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Abstract The solutions for the field equations of f(R)
gravity are investigated in static cylindrically symmetric
space-time. Conserved quantities of the system, as well
as unknown functions, can be determined with the help
of the Noether symmetry method. In this article, some
unknown values of the equations of state parameter (EoS)
have emerged as a result of the constraints obtained by ana-
lyzing the Noether symmetry equations for the f(R) = foR
case. Consequently, several new exact solutions have been
found for cases of General Relativity in static cylindrically
symmetrical space-time for the non-dust matter.

1 Introduction

One of the most important discoveries in cosmology is the
finding that our universe is accelerating the expansion as a
result of the supernova Type Ia observations made by two
independent groups at the end of the last century [1,2].
Although Einstein’s theory of General Relativity (GR) is
taken as the basis to explain the structure of the universe,
it falls short of explaining this accelerating expansion [3].
However, the cosmological constant that Einstein put in his
equations to make it static and which he later thought was
his biggest mistake is today considered vacuum energy for
dark energy. The ACDM model created by taking vacuum
energy together with cold dark matter (CDM) is accepted
as the concordance model of cosmology [4]. Although this
model is quite compatible with observations, it cannot solve
the problems such as coincidence, fine-tuning, etc. [5,6].
Therefore, in order to explain these phenomena, modified
gravitation theories have been starts studied by scientists [7—
9]. These modifications are based on changing the geometry
and/or matter parts of the GR. One of the most basic modifica-
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tions of the geometry part is the f(R) gravity theory, which
is based on taking the f(R) function in GR instead of the
R Ricci scalar [5,10-13]. For the application to the cosmic
acceleration in the early universe, e.g., Refs. [14-17]. The
thermodynamics of the apparent horizon in f (R) gravity has
been studied in [18,19]. Curvature singularity that occurs in
the process of stellar collapse in f (R) gravity has been inves-
tigated in [20]. Future transitions of the phantom divide line
wge = —1 of the equation of state (EoS) parameter for dark
energy have shown that the sign of the time derivative of the
Hubble parameter will change from this negative to positive
in the current applicable gravity models f(R)in[21]. Recon-
struction of f(R) gravity models with bounce cosmology is
performed in [22].

Cylindrical symmetrical space-time plays an important
role in studying the homogeneous but anisotropic structure of
the universe on a large scale. Besides, cylindrical symmetric
spacetimes are widely studied within the framework of both
GR and modified theories such as f(R), f(T), etc. [23-27].
Also, this background is suitable for the study of compact
objects [28-30]. Additionally, it is frequently used for string
theory and wormbhole studies, as it has an important geomet-
ric structure [31-33]. Therefore, conducting cosmological
studies in the context of cylindrical symmetrical space-times
would be valuable because of its potential to bring different
parts of the puzzle together.

In the literature, there are f(R) and some modified gravi-
tational theories solutions studied by the Noether symmetry
approach for spherical symmetric space-time [34-36]. Some
black hole solutions investigated under f(R) theory using
Noether symmetry for BTZ spacetime are also available in
the literature [37,38]. Unlike all these studies, in this work,
we wanted to examine how would be at the solutions a cosmo-
logical scale and with a cylindrical symmetrical background,
rather than a compact object.

The article is organized as follows. In Sect. 2, we construct
the theory of f(R) gravity with a static cylindrical symmetric
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background, and then in Sect. 3, we explain the Noether sym-
metry approach. In Sect. 4, we present the Noether symme-
tries to these theories of gravity and exact solutions through
their first integrals. Finally, in Sect. 5, we summarize the
findings through this study.

2 Field equations

In this section, we discuss the metric f (R) theory. The f(R)
gravitational theory is an interesting and relatively simple
alternative that can be considered instead of the GR the-
ory. We determine the matter Lagrangian form for the static
cylindrical symmetric space-time and adding to the action
write Lagrangian of the theory, and then present the field
equations. For an introduction to Metric f(R) gravity see
[12,32,39,40], comprehensive analysis of all versions of
S (R) gravity and for alternative gravity theories also see
[7,10,11,13]. Beginning from the action G R and adding the
f(R) term rather than the R term and add also a matter term
Sm, the 4—dimensional total action for f(R) theory of grav-
ity takes the form:

S = /d“w—_g [%f(R) + cm], (1)

where k = 87 G and L, is Lagrangian related to mat-
ter content of any kind in the universe. f(R) is a function
dependent on the scalar curvature R, while f(R) = R the
theory is clearly reduced to the General Relativity [12]. The
static cylindrical symmetric space-time metric is as follows
[41,42].

ds* = A(r)dt* — dr* — B(r)(d6* + «%d7%), )

where A(r) and B(r) are the metric coefficients of taken
depending on the radial coordinate r. Using the Lagrange
Multiplier Method, which is generally adopted for higher-
order theories, then applying the method of integration by
parts, the point-like Lagrangian is derived as follows [43].
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where L, = —p, ()denotes the derivative with respect to

rand fg = df/dR, frgr = d*f/dR>. Also, configuration
space of the (3) Lagrangian is Q = {A, B, R}.

For the metric (2), the matter density is obtained as
p = ,ooA_m Here, w is the equation of state parameter,
whichw = 3 ! for the radiation dominant case and w = 0 for
the mater dominant case. When w = —1, dark energy is dom-
inant which refers to the negative pressure fluid. Besides, it
is known that for a gas composed of cosmic strings w = —%
and for the stiff matter w = 1. Here we examine the non-
dust solutions in line with the constraint evident from the
Lagrangian. From the variation with respect to the config-
uration space elements A, B and R for the Lagrangian (3),
the field equations of the theory of gravity obtained are as
follows:

fR A A’B’ A2 f /B/ ,
2— 2 -— |- = R — R
4 T20p T ar ) T g \JRRR G ke
_ ”n l 14w _
+ fRRRR | + K,O()A W =0, )
fr (A" A% B" _B?\ f  freR
——(2— - — 4 2—
s A a " tot T
A/ +2B/ A_l;—w _ () (5)
“\ B Kpo =0,
fR 2B// + A B/ + f + fRRR/ A/ + B/
4 B AB 2 2 A B
+fRRR" + frrRR? — kpoA™ W =0, (6)

These equations are fourth-order nonlinear differential
equations and it is not easy to find an exact solution with-
out making any approach. In this study, we use the Noether
symmetry approach to find a solution.

3 Noether gauge symmetry

Noether symmetry approach has been widely used in the lit-
erature to find exact solutions, particularly of modified grav-
ity theories [34,44-55] . It opens the way of the solution by
decreasing the degrees of freedom of the dynamic system
and/or determining the unknown functions of the system. In
a sense, the existence of a Noether symmetry is a kind of
choice rule. The outline of the Noether symmetry method is
given below.
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The Lagrangian-related Noether vector X and the first pro-
longation vector field X!!! can be built as follows:

oL . oL
XL = &(x, 61")5 + ' (, qk)a—qi,

oL
X[1]£ = XE + r"k(.[, qla ql)_
dgk

Here it is defined as 7¥(z, ql, g" = Dnf — qutS, and
D, = 8/0t + ¢*8/84* is the total derivative operator.

If there is a G (z, ¢*) function for any £ Lagrange function
and the following Noether symmetry condition is satisfied,

xMz 4+ £(D.£) = D,G. (7

There is a conserved quantity that belongs to the system
of the equation that is expressed as follow

; 0L G. @)
g

[ =y
aq'

This expression is important in that it provides a solution
for the system of differential equations of the theory. When
the generalized coordinates ¢’ are taken as the dynamic vari-
ables of the extended gravitational theory considered, the
conservative quantities associated with the theory of gravity
can be found using the Noether symmetry approach described
above. Thus, it can be possible to obtain a new exact solution
for the corresponding gravitational theory model.

4 Static cylindrically symmetric solutions

Noether symmetry condition (7) gives the following system
of differential equations:

§a=0, &p=0 &r=0,
a (frn’ + Bfrr’) + VAG 4 =0,

Ar]zr
o |:fR (n}, +— ) +2AfRRn?,:| +AG g =0,

o frr (BN, +2 A1) +VAG g =0,

frn! fR’?
2A

frR*4 + Bfrrn’y =0, + fren’

Bfrn}
+2 == 42 frn + 4 frr By — frér =0,
frn! A
-5 + frrn® + fRn,lA + fREU,ZA + 2AfRR’7?A
+ frn’s + frr B’ — frE, =0,
2
fren' | frr0’ Ir1
Ry + 5 + frrRRN + TR + fRR’7,3R

Afrr1?
+ fRR'?}A +2T’A — frrE, =0,
fRRn frnt  fr0?
+2 frRRT + S T+ 2 SRR
A A
Bfgn'
+— B +2 frrn’s — 2 frrE =0,

1+w
(-f + Rfr + K,OoA_;T>

|:2\/_ +oz\/_n +a«/_B§]

o Bx po(1 + w) _ltw

_ 2w

VAw

+avVABRfrrn’ +G, =0,  Bnp+2An% =0.

©))

Solutions have been studied under various conditions for
this system of equations. Generally, a different symmetry
is not observed for the case where f(R) = R, ie for the
GR Lagrangian. One of the important points of this study is
that when examining equations (9), the existence of excess
symmetry was observed for the values of the equation of
state parameter, w = —1/4 and w = 1/5. These situations
are discussed separately below.

(i): Noether symmetry vector components under condi-

tions f(R) = foR, w = —1/4, fo, po > 0 are as follows:
§=cr+c,
44 A
n =—61T—23—3/4(C3V+C4),
SB
n* 13 — + B (e3r + ),
G = —C320tf()\/_Bl/4+C5 (10)

Thus, Noether symmetries are obtained as follows

X| = o,
Xo =70, — ﬁaA + S—BSBa
3 3
Xy = 2;/48/1 + B4,
Xs= — A out Brop
233/4 ’
G = —2afy/ABYA, (11)

For each Noether symmetry, there is a Noether integral,
ie a conservative quantity. These are determined as follows

I =—-EL=0,

1 B’ A
L =—afgpV/AB| — +5—),
2 3Olf0 <B + A)
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Fig. 1 Metric coefficient A(r) as a function of the radial coordinate r
forthe caseof w = —1/4witha =2, fo =1/3,a0 = 1, ko =k =1,
L=—landh =1;=1
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Fig. 2 Metric coefficient B(r) as a function of the radial coordinate r
forthe caseof w = —1/4witha =2, fo =1/3,a0 = 1, ko =k =1,
L=—landh =14=1

1 B A
Lhi=—- AB4 4 —r = +2=)],
= —gonant i (23 )

fo= 1 fo/ABY* B/+2A/ (12)
4= %00 B "a)

When the above Noether integrals are examined, it is
clearly seen that there are relations between them as follows

I — rly = 2afy/ABY4,
rly — 1 (B A’
Iy = — 2_ )
4 4 <B T
BA? = ko(rls — ). (13)

From these relations, the metric coefficients A (r) and B(r)
can be easily obtained as follows.

31
10k (r1s — I3)3afols

-2/3
A(r) = [ + ki (rly — 13)2] ,

B(r) = ko(rly — I3)* (14)

1
A(r)?’

where pg = ;‘—gfokllf.
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Symmetries under these constraints allow us to find the
exact solution of the equations of the theory. The critical
point here is that the EoS parameter points to a specific value
of w = —1/4, which also corresponds to the Quintessence
value range.

(ii): Under conditions f(R) = foR, w = 1/5, fo, po >
0 Noether symmetry vector components under conditions
f(R) = foR, w = 1/5, fo, po > 0 are as follows

2

r
§ =61?+62F+C3,
1 2A n 2A
=c1—r+c—,
n 1 3 2 3
2 2B n 2B
=c|—r+cp—,
n 1 3 2 3
4
G = —clgafox/ZB + c4. (15)
Thus, Noether symmetries are obtained as follows
X3 = 8"7
r? 2A 2B
X2 = ?8, + TraA + ?rE)B,
2A 2B
X3 =rd, + —04 + —0p,
3 3
4
G = —gafox/ZB. (16)

A Noether integral for each Noether symmetry is com-
puted as follows

I, =—E; =0,
2 B’ A’
L =- AB |2 — 2— + — ,
2= JfovA [ ( B Aﬂ
2 B’ A’
= —— AB2— + — ). 17
3 30lf0«/_ < B + A) (17)

With the Noether integrals above, the following relation
is obtained

3
VAB = m(h —rh). (18)

Thus, one can analytically determine the metric coeffi-
cients A(r) or B(r) via any specific assumptions. For instance,
we can choose A(r) = Ko/r and hence determine to B(r)
as follow.

3
B= da TR (Lr'/? — /%), (19)
0V A0

In Figs. 1 and 2, for the case w = —1/4 the graphical
behavior of the analytically determined expressions A(r) and
B(r) are displayed, respectively. Similarly, the graphs of the
metric coefficients determined outcome a specific selection
on A(r) for the case w = 1/5 are exhibited in Figs. 3 and
4 As can be inferred, when the limit states are examined,
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Fig. 3 Metric coefficient A(r) as a function of the radial coordinate
r forthe case of w = 1/Switha =2, fo = 1/3,a0 = 1, Ko = 1,
ky=ki=1,i=—land I, = I, =1
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Fig. 4 Metric coefficient B(r) as a function of the radial coordinate
r forthe case of w = 1/Switha =2, fo = 1/3,a0 = 1, Ko = 1,
ky=ki=1,=—-land, =14, =1

when r — 00 A(r) — 0 and B — oo for both cases. This
behavior indicated that the asymptotical flatness.

So far, by taking f(R) = fypR with a constant fj, the
situation General Relativity has been studied. In this case,
the excess of Noether symmetries for the w = —1/4 and
w = 1/5 values of the state equation parameter is striking,
and this is clearly demonstrated above. These specific values
of the w state equation parameter are different from known
values such as dust (w = 0), radiation (w = 1/3) and the
cosmological constant (w = —1), etc. As an interpretation, it
is possible to consider dark energy and dark matter as specific
EoS values.

5 Conclusions

In this study, within the scope of f (R) gravity theory, cosmo-
logical solutions for static cylindrical symmetric space-time
were investigated and the Noether symmetry method was
used to obtain exact solutions. As novel research compared to

relevant studies in the past, we wanted to analyze cosmolog-
ical solutions for a static cylindrical symmetric space-time,
rather than for example studying compact objects using a
spherically symmetric or BTZ background, in f(R) gravity.

We have constructed the theory and written the Lagrangian
(3), where £, # 0 and the requirement that w # 0 is clearly
seen from the Lagrangian. Then, the field equations of the
theory have been obtained as (4), (5) and (6). The Noether
symmetry method has been explained. Noether symmetry
condition (7) and first integral expressions (8) have been
given and their mathematical background has briefly been
summarized.

Furthermore, the symmetry equations (9) belonging to the
theory have been determined. As a result of the constraints
obtained from Noether symmetries, the specific values of
w = —1/4and w = 1/5 of the EoS parameter have explicitly
been demonstrated. The Noether symmetries (11) and first
integrals (12) have been found for the case of (i) with w =
—1/4. Here, the solutions (14) have directly been acquired by
the first integrals. The behavior of these solutions have been
shown in Figs. 1 and 2. For the case of (ii) with w = 1/5,
we have also studied Noether symmetries (16), first integrals
(17), and hence the relation between the A(r) and B(r) (18)
have been obtained. Then choosing the A(r) = Ko/r, we
could obtained B(r) (19). The behavior of this situations have
also been depicted in Figs. 3 and 4. Additionally, examining
the limiting case of the solutions, one can get the asymptotic
flatness.

This article is the first notice of an ongoing study that
builds on f(R) theory. The solutions are obtained in f (R) =
JfoR, thatis, in GR theory. The general solutions obtained for
the case f(R) = foR" will be presented in the next article.
Its difference from other solutions in the literature is that the
values of the EoS parameter discussed in the solutions are not
known. These values of the EoS parameter were obtained by
considering the normally invisible constraints observed in
the solution of the Noether symmetry equations. The solu-
tions obtained in this way are new cosmological solutions and
therefore this first part of the study is notable for being pre-
sented. We think that these new results are valuable because
of the possibility that these determined values of the EoS
parameter can express the structure of dark energy and dark
matter.
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