, Figures |4.1] and
in section show the effectiveness of using combinations of smearings in reducing the
uncertainty of the computed form factor. The typical reduction of statistical uncertainty
by a factor of between 2 and 4 is gained for the cost of computing more propagators
and performing additional contractions. In practice, these additional contractions are
fast, and the increase in computational cost by a factor of approximately 3 is favourable

compared to using all 16 available time sources on each configuration. Using all 16 time
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Table 4.3: Values of r, taken to be the same, for the B(,) and DZ‘S) Gaussian smearings on
each set and the accompanying n values for the DE“S) smearings. I chose to fix the radii
in lattice units rather than physical units as this seemed to result in more consistent
numerical stability of the covariant Gaussian smearing operator when moving between

lattices.

Set  rg/a rgfa ng N
123 2 4 30 30
45,6 2 4 30 30

7,8 2 4 30 40

sources would yield an improvement in statistical uncertainty of less than a factor of 2
due to correlations between time sources, while increasing the computational cost by a

factor of 4. The interpolating operators themselves are
Op(w) = > du(@)y*Alw, y)Vs(y)
y
(@) =Y D@y Az, y)e(y + ai) (4.8)
Yy

where A(x,y) is the appropriate smearing function discussed above and the D* interpo-
lating operator is point split. In distinction to the continuum quark fields b, ¢, s, and u
of section here I denote the NRQCD b field by ¥, and the staggered fields, written
as 4-component Dirac spinors (see , by ¢ with the appropriate flavour subscript.
I checked both the point-split and local D* interpolating operators on the very coarse,
physical point ensemble (Set 3) and found no significant difference in statistical noise or
central value of either the D* mass or the matrix element. I primarily used the point-
split current as it was simpler to implement in our framework. The results quoted below
for the B — D* fits use the point-split vector current, except for Set 3 where results
are given for the local vector current. The results below for B, — D? form factors were

obtained using the local vector current.
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In order to improve statistics I multiply the smeared sources with random walls to
produce, on average, the effect of multiple sources. [64] compares ground state energies
for the T computed using random wall sources to those computed without and demon-
strates a reduction in statistical uncertainty by a factor of ~ 4 with a low computational
cost. Taking the 2-point function, projected onto zero momentum and with symmetric
smearings as we use here, as an example:

Oth (ta O)z] = Z(&l (%, t>rw2 (3: + 5sink7 t) X

zy,0

&2(97 O)le (y + 551"07 O>>AZ(6S7/nk)A (651"0)
= Z tr [FGQ(:I:, ty, )T A (0spe) X

zy,0

Gl (y + 637”07 0; T+ 6sinka t)Az(dsmk) . (49)

Exact computation requires an inversion for each value of y being summed over. Instead

I generate N random vectors & satisfying

hm Zﬁaz &u(y)" = 0(2,y)dab - (4.10)

[ labels the N random colour vector sources and a and b are colour indices. The average
over configurations further suppresses violations of this relation; in practice a single
random wall per colour, setting N = N, = 3, is sufficient. Inserting the above relation
into the 2-point function

Copt(t,0);; Z tr [FGQ(x t;2,0)&(2)I'x

xyz,0,l

B85 )&] (y + 01re) G (1, 05 + B, A (Bt

=Y [FGQ(:C, t;2,0)6(2)'x

zyz,0,l
75 [Az(észnk>G1 (.’L‘ + 63'mk7 t; Y, O)A ( src)fl (y + 531‘0)] i| (411)

where 7° hermiticity has been used. The naive propagators G are built from staggered
quarks and the full form of the correlation function contractions in terms of NRQCD

and staggered propagators is given in Appendix [A]
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These correlation functions can be expressed in terms of amplitudes and decaying
exponentials by inserting a complete basis of states. Projecting onto zero momentum

and setting ¢ = (Mp — Mp+,0,0,0) this gives

oty = 3 (-1 BBy

n,a=0,1
OD*2pt(t)ij - Z (_1)atAZ¢AZj€7MD‘§nt
n,a=0,1

Cpt(7,1,0)55 = Z Z(_l)a(ptwbtAZiB;?

ab=0,1 nm

x Vnm e~ Mpgm (T~ My (4.12)
where
RO AL
at /—ZMBg
AnA — <Q|O})* D*Z>
ar 2MD;n

wm (D2l J|By")
©®  \/2Mp2Mgp

Note that I have included contributions from opposite-parity states, which depend on

(4.13)

imaginary time like (—1)" and arise from using staggered quarks [58], by introducing
the sum over a and b. When either a or b is nonzero the corresponding term in the
sum is multiplied by a sign factor which oscillates between 1 and —1 in time. I am
only interested in the terms with a = b = 0 here; however in order to extract these,
the oscillating terms must be fit away. For my choice of operators the A, B and V'

parameters are real [65]. T discuss my fits to these correlation functions in section [4.5.1]
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4.4 One-loop Matching

A lattice current with the same matrix elements as the continuum current, to a given
order, is required. The matching of lattice and continuum currents is done in [9] through

Oa, as/amy, Ay, /1), where A, is a typical QCD scale of a few hundred MeV,

D
following the method used in [66]. Using power counting in powers of A,.,/ms a set
of lattice currents is selected. At the order to which I work, only the following currents

contribute:
0)i T g
T (@) = Yy’ T,

7 ]- T
T (@) = —5——1y'7"y - ATy (4.14)

2amy

It is convenient for us to also compute the matrix elements of operators entering at

O(QSAQCD /mb>

i 1 - — 0
Jl(azt)t (z) = —mww- Ay,
i 1 - i
T () = —Qamb¢c7OV5A \7 (4.15)

This allows for a configuration-by-configuration check of the code: namely that at
zero recoil, the three-point correlation functions satisfy the relation Cy;0) + Cypy —
2C5, 5 = 0. This identity is derived using integration by parts and the fact that
Yo = Tg.

The full matching is a double expansion in A, /m; and in a,. The matched current
is given by

A
O‘ﬂ) (4.16)

7' = 201+ ol = I + I+ 0 (20
where Z is a multiplicative factor from the tree-level massive-HISQ wave function renor-
malization for the HISQ ¢ quark. The one-loop coefficients n and 7 respectively account
for the renormalization of Jl(aot)ti and for the mixing of ﬁ;lt)tz into Jlg)t)ti. Numerical values

for the perturbative coefficients relevant for the ensembles used are given in table

[91.
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Table 4.4: Tree-level Z factors and one-loop matching coefficients, used in (4.16), cal-
culated at lattice quark masses appropriate to each of our gauge-field ensembles. I also
give values on each ensemble for the strong coupling constant in the V' scheme at a scale

of 2/a (from results in [9]).

Set Z —n T ay(2/a)
109930 0.260(3) 0.0163(1)  0.346
2 0.9933 0.260(3) 0.0165(1)  0.344
3 0.9930 0.260(3) 0.0165(1)  0.343
409972 0.191(3) 0.0216(1)  0.311
5 09974 0.185(3) 0.0221(1)  0.308
6 09974 0.185(3) 0.0221(1)  0.307
7 0.9994 0.091(3) 0.0330(1)  0.267
8 0.9994 0.091(3) 0.0330(1)  0.267

Matrix elements of currents of order ajA,,.,/ms vanish to all orders in a, according
to Luke’s theorem [67]. I will denote by V the matrix elements of the currents Jiuq
divided by meson mass factors, as in (4.13)) with a = b =0 and n = m = 0. Luke’s

theorem implies the combination
VY = VWi gy (4.17)

which represents the physical, sub-leading matrix element, should be very small, only

different from zero due to systematic uncertainties.
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4.5 Analysis of numerical data

In this section I discuss the two main aspects of numerical analysis. First I present fits
to the correlation functions, allowing us to determine h4,(1) on each of the 8 ensembles.
Second, I discuss how I infer a physical value for h,,(1) with an error estimate for
uncertainties associated with current matching, discretization, and dependence on quark

masses.

4.5.1 Fits to correlation functions

[ fit the three correlation functions defined in (4.12]) simultaneously using the corrfitter
package developed by Lepage [68, 69]. This minimises

2

=S AC(t p)o2A Z p brcr) (4.18)

t, t’ ppI‘lOI‘

with respect to p. Here AC(t,p) = C(t) — Cru(t, p) with Cry(t, p) the theoretical value
of the correlation function at time ¢ computed using with parameters p and C(t) is
the measured value of the correlation function at t. p’ is the ith parameter in the theory
and ppmr is its prior value with error o, Do The correlation matrix o,y includes all
correlations between data points. Fitting correlators from all smeared sources and sinks
simultaneously requires the use of an SVD cut on the eigenvalues when determining
the inverse of 2. This is implemented by replacing eigenvalues of ¢ with magnitude
less than the SVD cut with the value of the cut. The code also provides the option of
removing the corresponding eigenvectors from the data and I have checked that choosing
this option did not change the fit results for the matrix elements. I also exclude points
close in time to the source and sink to suppress excited state contributions and speed
up the fit. The number of truncated data points and SVD cuts used to obtain our
results are given in table [£.5] For the D* two point function, with symmetric boundary
conditions in time, the source and sink truncations were the same. For the B two point

function only the source is truncated. Also given are the truncations used for the three
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Table 4.5: Values used for SVD cuts and truncations made near the source and sink.

Set SVD At”" AtB ASP AP

1 0.01 4 4 2 2
2 0.001 4 4 2
3 0.001 4 4 2 2
4 0.01 2 2 2 2
3 0.01 4 4 2 2
6 0.0025 4 4 1 1
7 0.0001 4 4 2 2
8 0.001 4 4 2 2

point function.

I look at the effectiveness of the various smearings by fitting each smearing diagonal,
i.e. equal radii, set of two and three point correlator functions independently and com-
paring the result to the full fit. Figures and show comparisons of the fit results
for h4,(1) when varying numbers of exponentials; the points are normalized by the value
of ha,(1) taken as the result for that ensemble. Plots are shown for all 8 ensembles in
figure . In each plot, I show the full fit results to the 3 x 3 matrix of source/sink
combinations (local [, or Gaussian with 2 radii, g2 and ¢4), as well as “diagonal” fits
where only one source/sink is used. The statistical improvement of using all the data is
apparent. The flatness of the curves and the constancy of the error bars shows that, for
large enough Ny, the Bayesian fits are insensitive to adding further exponential terms,
i.e. effects of excited states are accounted for. The final results typically come from the
Nexp = 5 fits to the full 3 x 3 matrix of correlators; however, on ensembles 3 and 7, 1
had to include another exponential. In these plots I only include the results of fits with
x?%/dof < 1.2. T give the ground state and oscillating state two point fit parameters for
my full simultaneous fits in table and table . The Cpop(t) fit amplitudes, the
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Figure 4.1: Plots of N, fit behaviour on first four ensembles for B — D* (see table
. In each plot 4 sets of data points are shown: the full fit including all 3 x 3 source-
sink combinations, and, for comparison, separate “diagonal” fits where only one type
of source-sink smearing is used. (The notation is defined in section [4.3]) A significant
improvement is seen in the full fit. All diagonal fits show good agreement for Ney, > 4,
but with the increased precision, sometimes 5 or 6 exponentials are needed to get a good

3 x 3 matrix fit.
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Figure 4.2: Further plots of Ney, fit behaviour on last four ensembles for B — D*.

energies and B}, parameters of , are in good agreement with those in [10].

The values given in table were chosen by trial and error, aiming to retain as
much of the data as possible while maintaining a stable fit. However we could have
chosen different values for these and it is good to check that our results are insensitive
to such choices. As such I perform several variations of the fit, taking all combinations
of At — At + 1 for the B and D* two point functions and the three point function as
well as varying the SVD cut between a half and twice it’s chosen value. Some such fits
result in a y?/dof value greater than 1 indicating that the inclusion of the additional
data includes either too large a contribution from higher energy excited states or a
sufficiently singular correlation matrix to result in an unstable fit. Those fits which

converge, plotted in figure , with a value of x?/dof ~ 1 are all in agreement to within
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error with the fit results I use for my analysis, demonstrating that my results are indeed
robust to such variations.

Table gives results for matrix elements corresponding to the currents Jlglt)t and
Jl(;)t. One can see that Luke’s theorem holds, in that Vssllg is very small. Results are
also given for V® as well as numerical values for asAqep/mp. While it is important to
remember that there are absent mixing down factors from the current J® contributing
at O(asAqep/me) it is encouraging to see that V@ is small compared to its expected
order.

On each ensemble, I obtain a value for the zero-recoil form factors hfjl)(l) As in the

continuum expressions (4.3)) and (4.5) we have

(D|T|B)
V2Mp-2Mp

and similarly for A% (1)]iag. I write V7 here to make clear that I fit combinations of

hoay(1)1ate = VI = (4.19)

three point correlators that correspond to the insertion of the current given by .
Results for hy,(1) on each ensemble are presented in table . I computed h% (1) on
the physical-point lattices only, since chiral perturbation theory predicts this quantity
to be much less sensitive to the sea quark mass than the spectator quark mass. (In fact

it will be seen that the spectator quark mass dependence is also small).



68 Chapter 4. B — D*

oo

OO

Souvio Ouo OV OV OV OV OUuo ouo
T T
L

oo

oo

oo

oo

oo

2
X
[=Y=JEN

0.90 055 1.00 165 1.10
h’A1 ( 1 ) variation/h‘A1 ( 1 ) result

16° x48
1.0F i T T -
0.5} .
0.0 L . L — . . )
24° %48
1.0F T T =
0.5} ijii Eiiﬁiii .
00 i i i 3 i 1 i i
327 x48
1.0F ' : ' 7
0.5} .
00 i i 3 1 i i i
24° x64
1.0_ T T T T ]
03| = — ]
00 I I I & I I il I
327 x64
1.0F ‘ % 1
0.5} Eaga .
0 O 1 1 1 3 1 1 1 1
48° %64
1.0F ]
0.5} .
00 i i i 3 1 i i i
327 %96
1_0_ T ]
3o = = _
00 i I I 3 I I I I
64° %96
1.0_ T ]
L 05) = == ]
00 i i i 1 i i
1900 2000 2100 2200 2300 2400 2500 2600 2700

Ep/MeV

Figure 4.3: Plots showing the robustness of each fit with respect to changes in fit

parameters.
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Table 4.6: Ground state and oscillating state local amplitudes and masses from my
fits. Note that on Set 3 I use the local vector operator, otherwise I use the point-split
operator; therefore, the amplitudes A are not comparable between different operators.
Also note that the tabulated B “masses” are the NRQCD “simulation energies” afs™,

representing the nonperturbative contribution to the B meson binding energy. The B

parameters are in good agreement with those in [10].

Set A, AY, aMpzo aMp-o
1 0.1420(12)  0.110(10)  1.5465(19)  1.815(22)
2 0.1338(17) 0.087(12)  1.5304(28)  1.742(26)
3 0.1710(14)  0.092(13)  1.5226(18)  1.675(25)
4 0.1006(23) 0.081(20)  1.2599(31)  1.499(30)
5 0.0951(14)  0.081(10)  1.2289(23)  1.459(18)
6 0.09636(52) 0.0479(87) 1.23244(99) 1.354(22)
7 0.06466(40) 0.0520(35) 0.91551(88) 1.0838(82)
8 0.05912(40) 0.0502(23) 0.89583(99) 1.0477(71)

BY, BY, aMp aMps
1 0.2287(17) 0.232(14)  0.5667(14)  0.815(13)
2 0.2171(20)  0.200(24)  0.5534(18)  0.770(18)
3 0.2000(17)  0.214(14) 0.5433(15)  0.761(14)
4 0.1700(23)  0.104(54) 0.4825(21)  0.638(46)
5 0.1611(24)  0.095(54)  0.4745(22)  0.621(42)
6 0.15739(69) 0.1674(58) 0.46809(80) 0.6523(58)
7 0.10762(64) 0.1241(35) 0.37950(76) 0.5437(40)
8 0.09884(69) 0.1131(26) 0.36473(98) 0.5042(32)
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Table 4.7: Ground state and oscillating state local amplitudes and masses from my fits

for the D7, using the local vector operator.

Chapter 4. B — D*

s0
AOZ

s0
All

w

0.1987(13)
0.13689(81)
0.08233(40)

0.136(14)
0.0918(75)
0.0618(23)

1.58655(79)
1.28341(45)
0.93657(49)

1.868(14)
1.5094(94)
1.1142(50)

s0
B 0l

s0
Bll

aMBSO

aMBgl

0.25554(42)
0.18822(14)
0.11867(55)

0.2460(75)
0.1669(58)
0.1212(17)

0.60639(28)
0.51657(11)
0.40136(48)

0.8862(50)
0.7277(36)
0.5698(15)

Table 4.8: Matrix elements, with meson factors defined in (4.13)), of currents contributing
at O(asA ., /mp) for B — D*. Note the approximate cancellation between the mixing
down term a,7V© and V) to give a small v as expected from Luke’s theorem. Note

sub

V2 s numerically smaller than its parametric estimate o, Agcp /my = 0.03.

Set v Ve

3 —0.0050(8) 0.0138(8)
6 —0.0044(5) 0.0101(4)
8  —0.0031(7) 0.0060(8)
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Table 4.9: Fit results for the zero-recoil form factor ha, (1) = VY for both B — D*
and B, — D:.

Set  ha(Diaee — h%, (Dase
0.8606(91)
0.871(13)
0.8819(96)
0.8498(94)
0.8570(84)
0.8855(50)

(75)

(63)

0.8667(42)

0.8662(61)
0.8709(75
0.8886(63

co I O Ut =W =

0.8715(44)
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4.5.2 Chiral-continuum extrapolation

By carrying out the calculation using 8 ensembles, spanning 3 values of lattice spacing
and 3 values of the light quark mass, many of the systematic uncertainties can be
quantified by performing a least-squares fit to a function which accounts for unphysical
parameters or truncation errors. Below I describe how the fits address each of these
sources of uncertainty then present results of the fits.

There are two types of systematic error which must be accounted for. The first type are
truncation errors about which the numerical data contain no information. In this class
are the higher-order (in Agecp/my) current corrections truncated in the perturbative
matching described in section [4.4. The numerical data contain no information about

Abep/my or agAgop/my corrections, so I add to each data point nuisance terms

hA1(1) ‘ﬁt = hAl(l) ylatt

A2
+ ey TQnCZD [1 + 65Aamb + eﬁAZmb} (420)
b

OésAQCD [

1 -+ €8Aamb + GQAQ
mp

amb:|

+er

where

Ao, = (amy —2)/2

and ey, es, €g, €7, eg, and eg are Gaussian distributed variables, with mean and standard
deviation u(o), with e, = 0(0.5), e = 0(0.3) and e5 659 = 0(1), 100% correlated between
each data point. The e5, eg, eg and eg terms reflect the fact that the coefficients of the
truncated AéCD /mi and asAgep/my terms will be slowly varying functions of amy,.
The choice of e; is motivated by the magnitude of V(® and the expectation that Luke’s
theorem will hold at this order.

The second type of systematic uncertainties arise from truncation, discretization, or
tuning errors about which we can draw inferences from the Monte Carlo calculation.
Consider the unknown o2 corrections to the current normalization. In contrast to the

truncation of the Agcp/my expansion, the numerical data is, at least in principle, sen-
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sitive to O(a?) corrections through the running of the coupling on the different lattice
spacings. In addition the results have dependence on the lattice spacing and the light
quark mass that can be mapped out using theoretical expectations. For the light quark

mass dependence this is based on chiral perturbation theory.

4.5.3 Staggered chiral perturbation theory

The full expression for the form factor derived in staggered chiral perturbation theory

is given by [70]

X(h) , g [1 11
hal) =1+ m2 48772f2 [_6 Z 2Fx; + Ficy) = éFm + éFm
5
+a25’v( Mg, = Mx, Py, + My, — M, F
OV, — M2 )2, — 32 ™ (R, — M), — M) ™

Ms, = My, F VA 4.21
+(M2 — M2 )(MQ —M2) 77{/)"'( — )} (4.21)
ny s % Ty

where Fx = F[My,—A,,./Mx] as defined below.
M? M? 1
F[M,z] = " {:c IDF+3x — 4 + 27
— Va2 —1(z* +2)

x (I [1 = 20(2 — Va? = 1)] — i) . (4.22)
The masses of the n and 7’ are given in [41] as
2 =Lz v 1308, - 2
nv o 5 Ve + Sy + Za’ |7

v

1
M? = 3 (Mﬁv + M3, + 1

3
~a*sy, + Z)

_a’ly, 9(a?d;,)?
25/
2

= (2, - 02,) - 4 0@, )?)

M2 = M7 /3+2M3 /3. (4.23)
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Ms, is the diagonal element of the mass matrix for flavour s with taste &, given in [71].
I take the s§ pseudoscalar taste splittings equal to the pion taste splittings. This is a
good approximation in the case of HISQ [56]. I then write (to order O((a?5,)?) )

M2, M2, =M2, — M2+ 5y /4
2 2 _ o
M, — M =aby/2

Mg, — M: =M;, — M (4.24)

TG

where GG indicates the taste pseudoscalar. From these I find

Mg, — My, - a*8, /4
(M3, — My )(My, — M2) (Mg, — M2,)? — (a®6;,/4)*

M, — Mg, Aty /2 (M§, - MZ)
(M7, — M5 (Mg, — M2 ) (a?0y /4 — (MG, — M ))a*dy, /2

Y R W) )
(Mg, — MZ)(MZ, — M7 ) (M5, — MZ,) — a®dy, /4)a?0y, /2 ‘

The expression for hy,(1) then reduces to

_g XA 1
hal) =1+ m? 487r2f2[1622F”_§ m
) o ()
+(2-
( 2 MEG (Mgc - MT%G) "
) o~ o)
—(2+ jol
( 2M§G 2(Mgz, —M2)) ™
+0((a?0},)?) (4.26)

where I have ignored terms expected to produce normal discretization errors and pion
mass dependence, as these are included elsewhere in the fit. Following [6] I take ¢, ~

& —dt, which I implement by including ¢, = d§{, = —dt x 1.0(5) as priors. I use the
pion masses computed in [6] together with the taste splittings for the pion, d¢, given in

[56].
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4.5.4 Finite volume corrections

Finite volume corrections enter through corrections to the loop integrals in the
functions Fy. The relevant formulae are given in [70] and are formed of polynomial
terms in A,,,/Mx and My L exponentially suppressed by factors of e=™x%. The leading
correction therefore goes like A, /M. Since we keep M, L approximately fixed across
our lattices we expect greater finite volume effects near the physical point. Evaluating
these expressions on our lattices, I have found that finite volume effects are at least
an order of magnitude smaller than the leading O(a?) error on the unphysical lattices.
On sets 3, 6 and 8 the finite volume effects are on the order of half a percent and
are significant at the order to which I work. These are incorporated into my fit by
subtracting dh4, (1), found by adding §Fx to each Fx appearing in , from my
data. In figure I show finite volume effects with taste splittings. In much the
same way as the taste splitting washes out the cusp [70] the finite volume effects are

significantly reduced.

4.5.5 Full Fit Function

Based on the discussions above the fit function for the hy4, (1) data takes the functional

form

2 2
% + 59 g
A2 T8 f2

ha(D)|g = (14 B)6Z + C x chiral logs

T a2 |1 %(amb 9+ %(amb - 2)2] v (4.27)

where the chiral logarithms are the F' functions multiplying ¢?/4872f? in (4.26). The
first term accounts for the deviation of the physical h4,(1) from the static quark limit
value of 1. The fit parameter B is given a prior of 0(1). I take as priors v; = 0(0.5),
756 = 0(1). The choice of ~ is motivated by the observation that the one loop matching
coefficients are at most ~ 0.25 in magnitude. We have checked that relaxing this choice

to a more conservative value of 7; = 0(1) does not move the central value by more than
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Figure 4.4: M? dependence of the finite volume corrections to the staggered chiral
perturbation theory result with taste splitting effects. The vertical blue line is the
physical pion mass and the solid point at the end of each curve is at the measured value

of the pion mass on each lattice.

half a percent. Discretization and quark mass tuning errors are included in 62, to be

described further below.

The second and third terms in give the leading dependence on the light quark
mass, parametrized by M? divided by the chiral scale A,, which I set to be 1 GeV. The
coefficient of the chiral logs depends on the D*D7 coupling g, which I take as 0.53(8)
following [4], and on the pion decay constant in the chiral limit f = 130 MeV. The
D* — D mass splitting, A, , appearing in the chiral logs is taken as 142 MeV. The
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uncertainties from f and A,, are negligible compared to the error on ¢ and are not
included. I will return to discuss 67 shortly.

The fourth term in is present in the fit since the current matching has truncation
errors of O(a?). The truncated term would have some mild dependence on am;, which
is reflected in the ansatz for this term.

The 62 and 67 in parametrize how discretization and quark mass tuning errors
could enter the fit form. These originate from the gauge action, the NRQCD action and
the HISQ action. In all three actions discretization errors appear as even powers of a,

hence I include multiplicative factors
5(‘;( = (bg{ + b‘lx(CLAQCD)z + b‘;(((ZAQCD)4 + b3X((ZAQCD)6) . (4.28)
Each factor b, with X = B, g, contains a distinct sea quark tuning error dependence

bY = kNS (4.29)

K3 sea

where the k; are given a Gaussian prior 0(0.5). Note that I do not include a 7 term for
the O(a") piece as such a term would not represent a mistuning error or discretization
effect. The product on the right-hand side allows for effects of small mistunings in the
sea quark masses and the valence charm and bottom quark masses. For the sea u/d and

s quarks I include a multiplicative factor

0X =14 cfi(éxsea/mphys) + cgﬁ(c?:zc’sea/mphys)2 (4.30)

sea sea sea

where Mmgea = 2my + my and 0xgeq = Mgen — mgg;y . The physical masses are taken from

[72] and are computed using the 7, mass. I take mP™®/mPhs = 27.4 [42]. T also include

the multiplicative factor
05" = 1+ dy" (Ome/mE™) 4 dif* (6me /mE"®)? (4.31)
where dm, = m, — mP"¥s with physical mass taken from [7], and the factor

X = 1 f2X0 G ) + £ G )2 (432)
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Figure 4.5: Fit to my data using staggered chiral perturbation theory. The blue line and
grey band are the continuum chiral perturbation theory result and error extrapolated
from my lattice data. The error band includes systematic errors coming from matching
uncertainties and hence has a much larger error than any of the data points, which are
only shown with their statistical error. The points labelled D} Phys are the values of

h%, (1) computed for By — D¥ on the physical point lattices.

. h hys - . . L
with dmy, = mp —my ~° where my >° is determined from the spin-averaged kinetic mass

of the T and n,[5]. ¢;, d;, and f; are given prior values of 0(0.5). I neglect the effects of
the very small mistuning of the light quark masses from their physical value, which we
expect to be small.

The calculation on each ensemble of the form factor for B, — D7 decay is equivalent to
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Figure 4.6: Comparison showing data points from the Fermilab Lattice and MILC

collaborations [4] against our chiral continuum fit.

the B — D* calculation, with the light quark propagator replaced with a strange quark
propagator. The analysis is substantially more straightforward, both because the data
is less noisy and because no chiral extrapolation is required. Before fitting the lattice
data, I include a term to account for the absence of O(A3p/mz) and O(asAgep/ms)

effects, as in (4.20)), using the same Gaussian variables ey, €5, eg, €7, eg, and eg.

For the continuum-chiral fit to the 2% (1) I take the functional form to be the following,
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Figure 4.7: Plot showing the a? dependence of data extracted from the fit. The blue
line with grey error band shows the physical result for the form factor determined by

the fit described in the text.
where 028 B* has the same form and priors as the term included for the B — D*:

(Dg = (14 B)5"

+ 7102 [1 + %(amb )+ %(amb - 2)2] %0 (4.33)

where 71, 75 and 74 are the same as in because these terms represent the same
higher order matching corrections. I run the By — D7 fit simultaneously with the
B — D* fit.

The NRQCD and HISQ systematics are the same as before, and we expect negligible
isospin breaking and finite volume effects. In Figure I show the M? dependence of
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Figure 4.8: Lattice spacing dependence of my results for the B, — D} zero recoil form
factor. The blue line with grey error band shows the physical result for the form factor

determined by the fit described in the text.

my B — D* data and the extrapolated continuum chiral form.

I present results for the hy,(1) and h% (1) fit parameters B, v;, K, ¢;, d;, f; in table
4.10L Plots showing the a? dependence of my B — D* and B, — D? data are shown in
Figures [4.7 and [4.8] respectively, together with the result of my fit. The O(a*) and O(a®)
parameters default to their prior values, while the O(a?) parameters are consistent with
zero. Table presents a summary and combination of the uncertainties in the results
for h,(1) and A% (1).

In table [£.12]T give fit results for plausible variations on the chosen fit function as a

demonstration of stability under such nontrivial choices. Neglecting different powers of
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Table 4.10: Results for parameters in the chiral-continuum fits, Eq. (4.27) and (4.33]).
Terms not listed retain their prior values and are not shown while ¥ = —0.17(25) and

Ky = —0.05(42) for ha (1) and h¥ (1) respectively.

01190 CQBO d{BU dQBO 1BO 2BO
ha(1)  —0.15(12)  0.27(29)  0.24(40) 0.0(5)  0.24(40)  0.0(5)
h (1) —0.03(22)  0.05(35) 0.0(5) 0.0(5) 0.0(5) 0.0(5)

B C 71 5 Y6
ha(1) —0.091(27) —0.02(24) 0.521(78) —0.14(44)  0(1)  -0.15(97)
hs (1) —0.117(31) - —0.14(44)  0(1)  -0.15(97)

Table 4.11: Partial errors (in percentages) for h(jl) (1). A full accounting of the breakdown

of systematic errors is made difficult by the fact that smaller priors not well constrained

by the data are mixed in a correlated way by the fitter; these are reflected in the total

systematic uncertainty. Note that the uncertainty from missing o terms in the matching

for h4,(1) and h% (1) is constrained somewhat by the fit; a naive estimate would give

3.5% on the fine lattices.

Uncertainty ha(1) A3 (1) ha(1)/h3,(1)
a? 2.1 2.5 0.4
asAoep/my 0.9 0.9 0.0
(Agep/mep)? 0.8 0.8 0.0
a? 0.7 1.4 1.4
9D*Dr 0.2 0.03 0.2
Total systematic 2.7 3.2 1.7
Data 1.1 1.4 1.4
Total 2.9 3.5 2.2
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Table 4.12: Fit results for hy,(1) for different chiral-continuum fit functions.

Fit function ha,(1) (1)

Eq. (4.26 0.895(26) 0.883(31)
excluding hairpin terms 0.895(26) 0.883(31)
continuum y PT formula 0.897(25) 0.882(31)
Agep = 750 MeV 0.900(35) 0.882(38)
Agep = 250 MeV 0.897(24)  0.890(23)
excluding polynomial O(a%) terms 0.895(26) 0.883(31)
excluding polynomial O(a*) terms 0.895(26) 0.883(31)
excluding polynomial O(a?) terms 0.898(26) 0.891(25)
excluding polynomial M? dependence 0.895(27) 0.883(31)
excluding (A/my)? uncertainty 0.895(25) 0.883(31)
totally correlated (Agcp/myp)? errors  0.895(27) 0.883(31)

a® we see that the result is only sensitive to leading O(a?) errors. The M? dependence
I included does not affect the central value if removed, nor do changes in the assumed
correlations between NRQCD systematics between ensembles. Removing taste splitting
terms in the chiral perturbation theory result down to the continuum formula results in
only a small change to the central value. Adding asAgep/ms, which I have excluded
from my fit due to Luke’s theorem, results in a slight increase in the central value as
well as the expected increase in error. The result is also only mildly sensitive to different
choices of Agep which I vary by £50%. Note that taken collectively no tested variations

result in more than a 0.250 change to the central value.

4.5.6 Isospin breaking effects

The effects of electromagnetic interactions and m,, # mg on h,(1) are negligible com-

pared to the dominant uncertainties quoted in table I find only a variation of
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0.25% in the chiral-continuum fits to ha,(1) whether the 7° or 7 mass is used as the
input value for the physical limit. Electroweak and Coulomb effects in the decay rate
are presently accounted for at leading order by a single multiplicative factor fgy .
As lattice QCD uncertainties are reduced in the future, it will be desirable to more
directly calculate the effects of electromagnetism in a lattice QCD4+QED calculation,

where m, # mg can also be implemented.
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4.6 Results and Discussion

I have calculated the zero recoil form factor for B — D*fv decay using the most physi-
cally realistic gluon field configurations currently available along with quark discretiza-
tions that are highly improved. The final result for the form factor, including all sources

of uncertainty, is

FB2P(1) = hay(1) = 0.895(10)stat (24)sys - (4.34)

It is clear from this treatment that the dominant source of uncertainty is the O(a?)
uncertainty coming from the perturbative matching calculation. In principle this could
be reduced by a two-loop matching calculation; however, such calculations in lattice
NRQCD have not been done before. It is worth noting that for this calculation the
uncertainty is somewhat constrained by the fit, as is reflected in table [4.11] It has also
been suggested [44] that it could be estimated using heavy-HISQ b quarks on ‘ultrafine’
lattices with a = 0.045 fm and mya < 1. There we can use the nonperturbative PCAC
relation and the absolute normalization of the pseudoscalar current to normalise J(©,
using (my, + mc)f’ = Z@ufl" to find the matching coefficient Z and then comparing
matrix elements of this normalized current to the result using perturbation theory.

Within errors, the result presented here agrees with the result from the Fermilab Lat-
tice and MILC Collaborations [4], h4,(1) = 0.906(4)(12). The higher precision achieved
in this work is due to the use of the same lattice discretization for the b and ¢ quarks.
This enabled them to avoid the larger current-matching uncertainties present in this
NRQCD-b, HISQ-c¢ work. Nevertheless, the value of providing a completely indepen-
dent lattice QCD result using different formalisms is self-evident.

After combining the statistical and systematic errors in quadrature, a weighted aver-

age of the two lattice results yields h4,(1) = 0.900(11).

My result for the By — D} zero-recoil form factor is

FBD41) = b8 (1) = 0.883(12) st (28)sys - (4.35)
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This is the first lattice QCD calculation of this quantity. No significant difference be-
tween the result for B — D* and B, — D; is seen, showing that spectator quark mass

effects are very small. Correlated systematic uncertainties cancel in the ratio, which I

find to be

FrA)  ha(l)
FBoDIL) by (1)

= 1.013(14)gtas (17)sys - (4.36)

No significant U-spin (d <+ s) breaking effect is found at the few percent level.
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4.7 Implications for V,

Until recently, one would simply combine a world average of lattice data for ha,(1)
with the latest HFLAV result for the B° — D**¢~v differential branching fraction
extrapolated to zero recoil: Ngw F(1)|Ve| = 35.61(11)(44) x 1073 [47]. Doing so with

the weighted average of the Fermilab/MILC result and the one presented here yields

\Vap|lgrray = (38.9£0.7) x 1073, (4.37)

where the estimated charge-averaged value of gy = 1.015(5) [4] has been used. The
uncertainty in |V |grrav is due in equal parts to lattice and experimental error. This
method of determining V,, relies upon the extrapolation of experimental data to zero
recoil which in turn depends in a non-trivial way upon the choice or parameterisation,
and in fact recent work [73| [74] [75] [76, [77), [78] has brought into question the accuracy
of the CLN [79] method of extrapolation and suggests that the tension between inclu-
sive and exclusive measurement may be resolved by using a different parameterisation

scheme, one proposed by Boyd, Grinstein, and Lebed (BGL) [80].

4.8 Non-zero recoil

One can also, in principle, compute V. in a model independent way by computing
form factors away from zero recoil. Such a calculation is complicated considerably by
the number of matrix elements one must compute in order to access all the relevant
form factors, as well as the added complication that one must fit multiple ¢ values

simultaneously in order to account for the large correlations in the data.
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4.8.1 Form factor isolation

The relevant form factors are those given in (4.2)), which I present again here for conve-

nience,

_ 21V (¢%)
D* / ,ub B — Hvpo _x
(D )l bBp)) = g =36

*

6 .
(D*(p, €)[er*+°b| B(p)) = 2Mp- Ao (q?) qfqﬂ

P,po

€ -
+ (Mp + Mp-)Ai(¢?) [E*H - qzqqu]
* M2 _M2
Ay —1 [u w_ B~ 2D ﬂ} 4.38
Q(Q)MBJFMD*p p Z ¢ (4.38)

where ¢ = p — p’. T will also need the identities

=~V * Zp+ v
(Qlayc|D*(p, e(p, \)) = Y2 (p, \) (4.39)
2M
and
* DuvD
Z €V<pu )‘>€u(p7 >‘) = Gvp — MQH (440)
A

The computational aspects of the calculation proceed in much the same way as for zero
recoil, the only significant choices are how I distribute the momenta between the two
mesons. For the sake of simplicity I choose to put the momenta on the D*, this allows
us to use twisted boundary conditions (TBC) on the inversion of the charm propagator
and to easily insert momenta in a continuous fashion, rather than being restricted to
multiples of 27 /L. T will discuss TBC shortly. For the vector current it is easy to choose
momenta and polarisations to extract V' (¢?). The ground state amplitudes and matrix

element appearing in the three point function have the form

(Qlay"e| D" (', e(p', N)HD* (', €)|ey"b B(p)) (B (p) by ul)

VZ5NZpe ., o 2iV(g?)
— V(D N) et P e (A ip g 4.41
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I have chosen to put the B meson at rest, so only ¢ = 0 contributes. Using

becomes

(Qur”e| D*(p', e(p', \)){(D* (', €)[evb| B(p)) (B(p) by ul2)

_VZsVZp 2IV()
2Mp 2Ep. My + Mp-

€7 (8% — P/ Mp)P)po- (4.42)

/

The antisymmetric sum over p;.

, . .
p, vanishes, leaving

(Qlay"e|D* (p, e(p, N)ND* (', €)ev"b| B(p)) (B(p)[b7”u|)

_ VvV ZB RV ZD* 22V(q2)
2Mp 2Ep« Mg + Mp-

ePpl po (4.43)

thus all that is needed is to choose p and v to be two distinct spatial directions such
that p # 0 for i # p # v and the form factor can be read off from the matrix element in
the fit by dividing out the factor of 2iMpp./(Mp + Mp-+), assuming the matrix element
already includes the normalisation factors /2Mp and /2Ep-.

The other form factors may be accessed through more elaborate combinations. In my
calculation I split the momenta equally between the x and y directions, and take the D*
operator with v = 1, 3. The first observation that can be made is that taking the inner
product of the pseudovector expression in (4.2)) with ¢ eliminates all but the first term.

We are then left with

4. (Q]uy"c| D*(p, e(p, ) (D*(p', €)[ev"~+°b| B(p)) (B(p) |by u|Q)
V7V
N ; 2Mp 2E -

_ V ZB vV ZD*
2Mp 2Ep-«

EV (p/7 )‘)QMD* AO (q2>€(p/7 )‘>KQK

2Mp-Ao(q*)(g"" — P /M3 ). (4.44)

Then choosing spatial v such that p’” # 0 the expression (¢”* — p"p'* /M3.)q, evaluates
to —p” Ep-Mp/M?3,. and again the form factor can be read off by dividing the product

of ¢ and the matrix element by the factor

— 29" Ep« Mp/Mp-. (4.45)
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Before I continue it should be noted that a complication has arisen. Ideally one would
fit to the combinations of various three point functions defined here such that by fitting
a single three point function each form factor could be read off. However this is not
possible in this case as prior to the fit gy is unknown, since the D* energy has not yet
been measured. In order to minimise the amount of data I attempt to fit I define three
reduced currents, from which the form factors can be recovered after fitting. The first

two, which are relevant here, are

M3 o = (Qury'c|D*(p, e(p, \))(D* (9, €)|e7°7°b| B(p)) (B(p) |07 u|Q)
M3 = G{Qluy c|D*(p, e(p, \)))(D* (1, €)[ey’7°b| B(p)) (B(p) b7 u|R2) (4.46)

and the final definition, which will be useful later, is

Mz = (Quar’c| D" (p, e(p, ) (D* (1, €)|ev*y° b B(p))(B(p) by ul Q). (4.47)

Once I have done the fit I may take the ground state matrix elements for M ?70 and M )“(‘7 7
and combine them to find Agy(g?)

Mp-

A A
- m [(MB — ED*)MXQ + MX,(T} (4.48)

again assuming the normalisation factors are already incorporated. Accessing A; is far

more straightforward. Choosing p in (4.2)) such that p* = p# = 0, ie u = 3 in this case,

(Qar"c| D*(p, e(p, \))(D* (P, €)|ev*°b| B(p)) (B(p)| by ul2)
-y VZs\Zp-

/ 2\ *¥3 ¢,/
20, 200, ¢ WA Mp + Mp) A(g)e (P, A). (4.49)

Taking v = 3 the matrix element coming from this three point function simply reduces to
—(Mp+ Mp-)A;(q*). Therefore to extract A;(¢?) from the ground state matrix element
of M#4 I simply take —M24/(Mp + Mp-). The final form factor, As, is considerably

messier to access directly. Instead, following [14] T compute the combination

Ao(g?) = Mb + Mp-)*(Mg + Mp. — ¢*)Ai(¢®) — Ma(q?) 450
ulq) = 16Mp M. (Mp + Mp-) (4.50)
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where A = ((Mp + Mp-)* — ¢*) (Mg — Mp+)* — ¢*). In order to project this I take
= (191, ¢°q/41), for which (,¢" = 0, and compute

Cu{Qur”e| D*(p, e(p, ) (D* (9, €)[ev~°b| B(p)) ( B(p) [by ul2)

VZ5 VZp-
ZQJ\iBQM [

(0, e (1, \)(Mp + Mp-) Ai(q%))

245(g7)e’ (P, Ne (v /\)anup"}
Mg + Mp-

_ VZ5 N Zp- 8Mpq° Ep- |:<MB + Mp<)* (M3 — M} — ¢
© 2Mp 2Mp.  2|q| 16MpM3. (Mg + Mp-)

A
_ A } 451
16MpM2.(Mp + Mp+)" (4:51)

)Al(CIQ)

where in the last two lines I have used the choice of v = 1. I therefore compute

lq ¢
Apa(q?) = SMpq Ep. | M% o+ HM)A;@ : (4.52)

4.8.2 Twisted boundary conditions

In order to put momentum on the charm propagator I use twisted boundary conditions

[81]. If instead of taking period boundary conditions we impose the boundary conditions
Y (x + L) = ™) (2) (4.53)

which in fourier space gives the condition (p, — 276,/L)L = 1. Momentum is thus

discretised and takes values

pu=21(N, +6,)/L. (4.54)

In order to implement this we rewrite the field with twisted boundary conditions in

terms of a unitary transformation of fields with periodic boundary conditions

V' (z) = P 0T)(x). (4.55)

This transformation takes

V(@) D(w,y)d' (y) = Y(2)e™ ™D, y)e* ™ (y) = v (2) Do(w,y)i(y)  (4.56)
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which does not affect the value of the fermionic determinant and can therefore be used
with sea quarks with periodic boundary conditions. All we need to do is compute
propagators using the inverse of Dy rather than D. For my preliminary investigation I
choose values of ¢? in the full range. The maximum value of ¢? is given by the mass of
the product leptons ¢2;, = (m,, + m;)? while the maximum value of ¢? is given at zero
recoil when the D* is at rest ¢2,, = (Mp — Mp~)*.

The maximum value of |¢] can be computed easily by considering on shell energies

and momentum conservation. The result is

M2 + M2, — , 2\ 2 -1
max||q]] = [ BT ()" _ M;*} = 2.26GeV (4.57)
2Mp

where the numerical value is taken neglecting the lepton masses. Initially I take five
values of ¢? including the zero recoil point, in order to investigate what range of possible

q* values might be probed effectively.

4.8.3 Fitting nonzero recoil data

An important aspect of fits to nonzero recoil data is the retention of correlations be-
tween different ¢ values and different currents - if correlations are neglected then any
further processing of the fit results will contain artificially large errors. However a full
simultaneous fit to the data is made difficult by the large numbers of parameters and the
tendency of the fitting code to stall in such circumstances. As such I employ whatever
tricks I can to simplify the fit. I use the fact that the two point functions have real
amplitudes to average between transpose elements in the matrix of correlators indexed
by source and sink smearings. I also manually exclude highly correlated data points.
For this calculation I use only set 1, specified in table[d.1] with 960 configurations using
only a single time source on each. Since I insert spatial momentum aiming for specific
values of ¢ without prior knowledge of the B or D* energies on the lattice, I expect
to miss the intended ¢? by a small amount for large recoil. In fact, on the very coarse

lattice care must be taken as the lowest value of ¢ corresponds to |gla = 1.66 > 7/2
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Table 4.13: Tree-level Z factors and one-loop matching coefficients [9].

Set Z —n T ay(2/a)
AP 0.9930 0.260(3)  0.0165(1)  0.343
A°0.9930 0.232(5) -0.01269(1)  0.343
VI 0.9930 0.118(5)  0.0423(1) 0.343
VO 0.9930 0.148(3) -0.0494(1)  0.343

which has the potential to cause taste changing effects. I negate this effect by splitting
the momenta equally between the x and y directions, such that even on the very coarse
lattices all chosen momenta lie within the first quarter with —7/2a < ¢* < 7/2a.
When I assemble lattice currents into the fully matched currents it is worth noting
that the matching coefficients differ for spatial and timelike components of the current.
Matching coefficients for the vector and axial currents following the notation of are
given in table [4.13] and where the vector lattice currents are found from the axial vector

lattice currents given in u 4.14] by making the replacement 'y — ~°.

4.8.4 Results

Since this preliminary nonzero recoil calculation uses only a single time source on each
configuration I am not concerned by the increase in error compared to the zero recoil
calculation. I am primarily interested in the relative precision with which each form
factor can be extracted and at what value of ¢? the error becomes too large. I also
consider the size of the matrix element of Jl(jt)ti which is expected to grow considerably
as the momentum on the charm quark increases. Figure [4.9|shows plots of the four form
factors, in lattice units, against ¢?, as well as the D* ground state energy. Based on this
it might be reasonable to use a range roughly between ¢2, and ¢2,. /2, aiming to keep
errors to the same order of magnitude as the zero recoil calculation with respect to A;.

In figure m I show the computed magnitude of the contribution of J, @i 6 the

latt
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Table 4.14: Results for the four form factors defined in [4.2] in lattice units.

¢ Ay Ay Ao V Ep-«
5.572(11)  —  -0.799(39) - — 15196(24)
5.200(14) -0.63(20) -0.829(43) -0.424(51) 0.18(14) 1.5560(30)
4.491(28) -0.47(23) -0.928(88) -0.374(85) 0.25(17) 1.6582(63)
3.164(36) -0.59(20) -1.09(14) -0.490(92) 0.07(17) 1.8390(87)
1.198(73) -1.14(42) -1.33(49) -0.63(18) 0.26(47) 2.154(21)

form factors, divided by the fully matched form factor result. These results imply that
the uncertainty coming from the omission of this matched current should be less than
approximately 3% over the proposed range of ¢? for the A; and A, form factors while
an uncertainty of roughly 5% would be expected for Ay. The vector current on the other

hand appears to be considerably more noisy.

4.8.5 Outlook

We have performed the first lattice QCD calculation of these form factors away from zero
recoil. The calculation is complicated numerically by the increased number of matrix
elements required to extract the various form factors. This increases both the complexity
of the fit as well as the computing time spent evaluating correlation functions. In order
to ease this increase in complexity a study of optimising a single choice of smearing would
be valuable. The covariant gaussian smearing used in MILC introduces issues related
to normalisation as well as having an undesirably large overlap with excited states and
replacing the three smearings used with a single smearing chosen to produce maximum
overlap with the D* ground state with minimal excited state contamination would reduce
the number of propagators and contractions required as well as simplifying the bayesian
fitting. I have also investigated the momentum dependence of the uncertainty associated

with Jl(ai)ti and determined approximately an appropriate range of ¢? to investigate.
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Figure 4.9: Plots of each form factor against ag? as well as the D* energy squared against
lag®. Using a simple linear fit to aE%. it is not possible to fit all of the data, while
excluding the value at maximum |aq] gives a reasonable fit with x?/dof = 1.4, indicating

that above |ag| ~ 1 discretisation effects become significant.
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Figure 4.10: Plots of the contribution of a.J® to the uncertainty of each form factor,
using a matching coefficient of 1, divided by the form factor computed from the known

matched current against ¢>.

Another theoretical hurdle is how to deal with the chiral perturbation theory and
finite volume effects away from zero recoil. As I have demonstrated in the zero recoil
calculation, such effects are significant. To my knowledge the calculation of the form
factors away from zero recoil in rooted staggered chiral perturbation theory has not been

done.



CHAPTER 5

Radiative Improvement and Kinetic

Couplings

5.1 Matching procedure

As discussed in section one must tune the parameters appearing in ([3.86)), which

we restate here for convenience:

2n 2 2 2n
with
aHy =— AP /2am (5.1)
adH =adH,« + ad H 6 (5.2)
abHyu = — ¢, éﬁ;;i;z + 628(;7971)2 (A . F— E.A®)

_@&;WJ4NﬁXE_EXAw)

e B S it 53
O f18(agm)3 {8908

f264(?;€n)4{ @0 (A x B~ B x A“[))}
—f38(iL;)SJ-E x E. (5.4)
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This tuning is necessary in order to ensure that the effective theory reproduces the
results of continuum QCD, a typical procedure is to compare a number of quantities
computed in both in order to constrain the parameters ¢;. c¢i, c5 and cg are known as
“kinetic couplings”, and since ¢; and c¢g have the same form only two free parameters
require tuning. The remaining c¢; parameters correct for radiative processes, and must

also be tuned in order for the theory to correctly reproduce QCD to the desired order.

A convenient method for computing these parameters is to use perturbation theory
to compute the coefficients of terms in the effective action in background field gauge in
the continuum, and to match these to those computed using lattice perturbation theory
and NRQCD. The use of background field gauge restricts the number of possible terms
appearing in the effective action to those which are gauge invariant. At the end of
section it was noted that the use of BFG results in a finite 1PI vertex function,
since the coupling ¢ only receives renormalisation contributions from the gauge field
renormalisation. This is critical for our matching procedure as it means we are free to
mix UV regulators between the two calculations. The matching calculation is performed
using the Minkowski actions for both continuum and lattice NRQCD and do the integral
over temporal momentum as a contour integral. We use tree level on shell spinors for
the matching, which must be corrected for at one loop by considering the expansion of
the one loop on shell matching p = (i(Ey + p*/2my), p) where Eq(p) = 3(p) is O(«),
where (p) is the quark self energy. Throughout this chapter I use m in equations,

suppressing the b subscript on the b quark mass m,.

5.2 Automated Perturbation Theory

The application of automated perturbation theory to lattice gauge theories was first
developed by Liischer and Weisz [82] and the algorithm I used here, based on this, is

set out in [83]. For completeness I outline the basic methodology.

A generic lattice fermion action may be expanded in the gauge fields U, (x) = ) (agA,(z+
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seu))"/r! as

SW,A]:Z% S ST AT (k). AT (k) %

ki,p1,a1  kr,pr,ar

> POV (p,bi g, ¢ ks, ars K, i, ay) (5.5)

D,q;b,c

where, separating colour factors, the symmetrised vertex is given by

Vir(p,b;q, ¢ kv, pn, ans . ky, pir, a,) =

1
] Z 0-Cry(b,c;ar...ar)o - Yp,(p, ¢ k1, puas -k, i) (5.6)

’ UES’I‘
with o an element of the permutation group of r elements. C here is the Clebsch-Gordon

colour factor, given by C' = <T“1 x .1 “T) and Y, the reduced vertex function, is given

b,c
by

nr({1}) ( .7 qm)
s\patay i k0,
YF,r(p>Q§ klaﬂl?---kmﬂr) = Z Fiﬂ}féu}e2 e (5'7)
n=1

where for a given combination of r Lorentz indices there are n,({y}) terms coming from
the number of ways of selecting those indices from the expansion of the links, with

g

. the position vector of the mid point of the link from which the 4 Lorentz index

originated. I and fi“ Vare a spin algebra factor and an amplitude respectively. We
encode the Feynman rules as an ordered list of entities, implemented in python, of the

form
E = (7,001, ey plr * T, Y501, Uy, f). (5.8)

The variable 0 < 7 < 15 indexes the element of the spin algebra basis to which the cor-
responding monomial, f, corresponds. The set of entities is refered to as a field. From
the field it is trivial to reconstruct the Feynman rule for a particular vertex by summing
frexp(5(p-w+q-y+Y_, k;U;)) over the entities with a given set of Lorentz indices. Orig-
inally presented in [84] the HiPPy and HPsrc packages generalise the original algorithm

conceived by Liischer and Weisz [82] for closed traced Wilson loops. These freely avail-

able packages have since been generalised to include fermions and background fields
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[85]. The packages are implemented with provisions for diagrammatic differentiation
making them highly suitable for calculations, such as those I perform here, involving
many derivatives of multiple variables. The Feynman rules, encoded in vertex files by
HiPPy, are fed into HPsrc, written in fortran, which constructs the integrands for each
diagram and performs the momentum integrals over the Brillouin zone using the Monte

Carlo integration package Vegas [86].



5.3. ¢4 101

9.3 Cy4

The parameter ¢4 in (5.1)) appears multiplying the chromomagnetic operator:

g ~
—cy———0 - B. 5.9
C42am0 ( )

Radiative corrections to the chromomagnetic operator occur in both QCD and NRQCD
and differences between the corrections must be tuned using c¢4. Nonperturbative studies
have shown that the impact of this term on the hyperfine splitting of bottomonium goes
like the square of ¢4 [87], which has contributions at O(«). These corrections have been
calculated [II] but omit O(«a) corrections from the use of tree level on shell quarks
due to the timelike gauge link appearing in the NRQCD action. This originally missed
correction has since been computed independently and incorporated, though for the v%
action ¢4 has only been calculated for three values of amy. As such it is desirable to

compute a full set of ¢, over a wide range of am; using the v® action.

5.3.1 Continuum calculation

In the continuum the effective action takes the form

14
o

T = Z;%W(@ 4+ A + 62,0

Y+ (5.10)

m

which after the FWT transformation (3.79)) and multiplicative renormalisation contains

the chromomagnetic term

B
(1+ 5ZUZme)g\I/TRZ

Up. 5.11
e (5.11)

As noted above in BFG the renormalisaton of the coupling g comes only from the
wavefunction renormalisation of the gauge field. As such the 1PI vertex can be computed
using the unrenormalised coupling and background gauge field to acquire a UV finite
result. Since QCD is renormalisable the combination 0 Z, 757, is also UV finite, meaning

we can directly compare between different UV regularisation schemes. Since the action
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contains no terms of the form the term 07, has no tree level piece and is O(«).
This means that at one loop, in the continuum, the contribution of Zs and Z,, can be
disregarded. Note that the tree level piece coming from 1) A7) automatically contains the
renormalised mass as the gordon decomposition is performed between on shell spinors.

The continuum QCD calculation proceeds straightforwardly, and includes the abelian
and nonabelian diagrams. The nonabelian diagram includes a contribution to the vertex
from the gauge fixing term as well as the conventional piece from the gauge action. The

result is [8§]

13
6Z\V = —log— + —a (5.12)
s

where p is a gluon mass introduced as an IR regulator. To one loop the diagrams contain

no ghosts, so this is a valid IR regulator.

5.3.2 NRQCD calculation

In NRQCD the effective action contains the term

[RRACD — c4ZéVRQCDg\IJT%\I/ (5.13)
which after renormalisation becomes
FZRQCD = ¢, ZNVRQCD ZNRQCD ZéVRQCDg oy a7~ni U (5.14)
The matching requirement then reads
0 ZNRQCD ZNRQED 7 NRQCD 1 4§27, (5.15)
to O(«) this gives
A =1 (5.16)
6511) _ 5Z¢(71) _ ZT]’\LTRQC’D(I) _ ZéVRQCD(l) _ Z(JTVRQCD(U. (5.17)

Contributions to each of the NRQCD renormalisations may be seen as coming from

two sources: normal diagrammatic contributions such as those in figure and tadpole
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ST
B S

Figure 5.1:  Diagrams contributing to the radiative correction, clockwise from top left:

abelian, nonabelian, algae, ankh, and two swordfish diagrams.

contributions, arising from the substitution U — U /ug with ug = 1— au(()l). The tadpole
terms have been calculated in [8§], using mathematica, and depend on the specific
details of the NRQCD action used, such as the stability parameter n. The tadpole

factors relevant for cfll), for the v% action, are

13 13 3 3 3
Ztad(1) _ _ _ (1) 5.18
7 3 * dam  8n(am)? * (am)?  4(am)? “o (5.18)
2 3
tad(1l) __ 1)

and there is no tadpole contribution to Z;\I RQCD

The diagrammatic contributions to cil) are given in figure . I generate Feynman
rules for the relevant vertices automatically using the HiPPy package, for the v NRQCD
action. I evaluate the diagrams using the HPsrc code, which makes use of the Vegas
Monte Carlo integration routines. For ¢, the diagrams contain only logarithmic di-
vergences in pu, as I will discuss shortly, which produce sufficiently little noise in the
integral that I may just compute diagrams at several different values of p and fit the
logarithms away afterwards. Later when I compute 0(21), which is strongly IR divergent,

a subtraction function must be added to the integrals.

Each integral in figure [5.1} is projected onto the corresponding Z by considering the
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explicit form of the term in the effective action, before renormalisation of the mass and

fields,

Poy = 219D g0 (p + Q)W‘P@)- (5.20)
Each integral contributes something of the form
Lo = Ui(p + ) M(p, 0)iA () ¥ (p). (5.21)
I may therefore project out its contribution to Z by taking
gZ%%8 = mTr aiql./\/l(p, Q)2 lp=q=00> (5.22)

where pg is chosen so that the heavy quark is on shell. This is done using the tree level
equation of motion and so must be corrected for at one loop. I discuss the treatment of
poles in the numerical evaluation of diagrams in Appendix [B]

I split each Z into an IR finite piece indicated by Z as well as an IR divergent logarithm

Alog(ap). The IR divergences are known from analytic results, and are given by [89]

. . 3
2, PN g ZRQePQ) = ZyTRRCPW g ZYRQCPW) 4 log(ap) (5.23)
™

ZNRQCD() _ ZNRQCD() (5.24)

I compute the sum of all diagrammatic renormalisation factors simultaneously and fit
the result to

3 20
%log(au) + Zjing

(5.25)
in order to find the diagrammatic contribution. I use values of ap between 1072 and 10~*
so that any lattice artefact ;1 dependence is negligible. In order to make the calculation
as efficient as possible, I compute the ankh diagram, which converges quickly but takes
a lot of time due to the size of the vertex, seperately from the remaining diagrams.

There is one more subtle contribution which must be included, this originates from

the point splitting in time of the tree level vertex, introducing a factor of ¢° in the
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Feynman rules. Since I use tree level on shell external quark momenta, the result must
be adjusted at one loop to recover the on shell value to this order. The one loop on
shell condition reads p = (i(—Ey + p?/2m), p) which yields a correction to cfll) of —{—E(()l).
Eél) has both diagrammatic and tadpole contributions. I include the diagrammatic

Egiag(l)

contribution, = ¥(0), along with the others in the monte carlo integral. The

tadpole contribution is given by
a 7 3 3
E = (1 b —) ul! (5.26)

and is included in the analysis. Values for tadpole factors, as well as fit results for the

diagrammatic contributions, are given in table [5.1}

5.3.3 Results

1)

iag

Figure|5.2|shows fits to ((5.25)), using only a single parameter for Z, ((i with gaussian prior

—3(3). It can be seen that relatively few points are necessary to extract the IR finite
piece since ap is small and polynomial terms are suppressed. Table [5.1] gives the mass,
diagrammatic, and tadpole contributions as well as the computed value of cfll). Figure
shows the am; dependence of cﬁf), the divergent behaviour around am; =~ 0.6 can be
explained by considering the high momentum behaviour of the fermion propagator. The
momentum k in the numerical integrals is restricted to the Brillouin zone —m < k < m,
and when amy, < ame; the pole wy = <1 — %)271 goes to infinity and becomes

negative for some values of k. This critical value can easily be found considering the

maxiumum value of £k = 7 and setting w;l = 0 to find

(-5 -

2

1 —0

4nmcrit

2
Merit = T /4n.
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Table 5.1: Tadpole and diagrammatic contributions to cfll). The error coming from the

tad

computed value of u((]l) = 0.750275(5) is not tabulated in Z (1), though this is included

in the analysis and the given value of cfll).

amy E(i;ad(l) Ztad)  rad() 7 (1)

0.6 —0.4741 10.767 —6.752 —5.67(3)  2.112(26)
0.8 1614 8607 —4.017 —132(3) —0.858(28)
1.0 2110  7.307 2751 —1.30(3) —0.459(26)

(1)

(1)

(1)

1.25 2184 6309 —1.940 —1.55(1) —0.051(12)
1.5 2104 5679 —1501 —1.64(1) 0.066(11)
1.9 1929 5056 —1.124 —1.72(1) 0.1046(99)
28  1.618 4374 —0.7872 —1.861(6) 0.0908(57)
34 1481 4142 —0.6949 —1.925(9) 0.0643(89)
50  1.260  3.822 —0.5902 —2.050(8) 0.0002(80)

I use a value for the stability parameter of n = 4 and so the smallest value of am,
I should use is 72/16 = 0.61685. This could easily be remedied by choosing a different
stability parameter, but am;, = 0.6 is already comparable to charm masses on the coarse
lattices and it is likely that in such circumstances relativistic approaches to simulating

the bottom quark, such as heavy-HISQ, would be favourable.
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Figure 5.2: Plots of fits to

) for various amy.
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Figure 5.3: Plots of cfll) against ams.
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5.4 5))

The parameter ¢y in ((5.1)) multiplies what is refered to as the “Darwin operator”:

ig +) " +
C28(am)2( ) ( )

The Darwin operator also receives renormalisations from the diagrams in figure (5.1, The
Darwin operator is responsible for shifting the energy of s-wave states. Nonperturbative
studies [5] of the effect of varying co on these shifts suggests that the O(«a) corrections
to ¢y are not significant, however the calculation of ¢y to this order is still desirable for
completeness, as well as to eliminate the need to estimate systematic errors resulting

from its omission.

5.4.1 Continuum calculation

The continuum effective action contains the terms detailed in (5.10)). Following the

FWT transformation, the terms containing Aq are
Ao _ =17 2\\1,t g o 2\ 7t g o
T — 71(g%) 0 (gAO — g Ao+ ) U+ 02, (2 (—Wq Ao+ ) U, (5.28)

After renormalisation we isolate the Darwin term

Fdarwin — (1 _ 8m2251/(0) —+ 2520.(0)) \I}J]F% [— 873),2 q2A0:| \IJR. (529)
R

Details of the analytic calculation of Z; ¥(0) and §7,(0) can be found in [90]. The total
contribution to the darwin term from continuum QCD is
2

Zp=1-a (1 L (9 - %) log(,u/m)> . (5.30)

T Ap T 7r

The 1/p and 1/p? IR divergences must match and cancel between the continuum and
NRQCD calculations. These are problematic for the vegas integral and in practice they

must be subtracted prior to integration.
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5.4.2 NRQCD calculation

After renormalisation the NRQCD effective action contains the piece

2A
PNRQCD _ _62ZERQCDZERQCDZgRQCD2g\IJE%\IJR. (5.31)
R

I work in the Breit frame in which g = —¢/2. The NRQCD projection for the O(«)
vertex is

Vo(p, )F = Z"¥P 2 /8m? (5.32)
using the on shell condition we then have

Am? 9?

d 0
NRQCD _ ,
Zp = szmvo(p, q)|p=g=0 = (Ta_qf + Zma—po> Vo, @) lp=g=0-  (5.33)

Including both 1 particle irreducible and 1 particle reducible diagrams in the calculation
of Vio(p,q), ZgRQCD automatically includes the contributions from the wavefunction
renormalisations of the tree level iAy and Darwin vertices. The projection operator
(5.33)) should therefore also be applied to these pieces, and the contribution of the i A4

tree level term is non-trivial. Its contribution is

ZAoNRQCD _ _ (m_26_22 + imi) (Z(p) - iiE(p)) (5.34)

which I include when I evaluate and project the diagrams in figure [5.1. To make this

p=0
distinction clear I write

ZNRQCD _ ZIPLNRQOD 4 740, NRQCD, (5.35)

As mentioned above a subtraction function must be included in the vegas integral in

order to remove IR divergences. I opt to use the subtraction function given in [11]

~ ™ 21 m?
Isu = Zsu - —1 ) .
b(1t) vt T og(ap) + - (5.36)

where Zsub includes some polynomial in ap. This function cancels the leading IR diver-

gences pointwise, and contributes a continuum like logarithm. For each value of m I use
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to calculate ¢y I therefore need to also independently compute Iy, for several values of
ap and perform a fit in order to determine Zsub.

The total quantity computed in the numerical integral is then

ZlPI,NRQCD(l) + Zgo,NRQCD(l) + ]sub + Zél) o E((]l) + 227(71) _

D
~1PI,NRQCD(1) | A0, NRQCD(1) |, 5 = (1) (1) > (1) 4 21 6
Z + 75 + Zap+ 2y —Ey +27,) + 9_W+E_§ log(apu).

(5.37)
Care has been taken to ensure the terms omitted from [89], the factor of 2 from the
mass squared and the projection operator applied to Z,, have been included. In order
to fit the subtraction function for each value of am I took a quadratic in pu. The
parameters of the resultant fits are given in figure [5.4] Having done the fit to Iy, |

remove its polynomial and logarithmically divergent piece analytically from the results

for the numerical integral (5.37)). Adding in tadpole pieces as I did for ¢, the final result

is then
cgl) _ 1 [Z];PI,NRQCD(l) n ZSO,NRQCD(I) 4 ZtDad
$20 _ B _ gd) 9 70) gzt | L%T _ g} log(am)] (5.38)
where
Zpt = (? 2= 4(a?;n)3 - 32(sm)2 * 42?71) ' (539
and
B = (14 g e o) (540)

5.4.3 Results
v® Action

Defining
ZS) _ Z[A)o,NRQCD(l) + 22(1) _ E(()l) + 227(;) (5.41)
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Figure 5.4: Plots of fits to Zo, defined in 1)
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Table 5.2: Numerical results for the calculation of ¢y for the v® action.

amy Zsub(o) Z]t;du) Zg) Z}DPI,NRQCD(U 4 ~§) Cg)

1.0 0.3201 (45) 5.806819(36) - -0.774(51) 2.261(51)
1.5 -0.4269 (88) 5.429076(34) - ~1.825(55) 1.901(55)
1.9 -0.942 (17) 5.183311(32) 4.719(40) -1.273(76) 1.083(76)
2.65 -1.626 (40) 4.881364(31) 3.718(40) -0.12(11) -0.05(11)
34 -2.97 (19)  4.698242(29) - 1.78(19) -1.76(19)

Table 5.3: Numerical results for the calculation of ¢y for the v* action, using table IV of

[T1] as input together with my computed values of Zg).

amy Zgld(l) Zg) ZEPI,NRQCD(l) 0(21)

1.9 5.183311(32) 4.961(34)  -5.95(8)  0.679(87)
2.65 4.881364(31) 3.874(34)  -3.71(10)  -0.41(11)
34 4.698242(29) 3.135(31)  -1.73(12)  -1.45(11)

which is the sum of IR finite pieces of diagrammatic pieces calculated from X(p).
Table gives fit results for Z;)PI’NRQCD(D + Zg) and Zou, (0) as well as the numerical
td() 51 the full v NRQCD action. For am;, = 1.9,2.65 I also give values for

values of Z
Z1PLNRQCD(1)
D

Zg). This was done in order to check my computed values for against

those given in [I1], with which I am in good agreement.

v* Action

Having confirmed their diagrammatic pieces are correct, I perform the much simpler
calculation of the quantity ZS) using the v* action and combine this with results for
the IR finite part of the diagrammatic contribution in [I1] to obtain a revised value for

¢y on the v* action.
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%)log(a,u) including polynomial terms in u, which is the IR finite and logarithmic piece

of (5.37) following removal of the IR finite and logarithmic piece of the subtraction

function.
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am, Dependence of ¢,

It is interesting to check whether ¢, has any dependence upon (ams;)?. In principle
redefinitions of the gauge fields can generate contributions to ¢, going as (am)?, coming
from the tree level vertex. Therefore I have tried fitting my results to various fit functions

with and without quadratic pieces and find no evidence for a piece going as (amy)?.
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Figure 5.6: Plots of fits to ¢, using a polynomial in amy. The top two plots include

terms going as 1/am;, and 1/(am;)? and the am;, = 1.0 point while the bottom two do

not.
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Figure 5.7: Plot of cy/(amy)? for the top left fit function of figure going to 0 as

amy — 00.
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9.9 C1 and Cy

c1 and ¢5 multiply the two independent kinetic terms in the NRQCD action:

a2 A& (A(2))2
24am’ ClS(am)

(5.42)

Cs

w

The —66% term is proportional to the ¢; term and it is conventional to absorb
them together, as we do later. They correct the dispersion relation by removing terms
which do not obey the rotational symmetry of the continuum theory such as Zi:l,Q,S p}
as well as correcting the coefficients of those functions of p? which do not match the

continuum.

5.5.1 1-loop, on shell dispersion relation

The one loop improvement of the kinetic couplings c;, ¢; and cg appearing in [3.86] is
done by matching the NRQCD one loop on shell dispersion relation to the continuum
relativistic expansion order by order in p?. There is no need for an IR regulator as
all the relevant quantities are IR finite. The inverse heavy quark propagator may be

written

G(p) ' =GP(p)" —aX(p) (5.43)

where G(©)(p) is the tree level propagator obtained from as
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GO®p) " = [1—e™F(p)*Fi(p)?] (5.44)

F(p) = 1= =3 sin(p,/2) (5.45)
Fi(p) =17 3 sin'(p;/2)

+ % (1 + %) [Z sin2(pj/2)]

22 (12 [Sartee)

_ o Zsinﬁ(pj/2)

J
45m 4

J

> " sin®(p;/2)sin* (pr/2) (5.46)

j?k

2Cp2 pt

3m3

with ¢; = (¢1 +¢gm/2n)/(14+m/2n) and ¢; = ¢g. The on shell energy w(p) is the value
of —ip4 which produces a pole in the full propagator, found by setting [5.43| equal to zero

w(p) = ~log[F(p)*" Fi(p)*] — aX(wo(p), P) (5.47)
where wo(p) is the tree level on shell energy

2 2\2 2\3
_p @), )
wolP) = 5 = s g

4 212
o P ~(1)<l 1 >(P ) 548
e [65 2am Vo T o) s | (5.48)

The self energy is expanded in small p as

2(p) = So(w) + 1) 2+ 2y(0) 2

+ 33(w)p* (5.49)
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where

Yo(w) = 3(w,p)

p=0
82
M) =g )|
, 0
» =m?——Y
Q(W) m apzapg (W,p) p=0
1[0t o
) =35 {5_1% - apiapi} Z(W’p)‘po
1 0
U = (—)=—%
m ( Z) l' 8p£1 m(p4) p4=0

Using this X(wo(p), p) is expanded as

2
P
N — W+ =71

(p?)? W 37
! m

+ + W2p4

8m?2

where we have defined

zM =5 + 2

Wy = 5

2 3
Wy =25 + 250 + 20 4 2z 4 Znl
m m

Wy = 5.

Substituting into to one loop

2 212 213
P (p*) (p?)

4 212

o P ~<1><i L)Q

e [65 oam \m * 2n/ 8m?

212
— (Wo + (p )2 Wi+ W2p4) )
8m

Identifying (1 + aZT(,%))m = m", the renormalised mass, we write to O(ap?, p°®)

119

(5.50)
(5.51)

(5.52)
(5.53)

(5.54)

(5.55)

(5.56)
(5.57)

(5.58)

(5.59)

(5.60)
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P (P | ()

“P) = o0 =~ s+ lgm
(1) 2)2
¢ (P°)° (- ] 1
Wo+p' (o2 = Wa) = (&0 (= 4+ ) + 1) 5.61
taWotp 24m 2 gm2 \1 m+2n i (561)
In order to match the continuum relativistic dispersion relation I therefore take

. 1 1\
& =- (E - %> W, (5.62)
AV = 24mW,. (5.63)

As for ¢4 and ¢y there are tadpole contributions to ¢; and ¢5. These are computed in
mathematica by inserting factors of 1/u into the momentum space kinetic part of the
action wherever a gauge link appears, replacing © — 1—x and then taking the coefficient

of x in an expansion about x = 0. The tadpole factors are given by

~tad(1) _
¢ 1( m) 1[ 6 6 72 3 2 12 1
=—(1+—) |= S R 5.64
u(()l) 8 i 2n m3 * m?n  m? - 2mn?>  m * n> n (5:64)
tad(1)
3 3 3 1 4
5 -2 I S (5.65)
uél) 4m3  8m2n  m?  4m 3

The full expressions for ¢; and c5 are then

A1) _ <i i) -1 _tad(1)
& p Wi+ ¢, (5.66)
AV = 24mWy + &), (5.67)

5.5.2 Results

Table m gives results for 6&1) and cél) using the v® NRQCD action. Much smaller
values of amy are not expected to be needed as these lattices would be sufficiently fine
for heavy-HISQ methods to be used for the bottom quark.

Figure |5.8 shows plots of the fit am; dependence of ¢; and ¢5. The results I present

here were calculated using Vegas with periodic boundary conditions. However, it is
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Figure 5.8: Plots of ¢; (top) and ¢5 (bottom), including the tadpole corrections, against

The dashed blue line shows the result of a fit of the am, dependence of each

amy.
coupling and the shaded portion shows the error.
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Table 5.4: Results for the kinetic couplings 6%1) and cél) using the v% action.

amy 651) cél)

0.8 —1.740(34) —0.79(11)
1.0 —0.505(31) —0.347(41)
1.25  0.130(32) 0.158(71)
1.5 0.393(35) 0.330(37)
1.9  0.506(39) 0.471(28)
2.65  0.566(50) 0.500(19)
2.8 0.596(52) 0.516(18)
3.4 0.664(58) 0.517(15)
5.0  0.803(73)  0.5630(96)

also possible to do the calculation of the kinetic couplings, and in principle all of the
matching coefficients, using twisted boudary conditions [82] to perform the integrals.
Using twisted boundary conditions introduces a twist as an IR regulator and means
that the sum over momentum may be performed as an exact sum. The IR divergeances
of individual pieces cancel exactly in such a case to give a finite result. Being an exact
sum there are no statistical errors and uncertainty arises purely from the fit to 1/L
that must be performed in order to remove the IR regulator. In parallel to the PBC

(1) (1)

calculation presented here, ¢;’ and c;’ were also calculated using twisted boundary

conditions [2] and the results were found to be in good agreement.
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5.6 Summary

Table summarises my results for the v NRQCD action. The calculation of the
bottomonium hyperfine splittings, originally calculated in [91], can now proceed using
our correct values for the O(a,v*,v%) improved couplings. These results also represent
a step towards the extension of NRQCD to investigations of exotic bottomonium states,

motivated by experimental evidence for such states in the charmonium spectrum [92].

Table 5.5: Results for the 1-loop couplings, ¢;, I have computed for the v® action.

amy, 5&” cél) cél) cz(ll)

0.6 — — — 2.112(26)
0.8 —1.740(34) —0.79(11) 2.261(51) —0.858(28)
1.0 —0.505(31) —0.347(41) — —0.459(26)

1.25  0.130(32)  0.158(71) - —0.051(12)

1.5 0.393(35)  0.330(37) 1.901(55)  0.066(11)

1.9 0.506(39)  0.471(28)  1.083(76)  0.1046(99)

2.65 0.566(50)  0.500(19) —0.05(11) -

28  0.596(52)  0.516(18) - 0.0908(57)

34 0.664(58)  0.517(15) —1.76(19) 0.0643(89)
(73)

5.0  0.803(73 0.5630(96) — —
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CHAPTER 6

Conclusions and Outlook

6.1 Conclusions and Outlook

This thesis covers several projects using lattice QCD to make predictions for hadronic
quantities involving b quarks. I have performed the calculation of the B — D* zero recoil
form factor using highly improved staggered quarks and nonrelativistic lattice QCD and
produced a result in good agreement with the literature and with a comparable error.
I have also carried out an exploratory calculation of the nonzero recoil form factor on
a small lattice with physically tuned parameters, demonstrating the viability of the
statistical analysis as well as highlighting potential difficulties.

The calculation of the NRQCD action parameters ¢y, ¢s5, ¢co and ¢4 using automated
perturbation theory completes the intended O(«) improvement of the v® NRQCD action.
As finer lattices become available the use of HISQ quarks using masses heavier than the
charm, approaching that of the bottom quark, will allow extrapolation to the physical
heavy quark mass of form factors relevant to weak and electromagnetic decays. Such
calculations will evade uncertainties arising from matching currents, but will introduce
new uncertainties associated with the extrapolation to heavier masses. In order to test
and improve our understanding of these uncertainties, a highly improved non-relativistic
action is highly desirable, and moving from the v* action to the v® action represents a
significant step. In the future it would be desirable to improve further upon these
calculations by computing the radiative corrections using TBC, though this will require

some means of matching IR regulators between the continuum and lattice calculations.
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APPENDIX A

Explicit Correlation Function

Contractions

For real, symmetric, stride-2 smearings A, suppressing Dirac indices for the moment,

and summing over repeated indices and spatial coordinates for zero recoil:

Cpt (70, Yo, 20) =(Ua(7) Mgca(r + 01 + 05)(y)Lbb(y)be (2 + 02)yuc(2)) A1 (01) Ag(02)
=tr [Q (2) Mo Q(2 + 6) S5 (x + 01 + 6, y) QT (y)T]

X [Gho(y, 2 + 02)7(2) So (2, )] A1(01) Ag(0)
=tr [&},(2)QT(2) M2z + 650) S5 (x + 01 + 0at, ) QT (y)T]
X [Ghe(y, 2 + 02)7U(2) Sly(2, &) aa(2') | Ar(01)As(0) (A1)

where it is understood that when we add ¢, it is modulo the hypercube. I have used

the noise condition:

Ean(2)€eb(y) = dacOay (A.2)
to insert the random walls. Setting
Extoa(y) = Gy, 2 + 02)7Q(2) Spa(2, 2')aa(2') Az(02) (A.3)
this becomes

Cspt (20, Yo, 20) =tr [Sza(a:)QT(x)MstQ(a: + 05t) S5 (z + 01 + O, y)QT(y)FExtba(y)} Aq(oy)

=tr [, (z — 01) QN (2) Mz + 55) S5 (x + Gor, )T (y) T Extya (y) ] Ai(01)
(A4)
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140 Appendix A. Explicit Correlation Function Contractions
Now, we do not have S, (z,y), we have S, (y, z) so we can use:

Spa(,y) = (=1)"Sap(y, ©)(=1)" (A.5)
where (—1)* is shorthand for (—1)%t*1 2213 Now

Capt(0, Y0, 20) =tr [ (y)(=1)S5 (5, & + 65) (= 1) Bar (2)€5, (¢ — 1) TExtya (y) ]
x Aq(01) (A.6)

where By (z) = Qf (2) M Q(z + J) is the local spin-taste phase. Inserting Dirac indices:

C3pt (0, Yo, 20) :ng(y)(—l)ysﬁ(ya 2)(—1)Bar(x 4 05t)€ (2 — 01 + 0s) As(01)
X FB/@Etha,na(y>
= £ [Qsa(¥)(=1)" S5y, 2) (= 1) Bar(2)ea(® — 01 + 65t) Ar(0)]”
X F,BKEtha,na(y) . (A?)

We recognise S5,y 2)(—1)*Bar(2)éw(z — 01 + 6)As(01) 8 the MILC KS propagator.
The naive active quark that gets made in NRQCD is then:

Activeas as(y) = Qus(y)(—1)" S5, (y,2) (< 1) Bus ()6 — o1 +6,)A1 (1) (AS)
and the contractions to do are

Currentab,aﬂ(y) = ACtiveZa,na<y>Ffiﬁ

C3pt = Currentab,aﬁ(y>Etha,,3a(y) . (A9)



APPENDIX B

Treatment of Poles in Vegas

Integration

When evaluating the diagrams in figure (5.1]) we take the integral over k4 as an integral

k1 In order to prevent poles crossing this

over a circle in the complex plane w = ¢
contour as we vary the spatial momentum kit is necessary to vary the radius of the

contour. Considering first the abelian diagram there are two fermionic poles occuring

at
aH o kf 2n ‘
w]711 =1- G_l(p - k)|k4:0 = (1 — %) e 4 (Bl)
and
—1 —1 aHO(p — k + q) 2n Ciatan
wy, =1-G p—k+q)|=0=(1— o o (B.2)

where the two RHS expressions illustrate the result for the unimproved NRQCD action.
The gluon poles are given by

1 . N N
ap =g [+ 8 e e 1) (B3

with

B =) dsin®(k;/2) (B.4)

=13

and p an infra red gluon mass regulator. For large k wy,, wy, and w; move away from
the unit circle on the outside while w, moves towards zero. However for intermediate

values of k the fermionic poles may move inside of the unit circle. We therefore shift
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the contour of integration to ensure that no poles cross it as we vary k. We move the
contour to cross through the average of w, and the left most right moving pole of wy,,
wy, and w;.

In the case of the nonabelian diagram there are four gluon poles and a single fermionic

pole. The gluon poles are given by

—ip4 A2 A2 ~2
wi, = [2+(p—k) +u2:|:\/((p—k) +12) ((p— k) +u2+4)J (B.5)
e~ H(Pataa) R 2 - 2 - 2 ’
wy, = 5 [2+(p—k+q) +,u2i\/((p—k:+q) +u2)((p—k+q) +u2+4)|
(B.6)

and the fermion pole is given by
- - H (]{7) 2n

b 1= G R = (1 22 B.7
v Bl = (1- 20 (B.7)

Again it is necessary to shift the contour between the rightmost leftmoving pole and the
leftmost rightmoving pole. The two swordfish diagrams require similar treatment. The
algae and ankh diagrams have simpler pole structure with only gluon poles appearing
and moving in opposite directions away from the unit circle, as such no contour shift is

needed.
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