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Abstract. Group theory is very familiar, perhaps too much so. We are thus prejudiced
about it, leading to views that are far too narrow. Yet it is significantly richer than usually
realized ([13]). Here we wish to understand the restrictions giving the familiar forms and
how by changing these we can get added richness. Might these add to our knowledge of
nature? A purpose of this note is to stimulate thinking about this.

7.1 Geometry, through its transformations groups, is very
information, but so far not enough

Itis clear that much (all?) of physics is determined by geometry, especially through
its transformation groups ([13[; [4]; [5]; [7]; [8]; [9]; [101; [111]; [12]; [3]; [6]). Yet it is

necessary to go much further. Can additional progress be made using group the-

ory? This is a very open question but worth exploring. One aspect to be explored

is whether group theory itself can be generalized. That could be of interest for

purely mathematical reasons. And it has many applications. Generalizing it can

thus be useful in various ways. This we wish to explore here.

7.2  What is the best way to try to understand fundamental
physics?

What is the best approach to try to understand physics? The big fad nowadays is
to come up with the wildest, most unlikely ideas, ones furthest from reality, ones
totally unrelated to anything known, ones having no rationale whatever. History
and common sense show that this approach is destined to lead nowhere except
to even more wild ideas (as it has).

Those who do that will find themselves badly cut by Occam’s razor. Unfortu-
nately a large part of the physics community is doing just that. Applying Occam’s
razor to the physics community will greatly help physics to advance.

Another approach that is very likely to lead to failure, certainly if there is no
other rationale for it, is to base laws on how we measure, on ourselves. We do
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not determine the laws of nature (something many scientists, especially physi-
cists, do not believe). How we measure is limited by physical laws, but does not
limit them. Studying measurement can help us understand physics, but cannot
determine it.

What then shall we do, what approach shall we use? The best approach is
the most conservative using requirements that are certain, or at least likely, to be
correct, or ones that deviate the least from these.

7.3 Reasonable requirements for developing theories

What requirements can we impose?

First is consistency. Fundamental physical theories must be consistent. (Phe-
nomenological theories, classical physics is an example, can be inconsistent mish-
mashes.) This is more difficult than it might seem, so can be quite powerful.

Geometry imposes requirements, restrictions. Physics takes place in geom-
etry so must be in accord with the rules it leads to. This also is powerful as we
have seen (particularly) in the references.

What can we say about geometry? We always assume that it is a manifold
(locally flat) and that its coordinates are real numbers (rather say than complex
numbers or quaternions). It is very unlikely that physics would be possible oth-
erwise, but this can be investigated. A fundamental property of geometry is its
dimension. However it has long been known that physics would be impossible
unless the dimension is 3+1 ([4]; [13])). This is required by consistency, illustrating
its importance, for only with this dimension is a consistent physics possible.

7.4 What can we say about geometry?

Is space curved? The curvature of space is given by a function over it, the con-
nection ([5]). Can every space that is a manifold be regarded as flat but with a
function, the connection, so that all curved spaces can be reduced to flat ones
with different such functions? This is an interesting question that we raise but do
not try to answer here. Also (many) curved spaces can be mapped (in reasonable
ways) into flat ones ([8]). Thus we consider only flat spaces, but these questions
should be looked into.

What properties do flat spaces have? Beyond the reality of coordinates and
the dimension is a most fundamental property: the transformation groups of the
spaces (which are not symmetry groups ([13]), although it is quite interesting
that they are that also). For our space, apparently the only one in which physics
is possible, the largest symmetry group is the conformal group ([8]), which has
subgroups the Poincaré group, its subgroup the Lorentz group and the subgroup
of that, the rotation group (SO(3)). The last gives that angular momentum must be
integral or half-odd-integral ([3])), illustrating how transformations limit physics.
The massless representations of the Poincaré group determine electromagnetism
and gravitation ([5]). Clearly these are quite informative, but clearly insufficient.
It is possible that the conformal group can also be quite informative but how is
less clear.
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7.5 How might group theory be generalized?

Can we go further? What we wish to do here is study whether what is known
about group theory can be generalized. We are all too familiar with semisimple
groups, like the rotation and Lorentz groups. But group theory is far richer, even
for these groups ([5]; [8]). Perhaps it is richer than we realize. That is what we
consider here.

This may not have anything to do with fundamental laws. But it helps to
understand group theory, decreasing prejudice and broadening our views, and
produces interesting mathematical results. And they are likely to lead to useful,
even important, applications.

7.6 Indexed groups

Start by considering the curve, x = rcos6, y = rsin8, which describes a circle. We
move around a circle using the two-dimensional rotation group O(2). By putting
a constant into the representation matrix we can generate an ellipse. But what
about, say, the curve x = r(cos8)3, y = r(sin6)3. What set of transformations
moves along this curve and why don’t they form a group? Clearly there is an
identity, we do not have to move, and for every transformation there is an in-
verse. Moreover the product of two transformations is a transformation; if we
move from A to B and the from B to C, we can find a transformation from A to
C. However the transformations are not associative. It is for this reason that they
do not form a group. The transformation from B to C depends on where B is (it is
in a sense history dependent, depending on the previous transformations). That
is the operator going from B to C has a form that depends on B, unlike rotations.
This causes associativity to fail.

Thus for a circle the product of the transformation matrix for 8; and for 9, is
that for 01 + 0,, which is not true for this curve.

While there are transformations along any (reasonable) n-dimensional sur-
face it is only in special cases that they form a group (of the form usually consid-
ered). This emphasizes the relevance of associativity and the restrictions it places.
Many of the properties of groups and their representations come from associa-
tivity. While restricting, it also allows us to obtain properties that are so useful in
applications of groups.

How do we deal these more general transformations, say ones along arbi-
trary surfaces? We introduce the concept of indexed groups. To do this we assume
that the transformations can be mapped (at least) one-to-one onto a group of trans-
formations. For each general transformation we have a corresponding group ele-
ment and this element is the index of the general transformation. Thus for three
dimensions the index can be an element of the rotation group. For a group the
matrix representing the transformation that is the product of two is the matrix
product of the matrices of the two transformations. It is here that indexed repre-
sentations differ. For these the matrix labeling the product is the matrix product
of the two labeling matrices. But the product matrix of the indexed transforma-
tion is not the product of the matrices of the two transformations it is a product
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of. It is the index that is given by the product, not the transformation. With this
definition of group product, differing from the normal definition, these transfor-
mations form a group. Associativity holds, since it follows from the associativity
of the indexing group, but only because of the revised definition of a product.

To give a group we list its members and their products (thus the spaces on
which they act). But now with each set of members we have an infinite number
of product rules (determined by the mapping of the transformations into the in-
dexing groups, of which there may be several) thus an infinite set of groups. Each
n-dimensional surface has its own group.

7.7 Product rules determine groups

This shows how properties of a group are dependent on the definition of its prod-
uct and how by revising this definition we can generalize the type of structures
that form groups. This adds to the richness of group theory.

Groups which can be realized as matrices, thus whose products are matrix
products, we call standard groups. Ones whose elements are indexed so whose
products are given by the matrix products of their indices we call indexed groups.

Indexed transformation groups exist for any surface that can be mapped
(properly, in a way that must be investigated) to the defining space of a Lie group.
For the three-dimensional rotation group SO(3) that is a sphere, and there is a
third parameter which can be considered as giving the direction of a vector at
each point of the sphere. Then each point is mapped to a point on one of the
generalized (overlying) space, and each direction to one on that (which perhaps
might be considered as an internal symmetry). Likewise we can use SO(2,1) to get
another set of such surfaces. So we have associated with each group an infinite
set of groups, each given by different product rules (from different mappings), or
another way of saying this, an infinite set of realizations or representations.

We assign to each group element a matrix, that of the regular (adjoint) rep-
resentation. That this is possible follows from the group axioms. Then the group
product is a matrix product, and this is the usual group product. We call this the
standard product.

The rotation group, besides its defining representation of 3 X 3 matrices has
an infinite set of others. Consider the 5 X 5 one, say. This is a subrepresentation of
S0O(5). We can map a surface to the defining surface of SO(5) and the group de-
fined over it (one for each of the infinite number of such surfaces, ignoring aspects
like inversions), form representations of SO(3), but with additional transforma-
tions which might be taken as internal ones. Since SO(3) has an infinite number
of representations (and it is simple so other groups have infinite sets each of in-
finite numbers of representations) this admits a huge number of transformation
sets to be defined over it.

But we can do more. The conformal group algebra is (isomorphic to) that
of SO(4,2) and SU(3,1). The group algebras are the same but realized in terms of
different variables. Instead of 4+2 real ones, or 3+1 complex ones, the conformal
algebra is realized over 3+1 real ones ([8]). We might also realize it over more,
rather than fewer, variables. These again can be taken as internal ones.
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We now map surfaces (choosing from an infinite number) to the 3+1-dimen-
sional real space on which the conformal group acts. The product of the trans-
formations on these is given by the product of conformal transformations taking
points and directions of the 3+1-space to others. These conformal transformations
are the indices of the transformations on the preimage space. Note that we have
three groups, SO(4,2), SU(3,1) and the conformal group, plus all their representa-
tions, which can act as indices. This shows the great richness introduced.

7.8 Groups of 3+1 space as illustrations

Thus there are two groups defined by a 3+1-dimensional real space, one, ISO(3,1)
is the Poincaré group, the other is the conformal group. This itself shows rich-
ness known but not understood in group theory. Take a surface (one of an infinite
number) that is mapped to real 3+1-dimensional space. The transformations on it
can be indexed by the transformations of the base space. However there are two
sets, the Poincaré group and the conformal group. So from ordinary space we
can find two infinite sets of groups (realizations, representations). And the trans-
formations of our space can be taken as subsets of larger groups, giving further
labels and products, of infinite number. Some of this additional freedom might
be relevant to internal transformations.

Why should we consider these, aside from their showing the assumptions?
Groups are useful in many ways and these can extend their usefulness. For exam-
ple special functions are group representation basis states and many properties
can be derived from this. Generalizing the concepts of representation can lead to
other special functions, perhaps with useful properties. However it is not clear
that properties can be found for these as they can for standard representations, or
indeed that they have simple properties. This must be investigated. Associativ-
ity is important in determining these properties, and allowing simple properties
(that we can get rules for). This procedure allows such great generalization that it
is likely that only a few cases, at most, can give simple rules. But there might be
some and these could be useful.

Also physical objects are statefunctions ([13]) that are group representation
basis states. By expanding the set of these we may be able to expand the set of
objects that are such states. There are clear limitations as the known states are
those of standard representations. It may be that the requirement that objects be
observers, and conversely ([7]), provides strict limits. Yet this is not known and
these new representations allow study of this. And some may have physical ap-
plications, perhaps to these fields.

7.9 Why standard products are matrix product and why are
these usually relevant?

While these indexed groups (groups with indexed products) may seem unusual
they raise the question why standard products are the relevant ones, for those
cases in which they are? This has to be considered for each application. A gen-
eral class is applications to geometry. The transformations, but only for certain
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geometries, have standard products. This is true for lines, circles, planes, spheres
and generalizations. For these, why are the products of transformations the stan-
dard products?

Here symmetry enters. The action of a group transformation on the base
space is independent of the point in that space — since all these points are iden-
tical. Thus a group transformation taking a point to another, acting on a second
such transformation, gives a transformation with identical action (as can be seen
with a circle). ; From this associativity follows. These transformations thus form
the regular representation ([3]]). But this representation can be given by matrices,
and the group product is the same as a matrix product, the standard product.

Other spaces do not have symmetry so their transformations cannot be rep-
resented by matrices. Here we see how symmetry gives group operations, and
limits these. For spaces without symmetry we must use other products.

7.10 Conclusion

Groups are determined very much by their products. Usually these give matrix
products. Here we have considered a set of different product rules. These illus-
trate how such rules determine the properties of groups, and the role of symme-
try in the standard product rules. Whether some of these generalized rules are
useful has to be studied. Lie groups have an extensive structure including their
algebras. Do these generalizations allow corresponding structures, including al-
gebras? That is another field of study. There is much that can be done, some at
least profitably.
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