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Abstract: The classical and quantummechanical methods
are used respectively to calculate the electron spin. It is
shown that the classical method cannot derive the correct
magnetic moment value. Assuming that the rest energy of
the electron originates from the kinetic energy of the vir-
tual particles, the electron spin motion equation and spin
wave function can be derived. In the case of the quantum
numbers of spin angular momentum and magnetic mo-
ment being 1/2 and 1 respectively, their correct values can
be obtained. In the meanwhile, the anomalous magnetic
moment is evaluated based on the wave function of the
spinning electron. Suppose the probability of virtual pho-
tons converting into electron-positron pairs to be 0.00141,
the result agrees with that of quantum electrodynamics.
Given that the energy of the virtual photon obeys the clas-
sical Maxwell-Boltzmann distribution, the self-energy of
the electron will be finite. In addition, the hierarchy prob-
lem can be solved with the same hypothesis.

Keywords: Electron spin;Wave function; Anomalousmag-
netic moment; Divergence of self-energy; Hierarchy prob-
lem
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1 Introduction
The mass origin and the radius of the electron are long
standing problems in classical and modern physics. If the
mass of the electron is totally due to electromagnetic ori-
gin, then the classical radius of the electron will be the or-
der of 10−15m. However, if we wish to get the spin value
based on that hypothesis, the rotational speed of the elec-
tron surface would be more than 100c [1], which is obvi-
ously unreasonable. To see the difficulties arising from re-
garding electron as a rotating rigid sphere, one may see
Refs. [2, 3]. As the electron spin can be derived from Dirac
equation, it is often owed to relativistic effect. In quantum
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field theory, electron is regarded as a point particle (bare
electron) with a covering of virtual photons.

However, if electron was a point particle, and the spin
arose from certain rotation effect, then its magnetic mo-
ment and angularmomentumwould always obey the clas-
sical relation, and the spin magnetic moment of the elec-
tron would be half of the correct value. Thus the elec-
tron cannot be a point particle and it must have differ-
entmass density and charge density. A number of electron
spin models have been put forward to evaluate the values
of angular momentum and magnetic moment. The works
of Refs. [4–9] were based on the external motion equa-
tions of the electron, some of them could give the correct
values of angular momentum and/or magnetic moment;
while Refs. [10–12] discussed the internal structure of the
electron and the distributions of the mass and charge, but
failed to give the correct values of angular momentum and
magnetic moment, and they could not explain what force
binds the electric charge together inside the electron. At
present, there is no unified model which can both eluci-
date the mass origin and give the correct values of angular
momentum and magnetic moment.

In order to describe the electron spin motion at the
level of quantummechanics,wemust get a spinwave func-
tion, just as the orbital wave function for the motion of
the electron around the nucleus. The paper is organized as
follows. Section 2 calculates the angular momentum and
magnetic moment of the electron with classical method
to show that the correct magnetic moment value cannot
be obtained. In section 3, quantum mechanical method is
given and the electron spinwave function is obtained. Sec-
tion 4 proceeds to calculate the anomalous magnetic mo-
ment to explain its physical origin in classical manner. In
section 5, a simple method is proposed to eliminate the in-
frared and ultraviolet divergences of electron self-energy
as well as to solve the hierarchy problem. Discussion and
conclusion are given in section 6.
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2 Classical calculations of angular
momentum and magnetic
moment

We first see the problems in classical models of the elec-
tron spin. In Ref. [10], a semi-classical model for electron
spin was presented, which assumed that }ω = m0c2 and
Rω = c, where ω is the angular frequency of the spinning
electron with a mass of m0, thus the radius of the electron
is

R = }
m0c

= λ̄c , (2.1)

where λ̄c is reduced Compton wavelength. Note that the
above expression can also be derived by uncertainty prin-
ciple. Ref. [10] assumed a mass distribution of the elec-
tron of ρ(r) = kr3, where k is a constant and r the dis-
tance from the center of the electron. Then the spin value
of }/2 could be obtained. The ratio of magnetic moment to
angular momentum is 1.055e/m0 based on the hypothesis
that ρe/ρm is a constant and ρe is multiplied by a factor of
1/

√︀
1 − v2/c2, where ρe is electric charge density and ρm

the mass density. This model cannot account for the ori-
gin of the electronmass. Besides, it cannot give the correct
value of the magnetic moment.

Here we use a simple thin circular plate model to de-
rive the values of spin angular momentum and magnetic
moment. If electron is a sphere, its projection in any given
direction is a thin circular plate. Suppose themass density
of the circular plate is uniform, while the electric charge
occupies at the edge of the plate. In the case of the elec-
tron radius being R = λ̄c, the spin angular momentum is

J = 1
2m0R2ω = 1

2m0Rc =
1
2}. (2.2)

The magnetic moment is

µ = IS = ec
2πR × πR

2 = 1
2 ecR = e}

2m0
= µB , (2.3)

where µB is Bohr magneton. Although this simple model
can correctly derive the spin angularmomentum andmag-
netic moment, it has two defects: It cannot elucidate the
mass origin and give the three-dimensional distributions
of the mass and electric charge. In the following, a sim-
ple thin spherical shell model is employed to evaluate the
magnetic moment. Let the radius of the shell be R; it ro-
tates with an angular velocity of ω; the surface density of
charge is e/4πR2.

As shown in Fig. 1, there is a circular ring belt on the
shell with the perimeter of 2πr = 2πR sin θ and the width
of Rdθ. The area of the ring belt is dS = 2πR2 sin θdθ;
the electric charge within the belt is de = edS/4πR2;

the electric current generated by the rotation of the belt
is dI = rωde/2πr; the magnetic moment is dµ = πr2dI =
ωeR2 sin3 θdθ/4. Theoverallmagneticmoment generated
by the rotation of the shell is

µ = ωeR
2

4

π∫︁
0

sin3 θdθ =ωeR
2

3 . (2.4)

Rd  

R

r

  

dS

Figure 1: The rotating spherical shell model for the electron spin

Let ωR = c and R = λ̄c, the result is

µ = ecλ̄c3 = 2ec
3 × e}

2m0c
= 2
3µB . (2.5)

If electric charge distributes inside the electron, the mag-
netic moment will be less than the above value. Although
the value is smaller than the correct value, the result
greatly inspires us. The reason that we failed to derive the
correct value is that we have used the classical model. If
quantum mechanical method is adopted, we expect that
the correct magnetic moment will be obtained.

3 Quantum mechanical
calculations of angular
momentum and magnetic
moment

In order to calculate the spin angularmomentumandmag-
netic moment, we first make some assumptions for the
electron structure. Enlightenment can be achieved from
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the mass distribution of quarks. Particle physics tells us
that the mass of up/down current quark (bare quark) is
only several Mev, while the constituent mass of the quark
ismore than 300Mev [13], somost of the quarkmass comes
from the effective masses of the sea quarks (virtual quark-
antiquark pairs) and the virtual gluons. Similarly,we think
that the electron is composed of point electric charge at the
center, virtual electron-positron pairs inside the electron
and virtual photons both inside and outside the electron,
as shown in Fig. 2.

-e + - - + 

+ 

- 

+ 

- 

Virtual photons 

Virtual electron-positron pair 

+ - 

Figure 2: Illustration of the electron structure. -e is the point electric
charge

We assume that the rest energy of the electron orig-
inates from the kinetic energies of the virtual electron-
positron pairs and virtual photons. The virtual electron-
positron pairs are induced by the point electric charge at
the center of the electron; while the virtual photons are in-
duced by the motion of the virtual electron-positron pairs.
The virtual photons constitute the electromagnetic fields
of the electron. There also exist virtual electron-positron
pairs outside the electron due to vacuum polarization of
the electromagnetic fields. But there is difference between
the two instances. Inside the electron, there is a steady dis-
tribution of virtual electron-positron pairs due to the in-
duction of the point electric charge.While outside the elec-
tron there is no inducing source, the presence of the vir-
tual electron-positron pairs relies on the vacuum polariza-
tion, whose probability may be very small (as calculated
in the later section). In the case of R = λ̄c, the energy of the
electromagnetic fields is the order of α (fine structure con-
stant) of the electron rest energy, so the rest energy of elec-
tron mainly comes from the energy of the virtual electron-
positron pairs.

Let the effective mass of the virtual electron-positron
pairs be mp and their speeds be c. For the motion of the
virtual electron-positron pairs, it results that

p2c2 = m2
pc4. (3.1)

The above equation seems plausible at first glance. How-
ever, it is not the case. The electromagnetic fields are gen-
erated by themotion of the virtual electron-positron pairs,
so the masses of the electromagnetic fields and the vir-
tual electron-positron pairs are tied together and cannot
be separated from each other. To change the motion state
of the virtual electron-positron pairs implies to change the
distribution of electromagnetic fields, so the effectivemass
of the electromagnetic fields should also be included in the
inertial mass of the virtual electron-positron pairs. This is
just like the instance where the earth moves with its aero-
sphere whose mass should also be included in the inertial
mass of the earth. Thus the mass of the virtual electron-
positron pairs in Eq. (3.1) should be replaced by the observ-
able mass of the electron m0.

In fact, if we think that the overall rest energy of the
electron originates from themotion of the virtual particles,
it directly leads to

p2c2 = m2
0c4, (3.2)

without considering the internal structure of the electron.
Quantizing the equation, i.e., substituting p2 with opera-
tor −}2∆, we find

−}2∆ψ = m2
0c2ψ, (3.3)

that is,

∂2ψ
∂x2 + ∂

2ψ
∂y2 + ∂

2ψ
∂z2 + m

2
0c2
}2 ψ = 0. (3.4)

This is the wave equation for the electron spin. To solve
the above equation, we refer to the wave equation of the
orbital motion of the electron in hydrogen atom, which is

∆ψ + 2m0
}2 (E + e2

4πε0
1
r )ψ = 0. (3.5)

It can be seen that the wave equation of the spin motion
is much simpler that that of the orbital motion. Following
the solution to the wave equation of the orbital motion,
we adopt separation of variables method. The spinmotion
is decomposed into angular motions and radial motion.
The solutions to the spin angular wave equations are the
same as those of orbital angular wave equations. The ra-
dial wave equation for the orbital motion is [1]

d2R(r)
dr2 +2r

dR(r)
dr +[2m0

}2 E+2m0
}2

e2
4πε0

1
r −

l(l + 1)
r2 ]R(r) = 0.

(3.6)
Similarly, the wave equation for the spin motion can be
written as

d2R(r)
dr2 + 2

r
dR(r)
dr + m

2
0c2
}2 R(r) − l(l + 1)r2 R(r) = 0. (3.7)
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Eq. (3.7) is spherical Bessel equation. Before starting solv-
ing the equation, we first see how to derive the values
of angular momentum and magnetic moment with wave
function method. In the spherical coordinate system, the
gradient operator is

∇ = er
∂
∂r + eθ

1
r
∂
∂θ + eϕ

1
r sin θ

∂
∂ϕ . (3.8)

The probability current density in quantummechanics is

j = }
2m0i

[ψ*∇ψ − ψ∇ψ*]. (3.9)

The above expression applies to non-relativistic particles,
but it can be verified that it also holds for the particleswith
the speed of light. In this case, m0 denotes the effective
mass. As a particle rotates around the specific z axis, as
shown in Fig. 3, we obtain

z 

  
rj

d  

dV

Figure 3: The rotation of a particle around z axis

jϕ = }
2m0i

[R(r)Y*lm(θ, ϕ)
1

r sin θ
∂
∂ϕ (R(r)Ylm(θ, ϕ))

− R(r)Ylm(θ, ϕ)
1

r sin θ
∂
∂ϕ (R(r)Y

*
lm(θ, ϕ))]

= m}
m0r sin θ

R2(r)|Ylm(θ, ϕ)|2. (3.10)

It can be seen from Fig. 3 that the differential angular mo-
mentum is dJz = m0jϕr sin θdV, where dV is the dif-
ferential volume of the thin circular ring with the cross-
sectional area of dσ = rdθdr and the perimeter of
2πr sin θ. The overall angular momentum is

Jz =
∫︁
V

dJz = m}
∫︁
V

|ψ|2dV = m} (3.11)

We then turn to the calculation of magnetic moment.
When ejϕ is multiplied by the differential area dσ, where e
is the charge of the electron, we get the differential current
dI = erjϕdrdθ, which generates the magnetic moment of

dµz = πr2 sin2 θdI. The overall magnetic moment for the
spinning electron is

µz =
∫︁
eπr2 sin2 θ m}

m0r sin θ
|ψ|2dσ

= em}
2m0

∫︁
2πr sin θ|ψ|2dσ

= em}
2m0

∫︁
V

|ψ|2dV = em}
2m0

= mµB . (3.12)

The above arguments may refer to Ref. [1]. For our electron
spin model, if we assume a quantum number l = 1/2 for
angular momentum while l = 1 for magnetic moment, we
get the correct values. The reason that we use two differ-
ent quantumnumbers for the electron spin is that themass
distributionand the chargedistribution inside the electron
are different based on the model of Fig. 2. In contrast, the
quantumnumbers of the angularmomentumand themag-
netic moment can be regarded as equal for the orbital mo-
tion of the electron. This is because the electron radius is
much smaller compared to the orbital radius; the orbital
motion around the nucleusmay be regarded as themotion
of a point particle; while the spinmagnetic moment is due
to the rotation of electric dipole, which is the deep reason
for a Landé g-factor of 2. For the electron structure model
of Fig. 2, our goal is to solve for the distributions of mass
and charge inside the electron. As we are more interested
in the charge distribution, we solve the spherical Bessel
equation for l = 1. In this case, the two specific solutions
are

J1(r) =
sin r
r2 − cos r

r , n1(r) = −
cos r
r2 − sin r

r , (3.13)

respectively. Now consider the boundary condition at r =
0, where we should have rψ(r) → 0. It can be seen that
rJ1(r) → 0 and rn1(r) → ∞, so we may assume R(r) =
k1J1(r), where k1 is a constant and can be derived by the
normalization condition of the wave function. As∫︁

r2|R(r)|2dr

= k1[r(3 + r2)/6 + 3r cos 2r/4 + (2r2 − 5) sin 2r/8 + C],
(3.14)

if the upper limit of the integral is infinity, the above ex-
pression will diverge, so the electron must have a definite
radius, which is obviously different from the orbital mo-
tion that may extend to infinity. We assume a radius of λ̄c
for the electron. As r is very small, we expand R(r) into
power series. As

sin r ≈ r − r
3

6 , cos r ≈ 1 − r
2

2 , (3.15)
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we obtain
λ̄c∫︁
0

k21
r4
9 dr = 1. (3.16)

It follows that k21 = 45/λ̄5c , and

R(r) =
√︂

45
λ̄5 (

sin r
r2 − cos r

r ) ≈
√︂

5
λ̄5 r. (3.17)

The wave function for the charge distribution inside the
electron is

ψ(r, θ, ϕ) =
√
3

2
√
2π
R(r) sin θeiϕ ≈ 1

2

√︂
15
2πλ̄5 r sin θe

iϕ .

(3.18)
It can be seen that inside the electron the charge density
increases with r and reaches a maximum value at the sur-
face. We know that the classical motion of a particle corre-
sponds to the motion state with a maximum probability in
quantum mechanics, so the thin circular plate model can
obtain the correct magnetic moment. In the meanwhile, it
is interesting to see that the charge density becomes zero
at the center, which shows that the electric charge of the
point charge is totally shielded by the virtual positrons.

Now consider the instance of l = 0, which represents
the non-polarized state of the electron. In this case, Eq.
(3.7) can be written as

d2R(r)
dr2 + 2

r
dR(r)
dr + m

2
0c2
}2 R(r) = 0, (3.19)

whose two specific solutions are 1
r cos

r
λ̄c and

1
r sin

r
λ̄c re-

spectively. Due to the boundary condition of rψ(r) → 0 at
r = 0, we can only take the latter. It results that

R(r) = C1r sin r
λ̄c
. (3.20)

From the normalization condition of the wave function we
find C1 = 1/

√︁
λ̄c(12 − sin 2

4 ). In the case of l = 0, Y(θ, ϕ) =
Y00(θ, ϕ) = 1

2
√
π , thus the spin wave function is

ψ(r, θ, ϕ) = C1
2
√π

1
r sin

r
λ̄c
. (3.21)

4 Quantum mechanical calculation
of anomalous magnetic moment

In quantumfield theory, the anomalousmagneticmoment
is due to the electron vertex function. It is the higher-order
correction as an electron experiences an external electro-
magnetic fields. We may explain the origin of anomalous
magnetic moment in a classical manner. The spin of a free

electron is unpolarized, thus a free electron has only elec-
tric field and has no spin magnetic moment. When an ex-
ternal magnetic field is exerted on the electron, its spin
direction is parallel to the direction of the external mag-
netic field. In the first-order approximation, the magnetic
moment of the electron may be regarded as generated by
the rotationof the virtual electron-positronpairs inside the
electron and is just a Bohr magneton. In higher-order cor-
rection, we need to take into account the magnetic mo-
ment generated by the rotation of the virtual electron-
positron pairs due to vacuum polarization. This part of the
magnetic moment is the anomalous magnetic moment in
quantum electrodynamics. The virtual photons cannot al-
ways be in the vacuum polarization state; otherwise there
will be no difference between the virtual electron-positron
pairs inside and outside the electron. That is to say, there is
a probability for the virtual photons to convert into virtual
electron-positron pairs. When all the virtual photons have
converted into virtual electron-positron pairs, we suppose
the relation between the magnetic moment and the angu-
lar momentum of the electromagnetic fields is the same as
that of virtual electron-positron pairs inside the electron.
Thus for themagneticmoment arising from vacuumpolar-
ization, we find

µ′ = ηeJem/mem , (4.1)

where µ′ is anomalous magnetic moment; Jem is the an-
gular momentum of the electromagnetic fields; mem is
the effective mass of the electromagnetic fields; η is the
probability of the virtual photons converting into virtual
electron-positron pairs. In the following, we first calculate
Jem and mem based on the wave function of charge distri-
bution, then evaluate µ′ based on Eq. (4.1).

We first derive the electromagnetic fields generated
by an electrified thin circular ring at any space point. As
shown in Fig. 4, the radius of the circular ring is a, and the
electric charge is q. The electric fields are symmetricalwith
respect toϕ0 andonly relate to r0 and θ0. For simplicity,we
calculate the electrical fields at point p(r0, θ0, 0) located in
the x-z plane. The detailed calculation processmay refer to
Ref. [14], the results are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ex = q
4π2ε0

1
r0 sin θ0

1√
a2+r20+2ar0 sin θ0[︁

2r20 sin2 θ0−a2−r20
a2+r20−2ar0 sin θ0

E(k0) + K(k0)
]︁

Ey = 0
Ez = q

4π2ε0
2r0 cos θ0√

a2+r20+2ar0 sin θ0
1

a2+r20−2ar0 sin θ0
E(k0)

, (4.2)

where E(k0) =
∫︀ π/2
0

√︁
1 − k20 sin

2 xdx is the elliptic integral
of the second kind; K(k0) =

∫︀ π/2
0

dx√
1−k20 sin2 x

is the elliptic
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Figure 4: Electromagnetic fields generated by a thin circular ring

integral of the first kind, and

k0 =
4ar0 sin θ0

a2 + r20 + 2ar0 sin θ0
. (4.3)

Similarly, suppose the electric current in the circular ring
is I, the magnetic fields are [15]⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Bx = µ0 I
4π

2 cos θ0
sin θ0

1√
a2+r20+2ar0 sin θ0[︁

a2+r20
a2+r20−2ar0 sin θ0

E(k0) − K(k0)
]︁

By = 0
Bz = µ0 I

4π
2√

a2+r20+2ar0 sin θ0

[︁
a2−r2

a2+r20−2ar0 sin θ0
E(k0) + K(k0)

]︁ .

(4.4)
We now turn to the calculation of electromagnetic fields
of a spinning electron. As shown in Fig. 5, the origin co-
incides with the center of the electron. The coordinates
of point p in the x-z plane is p(r, θ). The space occupied
by the distribution of wave function of the spinning elec-
tron is divided into lots of volume elements of thin circu-
lar ring with the cross-sectional area of dσ1 = r1dθ1dr1
and the perimeter of 2πa. The differential volume is dV1 =
2πr21 sin θ1dr1dθ1, which carries electric charge of dq =
e |ψ|2 dV1; the electric current passing through the cross-
section dσ1 is dI = ejϕdσ1. Then

|ψ|2 = 3k21
8π sin2 θ1

(︂
sin r1
r21

− cos r1
r1

)︂2
≈ k

2
1r21
24π sin2 θ1,

(4.5)

jϕ = }
m0r1 sin θ1

|ψ|2 = k21}
24πm0

r1 sin θ1, (4.6)

dq = e |ψ|2 dV1 =
k21e
12 r

4
1 sin3 θ1dr1dθ1, (4.7)

dI = ejϕdσ1 =
k21e}
24πm0

r21 sin θ1dr1dθ1. (4.8)

x 

a

1

y 

z 

0

  

0r

1r
r

1d  

1dV

p 

o

Figure 5: Electromagnetic fields generated by the spinning electron

The electromagnetic fields generated by a circular ring
are shown in Eqs. (4.2) and (4.4). However, in the two ex-
pressions, the coordinates of point p are represented by
(r0, θ0), which should be represented with (r, r1, θ, θ1) for
the convenience of subsequent integral calculation. Ac-
cording to the geometric relation in Fig. 5, we find

r0 =
√︁
r2 + r21 cos2 θ1 − 2rr1 cos θ cos θ1, (4.9)

r0 sin θ0 = r sin θ, (4.10)

cos θ0 =
r cos θ − r1 cos θ1

r0
, (4.11)

a = r1 sin θ1. (4.12)

We first simplify three expressions whichwill be used sub-
sequently:

∆1 = a2+r20+2ar0 sin θ0 = r2+r21−2rr1 cos(θ+θ1), (4.13)

∆2 = a2+r20−2ar0 sin θ0 = r2+r21−2rr1 cos(θ−θ1), (4.14)

k0 =
4ar0 sin θ0

a2 + r20 + 2ar0 sin θ0
= 4rr1 sin θ sin θ1

∆1
. (4.15)

The electromagnetic fields generated by the spinning elec-
tron at point p(r, θ) are
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ex = k21e
48π2ε0

∫︀ π
0 dθ1

∫︀ R
0 dr1

r41 sin3 θ1
r sin θ

1√
∆1[︁

2rr1 cos θ cos θ1−r21−r2 cos 2θ
∆2 E(k0) + K(k0)

]︁
Ez = k21e

48π2ε0
∫︀ π
0 dθ1

∫︀ R
0 dr1

r41 sin3 θ1√
∆1

2(r cos θ−r1 cos θ1)
∆2 E(k0)

Bx = k21eµ0}
48π2m0

∫︀ π
0 dθ1

∫︀ R
0 dr1

r21 sin θ1
r sin θ

(r cos θ−r1 cos θ1)√
∆1[︁

r2+r21−2rr1 cos θ cos θ1
∆2 E(k0) − K(k0)

]︁
Bz = k21eµ0}

48π2m0

∫︀ π
0 dθ1

∫︀ R
0 dr1

r21 sin θ1√
∆1[︁

2rr1 cos θ cos θ1−r2−r21 cos 2θ1
∆2 E(k0) + K(k0)

]︁
.

(4.16)

The angular momentum of the electromagnetic fields is

Jem =
∫︁
V1

r × (ε0E × B)dV1

=
2π∫︁
0

dϕ
π∫︁

0

dθ
∞∫︁
0

drε0r3 sin2 θ(EzBx − BzEx). (4.17)

The energy of the electromagnetic fields is

Eem =
∫︁
V1

(12 ε0E
2 + 1

2
B2
µ0

)dV1

= 1
2µ0

2π∫︁
0

dϕ
π∫︁

0

dθ
∞∫︁
0

drr2 sin θ(E
2
x + E2z
c2 + B2x + B2z ).

(4.18)

The effective mass of the electromagnetic fields is

mem = Eem/c2. (4.19)

The above expressions can be computed with Mathemat-
ica software. The results indicate that the angular momen-
tum and electromagnetic energy of the electron concen-
trate mainly within the near region. For example, we ob-
tain mem = 0.00641m0 within the region of 0-10R and
mem = 0.00674m0 within the region of 0-100R. This is due
to the fact that E and B decrease with r2. Thus enough pre-
cision can be reached with an upper limit of 10000R for
radial integrals. The computed results are

mem = 0.00678m0, Jem = 0.00278}, (4.20)
e
mem

Jem = 0.8205µB .

In order for the result of anomalous magnetic moment
to agree with that of quantum electrodynamics, η should
be 0.0011596/0.8205=0.00141. It can be seen that the
probability of the virtual photons converting into virtual
electron-positron pairs is very small. Although the above
method cannot directly derive the value of anomalous
magnetic moment, it is helpful for us to understand its
physical origin.

5 Proposal for the treatment of
divergence of self-energy in
quantum field theory

In quantum field theory, bare electron is a point particle,
and its propermass and electromagnetic mass are both in-
finite; but the sum of the two terms are finite, which is the
observablemass of the electron [16]. Based on our electron
structuremodel and calculations, the propermass and the
electromagneticmass are both finite. The divergence of the
electron self-energy in quantum field theory arises from
the emission and absorption of virtual photons. As there
are infinite number of virtual photons, the self-energy in-
tegral of electron diverges, which is the ultra-violet diver-
gence. In addition, there exists infrared divergence, which
arises from the virtual photons with zero frequency.

The electron continuously emits and absorbs virtual
photons with various frequencies, which leads to the fluc-
tuation of the electron energy. In general, the electron-
virtual photon system is similar to a heat equilibrium sys-
tem, so we may think that the probability of the electron
emitting and absorbing a virtual photon with certain en-
ergy (or frequency) also obeys the statistical law of heat
equilibrium system. In order to eliminate infinity of elec-
tron self-energy, wemake two assumptions: (i) The overall
energy of the virtual photons equals the electromagnetic
energy. Virtual photons continuously appear and then dis-
appear; during their mean surviving time, their energies
constitute the energy of the electromagnetic fields. (ii) The
probabilities of the electron emitting virtual photons with
different frequencies are different. In quantum field the-
ory, the probabilities are 1 for virtual photons with any
frequency, which leads to the divergence of electron self-
energy. In order to get rid of infrared and ultra-violet di-
vergences, we must assume that the probabilities tend
to be zero as frequency approaches zero and infinity. We
now have two formulae for reference: One is Maxwell-
Boltzmann distribution; the other is Planck’s black body
radiation law. The latter holds for the instance of discrete
energy spectrum. For a free electron, the energy spectrum
of the virtual photons should be continuous, so we refer to
the former to write out the expression of frequency distri-
bution of virtual photons. The Maxwell-Boltzmann distri-
bution is

f (v) = 4π
(︁ m
2πKT

)︁3/2
v2e− mv

2
2KT . (5.1)

In the above expression, the kinetic energy of a molecule
ismv2/2; while the energy of a virtual photon is }ω, so we
suppose the frequency distribution of the virtual photons
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to be
f (ω) = C0ωe−

ω
x0 , (5.2)

where C0 and x0 are determined by the following equa-
tions:

∞∫︁
0

f (ω)dω = 1, (5.3)

∞∫︁
0

}ωf (ω)dω = Eem . (5.4)

It’s easy to obtain x0 = Eem/2}and C0 = 1/x20. The infrared
divergence is logarithmically divergent and the ultra-violet
divergence is linearly divergent in the second-order cor-
rection of the electron self-energy [16]. If the probability
distribution of Eq. (5.2) is imposed on the virtual photons,
the self-energy of the electron will be finite. The similar
method can be applied to the removal of divergence of self-
energy of the photon.

It should be noted that our above prescription for the
divergence of the electron self-energy introduces an ex-
tra parameter of Eem. Although it can be calculated with
Eq. (4.18), it is only the classical approximate value. In or-
der to obtain its precise value, we should consider higher-
order effect. As a matter of fact, in the calculation of ra-
diative corrections in quantum field theory, we don’t need
to know the electromagnetic mass of the electron. We only
need to separate the finite terms from the divergent terms
and take them as the radiative correction terms. Similarly,
we don’t need to know the exact value of Eem after in-
troducingMaxwell-Boltzmann distribution.Whatwe need
to do is separate the terms containing Eem and incorpo-
rate them into the observable mass of the free electron.
The remaining terms are thehigher-order correction terms.
In quantum field theory, the electromagnetic mass is in-
cluded in the observable mass of free electron and the in-
finite terms are cancelled by counterterms. It can be seen
that our method is basically the same as that of quantum
field theory in essence. The infinite terms in quantum field
theory correspond to the finite terms containing Eem in our
theory.

Another application of Maxwell-Boltzmann distribu-
tion in quantum field theory is the hierarchy problem. The
Higgs boson mass is about 125 GeV [17, 18], but the quan-
tum corrections will push its mass up to the gravitational
scale, that is, the order of 1018 GeV. The most important
contributions are the one-loop diagrams involving the top
quark, the SU(2.2)×U(2.1) gauge bosons, and the Higgs bo-
son itself. Supersymmetry provides a solution to this puz-
zle. However, the current LHC experiments have excluded

large parameter regions of supersymmetric extensions of
the standard model (see e.g. [19, 20]). Our above proposal
offers an alternative solution to the hierarchy problem.

6 Discussion and conclusion
Modern high-energy experiments have revealed that the
electronmay be regarded as a point particle. But point par-
ticle model leads to infinite self-energy and cannot derive
the correct spinmagneticmoment;while Stern-Gerlach ex-
periment demonstrated that the spin magnetic moment of
the electron does exist, so the electron must have internal
structure. In most of the literature the electron radius is
taken as one reduced Compton wavelength. In our elec-
tron model, given that the angular quantum numbers of
the mass distribution and the charge distribution are 1/2
and 1 respectively, the correct values of the angular mo-
mentum and magnetic moment can be obtained whatever
the value of the electron radius is. However, if we take into
other aspects into account, such as the electromagnetic
energy of the electron, the rotational speed of the surface
of the electron and the uncertainty principle, then it is rea-
sonable that the electron has a radius of reduced Compton
wavelength. In our model, the distribution of the electric
charge is spherically symmetric for an unpolarized elec-
tron; its Coulomb interaction with other particles is the
same as that of a point particle. Besides, the mass of the
electron increaseswith its velocity.When the energy of the
electron grows large, the radius of the electron decreases,
it is more like a point particle, so the electron with a cer-
tain radius does not conflict with the point particle model
as far as Coulomb interaction is concerned.

The aim of our electron spin model is to intuitively
understand the internal structure of the electron and ex-
plore the origins of its mass and spin. Although the model
can correctly derive the values of angular momentum and
magnetic moment, it cannot directly evaluate the value
of anomalous magnetic moment, which reveals the defi-
ciency of quantum mechanics and the necessity of devel-
oping quantum field theory. However, the present formal-
ism of quantum field theory suffers from the infinite par-
ticle self-energy. We expect that by introducing Maxwell-
Boltzmann distribution, the divergence of the self-energy
will disappear and the hierarchy problem will be solved.

References
[1] Zhang Y. D., Quantummechanics, Science Press, Beijing, 2002.

Brought to you by | CERN library
Authenticated

Download Date | 12/8/17 2:35 PM



660 | Hai-Long Zhao

[2] Giulin D., Electron spin or “classically non-describable two val-
uedness”, Stud. Hist. Philos. Mod. Phys., 2008, 39, 557-578.

[3] Jiménez J.L., Campos I., Models of the classical electron after a
century, Found. Phys. Lett., 2009, 12, 127-146.

[4] Chirkov A.G., Kazinets I. V., Classical physics and electron spin,
Theor. Math. Phys. 2000, 45, 1110-1114.

[5] Heslot A., Classical mechanics and the electron spin, Am. J.
Phys., 1983, 51, 1096-1102.

[6] Spavier G., Model of the electron spin in stochastic physics,
Found. Phys., 1990, 20, 45-61.

[7] Yang C. D., On modeling and visualizing single-electron spin
motion, Chaos Solitons Fractals, 2006, 30, 41-50.

[8] SasabeS., TsuchiyaK. i.,What is spin-magneticmoment of elec-
tron? Phys. Lett. A, 2008, 372, 381-386.

[9] Jennison R.C., A new classical relativistic model of the electron,
Phys. Lett. A, 1989, 141, 377-382.

[10] Lee R., Liesegang J., A semi-classical picture of the electron
spin, Phys. Lett. A, 1971, 37, 37-38.

[11] Ramachandran G.N., Ramachandran G., Tagare S.G., A semi-
classical model of the electron containing tachyonic mat15 ter,
Phys. Lett. A, 1972, 39, 383-384.

[12] López C.A., Internal structure of a classical spinning electron,
Gen. Rel. Gravit., 1992, 24, 285-296.

[13] Ning P.Z., L L., Min D.F., Fundamental nuclear physics, nucleons
and nuclei, Higher Education Press, Beijing, 2003.

[14] Zhang Z.X., The electric field intensity of a homogeneously
charged circular ring, Coll. Phys., 2012, 31, 14-16.

[15] Zeng L. H., Zhang Z. X., The magnetic field of a circular current
loop and the interaction between two circular current loop, Coll.
Phys., 2002, 21, 14-16.

[16] Peskin M.E., Schroeder D.V., An introduction to quantum field
theory, Westview Press, Boulder, Colorado, 1995.

[17] ATLASCollaboration,Observation of a newparticle in the search
for the StandardModel Higgs boson, Phys. Lett. B, 2012, 716, 1-
29.

[18] CMS Collaboration, Observation of a new boson at amass of 125
GeV with the CMS experiment at the LHC, Phys. Lett. B, 2012,
716, 30-61.

[19] ATLAS Collaboration, Search for supersymmetry in events with
b-tagged jets and missing transverse momentum in pp col-
lisions at

√
s = 13 TeV with the ATLAS detector, 2017,

arXiv:1708.09266.
[20] CMS Collaboration, Search for supersymmetry in events with

at least one photon, missing transverse momentum, and
large transverse event activity in proton-proton collisions at√
s = 13 TeV, 2017, arXiv: 1707.06193.

Appendix A: Mathematica source
program for evaluation of
anomalous magnetic moment and
the output results

c =299792458;
e =1.6021766208*10^ -19;

m0 =9.10938356*10^ -31;
planckc =6.62606896*10^ -34/(2* Pi);
u0 =4* Pi *10^ -7;
R =3.8615926764*10^ -13;
BohrMagneton =9.274009994*10^ -24;
AnoMagMoment =0.00115965218091*

BohrMagneton ;
k2 =45/R^5;
f1[r_ ,r1_ ,xita_ , xita1_ ]:=r*r+r1*r1 -2*r

*r1*Cos[xita+xita1 ];
f2[r_ ,r1_ ,xita_ , xita1_ ]:=r*r+r1*r1 -2*r

*r1*Cos[xita -xita1 ]; k[r_ ,r1_ ,
xita_ , xita1_ ]:=4*r*r1*Sin[xita ]*
Sin[xita1 ]/f1[r,r1 ,xita ,xita1 ];

Ex[r_?NumericQ ,xita_? NumericQ ]:=
NIntegrate [r1 ^4* Sin[xita1 ]^3/ Sqrt[
f1[r,r1 ,xita ,xita1 ]]*((2* r*r1*Cos[
xita ]* Cos[xita1]-r1*r1 -r*r*Cos [2*
xita ])/f2[r,r1 ,xita ,xita1 ]*
EllipticE [k[r,r1 ,xita ,xita1 ]]+
EllipticK [k[r,r1 ,xita ,xita1 ]]) ,{
xita1 ,0,Pi},{r1 ,0,R}];

Ez[r_?NumericQ ,xita_? NumericQ ]:=
NIntegrate [2* r1 ^4* Sin[xita1 ]^3*(r*
Cos[xita]-r1*Cos[xita1 ])/Sqrt[f1[r
,r1 ,xita ,xita1 ]]/ f2[r,r1 ,xita ,
xita1 ]* EllipticE [k[r,r1 ,xita ,xita1
]],{ xita1 ,0,Pi},{r1 ,0,R}];

Bx[r_?NumericQ ,xita_? NumericQ ]:=
NIntegrate [r1*r1*Sin[xita1 ]*(r*Cos
[xita]-r1*Cos[xita1 ])/Sqrt[f1[r,r1
,xita ,xita1 ]]*((r*r+r1*r1 -2*r*r1*
Cos[xita ]* Cos[xita1 ])/f2[r,r1 ,xita
,xita1 ]* EllipticE [k[r,r1 ,xita ,
xita1 ]]- EllipticK [k[r,r1 ,xita ,
xita1 ]]) ,{xita1 ,0,Pi},{r1 ,0,R}];

Bz[r_?NumericQ ,xita_? NumericQ ]:=
NIntegrate [r1*r1*Sin[xita1 ]/ Sqrt[
f1[r,r1 ,xita ,xita1 ]]*((2* r*r1*Cos[
xita ]* Cos[xita1]-r*r-r1*r1*Cos [2*
xita1 ])/f2[r,r1 ,xita ,xita1 ]*
EllipticE [k[r,r1 ,xita ,xita1 ]]+
EllipticK [k[r,r1 ,xita ,xita1 ]]) ,{
xita1 ,0,Pi},{r1 ,0,R}];

DateList []
EMenergy =1/48/48* e*e*u0*k2 ^2/ Pi ^3*

NIntegrate [(Ex[r,xita ]^2/ Sin[xita
]+Ez[r,xita ]^2*r*r*Sin[xita ])*c^2+
planckc ^2/ m0 ^2*( Bx[r,xita ]^2/ Sin[
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xita ]+Bz[r,xita ]^2*r*r*Sin[xita ])
,{xita ,0,Pi},{r ,0 ,10000*R}];

J =2/48/48* e*e*u0* planckc *k2 ^2/ Pi ^3/ m0*
NIntegrate [r*r*Sin[xita ]*( Ez[r,
xita ]*Bx[r,xita]-Ex[r,xita ]*Bz[r,
xita ]) ,{xita ,0,Pi},{r ,0 ,10000*R}];

EMmass = EMenergy /c^2;
u=e/ EMmass *J;
eta= AnoMagMoment /u
UnitEMmass = EMmass /m0
UintAngularMomentum =J/ planckc
UnitMagneticMoment =u/ BohrMagneton
DateList []

{2016 ,12 ,23 ,20 ,42 ,59.0931850}

NIntegrate :: slwcon :
Numerical integration converging too

slowly ; suspect one of the
following : singularity , value of
the integration is 0, highly
oscillatory integrand , or
WorkingPrecision too small.

NIntegrate :: ncvb: NIntegrate failed to
converge to prescribed accuracy

after 18 recursive bisections in r
near {xita ,r}= {2.23377 ,3.81608

x10 -13}. NIntegrate obtained
4.473302206913984*^ -95 and
4.396409698419378*^ -100 for the
integral and error estimates .

NIntegrate :: slwcon : Numerical
integration converging too slowly ;

suspect one of the following :
singularity , value of the
integration is 0, highly
oscillatory integrand , or
WorkingPrecision too small.

NIntegrate :: ncvb: NIntegrate failed to
converge to prescribed accuracy

after 18 recursive bisections in r
near {xita ,r} = {1.26097 ,3.56375

x10 -13}. NIntegrate obtained
1.0209341758374409*^ -112 and
1.214693034211504*^ -117 for the
integral and error estimates .

0.00141337

0.00677574
0.0027797
0.820485
{2016 ,12 ,25 ,1 ,54 ,3.7845951}

(Note: The above results are obtained under the follow-
ing running environment: 64bit Operating System of Win-
dows 7; Mathematica 9.01; Intel(R) Core(TM) i5-4590 CPU
@ 3.30GHz, 3.30GHz; 4GB Memory.)

Brought to you by | CERN library
Authenticated

Download Date | 12/8/17 2:35 PM


	1 Introduction
	2 Classical calculations of angular momentum and magnetic moment
	3 Quantum mechanical calculations of angular momentum and magnetic moment
	4 Quantum mechanical calculation of anomalous magnetic moment
	5 Proposal for the treatment of divergence of self-energy in quantum field theory
	6 Discussion and conclusion

