
Precision holography

and supersymmetric theories

on curved spaces

Pietro Benetti Genolini

Mathematical Institute

University of Oxford

Corpus Christi College

Trinity Term 2018

A thesis submitted for the degree of

Doctor of Philosophy





Precision holography
and supersymmetric theories on curved spaces
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The formulation of rigid supersymmetric field theories on curved space leads to a
number of results on their strongly-interacting regime, crucial from both the mathematical
and physical point of view, starting from Witten’s topological twist of four-dimensional
Yang–Mills theory. At the same time, strongly-coupled field theories may also be studied
holographically via the AdS/CFT correspondence. The aim of this thesis is to study aspects
of the holographic dictionary for supersymmetric theories on curved manifolds.

A key aspect of the correspondence is the renormalization of gravity observables,
which is realized via holographic renormalization. If the dual boundary field theory
is supersymmetric, it is natural to ask whether this scheme is compatible with the rigid
supersymmetry at the curved boundary. The latter requires specific geometric structures, and
general arguments imply that BPS observables, such as the partition function, are invariant
under certain deformations of these structures. We may then formulate a precise check of
the holographic dictionary by asking whether the dual holographic observables are similarly
invariant, as the free energy of the gauge theory is identified with the holographically
renormalized supergravity action.

In the first part of the thesis, we consider this question in N = 4 gauged supergravity
in four and five dimensions for the holographic dual to the topological twists of N = 4
gauge theories on Riemannian three-manifolds and N = 2 gauge theories on Riemannian
four-manifolds. We show that the renormalized on-shell action is independent of the metric
on the boundary four-manifold, as required for a topological theory. We then go further,
analyzing the geometry of supersymmetric bulk solutions. This allows us to show that the
gravitational free energy of any smooth filling vanishes in both AdS4/CFT3 and AdS5/CFT4.

In the second part of the thesis, we study the same question in minimal N = 2 gauged
supergravity in four and five dimensions. In four dimensions we show that holographic
renormalization precisely reproduces the expected field theory results for the dependence
of the partition function on the background. Surprisingly, in five dimensions we find that
no choice of standard holographic counterterms is compatible with supersymmetry, which
leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain
topological assumptions we provide some independent tests of these new boundary terms,
in particular showing that they reproduce the expected VEVs of conserved charges. We also
briefly comment on the relation between these terms and boundary supercurrent anomalies.
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1
Introduction

1.1 The AdS/CFT correspondence

Gravity is intrinsically different from quantum field theory. Despite the numerous simi-

larities in the classical formulation (think for instance to the relation between Yang–Mills

theories and general relativity), quantum gravity and field theory differ at a very fundamen-

tal level, for gravity describes spacetime itself and thus self-interactions produce phenomena

such as black holes. The appearance of black holes is at the root of a number of (conjectured)

peculiar features of quantum gravity, such as the absence of global symmetries (for a review

see [30]), and was the main stimulus for the development of the holographic principle

[34, 210, 206]. The latter is one of the very few properties of quantum gravity we think we

know, and succinctly states that the number of degrees of freedom of a gravitational system

in a volume is bounded by the area of the boundary of the volume. Therefore, quantum

gravity defies our naïve notion of locality derived from quantum field theory.1

String theory naturally unifies gravity and field theories in a framework that a number

of highly non-trivial computations have shown to be self-consistent.2 In the perturbative

formulation of string theory on flat spacetime, the holographic principle is not immediately

1A more precise formulation involving the covariant entropy bound [56] is beyond the scope of this thesis,
and we refer the reader to the relevant literature for more information; for a review see [57].

2For the purposes of this chapter, “string theory” indicates both the perturbative formulations of the
ten-dimensional string theories, and the strongly-interacting completion and extension to eleven dimensions.

1



2 Introduction

manifest. However, non-perturbative phenomena hint at a relation between string theory

on a class of backgrounds and a conformal field theory [165, 116, 225]. Studying the low-

energy limit of string theories in presence of black branes indicates that quantum gravity on

AdSd+1 is equivalent to a conformal field theory on a d-dimensional space isomorphic to

the boundary of AdSd+1: this equivalence is the AdS/CFT correspondence.3 More precisely,

one connects independently decoupled sectors of the open and closed string descriptions

of the same system. This correspondence looks holographic by construction, and a more

careful analysis of concrete instances shows that the holographic principle is satisfied also

quantitatively: the degrees of freedom of the bulk, being the same as the degrees of freedom

of the boundary, saturate the holographic bound [207]. Moreover, this correspondence

surprisingly defies our initial statement that gravity is intrinsically different from quantum

field theory. In fact, on a certain class of spacetimes, a theory involving quantum gravity is

fully equivalent to a particular quantum field theory.

The supergravity approximation to string theory is ten- or eleven-dimensional, so the

full solution is of the form AdSd+1 × Xp, for a p-dimensional manifold Xp. The ur-examples

of the original paper by Maldacena [165] are the maximally supersymmetric supergravity

solutions that are products of an anti-de Sitter factor and spheres, the most studied one

arguably being the duality between Type IIB on AdS5 × S5 with N units of flux through S5

and four-dimensional N = 4 SU(N) super Yang–Mills theory. However, we may generalize

the setup by considering supergravity solutions with different internal spaces Xp, obtaining

less supersymmetric field theories [225]. For instance, one may obtain dualities with

four-dimensional N = 1 field theories by considering Type IIB on backgrounds of the

form AdS5 × X5 with X5 being a Sasaki–Einstein manifolds: the physical interpretation

would be a number of branes probing the singularity at the tip of the metric cone over X5

[143, 148, 1, 181]. In the effort of geometrizing high-energy physics, this leads to a number

of relations between the structure of the internal space and the dual field theory (e.g. the

geometric dual to a maximization [135, 177]).

From the physics point of view, an appealing aspects of the AdS/CFT correspondence

is that the dictionary found from string theory generally describes a strong-weak duality.

The low-energy and weak-coupling regime of string theory, described by a semi-classical

3By and large, in this thesis we will work on Riemannian spaces. Therefore, to be precise, AdSd+1 does not
refer to anti-de Sitter space in its cosmological setting, but rather to the hyperbolic space Hd+1. However, “the
H/CFT correspondence” doesn’t have the same appeal as “AdS/CFT,” so we will stick to the standard wording.
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supergravity theory, is equivalent to the strong-coupling regime of the gauge theory. This is

clearly seen in the example of the relation between Type IIB on AdS5 × S5 and N = 4 super

Yang–Mills, obtained by studying D3-branes at the origin of R6 = C(S5), the metric cone on

the five-sphere.

As the quantization of string theory on AdS5 × S5 is not yet fully understood, we should

restrict to a regime where the quantum corrections can be ignored. This requires the open

and closed string coupling to be small, that is gs � 1. The D3-brane solution can be

considered as a soliton in IIB supergravity, the low energy approximation of type IIB closed

superstring theory. The approximation is valid provided the string scale
√

α′ is negligible

compared to the extended structure of the solution L, which is fixed by the equations of

motion to be L4 = 4πgsα
′2N. Therefore, supergravity is a good approximation to the closed

string picture if gsN � 1. On the open string side, the D3-branes are four-dimensional

objects where open strings can end. At low energies, we can neglect the massive string states,

and the dynamics of the end-points of the open strings only involves the massless degrees

of freedom, which describe N = 4 SU(N) super Yang–Mills theory. The gauge and string

coupling can be identified by analysis of the DBI action of the branes, but also by identifying

the complex moduli of type IIB supergravity and N = 4 SYM, leading to g2
YM = 4πgs.

We then have to rephrase the conditions for the weak-coupling of gravity in terms of gYM:

gYM � 1 and g2
YMN � 1. This can only hold if N � 1. However, an old argument by

’t Hooft explains that at large N the effective coupling of non-Abelian Yang–Mills theory

is λ = g2
YMN [208], which for us implies that the gauge theory is strongly-coupled in the

planar limit.

Strongly-interacting field theories are a largely unexplored territory, as by definition

they lie beyond the validity of the perturbative regime. The AdS/CFT correspondence

allows us to construct a dictionary between observables in the large N, but strongly-coupled,

limit of a field theory and observables in the calculable limit of supergravity. Therefore,

it opens the door to the investigation of a new domain in field theory. Said field theory

appears as formulated on a space that is isomorphic to the boundary of the AdS part of the

supergravity solution. Thus, possible backgrounds are round spheres, flat and hyperbolic

spaces: the many faces of anti-de Sitter space, corresponding to different radial coordinates

and slicings [93]. This list is fairly limited, and for various reasons one may want to consider
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more general backgrounds.4 We may also generalize the correspondence in this direction.

Anti-de Sitter space (read Poincaré hyperbolic space) in d + 1 dimensions can be de-

scribed as the open unit ball Bd+1 with metric 4gRd+1 /(1 − |x|2)2, which is normalized

to have constant sectional curvature −1 (that is, the AdS radius is one). Note that if we

multiply the metric by ρ2, with ρ = (1− |x|2)/2, we obtain the closed unit ball Bd+1 with the

flat Euclidean metric, which extends to the boundary Sd = ∂Bd+1 as the round metric g of

constant sectional curvature +1. The crucial property of ρ is that it is positive on Bd+1 and

has a first order zero only on ∂Bd+1, where dρ 6= 0. However, any other function with these

properties would lead to a smooth metric on Bd+1, and would differ from ρ by a positive

smooth function ew, leading to a smooth metric e2wg. Since all extended metrics differ by a

conformal transformation, only the boundary conformal manifold (Sd, [g]) is well-defined.

This construction can be generalized in a fairly straightforward way by using Penrose’s

idea of conformal infinity [193]. Let Yd+1 be the interior of a compact (d + 1)-dimensional

manifold with non-empty boundary ∂Yd+1 ≡ Md. A complete Riemannian metric G on Yd+1

is conformally compact if there is a defining function ρ on Yd+1 such that the conformally

equivalent metric

G̃ = ρ2G (1.1.1)

extends to a smooth metric on the compactification Yd+1. A defining function is a smooth

non-negative function on Yd+1 with ρ−1(0) = ∂Yd+1 and dρ 6= 0 on ∂Yd+1. As above, the

induced metric g = G̃|∂Yd+1 is not uniquely defined, but the conformal class [g] is, and the

conformal manifold (Md, [g]) is called the conformal boundary (or infinity) of (Yd+1, G). A

conformally compact manifold (Yd+1, G) is asymptotically locally hyperbolic if it has asymptotic

negative constant scalar curvature R[G] → −d(d + 1). This corresponds to requiring

|dρ|∂Yd+1
= 1. We may then find another smooth defining function z such that the metric in

a neighbourhood of the boundary is expressed as

G =
1
z2 (dz2 + g) , (1.1.2)

where g has an analytic expansion in z.5 The structure of the expansion depends on the

4Different slicings of anti-de Sitter space correspond to different choices of radial coordinate, which in turn
correspond to conformal transformations at the boundary. Indeed all the backgrounds collected above are
locally conformally flat.

5It is easily checked that the scalar curvature for this metric does indeed asymptote to −d(d + 1) near the
boundary.
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dimensionality of the spacetime and on the field content of the bulk supergravity theory

[93, 79, 212]. For instance, if d + 1 is odd there are logarithmic terms that are known

to be related to the conformal anomalies of the boundary field theory [225, 127]. The

general framework is on firm mathematical grounds only in the case of pure gravity with a

cosmological constant, when the metric G is Einstein and the existence of the expansion has

been proved by Fefferman and Graham [96]. Theories with more fields, such as required by

supersymmetry, have to be considered on a case by case basis, even though the structure

may be similar, as we will see in the body of the thesis.

Therefore, we may generalize the AdS/CFT correspondence to include curved back-

ground manifolds by requiring the bulk to be asymptotically locally hyperbolic rather than

just anti-de Sitter. Rephrased in these terms, the correspondence relates a field theory on

a Riemannian manifold (Md, g) to supergravity on an asymptotically locally hyperbolic

space Yd+1 such that (Md, g) arises as the conformal boundary. However, this leads to the

next immediate question: how do we formulate the field theory on the curved manifold?

Even more specifically, how do we formulate a supersymmetric field theory on the curved

manifold preserving some supersymmetry?

1.2 Supersymmetry on curved spaces

The formulation of a field theory on a curved background is always ambiguous. We want

to deform the theory by relevant operators that leave the short-distance behaviour of the

theory unaltered, but we may rephrase the coupling of such operators in terms of curvature

tensors, showing explicitly that there could be different curved-space completions of the

same flat-space Lagrangian, as all the curvature terms vanish on flat Rd. However, the

earlier discussion leads us to look for a completion that leaves the curved-space theory

supersymmetric.

The simplest way of formulating on a curved manifold (Md, g) a generic field theory

described by a Lagrangian LRd is by minimal coupling: every instance of the flat space

metric is replaced by g and every partial derivative is replaced by the covariant derivative

∇ obtained from the Levi-Civita connection of g. This is what we learn in a General

Relativity course. However, it is not obvious that the resulting theory LMd will have the

same symmetries as the flat-space theory. This is trivial: if the variation of the flat space
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Lagrangian is a divergence on flat space, δLRd = ∂µ(· · · )µ, it’s not necessarily true that it

will be a divergence on Md, δ′LMd 6= ∇µ(· · · )µ.

The issue is directly related to the fact that the minimal coupling of a rigid supersym-

metric theory on a spin manifold Md requires the existence of a covariantly constant (or

parallel) spinor on Md representing the supersymmetry parameter of the supersymmetry

transformation. The existence of a parallel spinor sets a very stringent condition on the

geometry of the manifold: the holonomy has to be SU(n) ⊂ SO(2n), Sp(n) ⊂ SO(4n), G2 ⊂

SO(7), Spin(7) ⊂ SO(8) [216].6 In four dimensions, for instance, a covariantly constant

spinor on a compact manifold can only be found on flat tori T4 and K3 surfaces with

Calabi–Yau metrics.

Yet, there are ways around this. First of all, field theories that are supersymmetric and

Weyl invariant on flat space can be placed on conformally flat spaces by virtue of their very

own definition. Therefore, for instance, we can define a curved-space Lagrangian on any

round sphere or S1× Sd−1. Also, by exploiting the ambiguity in the curvature terms, we may

construct ad hoc curved-space completions of the flat-space Lagrangian that preserve some

supersymmetry on specific backgrounds. However, we are interested in more systematic

approaches to non-minimal coupling.

1.2.1 Twisting

The guiding principle is to generalize the necessity of covariantly constant spinor. Super-

symmetric field theories include a global symmetry, the R-symmetry, which is the outer

automorphism group of the supersymmetry algebra. We may couple the R-symmetry to a

background gauge field A and define a twisted supercharge with corresponding R-charged

spinor parameter satisfying

(∇µ − iAµ)ζ = 0 . (1.2.1)

We can then choose a field configuration for the background A that cancels the spin

connection part of the covariant derivative, thus leaving us with ∂µζ = 0, which is solved on

6We expect a relation with holonomy, because a covariantly constant spinor is invariant under parallel
transport and hence invariant under the holonomy group at any point. Moreover, the existence of a parallel
spinor implies that the manifold is Ricci-flat (simply take the integrability condition). The four-classes of
holonomy groups listed above are definitely Ricci-flat. However, is this the complete list? This question is still
to be solved. In the non-compact case, it is known that there are Ricci-flat metrics with SO(n) holonomy (and
not a subgroup): the Euclidean Schwarzschild metric is a complete metric on S2 ×R2 with holonomy SO(4). In
the compact case, it is an open question whether there are simply connected manifolds that have vanishing
Ricci tensor but have generic holonomy.
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any background by a constant spinor. The systematic method of formulating a field theory

on an arbitrary curved manifold by coupling the R-symmetry to a background gauge field

that cancels the spin connection goes under the name of twisting. Since it mixes part of the

R-symmetry group with the structure group of the frame bundle of spacetime, this approach

requires the starting field theory to have a sufficiently high amount of supersymmetry.

Often, and quite surprisingly, it leads to sectors of the set of observables that depend only

on a small part of the background geometry. Famously, for four-dimensional N = 2 field

theories, it leads to observables that reproduce the Donaldson invariants of the background

four-manifold which, under some topological restrictions, only depend on the smooth

structure [85, 219, 32]. For this reason, it is referred to as the topological twist. However, this

is not always the case: one may twist an N = 1 theory with U(1)R symmetry on Kähler

surfaces (with U(2)-structure) obtaining observables that depend on the complex structure

of the underlying manifold [137, 223].7

At times, it is easier to appeal to different equivalent descriptions of the topological

twist. By phrasing it in terms of group theory, we consider the structure group K of the

frame bundle of the background manifold and the R-symmetry group H, and we aim to

find a subgroup K′ of K×H that is isomorphic to K but acts differently on the field theory.

Specifically, we aim to find a twisted structure group K′ such that a number of supercharges

QI would transform as singlets under K′ and in some representation of the leftover global

symmetry group H′. For instance, in the case of the Donaldson–Witten twist of four-

dimensional N = 2 SYM, we have K = Spin(4) ≡ SU(2)` × SU(2)r, H = SU(2)R ×U(1),

and K′ = SU(2)` × (SU(2)r × SU(2)R)diag.8 The supercharges then become

7Here and throughout the thesis we consider the full topological twist, where we require the entire back-
ground to be arbitrary. However, one may also consider partial twistings, when the background is a product
manifold and one twists only on, e.g., one of the factors X. In this case, the field theory observables will usually
only depend in a simple way on the geometric structure of X. For instance, this is famously the case for class S
theories obtained by a partial twist on a Riemann surface Σ of the worldvolume theory of a M5-brane wrapping
R1,3 × Σ. The resulting theory only depends on the complex structure of Σ [104].

8We are being a bit cavalier here. Generically, the SO(4) structure group of the frame bundle may not be lifted
to Spin(4) = SU(2)× SU(2), with the obstruction being the second Stiefel–Whitney class w2(M4) ∈ H2(M4, Z2).
If this is not possible, and the manifold is not spin, we shall take the R-bundle to be just a SO(3)R bundle such
that w2(PR) = w2(M4), so that the spinors sections of S± ⊗VR would exist. More details on the global structure
will be discussed in the concrete examples in the body of the thesis.
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K×H K′ ×H′

QI
α (2, 1, 2)−1 (2, 2)−1

1-form Gµ

QI
α̇ (1, 2, 2)1 (1, 1)1 ⊕ (1, 3)1

scalar and

self-dual 2-form Q, χ+
µν

This is often the quickest method to determine the feasibility of a twist and the representa-

tions of the twisted field content, as we will see later in the thesis.

In terms of the geometry, we consider the SO(d)-structure of the generic Riemannian

manifold and look for associated vector bundle V with connection ωV . Supersymmetry

then requires the introduction of a R-symmetry gauge principal bundle PR, with associated

vector bundle VR and gauge connection ωR. The twisting consists in the identification of the

VR and V bundles and of their connections. As for the four-dimensional N = 2 twist, there

we have a Spin(4)-structure with associated rank 3 vector bundles Λ±2 M4 – the bundles of

(anti-)self-dual 2-forms – which inherit the (anti-)self-dual part of the Levi–Civita connection

ω± (with respect to the Lie algebra-valued indices of the connection). Supersymmetry

requires the existence of an SU(2)R principal bundle, to which we associate a rank 3 vector

bundle PR → M4 with connection ωR. The twist is the identification of Λ+
2 M4 and PR

together with ω+ and ωR.9

Twisting allows us to define fermions on an arbitrary manifold: spinors would be

sections of the spin bundle tensored with the R-symmetry bundle, even though the factors

may not exist on their own. However, identifying spacetime and R-symmetry bundles allows

one to define different sections of the tensor product bundle, which always exists.

The three reformulations of the topological twists above are all equivalent, and provide

insights into different aspects of the twisted theories. We will see that we are going to need

all of them as we go on.

1.2.2 General coupling to gravity and holography

One may also generalize this procedure. In a supersymmetric field theory, we always have a

stress-energy tensor and a supersymmetric supercurrent, which (often) resides in the same

supermultiplet. This supermultiplet contains a number of other bosonic and fermionic

terms, which can be coupled to a number of bosonic and fermionic fields, OB and OF.

9See footnote 8 for more precision.
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For instance, OB contain the variation of the background metric ∆gµν that couples to the

stress-energy tensor Tµν. In the deformed Lagrangian, the fermionic terms OF are set to

zero, and in order for the deformed theory to preserve supersymmetries QI , their variation

under QI should vanish. The equation δQOF = 0 translates in a further generalization of

(1.2.1), which schematically reads

(∇µ − iAµ)ζ = Xµζ , (1.2.2)

where both Aµ and Xµ belong to the set OB. We can give a physical interpretation to

(1.2.2) in terms of background supergravity [97]. In ordinary supergravity, the metric

is dynamical, whereas now we want to view it as a classical background and allow it

to take an arbitrary configuration (which is going to be the metric of the background

space of our supersymmetric field theory). Of course, in supergravity the metric belongs

to a supermultiplet together with other bosonic and fermionic fields. These will be our

previous OB and OF. Since these fields are not dynamical, they must reside in an off-shell

supergravity multiplet, to which we couple the supermultiplet containing the stress-energy

tensor. This construction constitutes a rigid limit of off-shell dynamical supergravity: we

let the graviton and the other auxiliary fields of the multiplet fluctuate, then we freeze

their degrees of freedom by sending the Planck mass to infinity, effectively decoupling

gravity from the field theory. Looking for supersymmetric classical backgrounds requires

the vanishing of the variation of the gravitino, which gives (1.2.2). Therefore, the rigid

supersymmetry algebra arises as the subalgebra of the algebra of supergravity gauge

transformations that leaves the background invariant. As in ordinary supergravity, the

number of supercharges preserved by the background are determined by the number of

solutions to the generalized Killing spinor equation (1.2.2). This construction provides

a consistent way of formulating a supersymmetric field theory on a curved background,

and we may then ask which backgrounds admit such completion. Again, as in ordinary

supergravity, the allowed background can be found by studying the geometric conditions

required in order to solve the generalized Killing spinor equation.

For concreteness, we will review the example of N = 1 field theories in four dimensions

with a U(1)R R-symmetry [97]. The stress-energy tensor resides in a R-multiplet that in
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components contains [107, 151]

(
j(R)
µ , Tµν, Sµα, Cµν

)
,

where j(R)
µ is the U(1)R-current, Tµν the stress-energy tensor, Sµα the supercurrent, and Cµν

is a conserved 2-form current. A relevant off-shell formulation of four-dimensional N = 1

supergravity is the new minimal formulation [5, 205]: the gravity multiplet of this theory

contains (
Aµ, gµν, Ψµα, Bµν

)
,

where Aµ is a U(1) gauge field, gµν is the graviton, Ψµα is the gravitino, and Bµν is a 2-form

gauge field. We may also dualize the field strength of the latter to a 1-form gauge field

V = i ∗ dB ,

which is obviously conserved.10 Coupling to new minimal supergravity allows us to

construct backgrounds for supersymmetric field theories by solving the generalized Killing

spinor equation coming from the vanishing of the supersymmetry variation of the gravitino.

In this context, we may consider supercharges of definite R-charge, corresponding to the

following charged conformal Killing spinor equations

(∇µ ∓ iAµ)ζ± = ∓Vµ(σ∓σ±)ζ± , (1.2.3)

where ζ± are two-component spinors and the generators of the Clifford algebra are

(σ±) = (±σ,−i12). If there are both supercharges, we may define a Killing vector bi-

linear K = ζ+σi
+ζ−∂i. The supersymmetry algebra is generated by the subalgebra of the

infinite-dimensional supergravity gauge transformations that leaves invariant the classical

background. In this case, acting on a field Φ of R-charge q, it reads

[δζ+ , δζ− ]Φ = 2i
(
LK − iqK

(
A + 3

2 V
))

Φ , δ2
ζ± = 0 .

Notice the appearance of the R-charge on the right-hand side of the transformation.

10Indeed
∇µVµ = i ∗ d ∗ (∗dB) = i ∗ d2B = 0 .
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We analyse the geometric conditions that (1.2.3) imposes on the background [90]. In the

case of a single Killing spinor, say ζ+, the background manifold turns out to be required to

be complex with Hermitian metric adapted to the complex structure constructed from the

spinor

Ii
j = − 2i

|ζ+|2
ζ†
+(σ+)

i
jζ+ .

We may then turn the problem upside down and try to reconstruct the fields of new minimal

supergravity from the geometry of the background (that is, g and I): curiously, (1.2.3) relates

the divergence of I and V

∇i Ii
j = 2Vj .

This makes beautifully clear the relation between the twist and the “rigid limit” for N = 1

in four dimensions. Comparing (1.2.1) and (1.2.3), we notice that we recover the former

when V = 0 in the latter, and indeed V = 0 if and only if the manifold is Kähler, which is

the condition for the twist of N = 1 SYM we saw in section 1.2.1! On the other hand, the

gauge field V in new minimal supergravity allows us to extend the formulation to complex

manifolds that are not Kähler, such as Hopf surfaces.

Notice that the analysis heavily depended on the choice of new minimal supergravity:

different choices of off-shell formulations of supergravity lead to different completions

of the stress-energy tensor multiplet and in general to different results. For instance, the

analysis based on new minimal supergravity has an evident problem: it does not lead to

an S4 background. However, S4 is conformally flat and we know that superconformal field

theories always have a U(1)R symmetry. In fact, one may use different off-shell formulations

of the same dynamical supergravity, such as the so-called conformal supergravity or old

minimal, and indeed S4 is among the backgrounds that one recovers by coupling to old

minimal, but not new minimal [97].11

This approach has been generalized to a number of different dimensions and different

supergravities (for a review see [89]), but for our purposes we are only going to need

the three-dimensional case with the same amount of supersymmetry, studied in [66].

Three-dimensional field theories with two supercharges and a U(1)R symmetry may be

formulated on manifolds admitting a transversely holomorphic foliation, with a metric

11We are being a bit sketchy for the sake of simplicity. It may be possible to recover S4 from new minimal
supergravity, but the conformally charged Killing spinor would have zeroes where some geometric objects
constructed as spinor bilinears degenerate. This would be in analogy with recovering S4 from conformal
supergravity: the complement of the zero locus is R4, which is obviously complex [145].
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that is transversely Hermitian. A transversely holomorphic foliation can be defined in

terms of a foliated atlas. Let {Uα} be an open cover of a foliated manifold with local

submersions fα : Uα → Cq such that the fibers of fα are the leaves of the foliation (that

is, we are immersing the space transverse to the foliation). We say that the foliation is

transversely holomorphic if the local diffeomorphisms τβα : fα(Uα ∩Uβ)→ fβ(Uα ∩Uβ) such

that fβ = τβα fα, are biholomorphisms for all α, β. Concretely, for a three-manifold this

means that there exists a unit vector field X determining the foliation and a basic integrable

complex structure J on the two-dimensional transverse spaces: X J = LX J = 0. In three

dimensions, the only closed topological manifolds that admit a transversely holomorphic

foliation are the total spaces of Seifert fibrations and torus bundles over a circle [58].

Finally, for superconformal field theories there is also a third completely different method

to find supersymmetric backgrounds, based on a clever use of holography originated in [145].

By using the AdS/CFT correspondence, we may realize some superconformal field theories

on curved manifolds at the boundary of asymptotically locally hyperbolic bulk spaces. Start

with an appropriate (d + 1)-dimensional supergravity with an AdS vacuum obtained by

truncating the ten- or eleven-dimensional supergravity approximation to string theory, and

impose that the bulk is a supersymmetric solution. This results in a set of generalized

Killing spinor equations in the bulk. We may then consider such spinor equations in a

neighbourhood of the conformal boundary using the (generalized) Fefferman–Graham

expansion of the fields. The leading order contributions are going to be spinor equations on

the conformal boundary Md, and the existence on Md of a superconformal field theory with

a gravity dual requires the equations to have a solution. This in turn imposes some geometric

requirements on Md. More precisely, the AdS vacuum supergravity solution is dual to the

superconformal field theory on flat space (or on a conformally flat manifold, cf. footnote

4). The asymptotically locally hyperbolic solution is dual to the relevant deformation of

the SCFT required to formulate it on a curved background, e.g., the background gauge

field coupling to the R-symmetry at the boundary extends to a non-trivial configuration of

the bulk gauge field dual to the R-symmetry. A priori, the hope of consistency is the only

reason why this latter holographic method should end with the same conclusions as the

previous method, based on the rigid limit of supergravity: for instance, in five dimensions it

is known that at the boundary of anti-de Sitter space one finds conformal supergravity and
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not new minimal [26].12 However, as we will see in detail in the bulk of the thesis, at least

for the instances we consider, this method leads to the same results as the previous one:

the boundary Killing spinor equations may be expressed as the generalized Killing spinor

equations of the appropriate supergravity of which we are taking the rigid limit.

1.3 Localization

The formulation of a supersymmetric field theory on a Riemannian compact curved manifold

greatly improves the convergence properties of the path integral, making at least plausible

the possibility of evaluating it in a rigorous way and computing some physical observables.

This relies on a beautiful interplay of quantum field theory, geometry and supersymmetric

ideas [221]. Let E be the integration space for the path integral of a quantum field theory

with symmetry group F. If the action of F on E is free, it generates a fibration E → E/F

and, by integrating first over the fiber, we may restrict the integral over E to an integral over

E/F at the expense of an overall factor of Vol(F). For instance, for an F-invariant observable

O this would give the one-point function

∫
E
DX e−SO = Vol(F)

∫
E/F
DX′ e−SO .

However, if the symmetry is fermionic the volume of the group vanishes. Therefore,

contributions to the one-point function of the observable may only come from the fixed

locus of the supersymmetry E0, where the action is not free, and we say we have localized on

this locus. In the generic case, we reduce to the evaluation of an integral over E0 consisting

of a one-loop determinant. In some cases, aided by combinations of the symmetries of

the background manifold and the supersymmetries, such integral may condense into a

finite-dimensional one.

The idea of reducing the infinite-dimensional path integral to a much simpler (possibly

finite-dimensional) integral already appears in [217] as a generalization of the Atiyah–Bott

fixed point theorem. In that case, we are interested in the index of an operator over the

infinite dimensional loop space L(Md) of a Riemannian manifold Md (that is, the space of

maps S1 → Md), and it is shown that this reduces to a problem on the finite-dimensional

12In fact, for five-dimensional background spaces it is not clear that the two methods lead to the same result
(see the discussion in [6]).
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space of zeroes of the Killing vector of the canonical U(1) action on L(Md).

However, the full power of the technique arguably becomes first manifest in the context of

the topological twist in four dimensions [219]. After the topological twist, the path-integral

of four-dimensional N = 2 theory on an arbitrary background M4 localizes onto Yang–Mills

instantons on M4, and correlation functions of a specific subset of operators localize to

integrals of forms over the moduli space of said instantons. Even more surprisingly, these

integrals may be evaluated (under some assumptions) and coincide with the Donaldson

invariants of M4 [223]! Moreover, the physical picture provides a much more powerful

computational tool: since the theory is independent of the background metric g, we may

consider a family of metrics gt = tg for t ∈ R, thus allowing us to move from long to

short distances. For t→ 0 we are studying the short-distance description, which is weakly

coupled because of asymptotic freedom, and we have the classical picture of the Donaldson

invariants in terms of SU(2) instantons. However, we may follow the RG flow all the way

to t → ∞ and study the long-distance description of the same theory. The long-distance

strongly-coupled description is in turn dual to a weakly-coupled Abelian theory [203]. This

gives a different picture of the Donaldson invariants expressed in terms of solutions to PDEs

involving Abelian gauge groups, the so-called Seiberg–Witten invariants. Since we have

only followed an RG flow, we derive a conjectural equivalence between the two invariants

[222, 180, 162].

A similar localization reasoning goes through for twisted four-dimensional N = 2

theories on manifolds with a U(1) isometry. In the language of section 1.2.1, the eight

supercharges combine into a scalar, a 1-form and a self-dual 2-form of the twisted symmetry

group K′ = (SU(2)` × SU(2)R)diag × SU(2)r. The scalar supercharge Q is the one familiar

from the topological twist, but one may also contract the fermionic 1-form with the Killing

vector of the U(1) isometry, obtaining a new conserved supercharge taking into account the

isometry. The paradigmatic example in this class is the so-called Ω-background, R4 with a

U(1)×U(1) action, where one is able to compute the partition function, as it localizes on

the moduli space of instantons equivariant with respect to the torus action [183, 184].

It is perhaps interesting to observe that the latter localization with respect to a U(1)

action on the manifold is a field theory counterpart of an older observation in the context

of gravity [113]. For gravitational instantons with a U(1) isometric action, the on-shell

gravitational action can be computed in terms of geometric objects evaluated at the U(1)



1.3 Localization 15

fixed points, the nuts and bolts.13

It is often the case, and it surely is in all the examples mentioned above, that the localiza-

tion computation is independent of the coupling parameter. Therefore, the localization of the

path integral with respect to a symmetry provides crucial insight into the strong-coupling

regime of the observables invariant under such symmetry. An important breakthrough

came with Pestun’s evaluation of the partition function and Wilson loop of N = 2∗ theory

on the four-sphere [194]. The entire idea is analogous to the original argument in [219].

Using a fermionic supersymmetry Q, the action of the theory can be deformed by a Q-exact

term tQV, and the modified partition function Z(t) is independent of t: the derivative Z′(t)

can be expressed as the path-integral of a Q-exact object

Z′(t) =
∫
DΦQ

(
exp−S−tQV V

)
,

but the integration over the field space reduces to a boundary integration by an analog of

Stokes’ theorem, and under some assumptions on the behaviour of the fields, this leads to

zero. Then, if the bosonic part of QV is positive, in the t→ ∞ limit the entire path localizes

on the Q-invariant subset, the BPS field configurations. This boils down to a (complicated)

finite-dimensional integral for a matrix model, which can be at least put in a closed form.

Pestun’s result opened the doors to a number of computations of supersymmetry-protected

observables in different dimensions, starting from three-dimensional N = 2 Chern–Simons-

matter models on the three-sphere [139] (for a review collecting part of the results in the

topic see [195]).

Moreover, the extension of the spirit of the localization computations to more general

backgrounds (based on the considerations made in the previous section) helps in investi-

gating the dependence of the partition function of the field theory on the geometry of the

background. Indeed, in certain cases one may rewrite the variations of the Lagrangians

under specific variations of the background asQ-exact terms, and in these cases the variation

of the quantum observables would be zero by the same argument as above. For instance, in

the topologically twisted theory, the entire stress-energy tensor is Q-exact, which implies

13As already observed in the beginning, gravity and field theory are different. A field theory instanton
(e.g. Yang–Mills instanton [209, 35]) is a solution to certain partial differential equations on a manifold, and
sometimes gives us information about the topology of the background. A gravitational instanton is a spacetime
itself : it is a connected manifold with a complete Einstein Riemannian metric (e.g. Euclidean Schwarzschild or
the Gibbons–Hawking spaces) [124].
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that the partition function (and a certain set of observables) is independent of the back-

ground metric. This is the case, again, under some assumptions on the topology of the

manifold – in general there could be chambers and wall-crossing in the invariants [180]. In

the four-dimensional N = 1 case reviewed in section 1.2.2, the partition function only de-

pends on the complex structure of the underlying manifold but not on the Hermitian metric

[68]. Similarly, for the analogous case of three-dimensional N = 2 theories summarised

in the same section, the partition function only depends on the transversely holomorphic

foliation of the background three-manifold, and not on the Hermitian transverse metric

[68]. Note that, in addition to the aforementioned conditions required on the space of

fields, Q-exactness considerations require the path-integral measure to be consistent with

supersymmetry: in the original Witten’s case, this was justified a posteriori by the soundness

of the mathematical formulation of Donaldson theory. However, in general one is not

necessarily justified to make this assumption (see also footnote 2 of [68]).

Results from the strongly-coupled regime may also improve our understanding of

quantum field theory itself. Most mathematically rigorous formulations of relativistic

quantum field theory are based on the ideas of perturbation theory, and do not take into

account the existence of dualities.14 However, we have known since the 70s, and in a even

more dramatic way since the Second Superstring Revolution, that the same physics can

be described by wildly different mathematical formulations: for instance, fermions can be

equivalent to bosons [71] and gauge redundancies of different types can be identified in

certain regimes [202, 134]. Dualities such as the latter, of Seiberg-type, may be checked in

greater detail by comparing the partition functions computed using localization, as they

are valid for supersymmetric field theories [140]. Moreover, as the partition function is

protected by supersymmetry, it can provide information about properties of the quantum

field theory along the renormalization group flow, such as the R-symmetry [136].

Since localization computations provide a glimpse into the entire supersymmetric sector

of the field theory observables, they are also crucial in establishing relations between

theories even in different dimensions. This successful exploration of such correspondences

is obviously guided by physical constructions, as in the notable case of compactifications

of the M5-branes theory, but it heavily relies on the knowledge of the structure of the

observables gained by localizing the path integral (the paradigmatic example being the

14In addition, observe that the very hard problem of constructing the path integral measure of the field theory
collapses after localization to a well-defined measure.
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consideration of the structure of the partition function of N = 2 field theories on the

four-sphere and its relation to Liouville theory [10, 227]).

1.4 Precision holography

In addition to all the above insight, an improved understanding of the strongly-coupled

regime can also lead to a better picture and more refined checks of the AdS/CFT correspon-

dence. The correspondence provides a dictionary between the operators of the two theories,

and with the help of additional symmetries, such as supersymmetry, we may be able to

sharpen the entries in this dictionary.

As already mentioned, the general prescription of the AdS/CFT correspondence is that

quantum gravity on an asymptotically locally hyperbolic manifold Yd+1 is fully equivalent to

a conformal field theory on a space isomorphic to the boundary of Yd+1, so in particular the

partition functions of the two theories (whatever this means) are the same.15 Unfortunately,

we have very little understanding of quantum gravity, let alone of its partition function.

Therefore, we approximate it by supergravity, and the regime where the approximation

holds corresponds to the strongly-coupled regime of the field theory (in an appropriate

limit where the rank of the gauge group is large), as we saw in section 1.1.

Also, as we reviewed in section 1.2.2, rigid supersymmetry generically equips the

background manifold (Md, g), on which the gauge theory is defined, with certain additional

geometric structure, such as an integrable complex structure for four-dimensional N = 1

theories. In the gravitational dual description, one seeks asymptotically locally hyperbolic

solutions to an appropriate supergravity theory in d + 1 dimensions, where (Md, [g]) arises

as a conformal boundary. A saddle point approximation to quantum gravity in this bulk

then identifies16

Z[Md] = ∑ e−S[Yd+1] . (1.4.1)

Here, Z[Md] denotes the partition function of the gauge theory defined on Md, while S[Yd+1]

is the holographically renormalized supergravity action, evaluated on an asymptotically

15In this framework, by “quantum gravity” we really mean string theory: it includes a quantized theory of
pure gravity, but it also requires a number of other states and branes.

16We will focus on the on-shell action, corresponding to the partition function of the field theory, but an
analogous construction would allow us to compute the holographic counterparts of correlators in field theory in
terms of exchanges in the bulk (for instance, see the classic [100, 83] and the more recent results on four-point
functions and quantum corrections [196, 7, 16]).
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locally hyperbolic solution to the equations of motion of the (d + 1)-dimensional theory.

The manifold Md = ∂Yd+1 is the conformal boundary, with the boundary conditions for

supergravity fields on Yd+1 fixed by the rigid background structure of Md.

The general AdS/CFT relation is somewhat schematic, and both sides must be inter-

preted appropriately. The partition function of the field theory may suffer from ambiguities

related to choices of renormalization schemes, and even in the case of topological field

theories may be infinite due to the summing over topological sectors. Considering the

right-hand side is the main aim of this dissertation.

The gravitational action on a space with boundaries has to be supplemented by a

boundary term that makes the variational problem well-defined, reproducing the Einstein

equations in the bulk. This is the Gibbons–Hawking–York term, proportional to the extrinsic

curvature of the boundary [229, 112]. When evaluated on a solution, the sum of the on-

shell action Io−s and the Gibbons–Hawking–York term IGHY will generically diverge. The

traditional method for removing this infinity is the background subtraction, that is, referring

all the quantities to their analogues on a “reference” spacetime, such as flat space. Even

though this prescription led to impressive agreements with quantum gravity computations

[112], it suffers from an important drawback, as in general one may not embed a reference

background in an arbitrary spacetime. However, for asymptotically hyperbolic spaces, there

is a way out of the impasse: all the divergences can be expressed as local integrals of geometric

quantities computed in terms of the induced metric on a surface of constant radial distance

(where the radius can be identified e.g. with 1/z in the Fefferman–Graham expansion)

[27, 93]. The holographic renormalization is the process of removing such divergences. Recall

that near the boundary of any asymptotically locally hyperbolic space we may introduce a

Fefferman–Graham-type expansion of the geometric quantities in terms of a coordinate z

with z = 0 at the boundary. We cut off the bulk at a radius z = δ near the boundary, define

Yδ to be the internal region and evaluate Io−s + IGHY on Yδ and its boundary. Then, we

introduce local counterterms Ict constructed from the geometry induced on the hypersurface

∂Yδ in order to remove the divergences that would arise by taking the limit where Yδ covers

the entire Yd+1. This method provides a finite quantity

S = lim
δ→0

(
Io−s|Yδ

+ IGHY|∂Yδ
+ Ict|∂Yδ

)
,
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which is the holographically renormalized on-shell action appearing on the right-hand side

of (1.4.1). Since the anti-de Sitter radius is identified with the energy scale of the field theory

by holography [207], the holographic renormalization corresponds to regularization of the

UV divergences in the dual field theory.

The method of holographic renormalization is a systematic method developed from

the very beginnings of the subject with a variety of approaches. This mirrors the corre-

sponding procedure in field theory and forms part of the foundations of the AdS/CFT

correpondence [225, 116, 127, 27, 78, 79, 47, 48, 170, 204]. The infinite counterterms obtained

via this approach are universal. However, the method leaves open the possibility of finite

counterterms compatible with the requirements of the theory. The existence of these terms

implies non-uniqueness of the renormalization scheme, and in such situations it is generally

unclear how to match schemes on the two sides. Given that the classical gravitational de-

scription is typically valid only in a strong-coupling limit of the field theory, in general it is

difficult to directly compute observables on both sides, and hence make precise quantitative

comparisons.

However, the results obtained for supersymmetric quantum field theories defined on

curved spaces, and specifically the exact computation of BPS observables such as the

partition function by means of localization techniques, give us the possibility of sharpening

(1.4.1): the field theory results may be compared with the holographic dual supergravity

computations and provide a precision check of AdS/CFT.17

Comparison of the two sides of the AdS/CFT correspondence using localization brought

a number of spectacular results, especially for AdS4/CFT3. To mention a few, the N3/2

scaling of the free energy of the M2-brane theory [147] was recovered from a field theory

computation in ABJM theory on S3 [88], and the same free energy computation generalized

to a number of cases of N = 3 [128] and N = 2 models [174]. Moreover, one may deform

the spherical background, and compute via localization to matrix models the free energy

17Precision checks of the AdS/CFT correspondence have also been completed for AdS3 and two-dimensional
conformal field theories, starting from the fareytail of type IIB string theory on AdS3 × S3×K3 [84]. However,
because of the peculiar status of three-dimensional gravity and two-dimensional conformal field theory, that
case is very different from what is considered in this thesis. In the case of specific highly symmetric field
theories, such as N = 4 SYM in four dimensions, one may take advantage of integrability in the planar limit,
and compute the scaling dimensions of some local operators as a function of the effective coupling constant λ.
This corresponds, via the AdS/CFT, to integrability of the non-linear sigma model of the worldsheet theory
of type IIB string theory on AdS5 × S5. Precision computations have been done in this setting achieving full
agreement between the two sides of the correspondence. In this thesis we will consider field theories with less
supersymmetry and the effective lower-dimensional supergravity description, for a review of the integrability
phenomenon in the context of AdS/CFT see [33].
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of Chern–Simons-matter theories on squashed spheres and more general three-manifolds

[123, 11], matching precisely the holographic counterpart in the large N limit [172].

However, a more in-depth investigation of the precise match soon has to deal with at

least some of the issues involved in (1.4.1), as any ambiguities in defining finite renormalized

quantities in gravity are expected to be resolved in making such comparisons. Among

them is the question of symmetries of the two sides: regularization schemes are usually

expected to preserve the symmetries of the theory, and the choice of the radial cut-off in the

holographic renormalization scheme is not necessarily compatible with supersymmetry. As

well as trying to match precise quantities on both sides, there are more general predictions

that may also be compared, such as the dependence of BPS observables on given sets of

boundary data. These latter tests of the correspondence are inherently more robust than

comparing observables in particular theories/backgrounds, and will therefore be a main

focus of this dissertation.

There are numerous additional subtleties involved in (1.4.1) that we have not yet men-

tioned and that will not feature prominently in the main body of the work; the most glaring

one being the domain of the sum on the right-hand side, which is not well understood. One

should certainly include all saddle point solutions on smooth manifolds Yd+1. However,

the existence of such a filling immediately implies that Md has trivial class in the oriented

bordism group ΩSO
d , in general constraining the choice of Md. That said, various explicit

examples (for example, [9, 8, 28]) suggest that requiring Yd+1 to be smooth is in any case

too strong: one should allow for certain types of singular fillings of (Md, g), and indeed

these may even be the dominant contribution in (1.4.1) (especially for non-trivial topologies

of Md). There is no prescription on the inclusion of singular solutions, and the same is

true of contributions from complex saddle points, that is, complex-valued metrics (such as,

trivially, the Euclidean Kerr black hole). One would not expect a saddle point approximation

to give necessarily a real solution, so why should that be the case for quantum gravity?

There have been some speculations (e.g. [166]), but in this dissertation we will focus on

real solutions. Even for smooth solutions, one may question the topology of the bulk: the

supergravity action S typically scales with a positive power of N, and in the N → ∞ limit

only the solution of least action contributes to (1.4.1) at leading order, with contributions

from other solutions being exponentially suppressed. Topology changes in the bulk conjec-

turally correspond to phase transitions in the dual field theory (e.g. the transition of N = 4
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SYM dual to the Hawking–Page transition for black holes in anti-de Sitter [126, 225]), but

it is a priori not clear how to choose the right topology for the interior corresponding to

field theories on the boundary, and this has non-trivial consequences for the uplift to string

theory [125, 173, 214].

1.5 Outline

Following the previous boundary description of the context of the topic, the bulk of the

thesis is divided in two parts, corresponding to the holographic study of the approaches to

rigid supersymmetric field theories outlined earlier.

In the first part, we consider the holographic dual to the topological twist of supersym-

metric field theories in three and four dimensions. In both cases, we begin by introducing

the appropriate dual supergravity theory, the Fefferman–Graham expansion of the fields

and holographically renormalizing the action. By expanding the bulk spinor equations, we

show that on the conformal boundary we have the generalized Killing spinor equations

of a conformal supergravity theory that admits the topological twist as its solution on any

Riemannian three-/four-manifold. We then prove that the on-shell gravitational action,

dual to the partition function of the boundary conformal field theory, is independent of the

metric on the conformal boundary. More geometrically, we reformulate the conditions for

a bulk supersymmetric solution in terms of a system of first-order differential equations.

Using this system, we show that both in three and four dimensions the on-shell supergravity

action vanishes for a smooth real solution dual to the boundary topological twist.

In the second part, we turn to approaches different from the topological twist. As

already outlined, one may define a supersymmetric field theory on a curved d-manifold by

coupling to d-dimensional supergravity and taking a rigid limit and also, for a conformal

field theory, by studying the conformal boundary of a (d + 1)-dimensional supergravity

solution and appealing to the AdS/CFT correspondence. In three and four dimensions, the

results of the two methods agree and we refer to them as “rigid supersymmetry.” In these

two dimensions, the analysis of the dependence of field theory partition function on the

background geometry leads to a set of supersymmetric Ward identities. The second part of the

dissertation is concerned with the study of the holographic dual of such identities. After

the introduction of the relevant supergravity theories in four and five dimensions and their



22 Introduction

holographic renormalization, we show that the gravitational on-shell action satisfies the

supersymmetric Ward identities in the former case, but fails to do so in the latter. In four

dimensions, we are then able to evaluate the on-shell action for a large class of self-dual

solutions and match it to the field theory counterpart. In five dimensions, we have to

introduce a set of novel (finite) boundary counterterms such that the improved on-shell

action satisfies the supersymmetric Ward identities. Then, under some global assumptions

we evaluate the renormalized on-shell action and compute the conserved charges, showing

that they satisfy a BPS condition. Finally, we consider a number of examples, illustrating

further the rôle of our new boundary terms and matching the gravity and field theory

observables.

The AdS/CFT correspondence has been a source of great discoveries for the last twenty

years. Yet there are many subtleties to be clarified in the dictionary between gravity and

field theory. The work presented in this dissertation sheds some light on the gravity side

of the duality by studying cases where supersymmetry is crucial to obtain a handle on

the field theory. By doing so, it highlights many crucial points that are sometimes skirted

– one might wryly condense the entire thesis as a long gloss over two footnotes (number

10 in [219] and number 2 in [68]). However, this is not the case, for as soon as one opens

Pandora’s box a number of questions arise, some of which are considered at the end of each

part of the thesis.
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Topological twist
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Topological AdS5/CFT4

2.1 Introduction

In the first part of the thesis, we propose to formulate a “topological” version of AdS/CFT,

where the boundary theory is a topological QFT (TQFT). A key motivation for studying

AdS/CFT in this set up is that the field theory is potentially under complete control:

observables are mathematically well-defined and exactly computable. TQFTs of this sort

typically have a finite number of degrees of freedom, and in some instances can be solved

completely.1 These theories are often also of independent mathematical interest, since

observables are topological/diffeomorphism invariants.

Under these desirable assumptions for the field theory, one can then focus on the dual

gravitational description. In principle this is defined by a quantum gravity path integral,

with boundary conditions determined by the observable one is computing. However, we

have no precise definition of this, and in practice an appropriate strong-coupling (usually

large rank N) limit of the QFT is described by supergravity. This classical limit is to be

understood as a saddle point approximation to the quantum gravity path integral, where one

instead finds classical solutions to supergravity with the appropriate boundary conditions.

1For example, the Donaldson–Witten twist of N = 4 SU(N) super-Yang–Mills is relevant for the set up in
this chapter. For N = 2 the topological correlation functions have been computed explicitly for simply-connected
spin four-manifolds of simple type in [154]; they may be written in terms of Abelian Seiberg–Witten invariants.

25
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Yet, as already emphasised, even this is quite poorly understood. When the dual theory is a

TQFT, in principle all observables are exactly computable in field theory for many classes of

theories defined on different conformal boundary manifolds. Since the semi-classical gravity

result must match the TQFT description, the AdS/CFT correspondence can potentially help

to clarify the answers to some of the questions arising in the saddle point approximation

and discussed in chapter 1.

Of course, one is tempted to push this line of argument further and speculate that this

is a promising setting in which to try to formulate a topological form of quantum gravity

on the AdS side of the correspondence. Such a theory should be completely equivalent to

the dual TQFT description. At present this looks challenging, to say the least, but there is

an analogous construction in topological string theory. Here U(N) Chern–Simons gauge

theory (a Schwarz-type TQFT) on a three-manifold M3 is equivalent to open topological

strings on T∗M3 [224]. There is a large N duality relating this to a dual closed topological

string description. For example, for M3 = S3 the closed strings propagate on the resolved

conifold background, with N units of flux through the S2 [188]. Here both sides are under

computational control, and relate a TQFT to a topological sector of quantum gravity (string

theory). This duality shares many features with AdS/CFT,2 and might hint at how to attack

the above problem.

For the time being, we begin much more modestly, setting up the basic problem in

N = 4 gauged supergravity in five dimensions. With appropriate boundary conditions this

defines the Donaldson–Witten topological twist of the dual N = 2 theory on the conformal

boundary four-manifold, and we focus on the simplest observable, namely the partition

function. Under AdS/CFT in the supergravity limit, minus the logarithm of the partition

function is identified with the holographically renormalized supergravity action. We refer

to this as the gravitational free energy.

The Donaldson–Witten twist may be interpreted as coupling the theory to a particular

background N = 2 conformal gravity multiplet, and in the next section we briefly review

some aspects of the twisted theory relevant to the holographic construction. On the other

hand, four-dimensional N = 2 conformal gravity arises on the conformal boundary of

asymptotically locally hyperbolic solutions to the Romans [197] N = 4+ gauged supergrav-

ity in five dimensions [186]. The real Euclidean signature version of this theory described

2This was emphasized by C. Vafa in his recent talk at the Princeton Workshop 20 Years Later: The Many Faces
of AdS/CFT.
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in section 2.3 has, in addition to the bulk metric Gµν, an SU(2) R-symmetry gauge field

AI
µ (I = 1, 2, 3), a 1-form C, and a scalar field X. (In general there is also a doublet of

B-fields, but this is zero for the topological twist boundary condition, and moreover may be

consistently set to zero in the Romans theory.)

The main property of a topological field theory is that appropriate correlation functions,

including the partition function, are independent of any choice of metric. Assuming one is

given an appropriate solution to the Romans theory with (M4, g) as conformal boundary,

we therefore expect the holographically renormalized action to be independent of g. Here

one can mimic the field theory argument in [219], and attempt to show that arbitrary

deformations gij → gij + δgij leave this action invariant. We have the general holographic

Ward identity formula

δS =
∫

M4

d4x
√

det g
(

1
2 Tij δgij +J i

I δAI
i + Ξ δX1

)
. (2.1.1)

Here S is the renormalized supergravity action of the Euclidean Romans theory, defined in

section 2.3, while (gij, AI
i , X1) are the non-zero background fields in the N = 2 conformal

gravity multiplet for the topological twist. Equivalently, these arise as boundary values of

the Romans fields: in particular AI
i is simply the restriction of the bulk SU(2) R-symmetry

gauge field to the boundary at z = 0, while X1 = limz→0(X− 1)/z2 log z. For the topological

twist these quantities are all fixed by the choice of metric gij: AI
i is fixed to be the right-

handed spin connection, while X1 = −R/12, where R = R(g) is the Ricci scalar for g. Thus

the variations of these fields appearing in (2.1.1) are all determined by the metric variation

δgij. On the other hand, Tij, J i
I and Ξ are respectively the holographic vacuum expectation

values (VEVs) of the operators for which these boundary fields are the sources. In particular

Tij is the holographic stress-energy tensor. As is well-known, the expansion of the equations

of motion near z = 0 does not fix these VEVs in terms of boundary data on M4, but rather

they are only determined by regularity of the solution in the interior. Determining these

quantities for fixed boundary data is thus an extremely non-linear problem. What allows

progress in this case is supersymmetry: the partition function should be described by a

supersymmetric solution to the Romans theory.3 By similarly solving the Killing spinor

3If the dominant saddle point in the AdS/CFT relation (1.4.1) were non-supersymmetric, this would
presumably be interpreted as spontaneous breaking of supersymmetry in the dual TQFT. This is certainly not
expected in the case at hand, but would be interesting to investigate further.
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equations in a Fefferman–Graham-like expansion, we are able to compute these VEVs

for a general supersymmetric solution. This still leaves certain unknown data, ultimately

determined by regularity in the interior, but remarkably these constraints are sufficient

to prove that (2.1.1) is indeed zero, for arbitrary δgij! More precisely, in section 2.5, we

show that the integrand on the right hand side is a total derivative, and its integral is then

zero provided M4 is closed, without boundary. The computation, although in principle

straightforward, is not entirely trivial, and along the way we require some interesting

identities that are specific to Riemannian four-manifolds (notably the quadratic curvature

identity of Berger [45]).

We next analyse in more detail the geometry of supersymmetric solutions to the five-

dimensional bulk supergravity theory in section 2.6. Because of the R-symmetry bundle,

this geometry is characterized by what we call a twisted Sp(1) structure satisfying a certain

first-order differential system. Using these equations, remarkably we are able to show

that the bulk on-shell action is always a total derivative. By carefully analysing the global

structure of the twisted structure, and how this behaves where the bulk spinor becomes

zero, this is shown to be globally a total derivative for any smooth solution. This is true

on any five-manifold Y5 that fills a four-manifold boundary M4 = ∂Y5. Moreover, on

applying Stokes’ theorem the bulk integral then always precisely cancels the boundary

terms (including the holographic counterterms) in the action, with the net result being that

the gravitational free energy of any smooth solution is zero!

These are the main results of the chapter, but they immediately raise a number of

interesting questions. We postpone our discussion of these until the end of part I, after

considering a lower-dimensional twist in the next chapter.

2.2 The Donaldson–Witten twist

In [219], Witten gave a physical construction of Donaldson invariants of four-manifolds

[85, 86, 87] as certain correlation functions in a topological quantum field theory. This theory

is constructed by taking pure N = 2 Yang–Mills gauge theory and applying a topological

twist: identifying a background SU(2) R-symmetry gauge field with the right-handed

spin connection results in a conserved scalar supercharge Q, on any oriented Riemannian

four-manifold (M4, g). This has been reviewed in some detail in section 1.2.1.
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The path integral of the twisted theory localizes onto Yang–Mills instantons, and cor-

relation functions of Q-invariant operators localize to integrals of certain forms over the

instanton moduli space M. These are precisely Donaldson’s invariants of M4. They are,

under certain general conditions, independent of the choice of metric g on M4, but in

general depend on the diffeomorphism type of M4. In particular, Donaldson invariants

can sometimes distinguish manifolds which are homeomorphic but not diffeomorphic.

That this is possible is because the instanton equations are PDEs, which depend on the

differentiable structure. From the TQFT point of view, independence of the choice of metric

follows by showing that metric deformations lead to Q-exact changes in the integrand of the

path integral. For example, the stress-energy tensor is Q-exact, implying that the partition

function is invariant under arbitrary metric deformations, and hence (at least formally) is a

diffeomorphism invariant.

Donaldson–Witten theory is typically studied for pure N = 2 Yang–Mills, with gauge

group G = SU(2) or G = SO(3). However, the topological twist may be applied to any

N = 2 theory with matter, and also for any gauge group G . For example, G = SU(N)

Donaldson invariants were first studied in [168], with further mathematical work in [152].

In particular the latter reference contains some explicit large N results for the partition

function on certain four-manifolds. As recounted in chapter 1, historically the development

of Donaldson-like invariants took a rather different direction after the introduction of

Seiberg–Witten invariants in [222]. The former may be expressed (conjecturally) in terms of

the latter, but Seiberg–Witten theory is simpler and easier to compute with.

The Donaldson–Witten twist of N = 2 gauge theories can also be understood as a special

case of rigid supersymmetry. Soon after Witten’s paper, Karlhede–Roček interpreted the

construction as coupling the gauge theory to a background (i.e. non-dynamical) N = 2

conformal gravity [142]. The background SU(2) R-symmetry gauge field is part of this

gravity multiplet, and is embedded into the spin connection in such a way that the Killing

spinor equations of the theory admit a constant solution, leading to the conserved scalar

supercharge Q. There is also an auxiliary scalar field turned on in this background gravity

multiplet, proportional to the Ricci scalar curvature of (M4, g). Generalizing [142], N = 2

theories may be coupled to a background N = 2 conformal supergravity in the spirit of

[97] reviewed in section 1.2.2 [146]. Generically this requires the existence of a conformal

Killing vector on (M4, g), but the topological twist arises as a degenerate special case, in
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which (M4, g) is arbitrary.

2.2.1 Half-twisted N = 4 super Yang–Mills

The procedure of topological twisting may also be applied to theories with different amounts

of supersymmetry, and in various dimensions. For example, the larger SU(4) R-symmetry

of four-dimensional N = 4 Yang–Mills leads to three inequivalent twists (two of them were

constructed by Yamron in [228], and a third one is briefly mentioned there as a “private

communication” from Witten). To classify them, it is easier to see the twists from the group-

theoretic point of view: the spacetime symmetry group is still K = Spin(4) = SU(2)` ×

SU(2)r, but the R-symmetry group is H = Spin(6)R = SU(4)R, and the supercharges

transform under K×H as

QI,α (2, 1, 4) , QI
α̇ (1, 2, 4) . (2.2.1)

One then looks for a homomorphism from Spin(4) into SU(4)R, and defines the twisted

spacetime symmetry group to be the diagonal combination of Spin(4) and the image of

the homeomorphism in SU(4)R, thus obtaining a new group isomorphic to Spin(4), but a

different physical theory (at least generically). Concretely, the twists can be characterised

by the way the representation 4 of SU(4)R transforms as a representation of Spin(4), so

we need to look for four-dimensional representations of Spin(4), and then choose those

giving a supercharge that is a scalar under K′.4 We obtain three inequivalent twists by the

following four-dimensional representations of K

(i) (2, 1)⊕ (1, 2) ,

(ii) (2, 1)⊕ (2, 1) ,

(iii) (1, 1)⊕ (1, 1)⊕ (1, 2) ,

(2.2.2)

4The difference between 4 and 4 is accounted for by the different charge under the remnant U(1) symmetry
of the twisted theory, which we are not mentioning in this section. For more details, see [141].
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and obviously their mirrors (with the two SU(2) factors exchanged). Under the twisted

spacetime group K′, the supercharges transform as

(i) 2(1, 1)⊕ (1, 3)⊕ (3, 1)⊕ 2(2, 2) ,

(ii) 2(1, 1)⊕ 2(3, 1)⊕ 2(2, 2) ,

(iii) (1, 1)⊕ 2(2, 1)⊕ 2(1, 2)⊕ (1, 3)⊕ (2, 2) .

(2.2.3)

It is easy to do some further group theory and show that these are the only four-dimensional

representations that result in a scalar supercharge. For instance, obviously the trivial

4→ 4(1, 1) does not produce scalar supercharges, and so does (1, 1)⊕ (1, 3), which yields

(2, 1)⊕ 2(1, 2)⊕ (2, 3)⊕ (1, 4) . (2.2.4)

The first twist in (2.2.2), which is the one privately communicated to Yamron by Witten,

was originally studied by Marcus [167], and later found an application to the Geometric

Langlands program thanks to the work of Kapustin and Witten [141]. The second twist is

the Vafa–Witten twist, for which the only non-vanishing observable is the partition function

corresponding to the Euler characteristic of a moduli space of instantons [215].5 For both

these twists there are two scalar supercharges. However, the third twist only contains one

scalar supercharge, and is thus often referred to as the “half-twisted” N = 4 theory. This is

the theory relevant for this paper, and can be also obtained by viewing the N = 4 theory as

an N = 2 theory coupled to an adjoint matter multiplet and applying the Donaldson–Witten

twist [228]. An important restriction on the possible background manifolds is given by the

fact that the half-twisted theory still contains spinor fields [228]. Therefore, it can only be

defined on spin manifolds.

For general gauge group G , the path integral localizes [153, 154] onto solutions to a

non-Abelian [156] version of the Seiberg–Witten equations, in which the spinor field is in

the adjoint representation of G (see also the review in [163]). In particular the (virtual)

dimension of the relevant non-Abelian monopole moduli spaceM may be computed using

index theory, leading to

dimM = − 1
4 dim G · [2χ(M4) + 3σ(M4)] . (2.2.5)

5The virtual dimension of the relevant moduli space is exactly zero, so the only observable that can be
non-vanishing is the partition function. Any other observable would vanish because of fermionic zero-modes.
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Because of the associated fermion zero modes, the partition function of the theory vanishes

unless the right hand side of (2.2.5) is also zero. On the other hand, when the right hand side

of (2.2.5) is positive, one obtains non-zero invariants in the TQFT by inserting appropriate

Q-exact operators into the path integral.

An important observation is that (2.2.5) is independent of the topology of the gauge

bundle over M4, unlike the corresponding case for Donaldson theory (pure N = 2 Yang–

Mills with gauge group G ). Because of this, all choices of gauge bundle seem to contribute to

the partition function at the same time. The left hand side of (1.4.1) then needs appropriately

interpreting for such twists of four-dimensional N = 2 SCFTs, as taken at face value it

may be divergent. There is a standard way to deal with this, namely to refine the partition

function via the U(1)R charge. For example, this is discussed at the end of section 2 of [117],

and in [118].6 This could play an important rôle in making sense also of the right hand side

of (1.4.1) – we will briefly comment on this at the end of section 2.6.4.

As far as we are aware, computations of topological observables in the half-twisted

N = 4 theory, for general G = SU(N), have not been done explicitly. However, for

G = SU(2) the partition function and topological correlation functions have been computed

explicitly for simply-connected spin four-manifolds of simple type [154]. This is done by

giving masses, explicitly breaking N = 4 to N = 2, leading to an N = 2 gauge theory

with a massive adjoint hypermultiplet, a twisted version of the N = 2∗ theory. The twisted

theory is still topological, and the relevant observables are written in terms of Seiberg–Witten

invariants using the methods of [180]. Observables for the original theory are then identified

with the massless limit of these formulae (when this makes sense), although the validity of

this assertion is not completely clear. In any case, to compare to the holographic construction

in this chapter one should compute the large N limit for gauge group G = SU(N). We note

that an analogous large N limit of Donaldson invariants (for pure N = 2 SU(N) Yang–Mills)

has been computed in [152]. Unlike the formula (2.2.5), here the dimension of the moduli

space of instantons depends on the topology of the gauge bundle. One can then choose

this bundle in such a way that dimM = 0. The partition function is a certain signed count

of the points that make upM, and the large N limit was computed for a certain class of

6The necessity of refinement is not clear in the literature, as the partition function for twisted N = 2 SCFTs
(for which the bundles would all be on the same footing) has been computed without refining and without
divergences [179]. Moreover, for the case of the half-twist of N = 4 SYM, the partition function is known on K3,
and the instantons contribute weighted by their instanton number q = e2πiτ , where τ is the complexified gauge
coupling. Therefore, the series already contains a counting parameter.
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four-manifolds in [152].7

2.2.2 Uplifting

As we saw in chapter 1, in order to make quantitative comparisons between calculations

on the two sides of the AdS/CFT correspondence, the holographic computation in the

lower-dimensional effective supergravity needs to be embedded in string theory. For the

case at hand this is straightforward, especially thanks to the amount of work done on

five-dimensional supergravity dual to four-dimensional field theories. The relevant five-

dimensional gauged supergravity we are interested in was constructed some time ago

by Romans, it is usually referred to as N = 4+ model and admits a supersymmetric

anti-de Sitter vacuum [197]. It is a consistent truncation of both Type IIB supergravity

on S5 [164], and also of eleven-dimensional supergravity on N6 [110], where N6 are the

geometries classified by Lin–Lunin–Maldacena [160]. This means that any solution to the

five-dimensional Romans theory uplifts (at least locally – see below) to a string/M-theory

solution, and the details of the dual field theory are encoded in the geometry of the internal

space involved in the uplifting.

In order to be concrete, let us focus on the case of N = 4 Yang–Mills theory considered

above. For G = SU(N), AdS/CFT should relate the large N limit of this theory to an

appropriate class of solutions to the Romans N = 4+ theory in five dimensions, uplifted on

S5 to give full solutions of Type IIB string theory. This is where the restriction that M4 is spin

enters: if M4 is not spin then the background SU(2) R-symmetry gauge field we turn on to

perform the twist is not globally a connection on an SU(2) bundle over M4. On the other

hand, the Type IIB solution is an S5 fibration over the filling Y5, where S5 ⊂ C2 ⊕C, and

SU(2) acts on C2 in the fundamental representation. Thus if M4 is not spin, this associated

bundle is not well-defined. This is the gravity dual appearance of the requirement we saw

directly in the TQFT: for the half-twist of N = 4 Yang–Mills there are still spinors in the

twisted theory, which only make sense if M4 is spin. Finally, we note that for the large

N limit of the G = SU(N) half-twisted N = 4 Yang–Mills theory, a standard AdS/CFT

7In particular the final section of [152] computes the large N limit of the partition function Z for a four-
manifold with boundary, constructed as S1 ×M3 where M3 is a knot complement. One finds Z ∼ N log α,
where α is a certain knot invariant (the Mahler measure).
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formula fixes the dual effective five-dimensional Newton constant as

1
κ2

5
=

N2

4π2 . (2.2.6)

Similar remarks apply to twists of N = 2 SCFTs with M-theory duals. Indeed, an

important restriction on the class of N = 2 gauge theories to which this holographic

description applies is that they are conformal theories.8 A large number of examples arise as

class S theories [104], obtained by wrapping M5-branes over punctured Riemann surfaces,

for which the gravity dual was found in [105] using the construction of [160]. Romans

solutions uplift on the corresponding internal spaces N6 to solutions of M-theory [110].

At the level of the five-dimensional theory, all that changes is the formula (2.2.6) for the

effective Newton constant, which in general reads [127]

1
κ2

5
=

a

π2 , (2.2.7)

where a is the a central charge. In the supergravity limit recall that a = c. For the above-

mentioned M5-brane theories the central charge scales with N3 as N → ∞. Indeed, the

partition function will a priori depend on both the choice of N = 2 SCFT that is being

twisted, and also on the four-manifold M4 on which it is defined. The choice of theory

corresponds to the choice of internal space in the uplifting to ten or eleven dimensions.

The structure of the dual supergravity solution as a fibration of the internal space over the

spacetime filling of M4 then implies that the large N limits of the partition functions should

also factorize. That is, the dependence on the choice of theory should only be visible via the

central charge a, which via (2.2.7) fixes the overall normalization of the supergravity action.

On the other hand, the dependence on the choice of M4 is then captured by the effective

five-dimensional Romans theory we will describe.9

8In particular this is not true of pure N = 2 Yang–Mills, from which the original Donaldson invariants are
constructed.

9This structure can already be seen in the more general formula for dimM given in [117]. For the general
class of twisted field theories considered there, equation (2.42) of [117] implies that in the large N limit where
a = c, one has dimM = −a[2χ(M4) + 3σ(M4)], generalizing (2.2.5). The central charge appears as an overall
factor, at large N.
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2.3 Holographic supergravity theory

In section 2.3.1 we define a real Euclidean section of N = 4+ gauged supergravity in five

dimensions. A Fefferman–Graham expansion of asymptotically locally hyperbolic solutions

to this theory is constructed in section 2.3.2, for arbitrary conformal boundary four-manifold

(M4, g). Using this, in section 2.3.3 we holographically renormalize the action.

2.3.1 Euclidean Romans N = 4+ theory

The Lorentzian signature Romans N = 4+ theory [197] is a five-dimensional SU(2)×U(1)

gauged supergravity which admits a supersymmetric AdS5 vacuum. The bosonic sector

comprises the metric Gµν, a dilaton φ, an SU(2)R Yang–Mills gauge field AI
µ (I = 1, 2, 3), a

U(1)R gauge field Aµ, and two real anti-symmetric tensors Bα
µν, α = 4, 5, which transform

as a charged doublet under U(1)R ∼= SO(2)R. It is convenient to introduce the scalar field

X ≡ e−
1√
6

φ and the complex combinations B± ≡ B4± iB5. The associated field strengths are

F = dA, F I = dAI − 1
2 εI

JKAJ ∧AK, and H± = dB± ∓ iA∧ B±. We have set the gauged

supergravity gauge coupling to 1.10

The bosonic action and equations of motion in Lorentzian signature appear in [164].

However, as we are interested in holographic duals to TQFTs defined on Riemannian four-

manifolds, we require the Euclidean signature version of this theory. The Wick rotation in

particular introduces a factor of i into the Chern–Simons couplings, leading to the Euclidean

action

I = − 1
2κ2

5

∫ [
R ∗1− 3X−2dX ∧ ∗dX + 4(X2 + 2X−1) ∗1− 1

2 X4 F ∧ ∗F

− 1
4 X−2 (F I ∧ ∗F I + B− ∧ ∗B+) + 1

8B
− ∧ H+ − 1

8B
+ ∧ H− − i

4F
I ∧ F I ∧A

]
.

(2.3.1)

Here R = R(G) denotes the Ricci scalar of the metric Gµν, and ∗ is the Hodge duality

operator acting on forms. The associated equations of motion are:11

d(X−1 ∗dX) = 1
3 X4 F ∧ ∗F − 1

12 X−2 (F I ∧ ∗F I + B− ∧ ∗B+)

− 4
3 (X2 − X−1) ∗ 1 ,

(2.3.2)

d(X−2 ∗ F I) = εI
JKX−2 ∗ F J ∧AK − iF I ∧ F , (2.3.3)

10In addition we have rescaled the SU(2)R gauge field and the anti-symmetric tensors by a factor of 1/
√

2,
compared to [164].

11Equation (2.3.3) incorporates a correction to the Lorentzian equation, in line with [110].
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d(X4 ∗ F ) = − i
4F

I ∧ F I − i
4B
− ∧ B+ , (2.3.4)

H± = ± X−2 ∗ B± , (2.3.5)

Rµν = 3X−2∂µX∂νX− 4
3 (X2 + 2X−1)Gµν +

1
2 X4(Fµ

ρFνρ − 1
6 GµνF 2)

+ 1
4 X−2(F I

µ
ρF I

νρ − 1
6 Gµν(F I)2 + B−(µρB+

ν)ρ
− 1

6 GµνB−ρσB+ρσ
)

.
(2.3.6)

Here F 2 ≡ FµνFµν, (F I)2 ≡ ∑3
I=1 F I

µνF Iµν. In general equations (2.3.2)–(2.3.6) are complex,

and solutions will likewise be complex. However, note that setting iA ≡ C effectively

removes all factors of i. We may then consistently define a real section of this Euclidean

theory in which all fields, and in particular C and B± = B4 ± iB5, are real. We henceforth

impose these reality conditions. Although globally A is a U(1)R gauge field in the original

Lorentzian theory, after the above Wick rotation the real field C = iA effectively becomes an

SO(1, 1)R gauge field. We may then think of C as a global 1-form, but for which the theory

has a symmetry C → C − dλ, for any global function λ. We denote the corresponding field

strength as G ≡ dC = iF .

In the Lorentzian theory the fermionic sector contains four gravitini and four dilatini,

which together with the spinor parameters ε all transform in the fundamental 4 representa-

tion of the Sp(2)R global R-symmetry group. The SU(2)×U(1) ⊂ Sp(2) gauge symmetry

arises as a gauged subgroup. Since Sp(2) ∼= Spin(5) it is natural to introduce the associated

Clifford algebra Cliff(5, 0), with generators ΓA, A = 1, . . . , 5, satisfying {ΓA, ΓB} = 2δAB.

We then decompose I, J, K = 1, 2, 3, transforming in the 3 of SU(2), and α, β = 4, 5 in

the 2 of U(1). In Euclidean signature the conditions for preserving supersymmetry are

then the vanishing of the following supersymmetry variations of the gravitini and dilatini,

respectively:

0 = Dµε + i
3 γµ

(
X + 1

2 X−2
)

Γ45ε

+ i
24 (γµ

νρ − 4δν
µγρ)

(
X−1(F I

νρΓI + Bα
νρΓα

)
+ X2Fνρ

)
ε ,

(2.3.7)

0 =
√

3
2 iγµX−1∂µXε + 1√

3

(
X− X−2

)
Γ45ε

+ 1
8
√

3
γµν
(

X−1(F I
µνΓI + Bα

µνΓα

)
− 2X2Fµν

)
ε ,

(2.3.8)

where the covariant derivative is

Dµε ≡ ∇µε + 1
2AµΓ45ε + 1

2A
I
µΓI45ε . (2.3.9)
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Here γµ, µ = 1, . . . , 5, are generators of the Euclidean spacetime Clifford algebra, satisfying

{γµ, γν} = 2Gµν, where recall Gµν is the metric. Given the gauging it is natural to introduce

the following choice of generators:

ΓI = σ3 ⊗ σI , I = 1, 2, 3 , Γ4 = σ1 ⊗ 12 , Γ5 = σ2 ⊗ 12 , (2.3.10)

where σI are the Pauli matrices, and 12 denotes the 2× 2 identity matrix. In particular

notice that Γ45 = iσ3 ⊗ 12 squares to −14, and we may write

ε =

ε+

ε−

 , (2.3.11)

where the spinor doublets ε± denote projections onto the ±i eigenspaces of Γ45, respectively.

One then has

ΓIε =

 σIε
+

−σIε
−

 , Bα
µνΓαε =

B−µνε−

B+
µνε+

 . (2.3.12)

We next introduce the charge conjuguation matrix C for the Euclidean spacetime Clifford

algebra. By definition γ∗µ = C −1γµC , and one may choose Hermitian generators γ†
µ = γµ

together with the conditions C = C ∗ = −C T, C 2 = −1. We may then define the following

charge conjugate spinor in Euclidean signature

εc ≡ (σ3 ⊗ iσ2)C ε∗ . (2.3.13)

It is straightforward to check that (εc)c = ε. Moreover, provided C = iA and B± (and all

other bosonic fields) are real, then one can show that ε satisfies the gravitini and dilatini

equations (2.3.7), (2.3.8) if and only if its charge conjugate εc satisfies the same equations.

Given this property, we may consistently impose the symplectic Majorana condition εc = ε.

We will be interested in solutions that satisfy these reality conditions.

2.3.2 Fefferman–Graham expansion

In this section we determine the Fefferman–Graham expansion [96] of asymptotically locally

hyperbolic solutions to this Euclidean Romans theory. This is the general solution to the

bosonic equations of motions (2.3.2)–(2.3.6), expressed as a perturbative expansion in a
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radial coordinate near the conformal boundary.

We take the form of the metric to be [96]

Gµνdxµdxν =
1
z2 dz2 +

1
z2gijdxidxj =

1
z2 dz2 + hijdxidxj . (2.3.14)

where the AdS radius ` = 1, and in turn we have the expansion

gij = g0
ij + z2g2

ij + z4(g4
ij + h0

ij(log z)2 + h1
ij log z

)
+ o(z4) . (2.3.15)

Here g0
ij = gij is the boundary metric induced on the conformal boundary M4 at z = 0.

It is convenient to introduce the inner product 〈α, β〉 between two forms α, β via (A.2.1).

The volume form for the five-dimensional bulk metric (2.3.14) is

vol5 =
1
z5 dz ∧ volg =

1
z5 dz ∧

√
det gdx1 ∧ · · · ∧ dx4 . (2.3.16)

The determinant may then be expanded in a series in z, around that for g0, as follows

√
det g =

√
det g0

[
1 + z2

2 t(2) + z4

2

(
t(4) − 1

2 t(2,2) + 1
4 (t

(2))2

+ u(0)(log z)2 + u(1) log z
)]

+ o(z4) .
(2.3.17)

Here we have denoted t(n) ≡ Tr
[
(g0)−1gn], u(n) ≡ Tr

[
(g0)−1hn] and t(2,2) ≡ Tr

[
(g0)−1g2]2.

The remaining bosonic fields are likewise expanded as follows:

X = 1 + z2 (X1 log z + X2) + z4(X3 log z + X4) + o(z4) , (2.3.18)

AI = AI + z2(aI
1 log z + aI

2) + o(z2) , (2.3.19)

A = a + z2(a1 log z + a2) + o(z2) , (2.3.20)

B± =
1
z

b± + dz ∧ b±1 + z(b±2 log z + b±3 ) + o(z) , (2.3.21)

A priori there are additional terms that appear in these expansions. However, these may

either be gauged away, or turn out to be set to zero by the equations of motion, and we have

thus removed them in order to streamline the presentation.

We now substitute the above expansions into the equations of motion (2.3.2)–(2.3.6)

and solve them order by order in the radial coordinate z in terms of the boundary data
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g0 = g, X1, AI , a and b±. This will leave a number of terms undetermined. For the Einstein

equation (2.3.6) we will need the Ricci tensor of the metric (2.3.14):

Rzz =−
4
z2 −

1
2

(
Tr
[
g−1∂2

zg
]
− 1

z Tr
[
g−1∂zg

]
− 1

2 Tr
[
g−1∂zg

]2 )
, (2.3.22)

Rij =−
4
z2gij −

(
1
2 ∂2

zg− 3
2z ∂zg− 1

2 (∂zg)g
−1(∂zg) +

1
4 (∂zg)Tr

[
g−1∂zg

]
− R(g)− 1

2zgTr
[
g−1∂zg

] )
ij

,
(2.3.23)

Rzi =−
1
2
(g−1)jk

(
∇igjk,z −∇kgij,z

)
. (2.3.24)

Here ∇ is the covariant derivative for g, and we have corrected the sign of R(g)ij and the

right hand side of (2.3.24) compared to [212].

Examining first the equation (2.3.5) gives at leading order

∗g0 b± = ∓b± , (2.3.25)

so that the boundary B-fields b+, b− are required to be anti-self-dual and self-dual, respec-

tively. At subleading orders one finds

b±1 = ∓ ∗g0

(
db± ∓ ia∧ b±

)
, ∗g0 b±2 = ±(b±2 − 2X1 b±) . (2.3.26)

In particular notice that the first equation fixes b±1 in terms of boundary data, while the

second equation determines only the anti-self-dual/self-dual parts of b±2 , respectively. An

equation may also be derived for b±3 , although we will not need this in what follows.

Next the gauge field equations (2.3.3), (2.3.4) determine

a1 = − 1
2 ∗g0 d ∗g0 f + i

8 ∗g0

(
b− ∧ b+1 + b+ ∧ b−1

)
,

aI
1 = − 1

2 ∗g0 D ∗g0 FI ,
(2.3.27)

in terms of boundary data, where the curvatures are f ≡ da, FI ≡ dAI − 1
2 εI

JK AJ ∧ AK, and

we have introduced a gauge covariant derivative with respect to the boundary SU(2) field:

DαI ≡ dαI − εI
JK AJ ∧ αK. In addition we have the constraints

d ∗g0 a2 = − i
8 FI ∧ FI , D ∗g0 aI

2 = 0 , (2.3.28)
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which leave a2 and aI
2 partially undetermined.

Turning next to the scalar equation of motion (2.3.2) we find

4X3 = −∇2X1 − 2
(

t(2)X1 − 2X2
1

)
− 1

24

(
〈b+, b−2 〉g0 + 〈b−, b+2 〉g0

)
, (2.3.29)

4X4 = −∇2X2 −
(

t(2)X1 + 2t(2)X2 − X2
1 − 4X1X2 + 4X3

)
− 1

24 〈F
I , FI〉g0 + 1

6 〈f, f〉g0

− 1
12 〈b

+
1 , b−1 〉g0 + 1

12 〈b
−, g2 ◦ b+〉g0 − 1

24

(
〈b+, b−3 〉g0 + 〈b−, b+3 〉g0

)
. (2.3.30)

We regard these as determining X3, X4 in terms of X1 (a boundary field), and X2 (which is

undetermined by the equations of motion), together with the other fields in the expansion.

In the second equation we have used the definition

(g2 ◦ α)i1···ip ≡ (g2)[i1
jα|j|i2···ip] , (2.3.31)

where α is a p-form on M4. Here indices are always raised with g0, so (g2)i
j ≡ (g2)ik(g

0)kj.

Finally, we introduce the matter-modified boundary Ricci tensor

Rij = Rij(g
0) ≡ Rij(g

0)− 1
4 (b

+)(i
k(b−)j)k . (2.3.32)

Notice the scalar curvature is R(g0) = R(g0), due to the opposite duality properties (2.3.25)

of b±. From the ij component of the Einstein equation (2.3.6), using (2.3.23) gives

g2
ij = − 1

2

(
Rij − 1

6 g
0
ijR
)

. (2.3.33)

The right hand side is a matter-modified form of the Schouten tensor. From this expression

we immediately deduce the traces

t(2) = − 1
6R , t(2,2) = 1

4

(
RijR

ij − 2
9R2) . (2.3.34)

The zz component of the Einstein equation in (2.3.6), together with (2.3.22), determines the

traces of higher order components in the expansion of the bulk metric:

u(0) = − 2X2
1 , (2.3.35)

u(1) = − 4X1X2 +
1

96

(
〈b+, b−2 〉g0 + 〈b−, b+2 〉g0

)
, (2.3.36)
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4t(4) = t(2,2) − u(0) − 3u(1) − 3X2
1 − 8X2

2 − 12X1X2 +
1

12

(
〈f, f〉g0 + 1

2 〈F
I , FI〉g0

)
− 1

6 〈b
+
1 , b−1 〉g0 − 1

12 〈b
−, (g2 ◦ b+)〉g0 + 1

24

(
〈b+, b−3 〉g0 + 〈b−, b+3 〉g0

)
.

(2.3.37)

Returning to the ij component we may determine the logarithmic terms in (2.3.15):

h0
ij = 1

4g
0
ij(u

(0) + 2u(1) + 8X1X2)

− 1
16

[
(b+)(i

k(b−2 )j)k + (b−)(i
k(b+2 )j)k − 1

6g
0
ij
(
〈b+, b−2 〉g0 + 〈b−, b+2 〉g0

)]
,

(2.3.38)

h1
ij = − 1

2 h0
ij + g2

ik(g
0)klg2

l j +
1
4g

0
ij
(
4t(4) − 2t(2,2) + u(1) + 8X2

2
)

+ 1
4

(
∇k∇ig

2
jk +∇k∇jg

2
ik −∇2g2

ij −∇i∇jt(2)
)
− 1

8

(
(b+1 )(i(b

−
1 )j) − 1

3g
0
ij〈b+1 , b−1 〉g0

)
+ 1

8

[
(b−)(i|k|(g

2)kl(b+)j)l − 1
3g

0
ij(b
−)k

m(g2)kl(b+)lm
]

− 1
8

[
(b+)(i

k(b−3 )j)k + (b−)(i
k(b+3 )j)k − 1

6g
0
ij
(
〈b+, b−3 〉g0 + 〈b−, b+3 〉g0

)]
− 1

4

[
fikfj

k + 1
2 FI

ikFI
j

k − 1
6g

0
ij
(
〈f, f〉g0 + 1

2 〈F
I , FI〉g0

)]
. (2.3.39)

The structure of the ij component of the Einstein equation in four dimensions is such

that g4 always appears with zero coefficient, and so is left undetermined. In the original

literature [79] the iz component has been used to determine g4 up to an arbitrary symmetric

divergence-free tensor. However, in the supergravity we are considering the presence of a

(log z)2 contribution to the bulk scalar field expansion means that X2 appears without a

derivative, which hence spoils this approach. In section 2.4.4 we will see that by imposing

supersymmetry we obtain further constraints on the fields, and in particular this leads to an

expression for g4 in terms of other data.

2.3.3 Holographic renormalization

Having solved the bulk equations of motion to the relevant order, we are now in a position

to holographically renormalize the Euclidean Romans theory. The bulk action (2.3.1) is

divergent for an asymptotically locally hyperbolic solution, but can be rendered finite by the

addition of appropriate local counterterms. The corresponding computations in Lorentzian

signature have been carried out in [186].

We begin by taking the trace of the Einstein equation (2.3.6). Substituting the result
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together with (2.3.5) into the Euclidean action (2.3.1), we arrive at the bulk on-shell action

Io-s =
1

2κ2
5

∫
Y5

[
8
3 (X2 + 2X−1) ∗1 + 1

3 X4F ∧ ∗F + 1
6 X−2F I ∧ ∗F I

− 1
12 X−2B− ∧ ∗B+ + i

4F
I ∧ F I ∧A

]
.

(2.3.40)

Here Y5 is the bulk five-manifold, with boundary ∂Y5 = M4. In order to obtain the equations

of motion (2.3.2)–(2.3.6) from the original bulk action (2.3.1) on a manifold with boundary,

one has to add the Gibbons–Hawking–York term

IGHY = − 1
κ2

5

∫
∂Y5

d4x
√

det h K =
1
κ2

5

∫
∂Y5

d4x z∂z
√

det h . (2.3.41)

Here, more precisely, one cuts Y5 off at some finite radial distance, or equivalently non-

zero z > 0, and (M4, h) is the resulting four-manifold boundary, with trace of the second

fundamental form being K. Recall from (2.3.14) that hij =
1
z2gij.

The combined action Ion-shell + IGHY suffers from divergences as the conformal boundary

is approached. To remove these divergences we use the standard method of holographic

renormalization [93, 212, 79]. Namely, we introduce a small cut-off z = δ > 0, and expand

all fields via the Fefferman–Graham expansion of section 2.3.2 to identify the divergences.

These may be cancelled by adding local boundary counterterms. We find

Ict =
1
κ2

5

∫
∂Y5

d4x
√

det h
{

3 + 1
4 R(h) + 3(X− 1)2 − 1

32 〈B
−,B+〉h

+ log δ
[
− 1

8

(
Rij(h)R ij(h)− 1

3R(h)2
)
+ 3

2 (log δ)−2(X− 1)2

+ 1
48 〈H

−, H+〉h + 1
8 〈F ,F〉h + 1

16 〈F
I ,F I〉h

]}
.

(2.3.42)

Notice the somewhat unusual form of the logarithmic term for the scalar field X, but cf.

the expansion (2.3.18). As is standard, we have written the counterterm action (2.3.42)

covariantly in terms of the induced metric hij on M4 = ∂Y5. The total renormalized action is

then

S = lim
δ→0

(Io-s + IGHY + Ict) , (2.3.43)

which by construction is finite.

The choice of local counterterms (2.3.42) defines a particular renormalization scheme,

that is in some sense a “minimal scheme” in the case at hand. However, we are free to
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consider a non-minimal scheme where we add local counterterms to the action which

remain finite as δ→ 0. For the supergravity theory we are considering, the following are an

independent set of finite counterterms that are both diffeomorphism and gauge invariant:12

Ict, finite = − 1
κ2

5

∫
∂Y5

d4x
√

det h
[
ζ1R2 + ζ2CijklCijkl + ζ3FijF ij + ζ4F I

ijF Iij

+ ζ5E + ζ6P + ζ7εijklFijFkl + ζ8εijklF I
ijF I

kl

]
.

(2.3.44)

Here ζ1, . . . , ζ8 are arbitrary constant coefficients, Cijkl denotes the Weyl tensor of the metric

hij, while the Euler scalar E and Pontryagin scalar P are defined by (A.1.2). In particular,

notice that for compact M4 = ∂Y5 without boundary, the second line of (2.3.44) are all

topological invariants: they are proportional to the Euler number χ(M4), the signature

σ(M4), and the Chern numbers
∫

M4
c1(L)2,

∫
M4

c2(V) respectively, where L and V denote

the rank 1 and rank 2 complex vector bundles associated to the U(1)R and SU(2)R gauge

bundles, respectively. In the real Euclidean theory in which we are working, recall that

F = dA is globally exact (and purely imaginary), and in any case for the topological

twist studied later in the chapter we will have A |M4= 0. Being topological invariants, the

variation of the action we shall compute in section 2.5 will be insensitive to the choice of

constants ζ5, . . . , ζ8.

As emphasized in the Introduction, in order to make quantitative comparisons in

AdS/CFT it is important to match choices of renormalization schemes on the two sides. In

particular, localization calculations in QFT make a (somewhat implicit) choice of scheme. In

the case at hand, we note that in [73] a supersymmetric Rényi entropy, computed in field

theory using localization, was successfully matched to a gravity calculation involving a

supersymmetric black hole in the N = 4+ Romans theory. Here the supergravity action was

computed using the minimal scheme. Our computation in section 2.5 will imply that this

minimal scheme is indeed the correct one to compare to the topological twist of [219].

Given the renormalized action we may compute the following VEVs:

〈Tij〉 =
2
√

g
δS

δgij , 〈Ξ〉 =
1
√

g
δS

δX1
,

〈J i
I 〉 =

1
√

g
δS

δAI
i

, 〈 Ji〉 =
1
√

g
δS

δai
.

(2.3.45)

12We may also add finite local counterterms constructed from the B-field. For example, terms proportional to∫
∂Y5

d4x
√

det h 〈H−, H+〉h, or
∫

∂Y5
d4x
√

det h R(h)〈B−,B+〉h. However, for the topological twist we will later
set the B-field to zero, and these terms will not be relevant to our discussion.
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Here, as usual in AdS/CFT, the boundary fields g0
ij = gij, X1, AI

i and ai act as sources for

operators, and the expressions in (2.3.45) compute the vacuum expectation values of these

operators. Similar expressions may also be written for the boundary fields b± for B±, but

these will be zero for the topological twist of interest and play no rôle in the present chapter.

Using the above holographic renormalization we may write (2.3.45) as the following limits:

〈Tij〉 =
1
κ2

5
lim
δ→0

1
δ2

[
− Kij + Khij −

(
3 + 3(X− 1)2)hij +

1
2

(
Rij(h)− 1

2R(h) hij
)

+ log δ

(
1
4Bij(h) + 1

2FikFj
k − 1

8 hij〈F ,F〉h + 1
4F

I
ikF I

j
k − 1

16 hij〈F I ,F I〉h

+ 1
8 H−ikl H

+
j
kl − 1

48 hij〈H−, H+〉h − 3
2 (log δ)−2(X− 1)2hij

)]
,

(2.3.46)

where Kij is the second fundamental form of the cut-off hypersurface (M4, hij) and the

B-field modified Bach tensor is (cf. (2.3.32))

Bij = − 2
3∇i∇jR −∇2

(
Rij − 1

6 hijR
)
+ 2∇k∇(iR

k
j) − 2RikR

k
j +

2
3RRij

+ 1
2 hij

(
RklR

kl − 1
3R2

)
,

(2.3.47)

together with

〈Ξ〉 =
1
κ2

5
lim
δ→0

log δ

δ2

[
− 3X−2δ∂δX + 6(X− 1) + 3(log δ)−1(X− 1)

]
,

〈J Ii〉 =
1

4κ2
5

lim
δ→0

1
δ4

{
− ∗h

[
dxi ∧ (X−2 ∗5 F I + iF I ∧A)

]
+ log δDjF Iij

}
,

〈 Ji〉 =
1

2κ2
5

lim
δ→0

1
δ4

[
− ∗h

(
dxi ∧ X4 ∗5 F

)
+ log δ∇jF ij

]
.

(2.3.48)

Here ∗h denotes the Hodge duality operator for the metric hij. A computation then gives

the finite expressions

〈Tij〉 =
1
κ2

5

[
2g4

ij +
1
2 h1

ij − 1
2 (4t(4) − 2t(2,2) − 1

2 u(1))g0
ij − 3g0

ijX
2
2 − g2

ijt
(2)

+ 1
4

(
∇k∇ig

2
jk +∇k∇jg

2
ik −∇2g2

ij −∇i∇jt(2)
)
+ 1

4g
0
ij
(
g2

kl R
kl)− 1

4g
2
ijR

− 1
8

[
(b+)(i

k(b−3 )j)k + (b−)(i
k(b+3 )j)k − 1

2g
0
ij
(
〈b+, b−3 〉g0 + 〈b−, b+3 〉g0

)]
+ 1

8

[
(b+)(i|k|(g

2)kl(b−)j)l − 1
2g

0
ij〈b−, (g2 ◦ b+)〉g0

]]
,

(2.3.49)

〈Ξ〉 =
3
κ2

5
X2 , (2.3.50)
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〈J I
i 〉 = − 1

4κ2
5

[
(aI

1)i + 2(aI
2)i − i

(
∗4 (a∧ FI)

)
i

]
, (2.3.51)

〈 Ji〉 = − 1
2κ2

5
[(a1)i + 2(a2)i] . (2.3.52)

Notice that these expressions contain a number of terms that are not determined, in terms of

boundary data, by the Fefferman–Graham expansion of the bosonic equations of motion. In

particular the g4
ij term in the stress-energy tensor Tij, the scalar X2 that determines Ξ, and aI

2,

a2 appearing in the SU(2)R and U(1)R current, respectively. The general holographic Ward

identity corresponding to the first three variations of the action is given by equation (2.1.1).

We will need the expressions (2.3.49)–(2.3.51) in section 2.5.

2.4 Supersymmetric solutions

In this section we study supersymmetric solutions to the Euclidean N = 4+ theory. We

begin in section 2.4.1 by deriving the Killing spinor equations on the conformal boundary,

starting from the bulk equations (2.3.7), (2.3.8). We precisely recover the Euclidean N = 2

conformal supergravity equations of [146]. In section 2.4.2 we then recall from [142] how

the topological twist arises as a special solution to these Killing spinor equations, that exists

on any Riemannian four-manifold (M4, g). We rephrase this in terms of the quaternionic

Kähler structure that exists on any such manifold, involving (locally) a triplet of self-dual

2-forms JI . Finally, in section 2.4.4 we expand solutions to the bulk spinor equations in a

Fefferman–Graham-like expansion.

2.4.1 Boundary spinor equations

We begin by expanding the bulk Killing spinor equations (2.3.7), (2.3.8) to leading order

near the conformal boundary at z = 0. We will consequently need the Fefferman–Graham

expansion of an orthonormal frame for the metric (2.3.14), (2.3.15), together with the

associated spin connection. The following is a choice of frame Eµ
µ for the metric (2.3.14):

Ez
z =

1
z

, Ez
i = Ei

z = 0, Ei
i =

1
z
ei

i , (2.4.1)
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where ei
i is a frame for the z-dependent metric g. The latter then has the expansion (2.3.15),

but for the present subsection we shall only need that

ei
i = ei

i + O(z2) , (2.4.2)

where ei
i is a frame for the boundary metric g0 = g. The non-zero components of the spin

connection Ω νρ
µ at this order are correspondingly

Ω zj
i =

1
z

e j
i + O(z) , Ω jk

i = (ω(0))
jk

i + O(z2) , (2.4.3)

where (ω(0))
jk

i denotes the boundary spin connection.

The generators γµ̄ of the Clifford algebra Cliff(5, 0) in this frame are chosen to obey

γz̄ = γ1̄2̄3̄4̄ . (2.4.4)

It follows that γ2
z̄ = 1, and we may identify −γz̄ with the boundary chirality operator. The

bulk Killing spinor is then expanded as

ε = z−1/2ε + z1/2η + o(z1/2) . (2.4.5)

As in (2.3.11), we may further decompose the spinors ε, η into their projections ε±, η± onto

the ±i eigenspaces of Γ45. At leading order in the z-component of the gravitino equation

(2.3.7) one then finds

− γz̄ε± = ±ε± , (2.4.6)

so that the Γ45 eigenvalue of the leading order spinor ε is correlated with its boundary

chirality. Similarly, at the next order in the gravitino equation one finds the opposite

correlation for the spinor η:

− γz̄η± = ∓η± . (2.4.7)

Recall that the boundary B-fields satisfy ∗4b± = ∓b± (see (2.3.25)). This together with

the chirality conditions (2.4.6) implies that

b± · ε± = 0 , (2.4.8)
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where · denotes the Clifford product defined in (A.2.3) (using the boundary frame). Using

this, the leading order term in the i-component of the gravitino equation is then seen to be

identically satisfied. The next order gives the pair of boundary Killing spinor equations:

D(0)
i ε± − i

4 b∓ij γjε∓ ∓ γiη
± = 0 , (2.4.9)

where we have defined the covariant derivative

D(0)
i ≡ ∇(0)

i ±
i
2 ai +

i
2 AI

i σI . (2.4.10)

Here ∇(0)
i denotes the Levi-Civita spin connection of the boundary metric g0

ij = gij, and

γi = γī eī
i, so that {γi, γj} = 2gij.

Turning to the bulk dilatino equation (2.3.8), the leading order term is in fact equivalent

to the duality properties of b±, given the chiralities of ε±. At the next order we obtain the

boundary dilatino equation

− f · ε± ± 1
2 FIσI · ε± ∓ 3iX1 ε± + 1

2 b∓ · η∓ ∓ 1
2 b∓1 · ε

∓ = 0 . (2.4.11)

The supersymmetry equations for four-dimensional Euclidean off-shell N = 2 conformal

supergravity have been studied13 in [146], and our equations (2.4.9), (2.4.11) precisely

reproduce the equations in this reference.14 Notice in particular that one can solve for the

(conformal) spinor η by taking the trace of (2.4.9) with γi, to obtain

η± = ± 1
4 6D(0)ε± , (2.4.12)

where 6D(0) ≡ γiD(0)
i is the Dirac operator. Taking the covariant derivative of (2.4.9) and

using the integrability condition for [D(0)
i ,D(0)

j ] then leads to the following form of the

dilatino equation

6D(0) 6D(0)ε± − iDi(b∓)i
jγ

jε∓ +
(
4X1 +

1
3 R
)

ε± ∓ 2i f · ε± = 0 , (2.4.13)

where R = R(g) is the Ricci scalar of the boundary metric. Requiring the boundary fields

13See [120] for related earlier work and [81] for a recent construction of Euclidean N = 2 conformal
supergravity from a timelike reduction of a five-dimensional theory.

14The explicit notation change is AKZ
4 = −ia, AI

KZ = AI , T±KZ = −b±, εKZ
± = ε∓, d̃KZ = 2X1.
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gij, X1, a, AI , b± to solve the spinor equations (2.4.9), (2.4.11) for ε± in general imposes

geometric constraints. Remarkably, in [146] it is shown that generically these conditions are

equivalent to the boundary manifold (M4, g) admitting a conformal Killing vector. However,

the topological twist background of [142] arises as a very degenerate case, where in fact

(M4, g) may be an arbitrary Riemannian four-manifold. We turn to this case in the next

subsection.

2.4.2 Topological twist

The topological twist background of [142] is obtained by setting in the first place

ε− = 0 , a = 0 , b± = 0 , η± = 0 . (2.4.14)

The boundary Killing spinor equation (2.4.9) immediately implies that ε+ is covariantly

constant

D(0)
i ε+ = 0 . (2.4.15)

The dilatino equation, in the form (2.4.13), then fixes

X1 = − 1
12 R . (2.4.16)

Recall that ε+ is a doublet of positive chirality spinors: the Pauli matrices σI act on these

doublet indices, while the Clifford matrices γī act on the spinor indices. We may write out

the covariant derivative in (2.4.15) more explicitly by first introducing the following explicit

Hermitian representation

γā =

 0 iσā

−iσā 0

 , γ4̄ =

 0 −12

−12 0

 , γz̄ =

12 0

0 −12

 . (2.4.17)

Here ā = 1, 2, 3. Since γz̄ε+ = −ε+, we may identify each of the two spinors in the doublet

ε+ with a two-component spinor, acted on by the second 2× 2 block. With these choices

(2.4.15) reads

D(0)
i ε+ = ∂iε

+ + i
4 η ā

jk (ω
(0))

jk
i σāε+ + i

2 AI
i σIε

+ = 0 , (2.4.18)

where η ā
ij

are the self-dual ’t Hooft symbols defined in (A.2.2), and recall that (ω(0))
jk

i is the
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spin connection for the boundary metric gij. One may then solve (2.4.18) by taking

AI
i = 1

2 η I
jk (ω

(0))
jk

i , (ε+)i
α = (iσ2)

i
α c . (2.4.19)

Here i = 1, 2 labels the doublet indices, while α = 1, 2 labels the positive chirality spinor

indices, and notice that the frame index ā = 1, 2, 3 is identified with the gauge indices

I = 1, 2, 3. It is straightforward to check that (2.4.19) solves (2.4.18), for any constant c.

The SU(2)R gauge field AI given by (2.4.19) is precisely the right-handed part of the spin

connection, where recall that Spin(4) = SU(2)` × SU(2)r. Thus the SU(2)R gauge bundle is

identified with SU(2)r. This is a beautiful concrete realization of the geometric interpretation

of the topological twist discussed at the end of section 1.2.1.

More invariantly, ε+ is a section of S+ ⊗ V , where S+ denotes the positive chirality

spinor bundle over M4, while V is the rank 2 complex vector bundle for which AI is an

associated SU(2) connection. A priori this makes sense globally only when M4 is a spin

manifold, when S+ and V both exist as genuine vector bundles. However, the topological

twist (2.4.19) identifies V with S+, and their tensor product then always exists globally, even

when M4 is not spin.15 This topological construction of a spin-type bundle on a manifold

which is not necessarily spin was first suggested in [21], and is sometimes referred to as a

SpinG structure, where here the group G = SU(2). Perhaps more familiar is the Abelian case

of Spinc structures, where instead G = U(1). (For example, this arises in Seiberg–Witten

theory.) Note the consistency with the realization of the theory from branes: the half-twist

is obtained by wrapping D3-branes on Cayley submanifolds in Spin(7) manifolds, and their

normal bundle indeed has the structure S+ ⊗ V [46].

It will be convenient later to introduce the triplet of self-dual 2-forms

JI
ij ≡ η I

ij ei
i ej

j , (2.4.20)

where recall that ei
i is the boundary frame for gij. More explicitly, these read

J1 = e2 ∧ e3 + e1 ∧ e4 , J2 = e3 ∧ e1 + e2 ∧ e4 , J3 = e1 ∧ e2 + e3 ∧ e4 . (2.4.21)

15There are various ways to see this. For example, the lack of a spin structure on M4 is detected by a non-zero
second Stiefel-Whitney class w2(M4) ∈ H2(M4, Z2). Concretely this means the cocycle condition for the spin
lift of the frame bundle fails up to some minus signs. However, if two copies are tensored together all such
signs square to +1, and the tensor product is a well-defined bundle.
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Of course, in general a frame ei
i is only defined locally on M4, in an appropriate open set,

and likewise the JI in (2.4.21) are then well-defined forms only locally. More globally, local

frames are patched together with SO(4). The spin cover is Spin(4) ∼= SU(2)` × SU(2)r,

and the self-dual/anti-self-dual 2-forms are precisely the representations associated to

SO(3)`/r = SU(2)`/r/Z2. In particular, the {JI} rotate as a 3-vector under SO(3)r ⊂ SO(4).

In this sense the JI in general don’t exist individually as global 2-forms on M4, but instead

as a triplet of forms that rotate appropriately. We comment further on this below.

One can also write the JI in terms of spinor bilinears. Recall from the end of section 2.3.1

that the bulk spinors satisfy a symplectic Majorana reality condition. In particular the

boundary spinor ε+ satisfies

(ε+)c ≡ iσ2C (ε+)∗ = ε+ , (2.4.22)

where recall that C is the charge conjugation matrix for the spacetime Clifford algebra. In

the explicit basis (2.4.17) we may take

C =

 iσ2 0

0 iσ2

 . (2.4.23)

Given the solution (2.4.19) one finds that the reality condition (2.4.22) is satisfied provided

the constant c ∈ R. Explicitly, the components of the doublet ε+ are

(ε+)1 = (0, 0, 0, c)T , (ε+)2 = (0, 0,−c, 0)T . (2.4.24)

We then define the boundary spinor

χ ≡ (ε+)1 . (2.4.25)

This has square norm χ̄χ = c2, where the bar denotes Hermitian conjugate, and χ of course

has positive chirality, −γz̄χ = χ. One easily checks that

J2 + iJ1 =
1

χ̄χ
χ̄cγ(2)χ , J3 =

i
χ̄χ

χ̄γ(2)χ , (2.4.26)

where χc ≡ C χ∗.
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From the original definition (2.4.20), the JI inherit a number of algebraic identities from

those for the ’t Hooft symbols. For example,

JI
ijJ

I
kl = gikgjl − gil gjk + εijkl . (2.4.27)

Using the metric to raise an index, one obtains a triplet (II)i
j ≡ gik(JI)kj of endomorphisms

of the tangent bundle of M4. These satisfy the quaternionic algebra

II ◦ IJ = −δI J − εI J
KIK . (2.4.28)

One also finds that

∇iJI
jk = εI

JK AJ
i JK

jk , (2.4.29)

where the R-symmetry gauge field AI here is precisely the right-handed spin connection

given by the topological twist (2.4.19). Notice that we may correspondingly write the

curvature as

FI
ij = 1

2 JI
kl R

kl
ij , (2.4.30)

where Rijkl is the boundary Riemann tensor.

In general a quaternionic Kähler manifold is a Riemannian manifold of dimension 4n

with holonomy Sp(n) · Sp(1) ⊂ SO(4n).16 Such manifolds admit, locally, a triplet of skew

endomorphisms II of the tangent bundle satisfying (2.4.28), for which the corresponding

triplet of 2-forms JI satisfy (2.4.29). Here AI is the Riemannian connection corresponding

to the Sp(1) part of this holonomy group. For n = 1 notice that Sp(1) · Sp(1) = SO(4),

and such a structure exists on any Riemannian four-manifold (M4, g) (as we have just

seen). Crucially, the 2-forms (2.4.21) are not in general defined globally, but are (in our

language) twisted by the R-symmetry gauge field, transforming as a vector under SO(3)R =

SU(2)R/Z2. As such, they don’t define a reduction of the structure group to SU(2)`, as a

global set of such forms would do. Indeed, the globally defined tensor on a quaternionic

Kähler manifold is the 4-form Ψ ≡ JI ∧ JI (summed over I), and in four dimensions (n = 1)

this is proportional to the volume form. The stabiliser of Ψ is Sp(n) · Sp(1), which is SO(4)

when n = 1.

In dimensions n ≥ 2 irreducible quaternionic Kähler manifolds are automatically Ein-

16See, for example, [201].
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stein. Some authors choose to define a quaternionic Kähler four-manifold to be an Einstein

manifold with self-dual Weyl tensor, but we shall not use this terminology.

2.4.3 U(1)R current

Before continuing to expand the spinor equations into the bulk, in this subsection we pause

briefly to consider the VEV of the U(1)R current given by (2.3.52). In the topological twist

background equation, (2.3.27) gives a1 = 0, so that 〈 J〉 = −a2/κ2
5. On the other hand, from

(2.3.28) we obtain the U(1)R anomaly equation

d ∗4 〈 J〉 =
i

8κ2
5

FI ∧ FI , (2.4.31)

where ∗4 denotes the Hodge duality operator on (M4, g). Using equations (2.4.30) and

(2.4.27) this may be rewritten as

d ∗4 〈 J〉 =
i

32κ2
5
(E + P) vol4 , (2.4.32)

where E and P are the Euler and Pontryagin densities, (A.1.2). On a compact M4 without

boundary these integrate to
∫

M4
E vol4 = 32π2χ(M4),

∫
M4
P vol4 = 48π2σ(M4), so that

integrating (2.4.32) over M4 gives17

∫
M4

d ∗4 〈 J〉 =
iπ2

2κ2
5
[2χ(M4) + 3σ(M4)] . (2.4.33)

It follows that if a2, or equivalently 〈 J〉, is a global 1-form on M4, then by Stokes’ theorem

the left hand side of (2.4.33) is zero, implying the topological constraint

2χ(M4) + 3σ(M4) = 0 . (2.4.34)

Indeed, in section 2.3.1 we noted that we are studying gravitational saddle points in the real

Euclidean Romans theory, where the U(1)R gauge field A is a (purely imaginary) global

1-form. Related to this, the U(1)R symmetry effectively becomes an SO(1, 1)R symmetry

after Wick rotation, as also emphasized in [146] (see also [194]). A number of gravity

17A little less laboriously we can instead note that FI is the curvature of the bundle of self-dual 2-forms Λ+
2 M4,

and the integral of the right hand side of (2.4.31) is proportional to the first Pontryagin class p1(Λ+
2 M4) =

2χ(M4) + 3σ(M4).
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expressions that we shall obtain below only make sense if a2 is interpreted as a global 1-form

on M4, at least in the set-up we have defined. Thus (2.4.34) already restricts the topology of

M4. Interestingly, the same formula appeared in section 2.2.1 in relation to the dual TQFT.

Specifically, if (2.4.34) or, equivalently, (2.2.5) does not hold, the dimension of the relevant

moduli space is non-vanishing, and the partition function is zero!18

The two expressions are directly related, since the virtual dimension (2.2.5) ofM com-

puted in field theory is proportional to this integrated U(1)R anomaly. In the holographic

set-up, we can see this explicitly by using the normalization of the effective gravity constant

(2.2.6) In the large N limit, using (2.4.33) we may then write

dimM = 2i
∫

M4

d ∗4 〈 J〉 , (2.4.35)

in terms of the integrated (holographic) U(1)R anomaly.19

2.4.4 Supersymmetric expansion

In this section we continue to expand the bulk spinor equations to higher order in z. From

this we extract further information about some of the fields which are not fixed, in terms of

boundary data, by the bosonic equations of motion. We will continue to use the boundary

conditions appropriate to the topological twist. In particular we note that the boundary

B-fields b± = 0 in this case, and that setting the bulk B± = 0 is a consistent truncation of

the Euclidean N = 4+ theory. Moreover, in this case the bulk spinors ε± satisfy decoupled

equations, and since the leading order term ε− = 0 it is then also consistent to set the bulk

ε− = 0. We henceforth work in this truncated theory. This subsection is somewhat technical.

All of the relevant formulas that we need in section 2.5 are in any case summarized in that

section, and a reader uninterested in the details may safely skip the present subsection.

The frame, spin connection and spinor expansions beyond the leading order given in

18In passing we note that (2.4.34) corresponds (with an appropriate choice of orientation) to equality in the
Hitchin–Thorpe inequality. In particular the only Einstein manifolds satisfying this condition are the flat torus,
a K3 surface, or a quotient thereof [129]. A non-example is S4, for which 2χ(S4) + 3σ(S4) = 4. On the other
hand, for a complex surface (2.4.34) is equivalent to

∫
M4

c1 ∧ c1 = 0, where c1 = c1(M4) is the first Chern class
of the holomorphic tangent bundle (the anti-canonical class).

19Of course, the same formula holds for the N = 2 SCFTs of class S : one starts from the dimension of the
moduli space derived in footnote 9 from (2.42) of [117] and uses (2.4.33) and (2.2.7).
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section 2.4.1 will be needed, so we first give details of these. The frame expansion is

ei
i = ei

i + z2(e(2))i
i + z4

[
(log z)2(e̊(4))i

i + log z(ẽ(4))i
i + (e(4))i

i

]
+ o(z4) , (2.4.36)

where in particular ei
i is a frame for the boundary metric. The additional spin connection

components we will need are

Ωi
zi =

1
z
ei

i − 1
2g

jkei
j∂zgik Ωz

ij = gije
[i
i ∂ze

j]
j . (2.4.37)

The bulk spinor has ε− = 0 in our truncated theory, and we thus henceforth drop the

superscript on ε+ → ε, ε+ → ε (we hope this abuse of notation won’t lead to any confusion).

The bulk spinor then has the following expansion

ε = z−1/2ε+ z3/2ε3 + z5/2(log z ε̃5 + ε5)+ z7/2((log z)2 ε̊7 + log z ε̃7 + ε7)+ o(z7/2) , (2.4.38)

where ε is constant with positive chirality under −γz̄. As in equation (2.4.22) the bulk spinor

ε satisfies the reality condition

εc ≡ iσ2C ε∗ = ε . (2.4.39)

We start by analysing the bulk dilatino equation. At lowest order we find

0 = X1 ε + i
6 FI · (σIε) =

(
X1 +

1
12 R
)

ε , (2.4.40)

which is satisfied identically, where we have used (2.4.16) and (2.4.30). At the next order we

find

iaI
1 · (σIε) = − 1

4 (dR) · ε . (2.4.41)

This is effectively a matrix equation, of which we shall see many more. Components of such

equations may be extracted by first noting that

ε =

 χ

−C χ∗

 , (2.4.42)

in the notation of section 2.4.2. For example, one can then take the first component of

(2.4.41), and apply χ̄γj on the left. Taking the real part, and using the definitions (2.4.26) of
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JI in terms of spinor bilinears, one obtains

(aI
1)

i JI
ij = 1

4∇jR . (2.4.43)

We shall make use of similar manipulations throughout this subsection. Focusing on (2.4.43),

recall that aI
1 is already fixed in terms of the SU(2) covariant divergence of FI , via equation

(2.3.27). The latter reads (aI
1)i = 1

2D jFI
ij. Starting from this and (2.4.30), and using the

identity αpqJI
m

pJI
n

q = αmn − 2(∗α)mn, where αpq is any 2-form, one can show that (2.4.43) is

an identity. We may then differentiate (2.4.43) and, upon using the quaternionic Kähler

equation (2.4.29), we obtain

(DaI
1)

ijJI
ij = − 1

4∇
2R . (2.4.44)

This relation appears frequently hereafter.

At the next order in the dilatino equation we find an equation involving several undeter-

mined fields:

iaI
2 · (σIε) =

(
2ia2 + 3dX2 +

1
8 dR

)
· ε , (2.4.45)

from which we similarly extract

(aI
2)

iJI
ij = −2i(a2)j − 3∇jX2 − 1

8∇jR . (2.4.46)

From this expression, taking a covariant derivative and symmetrizing indices gives

3∇i∇jX2 = D(i(aI
2)

kJI
j)k − 2i∇(i(a2)j) − 1

8∇i∇jR . (2.4.47)

At higher order still we have

X3 ε = X1(1 + γz)ε
3 − i

12DaI
1 · (σIε) . (2.4.48)

As ε has positive chirality we can act with P− = 1
2 (1 + γz̄) to deduce that ε3 also has positive

chirality. It then follows that

X3 = − 1
12 (DaI

1)
ijJI

ij = 1
48∇

2R . (2.4.49)

where we have used (2.4.44). This expression for X3 is equivalent to that in (2.3.29), for the
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topological twist. Finally, at order O(z7/2) we have

X4 ε = − 1
2 X3 ε− 1

2 X1 ε3 − i
12

[
(DaI

2) · (σIε)− 2f2 · ε + FI · (σIε
3)
]

− i
12 ei

i (e
(2))

j
j
FI

ijγ
ij(σIε) .

(2.4.50)

Here ei
i

is the inverse frame to ei
i, with ei

i
and (e(2))i

i
being coefficients in its expansion,

precisely as in (2.4.36). We have also defined f2 = da2. Since ε3 is so far undetermined, we

cannot yet extract an expression for X4. This concludes the expansion of the bulk dilatino

equation.

Turning next to the bulk gravitino equation, at lowest order in the z direction we find,

after using the fact that ε3 has positive chirality, that

ε3 = 1
48 R ε− 1

4 gij ei
i (e

(2))
j
jγij ε . (2.4.51)

As a metric defines the frame only up to an arbitrary local SO(4) rotation, it is convenient

to gauge fix this arbitrariness. A consistent gauge choice is (e(2))ī
i =

1
2 (g

2)ī
j̄ e j̄

i and (e(2))i
ī =

− 1
2 ei

j̄ (g
2) j̄

ī, where recall that g2 is fixed in terms of the boundary Schouten tensor via (2.3.33).

This then implies that

gij ei
i (e

(2))
j
j
= − 1

2g
2
ij , gij ei

i (e
(2))

j
j = 1

2 (g
2)ij , (2.4.52)

and, being symmetric, their contraction with any anti-symmetric tensor automatically

vanishes. Consequently, this gauge choice reduces the relation between the spinors ε and ε3

to simply

ε3 = 1
48 R ε . (2.4.53)

Having found this relation we may substitute for ε3 into the right hand side of (2.4.50),

extract X4 and then substitute for g2, X1, X3 and FI to obtain

X4 = 1
288 R2 − 1

48 Rkl Rkl − 1
96∇

2R− 1
12

(
DaI

2

)ij
JI
ij . (2.4.54)

Here strictly speaking we have taken the real part of this equation, where the term involving

f2 is purely imaginary, and thus doesn’t appear. Using the trace of (2.4.47), together with

several other equations derived so far, one can check that the expression (2.4.54) for X4
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agrees with the expression (2.3.30), obtained from the equations of motion.

At the next orders we find

(5− γz) ε5 = − 2 ε̃5 + 2(ia2 + dX2) · ε , (2.4.55)

(5− γz) ε̃5 = 2i
3 aI

1 · (σIε) = − 1
6 dR · ε . (2.4.56)

We could continue and analyse higher order terms in this z component of the gravitino

equation, but the subsequent expressions are not required, nor particularly enlightening,

and so we stop here.

The remaining equation to study is the i direction of the gravitino equation. Crucially this

involves the spin connection components Ωi
zi, which introduce the metric expansion fields

from (2.3.15). Of course, the leading order equation is satisfied by construction. Remarkably,

at the next order we find a non-trivial equation which is also identically satisfied given the

chirality of ε3 and the algebraic properties of the Riemann tensor. At the following order we

find another condition on ε̃5:

γi

[
3i(1 + γz)ε̃

5 + aI
1 · (σIε)

]
= 0 , (2.4.57)

which, used in conjunction with (2.4.56), allows us to determine

γz ε̃5 = ε̃5 , ε̃5 = − 1
24 dR · ε . (2.4.58)

We now substitute ε̃5 into equation (2.4.55):

(5− γz)ε
5 =

(
2ia2 + 2dX2 +

1
12 dR

)
· ε . (2.4.59)

Acting on this last equation with γz̄, and taking the difference, implies that ε5 is a negative

chirality spinor: γz̄ε5 = ε5. We thus find

ε5 =
( i

2 a2 +
1
2 dX2 +

1
48 dR

)
· ε . (2.4.60)

At the next order we begin to see the metric fields appearing:

h0
ijγ

jε = − 1
288 R2γiε−

1
2 γi(1 + γz)ε̊

7 . (2.4.61)
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Using the chiral projector P− again we see that ε̊7 has positive chirality, and we may extract

h0:

h0
ij = − 1

288 R2gij . (2.4.62)

This agrees with the expression h0
ij = −

1
2 gijX2

1 , given by equation (2.3.38), derived from the

expansion of the bosonic field equations. The next order gives

h1
ijγ

jε = − 1
2 γī(1 + γz̄) ε̃7 − 1

2 h0
ijγ

j̄ε− X1X2γi ε +∇i ε̃
5 + i

2 AI
i (σI ε̃

5)

− i
24 X1(γi

jk − 4δ
j
i
γk)FI

jk(σIε) +
i

24 (γi
jk − 4δ

j
i
γk)(DaI

1)jk(σIε) .
(2.4.63)

As before, we can show that ε̃7 has positive chirality and hence drops out of (2.4.63). Now

using the definition of ε̃5 in (2.4.58) allows us to write everything acting on the spinor ε.

After using the intermediate result

− 1
4 JI

(i
k(DaI

1)j)k = − 1
8

(
Ri

kRjk + Rikl jRkl −∇2Rij +
1
2 ε(j|kmn|R

kl Rmn
i)l

)
, (2.4.64)

and substituting for the known expressions, we can then read off h1
ij:

h1
ij = 1

192 gijR2 + 1
12 gijRX2 − 1

48 RRij − 1
24∇i∇jR− 1

48 gij∇2R

− 1
8

(
Ri

kRjk + Rikl jRkl −∇2Rij +
1
2 ε(j|kmn|R

kl Rmn
i)l

)
.

(2.4.65)

Once again, we have found another expression for something we have already derived: h1
ij is

also given by equation (2.3.39). However, in this instance the equality of the two expressions

(2.4.65) and (2.3.39) is non-trivial. It is equivalent to the equation

0 = (RRij − 2Ri
kRjk + 2Rikl jRkl + RmnikRmn

j
k)− 1

4 gij(R2 − 4Rkl Rkl + Rmnkl Rmnkl)

+ 1
2

[
εmnpq

(
− 1

4 gijRmn
kl Rpqkl + gjkRmn

il Rpqkl)− 2ε(j|kmn|R
kl Rmn

i)l
]

.
(2.4.66)

The first line quite remarkably is known to be zero for any Riemannian four-manifold, and is

called Berger’s identity [45]. One can also show that the second line is equal to zero, which

amounts to an algebraic identity that holds for any tensor sharing the algebraic symmetries

of the Riemann tensor.
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Finally, at the last order we find20

(4g4
ij + h1

ij)γ
jε = − 2γī(1 + γz̄)ε

7 + 4
(
∇i ε5 + i

2 AI
i (σIε

5)
)
− 2X2

2γi ε− 2g2
ijγ

j̄ε3

+ i
6 (γ

jk
i
− 4δ

[j
i

γk])
[
(DaI

2)jk(σIε) + (f2)jkε + FI
jk(σIε

3)− X2FI
jk(σIε)

+ 2ej
j
(e(2))k

kFI
jk(σIε)

]
− 2
[
ei

i (e
(2))

j
j
+ (e(2))i

i ej
j

]
g2

ijγ
j̄ε . (2.4.67)

Again there is a positive chirality condition on ε7 which removes it from the above equation.

Using the many intermediate results we have derived, we then find

4g4
ij + h1

ij = 2∇i∇j
(
X2 +

1
24 R
)
+ 2i∇(i(a2)j) +

(
X2 − 1

12 R
)

Rij

+ gij

(
− 1

6 RX2 − 2X2
2 +

1
12 Rkl Rkl

)
+ 1

4 RikRk
j

− 1
8 εmnk

jRmnliRk
l + 1

4 Rikl jRkl + 1
3 [2DaI

2 − ∗(DaI
2)](i|k|J

Ik
|j) .

(2.4.68)

2.5 Metric independence

Our aim in this section is to show that, for any supersymmetric asymptotically locally

hyperbolic solution to the Euclidean N = 4+ supergravity theory, with the topologically

twisted boundary conditions on an arbitrary Riemannian four-manifold (M4, g), the varia-

tion (2.1.1) of the holographically renormalized action is identically zero. As explained in

the introduction, this implies that the right hand side of (1.4.1) is independent of the choice

of metric g, precisely as expected for the holographic dual of a topological QFT. We find that

this is indeed the case, using the minimal holographic renormalization scheme described in

section 2.3.3. We comment further on this at the end of section 2.5.2.

2.5.1 Variation of the action

As discussed in section 2.4.2, the Donaldson–Witten topological twist corresponds to the

following boundary conditions on the supergravity fields on M4:

0 = b± = a = ε− , X1 = − 1
12 R , AI = 1

2 ωi
jkJI

jk dxi . (2.5.1)

Here the boundary Riemannian metric gij on M4 is arbitrary, with ω
jk

i being the spin

connection, R being the Ricci scalar curvature, and the triplet of self-dual 2-forms JI being
20Of course, knowing h1

ij
we could write an expression for g4

ij
alone, but it is only the combination 4g4

ij
+ h1

ij
which we shall need in the next section.
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given by (2.4.21). The holographic Ward identity for the variation of the renormalized action

(2.3.43) with respect to general variations of the non-zero boundary fields is

δS = δgS + δAI S + δX1S =
∫

∂Y5=M4

d4x
√

det g
[

1
2 Tijδgij +J i

I δAI
i + Ξ δX1

]
. (2.5.2)

It is worth pausing to consider carefully why this equation holds. A variation of the

boundary data on M4 will induce a corresponding variation of the bulk solution that fills

it. However, we are evaluating the action on a solution to the equations of motion, and

by definition these are stationary points of the bulk action. Thus the resulting variation

of the on-shell action is necessarily a boundary term, and this is the expression on the

right hand side of (2.5.2). This argument requires that the equations of motion are solved

everywhere in the interior of Y5: if the latter has internal boundaries, or singularities,

the above in general breaks down, and one will encounter additional terms around these

boundaries/singularities on the right hand side of (2.5.2).

For the topological twist all boundary fields are determined by the metric gij. Since

X1 = − 1
12 R, to compute δX1 we need the variation of the Ricci scalar:

δR = Rijδgij +∇i

(
gjkδΓi

jk − gijδΓk
jk

)
, (2.5.3)

with the variation of the Christoffel symbols being

δΓi
jk = 1

2 gil (∇kδgl j +∇jδglk −∇lδgjk
)

. (2.5.4)

After integrating by parts twice we obtain

δX1S = − 1
12

∫
∂Y5

[(
ΞRij + gij∇2Ξ−∇i∇jΞ

)
δgij vol4 +

1
κ2

5
DX1vol4

]
, (2.5.5)

where vol4 ≡
√

det g d4x is the Riemannian volume form on (M4, g), and all geometric

quantities appearing are computed using the boundary metric gij. Substituting the value of

Ξ from (2.3.50) leads to

δX1S = − 1
4κ2

5

∫
∂Y5

[ (
X2Rij + gij∇2X2 −∇i∇jX2

)
δgij vol4 +

1
3DX1vol4

]
, (2.5.6)
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where the total derivative term is

DX1 ≡ −3∇i

[
∇kX2gijδgjk −∇iX2gjkδgjk − X2gjkgil(∇kδgl j −∇lδgjk)

]
. (2.5.7)

For δAI
i we first need the variation of the spin connection. After a short calculation we

have

δωi
jk = 1

2 el j emk (∇mδgil −∇lδgim) . (2.5.8)

Thus

δAI
i = 1

2 δωi
jkJI

jk = 1
2 (∇kδgij)JI jk . (2.5.9)

After integrating by parts, the SU(2)R current contribution is hence

δAI S = − 1
8κ2

5

∫
∂Y5

{ [
Dk(aI

1 + 2aI
2)i JI

jk

]
δgij vol4 +DAI vol4

}
, (2.5.10)

where we have substituted for the SU(2)R current using (2.3.51), and used the quaternionic

Kähler identity (2.4.29). The object in square brackets is a tensor with indices ij: only the

symmetric part contributes. The total derivative term is

DAI ≡ ∇i

[
(aI

1 + 2aI
2)

kJIijδgjk

]
. (2.5.11)

It remains to evaluate the stress-energy tensor contribution (2.3.49) and combine it with

(2.5.6) and (2.5.10). Doing so leads to

δS =
1

4κ2
5

∫
∂Y5

(
Tij δgij vol4 +DS vol4

)
, (2.5.12)

where the total derivative term is

DS ≡ − 1
3DX1 − 1

2DAI , (2.5.13)
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and

Tij =
[
4g4

ij + h1
ij − 4gij

(
t(4) − 1

2 t(2,2) − 1
8 u(1))− 2g2

ijt
(2) − 6gijX2

2

+ 1
2

(
∇k∇ig

2
jk +∇k∇jg

2
ik −∇2g2

ij −∇i∇jt(2)
)
− 1

2g
2
ijR + 1

2 gij
(
g2

kl R
kl)]

−
(
X2Rij + gij∇2X2 −∇i∇jX2

)
− 1

2

[
Dk(aI

1 + 2aI
2)(i JI

j)k

]
.

(2.5.14)

Here the first two lines come from the stress-energy tensor (2.3.49), while the last line

combines (2.5.6) and (2.5.10). Provided M4 is a closed manifold, without boundary, the

integral of the total derivative term is zero, and we have simply

δS =
1

4κ2
5

∫
∂Y5=M4

Tij δgij vol4 . (2.5.15)

The tensor Tij is thus an effective stress-energy tensor, for variations of the renormalized

on-shell action with respect to the boundary metric, all boundary data being determined by

this choice of metric. Our claim that the on-shell action is invariant under an arbitrary metric

deformation δgij is thus equivalent to the statement that Tij ≡ 0, for every Riemannian

four-manifold. Remarkably, despite there being several undetermined quantities in (2.5.14),

using the results of sections 2.3.3 and 2.4.4 we will show that indeed Tij ≡ 0 in the next

subsection.

2.5.2 Proof that δS/δgij = 0

We begin by substituting expressions from section 2.3.2 into (2.5.14), which recall follow

from the Fefferman–Graham expansion of the bosonic equations of motion. In particular we

substitute for ∇2X2 using equation (2.3.30), as well as various metric quantities, except for

the combination 4g4
ij + h1

ij. With the topological twist boundary conditions (2.5.1) this leads

to the expression

Tij =
( 1

12 R− X2
)

Rij − 1
2 RikRk

j − 1
2 Rikl jRkl − 1

4∇i∇jR +∇i∇j
(
X2 +

1
6 R
)

+ 1
4∇

2Rij + gij
(
2X2

2 − 1
72 R2 + 1

6 RX2 − 1
24∇

2R + 4X3 + 4X4
)

+ 4g4
ij + h1

ij − 1
2

[
Dk(aI

1 + 2aI
2)(i JI

j)k

]
.

(2.5.16)

In particular we have used the identity

− 1
2∇k∇(iR

k
j) = − 1

2 RikRk
j − 1

2 Rikl jRkl − 1
4∇i∇jR , (2.5.17)
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in deriving (2.5.16).

The equations of motion, or equivalently supersymmetry conditions, determine

X3 = 1
48∇

2R , X4 = 1
288 R2 − 1

48 Rkl Rkl − 1
96∇

2R− 1
24

(
DaI

2

)ij
JI
ij . (2.5.18)

On the other hand, in section 2.4.4 the expansion of the supersymmetry conditions led to

the expression (2.4.68), which we repeat here:

4g4
ij + h1

ij = 2∇i∇j
(
X2 +

1
24 R
)
+ 2i∇(i(a2)j) +

(
X2 − 1

12 R
)

Rij

+ gij

(
− 1

6 RX2 − 2X2
2 +

1
12 Rkl Rkl

)
+ 1

4 RikRk
j

− 1
8 εmnk

jRmnliRk
l + 1

4 Rikl jRkl + 1
3 [2DaI

2 − ∗(DaI
2)](i|k|J

Ik
|j) .

(2.5.19)

Substituting into (2.5.16), after several immediate cancellations we are left with

Tij = 1
4∇

2Rij − 1
8 εmnk

jRmnpiRk
p − 1

4 RikRk
j − 1

4 Rikl jRkl + 3∇i∇jX2 − 1
2D

k(aI
1)(iJ

I
j)k

+ 2i∇(i(a2)j) − 1
6 gij

(
DaI

2

)kl
J I
kl +

1
3 (2DaI

2 − ∗DaI
2)(i|k|J

Ik
j) −Dk(aI

2)(iJ
I
j)k .

(2.5.20)

Using the expression

(aI
1)i = − 1

4 JI
mn∇jR

mnj
i , (2.5.21)

together with the contracted second Bianchi identity, we find that

Dk(aI
1)iJI

jk = − 1
2 εj

kmn∇k∇mRni − 1
2∇

k∇l Rjkli . (2.5.22)

Substituting this expression, together with equation (2.4.47), into Tij in (2.5.20), we arrive at

Tij = 1
4∇

2Rij − 1
8∇i∇jR + 1

4∇
k∇l Rjkli − 1

4 RikRk
j − 1

4 Rikl jRkl

− 1
6 gij

(
DaI

2

)kl
JI
kl +

1
3 [2DaI

2 − ∗(DaI
2)](i|k|J

Ik
j) − (DaI

2)(i|k|J
Ik

j)

+ 1
8 εj

kmn(2∇k∇mRni − Rmni
l Rkl)

= 0 .

(2.5.23)

Here, remarkably, each of the three lines vanishes separately. The first line is zero using

again (2.5.17) and the contracted second Bianchi identity, whilst the terms in the second line

combine to give zero after using the self-duality property of the JI tensors to remove the

Hodge dual acting on the field strength DaI
2. The final line is zero after applying the Ricci
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identity for a rank 2 covariant tensor, followed by the first Bianchi identity and using the

symmetry of the summed indices.

We emphasize again that this proof that δS/δgij = 0 uses the minimal holographic

renormalization scheme defined in section 2.3.3. Up to finite counterterms in (2.3.44)

that are topological invariants, which have identically zero variations, another choice of

scheme would spoil the above result. Another important comment is that the original

path integral arguments in [219] are essentially classical (see footnote 10 of [219]). In

particular there might have been an anomaly, implying that the partition function (and

other correlation functions) are not invariant under arbitrary metric deformations. In this

case, the topological twist would not have led to a TQFT. This might seem like a strange

comment, given that the topologically twisted N = 2 Yang–Mills theory of [219] at least

formally reproduces Donaldson theory, which of course certainly does rigorously define

diffeomorphism invariants of M4. However, it has recently been argued that precisely

such an anomaly exists for four-dimensional rigid N = 1 supersymmetry [191, 12]. The

computations in these papers are in fact holographic, and rely on the fact that in AdS/CFT

the semi-classical gravity computation is a fully quantum computation on the QFT side,

including any potential anomalies. Specifically, it is argued that there is an anomalous

transformation of the supercurrent under rigid supersymmetry on the conformal boundary,

implying that the partition function is not invariant under certain metric deformations that

are classically Q-exact. These particular anomalous transformations were first discovered in

[39, 38], via essentially the same computation we have followed in this chapter, although this

was not interpreted as an anomaly in [39, 38] (this will be the content of chapter 4). Returning

to our present problem, the QFT is in any case coupled to an N = 2 conformal supergravity

background, and for the N = 2 topological twist we find no anomaly. In particular our

topologically twisted supergravity theory, formally at least, defines a topological theory. We

discuss this further in section 2.6.4.

2.6 Geometric reformulation

In this section we present a geometric reformulation of the bulk supersymmetry equations.

In section 2.6.1 we describe how (twisted) differential forms built out of bilinears in the

bulk spinor define a twisted Sp(1) structure on Y5, and in section 2.6.2 we then derive
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a set of first order differential constraints on this structure. On the conformal boundary

this restricts to the quaternionic Kähler structure that exists on any oriented Riemannian

four-manifold (M4, g), described in section 2.4.2. In section 2.6.3, we use the information

from the differential constraints to evaluate the gravitational free energy for smooth filling.

Finally, we also discuss some general aspects of the filling problem in section 2.6.4.

2.6.1 Twisted Sp(1) structure

Recall from section 2.3.1 that the bulk spinor ε of the Romans N = 4+ theory is originally

a quadruplet of spinors. These split into two doublets ε±, with eigenvalues ±i under Γ45

(see equation (2.3.11)). Beginning in section 2.4.2, we worked in a truncated theory in which

B± = 0 and ε− = 0. We may then define

ε+ =

 ζ

−ζc

 , (2.6.1)

where ζ is a spinor on Y5, and recall that ζc ≡ C ζ∗. Equation (2.6.1) is the solution to the sym-

plectic Majorana condition (ε+)c = ε+. More globally, and as on the conformal boundary

M4, the spinor ε+ in (2.6.1) is a SpinG spinor, where G = SU(2)R – see section 2.4.2.

With this notation we may define the following (local) differential forms

S ≡ ζ̄ζ , K ≡ 1
S

ζ̄γ(1)ζ ,

J 3 ≡ i
S

ζ̄γ(2)ζ, J 2 + iJ 1 ≡ 1
S

ζ̄cγ(2)ζ ,
(2.6.2)

where in our Hermitian basis of Clifford matrices recall that a bar denotes Hermitian

conjugate. There are a number of global comments to make. First, as in the discussion in

section 2.4.2, the fact that ζ is globally a twisted spinor, rather than a spinor, means that

(2.6.2) in general only locally defines an SU(2) ∼= Sp(1) structure.21 More globally, the J I

are twisted via the SU(2)R symmetry, transforming as a triplet. We shall call this a twisted

Sp(1) structure. Another comment is that in any case the structure is well-defined only

where ζ 6= 0. In general there may be solutions to the spinor equations where ζ = 0 on

some locus. We should hence more precisely define Y(0)
5 ≡ Y5 \ {ζ = 0}, so that (2.6.2) is

well-defined on Y(0)
5 . One will then need to impose certain boundary conditions on this

21A general discussion of global Sp(1) structures on five-manifolds may be found in [72].
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structure, near {ζ = 0}, in order that the solution on Y5 is appropriately regular. The

bilinears (2.6.2) define a twisted Sp(1) structure on Y(0)
5 .

Continuing the analysis of section 2.4.4 the expansion of the spinor (2.4.38) implies that

near the conformal boundary

ζ = z−1/2χ + z3/2 ( 1
48 R
)

χ + z5/2 (− 1
24 dR log z + i

2 a2 +
1
2 dX2 +

1
48 dR

)
i γiχ

+ z7/2
[
− 1

1152 R2 log2 z + 1
48

(
RX2 +

1
16 R2 − 1

4∇
2R
)

log z

− 1
8

(
X2

2 +
1
8 RX2 +

1
128 R2 − 1

96∇
2R− 1

24 RijRij − i
12 (da2)ijγ

ij
) ]

χ

+ z7/2
[

i
96

(
DaI

2

)
ij

γij(σIε
−1)1

]
+ o(z4) .

(2.6.3)

where χ is the boundary spinor defined in section 2.4.2. In particular for the topological

twist this is constant, with constant square norm χ̄χ = c2 (see equations (2.4.24), (2.4.25)).

Without loss of generality we henceforth set c = 1, so that

S =
1
z
+

z
24

R + o(z5/2) . (2.6.4)

In particular notice that ζ 6= 0 near to the conformal boundary at z = 0. The last line of

(2.6.3), seemingly, cannot be written in terms of the lowest order constant spinor χ, however

it will not play a part in the following.

2.6.2 Differential system

Starting from the bulk Killing spinor equations (2.3.7), (2.3.8) one can derive a system of

differential equations for the twisted Sp(1) structure (2.6.2). In the notation (2.6.1) the spinor

equations read

∇µζ = − i
2Aµζ + i

2

(
A1

µ − iA2
µ

)
ζc − i

2A
3
µζ + 1

3

(
X + 1

2 X−2)γµζ

+ i
24 X−1(F 1

νρ − iF 2
νρ)(γµ

νρ − 4δν
µγρ)ζc − i

24

(
X−1F 3

νρ + X2Fνρ

)
(γµ

νρ − 4δν
µγρ)ζ ,

0 = 3
2 i X−1∂µXγµζ + i

(
X− X−2)ζ − 1

8 X−1(F 1
µν − iF 2

µν)γ
µνζc

+ 1
8 (X−1F 3

µν − 2X2Fµν)γ
µνζ . (2.6.5)
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As in section 2.3.1, it will be convenient to introduce the real 1-form

C ≡ iA . (2.6.6)

Using these equations, a standard calculation22 leads to

X−2K = d log(XS) + C , (2.6.7)

together with the triplet of equations

d(SJ I) = − C ∧ SJ I + (2X + X−2)K ∧ SJ I + εI
JKAJ ∧ SJ K

+ 1
2 X−1S (∗F I +K ∧F I) .

(2.6.8)

Here the Hodge dual is constructed from the volume form vol5 = −K ∧ vol4, where

vol4 ≡ 1
6J I ∧ J I . The sign here is chosen to match our earlier choice of orientation, via

(2.3.16), as we shall see shortly.

We may read the first equation (2.6.7) as determining the 1-form C in terms of geometric

data and the function X:

C = X−2K− d log(XS) . (2.6.9)

In particular, the associated flux is then

G ≡ dC = iF = d(X−2K) . (2.6.10)

Substituting (2.6.9) into (2.6.8), the latter simplifies to

dJ I = εI
JKAJ ∧ J K + (d log X + 2XK) ∧ J I + 1

2 X−1(∗F I +K ∧F I) . (2.6.11)

Recall that in the original Lorentzian theory A is a U(1)R gauge field. In the real

Euclidean section we have defined C = iA, which is a real 1-form, but there is then a

residual part of the (complexified) gauge symmetry C → C − dλ, where λ is a global real

function. The fields transform as follows:

ζ → eλ/2ζ , S → eλS , C → C − dλ , (2.6.12)

22For example, see [8].
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with everything else invariant. In particular it is immediate to see that (2.6.9), (2.6.11) are

invariant under these gauge transformations. In our boundary value problem recall that we

fixed C |M4= 0, and in order to preserve this gauge condition on the conformal boundary

one should restrict to gauge transformations that vanish there, so that λ |M4= 0. With this

caveat, one might use this gauge freedom to effectively remove one of the functional degrees

of freedom.

Let us look at the asymptotic form of the differential conditions near the conformal

boundary at z = 0. Recalling the Fefferman–Graham expansion of the fields (2.3.18)–(2.3.20),

together with the topological twist boundary conditions (2.5.1), we have

X = 1− 1
12 z2 log z R + z2X2 +

1
48 z4 log z∇2R

+ z4
(
− 1

4∇
2X2 − 1

48∇
2R + 1

288 R2 − 1
48 RijRij − 1

192 (E + P)
)
+ o(z4) ,

AI = 1
2 ωi

jkJI
jk dxi − 1

4 z2 log z JI
mn∇jR

mnj
i dxi + z2aI

2 + o(z2) ,

A = z2 a2 + o(z2) .

(2.6.13)

Here R, Rij and Rmnij are respectively the boundary Ricci scalar, Ricci and Riemann tensor

and E ,P are the Euler and Pontryagin densities constructed from these curvature tensors.

The boundary spin connection is ωi
jk and JI are the triplet of boundary self-dual 2-forms.

The 1-form ia2 is real. Using also (2.6.4), equation (2.6.7) then implies that

K = −dz
z

+ z2(− 1
12 log z dR + ia2 + dX2 +

1
24 dR

)
+ o(z5/2) . (2.6.14)

Recall that in section 2.4.2 we defined the triplet of boundary almost complex structures

(II)i
j ≡ gik(JI)kj. If we define the boundary (almost) Ricci 2-forms

ρI
ij ≡ Rk[i(I

I)k
j] , (2.6.15)

where Rij is the boundary Ricci tensor, then similarly from the definition (2.4.26) we have

J I =
1
z2 JI + 1

12 R JI − 1
2 ρI

+ zdz ∧ II(− 1
12 log z dR + ia2 + dX2 +

1
24 dR

)
+ o(z3/2) .

(2.6.16)
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Here II(η)i = (II)
j
iηj for a 1-form η tangent to the boundary. It is interesting to note that the

O(1) terms in J I above may also be written as 1
12 R JI − 1

2 ρI = (g2 ◦ J I), where recall from

equation (2.3.33) that g2 is (minus) the Schouten tensor of the conformal boundary. From

(2.6.11) we hence read off the leading order the boundary equation

dJI = εI
JK AJ ∧ JK . (2.6.17)

Equation (2.6.17) follows from taking the skew symmetric part of (2.4.29). In fact since the

exterior derivatives of the boundary SU(2) structure JI completely determine the intrinsic

torsion (this is true for an SU(n) structure in real dimension 2n [114]), it follows that (2.6.17)

also implies (2.4.29).

We may always choose a frame E
µ

µ for the bulk metric on Y5 such that

K = −E 5 , J 1 = E 2 ∧ E 3 + E 1 ∧ E 4 ,

J 2 = E 3 ∧ E 1 + E 2 ∧ E 4 , J 3 = E 1 ∧ E 2 + E 3 ∧ E 4 . (2.6.18)

In particular (2.6.14) identifies E 5 ∼ dz/z to leading order, and the sign for K in (2.6.18)

follows since −γz̄χ = χ, where Ez = dz/z. The volume form is vol5 = E 12345. Notice

that the expansions (2.6.14), (2.6.16) imply that in general we may not identify E
µ

µ near the

conformal boundary with the Fefferman–Graham frame Eµ
µ in (2.4.1), except to leading

order.

2.6.3 On-shell action

In the consistent truncation of the supergravity theory that we used to construct the dual

to the topological twist, the on-shell action obtained using the Einstein equation reads

(compare with (2.3.40))

Io-s =
1

2κ2
5

∫
Y5

[ 8
3 (X2 + 2X−1) ∗1 + 1

3 X4F ∧ ∗F + 1
6 X−2F I ∧ ∗F I

+ i
4F

I ∧ F I ∧A
]

.

(2.6.19)
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However, by additionally using the scalar field equation (2.3.2) twice and (2.3.4) to rewrite

the Chern–Simons term we arrive at the following simpler expression

Io-s =
1

2κ2
5

∫
Y5

[
8X−1 ∗ 1− d

(
2X−1 ∗ dX− X4A∧ ∗F

)]
. (2.6.20)

Now with some simple manipulation of the differential system (2.6.7)–(2.6.8) we can show

that

1
3 d(X−2J I ∧ J I) = − 8X−1 ∗ 1 , (2.6.21)

and immediately conclude that the on-shell action is (locally) exact;

Io-s = − 1
2κ2

5

∫
Y5

d
( 1

3 X−2J I ∧ J I + 2X−1 ∗ dX− X4A∧ ∗F
)

. (2.6.22)

In addition to A being a global 1-form, with F a global 2-form, we assume that X > 0 is

a smooth global function on Y5. Further, note that J I ∧ J I ∝ ∗K and K is fixed by (2.6.7) in

terms of X, A and S. Hence K is globally defined as long as the spinor norm S = ζ̄ζ 6= 0.

Therefore, we should more precisely work on Y(0)
5 , so that (S,K,J I) are well-defined and

the gravity solution is smooth. In summary, the on-shell action is globally exact apart from

a set which we assume has zero measure. As in section 2.3.3, we cut off the bulk Y5 at some

small radius z = δ > 0, so that ∂Y5 = Mδ ≡ {z = δ} ∼= M4. Using Stokes’ theorem, we may

then write the on-shell action as integral over ∂Y(0)
5 :

Io-s = − 1
2κ2

5

∫
∂Y(0)

5

[
1
3 X−2J I ∧ J I + 2X−1 ∗ dX− X4A∧ ∗F

]
. (2.6.23)

Here ∂Y(0)
5 comprises the conformal boundary M4

∼= Mδ, and the boundaries Tε of the small

tubular neighbourhoods of radius ε > 0 surrounding the subsets Y5 \Y(0)
5 where the spinor

norm vanishes.

The above on-shell action must be supplemented by the standard Gibbons–Hawking–

York term at the UV boundary, IGHY as in section 2.3.3 and the divergences may be cancelled
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by adding the local boundary counterterms coming from the truncation of (2.3.42):

Ict =
1
κ2

5

∫
Mδ

d4x
√

det h
{

3 + 1
4 R(h) + 3(X− 1)2

+ log δ
[
− 1

8

(
Rij(h)Rij(h)− 1

3 R(h)2
)
+ 3

2 (log δ)−2(X− 1)2

+ 1
8F

2
h + 1

16 (F
I)2

h

]}
.

(2.6.24)

As the on-shell actions given by (2.6.19) and (2.6.23) are equivalent, Ict must also cancel

divergences arising from the latter when supplemented by the common Gibbons–Hawking–

York term. The total renormalized action is then

S = lim
δ→0

(Io-s + IGHY + Ict) . (2.6.25)

In order to calculate the UV contribution to S of the term 1
3 X−2J I ∧ J I in Io-s we use

the expansion of the spinor (2.6.3) and the definition of the bilinears in (2.6.2), determining

J I ∧ J I
∣∣∣
z=δ

=
[

6
δ4 − 1

2δ2 R + 1
8

(
1
3 R2 − RijRij

)
− 1

24 R2 log2 δ + RX2 log δ

+ 1
128

(
−384X2

2 + E + P
) ]

vol4 + o(δ1/2) .
(2.6.26)

Here we have restricted the 2-forms to the boundary at constant z = δ. On forming the

exterior product there are several simplifications, in particular the anti-symmetric indices of

da2 and DaI
2 are traced over and do not contribute. This can also be shown by expanding

the equation K ∧ J I ∧ J I = −6vol5.

We are finally in the position to evaluate the UV contribution to the renormalized

on-shell action (2.6.25). We find

SUV = lim
δ→0

1
κ2

5

∫
∂Y5

[
log δ

(
1

32 (E + P) ∗4 1 + 1
24 d ∗4 dR

)
− 1

48 d ∗4 d(R + 24X2)
]

. (2.6.27)

At first sight the log δ term is problematic as it diverges. However, as we saw in section 2.4.3,

the topological condition
∫

∂Y5
(E +P) ∗4 1 = 0 is required in order forA to be a global 1-form,

or equivalently to have a non-zero partition function for the boundary TQFT. Moreover,

the Ricci scalar is a globally defined function on Mδ, and consequently for boundaryless

four-manifolds, i.e. ∂Mδ = 0, the second term vanishes on using Stokes’ theorem. The same

argument applies to the finite piece of SUV as the bulk scalar X, and hence X2, is a global
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smooth function. It follows that the UV contribution to the renormalized action is zero for

smooth fillings.

That now leaves us with the contribution from the small tubular neighbourhood Tε

where the spinor norm vanishes:

S =
1
κ2

5
lim
ε→0

∫
Tε

[
− 1

6 X−2 ∧ J I ∧ J I − X−1 ∗ dX + 1
2 X4A∧ ∗F

]
. (2.6.28)

However, this gives zero for a smooth solution. The contributions from the second and third

forms vanish in the limit ε→ 0: A is assumed to be a global smooth 1-form on Y5, and the

bosonic field is assumed to be smooth. In particular, X = e
1
2 φ, so X > 0 (indeed, bounded

below by a positive constant since Y5 is compact). Thus the integrals tend to zero as the

volume enclosed by Tε tends to zero. In addition, the first term may be written as

− 1
6 X−2J I ∧ J I = X−2 ∗ K . (2.6.29)

One may worry that K is not defined as the norm of the spinor vanishes. However, we may

use (2.6.7) to rewrite the relation above as

X−2 ∗ K = (d log ρ + C)] vol5 , (2.6.30)

where ρ = XS can be used as a radial coordinate near to the locus where the spinor

vanishes, where ρ = 0, and one defines Tε = {ρ = ε > 0}. It follows that (apart from a

contribution from the smooth gauge field) X−2 ∗ K is directly proportional to the volume

form (d log ρ)] vol5 induced on Tε from the five-dimensional bulk metric. The integral

hence vanishes in the limit ε → 0, where the volume of the tubular neighbourhood Tε

vanishes. We conclude that the renormalized action for any smooth supergravity solution is

zero.

Topologically, a smooth filling Y5 of M4 exists if and only if the signature σ(M4) = 0.23

Together with the constraint (2.4.34), one necessarily has Euler number and signature of M4

equal to zero: χ(M4) = 0 = σ(M4). Apart from this, no other topological assumption is

made about M4 or its filling in the above computation.

23In four dimensions, the oriented bordism group is ΩSO
4
∼= Z, with the map to the integers being given

by the signature σ(M4) = b+2 (M4)− b−2 (M4) =
1
3
∫

M4
p1(M4), where p1 denotes the first Pontryagin class. A

generator of ΩSO
4
∼= Z is the complex projective plane.
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2.6.4 Filling problem

As explained in chapter 1, given a Riemannian four-manifold (M4, g) as a fixed conformal

boundary, at least to a zeroth order approximation in AdS/CFT one wants to find the least

action supersymmetric solution to the five-dimensional N = 4+ supergravity theory, with

this boundary data. Such a solution will be the dominant saddle point on the right hand

side of (1.4.1).

As we have seen in the previous subsection, supersymmetric solutions on Y5 are char-

acterized geometrically in terms of a set of first order differential equations (2.6.9)-(2.6.11)

for a certain twisted Sp(1) structure. In particular there is a triplet of twisted 2-forms J I ,

I = 1, 2, 3, which locally at the conformal boundary restrict to an orthonormal set of self-dual

2-forms on (M4, g). The differential equations become tautological on the boundary, and

are equivalent to the fact that every oriented Riemannian four-manifold has a quaternionic

Kähler structure, i.e. has holonomy group Sp(1) · Sp(1) ∼= SO(4).24 This differential system

on Y5, regarded as extending that on (M4, g), clearly deserves closer study.

An important question is: what are the global constraints on Y5? As already mentioned,

a smooth filling Y5 of M4 exists if and only if the signature of the boundary four-manifold

vanishes. Moreover, as explained in section 2.2.2, for solutions embedded in string theory

one also needs these manifolds to be spin.25 This restriction would seem to rule out

many interesting four-manifolds.26 However, as mentioned at the end of chapter 1 as

well, requiring Y5 to be smooth is almost certainly too strong. Already from AdS/CFT

in other contexts, it is clear that the dominant saddle point contribution can be singular,

and one might anticipate that this is somewhat generic, at least for general M4. Perhaps

the appropriate question is then: what are the relevant singularities of Y5, for a given M4?

Mathematically one would need control over existence and uniqueness of the differential

equations for the twisted Sp(1) structure, for appropriate Y5 (with singularities/appropriate

internal boundary conditions) filling M4. However, one might also anticipate that the

supergravity action (2.3.43) could be evaluated without knowing the detailed form of the

solution, but instead in terms of appropriate global data, and perhaps local data associated

24This result is parallel to the study of rigid supersymmetric backgrounds using holography for four-
dimensional N = 1 theories [145]. There, the boundary structure was found to be an integrable almost complex
structure.

25The relevant spin bordism group is then ΩSpin
4
∼= Z, generated by a K3 surface, where the map to the

integers is σ(M4)/16.
26Although it leaves, for example, M4 = S1 × M3, for any oriented three-manifold M3, and products of

Riemann surfaces.
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to singularities. Notice that one constraint on such singularities/internal boundaries is that

they do not contribute to the variation of the action (2.5.2) – see the discussion after (2.5.2).27

Less ambitiously, one might also try to find explicit solutions; for example, via symmetry

reduction so that the equations reduce to coupled ODEs. An obvious case is solutions

with Y5 = S1 × B4, where B4 is a four-ball so that ∂Y5 = M4 = S1 × S3, and seek solutions

invariant under U(1)× SU(2) (the latter acting on the left on S3 ∼= SU(2)).

In this case it seems that the refinement of the partition function discussed in section

2.2 could play an important rôle: the refined partition function is closely related to the

Coulomb branch index, as explained in [82]. One might then try to reproduce this from

a dual supergravity solution for which Y5 = S1 × B4. More generally, for a four-manifold

S1 ×M3 with product metric both E and P vanish, and the holographic U(1)R current is

conserved, as can be seen from (2.4.32). The associated conserved holographic R-charge

might then provide a natural holographic correspondent to the refinement of the partition

function for the twisted four-dimensional SCFT.

Finally, the present problem may be contrasted to the general hyperbolic filling problem

described in [13]. Here one also begins with an arbitrary Riemannian (M4, g), which is a

conformal boundary, but one instead asks for the filling to be an Einstein metric of negative

curvature. This problem is still quite poorly understood: there are in general obstructions

and non-uniqueness, and one should at least impose that g has a conformal representative

with positive scalar curvature [226] (physically, so that the CFT is stable). The geometric

problem in the present chapter is likely to be much better behaved: the equations are first

order, not second order, and the solutions should be dual to a TQFT.

27For example, the singularities in the gravity fillings in [9, 8] are isolated conical singularities. Provided the
radial dependence of fields near to the singular point are no worse than for smooth fields in flat space, such
singularities will not spoil the result (2.5.2).
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3.1 Introduction

In the previous chapter, we considered the gravitational dual to the Donaldson–Witten

twist on four-dimensional backgrounds. Since four-manifolds are notoriously difficult, in

this chapter we set up an analogous problem in one dimension lower. The relevant bulk

supergravity theory is a Euclidean version of N = 4 Spin(4) gauged supergravity in four

dimensions. As well as the metric, the bosonic content of the theory contains two scalar

fields and two SU(2) gauge fields. Here Spin(4) = SU(2)+ × SU(2)− is the spin double

cover of SO(4), and the fermions transform in the fundamental 4 representation of this

R-symmetry group. The topological twist in particular identifies the boundary value of one

of these two SU(2) R-symmetry gauge fields with the spin connection of the conformal

boundary three-manifold (M3, g). There is then a consistent truncation in which the other

SU(2) gauge field is identically zero in the bulk. Such Witten-type twists of N = 4 gauge

theories in three dimensions have been studied in [51]. In the first part of the chapter

we establish that the gravitational free energy of such solutions is indeed invariant under

arbitrary deformations of the boundary three-metric on (M3, g).

In analogy with the previous chapter, we next consider the geometry of supersymmetric

solutions to the bulk supergravity theory. They are characterized by a twisted identity structure.

75
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We show that a supersymmetric solution to the bulk supergravity equations equivalently

satisfies a certain first order differential system for this twisted identity structure. As before,

studying these equations allows us to show that the bulk on-shell action is always a total

derivative, and careful consideration of the degeneracy locus of the frame shows that this

holds globally for smooth solutions. Stokes’ theorem then leaves us with a boundary integral

that vanishes in perfect analogy with the results of the previous chapter. Therefore, in the

case of a boundary three-dimensional TQFT as well, the gravitational free energy of any

smooth solution is zero.

At first sight, this result and its counterpart obtained in the previous chapter are

somewhat disappointing: the classical free energy is zero for smooth fillings, irrespective of

their topology. Zero is a topological invariant, but not a very interesting one. However, if

one believes that smooth real saddle points are the dominant saddle points in gravity, this is

then a robust prediction for the large N limits of various classes of topologically twisted

SCFTs, in both three and four dimensions. For example, since N = 4 gauged supergravity in

four dimensions [77] is a consistent truncation of eleven-dimensional supergravity on S7 (or

S7/Zk) [75], as we discuss later in the chapter this leads to a prediction for the large N limit

of the partition function of the topologically twisted ABJM theory, on any three-manifold M3.

On the other hand, with the exception of the SU(N) Vafa–Witten partition function on

M4 = K3 discussed in section 3.7, to date none of these large N limits have been computed

in field theory: such computations now become very pressing! It might be that these match

our supergravity results for smooth solutions, but if not then one necessarily has to consider

more general saddle points, allowing e.g. for appropriate singularities and/or complex

saddle points. Notice that although our computation of the classical gravitational free energy

will in general break down for such solutions, the result that this quantity is independent of

boundary metric deformations is a priori a more general result.

The outline of the chapter is as follows. First, in section 3.2 we review the topological

twists of three-dimensional supersymmetric field theories, as they are perhaps less well

known than their four-dimensional relatives, and discuss the gravity dual to the ABJM

theory. In section 3.3 we introduce the relevant four-dimensional N = 4 Euclidean gauged

supergravity. Surprisingly the supersymmetry transformations of this theory, as formulated

in [75], do not appear in the literature, and we hence first fill this gap. After holographi-

cally renormalizing the action, in section 3.4 we identify the conformal boundary Killing
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spinor equations which admit a topological twist as a particular solution on any oriented

Riemannian three-manifold (M3, g). The bulk spinor equations are then expanded in a

Fefferman–Graham-like expansion. In section 3.5 we prove that the gravitational free energy

is independent of the metric g on M3, following similar methods to the previous chapter.

In section 3.6 we show that a supersymmetric solution to the bulk equations of motion

equivalently satisfies a first order differential system of equations for a twisted identity

structure. Using this we prove that the gravitational free energy of any smooth real solution

is zero. We conclude in section 3.7 with a discussion of some of the issues of topological

AdS/CFT that arose in this first part of the dissertation.

3.2 3d TQFTS and topological twists

We begin in section 3.2.1 by reviewing topological twists of three-dimensional supersymmet-

ric QFTs. In section 3.2.2 we focus on the ABJM theory, its gravity dual, and the consistent

truncation of eleven-dimensional supergravity on S7/Zk to four-dimensional N = 4 gauged

supergravity.

3.2.1 Twisting N = 4 theories

One perspective on the topological twist is that it involves a modification of the global

symmetry group of the theory, obtained by combining the spacetime symmetries with the

R-symmetry of the theory. Concretely, one looks for group products such that a supercharge

would transform as a singlet under an appropriate diagonal subgroup. In three dimensions

every orientable manifold is spin.1 Therefore, the frame bundle of any orientable three-

manifold may be lifted to a Spin(3) ∼= SU(2)E, which constitutes the (Euclidean) spacetime

symmetry.

On the other hand, the R-symmetry group of a three-dimensional field theory with N

supersymmetries is Spin(N )R. The minimal amount of supersymmetry required for a twist

on a three-manifold of generic holonomy is N = 4:2 in the N = 3 case the supercharges

1This follows from the fact that in three dimensions the second Stiefel–Whitney class is the square of the first
Stiefel–Whitney class, w2 = w2

1. Since a manifold is orientable if and only if w1 = 0, we see that an orientable
three-manifold is automatically spin.

2If the manifold has U(1) holonomy, one may twist with only N = 2 supersymmetry, in analogy with the
corresponding four-dimensional case [137, 223]. Note that this is specific to the case of the full twist, and not
the case of the partial twist, see footnote 7.
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transform as (2, 3) under SU(2)E × Spin(3)R, and in the tensor product there is no singlet

2⊗ 3 = 2⊕ 4. The R-symmetry group of N = 4 theories is Spin(4)R = SU(2)+ × SU(2)−,

and the supercharges transform as doublets under each of the two factors. The N = 4

multiplets are vector multiplets and hypermultiplets. The vector multiplet contains the gauge

connection A , a gaugino λ and three real scalars φ = (φ1, φ2, φ3), respectively transforming

under SU(2)E × SU(2)+ × SU(2)− as (3, 1, 1), (2, 2, 2) and (1, 3, 1). The hypermultiplet

contains two complex scalars q and two spinors ψ, each forming R-symmetry doublets, that

is, transforming as (1, 1, 2) and (2, 2, 1). There is an outer automorphism of the superalgebra

exchanging SU(2)+ and SU(2)−. Under this automorphism, a vector multiplet is taken

to a twisted vector multiplet, whose scalars transform as (1, 1, 3), and a hypermultiplet is

taken to a twisted hypermultiplet, whose scalars and spinors form doublets, respectively, of

SU(2)+ and SU(2)−. The field components of the twisted multiplets will be denoted by a

tilde.

One may twist using either SU(2)+ or SU(2)−, obtaining generically inequivalent TQFTs.

The inequivalence of the two twists is not immediate from the supercharges: they transform

as (2, 2, 2) under SU(2)E × SU(2)+ × SU(2)−, so taking diagonal combinations of SU(2)E

with either factors of the R-symmetry group leads to (1, 2)⊕ (3, 2). Nevertheless, the twisted

fields transform differently in the two twists, as can be seen from the scalars. For instance,

consider the scalars in a hypermultiplet q: after the two twists, they would transform as (1, 2)

under (SU(2)E × SU(2)+)diag × SU(2)−, or (2, 1) under (SU(2)E × SU(2)−)diag × SU(2)+.

On the other hand, because of the exchange of SU(2)+ and SU(2)−, the scalars in the

twisted hypermultiplet transform in the opposite way. The same goes for vector multiplets

and twisted vector multiplets: the scalars in a vector multiplet form a triplet under SU(2)+

and a singlet under SU(2)−, so they distinguish between the two twists, but the opposite is

true of the scalars in the twisted vector multiplet.

In a three-dimensional N = 4 super-Yang–Mills (SYM) theory, with a vector multiplet,

the two twists are inequivalent. The first twist may also be recovered by dimensionally

reducing the four-dimensional N = 2 Donaldson–Witten twist. The resulting model is

sometimes referred to as super-BF or super-IG model, and the partition function reproduces

the Casson invariant of the background three-manifold [220, 49, 50]; and conjecturally, via

renormalization group flow, the Rozansky–Witten invariants [52, 178].3 The second twist,

3More precisely, the Casson invariant arises when the gauge group G ∼= SU(2), for three-manifolds M3
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instead, is intrisically three-dimensional (it is not known to arise from the reduction of

any four-dimensional theory) and supposedly provides a mirror-symmetric description

of the Casson invariant [51]. There exists a third topologically twisted three-dimensional

SYM theory with two twisted scalar supercharges, which may be obtained by a partial

twist of three-dimensional N = 8 SYM, or via dimensional reduction of the half-twist of

four-dimensional N = 4 SYM. It is closely related to the Casson model, but differs from it

by the matter content [111].

In three dimensions it is also possible to couple Chern–Simons theory to free hypermul-

tiplets to obtain N = 4 supersymmetries [106], and twist the resulting theory [138, 149]. As

in the previous case, if there are only untwisted or twisted hypermultiplets in the theory the

two twists are inequivalent, and usually referred to as an A-twist and B-twist, respectively.

However, in a theory with both hypers and twisted hypers, the difference between the

two twists amounts to the exchange between the untwisted and twisted matter. Therefore,

one may consider a twist by a single factor in Spin(4)R and exchange the “quality” of the

hypermultiplets, obtaining theories, called AB-models, which have both types of hypermul-

tiplets. For concreteness, after the twist, an AB-model contains matter transforming under

(SU(2)E × SU(2)+)diag × SU(2)− as

q : (1, 1, 2) 7−→ (1, 2) ,

ψ : (2, 2, 1) 7−→ (1, 1)⊕ (3, 1) ,

q̃ : (1, 2, 1) 7−→ (2, 1) ,

ψ̃ : (2, 1, 2) 7−→ (2, 2) .

(3.2.1)

Therefore, the bosonic fields are two scalars and a spinor, whilst the fermionic fields are

a scalar, a 1-form and two spinors. Chern–Simons-matter theories with N > 4 contain an

equal number of untwisted and twisted hypermultiplets, so the symmetry between the A

and B twist is automatically implemented.

In the present chapter, we will be particularly interested in topological twists of the

ABJM theory [4] (see [159] for twists of the BLG [23, 25, 24, 121] models).4 Classically

with the same homology groups as S3. It was originally defined in terms of the combinatorics of SU(2)-
representations of π1(M3). However, the Casson invariant naturally generalizes to the Lescop invariant, which
is defined on any oriented three-manifold. Moreover, the TQFT Casson model suggests an extension of this
invariant to any gauge group G .

4The BLG models are Chern–Simons-matter theories with manifest N = 8 supersymmetry and concretely
describe two M2-branes. On the other hand, ABJM theories, in the UV, are N = 6 U(N)k ×U(N)−k Chern–
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this theory has N = 6 supersymmetry, so let us consider topological twists of N = 6

Chern–Simons-matter theories. Here the R-symmetry group is Spin(6)R ∼= SU(4), and there

are two decompositions

(i) SU(4) −→ SU(2)× SU(2) ,

(ii) SU(4) −→ SU(2)× SU(2)×U(1) .
(3.2.2)

In the first case we are viewing SU(4) ∼= Spin(6) as a double cover of SO(6) 7−→ SO(3)×

SO(3), the latter being the two diagonal 3× 3 blocks. In the second case instead the two

copies of SU(2) are the two diagonal 2× 2 blocks in SU(4). Alternatively, projecting to

SO(6) the second decomposition is simply SO(6) 7−→ SO(4)× SO(2), with the obvious

4 + 2 block decomposition, where SU(2)× SU(2) ∼= Spin(4) is the double cover of SO(4),

and U(1) ∼= SO(2). The supercharges transform in the 6 of SU(4), which decompose under

the above as

(i) 6 −→ (1, 3)⊕ (3, 1) ,

(ii) 6 −→ (2, 2)0 ⊕ (1, 1)+2 ⊕ (1, 1)−2 .
(3.2.3)

In the first case it is clear that a twist with SU(2)E does not lead to any scalar supercharge,

while for the second twist one reduces to the AB-model [149].

It is not completely clear what the observables of the topologically twisted Chern–

Simons-matter theories compute. In [149] it was argued that the A-model is related via the

novel Higgs mechanism [182] to the super-BF theory obtained by twisting N = 4 SYM,

and thus computes the Casson invariant of the background three-manifold. Similarly, the

mathematical content of the observables of the topological models of [138] is also currently

unclear.

The group-theoretic point of view on the topological twist considered above is not

the only possible viewpoint. One may also describe the topological twist in the context

of background rigid supersymmetry. Three-dimensional field theories with N = 2 have

been extensively studied in the context of rigid supersymmetry, both from holography

[145, 131] and by coupling to supergravity [66]. However, the same cannot be said for

N = 4 theories. We will find very concretely that the topological twist corresponds to

Simons-matter theories describing N M2-branes for any N. For k = 1, 2, the supersymmetry is enhanced to
N = 8. For certain values of N, k there exist equivalences between the BLG, ABJM and ABJ models [3, 157, 31, 2].
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identifying the boundary value of one SU(2) factor of the gauged R-symmetry with the spin

connection. This allows us to construct a solution to the Killing spinor equation obtained

from three-dimensional N = 4 conformal supergravity, in analogy with the standard

approach.

3.2.2 The ABJM theory and its supergravity dual

The AdS/CFT correspondence has been especially influential in the context of three-

dimensional field theories. In particular the AdS4 × S7 near-horizon geometry describing

a stack of N M2-branes provided strong evidence for the existence of a strongly-coupled

maximally supersymmetric conformal field theory with N3/2 degrees of freedom. After

initial work by Bagger–Lambert–Gustavsson [23, 25, 24, 121], the worldvolume theory of

N M2-branes probing C4/Zk was eventually found ten years ago by Aharony–Bergman–

Jafferis–Maldacena [4].

The ABJM theory in flat spacetime R1,2 is conjectured to be holographically dual to

M-theory on AdS4 × S7/Zk. In order to study the gravity dual of the field theory defined

on different manifolds M3 in the large N limit, one may consider a consistent truncation

of eleven-dimensional supergravity on S7, or S7/Zk, to an effective four-dimensional bulk

supergravity theory. Such a consistent truncation has been found in [75], where it is shown

that any solution to the four-dimensional N = 4 supergravity theory of Das–Fischler–Roček

[77] uplifts to an eleven-dimensional solution. In particular this supergravity theory has

a Spin(4) ∼= SU(2)× SU(2) gauged R-symmetry, where the massless gauge fields arise,

as usual in Kaluza–Klein reduction, from a corresponding isometry of the internal space.

Specifically, the uplifting/reduction ansatz in [75] identifies the SU(2)× SU(2) isometry

as acting in the 2 of each factor in C4 ≡ C2 ×C2, where the internal space S7 is the unit

sphere in C4. This description makes it clear that one may also replace the internal space

by S7/Zk, where the Zk acts on the coordinates of C4 via the diagonal action zi 7→ e2πi/kzi.

This manifestly commutes with the SU(2)× SU(2) ⊂ SU(4) y C4 action above. There is

another notable geometric symmetry, namely the Z2 that acts by exchanging the two copies

of C2 in C4, and thus exchanges the SU(2) isometries. This symmetry is then inherited by

the four-dimensional N = 4 gauged supergravity theory.

According to the holographic dictionary, symmetries of the eleven-dimensional solution

correspond to symmetries of the field theory. In particular the SU(2)× SU(2) isometry
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of the internal space, which becomes a Spin(4)R gauged R-symmetry of the consistently

truncated four-dimensional theory, corresponds to the Spin(4)R R-symmetry of the field

theory dual. The Z2 that acts as an outer automorphism, exchanging the group factors in

Spin(4)R ⊂ Spin(6)R, is indeed a symmetry of the N = 6 ABJM theory, since the latter

has an equal number of untwisted and twisted hypermultiplets, in N = 4 language, and

therefore its matter content is symmetric under the exchange of SU(2)+ and SU(2)− [130].

In the rest of the chapter we will work entirely within the Das–Fischler–Roček four-

dimensional N = 4 gauged supergravity theory. Any solution to this theory, for a bulk

asymptotically locally hyperbolic four-manifold Y4, automatically uplifts on S7/Zk to give a

gravity dual to the ABJM theory defined on the conformal boundary M3 = ∂Y4. In particular

we note that the effective four-dimensional Newton constant is

1
2κ2

4
=

k1/2

12
√

2π
N3/2 . (3.2.4)

3.3 Holographic supergravity theory

We begin in section 3.3.1 by defining a real Euclidean section of N = 4 gauged supergrav-

ity in four dimensions and determine the fermionic supersymmetry transformations. A

Fefferman–Graham expansion of asymptotically locally hyperbolic solutions to this theory

is constructed in section 3.3.2, for arbitrary conformal boundary three-manifold (M3, g).

Using this, in section 3.3.3 we holographically renormalize the action.

3.3.1 Euclidean N = 4 gauged supergravity

As outlined so far, holographic duals to three-dimensional SCFTs with a Spin(4) =

SU(2)+ × SU(2)− R-symmetry should be solutions of a four-dimensional N = 4 SU(2)×

SU(2) gauged supergravity. As discussed in the previous subsection, the Das–Fischler–

Roček [77] theory has a supersymmetric AdS4 vacuum and was shown in [75] to be a

consistent truncation of eleven-dimensional supergravity on S7/Zk.

In Lorentzian signature the bosonic sector of this N = 4 supergravity theory comprises

the metric Gµν, two real scalars φ, ϕ which together parametrize an SL(2, R) coset, and two
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triplets of SU(2) gauge fields AI
µ, ÂI

µ (I = 1, 2, 3). The associated field strengths are

F I ≡ dAI + 1
2g εI JKAJ ∧AK , F̂ I ≡ dÂI + 1

2g εI JKÂJ ∧ ÂK , (3.3.1)

and we have taken equal gauge couplings g for each of the SU(2) factors in the non-simple

gauge group. It is convenient to introduce the scalar field X ≡ e
1
2 φ and define X̃ ≡ X−1q

where q2 ≡ 1 + ϕ2X4. The bosonic action and equations of motion in Lorentzian signature

appear in [75]. However, as we are interested in holographic duals to TQFTs defined on

Riemannian three-manifolds, we require a Euclidean signature version of this theory. After

a Wick rotation the action becomes

I = − 1
2κ2

4

∫ [
R ∗ 1− 2X−2dX ∧ ∗dX− 1

2 X4dϕ ∧ ∗dϕ + g2(8 + 2X2 + 2X̃2) ∗ 1

− 1
2 X−2(F I ∧ ∗F I + iϕX2F I ∧ F I)− 1

2 X̃−2(F̂ I ∧ ∗F̂ I − iϕX2F̂ I ∧ F̂ I)] . (3.3.2)

Here R = R(G) denotes the Ricci scalar of the metric Gµν, and ∗ is the Hodge duality

operator acting on forms. The equations of motion which follow from this action are:5

EX : 0 = d(X−1 ∗ dX)− 1
2 X4dϕ ∧ ∗dϕ + g2(X2 − X−2(1− ϕ2X4)

)
∗ 1

+ 1
4 X−2F I ∧ ∗F I − 1

4 X2(1− ϕ2X4)q−4F̂ I ∧ ∗F̂ I + i
2 ϕX̃−4F̂ I ∧ F̂ I ,

(3.3.3)

Eϕ : 0 = d(X4 ∗ dϕ) + 4g2X2ϕ ∗ 1− i
2F

I ∧ F I

+ ϕX2X̃−4F̂ I ∧ ∗F̂ I + i
2 (1− ϕ2X4)X̃−4F̂ I ∧ F̂ I ,

(3.3.4)

EAI : 0 = D(X−2 ∗ F I) + idϕ ∧ F I , (3.3.5)

EÂI : 0 = D̂(X̃−2 ∗ F̂ I)− id(ϕX2X̃−2) ∧ F̂ I , (3.3.6)

EG : 0 = Rµν + g2Gµν(4 + X2 + X̃2)− 2X−2∂µX∂νX− 1
2 X4∂µ ϕ∂ν ϕ

− 1
2 X−2(F I

µρF I
ν

ρ − 1
4 Gµν(F I)2)− 1

2 X̃−2(F̂ I
µρF̂ I

ν
ρ − 1

4 Gµν(F̂ I)2) .
(3.3.7)

Here (F I)2 ≡ ∑3
I=1 F I

µνF Iµν, (F̂ I)2 ≡ ∑3
I=1 F̂ I

µνF̂ Iµν and the Bianchi identities define the

SU(2) covariant derivatives

BAI : DF I ≡ dF I + g εI JKAJ ∧ FK = 0 , (3.3.8)

5The Einstein equation (3.3.7) incorporates the potential-like term which is missing from the Lorentzian
version in [75].
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BÂI : D̂F̂ I ≡ dF̂ I + g εI JKÂJ ∧ F̂K = 0 . (3.3.9)

In general, equations (3.3.3)–(3.3.7) are complex, and solutions will likewise be complex.

However, note that taking the axion ϕ to be purely imaginary effectively removes all factors

of i. Note also that the action and equations of motion are invariant under the Z2 symmetry:

g→ −g, AI → −AI , ÂI → −ÂI . There is a second Z2 symmetry, discussed in section 3.2.2,

which corresponds to the field theory outer automorphism exchanging the group factors

in Spin(4)R ∼= SU(2)+ × SU(2)−. This second Z2 symmetry acts on the supergravity fields

as X → X̃, ϕX2 → −ϕX2, AI → ÂI and ÂI → AI . Whilst not manifest in the action and

equations of motion, it can be made so upon rewriting the scalar kinetic terms in (3.3.2) as

2XX̃dX ∧ ∗dX̃− 1
2 d(ϕX2) ∧ ∗d(ϕX2).

In the Lorentzian theory the fermionic sector contains four gravitini, ψa
µ, and four

dilatini, χa, which together with the spinor parameters εa all transform in the fundamental

4 representation of the Spin(4) global R-symmetry group, which we label by a = 1, . . . , 4.

The supersymmetry transformations are not given in [75] and the form of the action is

different to that appearing in the original literature [77]; in particular the parametrization of

the scalars and their coupling to the gauge fields is different. We cannot, therefore, simply

take the supersymmetry transformations given in [77]. Of course, the two actions represent

the same theory but presumably in different symplectic duality frames, and possibly with

different gauge fixed SL(2, R) scalar coset representatives. Instead of translating between

the different presentations in Lorentzian signature and then Wick rotating to the Euclidean,

we have instead derived the conditions for preserving supersymmetry by a different method.

We started with a general ansatz for the gravitino and dilatino variations and then acted

on the dilatino with the Dirac operator, adding additional field dependent multiples of the

dilatino variation in order to recover a subset of the bosonic equations of motion (3.3.3)–

(3.3.7). This essentially shows that the dilatino field equation (in a bosonic background)

maps to some of the bosonic field equations. Computing the integrability condition on the

spinor parameter, which can be rephrased in terms of the free Rarita–Schwinger equation

for the gravitino, and adding further dilatino variations recovers the remaining bosonic

equations of motion. Hence the fermionic field equations map to bosonic ones, i.e. the
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theory is supersymmetric. At the end of this analysis we find:

δψa
µ = 0 = Dµεa − 1

8
√

2
η I

abX−1F I
νλΓνλΓµεb + 1

8
√

2
η̄ I

abX−1X̃−2F̂ I
νλΓνλΓµ

[
1 + iϕX2Γ5

]
εb

+ i
4 X2∂µ ϕΓ5εa − 1

2
√

2
g
[
(X + X−1)− iϕXΓ5

]
Γµεa , (3.3.10)

δχa = 0 = 1
8 η I

abX−1F I
νλΓνλεb + 1

8 η̄ I
abX−1X̃−2F̂ I

νλ

[
1− iϕX2Γ5

]
Γνλεb

+ 1√
2

[
X−1∂νX + i

2 X2∂ν ϕΓ5
]
Γνεa + 1

2g
[
(X− X−1) + iϕXΓ5

]
εa .

(3.3.11)

Here the gauge covariant derivative acting on the supersymmetry parameter is

Dµεa = ∇µεa − 1
2g η I

abAI
µεb + 1

2g η̄ I
abÂI

µεb , (3.3.12)

and η I
ab, η̄ I

ab are respectively the self-dual/anti-self-dual ’t Hooft symbols of (A.2.2). In

addition, Γµ, µ = 1, . . . , 4, are generators of the Euclidean spacetime Clifford algebra,

satisfying {Γµ, Γν} = 2Gµν, and we define Γ5 ≡ −Γ1234. Note that the Z2 symmetry

that reverses the signs of g and the two SU(2) gauge fields is also a symmetry of these

supersymmetry equations, provided one combines it with Γµ → −Γµ.

For the purpose of completeness, we note that the transformations satisfy

ΓµDµδχa+ 3i
4 X2∂µ ϕΓµΓ5δχa

= 1√
2

EXεa − i
2
√

2
X−2EϕΓ5εa

+ 1
8 η I

abX−1(BAI )µνλΓµνλεb + 1
8 η̄ I

abX−1X̃−2(BÂI )µνλΓµνλ
[
1− iϕX2Γ5

]
εb

+ 1
4 η I

abX(EAI )µΓµεb + 1
4 η̄ I

abX−1(EÂI )µΓµ
[
1− iϕX2Γ5

]
εb ,

(3.3.13)

and

Γν[Dµ,Dν]ε
a −
√

2X−1∂µXδχa + i√
2

X2∂µ ϕΓ5δχa − 1
2g
[
(X− X−1) + iϕXΓ5

]
Γµδχa

+ 1
8 η I

abX−1F IνρΓνρΓµδχb + 1
8 η̄ I

abX−1X̃−2F̂ Iνρ
[
1− iϕX2Γ5

]
ΓνρΓµδχb

= 1
2 (EG)µνΓνεa − 1

8
√

2
η I

abX−1(BAI )νρσΓνρσΓµεb

+ 1
8
√

2
η̄ I

abX−1X̃−2(BÂI )
νρσΓνρσΓµ

[
1 + iϕX2Γ5

]
εb

− 1
4
√

2
η I

abX(EAI )νΓνΓµεb + 1
4
√

2
η̄ I

abX−1(EÂI )
νΓνΓµ[1 + iϕX2Γ5]ε

b .

(3.3.14)

In deriving these conditions we have not needed to specify the type of spinor we are using.

Later, in section 3.4, we will deal with a truncation of this theory in which one triplet of
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gauge fields is set to zero and the spinors are taken to be symplectic-Majorana.

3.3.2 Fefferman–Graham expansion

In this section we determine the Fefferman–Graham expansion of asymptotically locally

hyperbolic solutions to this Euclidean supergravity theory. This is the general solution to

the bosonic equations of motion (3.3.3)–(3.3.7), expressed as a perturbative expansion in a

radial coordinate near the conformal boundary.

We take the form of the metric to be

Gµνdxµdxν =
1
z2 dz2 +

1
z2gijdxidxj =

1
z2 dz2 + hijdxidxj . (3.3.15)

The AdS radius ` = 1, and in turn we have the expansion

gij = g0
ij + z2g2

ij + z3g3
ij + o(z3) . (3.3.16)

Here g0
ij = gij is the boundary metric induced on the conformal boundary M3 at z = 0. The

volume form for the four-dimensional bulk metric (3.3.15) is

vol4 =
1
z4 dz ∧ volg =

1
z4 dz ∧

√
det gdx1 ∧ dx2 ∧ dx3 . (3.3.17)

The determinant may then be expanded in a series in z, around that for g0, as follows

√
det g =

√
det g0

[
1 + z2

2 t(2) + z3

2 t(3)
]
+ o(z3) . (3.3.18)

Here we have denoted t(n) ≡ Tr
[
(g0)−1gn] and indices are always raised with g0.

The remaining bosonic fields are likewise expanded as follows:

X = 1 + zX1 + z2X2 + z3X3 + o(z3) , (3.3.19)

ϕ = zϕ1 + z2ϕ2 + z3ϕ3 + o(z3) , (3.3.20)

AI = AI + zaI
1 + z2aI

2 + o(z2) , (3.3.21)

ÂI = ÂI + zâI
1 + z2âI

2 + o(z2) . (3.3.22)

We have chosen a gauge in which all dz terms in the gauge field expansions are set to zero.
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We now substitute the above expansions into the equations of motion (3.3.3)–(3.3.7)

and solve them order by order in the radial coordinate z in terms of the boundary data

g0 = g, X1, ϕ1, AI and ÂI . For the Einstein equation (3.3.7) we will need the Ricci tensor of

the metric (3.3.15):

Rzz = − 3
z2 −

1
2

(
Tr
[
g−1∂2

zg
]
− 1

z Tr
[
g−1∂zg

]
− 1

2 Tr
[
g−1∂zg

]2 )
, (3.3.23)

Rij = − 3
z2gij −

(
1
2 ∂2

zg− 1
z ∂zg− 1

2 (∂zg)g
−1(∂zg) +

1
4 (∂zg)Tr

[
g−1∂zg

]
− R(g)− 1

2zgTr
[
g−1∂zg

] )
ij

,
(3.3.24)

Rzi = − 1
2
(g−1)jk

(
∇igjk,z −∇kgij,z

)
, (3.3.25)

where ∇ is the covariant derivative for g.

Examining first the axion equation (3.3.4) gives at the first two orders

0 = (1− 2g2)ϕ1 , 0 = (1− 2g2)(2X1ϕ1 + ϕ2) , (3.3.26)

which can be solved by setting g = ± 1√
2
. These equations fix the gauging coupling in terms

of the AdS4 length scale, which we have set to unity. At even higher order we find

∇2ϕ1 = 2g2
(

ϕ1(t(2) + 2X2
1 + 4X2) + 4X1ϕ2 + 2ϕ3

)
. (3.3.27)

Moving on to the dilaton equation (3.3.3) we find

0 = (1− 2g2)X1 , 0 = (1− 2g2)(X2 − 1
2 X2

1 +
1
4 ϕ2

1) , (3.3.28)

which are again solved by g = ± 1√
2

together with

∇2X1 = 2g2
(

2X3 + X1(t(2) + 2X2
1 − 2X2 + ϕ2

1) + ϕ1ϕ2

)
− 2ϕ1(X1ϕ1 + ϕ2) . (3.3.29)

Next the AI gauge field equation (3.3.5) yields

0 = D ∗g0 aI
1 , aI

2 = X1aI
1 +

1
2 ∗g0 D ∗g0 FI − i

2 ϕ1 ∗g0 FI , (3.3.30)

where the curvature is FI ≡ dAI + 1
2g εI JK AJ ∧ AK. Notice that aI

1, and hence aI
2, is partially
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undetermined. Similarly, the other gauge field equation (3.3.6) gives

0 = D̂ ∗g0 âI
1 , âI

2 = −X1âI
1 +

1
2 ∗g0 D̂ ∗g0 F̂I + i

2 ϕ1 ∗g0 F̂I , (3.3.31)

with F̂I ≡ dÂI + 1
2g εI JK ÂJ ∧ ÂK.

The non-trivial information from the ij component of the Einstein equation (3.3.7), using

(3.3.24), is

g2
ij = −

[
Rij(g

0)− 1
4g

0
ijR(g

0)
]
− g0

ij
( 1

2 X2
1 +

1
8 ϕ2

1
)

, (3.3.32)

which is again a matter-modified version of the boundary Schouten tensor. From this

expression we immediately deduce that the trace of g2
ij is

t(2) = − 1
4 R(g0)− 3

2 X2
1 − 3

8 ϕ2
1 . (3.3.33)

The zz component of the Einstein equation in (3.3.7), together with (3.3.23), determines the

trace of the highest order component in the expansion of the bulk metric:

t(3) = 4
3 X3

1 − 2
3 X1(4X2 + ϕ2

1)− 2
3 ϕ1ϕ2 . (3.3.34)

3.3.3 Holographic renormalization

Having solved the bulk equations of motion to the relevant order, we are now in a position

to holographically renormalize the Euclidean N = 4 gauged supergravity theory. The

bulk action (3.3.2) is divergent for an asymptotically locally hyperbolic solution, but can be

rendered finite by the addition of appropriate local counterterms. We begin by taking the

trace of the Einstein equation (3.3.7). Substituting the result into the Euclidean action (3.3.2)

with g = ± 1√
2
, we arrive at the bulk on-shell action

Io-s =
1

2κ2
4

∫
Y4

[
− (4 + X2 + X̃2) ∗ 1− 1

2 X−2(F I ∧ ∗F I + iϕX2F I ∧ F I)
− 1

2 X̃−2(F̂ I ∧ ∗F̂ I − iϕX2F̂ I ∧ F̂ I)] .
(3.3.35)

Here Y4 is the bulk four-manifold, with boundary ∂Y4 = M3. In order to obtain the equations

of motion (3.3.3)–(3.3.7) from the original bulk action (3.3.2) on a manifold with boundary,
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one has to add the Gibbons–Hawking–York term

IGHY = − 1
κ2

4

∫
∂Y4

d3x
√

det h K =
1
κ2

4

∫
∂Y4

d3x z∂z
√

det h . (3.3.36)

More precisely one cuts Y4 off at some finite radial distance, or equivalently non-zero z > 0,

and (M3, h) is the resulting three-manifold boundary, with trace of the second fundamental

form being K. Recall from (3.3.15) that hij =
1
z2gij.

The combined action Io-s + IGHY suffers from divergences as the conformal boundary is

approached, which are removed by the standard method of holographic renormalization.

As before, we introduce a small cut-off z = δ > 0, and expand all fields via the Fefferman–

Graham expansion of section 3.3.2 to identify the divergences. These may be cancelled by

adding local boundary counterterms:

Ict =
1
κ2

4

∫
∂Y4

d3x
√

det h
[
2 + 1

2 R(h) + (X− 1)2 + 1
4 ϕ2
]

. (3.3.37)

As is standard, we have written the counterterm action (3.3.37) covariantly in terms of the

induced metric hij on M3 = ∂Y4. The total renormalized finite action is then

S = lim
δ→0

(Io-s + IGHY + Ict) . (3.3.38)

The choice of counterterms (3.3.37) defines a particular renormalization scheme. For this

theory there are other local, gauge invariant counterterms that one can construct from the

boundary fields, that have non-zero (and finite) limits as δ→ 0. It is straightforward to check

that there are no such finite counterterms constructed without using the scalar fields; but

including the latter we may write down finite counterterms proportional to the boundary

integrals of ϕ3, (X − 1)3, ϕR(h), etc. There are also local but non-gauge invariant terms

that one might consider. For example, boundary Chern–Simons terms for the SU(2) gauge

fields, and the boundary gravitational Chern–Simons term. However, such terms would

change the gauge invariance of the theory, and we shall hence not consider them further.6

In principle we should use a supersymmetric holographic renormalization scheme, but in

6The topological twist will later identify one boundary SU(2) gauge field with the boundary spin connection
of (M3, g), so that these Chern–Simons terms are the same. Moreover, since any oriented three-manifold is
parallelizable there is always a globally defined frame. Choosing such a frame then allows one to interpret the
gravitational Chern–Simons term as a global 3-form on M3. However, its integral depends on the choice of
framing.
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the absence of a prescription for this we shall use the minimal scheme with counterterms

(3.3.37) in the remainder of the chapter, cf. the discussion in [39, 38, 191, 12]. In any case,

for the topological twist boundary condition the boundary values ϕ1, X1 of ϕ and X will be

zero, and the above-mentioned finite gauge invariant counterterms are all zero.

Given the renormalized action we may compute the following vacuum expectation

values (VEVs):

〈Tij〉 =
2
√

g
δS

δgij , 〈Ξ〉 =
1
√

g
δS

δX1
, 〈Σ〉 =

1
√

g
δS

δϕ1
,

〈J i
I 〉 =

1
√

g
δS

δAI
i

, 〈Ĵ i
I 〉 =

1
√

g
δS

δÂI
i

.
(3.3.39)

Here, as usual in AdS/CFT, the boundary fields gij, X1, ϕ1, AI
i and ÂI

i act as sources for

operators, and the expressions in (3.3.39) compute the VEVs of these operators. Using the

above holographic renormalization we may write (3.3.39) as the following limits:

〈Tij〉 =
1
κ2

4
lim
δ→0

1
δ

[
− Kij + Khij + Rij(h)− 1

2 hijR(h) + hij(−2− (X− 1)2 − 1
4 ϕ2)

]
,

〈Ξ〉 =
1
κ2

4
lim
δ→0

1
δ2

[
− 2δX−2∂δX + 2(X− 1)

]
,

〈Σ〉 =
1
κ2

4
lim
δ→0

1
δ2

[
− 1

2 δX4∂δ ϕ + 1
2 ϕ
]

, (3.3.40)

〈J Ii〉 =
1

2κ2
4

lim
δ→0

1
δ3

[
− ∗h

(
dxi ∧

(
X−2 ∗4 F I + iϕF I))] ,

〈Ĵ Ii〉 =
1

2κ2
4

lim
δ→0

1
δ3

[
− ∗h

(
dxi ∧

(
X̃−2 ∗4 F̂ I − iϕX2X̃−2F̂ I)] .

Here Kij is the second fundamental form of the cut-off hypersurface (M3, hij), and ∗h

denotes the Hodge duality operator for the metric hij. A computation then gives the finite

expressions

〈Tij〉 =
1
κ2

4

[
3
2g

3
ij − 1

2g
0
ij
(
3t(3) + 4X1X2 + ϕ1ϕ2

)]
, (3.3.41)

〈Ξ〉 =
1
κ2

4

(
4X2

1 − 2X2
)

, (3.3.42)

〈Σ〉 = − 1
κ2

4

(
2X1ϕ1 +

1
2 ϕ2
)

, (3.3.43)
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〈J I
i 〉 = − 1

2κ2
4
(aI

1)i , (3.3.44)

〈Ĵ I
i 〉 = − 1

2κ2
4
(âI

1)i . (3.3.45)

Notice that each of these expressions contains terms that are not determined, in terms of

boundary data, by the Fefferman–Graham expansion of the bosonic equations of motion.

In particular the g3
ij term in the stress-energy tensor Tij, the scalars X2, ϕ2 that determine

respectively Ξ, Σ, and aI
1, âI

1 appearing in the SU(2)R currents.

As a quick check/application of these formulae, consider a boundary Weyl transfor-

mation δσ under which δgij = 2gijδσ, the scalars X1, ϕ1 have Weyl weight 1: δX1 = X1δσ,

δϕ1 = ϕ1δσ and the gauge fields Weyl weight 0. Then it is a simple exercise to show that

δσS =
∫

∂Y4

volg

[
1
2 Tijδgij + ΞδX1 + Σδϕ1 +J I

i δAIi + Ĵ I
i δÂIi

]
= 0 , (3.3.46)

which is consistent with the fact that there is no conformal anomaly in three-dimensional

SCFTs.

3.4 Supersymmetric solutions

In this section we study supersymmetric solutions to the Euclidean N = 4 supergravity

theory. We begin in section 3.4.1 by deriving the Killing spinor equations on the conformal

boundary from the bulk supersymmetry equations, and then compare them to the compo-

nent form equations of off-shell three-dimensional N = 4 conformal supergravity. In section

3.4.2 we describe how the topological twist arises as a special solution to these Killing spinor

equations, that exists on any Riemannian three-manifold (M3, g). Finally, in section 3.4.3 we

expand solutions to the bulk spinor equations in a Fefferman–Graham-like expansion.

3.4.1 Boundary spinor equations

We begin by introducing the charge conjugation matrix C for the Euclidean spacetime

Clifford algebra. By definition Γ∗µ = C −1ΓµC , and one may choose Hermitian generators

Γ†
µ = Γµ together with the conditions C = C ∗ = −C T, C 2 = −1. We may then define
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spinors in Euclidean signature to satisfy the symplectic-Majorana condition

εa ≡ Ωa
bC (εb)∗ , (3.4.1)

with Ω = σ3 ⊗ iσ2. It is straightforward to check that when ÂI = 0, and provided the

axion ϕ is purely imaginary with all other bosonic fields being real, the supersymmetry

variations (3.3.10), (3.3.11) are compatible with this symplectic-Majorana condition. We will

be interested in solutions that satisfy these reality conditions, and henceforth work in the

truncation of the bulk supergravity theory for which the triplet of SU(2) gauge fields ÂI
µ is

set to zero. For completeness we record here the truncated bulk supersymmetry conditions:

0 = ∇µεa − 1
2gη I

abAI
µεb − 1

8
√

2
η I

abX−1F I
νλΓνλΓµεb + i

4 X2∂µ ϕΓ5εa

− 1
2
√

2
g
[
(X + X−1)− iϕXΓ5

]
Γµεa ,

(3.4.2)

0 = 1
8 η I

abX−1F I
νλΓνλεb + 1√

2

[
X−1∂νX + i

2 X2∂ν ϕΓ5
]
Γνεa

+ 1
2g
[
(X− X−1) + iϕXΓ5

]
εa .

(3.4.3)

We next expand the bulk Killing spinor equations (3.4.2), (3.4.3) to leading order near the

conformal boundary at z = 0. We will consequently need the Fefferman–Graham expansion

of an orthonormal frame for the metric (3.3.15), (3.3.16), together with the associated spin

connection. The following is a choice of frame Eµ
µ for the metric (3.3.15):

Ez
z =

1
z

, Ez
i = Ei

z = 0, Ei
i =

1
z
ei

i , (3.4.4)

where ei
i is a frame for the z-dependent metric g. The latter then has the expansion (3.3.16),

but for the present subsection we shall only need that

ei
i = ei

i + O(z2) , (3.4.5)

where ei
i is a frame for the boundary metric g0 = g. The non-zero components of the spin

connection Ω νρ
µ at this order are correspondingly

Ω zj
i =

1
z

e j
i + O(z) , Ω jk

i = ω
jk

i + O(z2) , (3.4.6)
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where ω
jk

i denotes the boundary spin connection.

We take as the generators of the Clifford algebra the following

Γ1̄ ≡ Γz̄ =

 12 0

0 −12

 , Γ1+i =

 0 σī

σī 0

 , (3.4.7)

so that

Γ5 =

 0 −i12

i12 0

 , (3.4.8)

and

C =

iσ2 0

0 −iσ2

 , (3.4.9)

where σī the usual Pauli matrices. The bulk Killing spinor is then expanded as

εa = z−1/2εa + z1/2ξa + o(z1/2) . (3.4.10)

From the z-component of the gravitino equation (3.4.2) one then finds

0 = − z−1/2 1
2 (1± Γz̄)ε

a + z1/2 [ 1
2 (1∓ Γz̄)ξ

a + i
4 ϕ1Γ5(1± Γz̄)ε

a]+ o(z1/2) , (3.4.11)

with the upper/lower signs corresponding to taking g = ± 1√
2
. We can then satisfy this

equation by taking εa to have a definite chirality under Γz̄ and ξa to have the opposite chirality.

Recall that there is a Z2 symmetry of the action, equations of motion, and supersymmetry

equations, that sends g→ −g, AI → −AI , Γµ → −Γµ. Using this, without loss of generality

we set g = − 1√
2

from now on, so that εa has positive Γz̄ chirality and ξa negative chirality,

and we write them as

εa =

 εa
L

0

 , ξa =

 0

ξa
R

 . (3.4.12)

The leading order term in the i-component of the gravitino equation is then seen to be
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identically satisfied. The next order gives the boundary Killing spinor equation (KSE):

0 = ∇A
i εa

L + σiξ
a
R − 1

4 ϕ1σiε
a
L . (3.4.13)

Here ∇A
i εa

L = ∇iε
a
L +

1
2
√

2
η I

ab AI
i εb

L, where the covariant derivative is with respect to the Levi-

Civita spin connection of the boundary metric g0
ij = gij, and σi = σī eī

i, so that {σi, σj} = 2gij.

Note that after redefining the conformal spinor parameter such that ξ̃a
R = ξa

R − 1
4 ϕ1εa

L, the

boundary KSE becomes

0 = ∇A
i εa

L + σi ξ̃
a
R . (3.4.14)

This is the equation which results from setting to zero the gravitino supersymmetry variation

of off-shell 3d N = 4 conformal supergravity [29].

Turning to the bulk dilatino equation (3.4.3), the leading order term is equivalent to the

chirality property of εa. At the next order we obtain two conditions, corresponding to the

left and right-handed components

0 = − 1√
2

ϕ1ξa
R − 1

2
√

2
(X2

1 − 2X2)ε
a
L +

1
2
√

2
∂i ϕ1σiεa

L +
1
8 η I

abFI
ijσ

ijεb
L , (3.4.15)

0 =
√

2X1ξa
R + 1

2
√

2
(X1ϕ1 + ϕ2)ε

a
L − 1√

2
∂iX1σiεa

L +
1
4 η I

ab(a
I
1)iσ

iεb
L . (3.4.16)

After the redefinition of the conformal spinor parameter and Hodge dualising one term

these read

0 = − 1√
2

ϕ1ξ̃a
R − 1

2
√

2

( 1
2 ϕ2

1 + X2
1 − 2X2

)
εa

L +
1

2
√

2
∂i ϕ1σiεa

L +
1
8 η I

abFI
ijσ

ijεb
L , (3.4.17)

0 =
√

2X1ξ̃a
R + 1√

2

(
X1ϕ1 +

1
2 ϕ2
)
εa

L − 1√
2
∂iX1σiεa

L − i
8 η I

ab(∗aI
1)ijσ

ijεb
L . (3.4.18)

These equations are not equivalent, and matching them to the single algebraic condition

arising from setting a three-dimensional dilatino variation to zero is not therefore entirely

straightforward. The Weyl multiplet of off-shell N = 4 conformal supergravity contains

two auxiliary scalar fields S1, S2 of Weyl weight 1 and 2 respectively, and generically six

gauge fields. The vanishing of the dilatino supersymmetry transformation [29] when one
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triplet of gauge fields is turned off is, schematically,

0 = S1ξ̃a + S2εa + ∂iS1σiεa + η I
abFI

ijσ
ijεb . (3.4.19)

Clearly (3.4.17) is of this form once we identify S1 ∼ ϕ1, S2 ∼ 1
2 ϕ2

1 + X2
1 − 2X2. However,

(3.4.18) does not match so neatly as ∗aI
1 is not a field strength. Moreover, our spinor

expansion should recover a single equation, and so it is perhaps some linear combination of

(3.4.17) and (3.4.18) that reproduces (3.4.19). In any case, it is not clear that the leading order

dilatino equation should match this particular off-shell formulation of N = 4 conformal

supergravity.

3.4.2 Topological twist

Recall that the boundary Killing spinor equation (3.4.13) written in full is

0 = ∂iε
a
L +

1
4 ωi

jkσjkεa
L +

1
2
√

2
η I

ab AI
i εb

L + σiξ
a
R − 1

4 ϕ1σiε
a
L . (3.4.20)

To solve this equation with a topological twist, we begin by setting the boundary scalar ϕ1

and conformal spinor parameter ξa
R to zero. We then identify the boundary SU(2) gauge

field with the spin connection as follows

AI
i = 1√

2
εI

jkωi
jk . (3.4.21)

The constant spinor which solves the Killing spinor equation is then

εa
L = iσa

w

iw̄

 , (3.4.22)

where w is any complex number and

(σa) = (σ1, σ2, σ3,−i12) . (3.4.23)



96 Topological AdS4/CFT3

It is useful to note that the ’t Hooft symbol action on εa
L may be exchanged for the Pauli

matrix action:

η I
abεb

L = − iσIεa
L . (3.4.24)

We have solved the leading order KSE. Turning to the algebraic spinor equations we note

that, in general, the conformal spinor parameter ξa
R can be solved for by taking the σi trace

of the KSE (3.4.13). Substituting this generic expression for ξa
R into (3.4.15) and rescaling by

√
2 leads to

0 = − ϕ1 6∇Aεa
L +

1
2 [ 6∇

A, 6∇A]εa
L +

1
2 ∂i ϕ1σiεa

L +
1
4 (3ϕ2

1 − 2X2
1 + 4X2 + R)εa

L , (3.4.25)

with R = R(g) the boundary Ricci scalar. Specialising to the field configuration which solves

the boundary KSE above, this simplifies to

0 = 1
4 (−2X2

1 + 4X2 + R)εa
L , (3.4.26)

and therefore fixes

X2 = 1
4 (2X2

1 − R) . (3.4.27)

The other algebraic relation (3.4.16) now reads

0 = 1
2
√

2
ϕ2εa

L − 1√
2
∂iX1σiεa

L +
1
4 η I

ab(a
I
1)iσ

iεb
L . (3.4.28)

Here recall that aI
1 is (proportional to) the VEV of the remaining SU(2)R current. One can

use (3.4.24) to swap the ’t Hooft symbol for a Pauli matrix, plus the usual relation

σīσj̄ = δij + iεijkσk̄ . (3.4.29)

The resulting equation takes the algebraic form

cbσbεa
L = 0 , (3.4.30)

where (σb) are the extended Pauli matrices (3.4.23), and the coefficients cb are real. In
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particular here we use that ϕ2 is purely imaginary. Using the solution (3.4.22), one can easily

check that as long as w 6= 0 equation (3.4.30) implies that ca = 0 for all a = 1, 2, 3, 4. We thus

conclude the equations

ϕ2 = i√
2
(aI

1)ī δī
I , ∂īX1 = 1

2
√

2
εijI(a

I
1)

j̄ . (3.4.31)

Note here the trace over frame indices and SU(2)R indices in the expression for ϕ2: this

makes sense globally, since the topological twist identifies the gauge bundle with the spin

bundle. Having identified indices we may view (aI
1)

ī as a two-tensor.

3.4.3 Supersymmetric expansion

In this section we continue to expand the bulk spinor equations to higher order in z. From

this we extract further information about some of the fields which are not fixed, in terms of

boundary data, by the bosonic equations of motion. We will continue to use the boundary

conditions appropriate to the topological twist. The frame, spin connection and spinor

expansions beyond the leading order given in section 3.4.1 will be needed, so we first give

details of these. The frame expansion is

ei
i = ei

i +
1
2 z2(g2)i

j ej
i + z3(e(3))i

i + o(z3) , (3.4.32)

where in particular ei
i is a frame for the boundary metric and we have used a local SO(3)

rotation to gauge fix the order z2 term. The additional spin connection components we will

need are

Ωi
zi =

1
z
ei

i − 1
2g

jkei
j∂zgik , Ωz

ij = gije
[i
i ∂ze

j]
j . (3.4.33)

The bulk spinor then has the following expansion

εa = z−1/2εa + z3/2εa
3 + z5/2εa

5 + o(z5/2) , (3.4.34)

where εa are constant with positive chirality under Γz̄.

The remaining orders of the bulk dilatino equation give us

0 = 1
2
√

2
(X3

1 − 4X1X2 + 4X3)ε
a
L +

1
2
√

2
∂ī ϕ2σīεa

L +
1
8 η I

ab
(
(FI

1 )ij − X1FI
ij

)
σijεb

L , (3.4.35)
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0 = −
√

2X1εa
3,R − 1

2
√

2
(3X1ϕ2 + 2ϕ3)ε

a
L +

1√
2

(
∂īX2 − X1∂īX1

)
σīεa

L

− 1
4 η I

ab
(
2(aI

2)ī − X1(aI
1)ī
)
σīεb

L ,
(3.4.36)

where FI
1 = DaI

1 ≡ daI
1 − 1√

2
εI JK AJ ∧ aK

1 . The remaining gravitino expansions give

0 = εa
3,L +

1
8 X2

1εa
L − 1

16
√

2
η I

abFI
ijσ

ijεb
L , (3.4.37)

0 = εa
3,R − 1

4 ϕ2εa
L +

1
4
√

2
η I

ab(a
I
1)īσ

īεb
L , (3.4.38)

0 = 1
2g

2
ijσ

j̄εa
L +

1
4 X2

1σīε
a
L − 1

8
√

2
η I

abFI
jkσjkσīε

b
L , (3.4.39)

0 = εa
5,L − 1

12 (X3
1 − 2X1X2)ε

a
L − 1

24
√

2
η I

ab
(
(FI

1 )ij − X1FI
ij

)
σijεb

L , (3.4.40)

0 = εa
5,R − 1

8 (3X1ϕ2 + 2ϕ3)ε
a
L +

1
8
√

2
η I

ab
(
2(aI

2)ī − X1(aI
1)ī
)
σīεb

L , (3.4.41)

0 = σīε
a
5,R +∇A

ī εa
3,L +

1
4 ω

(2)jk
ī σjkεa

L − 1
4 (X1ϕ2 + ϕ3)σīε

a
L

− 1
4
√

2
η I

ab
(
(g2)ī

j̄ AI
j̄ − X1(aI

1)ī
)
εb

L +
1

4
√

2
η I

ab
(
2(aI

2) j̄ − X1(aI
1) j̄
)
σijεb

L ,
(3.4.42)

0 = 3
4g

3
ijσ

j̄εa
L +∇A

ī εa
3,R − 1

4 (X3
1 − 2X1X2)σīε

a
L − 1

4 ∂ī ϕ2εa
L

− 1
8
√

2
η I

ab
(
(FI

1 )jk − X1FI
jk

)
σjkσīε

b
L .

(3.4.43)

From the topological twist condition (3.4.21) the boundary gauge field strength is

FI
ij = 1√

2
εI

kl Rij
kl . (3.4.44)

Substituting this and the expressions for X2, aI
1 and ϕ2 into (3.4.37), (3.4.38) allows us to

identify

εa
3,L = − 1

16 (2X2
1 − R) εa

L , εa
3,R = 1

2 ϕ2 εa
L − 1

2 ∂īX1σīεa
L . (3.4.45)

We also find that equation (3.4.39) is identically satisfied given the expression (3.3.32) for

g2 found in solving the Einstein equation. Equations (3.4.40) and (3.4.41) are solved by

removing the unknown quantities FI
1 , aI

2 using (3.4.35) and (3.4.36):

εa
5,L = − 1

24 (X1R− 2X3
1 + 8X3)ε

a
L − 1

12 ∂ī ϕ2σī εa
L , (3.4.46)
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εa
5,R = 1

2 (2X1ϕ2 + ϕ3)ε
a
L − 1

16 ∂ī(2X2
1 − R) σīεa

L . (3.4.47)

We will not solve (3.4.42) as knowledge of aI
2 or ω(2) is not relevant for our purposes.

Turning now to (3.4.43), using previous results we can re-express this particular equation as

0 =
[ 3

4g
3
ij −

1
2∇ī∂ j̄X1 − 1

8 X1Rδij
]
σ j̄εa

L

+ 1
4 ∂ī ϕ2εa

L − 1
8
√

2
η I

ab
(
(FI

1 )jk − X1FI
jk

)
σjkσīε

b
L .

(3.4.48)

By taking the real part we can extract the remaining term in the Fefferman–Graham

expansion of the bulk metric

g3
ij =

2
3∇i∂jX1 +

1
6 X1Rδij +

1
6
√

2
(F1(i)

klεj)kl −
1

3
√

2
(Fk

1 )
l
(iεj)kl

− X1
[ 1

6
√

2
(F(i)

klεj)kl −
1

3
√

2
(Fk)l

(iεj)kl

]
.

(3.4.49)

3.5 Metric independence

Our aim in this short section is to show that, for any supersymmetric asymptotically locally

hyperbolic solution to the Euclidean N = 4 supergravity theory, with the topologically

twisted boundary conditions on an arbitrary Riemannian three-manifold (M3, g), the vari-

ation with respect to the arbitrary boundary metric of the holographically renormalized

action is identically zero.

An arbitrary deformation of the renormalized action can be written as

δS =
∫

∂Y4=M3

d3x
√

det g
[

1
2 Tijδgij + ΞδX1 + Σδϕ1 +J I

i δAIi + Ĵ I
i δÂIi

]
. (3.5.1)

For the topological twist we set ϕ1 = 0 and AI
i =

1√
2
εI

jkωi
jk, together with truncating the

bulk SU(2) triplet ÂI = 0. At this point we have not chosen a value for the freely specifiable

boundary field X1 which, recall, has Weyl weight 1. In order for δX1 to be relatable to δgij,

X1 must be a scalar function built from the boundary curvature tensors, Rijkl , Rij and R.

However, from these tensors we cannot construct a Weyl weight 1 object. Consequently we

choose to set X1 = 0 as part of the topological twist boundary conditions.

To evaluate δAI
i we require the variation of the boundary spin connection in terms of
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the boundary metric:

δωi
jk = 1

2 ejj̄ekk̄(∇kδgij −∇jδgik) . (3.5.2)

Thus

δAI
i = 1√

2
εI

jkδωi
jk = 1√

2
εI

jkejj̄ekk̄∇kδgij , (3.5.3)

and the variation of the action for the topological twist boundary conditions reduces to

δS =
∫

M3

[(
1
2 Tij − 1√

2
∇k(JIiε

I
jke j̄

je
k̄
k)
)

δgij +∇k

(
1√
2
εI

jk J i
I ejj̄ekk̄δgij

)]
vol3 , (3.5.4)

where we have introduced vol3 ≡
√

det g d3x. Dropping the total derivative, which is zero

for the closed three-manifolds we are considering, and inserting the expressions for the

stress-energy tensor and SU(2) current from (3.3.41) and (3.3.44) gives

δS =
1

4κ2
4

∫
M3

Tijδgijvol3 , (3.5.5)

where the effective stress-energy tensor is

Tij = 3g3
ij +

1√
2
∇k(εIk(i (a

I
1)j)
)

. (3.5.6)

Note that because we have identified spacetime and R-symmetry indices, the covariant

derivative in Tij acts on both the I and i indices of (aI
1)i. Inserting the expression for g3

ij from

(3.4.49) when X1 = 0 gives

Tij = eī
ie

j̄
j

[ 1
2
√

2
(F1(i)

klεj)kl −
1√
2
(Fk

1 )
l
(iεj)kl

]
+ 1√

2
∇k(εIk(i(a

I
1)j)
)

. (3.5.7)

Expanding the field strengths we have

2
√

2Tij = eī
ie

j̄
j

[
∇k(a1(i)

lεj)kl + (ωk)(i
I(a1|I|)

lεj)kl + 2∇[l(a
k
1)(i]εj)

l
k + 2(ω[l)

kI(a1|I|)(i]εj)
l
k

]
+ 2∇k(εIk(i(a

I
1)j)
)

. (3.5.8)

Here covariant derivatives of (aI
1)i in the first line are understood to act with respect to the
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index outside the bracket only, in contrast to the action on the second line. By carefully

expanding, using the definition of the spin connection as the connection of the frame bundle,

and recalling from section 3.4.2 that when X1 = 0, (aI
1)i is symmetric in I and i indices, we

find delicate cancellations and ultimately that Tij = 0. Notice this is true for an arbitrary

background closed three-manifold (M3, g), and that while the Fefferman–Graham expansion

does not determine (aI
1)i, nevertheless the expression for Tij is identically zero.

In analogy with our comments after (2.5.2), we close this section by commenting on

more precisely when the derivation in this section holds, and in particular when the formula

(3.5.1) holds. The latter computes the variation δS of the on-shell action. A variation of the

boundary fields induces a corresponding variation of the bulk fields. Since the background

solution that we are varying about solves the bulk equations of motion, crucially the bulk

contribution to the resulting variation of the on-shell action is zero (by definition, this bulk

integrand multiplies the bulk equations of motion). Thus δS is necessarily a boundary term,

and for smooth saddle point solutions dual to the vacuum, one expects the only boundary to

be the conformal boundary ∂Y4 = M3. Equation (3.5.1) is the resulting boundary expression.

However, as in five dimensions, this computation would also hold if the bulk solution is

singular, or has internal boundaries, provided these do not contribute a corresponding

surface term in the interior, in addition to (3.5.1). The internal boundary conditions for

fields are clearly then relevant, but if one is going to allow internal singularities/boundaries

of this type in a putative saddle point, the absence of these additional surface terms is a

fairly clear constraint.

3.6 Geometric reformulation

In this section we first reformulate the bulk supersymmetry conditions (3.4.2), (3.4.3) in

terms of a local identity structure. We then use this structure in section 3.6.2 to determine

the renormalized on-shell action for any smooth filling with topological twist boundary

conditions.

3.6.1 Twisted identity structure

Recall that the bulk spinor is originally a quadruplet of Dirac spinors, and we halved the

number of degrees of freedom by requiring that it solve the symplectic-Majorana condition
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(3.4.1). Therefore, the quadruplet of spinors has the form

εa =
(

ε1 ,−(ε1)c , ε2 , (ε2)c
)T

, (3.6.1)

where ε1,2 are Dirac spinors on the four-manifold Y4 and the charge conjugate is εc = C ε∗.

Notice that the Weyl condition imposed with Γ5 acting on the spinor indices is not compatible

with the topological twist. One sees this from the expressions (3.4.8) and (3.4.12): the leading

order term in the expansion of the bulk spinor is chiral if and only if it is zero. However, we

may instead act with Γ5 on the R-symmetry indices of the spinor and require

(Γ5)
a
bεb = ±εa . (3.6.2)

This condition is compatible with the gravitino and dilatino equations (3.4.2) and (3.4.3),

since Γ5 commutes with the self-dual ’t Hooft symbols. Projecting onto the subspaces with

positive or negative “internal chirality” in (3.6.2) further reduces the bulk spinor to

εa = (ζ ,−ζc ,±iζ ,∓iζc)T . (3.6.3)

Using the single Dirac spinor ζ, we may define the following (local) differential forms

S ≡ ζζ , P ≡ ζΓ5ζ ,

K ≡ 1
S

ζΓ(1)ζ , V1 ∓ iV3 ≡ i
S

ζcΓ(1)Γ5ζ , V2 ≡ i
S

ζΓ(1)Γ5ζ , (3.6.4)

where a bar denotes Hermitian conjugation. Globally, the full bulk spinor is a section of

Spin(Y4)⊗ E, where E is a real rank 4 vector bundle associated to the principal SU(2)R

bundle. By considering the change between local trivializations of the spinor under the

SU(2)R ⊂ Spin(4), one can check that S and P are global smooth functions. Moreover, K is

a global 1-form on Y4 \ {S = 0}, whilst (V1, V2, V3) are sections of Ω1(Y4 \ {S = 0})⊗V,

where V is the rank 3 vector bundle associated to the SO(3)R = SU(2)R/Z2.

In order to have a globally well-defined bulk spinor εa, we have to lift the SO(3)R bundle

acting on V to an SU(2)R bundle acting on E. Moreover, we should define the spinor in the

first place, thus lifting the orthonormal frame bundle of the tangent bundle to a Spin(4)

frame bundle. In both cases, the obstruction to the lifting is the second Stiefel–Whitney class
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of the real vector bundles, that is, w2(V), w2(Y4) ∈ H2(Y4, Z2). However, because the full

bulk spinor is a section of Spin(Y4)⊗ E, we only need

w2(V) = w2(Y4) , (3.6.5)

in order for the tensor product of the “virtual” bundles to be defined. As in the previous

case, we say that the bulk spinor is a SpinSU(2) spinor.

Geometrically, a single Dirac spinor in four dimensions defines a local identity structure

on the four-manifold, or equivalently a local orthonormal frame. In order to construct it,

we split the bulk spinor into its components with positive and negative chirality under Γ5,

ζ = ζ+ + ζ−, and define

η± ≡
ζ±√
S±

, (3.6.6)

where S± ≡ ζ±ζ±. Then an orthonormal frame can be defined by

iE2 − E4 ≡ η−Γ(1)η+ , iE1 − E3 ≡ ηc
−Γ(1)η+ , (3.6.7)

and we choose the orientation induced by the volume form E4123. We also define the function

θ by

cos2 θ

2
≡ S+

S
, sin2 θ

2
≡ S−

S
. (3.6.8)

We may then re-express the local differential forms above in terms of the frame as

P = S cos θ , K = − sin θ E4 , V I = − sin θ EI , I = 1, 2, 3 . (3.6.9)

This canonical frame degenerates at θ = 0, π, where the spinor has positive/negative

chirality, and also when S = 0, where the spinor vanishes. The subset of Y4 with these points

excluded will be denoted Y(0)
4 . From the global considerations above it then follows that E4

is a global 1-form on Y(0)
4 , and EI are sections of Ω1(Y(0)

4 )⊗V. Therefore, the EI rotate into

each other in the fundamental representation of SO(3)R between local trivializations, and

the orthonormal frame is not global in general.

Starting with the bulk Killing spinor equations (3.4.2) and (3.4.3), we may find a set of
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Killing spinor equations for ζ. Choosing negative internal chirality in (3.6.2), they read

∇µζ = − i
2
√

2
A2

µζ − i
2
√

2
(A1

µ + iA3
µ)ζ

c + i
8
√

2
X−1F 2

νλΓνλΓµζ − i
4 X2∂µ ϕ Γ5ζ

+ i
8
√

2
X−1(F 1

νλ + iF 3
νλ)Γ

νλΓµζc − 1
4 (X + X−1)Γµζ − i

4 ϕXΓµΓ5ζ ,
(3.6.10)

0 = 1√
2

X−1∂νXΓνζ + i
8 X−1F 2

νλΓνλζ + i
8 X−1(F 1

νλ + iF 3
νλ)Γ

νλζc

− i
2
√

2
X2∂ν ϕΓνΓ5ζ − 1

2
√

2
(X− X−1)ζ − i

2
√

2
ϕXΓ5ζ .

(3.6.11)

From these equations, one can use standard spinor bilinear manipulations to obtain

differential conditions for the frame and the fields:

d(XS) = S sin θ E4 , (3.6.12)

d(XS cos θ) = 1√
2
S sin θ EI F I , (3.6.13)

−D(S sin θ EI) = 1√
2

X−1S(∗F I − cos θF I)

+ (X + X−1)S
(

EI4 − 1
2 cos θ εI JKEJK

)
+ iϕXS

(
cos θ EI4 − 1

2 εI JKEJK
)

,

(3.6.14)

dϕ = i√
2

X−3 csc θ EJ

(
F J + cos θ ∗ F J

)
+ X−3 csc θ

(
iX(X− X−1) cos θ − ϕX2

)
E4 ,

(3.6.15)

dX = − 1
2
√

2
csc θ EJ

(
cos θF J + ∗F J

)
− 1

2 csc θ
(

X(X− X−1)− iϕX2 cos θ
)

E4 .
(3.6.16)

Here the covariant derivative acting on EI is DEI ≡ dEI − 1√
2
εI JKAJ ∧ EK. We may in

particular combine these equations to obtain an expression for ϕ:

ϕ = iX−2 cos θ + α(XS)−1 , (3.6.17)

where α ∈ iR, and we have used that everything in this last equation is globally defined to

integrate, assuming that Y4 is path-connected.

The system of equations (3.6.12)–(3.6.16) is in fact necessary and sufficient to have a

supersymmetric solution to the bulk equations of motion. There are several steps involved
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in showing this. Firstly, we note that for a Dirac spinor ζ the set {ζ, ζc, Γµζ Γµζc} spans the

spinor space. Thus contracting the dilatino equation (3.6.11) with the Hermitian conjugate

of each element of this set gives a collection of equations which are equivalent to the dilatino

equation. In turn, these equations can be shown to be equivalent to (3.6.15) and (3.6.16). On

the other hand, since we have a (local) identity structure, the intrinsic torsion is determined

by the exterior derivatives in (3.6.12)–(3.6.14). It follows that (3.6.12)–(3.6.16) are equivalent

to the Killing spinor equations. One next considers the truncated integrability conditions

derived from (3.3.13) and (3.3.14). From these it is straightforward to show that the Killing

spinor equations imply the equations of motion, while the Bianchi identity for F I has to

be imposed additionally. In particular the proof of this uses the fact that the bulk spinor ζ

is Dirac. The upshot is that the complete system of equations to solve is given by the first

order differential system (3.6.12)–(3.6.16).

It is interesting, especially in light of the computation of the on-shell action in the next

section, to consider the expansion of the bilinear equation near the boundary. Using the

Fefferman–Graham coordinate z, the bulk spinor ζ has the expansion

ζ = z−1/2

χ

0

+ z3/2

 1
16 R χ

1
2 ϕ2 χ

+ z5/2

− 1
12 ∂i ϕ2 σiχ

1
16 ∂iR σiχ

+ o(z5/2) , (3.6.18)

where χ is a constant 2-component spinor given by

χ =

 c

−ic

 , (3.6.19)

with c ∈ R (compare with (3.4.22) with c = −w). Without loss of generality, we may set

c = 1 in the following, and the norm of the spinor takes the form

S =
2
z
+

z
4

R + o(z2) . (3.6.20)
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We also find

X = 1− z2

4
R + o(z3) ,

ϕ =
i√
2

z2(aI
1)I + o(z3) ,

t(2) = −1
4

R , t(3) = 0 .

(3.6.21)

The vanishing of ϕ1 allows us to fix the constant α in (3.6.17): expanding the latter equa-

tion leads to ϕ1 = α/2, so under the assumption of the topological twist, α = 0. In a

neighbourhood of the conformal boundary, the bulk frame has the form

EI =
1
z

eI +
z
2

(
g2 ◦ eI

)
+ o(z) ,

E4 = −dz
z
− z2

8
dR + o(z2) .

(3.6.22)

Near the boundary, the leading order of the equations (3.6.12)–(3.6.16) is trivial apart from

(3.6.14), which corresponds to the condition that eI satisfy the first Cartan’s structural

equation

deI + ω I
J ∧ eJ = 0 . (3.6.23)

Here the spin connection ω I
J arises from the topological twist boundary condition for the

gauge field (3.4.21). In some sense (3.6.23) is a redundant equation, simply stating that

the frame defined by supersymmetry is compatible with the boundary metric. As in the

AdS5/CFT4 example, the bulk differental equations are tautological on the boundary, where

they simply define a (twisted) frame for the three-manifold M3.

3.6.2 On-shell action

Thanks to these results, we can now greatly simplify the expression for the on-shell action.

We start with the expression (3.3.35) and set F̂ I = 0, obtaining

Io-s = − 1
2κ2

4

∫
Y4

[
− (4 + X2 + X−2 + ϕ2X2) ∗ 1− 1

2 X−2(F I ∧ ∗F I + iϕX2F I ∧ F I)] .

(3.6.24)
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Then, using (3.3.3) and (3.3.4), we may exchange the gauge field contribution for an exact

term

Io-s = − 1
2κ2

4

∫
Y4

[
− (4 + 2X−2 + 2ϕ2X2) ∗ 1 + d

(
2X−1 ∗ dX− ϕX4 ∗ dϕ

)]
. (3.6.25)

Notice that, using the equations for the orthonormal frame and (3.6.17), we can write

d
(

X−1 ∗ K
)

= −
(
2 + X−2 sin2 θ

)
∗ 1 , (3.6.26)

and this, using the expression (3.6.17) for ϕ, is exactly (modulo a numerical factor) the

potential term in the on-shell action (3.6.25). Therefore, the on-shell action is exact

Io-s = − 1
κ2

4

∫
Y4

d
(

X−1 ∗ K + X−1 ∗ dX− 1
2 ϕX4 ∗ dϕ

)
. (3.6.27)

The global arguments discussed above imply that the 4-form in the action

Υ ≡ X−1 ∗ K + X−1 ∗ dX− 1
2 ϕX4 ∗ dϕ , (3.6.28)

is globally well-defined on Y(0)
4 . In what follows we assume that the subset of Y4 where the

spinor becomes chiral or zero is measure zero. As in section 3.3.3, we cut off the bulk Y4

at some small radius z = δ > 0, so that ∂Y4 = Mδ ≡ {z = δ} ∼= M3. We may then appeal

to Stokes’ theorem and write the on-shell action as integrals over the conformal boundary

M3 ∼= Mδ, and over the boundaries Tε of the small tubular neighbourhoods of radius ε > 0

surrounding the subsets Y4 \ Y(0)
4 where the frame degenerates. Let us consider first the

contribution from the conformal boundary: using the expansion of the spinor (3.6.18) and

of the fields (3.6.21), it is easy to show that near the conformal boundary

Υ =

(
1
δ3 −

3
8δ

R + o(1)
)
∗g0 1 . (3.6.29)

To this we should add the contributions from the Gibbons–Hawking–York term (3.3.36) and

the counterterms (3.3.37), which in a neighbourhood of the boundary are

IGHY =
1
κ2

4

∫
M3

(
− 3

δ3 +
1
8δ

R + o(1)
)
∗g0 1 , (3.6.30)
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Ict =
1
κ2

4

∫
M3

(
2
δ3 +

1
4δ

R + o(1)
)
∗g0 1 . (3.6.31)

Once we take into account the change in sign of the on-shell terms, due to the orientation of

the bulk compared to the orientation of the boundary, the contribution to the renormalized

action from the conformal boundary is zero in the limit δ→ 0.

Therefore, the renormalized gravitational action only receives contributions from the

subsets where the frame degenerates:

S =
1
κ2

4
lim
ε→0

∫
Tε

Υ , (3.6.32)

where the limit collapses the small neighbourhood around the degeneration locus. As in

section 2.6.3, these contributions are zero. That is, a supergravity solution with a smooth

metric and smooth bosonic fields. Clearly the last two forms in Υ, which only involve X, ϕ,

are well-defined if the bosonic fields are smooth. The last two terms in Υ therefore provide

zero contribution when integrated over a subset of vanishing measure. The only non-trivial

contribution could arise from X−1 ∗ K.

Consider first the subset where the spinor is chiral but non-vanishing. While changing

from local SU(2)R gauge patches of definition for εa, ζ is a linear combination of ζ and ζc,

but note that in four dimensions Γ5ζ = ±ζ if and only if Γ5ζc = ±ζc. Therefore, spacetime

chirality is a well-defined global concept for the SpinSU(2) spinor. If the spinor is chiral but

non-vanishing, S 6= 0 and the bilinears K and V I vanish, so X−1 ∗ K is zero there, and the

integral is zero.

Secondly, consider the subset where the spinor is vanishing. Note that we may write

X−1 ∗ K = −X−1 sin θ E4 vol4 . (3.6.33)

Using (3.6.12) we then in turn have

X−1 sin θ E4 = d log ρ , where ρ ≡ XS . (3.6.34)

We may thus use ρ > 0 as a radial coordinate near to the where the spinor vanishes at ρ = 0,

and more precisely define Tε = {ρ = ε > 0}. It follows that X−1 ∗ K is the product of a

bounded function X−1 sin θ (as long as X > 0 is smooth), and the volume form E4 vol4



3.7 Discussion 109

induced on Tε from the four-dimensional bulk metric. The integral hence vanishes in the

limit ε→ 0, exactly as in section 2.6.3.

We conclude that the renormalized action for any smooth supergravity solution is zero.

In particular, we have made no assumptions at all here on the topology of M3, or of its

path-connected filling Y4 with ∂Y4 = M3.

3.7 Discussion

In the first part of the thesis, we have defined and studied a holographic dual to the

topological twist of N = 2 gauge theories on Riemannian four-manifolds and N = 4 gauge

theories on Riemannian three-manifolds, and verified that the renormalized gravitational

free energy is independent of the boundary metric in both cases. We have also reformulated

the bulk supersymmetry equations in terms of G-structures twisted by R-symmetry bundles,

and used these structures to prove that the gravitational free energy of all smooth bulk

fillings, irrespective of their topology, is zero. Let us emphasize one more time that the latter

result does not make the former result of sections 2.5 and 3.5 redundant: the computation

of the variation of the gravitational free energy holds for smooth solutions, but a priori it

is more general. Metric-independence will still hold for singular solutions, provided the

additional surface terms around the singularities are zero. In fact if one allows singular

saddle point solutions at all, this should be a clear constraint.

The results presented here raise a number of interesting questions and directions for

future research. In general the classical supergravity limit of the AdS/CFT correspondence

identifies

− log ZQFT = S . (3.7.1)

Here on the right hand side we have the least action solution to the given filling problem

in the bulk supergravity, while the left hand side is understood to be the leading term

in the corresponding strong coupling (typically large rank N) limit of the QFT partition

function. For example, uplifting the four-dimensional N = 4 gauged supergravity solutions

to M-theory on S7/Zk leads to the effective four-dimensional Newton constant in (3.2.4),

which scales as N3/2. The latter multiplies the holographically renormalized on-shell action

S on the right hand side of (3.7.1). On the other hand, in this chapter we have shown

that this gravitational free energy is always zero, for any smooth supergravity filling of
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any conformal boundary three-manifold M3. We have already noted that every oriented

three-manifold is spin, but another important topological fact is that every such three-

manifold bounds a smooth four-manifold (which may be taken to be spin). There is thus

no topological obstruction to finding such a bulk filling of M3. Of course, an important

assumption here is that there exist smooth fillings that solve the supergravity equations, with

prescribed conformal boundary (M3, g). We have recast the supergravity equations as the

first order differential system (3.6.12)–(3.6.16), and thus existence and uniqueness theorems

for solutions to these equations will play an important rôle. Given that such solutions

are supersymmetric and are dual to a topologically twisted theory, one naturally expects

better behaviour than the non-supersymmetric Einstein filling problem, typically studied by

mathematicians. In any case, assuming that such smooth fillings are the dominant saddle

points in (3.7.1), the results of this chapter imply that the large N limit of the topologically

twisted ABJM partition function is o(N3/2), for any three-manifold M3. This should be

contrasted with the non-twisted partition function on (for example) S3, where both sides

of (3.7.1) agree and equal π
√

2k
3 N3/2 in the large N limit [88]. It thus remains an interesting

open problem to compute the large N limit of the topologically twisted ABJM theory, on

a three-manifold M3, and compare with our holographic result. Moreover, if the leading

classical saddle point indeed contributes zero, the next obvious step is to try to compute the

subleading term, as a correction to the supergravity limit. Since by construction everything

is a topological invariant, this may well be possible.

Similar remarks apply to the Donaldson–Witten twist studied holographically in the

previous chapter. Here the bulk five-dimensional N = 4+ gauged supergravity solutions

uplift on S5 to solutions of type IIB supergravity, where now the five-dimensional New-

ton constant is given by (2.2.6).7 The resulting solutions are holographically dual to the

Donaldson–Witten twist of N = 4 SYM on the conformal boundary four-manifold M4.

Similar remarks apply to those made in the paragraph above, although there is an impor-

tant difference: the partition function is only non-zero when 2χ(M4) + 3σ(M4) = 0, and

moreover M4 bounds a smooth five-manifold if and only if σ(M4) = 0. The fact that the

gravitational free energy is zero for smooth fillings, as shown in section 2.6.3, is therefore

only directly applicable when χ(M4) = 0 = σ(M4). In this case, the topologically twisted

partition function of N = 4 SYM should be o(N2), assuming the dominant saddle point

7As already noted, one may also uplift to solutions of M-theory, which are dual to N = 2 theories of class S
with N3 scaling, but we won’t discuss this further here.
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solution is indeed smooth.

On the other hand, the Donaldson–Witten twisted partition function has been computed,

for general rank gauge group G = SU(N), on M4 = K3 in [215, 211]. This follows from the

fact that on the hyperKähler K3 manifold the Donaldson–Witten and Vafa–Witten twists

are equivalent (and in fact equivalent to the untwisted theory). However, |σ(K3)| = 16 and

a smooth filling by Y5 does not exist in this case, so there is no obvious classical gravity

solution to compare to. Nevertheless, the partition function is (for N prime) [215, 211]

Z(K3) =
1

N2 G(qN) +
1
N

N

∑
I=1

G
(

ω Iq1/N
)

, (3.7.2)

where q = exp(2πiτ), with τ = θ
2π + 4πi

g2
YM

the usual complexified gauge coupling, ω =

exp(2πi/N), and G(q) = 1/η24(τ), with η the Dedekind eta-function. Taking the ’t Hooft

coupling λ = g2
YMN fixed and large, the N → ∞ limit is dominated by the first term in

(3.7.2), resulting in the leading order behaviour

log Z(K3) ∼ 8π2N2

λ
. (3.7.3)

As mentioned above, in general the classical gravitational free energy is order N2, which for

smooth fillings of M4 we have shown is multiplied by zero for the holographic Donaldson–

Witten twist. However, there is no such smooth filling of M4 = K3, so it is not clear what

the dual classical solution should be. Perhaps one should allow for certain singular Y5,

and/or fill the boundary S5 × K3 with a topology that is not simply an S5 bundle over

Y5. These would lie outside the class of smooth solutions to the consistently truncated

five-dimensional N = 4+ gauged supergravity we have studied. That said, a perhaps naive

interpretation of (3.7.3) is that the leading classical O(N2) term is indeed zero, with the

N2/λ term being a subleading string correction to this. This particular example clearly

deserves much further study.

Perhaps the most immediate generalization of the computations of topological AdS/CFT

in five bulk dimensions would be to the so-called Ω-background of [184] mentioned in

section 1.3. Here (M4, g, ξ) is an arbitrary Riemannian four-manifold, equipped with a

Killing vector field ξ. As for the pure topological twist, this geometry also arises by coupling

an N = 2 gauge theory to a certain background of N = 2 conformal supergravity, and is

briefly mentioned at the end of section 3 of [146]. The non-zero Killing vector ξ requires
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turning on a boundary B-field: specifically one needs to take b− (or b+) proportional to the

self-dual (or anti-self-dual) part of the 2-form dξ[, where ξ[ is the Killing 1-form dual to

ξ. Correspondingly, both boundary spinor doublets ε+ and ε− are now non-zero, and one

needs to work with the full Romans theory, rather than the truncated version with B± = 0

we used from section 2.4.2 onwards. One expects the supergravity action now to depend on

the choice of Killing vector ξ on M4, but otherwise not on the metric. One should thus look

at metric deformations gij → gij + δgij, where Lξ δgij = 0.

One may also want to consider the other (generically inequivalent) topological twists

of N = 4 Yang–Mills. The two twists not considered here are the Vafa–Witten twist [215],

and the twist studied by Kapustin–Witten in [141]. In particular in the former theory the

only non-trivial observable is the partition function, and this has been studied for gauge

group G = SU(N) in [155, 211]. These twists require the larger SU(4)R R-symmetry of the

N = 4 theory, meaning for the holographic dual one needs to start with a Euclidean form

of N = 8 gauged supergravity theory. Optimistically, one might hope to embed within

the SU(4) ∼ SO(6) truncation of the latter theory studied in [76], which is a consistent

truncation of Type IIB supergravity on S5, and contains the five-dimensional RomansN = 4+

theory (with zero B-field) as a further truncation.

More generally, there are a wide variety of possible topologically twisted theories in

diverse spacetime dimensions. One could ask if zero action/gravitational free energy for

smooth supergravity solutions dual to TQFTs is a general property. Perhaps this is specific to

cases in which the preserved supercharge Q in the TQFT satisfies Q2 = 0, which is generally

not the case. The apparent simplicity of our results suggests there should be a more elegant

way to set up the holographic problem. Recall that in field theory, invariance of the TQFT

partition function with respect to metric deformations crucially relies on the stress-energy

tensor being Q-exact. We have shown the corresponding result holographically, but in a less

direct manner. It is natural to conjecture that a topological sector of gauged supergravities,

in this holographic setting, may be similarly described using a boundary BRST symmetry

[218, 133, 200, 22, 80].

Finally, in these chapters we have focused exclusively on the partition function. However,

in general TQFTs have non-trivial topological correlation functions, involving the insertion

of Q-invariant operators into the path integral. For example, this is true of Donaldson

theory, where such insertions are required to obtain non-zero invariants in field theory
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whenever dimM = d > 0, due to fermion zero modes. Geometrically these invariants arise

as the integral of a d-form over M, where this top form is itself constructed as a wedge

product of certain closed forms. The operators are constructed via a descent procedure

[219]. It would be very interesting to understand the holographic dual computation of these

correlation functions. Of course, correlation functions are well studied in AdS/CFT. In

the present setting one would again hope to be able to work in a truncated supergravity

theory, containing the fields whose boundary values act as sources for the operators (so,

concretely, the boundary conditions for the supergravity fields would be different from

those considered in the last two chapters). Being topological, the correlation functions

should be independent of the positions at which the local operators are inserted, and also

independent of the metric. These statements might be proven along similar lines to the

present dissertation.





Part II

Rigid supersymmetry
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4
Holographic Renormalization and Supersymmetry

4.1 Introduction

Holographic observables in the AdS/CFT correspondence typically need regularizing, and

the very structure of anti-de Sitter space provides a renormalization method. As we saw

in the previous part of the thesis, the infinite local boundary counterterms found via the

holographic renormalization are universal, but there exist finite counterterms as well. Such

ambiguities in the renormalization scheme can be clarified by comparing specific observables

on the two sides of the correspondence, for instance those protected by supersymmetry,

and particularly by requiring them to depend in the same way on the background. In the

previous part of the dissertation, we saw that the on-shell supergravity action of N = 4

gauged supergravity in four and five dimensions, renormalized using the minimal scheme,

is independent of the boundary metric provided we impose the boundary conditions

corresponding to the topological twist of the boundary field theory. In this chapter, we will

study minimal N = 2 gauged supergravity in four and five dimensions, whose bosonic

sectors are simply Einstein–Maxwell theory with a negative cosmological constant (and

Chern–Simons coupling in dimension five). Solutions to these theories uplift either to

M-theory or to type II string theory, and there are large classes corresponding to known

field theory duals.

117
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Asymptotically locally AdS supersymmetric solutions induce a rigid supersymmetric

structure on the conformal boundary, which has been studied in both Lorentzian and

Euclidean signature [145, 61].1 The boundaries M3 of asymptotically locally hyperbolic

supersymmetric solutions to four-dimensional supergravity have metric of the form

ds2
3 = (dψ + a)2 + 4ewdzdz̄ . (4.1.1)

Here ∂ψ is a nowhere zero Killing vector on M3, and we have used the freedom to make

conformal transformations to take this to be a unit norm vector. This generates a transversely

holomorphic foliation of M3, allowing one to introduce a canonical local transverse complex

coordinate z. The function w = w(z, z̄) is in general a local transverse function, while

a = az(z, z̄)dz + az(z, z̄)dz̄ is a local 1-form. We may also write da = iu ewdz ∧ dz̄, where

u = u(z, z̄). In addition to the background metric (4.1.1) there is also a non-dynamical

Abelian R-symmetry gauge field, which arises as the restriction of the bulk Maxwell field to

the conformal boundary and whose form is specified by supersymmetry.

It is a general result of [68, 67] that the partition function of any N = 2 field theory

in three dimensions, with a choice of Abelian R-symmetry coupling to the background

R-symmetry gauge field, depends on the above background geometry only through the

choice of transversely holomorphic foliation. Concretely, this means that the field theory

partition function is invariant under deformations w→ w + δw, u→ u + δu, where δw(z, z̄),

δu(z, z̄) are arbitrary smooth global functions on M3, invariant under ∂ψ. This is proven by

showing that these deformations of the background geometry lead to Q-exact deformations

of the Lagrangian, where Q is a supercharge, and a standard argument then shows that

the partition function is invariant. This general result has also been borne out by explicit

computations of localized partition functions (such as [11], where M3 has the topology of

S3).

The field theory results in the previous paragraph then lead to a very concrete prediction:

the holographically renormalized on-shell action of a supersymmetric asymptotically locally

hyperbolic solution to four-dimensional supergravity, with conformal boundary M3 and

metric (4.1.1), should be invariant under the arbitrary deformations w → w + δw, u →

u + δu defined above. As we shall review, in four dimensions holographic renormalization

1Asymptotically locally AdS manifolds are the Lorentzian version of the asymptotically locally hyperbolic
manifolds defined in section 1.1.
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leads to a unique set of standard counterterms for minimal N = 2 gauged supergravity –

there are no finite ambiguities2 – and we prove that the renormalized on-shell action has

indeed the expected invariance properties. Since we do this for an arbitrary solution, and

arbitrary deformation, this constitutes a robust check of the AdS/CFT correspondence, in

particular that holographic renormalization corresponds to the (unique) supersymmetric

renormalization scheme employed implicitly in the localization computations. We also go

further, and show that the on-shell action itself correctly evaluates to the large N field theory

partition function obtained from localization, in the cases where this is known.

The corresponding situation for five-dimensional supergravity turns out to be more

involved. We will consider Euclidean conformal boundaries M4 given by the direct product

of a circle S1 with M3 equipped with the metric (4.1.1), although we shall later generalize

this slightly to a simple class of twisted backgrounds in which S1 is fibred over M3;

the boundary value of the Abelian gauge field in the supergravity multiplet is again

determined by supersymmetry. The general dependence of the four-dimensional field theory

partition function on the background is similar to the one in three dimensions: for N = 1

theories with an R-symmetry (and thus for any N = 1 superconformal field theory), the

supersymmetric partition function is invariant under deformations w→ w+ δw, u→ u+ δu

[68, 67, 19]. Although contrastingly with the three-dimensional case these “supersymmetric

Ward identities” a priori only hold up to anomalies and local finite counterterms, it was

shown in [18] that the supersymmetric renormalization scheme used in field theory is

unique, i.e. free of ambiguities. Moreover the background M4 we consider is such that there

are no Weyl and R-symmetry anomalies [63].3 Therefore the statement on invariance of the

partition function should hold exactly in our set-up.

In five-dimensional supergravity, holographic renormalization contains a set of diffeo-

morphism-invariant and gauge-invariant local boundary terms corresponding a priori to

the same ambiguities and anomalies as in field theory [225, 127, 27]. One might thus have

expected that there is a unique linear combination of the finite holographic counterterms that

matches the supersymmetric field theory scheme, i.e. such that the renormalized action is

invariant under deformations w→ w + δw, u→ u + δu of M4. Surprisingly, we find that no

choice of these counterterms has this property. If the AdS/CFT correspondence is to hold, we

2More precisely there are no finite diffeomorphism-invariant and gauge-invariant local counterterms con-
structed using the bosonic supergravity fields.

3See the discussion at the end of the chapter for some brief remarks on the possibility of supercurrent
anomalies.
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must conclude that holographic renormalization breaks supersymmetry in this case (or, perhaps

more precisely, is not compatible with the four-dimensional supersymmetry determining

the Ward identities above). However, remarkably we are able to write down a set of non-

standard, finite boundary terms that do not correspond to the usual diffeomorphism and

gauge invariant terms and that give the on-shell action the expected invariance properties.

The approach we follow in our supergravity analysis starts in Lorentzian signature. In

particular we will rely on the existing classification of Lorentzian supersymmetric solutions

to minimal gauged supergravity [108] to construct a general asymptotically locally AdS

solution in a perturbative expansion near the boundary. Then we perform a Wick rotation;

this generally leads to complex bulk solutions, however we focus on a class with real

Euclidean conformal boundary M4
∼= S1 ×M3.

The fact that supersymmetric holographic renormalization is more subtle in five di-

mensions was already anticipated, and in fact the issue can be illustrated by considering

the simple case of AdS5. In global coordinates, and after compactifying the Euclidean

time, the conformal boundary of AdS5 can be taken to be M4
∼= S1 × S3, with a round

metric on S3. This space is expected to be dual to the vacuum of a superconformal field

theory (SCFT) on M4. In this background, such theories develop a non-ambiguous non-zero

vacuum expectation value (VEV) for both the energy and the R-charge operators [19, 18].

On the other hand, standard holographic renormalization unambiguously yields a van-

ishing electric charge for AdS5, which leads to an immediate contradiction with the field

theory result. In fact this mismatch holds much more generally than just for AdS5 space.

For instance, in [64] a family of five-dimensional supergravity solutions was constructed,

where the conformal boundary comprises a squashed S3, and it was found that no choice

of standard holographic counterterms correctly reproduced the supersymmetric partition

function and the corresponding VEV of the energy (the supersymmetric Casimir energy).

Our general results summarized above explain all these discrepancies, and moreover the

new counterterms we have introduced solve all of these issues. In fact we go further, and

show that for a general class of solutions satisfying certain topological assumptions (which

may be argued to be required for the solution to correspond to the vacuum state of the

dual SCFT), our holographically renormalized VEVs of conserved charges quantitatively

reproduce the expected field theory results.

The rest of the chapter is organized as follows. In section 4.2 we review the relevant
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field theory backgrounds and the properties of supersymmetric partition functions. In

section 4.3 we present our four-dimensional supergravity analysis, showing in particular

that standard holographic renormalization does satisfy the supersymmetric Ward identities,

and evaluating the on-shell action for a large class of self-dual solutions. In section 4.4 we

turn to five-dimensional supergravity. We prove that standard holographic renormalization

fails to satisfy the supersymmetric Ward identities and we introduce the new boundary terms

curing this issue. Then under some global assumptions we evaluate the renormalized on-

shell action and compute the conserved charges, showing that they satisfy a BPS condition.

Section 4.5 discusses a number of examples in five dimensions, illustrating further the rôle

of our new boundary terms and making contact with the existing literature. In section 4.6,

we conclude and consider some of the questions raised by this work. Finally, appendix B.1

illustrates our construction of the five-dimensional perturbative solution, and appendix B.2

discusses the Killing spinors at the boundary.

4.2 Field theory

In this chapter we are interested in the holographic duals to both three-dimensional and

four-dimensional supersymmetric field theories, defined on general classes of rigid super-

symmetric backgrounds. More precisely, these are three-dimensional N = 2 theories and

four-dimensional N = 1 theories, in both cases with a choice of Abelian R-symmetry. For

superconformal field theories, relevant for AdS/CFT, this R-symmetry will be the supercon-

formal R-symmetry. Whilst in the previous chapters we considered topologically twisted

theory that can be formulated on any Riemannian manifold, putting such theories on curved

backgrounds in a way that preserves supersymmetry requires particular geometric struc-

tures. As reviewed in sections 1.2.2, there are two general approaches: one can either couple

the field theory to supergravity, and take a rigid limit in which the supergravity multiplet

becomes a set of non-dynamical background fields; or take a holographic approach, realizing

the background geometry as the conformal boundary of a holographic dual supergravity

theory [97, 145, 90, 66]. In the case at hand, both lead to the same results, although the

holographic approach will be particularly relevant for this chapter.

We will focus on backgrounds admitting two supercharges of opposite R-charge. The

resulting geometric structures in three and four dimensions are very closely related, and
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this will allow us to treat some aspects in parallel. In particular certain objects will appear

in both dimensions, and we will use a common notation – the dimension should always be

clear from the context.

4.2.1 Three-dimensional backgrounds

The three-dimensional geometries of interest belong to a general class of real supersymmetric

backgrounds, admitting two supercharges related to one another by charge conjugation [66].

If ζ denotes the Killing spinor then there is an associated Killing vector

ξ = ζ†σiζ ∂i = ∂ψ . (4.2.1)

In an orthonormal frame here the Clifford algebra generators σa may be taken to be the

Pauli matrices, where a = 1, 2, 3 is an orthonormal frame index. The Killing vector (4.2.1)

is nowhere zero, and thus defines a foliation of the three-manifold M3. This foliation is

transversely holomorphic, with transverse local complex coordinate z. In terms of these

coordinates the background metric is

ds2
3 = Ω2 [(dψ + a)2 + 4ewdzdz̄

]
. (4.2.2)

Here Ω = Ω(z, z̄) is a conformal factor, which is a global nowhere zero function on M3,

w = w(z, z̄) is in general a local transverse function, while a = az(z, z̄)dz + az(z, z̄)dz̄ is a

local 1-form. The metric and Riemannian volume form on the two-dimensional leaf space

are

ds2
2 = 4ewdzdz , vol2 = 2i ewdz ∧ dz . (4.2.3)

Notice that a is not gauge invariant under local diffeomorphisms of ψ. On the other hand

the 1-form

η ≡ dψ + a (4.2.4)
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is a global almost contact form on M3, where the Killing vector ξ = ∂ψ is the associated Reeb

vector field. It will be convenient to write

dη = da = i u ewdz ∧ dz̄ , (4.2.5)

where u = u(z, z̄) is a global function that parametrizes the gauge-invariant data in a.

Since we are mainly interested in conformal theories with gravity duals, we will (without

loss of generality) henceforth set the conformal factor Ω ≡ 1. With this choice, the non-

dynamical R-symmetry gauge field that couples to the R-symmetry current is

A =
u
4
(dψ + a) +

i
4
(∂z̄wdz̄− ∂zwdz) + γ dψ + dλ . (4.2.6)

Notice this is determined entirely by the metric data in (4.2.2), apart from the last two terms

which are locally pure gauge. Here λ = λ(z, z̄), and the constant γ will play a particularly

important rôle in this chapter.4

4.2.2 Four-dimensional backgrounds

There is a related class of rigid four-dimensional supersymmetric backgrounds, first

discussed in [145, 90]. These again have two supercharges of opposite R-charge, with

corresponding Killing spinors ζ±. We use the spinor conventions of [90, 19], in which

the positive/negative chirality ζ± are two-component spinors with corresponding Clif-

ford algebra generated by (σ±)a = (±σ,−i12), where a = 1, . . . , 4 is an orthonormal

frame index and σ = (σ1, σ2, σ3) are the Pauli matrices. In particular the generators of

SU(2)`/r ⊂ Spin(4) ∼= SU(2)` × SU(2)r are (σ±)ab = 1
4

(
σa
±σb
∓ − σb

±σa
∓
)

. As in (4.2.1) we

may define the vector field

K = ζ+σi
+ζ− ∂i . (4.2.7)

This is a complex Killing vector, satisfying KiKi = 0. Following [19, 176], and to parallel

the three-dimensional discussion in section 4.2.1, we consider a restricted class of these

4Compared to the conventions of [94, 95], we have reversed the overall sign of A. However, as noted in the
first of these references, for real A sending A→ −A is a symmetry of the Killing spinor equation, provided one
also charge conjugates the spinor ζ → ζc. This Z2 symmetry also reverses the sign of the Killing vector (4.2.1).
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backgrounds in which the metric on M4 takes the product form

ds2
4 = dτ2 + (dψ + a)2 + 4ewdzdz̄ . (4.2.8)

Thus M4
∼= S1 ×M3, where τ ∈ [0, β) parametrizes the circle S1 = S1

β. More generally one

can also introduce an overall conformal factor Ω = Ω(z, z̄), as in (4.2.2), and the τ direction

may be fibred over M3, as we will discuss later in section 4.4.5. The complex Killing vector

(4.2.7) takes the form

K =
1
2
(ξ − i∂τ) , (4.2.9)

where again ξ = ∂ψ. The induced geometry on M3, on a constant Euclidean time slice τ =

constant, is identical to that for rigid supersymmetry in three dimensions. Moreover, the

non-dynamical R-symmetry gauge field is

A =
u
4
(dψ + a) +

i
4
(∂z̄wdz̄− ∂zwdz) + γ dψ + dλ +

i
8

u dτ − iγ′dτ . (4.2.10)

We stress that this is the gauge field of background conformal supergravity, rather than the

gauge field of new minimal supergravity [5, 205] used in [90]. The former arises as the

restriction of the bulk graviphoton to the conformal boundary in the holographic approach

to rigid supersymmetry [145, 61]. Notice that setting τ = constant, (4.2.10) reduces to the

three-dimensional gauge field (4.2.6). The last term in (4.2.10), proportional to the (real)

constant γ′, is again locally pure gauge, although via a complex gauge transformation. In

contrast to three dimensions here A is generically complex, although after a Wick rotation

τ = it to Lorentzian signature it becomes real.

The geometry we have described above is ambi-Hermitian: the two Killing spinors ζ±

equip M4 with two commuting integrable complex structures

(I±)i
j = − 2i

|ζ±|2
ζ†
±(σ±)

i
j ζ± . (4.2.11)

The metric (4.2.8) is Hermitian with respect to both of these, but where the induced

orientations are opposite. The complex Killing vector (4.2.7) has Hodge type (0, 1) with

respect to both complex structures. On the other hand, the local 1-form dz has Hodge type
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(1, 0) with respect to I+, but Hodge type (0, 1) with respect to I−.

4.2.3 Examples

In both cases the geometry involves a three-manifold M3, equipped with a transversely

holomorphic foliation generated by the real Killing vector ξ = ∂ψ. Any such three-manifold,

with any compatible metric of the form (4.2.2), defines a rigid supersymmetric background

in both three and four dimensions. If all its orbits close ξ generates a U(1) isometry, and the

quotient space Σ2 = M3/U(1) is an orbifold Riemann surface, with induced metric (4.2.3).

Such three-manifolds are classified, and are known as Seifert fibred three-manifolds. If ξ has

a non-closed orbit then M3 admits at least a U(1)2 isometry, meaning that the transverse

metric ds2
2 also admits a Killing vector.

The simplest example has M3 ∼= S3, with ξ generating the Hopf fibration of the round

metric on S3.5 In this case Σ2 ∼= S2, equipped with its round metric. More generally one can

think of S3 ⊂ C⊕C, and take

ξ = b1∂ϕ1 + b2∂ϕ2 , (4.2.12)

where ϕ1, ϕ2 are standard 2π periodic azimuthal angles on each copy of C. For b1 = ±b2

this is again the Hopf action on S3, but for b1/b2 irrational the flow of ξ is irregular, with

generically non-closed orbits. In this case ψ and arg z are not good global coordinates on the

three-sphere. It is straightforward to write down the general form of a compatible smooth

metric in this case, of the form (4.2.2) – see [19]. From the perspective of complex geometry,

these manifolds with S1 × S3 topology (and largely arbitrary Hermitian metric) are primary

Hopf surfaces.

A large and interesting class of examples are given by links of weighted homoge-

neous hypersurface singularities. Here one begins with C3 with a weighted C∗ action

(Z1, Z2, Z3) → (qw1 Z1, qw2 Z2, qw3 Z3), where wi ∈ N are the weights, i = 1, 2, 3, and q ∈ C∗.

The hypersurface is the zero set

X = { f = 0} ⊂ C3 , (4.2.13)

5Throughout the chapter, the symbol ∼= means “diffeomorphic to”. In general, Md
∼= Sd does not imply that

the metric is the round metric on Sd; we will always specify when this is the case.
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where f = f (Z1, Z2, Z3) is a polynomial satisfying

f (qw1 Z1, qw2 Z2, qw3 Z3) = qd f (Z1, Z2, Z3) , (4.2.14)

where d ∈N is the degree. For appropriate choices of f the link

M3 = X ∩ {|Z1|2 + |Z2|2 + |Z3|2 = 1} (4.2.15)

is a smooth three-manifold. Moreover, the weighted C∗ action induces a U(1) isometry

of the metric (induced from the flat metric on C3), and the associated Killing vector ξ

naturally defines a transversely holomorphic foliation of M3. Here Σ2 = M3/U(1) is the

orbifold Riemann surface given by { f = 0} in the corresponding weighted projective space

WCP2
[w1,w2,w3]

. This construction covers all spherical three-manifolds S3/ΓADE, but also

many three-manifolds with infinite fundamental group. One can further generalise this

construction by considering links of complete intersections, i.e. realizing X as the zero set of

m weighted homogeneous polynomials in C2+m.

4.2.4 A global restriction

If we take the product X0 ≡ R>0 ×M3, then we may pair the Reeb vector ξ with a radial

vector r∂r, where r is the standard coordinate on R>0. Notice this is particularly natural in

four dimensions, where we may identify τ = log r, with X0 = R>0 ×M3 being a covering

space for M4 = S1 ×M3. Then X0 is naturally a complex manifold, with the complex vector

field ξ − ir∂r being of Hodge type (0, 1). In fact X0 may be equipped with either the I+

or the I− complex structure, with the former more natural in the sense that z is a local

holomorphic coordinate with respect to I+. In the following we hence take the I+ complex

structure.

The examples in section 4.2.3 all share a common feature: in these cases the complex

surface X0 admits a global holomorphic (2, 0)-form. That is, its canonical bundle K is

(holomorphically) trivial. This is obvious for S3, where X0 ∼= C2 \ {0}, while for links

of homogeneous hypersurface singularities X we may identify X0 = X \ {o}, where the

isolated singular point o is at the origin {Z1 = Z2 = Z3 = 0} of C3. In this case the

holomorphic (2, 0)-form is Ψ = dZ1 ∧ dZ2/(∂ f /∂Z3) in a patch where ∂ f /∂Z3 is nowhere

zero. One can easily check that Ψ patches together to give a smooth holomorphic volume
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form on X0. Such singularities X are called Gorenstein.

As shown in [176], the 1-form A in (4.2.6) is (in our sign conventions) a connection on

K1/2. It follows that when the canonical bundle of X0 is trivial A may be taken to be a

global 1-form (this is true on M3 or on M4
∼= S1 ×M3). This global restriction on A will

play an important rôle in certain computations later. For example, the computation of

the supersymmetric Casimir energy in [176] requires this additional restriction on M4
∼=

S1 ×M3, and the same condition will also be needed in our evaluations of the renormalized

gravitational actions in four and five dimensions. That said, other computations will not

require this restriction, and we shall always make clear when we need the global restriction

of this section, and when not.

As explained in [176], when the canonical bundle of X0 is trivial the constant γ in (4.2.6),

(4.2.10) may be identified with 1
2 the charge of the holomorphic (2, 0)-form Ψ under the

Reeb vector ξ. Thus for example we have

γ =



1
2 (b1 + b2) , S3 with Reeb vector ξ = b1∂ϕ1 + b2∂ϕ2

1
2 b(−d + ∑3

i=1 wi) , M3 = link of weighted homogeneous

hypersurface singularity, ξ = bχ .

(4.2.16)

Here in the second example the normalized generator of the U(1) ⊂ C∗ action for the link

has been denoted by χ, and b is an arbitrary scale factor. The local function λ(z, z̄) in (4.2.6),

(4.2.10) is chosen so that A is a global 1-form on M3. The form of this depends on the choice

of transverse coordinate z, and then λ is fixed uniquely up to a shift by a global function

on M3 that is invariant under ξ: this is just a small gauge transformation of A. Finally, on

M4
∼= S1 ×M3 the constant γ′ is fixed by requiring the Killing spinors ζ± to be invariant

under ∂τ. This is necessary in order that the Killing spinors survive the compactification

of R×M3 to S1 ×M3. In fact as we show in appendix B.2 this sets γ′ = 0, but it will be

convenient to keep this constant since the more general background with S1 fibred over M3

we will discuss in section 4.4.5 will require γ′ 6= 0.

In order to compute the four- and five-dimensional on-shell supergravity actions later in

the chapter, we will also need some further expressions for the constant γ. Since we may

always approximate an irregular Reeb vector field (with generically non-closed orbits) by a

quasi-regular Reeb vector field (where all orbits close), there is no essential loss of generality
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in assuming that ξ generates a U(1) isometry of M3. Equivalently, M3 is the total space of a

U(1) principal orbibundle over an orbifold Riemann surface Σ2 with metric (4.2.3) (which is

smooth where U(1) acts freely on M3). Since the orbits of ξ = ∂ψ close, for a generic orbit

we may write ψ ∼ ψ + 2π/b, with b ∈ R>0 a constant. This allows us to write the following

relation between the almost contact volume and characteristic class

b2

(2π)2

∫
M3

η ∧ dη =
∫

Σ2

c1 (L) , (4.2.17)

where c1 (L) ∈ H2 (Σ2, Q) is the first Chern class of L, the orbifold line bundle associated

to S1 ↪→ M3 → Σ2. If the U(1) action generated by ξ is free, then Σ2 is a smooth Riemann

surface and the right hand side of (4.2.17) is an integer; more generally it is a rational

number. Analogously, by definition the first Chern class of Σ2 is the first Chern class of its

anti-canonical bundle, which integrates to

∫
Σ2

c1(Σ2) ≡
∫

Σ2

c1

(
K−1

Σ2

)
=

1
4π

∫
Σ2

R2d vol2 . (4.2.18)

Here R2d = −�w is the scalar curvature of the metric (4.2.3) on Σ2, expressed in terms of

the two-dimensional Laplace operator � ≡ e−w∂2
zz̄ (we are using the notation ∂2

zz ≡ ∂z∂z).

Equivalenty we may write this as an integral over M3:

∫
Σ2

c1(Σ2) =
b

8π2

∫
M3

R2d η ∧ vol2 . (4.2.19)

Given these preliminary formulas, we next claim that the expression (4.2.6) for A

describes a globally defined 1-form on M3 if and only if γ is given by

γ = − b
2

∫
Σ2

c1(Σ2)∫
Σ2

c1 (L)
= −1

4

∫
M3

R2d η ∧ vol2∫
M3

η ∧ dη
. (4.2.20)

To see this, recall from our discussion above that 2A is a connection on the canonical bundle

K of X0. The latter is (by assumption) holomorphically trivial, with global holomorphic

section a (2, 0)-form Ψ. It follows that 2γ may be identified with the charge of Ψ under the

Reeb vector ξ = ∂ψ [176]. On the other hand, Ψ in turn may be constructed as a section of

the canonical bundle KΣ2 of Σ2, tensored with a section of some power of L∗, say (L∗)p,

where L∗ is the bundle dual to L. The former must be dual line bundles in order that Ψ is
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globally defined as a form, meaning that

p c1(L∗) = −c1(KΣ2) = c1(Σ2) . (4.2.21)

Since exp(b iψ) is a section of L, which has charge b under ξ = ∂ψ, and c1(L∗) = −c1(L),

this means that the charge of Ψ is fixed to be

2γ = b p = −b

∫
Σ2

c1(Σ2)∫
Σ2

c1(L)
. (4.2.22)

Rearranging gives (4.2.20). We stress again that although we have derived (4.2.20) for

quasi-regular Reeb vector fields, by continuity the expression for γ given by the first equality

holds also in the irregular case.

These Seifert invariants are readily computed for particular examples. For example, in

section 4.2.3 we considered M3 ∼= S3 with Reeb vector ξ = b1∂ϕ1 + b2∂ϕ2 , where ϕ1, ϕ2 are

standard 2π periodic coordinates. The foliation is quasi-regular when b1/b2 = p/q ∈ Q

is rational. Taking p, q ∈ N with no common factor, we have the so-called “spindle”

Σ2 = S3/U(1)p,q ∼= WCP1
[p,q]. This weighted projective space is topologically a two-sphere,

but with orbifold singularities with cone angles 2π/p and 2π/q at the north and south

poles, respectively. Recalling that L is the line bundle associated to S1 ↪→ S3 → Σ2, it is

straightforward to compute that

∫
Σ2

c1(L) = − 1
pq

,
∫

Σ2

c1(Σ2) =
p + q

pq
. (4.2.23)

Similarly, for M3 a link of a weighted homogeneous hypersurface singularity, described in

section 4.2.3, one finds

∫
Σ2

c1(L) = − d
w1w2w3

,
∫

Σ2

c1(Σ2) =
d(−d + ∑3

i=1 wi)

w1w2w3
. (4.2.24)

These invariants are also often referred to as the virtual degree and virtual Euler characteristic

of the weighted homogeneous hypersurface singularity, respectively. Notice that (4.2.23)

may be derived from (4.2.24) as a special case: we may take weights (w1, w2, w3) = (p, q, 1),

together with the polynomial f (Z1, Z2, Z3) = Z3, which has degree d = 1. The zero set of f

is then C2, with coordinates Z1, Z2, with weighted Reeb vector ξ = p∂ϕ1 + q∂ϕ2 .
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Finally, it is worth pointing out there are interesting examples that are not covered by the

restriction we make in this section. In particular setting the connection 1-form a = 0 gives a

direct product M3 ∼= S1 × Σ2, but unless Σ2 ∼= T2 the canonical bundle of X0 is non-trivial

(being the pull back of the canonical bundle of Σ2). This rules out M3 ∼= S1 × S2, where the

Reeb vector rotates the S1. In this case A is a unit charge Dirac monopole on S2. Localized

gauge theory partition functions on such backgrounds have been computed in [43, 44, 69].

4.2.5 The partition function and supersymmetric Casimir energy

The general results of [68, 67] imply that the supersymmetric partition function of an

N = 2 theory on M3, or an N = 1 theory on M4
∼= S1 × M3, depends on the choice of

background only via the transversely holomorphic foliation of M3. Concretely, this means

that the partition function is invariant under deformations w→ w + δw, u→ u + δu, where

δw(z, z̄), δu(z, z̄) are arbitrary smooth global functions on M3, invariant under ξ = ∂ψ. Rigid

supersymmetric backgrounds M4 with a single supercharge ζ are in general Hermitian, and

more generally the partition function is insensitive to Hermitian metric deformations and

depends on the background only via the complex structure (up to local counterterms and

anomalies) [68]. It is important to note that these statements are valid when the new minimal

formulation of four-dimensional supergravity [205] (or its three-dimensional analogue) is

used to couple the field theory to the curved background. We will refer to these results as

supersymmetric Ward identities.

The Lagrangians for general vector and chiral multiplets on these backgrounds may

be found in the original references cited above. In [68, 67] the strategy is to show that

deformations of the background geometry that leave the transversely holomorphic foliation

(or more generally in four dimensions the complex structure) fixed are Q-exact. A standard

argument then shows that the partition function is invariant under such deformations (up

to invariance of the measure).

These general statements are supported by explicit computations of localized partition

functions. In three dimensions the simplest case is M3 ∼= S3, with general Reeb vector (4.2.12).

This was studied in [11]. The partition function of a general N = 2 gauge theory coupled to

arbitrary matter localizes to a matrix model for the scalar in the vector multipet, where this

matrix model depends on the background geometry only via b1, b2. The large N limit was

computed for a broad class of Chern–Simons-matter theories in [172] using saddle point
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methods. The final result for the free energy F = − log Z in the large N limit is

F =
(b1 + b2)2

4b1b2
· 4π2

κ2
4

. (4.2.25)

Here

FS3
round

=
4π2

κ2
4

(4.2.26)

is the free energy on the round S3, which scales as N3/2 [88], where κ2
4 is the four-dimensional

effective coupling constant of the gravity dual. The partition function has also been

computed on (round) Lens spaces S3/Zp in [42, 9]. Here the partition function localizes

onto flat gauge connections, and thus splits into a sum over topological sectors. However,

in the large N limit of the ABJM theory studied in [9] it was shown that only certain flat

connections contribute, all giving the same contribution as the trivial flat connection. The

upshot is that the large N free energy is simply 1
p times the free energy on S3. As far as

the author is aware, there are no explicit results for the partition function, or its large N

limit, on more general links of homogeneous hypersurface singularities. However, it is

tempting to conjecture that for appropriate classes of theories with large N gravity duals,

the large N free energy may be computed from the sector with trivial gauge connection.

The one-loop determinants here should be relatively straightforward to compute, in contrast

to the full partition function which localizes onto solutions of the Bogomol’nyi equation, i.e.

flat connections (on a closed three-manifold).

The partition function for general N = 1 theories with an R-symmetry, defined on Hopf

surfaces M4
∼= S1 × S3, was computed using localization in [19] (the chiral multiplet was

also studied in [70]). With two supercharges of opposite R-charge one localizes onto flat

gauge connections, which on S1 × S3 amount to a constant component of the dynamical

gauge field along S1. The resulting matrix model is similar to that in three dimensions, albeit

with additional modes along S1, and indeed in [19] the results of [11] were used. Besides

checking explicitly that the supersymmetric partition function depends on the transversely

holomorphic foliation defined by the Reeb vector (4.2.12) on M3 ∼= S3 and not on the choice

of Hermitian metric on the Hopf surface, the main result of [19] was that the partition
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function factorizes as

ZS1
β×S3 = e−βEsusy · I , (4.2.27)

where I is the supersymmetric index originally defined in [199, 144] and

Esusy =
2
27

(b1 + b2)3

b1b2
(3c− 2a) +

2
3
(b1 + b2)(a− c) (4.2.28)

was dubbed the supersymmetric Casimir energy. Here, a and c are the usual trace anomaly

coefficients for a four-dimensional SCFT; more generally, for a supersymmetric theory with

a choice of R-symmetry one should replace a and c in (4.2.28) by the corresponding ’t Hooft

anomaly formulae, involving traces over the R-charges of fermions. This result has been

argued to be scheme-independent, provided one uses a supersymmetric regularization

scheme, hence Esusy is an intrinsic observable [20, 18]. One can see that Esusy corresponds to

a Casimir energy by showing that it is the vacuum expectation value of the Hamiltonian

generating translations along the Euclidean time, in the limit β→ ∞ [161, 18].

For field theories admitting a large N gravity dual in type IIB supergravity, to leading

order in the large N limit one has a = c = π2/κ2
5, where κ2

5 is the five-dimensional

gravitational coupling constant and we have set the AdS radius to 1. Moreover, one can see

that the index I does not contribute at leading order [144]. Then at large N the field theory

partition function reduces to

− 1
β

log ZS1
β×S3 = Esusy =

2(b1 + b2)3

27b1b2

π2

κ2
5

. (4.2.29)

The right hand side is expressed in terms of the five-dimensional gravitational coupling

constant, and one of our aims will be to reproduce this formula from a dual supergravity

computation. For the locally conformally flat S1
β × S3

r3
, where M3 ∼= S3

r3
is equipped with the

standard round metric of radius r3, we have b1 = b2 = 1/r3, leading to

− 1
β

log ZS1
β×S3

r3
= Esusy, S1

β×S3
r3

=
16

27r3

π2

κ2
5

. (4.2.30)

Following [18, 161], in [176] the supersymmetric Casimir energy was studied on the

more general class of M4
∼= S1

β × M3 backgrounds, by reducing to a supersymmetric
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quantum mechanics.6 The short multiplets that contribute to Esusy were shown to be in 1-1

correspondence with holomorphic functions on X0 ∼= R>0 ×M3, with their contribution

being determined by the charge under the Reeb vector ξ. This makes it manifest that Esusy

depends on the background only via the choice of transversely holomorphic foliation on

M3. From this it follows that Esusy may be computed from an index-character that counts

holomorphic functions on X0 according to their Reeb charge. Again, more precisely this is

true in the sector with trivial flat gauge connection, while more generally one should look

at holomorphic sections of the corresponding flat holomorphic vector bundles. In any case,

in the sector with trivial flat connection on M3 one can use this result to show that for links

of homogeneous hypersurface singularities

Esusy =
2b
27

d c3
1

w1w2w3
(3c− 2a) +

b
3

d c1

w1w2w3
(c2

1 − c2)(a− c) . (4.2.31)

Here we have defined

c1 = −d +
3

∑
i=1

wi , c2 = −d2 +
3

∑
i=1

w2
i . (4.2.32)

In particular, c1 is precisely the charge of the holomorphic (2, 0)-form under the generator

χ of the U(1) action. Equivalently, this is the orbifold first Chern number of the orbifold

anti-canonical bundle of the orbifold Riemann surface Σ2 = M3/U(1), which is an integer

version of the second invariant in (4.2.24). Again, for theories with a large N gravity dual,

in the large N limit this becomes

Esusy =
2b
27

d c3
1

w1w2w3

π2

κ2
5

. (4.2.33)

Assuming that the dominant contribution comes from this sector with trivial flat connection,

(4.2.33) is hence the prediction for the gravity dual.

An aim of this chapter will be to reproduce these field theory results holographically

from supergravity.

6Other methods to extract the supersymmetric Casimir energy on Hopf surfaces use equivariant integration
of anomaly polynomials [53] or exploit properties of the supersymmetric index [17, 59]. See also [185] for
localization on backgrounds with more general topologies.
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4.3 Four-dimensional supergravity

In this section we are interested in the gravity duals to three-dimensional N = 2 field

theories on the backgrounds M3 described in section 4.2.1. The gravity solutions are

constructed in N = 2 gauged supergravity in four dimensions. The general form of (real)

Euclidean supersymmetric solutions to this theory was studied in [91]. In particular they

admit a Killing vector, which for asymptotically locally Euclidean AdS solutions restricts on

the conformal boundary M3 to the Killing vector ξ defined in (4.2.1). Indeed, we will see

that the conformal boundary of a general supersymmetric supergravity solution is equipped

with the same geometric structure described in section 4.2.1. We show that the renormalized

on-shell supergravity action, regularized according to standard holographic renormalization,

depends on the boundary geometric data only via the transversely holomorphic foliation,

thus agreeing with the general field theory result summarized in section 4.2.5. Moreover,

for self-dual supergravity solutions we show that the holographic free energy correctly

reproduces the localized field theory results (in the cases where these are available) described

in section 4.2.5. We thus find very general agreement between large N localized field

theory calculations, on general supersymmetric backgrounds M3, and dual supergravity

computations.

4.3.1 Supersymmetry equations

The Euclidean action for the bosonic sector of four-dimensional N = 2 gauged supergravity

[99] is

I = − 1
2κ2

4

∫
d4x
√

G
(

R + 6−FµνFµν
)

. (4.3.1)

Here R = R(G) is the Ricci scalar of the four-dimensional metric Gµν, F = dA is the field

strength of the Abelian graviphoton A, and the cosmological constant has been normalized

to Λ = −3. The equations of motion are

Rµν + 3Gµν = 2
(
Fµ

ρFνρ −
1
4
FρσF ρσGµν

)
,

d ∗4 F = 0 . (4.3.2)
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A supergravity solution is supersymmetric if it admits a non-trivial Dirac spinor ε satisfying

the Killing spinor equation

(
∇µ +

i
4
FνρΓνρΓµ +

1
2

Γµ + iAµ

)
ε = 0 , (4.3.3)

where Γµ generate Cliff(4) in an orthonormal frame, so {Γµ, Γν} = 2Gµν. Locally, any such

solution can be uplifted to a supersymmetric solution of eleven-dimensional supergravity in

a number of ways, as explained in [109]. Strictly speaking the latter reference discusses the

Lorentzian signature case, while the corresponding Euclidean signature result was studied

in [95]. We also note that there may be global issues in uplifting some solutions, as discussed

in detail in [173]. However, these considerations will not affect any of the statements and

results in the present chapter.

The general form of real Euclidean supersymmetric solutions to this theory was studied

in [91]. There is a canonically defined local coordinate system in which the metric takes the

form

ds2
4 =

1
y2UV

(dψ + φ)2 +
UV
y2 (dy2 + 4eWdzdz) . (4.3.4)

Here ξ = ∂ψ is a Killing vector, arising canonically as a bilinear from supersymmetry, and

W = W(y, z, z), U = U(y, z, z), V = V(y, z, z), while φ is a local 1-form satisfying ξ φ = 0

and Lξφ = 0. In addition, the following equations should be imposed:

U = 1− y
4

∂yW +
f
2

, (4.3.5)

∂2
zzW + eW

[
∂2

yyW +
1
4
(∂yW)2 + 3y−2 f 2

]
= 0 , (4.3.6)

∂2
zz f +

eW

y2

[
f
(

f 2 + 2
)
− y

(
2∂y f +

3
2

f ∂yW
)

+

+ y2
(

∂2
yy f +

3
2

∂yW∂y f +
3
2

f ∂2
yyW +

3
4

f (∂yW)2
) ]

= 0 ,
(4.3.7)

dφ = i UV
[

∂z log
V
U

dy ∧ dz− ∂z log
V
U

dy ∧ dz

+ 2 eW
(

∂y log
V
U

+
2
y
(U −V)

)
dz ∧ dz

]
,

(4.3.8)

where we have introduced f ≡ U−V. The first equation (4.3.5) defines U in terms of W and

f , and we could therefore use it to substitute in (4.3.8) and conclude that the entire geometry
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is fixed by a choice of W and f (apart from a possible gauge transformation/diffeomorphism

on φ). In deriving this form of the solutions, (4.3.5), (4.3.6) and (4.3.8) follow from imposing

the Killing spinor equation (4.3.3), while (4.3.7) is required for the equation of motion for F

(the Maxwell equation) to be satisfied.

The graviphoton is determined by the above geometry, and is given by

A =
1

2y
f

U(U − f )
(dψ + φ) +

i
4
(∂zWdz− ∂zWdz) . (4.3.9)

In general this expression is only valid locally, and we will see later that we need to perform

a local gauge transformation in order that A is regular.

A rich subclass of solutions are the self-dual solutions, studied in [92, 94]. Here one

imposes F to be anti-self-dual, which together with supersymmetry implies that the metric

has anti-self-dual Weyl tensor [92]. We adopt the same abuse of terminology as [94], and

refer to these as “self-dual” solutions. This amounts to setting

f =
y
2

∂yW (self-dual case). (4.3.10)

This in turn fixes U ≡ 1, and therefore self-dual solutions to N = 2 gauged supergravity in

four dimensions are completely specified by a single function W = W(y, z, z̄), which solves

(4.3.6). This turns out to be the SU(∞) Toda equation.7

4.3.2 Conformal boundary

In order to apply the gauge/gravity correspondence we require the solutions described in

the previous subsection to be asymptotically locally hyperbolic. This is naturally imposed,

with the coordinate 1/y playing the rôle of the radial coordinate. Indeed, there is then a

conformal boundary at y = 0, and the metric has the leading asymptotic form dy2

y2 + 1
y2 ds2

M3
.

More precisely, this all follows if we assume that W(y, z, z), f (y, z, z) are analytic functions

in y around y = 0:8

W(y, z, z) = w(0)(z, z) + yw(1)(z, z) +
y2

2
w(2)(z, z) +O(y3) ,

f (y, z, z) = f(0)(z, z) + y f(1)(z, z) +
y2

2
f(2)(z, z) +

y3

6
f(3)(z, z) +O(y4) , (4.3.11)

7Of course for self-dual solutions the Maxwell equation is automatic, and indeed one can check that, with
(4.3.10) imposed, equation (4.3.7) is implied by the other equations.

8Note that this is not true in general. For more details see section 3 of [94].



4.3 Four-dimensional supergravity 137

and the 1-form φ can be expanded as

φ(y, z, z) = a(0)(z, z) + ya(1)(z, z) +
y2

2
a(2)(z, z) +O(y3) . (4.3.12)

This implies that to leading order

ds2
4 = [1 +O(y)]dy2

y2 + y−2[(dψ + a(0))
2 + 4ew(0)dzdz +O(y)] , (4.3.13)

confirming that the metric is indeed asymptotically locally hyperbolic around the boundary

{y = 0}. A natural choice of metric (rather than conformal class of metrics) on the boundary

is therefore

ds2
M3

= (dψ + a(0))
2 + 4ew(0)dzdz . (4.3.14)

The boundary 1-form η ≡ dψ + a(0) has exterior derivative

dη = 2i ew(0) f(1) dz ∧ dz , (4.3.15)

as can be seen by expanding (4.3.8) to leading order and using f(0) = 0, the latter coming

from the leading order term in (4.3.6). More specifically, η is a global almost-contact 1-form

and ξ is its Reeb vector field, as

ξ η = 1 , ξ dη = 0 . (4.3.16)

On the conformal boundary ξ is nowhere vanishing, which implies that it foliates M3. This

Reeb foliation is transversely holomorphic, with locally defined complex coordinate z. The

leading term of the expansion of the bulk Abelian graviphoton is

A0 ≡ A |{y=0} =
f(1)
2

(
dψ + a(0)

)
+

i
4

(
∂zw(0)dz− ∂zw(0)dz

)
, (4.3.17)

where as usual this expression is only valid locally, and we are free to perform (local) gauge

transformations.

Of course, we see immediately that we recover the rigid supersymmetric geometry of

M3 described in section 4.2.1. More precisely, comparing (4.3.14) and (4.2.2) we identify
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a(0) = a, w(0) = w, with the choice of conformal factor Ω = 1 so that the Killing vector ξ has

length 1 (as usual in AdS/CFT, the conformal factor Ω on the boundary appears as a Weyl

rescaling of the radial coordinate y→ Ω−1y). Moreover, comparing (4.3.15) and (4.2.5) we

see that

f(1) =
1
2

u . (4.3.18)

Finally, the background R-symmetry gauge field arises as the restriction to the conformal

boundary of the bulk Abelian graviphoton, as shown by comparing (4.3.17) and (4.2.6).

Thus we identify A0 = A (up to local gauge transformations).

By expanding (4.3.6), (4.3.7) and (4.3.8) to higher order we obtain the relations

w(2) = −e−w(0)∂2
zzw(0) − 3 f 2

(1) −
1
4

w2
(1) , (4.3.19)

f(3) = −3e−w(0)∂2
zz f(1) −

9
4

f(1)
(

w2
(1) + 2w(2)

)
− 3 f 3

(1) −
9
4

f(2)w(1) , (4.3.20)

φ(2) = i
(

∂z f(1)dz− ∂z f(1)dz
)

. (4.3.21)

This (and expansions to higher orders) allows us to see an interesting difference between

the self-dual and non-self-dual case. In general a representative of the boundary conformal

class is fixed by the choice of two basic functions w(0) = w and f(1) = u/2. However, in

the general case there are in addition two free functions in the expansion into the bulk,

namely w(1) and f(2), that appear in the Taylor expansions of W and f in the inverse radial

coordinate y. In general these functions are not determined by the conformal boundary data,

but only by regularity of the solution in the deep interior of the bulk solution. However,

given w(0), w(1), f(1) and f(2), the series solutions of W and f are then uniquely fixed by the

supersymmetry equations/equations of motion. On the other hand, in the self-dual case,

instead f and W are related by (4.3.10), so that the coefficients of the power series expansion

f(n) and w(n) are related by

f(n) =
n
2

w(n) (self-dual case) . (4.3.22)

Thus the gravitational filling of a given conformal boundary has a unique power series

solution with self-dual metric, while there is no such uniqueness in the general case.
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4.3.3 Holographic renormalization

The Euclidean supergravity action (4.3.1), with the Gibbons–Hawking–York term added to

obtain the equations of motion (4.3.2) on a manifold with boundary, diverges for asymptoti-

cally locally hyperbolic solutions. However, we can use (the by now standard) holographic

renormalization to remove these divergences.

In order to obtain a finite value for the on-shell action we need to consider a cut off

space Yδ, where the y coordinate extends to y = δ, and add to the regularized action the

appropriate local counterterms on the hypersurface Mδ = {y = δ}. One then sends δ→ 0.

Explicitly, we write the bulk action as

I = Igrav + Igauge , (4.3.23)

where

Igrav = − 1
2κ2

4

∫
Yδ

d4x
√

G (R + 6) , Igauge =
1

2κ2
4

∫
Yδ

d4x
√

GFµνFµν . (4.3.24)

As we are considering a manifold with boundary we must add the Gibbons–Hawking–York

term to make the variational problem well-defined

IGHY = − 1
κ2

4

∫
Mδ

d3x
√

h K . (4.3.25)

Here h is the induced metric on Mδ, and K is the trace of the second fundamental form of

Mδ with the induced metric. Finally, we add the counterterms

Ict =
1
κ2

4

∫
Mδ

d3x
√

h
(

2 +
1
2

R
)

, (4.3.26)

where here R is the scalar curvature of h. These counterterms cancel the power-law

divergences in the action. Note the absence of logarithmic terms, which are known to be

related to the holographic Weyl anomaly, as the boundary is three-dimensional and therefore

there is no conformal anomaly. The on-shell action is the limit of the sum of the four terms

above

S = lim
δ→0

(Io−s + IGHY + Ict) . (4.3.27)
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The holographic energy-momentum tensor is the quasi-local energy-momentum tensor of

the gravity solution; that is, the variation of the on-shell gravitational action with respect to

the boundary metric gij, i, j = 1, 2, 3, on M3:

Tij =
2
√

g
δS

δgij . (4.3.28)

The holographic energy-momentum tensor can be expressed as a limit of a tensor defined

on any surface of constant y = δ. In our case this is

Tij =
1
κ2

4
lim
δ→0

1
δ

(
−Kij + K hij − 2hij + Rij −

1
2

R hij

)
, (4.3.29)

where the tensors in the bracket are computed on Mδ using hij, the induced metric. One can

define a holographic U(1)R current in a similar way as

ji =
1
√

g
δS

δAi
, (4.3.30)

where A = A0 is the boundary R-symmetry gauge field. In three boundary dimensions, this

current can be extracted from the expansion of the bulk Abelian graviphoton as

A = A0 −
1
2

κ2
4 j y +O

(
y2) . (4.3.31)

The holographic energy-momentum tensor and R-current are identified with the expectation

values of the respective field theory operators in the state dual to the supergravity solution

under study.

From the definitions, a variation of the renormalized on-shell action can be expressed as

δS =
∫

M3

d3x
√

g
(

1
2

Tijδgij + jiδA0 i

)
. (4.3.32)

This formula can be used to check several holographic Ward identities. Invariance of the

action under a boundary gauge transformation gives the conservation equation of the

holographic R-current

∇i ji = 0 . (4.3.33)

Invariance under boundary diffeomorphisms generated by arbitrary vectors on M3 leads to
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the conservation equation for the holographic energy-momentum tensor,9

∇iTij = F0 ij ji , (4.3.34)

where F0 = dA0. Performing a Weyl transformation at the boundary δgij = 2gijδσ, δA0 = 0,

for infinitesimal parameter function σ, we obtain for the trace of the holographic energy-

momentum tensor,

Ti
i = 0 , (4.3.35)

consistently with the fact that there is no conformal anomaly in three-dimensional SCFTs.

As reviewed in section 4.2, the field theory supersymmetric Ward identities of [68, 67]

imply that the supersymmetric partition function of N = 2 theories on M3 depends on

the background only via the transversely holomorphic foliation of M3. AdS/CFT thus

implies that the holographically renormalized on-shell supergravity action evaluated on a

solution with boundary M3 should also depend on the geometric data of M3 only through

its transversely holomorphic foliation. Concretely, this means that the on-shell action should

be invariant under arbitrary deformations w(0) → w(0) + δw(0), a(0) → a(0) + δa(0), where

δw(0)(z, z) is an arbitrary smooth basic global function on M3, and δa(0)(z, z) is an arbitrary

smooth basic global 1-form on M3. Recall that the Reeb foliation induces a basic cohomology

on M3: a p-form α on M3 is called basic if ξ α = 0, Lξα = 0, and the set of basic forms Ω•B

together with the exterior derivative dB = d|Ω•B constitute the basic de Rham complex.

We may now check this directly by evaluating (4.3.32) for the general class of supersym-

metric solutions described in sections 4.3.1, 4.3.2. The holographic R-current is obtained

from the subleading term in the expansion (4.3.31), and a computation reveals that this is

given by

j = − 1
2κ2

4

[(
f(2) + f(1)w(1)

)
η + dc

Bw(1)

]
. (4.3.36)

9This is easily seen by recalling that if vi is the boundary vector generating the diffeomorphism, then
δgij = −2∇(ivj) and δAi = vj∇j Ai +∇ivj Aj.
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We find that the holographic energy-momentum tensor (4.3.29) evaluates to

4κ2
4 T = −

[
2 f(1)

(
f(2) + f(1)w(1)

)
+�w(1)

]
η2

+ 2
(

w(1)d
c
B f(1) + dc

B f(2)
)
� η + ∂Bw(0) � ∂Bw(1) + ∂Bw(0) � ∂Bw(1)

+ 2ew(0)

[
2 f(1)

(
f(2) + f(1)w(1)

)
+�w(1)

]
dzdz ,

(4.3.37)

where � denotes the symmetrized tensor product with weight 1/2. In writing these

expressions we have used the almost contact form on M3, η, the differential operators

of the basic cohomology, dB = ∂B + ∂B, dc
B = i

(
∂B − ∂B

)
, and the transverse Laplacian

� = e−w(0)∂2
zz .

We next plug these expressions for the holographic energy-momentum tensor and R-

current in (4.3.32). We assume that the boundary M3 is closed, which allows us to use

Stokes’ theorem to simplify expressions. Moreover the resulting integrand can be simplified

by recalling that all functions are basic, as is the deformation δa(0). We find that the general

variation of the on-shell action is

δS =
i

2κ2
4

∫
M3

η ∧ dB

[(
f(2) + w(1) f(1)

)
δa(0) +

1
2
∗2

(
δw(0) dBw(1)

)]
. (4.3.38)

Notice this a priori depends on the non-boundary functions w(1), f(2), which (with the

exception of self-dual solutions) are not determined by the boundary data, but only via

regularity of the supergravity solution in the deep interior.

However, this expression vanishes because of an analogue of Stokes’ theorem, valid for

almost contact structures (for instance, it can be found as Lemma 9.1 of [103]). Let X be a

(2m + 1)-dimensional manifold with almost contact 1-form η: if α is a basic (2m− 1)-form,

then ∫
X

η ∧ dBα = 0 . (4.3.39)

The vanishing of the variation of the action δS = 0 under arbitrary deformations of

the background that leave the transversely holomorphic foliation fixed is a very general

check of the AdS/CFT relation (1.4.1): it shows that both sides depend on the same data,

which a priori is far from obvious. Anticipating the (contrasting) results in AdS5/CFT4

we shall obtain later in the chapter, we might also stress that this means that standard

holographic renormalization agrees with the supersymmetric renormalization scheme used
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in the boundary three-dimensional field theory to obtain the results of [68].

In the next section we go further, and show that for a suitable class of solutions the

holographically renormalized action reproduces the known field theory results, the latter

obtained by supersymmetric localization methods.

4.3.4 Evaluation of the on-shell action

In this section we evaluate the regularized on-shell action (4.3.27) for a class of self-dual

supersymmetric asymptotically locally hyperbolic solutions. The supergravity equations are

simpler in the self-dual case, and moreover the geometry is better understood; there are

also more known examples [94]. However, explicit families of non-self-dual supersymmetric

solutions are known [173], and it would be interesting to generalise the computations in

this section to cover the general case.

As already mentioned the self-dual condition fixes U ≡ 1, so that the metric locally takes

the form

ds2 =
1

y2V
(dψ + φ)2 +

V
y2

(
dy2 + 4eWdzdz

)
. (4.3.40)

The graviphoton is

A =
1

2y
1−V

V
(dψ + φ) +

i
4
(∂zWdz− ∂zWdz) + γ dψ + dλ , (4.3.41)

where λ = λ(y, z, z̄) is a local basic function. Moreover, the following equations should be

imposed

V = 1− 1
2

y∂yW ,

dφ = i ∂zVdy ∧ dz− i ∂zVdy ∧ dz + 2i ∂y

(
VeW

)
dz ∧ dz ,

0 = ∂2
zzW + ∂2

yeW . (4.3.42)

Here the first equation may be used to eliminate V in terms of W = W(y, z, z̄), the second

equation simply fixes dφ, while the final equation is the SU(∞) Toda equation. We begin by

following part of the global analysis in [94] – the latter reference focused on solutions with

U(1)2 isometry and M4 diffeomorphic to a ball, with conformal boundary M3 ∼= S3, but in
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fact a number of key arguments go through more generally.

First we recall that the coordinate y may be more invariantly defined as

y2 =
2
‖Ξ‖2 , where Ξ ≡ 1

2

(
dξ[ + ∗4dξ[

)
+

. (4.3.43)

Here the self-dual 2-form Ξ is called a twistor, and is constructed from the Killing 1-form

ξ[ = (1/y2V)(dψ + φ) dual to the Killing vector ξ = ∂ψ. The conformal boundary is at

y = 0. Assuming the metric is regular in the interior, the twistor form is then also regular,

and thus y is non-zero in the interior. There can potentially be points at which ‖Ξ‖ = 0,

where y then diverges, and indeed there are smooth solutions for which this happens.

However, this can only happen at fixed points of the Killing vector ξ – see the discussion

in section 3.4 of [94]. It follows that y is a globally well-defined non-zero function on the

interior of M4 \ {ξ = 0}. These self-dual solutions are also (locally) conformally Kähler, with

Kähler 2-form

ω = −y3Ξ = dy ∧ (dψ + φ) + VeW 2i dz ∧ dz̄ . (4.3.44)

It follows from the first equality that ω is also well-defined on the interior of M4 \ {ξ = 0}.

Since dy = −ξyω, we see that y is also a Hamiltonian function for ξ, and in particular is a

Morse–Bott function. In particular this implies that y has no critical points on M4 \ {ξ = 0}.

We may hence extend the y coordinate from the conformal boundary y = 0 up to some

y = y0 > 0 in the interior, where on the locus y = y0 the Killing vector ξ has a fixed point

(this may include y0 = ∞). Moreover, the preimage of (0, y0) in M4 is topologically simply a

product, (0, y0)×M3, where the Killing vector is tangent to M3 and has no fixed points.

With these global properties in hand, we can now proceed to compute the regularized

on-shell action. We deal with each term in turn. Consider first the gravitational part of the

action. Using the equation of motion we may write R(G) = −12, so that on-shell

Igrav =
3
κ2

4

∫
Mδ

vol4 , (4.3.45)

where the Riemannian volume form is

vol4 =
1
y4 dy ∧ (dψ + φ) ∧VeW2i dz ∧ dz. (4.3.46)
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We can write this as an exact form

−3vol4 = dΥ, (4.3.47)

with

Υ =
1

2y2 (dψ + φ) ∧ dφ +
1
y3 (dψ + φ) ∧VeW2i dz ∧ dz . (4.3.48)

The global arguments above imply that Υ is well-defined everywhere on M4 \ {ξ = 0}: in

the first term y is a global regular function and ξ does not vanish, guaranteeing that dψ + φ

is a global 1-form. The second term is simply 1/y3(dψ + φ) ∧ ω, which is also globally

well-defined and regular on M4 \ {ξ = 0}. Having written the volume form as a globally

exact form on M4 \ {ξ = 0}, we can then use Stokes’ theorem to write (4.3.45) in terms of

integrals over the conformal boundary M3 ∼= {y = δ}, and over the boundary Tε of a small

tubular neighbourhood of radius ε around the fixed point set of ξ. Using the expansion of

the Toda equation (4.3.42) and (4.3.39) near the conformal boundary, we can simplify the

resulting expression to

Igrav =
1
κ2

4

1
δ3

∫
M3

η ∧ vol2 +
3

4κ2
4

1
δ2

∫
M3

w(1) η ∧ vol2 −
1
κ2

4

∫
Tε

Υ . (4.3.49)

Here vol2 is the two-dimensional volume form (4.2.3) (with w(0) = w). In general the fixed

point set of ξ may have a number of connected components, consisting either of fixed points

(NUTs) or fixed two-dimensional surfaces (bolts). More precisely the last term in (4.3.49) is

then a sum over connected components, and the integral should be understood as a limit

limε→0
∫

Tε
.

The first two divergent terms in (4.3.49) are cancelled by the Gibbons–Hawking–York

term and the local counterterms (4.3.26), which in a neighbourhood of infinity become

IGHY + Ict = −
1

32κ2
4

∫
M3

(
w3
(1) + 4w(1)�w(0)

)
η ∧ vol2 −

1
κ2

4

1
δ3

∫
M3

η ∧ vol2

− 3
4κ2

4

1
δ2

∫
M3

w(1) η ∧ vol2 ,
(4.3.50)
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where again � = e−w(0)∂2
zz. Overall, the contribution from gravity is hence

Igrav + IGHY + Ict = − 1
32κ2

4

∫
M3

(
w3
(1) + 4w(1)�w(0)

)
η ∧ vol2 −

1
κ2

4

∫
Tε

Υ . (4.3.51)

Next we turn to the contribution of the gauge field to the on-shell action. Here for

the first time in this section we impose the additional global assumption in section 4.2.4:

that is, we take A = A0 = A |y=0 to be a global 1-form on the conformal boundary M3.

Equivalently, M4 |(0,y0)
∼= (0, y0)×M3 is conformally Kähler, and we are imposing that the

associated canonical bundle is trivial. If this is true throughout M4 \ {ξ = 0} then F = dA

is globally exact on the latter,10 and we may again use Stokes’ theorem to deduce

Igauge = − 1
κ2

4

∫
M4

F ∧F =
1
κ2

4

∫
M3

A0 ∧ F0 −
1
κ2

4

∫
Tε

A∧F . (4.3.52)

In order to further evaluate the first term on the right hand side of (4.3.52), recall that in the

self-dual case the boundary gauge field is

A0 =
1
4

w(1)η +
i
4
(∂z̄w(0)dz̄− ∂zw(0)dz) + γ dψ + dλ . (4.3.53)

Carefully integrating by parts then leads to

1
κ2

4

∫
M3

A0 ∧ F0 = − γ

4κ2
4

∫
M3

R2d η ∧ vol2

+
1

32κ2
4

∫
M3

(
w3
(1) + 4w(1)�w(0)

)
η ∧ vol2 .

(4.3.54)

Here the first term arises by noting that R2d = −�w(0) is the scalar curvature for Σ2. Notice

that the second term perfectly cancels the same term in (4.3.51). In general the total action,

obtained by summing (4.3.51) and (4.3.52), is thus

S = − γ

4κ2
4

∫
M3

R2d η ∧ vol2 −
1
κ2

4

∫
Tε

(Υ +A∧F ) . (4.3.55)

This hence splits into a term evaluated at the conformal boundary M3, and an integral

around the fixed points of ξ.

We may next further evaluate the first term on the right hand side of (4.3.55) using some

10If the canonical bundle is non-trivial in the interior of M4 \ {ξ = 0} there would also be contributions from
Dirac strings, but we shall not consider that further here.
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of the results of section 4.2.4. As argued there, since we may approximate an irregular

Reeb vector field by quasi-regular Reeb vectors, there is no essential loss of generality (for

the formulas that follow) in assuming that M3 is quasi-regular. This means that M3 is the

total space of a circle orbibundle over an orbifold Riemann surface Σ2, with associated line

orbibundle L. Combining equations (4.2.19) and (4.2.20) then allows us to write the action

(4.3.55) as

S =
π2

κ2
4

(∫
Σ2

c1(Σ2)
)2∫

Σ2
c1(L)

− 1
κ2

4

∫
Tε

(Υ +A∧F ) . (4.3.56)

The contribution of the conformal boundary is now written purely in terms of topological

invariants of the Seifert fibration structure of M3. We will not attempt to evaluate the

contributions around the fixed points in (4.3.56) in general – this would take us too far from

our main focus. Instead we will follow the computation in [94], where M4 has the topology

of a ball, with a single fixed point at the origin (a NUT). In this case A is a global 1-form

on M4, and correspondingly
∫

Tε
A∧F = 0. Similarly, since the Kähler form ω is smooth

near the NUT, one can argue that the second term in Υ in (4.3.48) does not contribute to the

(limit of the) integral in (4.3.56). However, the first term in Υ does contribute. Using Stokes’

theorem we may write this as

− 1
κ2

4

∫
Tε

Υ = − 1
κ2

4
· 1

2y2
NUT

∫
M3

η ∧ dη , (4.3.57)

where yNUT is the function y evaluated at the NUT. Since the Reeb vector ξ has norm ‖ξ‖ ∼ r

near the NUT, where r denotes geodesic distance from the NUT, one concludes from the

form of the metric (4.3.40) that V ∼ r−2. Since ξ A is necessarily zero at the NUT in order

that A is smooth there, from (4.3.41) we hence deduce that

0 = − 1
2yNUT

+ γ , (4.3.58)

which allows us to relate yNUT to γ.11 Thus we may also express the contribution to the

11The same formula was derived in [94] using a different, much longer, route. In the latter reference it was
concluded that all cases where b1/b2 > 0, and b1/b2 = −1, are regular. The case b1/b2 = −1 is qualitatively
different from the former: the NUT is a point at infinity in the conformal Kähler metric, and the Kähler metric
is asymptotically locally Euclidean. The instanton is regular at the NUT because it vanishes there, and V ∼ r2,
so (4.3.58) does not hold. Nevertheless, a careful analysis shows that the action evaluates to (4.3.60).
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action from the NUT (4.3.57) purely in terms of topological invariants of M3:

− 1
κ2

4

∫
Tε

Υ = − 1
κ2

4
· 2γ2 · (2π)2

b2

∫
Σ2

c1(L) = −2π2

κ2
4

(∫
Σ2

c1(Σ2)
)2∫

Σ2
c1(L)

. (4.3.59)

Thus in this case the total action (4.3.56) becomes simply

S = −π2

κ2
4

(∫
Σ2

c1(Σ2)
)2∫

Σ2
c1(L)

. (4.3.60)

Using (4.2.23) we reproduce the result of [94], where recall that b1/b2 = p/q. However,

we can now generalise this further: in the above computation all that we needed was the

existence of a supergravity solution with topology X = C(M3), a real cone over M3, where

the tip of the cone is the only fixed point of ξ, hence a NUT. If M3 is not diffeomorphic to

S3 this will not be smooth at the NUT, but we can formally consider such singular solutions.

The assumptions we made about the behaviour of the metric near to this point are then

satisfied if the metric is conical near to the NUT. In this situation all of the above steps are

still valid, and we obtain the same formula (4.3.60) for the action.

In general

∫
Σ2

c1(Σ2) = 2− 2g− n +
n

∑
I=1

1
k I

, (4.3.61)

where the smooth Riemann surface associated to Σ2 has genus g, and there are n orbifold

points with cone angles 2π/k I , k I ∈ N, I = 1, . . . , n. When the first Chern class above is

positive, Σ2 hence necessarily has genus g = 0 and so is topologically S2. It then follows that

M3 ∼= S3/Λ, where Λ is a finite group. This shows that the class of weighted homogeneous

hypersurface singularities with −d + ∑3
i=1 wi > 0 have links M3 which are all quotients of

S3 by finite groups. Corresponding supergravity solutions can hence be constructed very

simply as quotients by Λ of smooth solutions M4 with ball topology. The supergravity

action should then be 1/|Λ| times the action for the ball solution. It is simple to check this

is indeed the case from the formula (4.3.60). For weighted hypersurface singularities this

reads

S =
4π2

κ2
4

d
(
−d + ∑3

i=1 wi

)2

4w1w2w3
. (4.3.62)
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As summarized in [176], we may construct supersymmetric quotients M3 ∼= S3/Λ where

Λ = ΛADE ⊂ SU(2). These may equivalently be realized as links of ADE hypersurface

singularities, and one can check that indeed

4w1w2w3

d
(
−d + ∑3

i=1 wi

)2 = |ΛADE| . (4.3.63)

For example, the E8 singularity has weights (w1, w2, w3) = (6, 10, 15) and degree d = 30,

for which the left hand side of (4.3.63) gives |ΛE8 | = 120, which is the order of the binary

icosahedral group.

Our formula for the action (4.3.60) reproduces all known large N field theory results,

summarized in section 4.2.5. In particular, we may realize squashed three-spheres, with

rational Reeb vector ξ = b1∂ϕ1 + b2∂ϕ2 , where b1/b2 = p/q ∈ Q, as links of hypersurface

singularities with weights (w1, w2, w3) = (p, q, 1) and degree d = 1, for which (4.3.62)

reproduces the field theory result (4.2.25). Similarly, we may realize Lens spaces L(p, 1) =

S3/Zp = S3/ΛAp−1 as links of Ap−1 singularities, with weights (w1, w2, w3) = (2, p, p) and

degree d = 2p. Here |ΛAp−1 | = p, and we reproduce the field theory result of [9] that

the large N free energy is simply 1
p times the free energy on S3. The formula (4.3.60) was

derived by assuming supergravity solutions with appropriate general properties exist. For

more general M3, and in particular for M3 with negative c1(Σ2), more work needs to be done

to investigate such solutions. We leave this interesting question for future work.

4.4 Five-dimensional supergravity

In the remaining part of the chapter we turn to five-dimensional supergravity. We start by

constructing a very general asymptotically locally AdS supersymmetric solution of minimal

gauged supergravity, in a perturbative expansion near the conformal boundary. Then we

perform holographic renormalization, extract the holographic energy-momentum tensor

and R-current and compare with the field theory results reviewed in section 4.2. We will

show that standard holographic renormalization violates the field theory supersymmetric

Ward identities. However, we will prove that the latter can be restored by introducing new,

unconventional boundary terms.
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4.4.1 The perturbative solution

Differently from what we did in four-dimensional supergravity, we will initially work in

Lorentzian signature (−,+,+,+,+) and discuss an analytic continuation later. In this way

we take advantage of the known technology for constructing the solution and postpone the

complexification of the supergravity fields.

The bosonic action of minimal gauged supergravity in five dimensions reads [119]12

I =
1

2κ2
5

∫ [
d5x
√

G
(

R−FµνFµν + 12
)
− 8

3
√

3
A∧F ∧F

]
. (4.4.1)

Here R = R(G) denotes the Ricci scalar of the five-dimensional metric Gµν, G = |det Gµν|, A

is the Abelian graviphoton and F = dA. Moreover, κ2
5 is the five-dimensional gravitational

coupling constant, and the cosmological constant has been normalized to Λ = −6. The

Einstein and Maxwell equations read

Rµν + 2FµρF ρ
ν + Gµν

(
4 +

1
3
FρσF ρσ

)
= 0 , (4.4.2)

d ∗ F +
2√
3
F ∧F = 0 . (4.4.3)

All solutions of these equations uplift to solutions of type IIB supergravity [60, 109].13

A bosonic field configuration is supersymmetric if there exists a non-trivial Dirac spinor

ε satisfying the generalised Killing spinor equation

[
∇µ +

i
4
√

3

(
Γµ

νλ − 4δν
µΓλ
)
Fνλ −

1
2
(
Γµ − 2

√
3 iAµ

)]
ε = 0 , (4.4.4)

where the Γµ generate Cliff(1, 4), with {Γµ, Γν} = 2Gµν. The conditions for a bosonic

supersymmetric solution were worked out in [108] and discussed further in [62]. The

solutions relevant to us are those in the timelike class of [108] and are largely determined by

a certain four-dimensional Kähler structure. In appendix B.1 we review such conditions and

solve them in a perturbative expansion. A suitable ansatz for the Kähler structure eventually

yields a metric and a gauge field on the conformal boundary of the five-dimensional solution

which, after a Wick rotation, match the field theory Euclidean background fields (4.2.8),

12This section is independent of section 4.3. We will thus adopt the same notation for the five-dimensional
supergravity fields as for the four-dimensional ones with no risk of confusion.

13As for the four-dimensional supergravity solutions discussed in section 4.3, this statement holds locally, see
e.g. [62] for some global issues.
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(4.2.10). Here we present the final result after having cast it in Fefferman–Graham form,

which is most convenient for extracting the holographic data.

The Fefferman–Graham form of the five-dimensional metric is14

ds2
5 =

dρ2

ρ2 + hij(x, ρ)dxidxj , (4.4.5)

with the induced metric on the hypersurfaces at constant ρ admitting the expansion

h(x, ρ) =
1
ρ2

[
g0 + g2ρ2 +

(
g4 + h̃0 log ρ2

)
ρ4 +O(ρ5)

]
. (4.4.6)

The gauge field is of the form

A(x, ρ) = A0 +
(

A2 + Ã2 log ρ2)ρ2 +O(ρ3) , (4.4.7)

with Aρ = 0.

The hypersurfaces at constant ρ will be described by coordinates xi = {t, z, z̄, ψ}. As

discussed in detail in appendix B.1, we find that the solution depends on six arbitrary

functions u(z, z̄), w(z, z̄), k1(z, z̄), k2(z, z̄), k3(z, z̄), k4(z, z̄). The functions u and w control

the boundary geometry and will be referred to as the boundary data; these are the same

functions appearing in the field theory background (4.2.8), (4.2.10). The functions k1, k2, k3,

k4 first show up in the h0 and A2 subleading terms of the Fefferman–Graham expansion

and will be denoted as the non-boundary data of the solution.

The first two terms in the expansion of the induced metric read

g0 = −dt2 + (dψ + a)2 + 4ewdzdz̄ ,

g2 =
8�w + u2

96
dt2 − 8�w + 7u2

96
(dψ + a)2 +

16�w + 5u2

24
ewdzdz̄

− 1
4
(∗2du)(dψ + a) ,

(4.4.8)

where a satisfies (4.2.5) as in the field theory background. Moreover, � = e−w∂2
zz̄ is the

Laplacian of the two-dimensional part of the boundary metric g0, which coincides with

14We use ρ instead of z to denote the Fefferman–Graham coordinate in this section in order to avoid confusion
with the z coordinate on Σ2
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(4.2.3), and we are using the notation

∗2d = i(dz̄ ∂z̄ − dz ∂z) . (4.4.9)

One can check that g2 is determined by the Schouten tensor of g0 [79, 212]

g2
ij = −1

2

(
Rij −

1
6

R g0
ij

)(0)

. (4.4.10)

Here and in the formulae below, a superscript (0) outside the parenthesis reminds the reader

that all quantities within the parenthesis are computed using the boundary metric g0 (and,

as far as the formulae below are concerned, the boundary gauge field A0).

In order to determine the on-shell action and the holographic charges we will also need

the h̃0 and g4 terms in the Fefferman–Graham expansion (4.4.6). We have explicitly verified

that h̃0 is determined by the boundary data as

h̃0
ij = −1

8

(
Bij + 8FikFj

k − 2g0
ijFkl Fkl

)(0)
, (4.4.11)

where Bij is the Bach tensor, see appendix A.1 for its definition. Recalling that the variation

of the integrated Euler density vanishes identically in four dimensions, we can write

h̃0
ij =

1

16
√
g0

δ

δg0 ij

∫
d4x

√
g0
(
−E + CklmnCklmn − 8Fkl Fkl

)(0)
. (4.4.12)

Hence h̃0
ij is proportional to the metric variation of the integrated holographic Weyl

anomaly,15 a fact that for vanishing gauge field was first observed in [79].

As for g4
ij, this contains the four non-boundary functions k1, k2, k3, k4, as well as the

boundary functions u, w (hit by up to six derivatives); we will not give its explicit expression

here as it is extremely cumbersome. As a sample we provide two simple relations between

some of the components:

g4
tt − g4

ψψ = −k3 +
1
6

k2
2 +

1
24
�k2 +

1
24

(2�w + u2)k2 +
17

6144
u4 − 3

256
�u2

+
1
96

e−w∂zu∂z̄u +
1

192

(
u2�w− 5

2
�2w− (�w)2

)
, (4.4.13)

15The functional being varied is also the action of four-dimensional conformal supergravity.
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g4
tt + g4

ψψ − 2g4
tψ = −1

2
uk1 −

1
6

u2k2 +
1

128
u4 +

1
48

u2�w . (4.4.14)

We also checked that the trace is determined by boundary data as

g0 ijg4
ij =

1
48

(
4RijRij − R2

)(0)
. (4.4.15)

As a consequence of supersymmetry, the gauge field is entirely determined by the

metric and does not contain new functions (apart for the gauge choice to be discussed

momentarily). In particular, A0 and Ã2 just depend on the boundary metric functions, while

A2 also depends on three of the four non-boundary functions, that is k1, k2, k3. The explicit

expressions are

A0 = − 1√
3

[
−1

8
u dt +

1
4

u(dψ + a) +
1
4
∗2dw + dλ + γ dψ + γ′dt

]
, (4.4.16)

Ã2 =
1

32
√

3

[
−�u dt +

(
2�u− u�w− 1

2
u3
)
(dψ + a) + ∗2d

(
2�w + u2)] , (4.4.17)

A2 =
1

64
√

3

[(
96k1 + 32uk2 − 4u�w− 3

2
u3
)

dt− ∗2d
(
32k2 + u2)

+
1
u

(
128k3 − 32uk1 −

64
3

k2
2 + 16�k2 −

32
3

k2�w− 16u2k2 + 3�(�w + u2)

− 2(�w)2 − 5
3

u2�w− 3e−w∂zu∂z̄u− 5
12

u4
)
(dt + dψ + a)

]
. (4.4.18)

Clearly, upon performing the Wick rotation t = −iτ we can identify g0 = g, A0 =

− 1√
3

A, where g and A were given in (4.2.8), (4.2.10) and define the four-dimensional SCFT

background. We recall that the last three terms in (4.4.16) are gauge choices: γ, γ′ are two

constants while λ is a function of z, z̄; these will play an important rôle in the following.

One can check that

(Ã2)i = −
1
4
(∇jFji)

(0) . (4.4.19)

In analogy with h̃0, we see that Ã2 is obtained by varying the integrated holographic Weyl

anomaly, this time with respect to the boundary gauge field A0.

Generically, the boundary is not conformally flat and the solution is asymptotically

locally AdS5. In the particular case where the boundary is conformally flat and the boundary

gauge field strength vanishes — i.e. when the solution is asymptotically AdS rather than

asymptotically locally AdS — both h̃0 and Ã2 vanish. This is in agreement with the general

fact that the logarithmic terms in the Fefferman–Graham expansion vanish for a conformally
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flat boundary.

The solutions described above preserve at least (and generically no more than) two

real supercharges. We have also verified that the five-dimensional metric and gauge field

discussed above satisfy the Einstein and Maxwell equations at order O(ρ3), which is the

highest we have access to given the order at which we worked out the solution.

4.4.2 Standard holographic renormalization

Following the standard procedure of holographic renormalization,16 a finite on-shell action

S is obtained by considering a regularized five-dimensional space Yδ where the radial

coordinate ρ does not extend until the conformal boundary at ρ = 0 but is cut off at ρ = δ,

so that M4 = ∂Y5 = limδ→0 ∂Yδ ≡ limδ→0 Mδ. Then one evaluates the limit

S = lim
δ→0

(Io−s + IGHY + Ict + Ict,finite) . (4.4.20)

Here, Io−s is the bulk action (4.4.1) evaluated over Yδ. IGHY is the Gibbons–Hawking–York

boundary term, which makes the Dirichlet variational problem for the metric well-defined

and reads

IGHY =
1
κ2

5

∫
Mδ

d4x
√

h K , (4.4.21)

where K = hijKij is the trace of the extrinsic curvature Kij = − 1
2

∂hij
∂ρ of Mδ. The counterterm

action Ict is a boundary term cancelling all divergences that appear in Io−s + IGHY as δ→ 0;

it reads

Ict = − 1
κ2

5

∫
Mδ

d4x
√

h
[

3 +
1
4

R +
1
16

(
E − CijklCijkl + 8FijF ij

)
log δ

]
. (4.4.22)

The first two terms cancel power-law divergences while the logarithmically divergent term

removes the holographic Weyl anomaly. Here, E is the Euler density and Cijkl is the

Weyl tensor of the induced metric, see appendix A.1 for their definition. Note that since
√

h(E − CijklCijkl + 8FijF ij) remains finite as δ→ 0, it can equivalently be computed using

the boundary metric g0 and gauge field A0.

Finally, Ict,finite comprises local counterterms that remain finite while sending δ→ 0. In

general, these may describe ambiguities in the renormalization scheme or be necessary in

16See [212, 48] for the modifications due to the inclusion of a Maxwell field.
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order to restore some desired symmetry that is broken by the rest of the action. In our case,

requiring diffeomorphism and gauge invariance the linearly independent such terms may

be parameterized as

Ict,finite =
1
κ2

5

∫
Mδ

d4x
√

h
(

ς R2 − ς′FijF ij + ς′′ CijklCijkl
)

, (4.4.23)

where ς, ς′, ς′′ are a priori arbitrary numerical constants.17

The holographic energy-momentum tensor is defined as the variation of the on-shell

action with respect to the boundary metric18

Tij = − 2
√

g
δS

δgij , (4.4.24)

and can be computed by means of the general formula

Tij =
1
κ2

5
lim
δ→0

1
δ2

[
− Kij + Khij − 3hij +

1
2

(
Rij −

1
2

R hij

)

+
1
4

(
Bij + 8FikFj

k − 2hijFklF kl
)

log δ

+
(

2ςHij + 4ς′′Bij + ς′
(

4FikFj
k − hijFklF kl

)) ]
, (4.4.25)

where all quantities in the square bracket are evaluated on Mδ, and we refer to appendix A.1

for the definition of the tensor Hij.

The holographic U(1)R current is defined as

ji =
1
√

g
δS

δAi
, (4.4.26)

Note that we defined the variation in terms of the rescaled boundary gauge field A =

−
√

3A0. In this way the holographic R-current is normalised in the same way as the field

17We could also include in the linear combination the terms
∫

d4x
√

hE ,
∫

d4x
√

hP and
∫

d4x
√

hεijklFijFkl ,
where P is the Pontryagin density on Mδ, however these are topological quantities that have a trivial variation;
moreover, as we will see below they vanish identically in the geometries of interest for this chapter.

18The minus sign that appears here, as opposed to the corresponding equation (4.3.28) in four-dimensional su-
pergravity, is due to the different signatures. In particular compare the four-dimensional Euclidean supergravity
action (4.3.1) with the five-dimensional Lorentzian action (4.4.1). On Wick rotation of the latter the conventions
are compatible.
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theory R-current. This yields the expression:

ji = − 2√
3κ2

5

lim
δ→0

1
δ4

{
∗4

[
dxi ∧

(
∗5F +

4
3
√

3
A∧F

)]
+∇jF ji log δ + 2ς′∇jF ji

}
, (4.4.27)

where the first term comes from varying the bulk action Io−s, the second from Ict and the

third from Ict,finite.

Given the definitions (4.4.24) and (4.4.26), the variation of the renormalized on-shell

action under a generic deformation of the boundary data can be expressed via the chain

rule as

δS =
∫

∂Y5

d4x
√

g
(
−1

2
Tijδgij + jiδAi

)
. (4.4.28)

Starting from this formula, one can check several Ward identities holding in the holographic

renormalization scheme defined above. Invariance of the action under a boundary diffeo-

morphism generated by an arbitrary vector on ∂Y5 yields the expected conservation equation

for the holographic energy-momentum tensor,

∇iTij = Fji ji − Aj∇i ji . (4.4.29)

Studying the variation of the on-shell action under a boundary Weyl transformation such

that δgij = 2gijδσ, δAi = 0, one finds for the trace of the holographic energy-momentum

tensor [127]:

Ti
i =

1
16κ2

5

(
−E + CijklCijkl − 8

3
FijFij

)
− 12ς

κ2
5
�R , (4.4.30)

which reproduces the known expression for the Weyl anomaly of a superconformal field

theory [15, 63], with the standard identifications a = c = π2/κ2
5. Studying the variation

under a gauge transformation at the boundary one obtains for the divergence of the

holographic R-current [225, 63]:

∇i ji =
1

27κ2
5

εijkl FijFkl , (4.4.31)

which again is consistent with the chiral anomaly of the superconformal R-symmetry.
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4.4.3 The new boundary terms

We now specialize to the family of asymptotic supersymmetric solutions constructed in

section 4.4.1 and test whether the supersymmetric Ward identities reviewed in section 4.2

are satisfied holographically. We will consider variations of the boundary functions that

preserve the complex structure(s), and compute the corresponding variation of the on-shell

action via (4.4.28). As discussed in section 4.2, the input from field theory is that this

variation should vanish if supersymmetry is preserved. A priori one might expect that there

is at least a choice of the ς-coefficients in the standard finite counterterms (4.4.23) such that

the supersymmetric Ward identity is satisfied. However, we will show that this is not the

case and that new, non-standard finite counterterms are required.

Before going into this, it will be useful to notice that the boundary metric and gauge

field in (4.4.8), (4.4.16) satisfy

E = P = εijkl FijFkl = 0 , (4.4.32)

where P is the Pontryagin density on ∂M. Moreover, supersymmetry implies [63]

CijklCijkl − 8
3

FijFij = 0 . (4.4.33)

It follows that (4.4.29)–(4.4.31) simplify to

∇i ji = 0 , ∇iTij = Fji ji , Ti
i = −12ς

κ2
5
�R . (4.4.34)

Relation (4.4.33) also implies that by redefining the coefficients ς′, ς′′ we can set ς′′ =

0 in the finite counterterm action (4.4.23) as well as in all its variations that preserve

supersymmetry at the boundary. Below we will assume this has been done.

As explained in section 4.2.5, a variation of the boundary data that preserves the complex

structures I± on the boundary corresponds to deformations u→ u + δu, w→ w + δw such

that δu = δu(z, z̄) and δw = δw(z, z̄) are globally well-defined functions. In the following

we study the consequences of such variations. We will also assume that ∂Y5 is closed and

that the non-boundary functions k1, k2, k3, k4 are globally well-defined functions of their

arguments z, z̄. This will allow us to apply Stokes’ theorem on the boundary and discard

several total derivative terms.
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We first vary w keeping the 1-form a fixed. From (4.2.5), we see that this is possible

provided the variation preserves ewu, hence we also need to take δu = −u δw. After

dropping several total derivative terms involving the boundary functions and k2(z, z̄), we

find that the corresponding variation of the on-shell action is:

δwS =
1

263κ2
5

∫
∂Y5

d4x
√

g δw
[ (
−1 + 96ς− 16ς′

)
u2R2d −

1
2
(
1− 96ς + 28ς′

)
�u2

+
1

32
(
19− 288ς + 192ς′

)
u4 − 8

9
(γ + 2γ′)

(
2uR2d + 2�u− u3)

− 12ς′u�u + 8(−24ς + ς′)(R2
2d + 2�R2d)

]
,

(4.4.35)

where we recall that R2d = −�w is the Ricci scalar of the two-dimensional metric (4.2.3). If

instead we vary u while keeping w fixed we obtain

δuS =
1

2932κ2
5

∫
∂Y5

d4x
√

g δu
[

24
(
1− 96ς + 16ς′

)
uR2d + 288ς′�u

−
(
19− 288ς + 192ς′

)
u3 − 32

3
(γ + 2γ′)(3u2 − 4R2d)

]
,

(4.4.36)

where again we dropped many total derivative terms, some of which containing the non-

boundary data k2, k3. In order to do this, we used that δa is globally defined; this follows

from the assumption that the complex structures are not modified.

Inspection of (4.4.35), (4.4.36) shows that there exists no choice of the coefficients ς, ς′

such that δwS = δuS = 0. Therefore we conclude:

Standard holographic renormalization does not satisfy the field theory supersymmetric

Ward identities.

Remarkably, we find that this can be cured by introducing new finite terms. Both variations

δwS and δuS vanish if we take ς = ς′ = 0 (that is, if we set Ict,finite = 0) and add to the

on-shell action the new terms

∆Inew =
1

21132κ2
5

∫
∂Y5

d4x
√

g
[

19u4 − 48u2R2d +
128
3

(2γ′ + γ)(u3 − 4uR2d)

]
. (4.4.37)

In other words, the new renormalized action

Ssusy = lim
δ→0

(Io−s + IGHY + Ict) + ∆Inew (4.4.38)
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does satisfy the supersymmetric Ward identities. We claim that this is the correct supersymmetric

on-shell action that should be compared with the supersymmetric field theory partition

function.

It should be clear that the terms ∆Inew cannot be written as local actions that are: i)

invariant under four-dimensional diffeomorphisms, ii) invariant under gauge transforma-

tions of A, and iii) constructed using the boundary metric, the boundary gauge field and

their derivatives only. If this was the case, ∆Inew would fall in the family of standard finite

counterterms (4.4.23), which we have just proven not to be possible. We will comment on

this issue in the conclusions. Here we make a first step towards clarifying it by observing

that the gauge-dependent part of ∆Inew — that is, the term containing the gauge parameters

γ, γ′ — has to come from a term linear in the boundary gauge potential A = −
√

3A0. So

we may write

∆Inew =
1
κ2

5

∫
∂Y5

(A ∧Φ + Ψ) , (4.4.39)

where Ψ is gauge-invariant. Matching this with (4.4.37), we obtain

Φ =
1

2333

(
u3 − 4uR2d

)
i ewdz ∧ dz̄ ∧ (2dψ− dt) ,

Ψ =
1

21132

(
19u4 − 48u2R2d

)
d4x
√

g .
(4.4.40)

Notice that dΦ = 0, so ∆Inew is invariant under small gauge transformations. However, it de-

pends on the choice of flat connection for A when ∂Y5 has one-cycles. Also notice that (4.4.39)

implies that ∆Inew yields a new contribution to the holographic R-current (4.4.26). Below

we will show that this modifies the R-charge precisely as demanded by the superalgebra.

4.4.4 Evaluation of the on-shell action

In this section we evaluate the renormalized supergravity action (4.4.38) on the class of

five-dimensional solutions constructed above. Since this involves performing a bulk integral,

a priori one would need to know the full solution in the interior, while we just have it in a

perturbative expansion near the boundary. However, we show that under certain global

assumptions the on-shell action reduces to a boundary term that can be evaluated exactly as

a function of boundary data only.

The assumptions consist in requiring that the solution caps off regularly and with no
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boundary in the interior, and that the graviphoton A is a global 1-form.19 As shown in [64],

this allows to express the bulk action of supersymmetric solutions in the timelike class as

the boundary term

Io−s =
1

3κ2
5

∫
Mδ

(dy ∧ P ∧ J − 2A∧ ∗5F ) , (4.4.41)

where the coordinate y, the Ricci 1-form potential P and the Kähler form J are those of the

“canonical structure” dictated by supersymmetry [108] and are defined in appendix B.1.1.

We remark that while demanding that A is a global 1-form we are also taking P as a

global 1-form, see eq. (B.1.6). Notice this implies that the canonical bundle of the 4d Kähler

metric is trivial, cf. an analogous global assumption in section 4.3. The integral on the

hypersurface Mδ at constant ρ can be explicitly evaluated for our solution after passing to

Fefferman–Graham coordinates as discussed in appendix B.1.2.

Even if the on-shell action is now reduced to a boundary term, generically it still depends

on the arbitrary non-boundary functions appearing in the solution. We now generalize

an argument given in [64] and show that the assumption of global regularity also entails

a relation between these non-boundary functions and the boundary ones that is precisely

sufficient for determining the on-shell action.

Let C be a Cauchy surface (namely, a hypersurface at constant t), with boundary

M3 = C ∩ ∂Y5, and consider the Page charge20

Θ =
∫

M3

(
∗5F +

2√
3
A∧F

)
. (4.4.42)

Since A is globally defined and ∂Y5 is by assumption the only boundary of the space, we

can apply Stokes’ theorem and then use the Maxwell equation to infer that Θ must vanish:

Θ =
∫

M3

(
∗5F +

2√
3
A∧F

)
=
∫
C

(
d ∗5F +

2√
3
F ∧F

)
= 0 . (4.4.43)

We now replace the Fefferman–Graham expansion of the graviphoton field strength

F = dA0 + ρ2 (dA2 + dÃ2 log ρ2)+ 2ρdρ ∧
(

A2 + Ã2 + Ã2 log ρ2)+ o(ρ2) (4.4.44)

19For example this excludes supersymmetric black hole solutions [122, 65].
20This the name reserved for a charge that is localized and conserved, but not gauge invariant (see also

[189, 169]).
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and its Hodge dual restricted to the hypersurfaces at constant ρ,

(∗5F )
∣∣
dρ=0 = 2 ∗g0

(
A2 + Ã2 + Ã2 log ρ2)+O(ρ) , (4.4.45)

where ∗g0 is the Hodge star of the boundary metric g0.21 It is easy to see that expression

(4.4.42) then becomes

Θ =
∫

M3

(
2 vol3

(
A2 + Ã2

)
t +

2√
3

A0 ∧ dA0

)
, (4.4.46)

where we are using the notation vol3 ≡ d3x
√

g3 for the Riemannian volume form on M3.

The condition Θ = 0 is thus equivalent to the statement that the integrated time component

of A2, which a priori is controlled by non-boundary data and is thus not fixed by the

equations of motion, is actually determined by boundary data. Evaluating this on our

perturbative solution, we find the following integral relation between the non-boundary

functions k1, k2, k3 and the boundary functions u, w:

0 = Θ =
1

96
√

3

∫
M3

vol3

[
1
u

(
384 k3 − 64k2

2 + 48�k2 + 32k2R2d + 9e−w∂zu∂z̄u

− 9�R2d − 6R2
2d

)
+ 48uk2 −

15
4

u3 + 192k1

+ 6 e
1
3 w[∇z

(
e−

4
3 w∂z̄u

)
+ c.c.

]
+ (13u− 16γ)R2d

]
− 1

6
√

3

∫
M3

dψ ∧ d
[
u(dλ− γ a)

]
.

(4.4.47)

We can now give our result for the renormalized on-shell action. Adding up all contri-

butions to (4.4.38), including the new counterterms (4.4.37), and without making further

assumptions, we obtain

Ssusy =

∫
dt

27κ2
5

{ ∫
M3

vol3

[
(γ′ − γ)γR2d +

9
8
� (4k2 − γu)

]
+

1
64

∫
M3

d
[
dψ ∧

(
96k2 + 12R2d − 3u2 + 16(γ′ − γ)u

)
(4dλ− 4γa + ∗2dw)

]
+ 6
√

3(γ′ − γ)Θ
}

. (4.4.48)

The Laplacian term in the first line and the whole integrand in the second line are total

21Note that the logarithmic divergence drops out of the quantities we are interested in. Indeed, recall-
ing (4.4.19), we see that ∗g0 Ã2 ∝ (d ∗ F)(0) is a total derivative, hence it drops from any boundary integral.
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derivatives of globally defined quantities and therefore vanish upon integration. The term

Θ in the third line, given by (4.4.47), also vanishes as just seen. So we obtain a very simple

expression for the on-shell action, depending on boundary data only:

Ssusy =
(γ′ − γ)γ

27κ2
5

∫
dt
∫

M3

vol3 R2d . (4.4.49)

We next implement the analytic continuation t = −iτ, which renders the boundary metric

Euclidean, and assume that τ parameterizes a circle of length β. The expression for the

on-shell action thus becomes22

Ssusy =
β(γ− γ′)γ

27κ2
5

∫
M3

vol3 R2d . (4.4.50)

It is interesting to note that, as we show in appendix B.2, the flat connection parameters γ

and γ′ also correspond to the charge of the boundary Killing spinor ζ+ under ∂ψ and i∂τ,

respectively. Hence γ− γ′ is twice the charge of ζ+ under the complex Killing vector K

introduced in section 4.2.2.

Recall from section 4.2.4 that the requirement that the boundary gauge field is globally

defined fixes γ as

γ = −1
4

∫
M3

vol3 R2d∫
M3

η ∧ dη
. (4.4.51)

Recalling (4.2.4), (4.2.5), the contact volume of M3 appearing in the denominator can also be

expressed as
∫

M3
η ∧ dη = 1

2

∫
M3

vol3 u.

As far as the bosonic solution is concerned, expression (4.4.50) makes sense for any

value of γ′. However, for Ssusy to be the on-shell action of a proper supersymmetric solution

we also need to impose that the Killing spinors are independent of τ, so that they remain

globally well-defined when this coordinate is made compact. Since γ′ is the charge of the

Killing spinors under i∂τ, we must take γ′ = 0.

We conclude that for a regular, supersymmetric five-dimensional asymptotically locally

AdS solution satisfying the global conditions above, and such that the conformal boundary

has a direct product form S1 ×M3, the supersymmetric on-shell action is given by

Ssusy =
βγ2

27κ2
5

∫
M3

vol3 R2d , (4.4.52)

22The overall sign change comes from the identification iSLorentzian, t=−iτ = −SEuclidean.
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where γ is fixed as in (4.4.51). Note that because of the dependence on γ2, Ssusy cannot itself

be written as a local term in four dimensions.

In section 4.5 we will show that this result precisely matches the large N limit of the

SCFT partition function in all known examples (and beyond).

4.4.5 Twisting the boundary

We can easily discuss a slightly more general class of solutions, having different boundary

geometry. This is obtained by making the local change of coordinates

τ → cos α τ , ψ → ψ + sin α τ , (4.4.53)

where 0 < α < π/2 is a real parameter.23 Then the old boundary metric and gauge field

(4.2.8), (4.2.10) become

ds2
4 = (dτ + sin α (dψ + a))2 + cos2 α (dψ + a)2 + 4ewdzdz̄ , (4.4.54)

A = (i cos α + 2 sin α)
u
8

dτ +
u
4
(dψ + a) +

1
4
∗2dw

+ (γ sin α− iγ′ cos α)dτ + γ dψ + dλ .
(4.4.55)

Although this configuration is locally equivalent to the original one, if we take for the new

coordinates the same identifications as for the old ones (in particular τ ∼ τ + β, ψ ∼ ψ as

one goes around the S1 parameterised by τ one full time), then the new boundary geometry

with α 6= 0 is globally distinct from the original one. From (4.4.54) we see that the S1

parameterised by τ is fibered over M3, although in a topologically trivial way since dψ + a

is globally defined; moreover, the term (dψ + a)2 in the M3 part of the metric is rescaled by

a factor cos2 α. We will denote as “twisted” the new four-dimensional background (4.4.54),

(4.4.55), as well as the corresponding five-dimensional solution obtained by implementing

the transformation (4.4.53) in the bulk.24 In fact we can show that the complex structure

of the twisted boundary is inequivalent to the complex structure with α = 0. Recall from

section 4.2.2 that four-dimensional field theory backgrounds with two supercharges of

23In Lorentzian signature, the change of coordinates reads t→ cosh αL t, ψ→ ψ + sinh αL t, with αL constant.
This is related to (4.4.53) by t = −iτ and αL = iα.

24An equivalent description would be to maintain the metric and gauge field (4.2.8), (4.2.10) and modify the
identifications for the periodic coordinates, so that going around the circle parameterised by τ also advances the
coordinate ψ in M3. This is what is commonly known as twisting, see e.g. [68].
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opposite R-charge admit a globally defined, complex Killing vector K holomorphic with

respect to two complex structures I±. For our untwisted background, this was given

in (4.2.9). For the twisted background, and in terms of a coordinate τ̃ = τ/β with canonical

unit periodicity, it reads

K =
1

2β cos α

(
βeiα ∂ψ − i ∂τ̃

)
. (4.4.56)

We infer that βeiα is a complex structure parameter of the background (while the overall

factor in K does not affect the complex structure). Depending on the specifics of M3, the

background may admit additional complex structure moduli, however the one discussed

here is a universal modulus of manifolds with S1 ×M3 topology and metric (4.4.54).

The results of [68] then imply that the supersymmetric partition function on the twisted

background should be related to the one on the untwisted background by replacing β→ βeiα.

It would be interesting to check this expectation by an explicit localization computation.

To date, only partial localization computations have been carried out for four-dimensional

supersymmetric field theories on similarly twisted backgrounds [70].25

We can compare with the on-shell action of the twisted bulk solutions. This is evaluated

in the same way as for α = 0, with just two differences: i) the volume form on M3 is rescaled

by a factor cos α, and ii) the boundary Killing spinors are independent of the new time

coordinate for a different value of γ′: as discussed in appendix B.2, now we must take

γ′ = −i γ tan α . (4.4.57)

Starting from (4.4.50) it is thus easy to see that the net result of the twist by α is to multiply

the on-shell action of the untwisted solution by a phase:

Ssusy, α = eiα Ssusy, α=0 , (4.4.58)

where Ssusy, α=0 is given by (4.4.52). Here the imaginary part is a consequence of the choice of

γ′, that is of the way the terms depending on large gauge transformations A→ A+ const dτ

are fixed in the on-shell action. Effectively, the phase eiα can be seen as a complexification of

β. So we find that the twisting has the same consequence for the on-shell action as expected

25In [19] the two complex structure parameters p, q of primary Hopf surfaces were assumed real, however in
appendix D therein it was discussed how to generalize the background so that p, q become generally complex.
It would be interesting to evaluate the partition function of general supersymmetric gauge theories on such
backgrounds.
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for the field theory partition function: the parameter β is replaced by βeiα.

Besides being interesting per se, this complexification of the on-shell action will serve as

a tool for computing the charges below.

4.4.6 Conserved charges

We now compute the holographic conserved charges taking into account the contribution of

the new counterterms ∆Inew and verify that they satisfy the expected BPS condition.

Let us first consider the currents defined by standard holographic renormalization. Recall

from (4.4.34) that the R-current ji is conserved and thus provides a conserved R-charge.

In addition, given any boundary vector v preserving the boundary fields, i.e. such that

Lvg = Lv A = 0, we can introduce the current

Yi = vj(Tj
i + Aj ji) . (4.4.59)

Using the modified conservation equation of the energy-momentum tensor in (4.4.34), it is

easy to see that Yi is conserved and thus defines a good charge for the symmetry associated

with v.

Although we do not know how exactly the new counterterms affect the energy-momentum

tensor (because we do not know the variation of ∆Inew with respect to the metric), we will

show how the relevant charges can be computed anyway by varying the on-shell action

with respect to appropriate parameters. We will just need to assume that ∆Inew can be

expressed as a quantity invariant under diffeomorphisms and small gauge transformations,

constructed from the boundary metric and the boundary gauge field (and necessarily other

boundary fields), so that the chain rule (4.4.28) and the conservation equations make sense

also after S is replaced by Ssusy, and Tij, ji are replaced by their supersymmetric counterparts

defined by varying Ssusy.

We will discuss the charges for the untwisted background with α = 0, although it would

be straightforward to extend this to general α. The background with α 6= 0 will however

play a rôle in the computation of the angular momentum.

R-charge The supersymmetric holographic R-charge is defined as

Qsusy = −
∫

M3

vol3 jt
susy = −i

∫
M3

vol3 jτ
susy , (4.4.60)
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where

ji
susy = ji + ∆ji (4.4.61)

is the sum of the current (4.4.27), obtained in a minimal holographic renormalization scheme,

and

∆ji =
1
√

g
δ

δAi
∆Inew . (4.4.62)

Using (4.4.27), the former contribution is found to be

∫
M3

vol3 jt =
2√
3κ2

5

Θ +
1

108κ2
5

∫
M3

dψ ∧ d [u(4dλ− 4γa + ∗2dw)]

+
1

216κ2
5

∫
M3

vol3
(
8γR2d + 4uR2d − u3) ,

(4.4.63)

where Θ is again given by expression (4.4.47). Both Θ and the other integral in the first

line vanish due to the global assumptions we made in section 4.4.4, so the R-charge in a

minimal holographic renormalization scheme is given by the second line only. The shift in

the current due to the new counterterms can be read from (4.4.39), (4.4.40) and leads to

∫
M3

vol3 ∆jt =
1

216κ2
5

∫
M3

vol3
(
−4uR2d + u3) . (4.4.64)

Adding the two contributions up, the expression for the supersymmetric holographic

R-charge simplifies to

Qsusy = − γ

27κ2
5

∫
M3

vol3 R2d = − 1
βγ

Ssusy . (4.4.65)

We notice that a faster way to arrive at the same result is to take the derivative 1
β

∂
∂γ′ of the

action (4.4.50). Indeed, a variation of the parameter γ′ amounts to shift by a constant the

time component of the gauge field, which computes the electric charge.

Energy We define the energy H of the supergravity solution as the charge associated with

the Killing vector ∂t (or ∂τ in Euclidean signature). This is given by

H =
∫

M3

vol3 (Ttt + At jt) =
∫

M3

vol3 (−Tττ + Aτ jτ) . (4.4.66)
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Since we wish to compute the supersymmetric energy, we need to use the supersymmet-

ric versions of the energy-momentum tensor and R-current, which receive contributions

from the new boundary terms ∆Inew. Although we do not know the contribution to the

holographic energy-momentum tensor, we notice that the chain rule (4.4.28) implies that H

is obtained by simply varying the on-shell action with respect to β. This is easily seen by

rescaling τ so that it has fixed unit periodicity while β appears in the expressions for the

metric and gauge field. Hence we obtain

Hsusy =
∂

∂β
Ssusy =

1
β

Ssusy . (4.4.67)

Angular momentum We denote as angular momentum the charge associated with −∂ψ.

This is given by

J = −
∫

M3

vol3
(
Ttψ + Aψ jt

)
= −i

∫
M3

vol3
(
Tτψ − Aψ jτ

)
. (4.4.68)

Again we can circumvent the problem that we do not know how ∆Inew affects the energy-

momentum tensor by varying the supersymmetric on-shell action with respect to a parameter.

In this case the relevant parameter is α introduced via the twisting transformation of

section 4.4.5. Using the chain rule (4.4.28) and recalling (4.4.54), (4.4.55), we find that the

variation of the on-shell action with respect to α (keeping γ′ fixed) gives:

∂

∂α
Ssusy

∣∣∣∣
α=0

=
∫

d4x
√

g
(
−Tτψ + Aψ jτ

)
α=0 = −iβJsusy , (4.4.69)

where as indicated all quantities are evaluated at α = 0, namely in the original, untwisted,

background. On the other hand, we can vary the explicit expression for Ssusy. Since γ′ is

kept fixed, we just need to vary the overall factor cos α. This gives ∂
∂α Ssusy|α=0 = 0 and thus

we conclude that

Jsusy = 0 , (4.4.70)

that is all untwisted solutions have vanishing angular momentum.
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BPS relation In summary, we obtained the following expressions for the holographic

charges associated with our supersymmetric, untwisted solutions:

Hsusy = −γ Qsusy =
1
β

Ssusy , Jsusy = 0 . (4.4.71)

Via the AdS/CFT correspondence, these should be identified with the vacuum expectation

values of the dual SCFT operators. The SCFT superalgebra implies that the latter satisfy the

BPS relation

〈H〉+ 〈J〉+ γ〈Q〉 = 0 , (4.4.72)

see appendix B.2 for its derivation. Of course, here it is assumed that the vacuum expectation

values are computed in a supersymmetric scheme. We see that the holographic charges

(4.4.71) do indeed satisfy the condition. This can be regarded as a further check that the

proposed boundary terms ∆Inew restore supersymmetry.

4.5 Examples in five dimensions

We now discuss some examples of increasing complexity. This will offer the opportunity to

illustrate further the rôle of the new boundary terms and make contact with the existing

literature.

4.5.1 AdS5

It is instructive to start by discussing the simplest case, that is AdS5 space.

Euclidean AdS5 is just five-dimensional hyperbolic space. In global coordinates, the unit

metric can be written as

ds2
5 =

dρ2

ρ2 +

(
1
ρ
+

ρ

4r2
3

)2

dτ 2 +

(
1
ρ
− ρ

4r2
3

)2

ds2
S3 , (4.5.1)

where

ds2
S3 =

r2
3
4

[(
dψ̃ + cos θdϕ

)2
+ dθ2 + sin2 θdϕ2

]
(4.5.2)

is the round metric on a three-sphere of radius r3, with canonical angular coordinates

θ ∈ [0, π], ϕ ∈ [0, 2π], ψ̃ ∈ [0, 4π]. Here ρ is a Fefferman–Graham radial coordinate,

extending from the conformal boundary at ρ = 0 until ρ = 2r3, where the three-sphere
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shrinks to zero size. The conformal boundary is R× S3, equipped with the conformally-flat

metric

ds2
4 = dτ 2 + ds2

S3 . (4.5.3)

We compactify the Euclidean time so that τ ∼ τ + β and the boundary becomes S1
β × S3

r3
.

For the relevant Killing spinors to be independent of time, we need to switch on a flat gauge

field on S1,

−
√

3A = A = − i
2r3

dτ . (4.5.4)

It is natural to assume that AdS5 is dual to the vacuum state of a SCFT living on the

conformal boundary S1
β × S3

r3
.26 In the following we illustrate how the on-shell action and the

holographic charges of AdS5 match the SCFT supersymmetric vacuum expectation values only after

holographic renormalization is supplemented with our new boundary terms.

In the standard scheme of section 4.4.2, the renormalized on-shell action and holographic

energy are found to be

S = βH =
3(1− 96ς)β

4r3

π2

κ2
5

, (4.5.5)

while both the angular momentum J and the holographic R-charge Q vanish. The latter

value follows from formula (4.4.27) using F = 0. Thus, by dialing ς the holographic energy

H may be set either to agree with Q = 0, so that the BPS condition stating the proportionality

between energy and charge is satisfied, or with the field theory result in (4.2.30), but not

with both. Hence even in the simple example of AdS we see that standard holographic

renormalization disagrees with the supersymmetric field theory results.

Let us describe how this discrepancy is solved by the new terms introduced in sec-

tion 4.4.3. Starting from the general boundary geometry (4.2.8), (4.2.10) we take u = const =

− 4
r3

, e
w
2 = r3

2
1

1+|z|2 , and make the change of coordinate z = cot θ
2 e−iϕ, ψ = r3

2 ψ̃. Then the

two-dimensional metric, its curvature and the volume form are

ds2
2 =

r2
3
4
(dθ2 + sin2 θdϕ2) , R2d =

8
r2

3
, vol2 =

r2
3
4

sin θ dθ ∧ dϕ , (4.5.6)

and eq. (4.2.5) for the connection 1-form a is solved by a = r3
2 cos θdϕ. Moreover to recover

26The possibility that a different asymptotically AdS supergravity solution may be dual to the SCFT vacuum
on S1

β × S3
r3

was considered in [62]. The analysis of that chapter, though not exhaustive, indicates that this is not
the case, and strongly suggests that AdS is the natural candidate.
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the correct gauge field we need to take

γ =
1
r3

, γ′ = 0 , λ = − ϕ

2
, (4.5.7)

the value of γ being in agreement with (4.4.51). In this way our general boundary metric

and gauge field reduce to (4.5.3), (4.5.4).

The new boundary terms (4.4.39) then evaluate to (after Wick rotation):

∆Inew = − 17β

108r3

π2

κ2
5

, (4.5.8)

so that we obtain for the supersymmetric on-shell action of AdS5:

Ssusy = Sς=0 + ∆Inew =
16 β

27r3

π2

κ2
5

. (4.5.9)

This result also follows directly from (4.4.52) since AdS5 satisfies all global assumptions that

were made in section 4.4.4 to derive it.27 Then the energy is just H = 1
β Ssusy and the angular

momentum vanishes, J = 0.

Using eq. (4.4.64), we see that the new terms also shift the value of the holographic

R-charge from zero to

Qsusy = −16
27

π2

κ2
5

. (4.5.10)

Therefore we have found for the supersymmetric energy, charge and angular momentum:

Hsusy = − 1
r3

Qsusy =
16

27r3

π2

κ2
5

, Jsusy = 0 . (4.5.11)

Besides respecting the BPS condition, these values precisely match the supersymmetric field

theory vacuum expectation values of [19, 18], cf. eq. (4.2.30) for the energy.

It is worth pointing out that the choice (4.5.4) for the flat gauge field does not affect the

conserved charges of AdS5 computed via standard holographic renormalization, while it

plays a crucial rôle in our new boundary terms. Indeed in the formulae of section 4.4.2

27For generic asymptotically AdS solutions, conformal flatness of the boundary metric (4.2.8) on S1
β ×M3

amounts to u = const and R2d = u2

2 ; it also implies dA = 0. Then from (4.4.51) we find γ = − u
4 . If the solution

satisfies the global assumptions made in section 4.4.4, our formula (4.4.52) applies and the supersymmetric
on-shell action reads

Ssusy =
βu4

2533κ2
5

∫
M3

vol3 .

For a round sphere M3 ∼= S3
r3

, we set u = − 4
r3

,
∫

S3 vol3 = 2π2r3
3 and the result (4.5.9) follows.
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the only term potentially affected by a flat gauge connection is the bulk Chern–Simons

term
∫
A∧F ∧F , which however vanishes on AdS5 as F = 0. On the other hand, ∆Inew

in (4.4.39) depends on a flat connection on S1 since the 3-form Φ does not vanish on the S3

at the boundary of AdS5, and this affects the holographic charges. In particular, it gives the

full answer for the holographic R-charge associated with AdS5.

4.5.2 Twisted AdS5

We can take advantage of the very explicit example of AdS5 to further illustrate the twisting

of section 4.4.5.

Starting from the AdS5 metric (4.5.1), (4.5.2) we make the change of coordinates

τ → cos α τ , ψ̃ → ψ̃ +
2
r3

sin α τ , (4.5.12)

with 0 < α < π/2. Then the new bulk metric reads

ds2
5 =

dρ2

ρ2 +

(
1
ρ
+

ρ

4r2
3

)2

cos2 α dτ 2

+

(
1
ρ
− ρ

4r2
3

)2 r2
3
4

[(
dψ̃ +

2
r3

sin α dτ + cos θdϕ
)2

+ dθ2 + sin2 θdϕ2
]

. (4.5.13)

The new boundary metric may be written as

ds2
4 =

[
dτ +

r3

2
sin α

(
dψ̃ + cos θdϕ

)]2
+

r2
3
4

[
cos2 α

(
dψ̃ + cos θdϕ

)2
+ dθ2 + sin2 θdϕ2

]
.

(4.5.14)

Since we do not transform the range of the coordinates, i.e. we take τ ∈ [0, β], ψ̃ ∈ [0, 4π]

also after the transformation, the new geometry is globally distinct from the original one.

However, both the boundary and the bulk metric remain regular.28 The choice of boundary

gauge field A ensuring that the Killing spinors are independent of the new time coordinate

on S1 was explained in section 4.4.5, cf. eqs. (4.4.55), (4.4.57). For AdS5 this also corresponds

to the bulk gauge field:

−
√

3A = A =
i

2r3
(− cos α + 2i sin α)dτ . (4.5.15)

28Regularity of the boundary metric follows from the fact that dψ̃ + cos θdϕ is globally defined. Regularity of
the bulk metric as ρ→ 2r3 can be seen by noting that the Gττ component remains finite, that the components
Gρρ, Gθθ , Gϕϕ, Gψ̃ψ̃ and Gψ̃ϕ asymptote to the metric on the cone on a round S3 (i.e. the flat metric on R4), and
finally that the Gτϕ, Gτθ components go to zero. It follows that as ρ→ 2r3 the space looks like S1 ×R4.
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Note that this has both a real and an imaginary part.

The on-shell action in the standard holographic scheme is found to be

S = cos α
3(1− 96ς)β

4r3

π2

κ2
5

, (4.5.16)

as the only consequence of the twist in the computation is to rescale the volumes by cos α.

The new boundary terms (4.4.39) are evaluated as for untwisted AdS5, except that one must

implement the transformation (4.5.12) and use the gauge field (4.5.15). This gives

∆Inew =

(
− 17

108
cos α +

16
27

i sin α

)
β

r3

π2

κ2
5

. (4.5.17)

Then the supersymmetric on-shell action evaluates to

Ssusy = Sς=0 + ∆Inew =
16β eiα

27r3

π2

κ2
5

. (4.5.18)

This illustrates in a concrete example the general result of section 4.4.5 that the on-shell

action in the twisted background is related to the one in the untwisted background by the

replacement β→ eiαβ.

4.5.3 A simple squashing of AdS5

A different one-parameter supersymmetric deformation of AdS5 was presented in [64]. In

this solution, the boundary geometry is non conformally flat as S3 ⊂ ∂AdS5 is squashed.

The squashing is such that the Hopf fibre of S1 ↪→ S3 → S2 is rescaled with respect to the

S2 base by a parameter v, and thus defines a Berger sphere S3
v with SU(2)-invariant metric.

The boundary metric then reads

ds2
4 = dτ2 +

r2
3
4

[
v2(dψ̃ + cos θdϕ

)2
+ dθ2 + sin2 θdϕ2

]
, (4.5.19)

which for v = 1 reduces to (4.5.2), (4.5.3). The boundary geometry is controlled by the three

parameters β, r3, v, however the complex structure on the boundary is determined just by the

ratio β
vr3

specifying the relative size of S1
β to the Hopf fibre, hence the supersymmetric field

theory partition function depends on these parameters only through this combination [68,

19].
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As for the solutions in section 4.4.1, the supergravity solution of [64] was constructed in

Lorentzian signature and then analytically continued so that the boundary is Riemannian,

while the bulk metric becomes complex. It is known analytically at first order in the

squashing and numerically for finite v. While we refer to [64] for more details, here it will be

sufficient to mention that the solution is regular and such that the global assumptions made

in section 4.4.4 to derive the on-shell action formula (4.4.52) are satisfied. In fact, as already

mentioned, the strategy followed in section 4.4.4 is a generalization of the one in [64]. Since

its near-boundary behaviour falls in the larger family of perturbative solutions constructed

in the present chapter, the solution of [64] also provides a concrete example that the latter

can admit a smooth completion in the interior also when the boundary is not conformally

flat.

While the field theory results predict that the on-shell action only depends on the ratio β
vr3

,

it was found in [64] that after performing standard holographic renormalization this depends

both on β
vr3

and v. Indeed, in a minimal scheme where the finite counterterms (4.4.23) are

set to zero one obtains29

Smin =
8vβ

r3

(
2

27v2 +
2
27
− 13

108
v2 +

19
288

v4
)

π2

κ2
5

, (4.5.20)

so only the first term in parenthesis has the correct dependence on β
vr3

. In addition, it was

shown in [64, sect. 5.3] that there is no combination of the ordinary finite counterterms (4.4.23)

that cancels all but the first term in (4.5.20). It was then proposed that a new counterterm

should be added, and it was found that a certain term involving the Ricci form, combined

with the standard finite counterterms, does the job (cf. eq. (5.51) therein). However, in

the light of our more general analysis that specific prescription turns out incorrect, as the

proposed term does not evaluate to ∆Inew in (4.4.37) for the more general boundary metric

and gauge field considered in the present chapter. This also follows from the fact that the

term proposed in [64] is gauge invariant, while in order to adjust the holographic R-charge

so that the BPS condition is satisfied a dependence on large gauge transformations is needed.

Therefore while the idea of correcting the holographic renormalization scheme by new

boundary terms survives and is much strengthened by the general analysis performed in

the present chapter, a covariant form for these terms remains to be found.

29See also. eq. (4.15) of [64]. The present variables are obtained setting ∆there
t = v

r3
β and 8πG/`2 = κ2

5 .
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Let us show how ∆Inew removes the terms in (4.5.20) not depending solely on β
vr3

. The

metric (4.5.19) on S1× S3
v is obtained from our general boundary metric (4.2.8) by modifying

slightly the transformations made for the example of AdS5. Again we take e
w
2 = r3

2
1

1+|z|2

and z = cot θ
2 e−iϕ, so that the two-dimensional formulae (4.5.6) hold the same. Choosing

u = − 4v
r3

, the connection 1-form a can be taken a = vr3
2 cos θdϕ, while the coordinate on the

Hopf fibre with canonical period 4π is ψ̃ = 2
vr3

ψ. In this way (4.2.8) reduces to (4.5.19). Also

choosing

γ =
1

vr3
, γ′ = 0 , λ = − ϕ

2
, (4.5.21)

where again the value of γ is in agreement with (4.4.51), the boundary gauge field (4.2.10)

reduces to the SU(2)-invariant expression30

−
√

3A0 = A = − i v
2r3

dτ +
1
2
(1− v2)(dψ̃ + cos θdϕ) . (4.5.22)

Then our formula (4.4.52) for the supersymmetric on-shell action evaluates to

Ssusy =
16β

27vr3

π2

κ2
5

, (4.5.23)

that only depends on β
vr3

as predicted by the field theory arguments. In fact our new

counterterms evaluate to

∆Inew = −8vβ

r3

(
2
27
− 13

108
v2 +

19
288

v4
)

π2

κ2
5

, (4.5.24)

which precisely accounts for the difference between (4.5.20) and (4.5.23). One could also con-

sider twisting this five-dimensional solution by the parameter α as discussed in section 4.4.5

and further illustrated in the example of AdS5, thus introducing an overall phase eiα in the

on-shell action.

Eq. (4.4.71) gives for the holographic charges:

Hsusy = − 1
vr3

Qsusy =
16

27vr3

π2

κ2
5

, Jsusy = 0 . (4.5.25)

30These boundary fields agree with those of [64] upon identifying ψthere = ψ̃, tthere = iv
r3

τ and athere
0 = r3

2 .
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The electric charge given in [64, sect. 4] reads in the present normalization

Qthere = −16π2

27κ2
5
(v2 − 1)2 , (4.5.26)

while the shift (4.4.64) due to our new boundary terms evaluates to

∆Q = −
∫

vol3 ∆jt =
16π2

27κ2
5
(v4 − 2v2) , (4.5.27)

therefore Qthere + ∆Q matches the supersymmetric charge in (4.5.25). When compar-

ing (4.5.25) with the energy and angular momentum computed in [64] one needs to take

into account both the contribution of the new boundary terms and the fact that in [64]

these quantities were defined in terms of the energy-momentum tensor alone (which for

the present solution still yields conserved quantities), while here we presented the charges

(4.4.66), (4.4.68) computed from the current (4.4.59) that is always conserved in the presence

of a general background gauge field.

4.5.4 Hopf surfaces at the boundary

We can also evaluate our on-shell action formula (4.4.52) for the more general boundary

geometry with S1 × S3 topology considered in [19]. Contrarily to the previous examples in

this section, in this case we do not have a general proof of existence of regular bulk fillings

satisfying all the global properties we required in section 4.4.4 to evaluate the on-shell action.

However, we are going to show that if we assume that such supergravity solutions exist,

then eq. (4.4.52) gives the correct holographic dual of the supersymmetric Casimir energy

of [19, 18].

In [19] the three-sphere is described as a torus foliation: the torus coordinates are

ϕ1 ∈ [0, 2π], ϕ2 ∈ [0, 2π], while the remaining coordinate is ρ̂ ∈ [0, 1].31 The four-

dimensional complex manifolds with topology S1 × S3 are Hopf surfaces, and in [19]

the complex structure moduli are two real, positive parameters βb1, βb2 (as above, β denotes

the circumpherence of the S1 parameterized by τ). These characterize the choice of complex

31The coordinate ρ̂ is defined on the four-dimensional boundary and should not be confused with the radial
coordinate ρ used elsewhere in this chapter.
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Killing vector (4.2.7) as

K =
1
2
(
∂ψ − i ∂τ

)
=

1
2
(
b1∂ϕ1 + b2∂ϕ2 − i ∂τ

)
. (4.5.28)

The four-dimensional metric is taken as

ds2
4 = Ω2 [dτ2 + (dψ + aχdχ)2 + Ω−2 f 2dρ̂2 + c2dχ2]
= Ω2dτ2 + f 2dρ̂2 + mI JdϕIdϕJ ,

(4.5.29)

where I, J = 1, 2. The first line is the canonical form dictated by supersymmetry (with ds2
2 =

Ω−2 f 2dρ̂2 + c2dχ2), while the expression in the second line is convenient for discussing

global properties, since it uses periodic coordinates. When passing from the first to the

second expressions one identifies the coordinates as

ψ =
1
2

(
ϕ1

b1
+

ϕ2

b2

)
, χ =

1
2

(
ϕ1

b1
− ϕ2

b2

)
(4.5.30)

and the functions as

aχ =
1

Ω2

(
b2

1m11 − b2
2m22

)
, c =

2b1b2

Ω2

√
det mI J . (4.5.31)

Moreover supersymmetry imposes the relation

Ω2 = bImI JbJ , (4.5.32)

which ensures Hermiticity of the metric. Here, f and mI J are functions of ρ̂ satisfying

suitable boundary conditions at ρ̂ = 0 and ρ̂ = 1 so that the metric is regular and describes

a smooth S3 topology. As ρ̂→ 0, one requires that

f → f2 , m11 → m11(0) , m22 = ( f2ρ̂)2 +O(ρ̂3) , m12 = O(ρ̂2) , (4.5.33)

where f2 > 0 and m11(0) > 0 are constants, and similarly for ρ̂→ 1 (see [19]).

In principle our on-shell action formula (4.4.52) is derived for a boundary metric of the

type (4.2.8), thus with trivial conformal factor Ω = 1, however we now show that the same

formula gives the correct result even for general Ω if it is evaluated using the metric in the



4.5 Examples in five dimensions 177

square bracket of (4.5.29).32

Using the expressions above, we can compute

∫
M3

vol3R2d = −
∫

∂ρ̂

(
c Ω

f
∂ρ̂ log c2

)
dρ̂ ∧ dχ ∧ dψ = − 4π2

b1b2

[
Ω
f

∂ρ̂c
]ρ̂=1

ρ̂=0

= 8π2 b1 + b2

b1b2
,

(4.5.34)

where in the last equality we used the behaviour of the functions at the extrema of the ρ̂

interval. Similarly,

∫
M3

η ∧ dη =
∫

∂ρ̂aχ dρ̂ ∧ dχ ∧ dψ =
2π2

b1b2
aχ

∣∣ρ̂=1
ρ̂=0 = − 4π2

b1b2
. (4.5.35)

Then formula (4.4.51) for γ gives

γ =
1
2
(b1 + b2) (4.5.36)

and the on-shell action (4.4.52) evaluates to

Ssusy =
2β

27
(b1 + b2)3

b1b2

π2

κ2
5

, (4.5.37)

which perfectly matches the field theory prediction (4.2.29).33 This result was the main point

emphasized in our short communication [39].

4.5.5 General M3

In section 4.4.4 we derived the general formula (4.4.52) for the supersymmetric on-shell

action (evaluated with our new counterterms). Here the conformal boundary has topology

S1 ×M3, and the derivation of the formula requires certain global assumptions about the

topology of the five-dimensional bulk supergravity solution that fills this boundary. In

particular, we required the graviphoton field A to be a global 1-form. Particular explicit

examples have been studied in the subsections above. In this subsection we present a

more general but abstract analysis, and show that our supergravity result (4.4.52) always

32Otherwise one can choose mI J so that (4.5.32) is satisfied with Ω = 1, which is not a serious loss of generality
since it still allows for general b1, b2.

33This agrees with eq. (5.18) of [19], upon identifying |bI |there =
β

2π bhere
I and 8πGthere = κ2

5 .
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reproduces the supersymmetric Casimir energy, as computed in field theory in [176].34

We begin by rewriting the supersymmetric on-shell supergravity action (4.4.52) in terms

of Seifert invariants of M3. In particular, using equations (4.2.19) and (4.2.20) we may write

Ssusy =
2π2bβ

27κ2
5

(∫
Σ2

c1(Σ2)
)3

(∫
Σ2

c1(L)
)2 . (4.5.38)

Recall here that ψ has period 2π/b, so that the Reeb vector ξ = ∂ψ = bχ, where χ is the

normalized vector field which exponentiates to the corresponding U(1) action on M3.

Under the same global assumptions on M4
∼= S1

β ×M3, the supersymmetric Casimir

energy Esusy was computed in field theory in [176]. More precisely, in the path integral

sector with trivial flat gauge connection on M3, Esusy may be computed from an index-

character that counts holomorphic functions on X0 ∼= R>0 ×M3. The formula for weighted

homogeneous hypersurface singularities was given in equation (4.2.31), with large N

limit (4.2.33). Substituting for
∫

Σ2
c1(Σ2) and

∫
Σ2

c1(L) for hypersurface singularities using

formulas (4.2.24), the supergravity result (4.5.38) precisely agrees with the large N field

theory computation of βEsusy, with Esusy given by (4.2.33)!

This agreement between exact field theory and supergravity calculations is already

remarkable. However, we can go further and present a very general derivation of this

agreement, based on a formula for the index-character appearing in [177]. Recall first that

the U(1) Seifert action on M3 extends to a holomorphic C∗ action on X0 = R>0 ×M3, and

hence on X = C(M3). Following [176, 177], we denote the index-character that counts

holomorphic functions on X (or equivalently X0) according to their weights under q ∈ C∗ by

C(∂̄, q, X). If the U(1) ⊂ C∗ action is free, meaning that Σ2 = M3/U(1) is a smooth Riemann

surface, then we may write

C(∂̄, q, X) = ∑
k≥0

qk
∫

Σ2

e−kc1(L) · Todd(Σ2) (4.5.39)

= ∑
k≥0

qk
∫

Σ2

[
−k c1(L) +

1
2

c1(Σ2)

]
. (4.5.40)

The first equality is the Riemann–Roch theorem, and the second equality uses Todd =

1 + 1
2 c1 + · · · , where the higher order terms do not contribute in this dimension. We may

34There are caveats to this statement, that we will clarify below.
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then sum the series for |q| < 1 to obtain the formula

C(∂̄, q, X) =

∫
Σ2

c1(Σ2)− q
(∫

Σ2
2c1(L) + c1(Σ2)

)
2(1− q)2 . (4.5.41)

We emphasize that this formula is valid for regular Reeb vector fields, so that Σ2 is a

smooth Riemann surface, and is not valid in the quasi-regular case, where Σ2 has orbifold

singularities. However, as we shall explain below, one may effectively still use this formula

to compute the large N supersymmetric Casimir energy even in the general quasi-regular

case.

The full character that computes the supersymmetric Casimir energy is given by [176]

C(q, µ, X) = q−
∫

Σ2
c1(Σ2)/2

∫
Σ2

c1(L) · µ · C(∂̄, q, X) . (4.5.42)

Here the power of q in the first factor is precisely γ/b, which arises as 1
2 the charge

of the holomorphic (2, 0)-form under the canonically normalized vector field χ. The

supersymmetric Casimir energy is then obtained by setting q = etb, µ = e−tu, where

u = (r − 1)γ for a matter multiplet of R-charge r, and extracting the coefficient of −t in

a Laurent series about t = 0. For field theories with a large N gravity dual in type IIB

supergravity one has a = c = π2/κ2
5, where the trace anomaly coefficients may in turn be

expressed in terms of certain cubic functions of the R-charges (r− 1) of fermions. Using this

prescription applied to (4.5.42), (4.5.41), we find that the large N field theory result gives

Esusy =
2π2b
27κ2

5

(∫
Σ2

c1(Σ2)
)3

(∫
Σ2

c1(L)
)2 , (4.5.43)

so that the supergravity action Ssusy in (4.5.38) agrees with βEsusy computed in field theory.

Although (4.5.41) only holds in the regular case, in fact this formula is sufficient to

compute the correct large N supersymmetric Casimir energy in (4.5.43) in the general

quasi-regular case. The point is that when Σ2 has orbifold singularities there are additional

contributions to Riemann–Roch formula (4.5.41). However, also as in [177], the general form

of these contributions is such that they do not contribute to the relevant limit that gives

(4.5.43). Thus the latter formula holds in general (we have already shown independently

that it holds for homogeneous hypersurface singularities, which are generically not regular).
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Finally, although the agreement of the two computations is remarkable, without more

work it is also somewhat formal. In particular, in the field theory computation we have

assumed that the sector with trivial flat gauge connection dominates at large N, while the

general supergravity computation assumes the existence of an appropriate solution with

the required global properties. Known examples suggest that these are not unreasonable

assumptions, but there is clearly a need for further work to clarify how general a result this

is. We leave these interesting questions for future work.

4.6 Discussion

Since the early days of the AdS/CFT correspondence, it has been clear that in order to define

observables holographically, infinities have to be subtracted [225, 127, 27]. These initial

findings developed into the systematic framework of holographic renormalization, which

has taken various incarnations [79, 47, 48, 78, 170, 204, 192, 187]. Despite the fact that this has

proved to be very robust as a method for subtracting infinities in the context of asymptotically

locally hyperbolic solutions, the problem of matching finite boundary terms in holographic

computations to choices of renormalization schemes in quantum field theory has remained

a subtle question requiring further study. Recent exact results in supersymmetric quantum

field theories, in part obtained through the technique of localization, have sharpened this

question within a large class of holographic constructions. In this chapter, we have presented

a systematic study of the interplay of holographic renormalization and supersymmetry, in

the context of minimal N = 2 gauged supergravity theories in four and five dimensions.

These theories are consistent truncations of eleven-dimensional and type IIB supergravity

on very general classes of internal manifolds with known field theory duals. They thus give

access to a vast set of examples of supersymmetric gauge/gravity dual pairs, where both

sides are well understood [198, 172, 175, 173, 171, 132, 64, 94, 62, 39].

In this chapter we have made certain simplifying assumptions; in particular our studies

apply to asymptotically locally hyperbolic solutions of the given supergravities, where the

boundary geometry admits at least a pair of Killing spinors. Under these assumptions,

our main results may be summarized as follows. In four-dimensional minimal N = 2

gauged supergravity, the on-shell action, renormalized using standard counterterms, is

supersymmetric. In particular, as expected, we did not find any ambiguities related to finite
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counterterms.35 In five-dimensional minimal gauged supergravity, we showed that there is

no choice of standard finite counterterms (i.e. four-dimensional diffeomorphism and gauge

invariants) that renders the holographically renormalized on-shell action compatible with

the boundary supersymmetry obtained by coupling to off-shell new minimal supergravity.

Thus, surprisingly, standard holographic renormalization breaks supersymmetry in five

dimensions. We then found a specific set of new boundary terms that restores supersymme-

try of the on-shell action, as well as the validity of certain supersymmetric Ward identities

inferred from field theory [68, 67]. We provided some independent tests of these new terms,

illustrating their application in smooth asymptotically locally AdS solutions with topology

R×R4.

Although our analysis provides a very strong evidence that in order to formulate

holographic renormalization in a supersymmetric fashion a new set of boundary terms is

needed, a more fundamental understanding of the origin of these terms is clearly desirable.

As already mentioned at the end of section 2.5, after the publication of the work in this

chapter in [39, 38], the same expressions for the variation of the on-shell action (4.4.35),

(4.4.36) were recovered independently in [191], but interpreted in a different way. Since

under AdS/CFT semi-classical gravity computations correspond to quantum field theory

computations, the non-vanishing variation of the on-shell action was interpreted as an

anomalous variation of the fermionic part of the supercurrent on the boundary. Led by this

result, Papadimitriou concluded that rigid supersymmetry is anomalous on generic non-

Ricci-flat backgrounds, and so that the results in [68] on the dependence of BPS observables

on the background are flawed (as noticed in footnote 2 of [68], the authors require the absence

of such anomalies) – a similar computation for a non-minimal gauged supergravity was then

carried out in [12]. As written in these latter articles, the interpretation of the non-vanishing

variation in terms of a supercurrent anomaly cast doubts on localization computations for

four-dimensional field theories. However, there are subtle nuances in these results and

some room for maneuvering: for instance, bulk minimal gauged supergravity reduces at the

boundary to conformal supergravity, whereas the localization computations are done using

the coupling to (non-dynamical) new minimal supergravity.36 Moreover, it is paramount to

35This situation is radically different in supergravity models coupled to matter. The interplay of holographic
renormalization and supersymmetry in the presence of scalar fields has been discussed for conformally flat
boundaries in [47, 102, 54, 55, 101, 150].

36Notice that this difference is crucial for the case of the topological twist: there, we found that the inclusion
of any additional finite counterterm would have spoiled the result of the independence of the gravitational free
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emphasize that all the works cited assumed the validity of the gauge/gravity dictionary,

and used this to either obtain constraints on the gravity side from exact results originally

derived on the field theory side (as in this chapter), or find supersymmetric anomalies

in field theory from gravity computations (as in [191, 12]). It is still an open problem to

perform a first principles analysis of supersymmetry of supergravities in asymptotically

locally hyperbolic space-times, or to directly derive this anomalous transformation from the

QFT in a new minimal supergravity background.

Let us mention some possible avenues that could be pursued to achieve the former

goal. A direct approach to retrieve the correct boundary terms is to work on a space with a

boundary at a finite distance and to impose that the combination of bulk plus boundary

supergravity action is invariant under supersymmetry (of course the bulk action is invariant

under supersymmetry up to boundary terms). Notice that, in different situations, this approach

has been recently advocated in [14, 101]. One could also attempt to derive the boundary

terms by enforcing the holographic Ward identities stemming from supersymmetry, using

the Hamilton–Jacobi approach [170, 190]. It may also be fruitful to extend to higher

dimensions the approach of [37, 115], where the standard holographic counterterms in three-

dimensional37 N = 1 supergravity were argued to preserve supersymmetry, by working in

an off-shell formulation. It would be very interesting to see whether any of these methods,

or possibly others, may be used to shed light on the origin of the boundary terms proposed

in the present chapter.

We conclude by alluding to a few possible generalizations of our results. Perhaps the

most straightforward extension will be to lift the simplifying assumption that the metric on

the four-dimensional conformal boundary is of a direct product type S1 ×M3. We expect

that the new boundary terms arising from this analysis will be more general than those

found presently, and this could help achieving a better understanding of them. One could

also study the consequences on such terms following from a Weyl transformation of the

boundary metric. In minimal gauged supergravity, to complete the program we initiated it

will be necessary to address the supersymmetric solutions in the null class [108], which are

known to comprise asymptotically locally AdS solutions. Another obvious generalization

energy from the background metric. In the language of this chapter, the supersymmetric Ward identity was
satisfied in the minimal scheme. However, the topological twist can be obtained as a special case of the rigid
limit coupling to conformal supergravity. Is it possible that this difference is crucial?

37An off-shell formulation of four dimensional supergravity in the presence of a boundary has been considered
in [36], however as far as we are aware the application to the study of holographic renormalization is lacking in
the literature.
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would be to investigate similar gauged supergravities in three, six, and seven space-time

dimensions. In particular, it is expected that defining two- and six-dimensional SCFTs

in curved backgrounds leads to suitable versions of the supersymmetric Casimir energy

[53], and reproducing these in dual holographic computations remains an open problem.

The fact that in odd bulk dimension one has anomalies and ambiguities in holographic

renormalization suggests that at least in these dimensions a supersymmetric formulation of

holographic renormalization will lead to a set of new boundary terms, analogous to those

we uncovered in five-dimensional supergravity.

Finally, we emphasize that in the derivation of the boundary terms, we made no

assumptions on the properties of the supersymmetric solutions in the bulk. In particular,

our boundary terms should be included in holographic studies of supersymmetric solutions

with topologies different from R×R4. For example, it will be nice to investigate how the

analysis of the properties of supersymmetric asymptotically locally AdS black holes [122, 65]

(or topological solitons [74, 62]) will be affected by our findings.





A
Some conventions

A.1 Curvature tensors

Our sign convention on the Riemann tensor is fixed by

Ri
jkl = ∂kΓi

jl + Γi
kmΓm

jl − k↔ l ,

and the Ricci tensor is Rij = Rk
ikj. We next give some formulae by specializing to four

dimensions. The Weyl tensor of a metric gij and its square are given by

Cijkl = Rijkl − gi[kRl]j + gj[kRl]i +
1
3

R gi[kgl]j , (A.1.1)

CijklCijkl = Rijkl Rijkl − 2RijRij +
1
3

R2 .

The Euler and Pontryagin densities can be written as

E = Rijkl Rijkl − 4RijRij + R2 , P =
1
2

εijkl RijmnRkl
mn . (A.1.2)

From the metric and the Levi-Civita symbol we can construct four linearly independent

functionals:
∫

d4x
√

g E (proportional to the Euler characteristic),
∫

d4x
√

gP (proportional

to the signature invariant),
∫

d4x
√

g CijklCijkl (the conformal gravity action) and
∫

d4x
√

g R2

185
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(which is neither topological nor conformal). While the metric variation of the first and the

second vanishes identically in four dimensions, varying the third defines the Bach tensor

Bij = −
1

2
√

g
δ

δgij

∫
d4x
√

g CklmnCklmn

=
1
3
∇i∇jR−∇2Rij +

1
6

gij∇2R− 2Rikjl Rkl +
2
3

RRij +
1
2

gij

(
Rkl Rkl − 1

3
R2
)

. (A.1.3)

This is covariantly conserved and traceless. Varying the fourth functional yields the tensor

Hij = −
1
√

g
δ

δgij

∫
d4x
√

g R2 = 2∇i∇jR− 2gij∇2R +
1
2

gijR2 − 2R Rij ,

which is covariantly conserved and satisfies Hi
i = −6∇2R.

A.2 Hodge dual conventions

The Hodge dual is defined for two k-forms α and β by

α ∧ ∗β =
1
k!
〈α, β〉 volg =

1
k!

αa1···ak βa1···ak volg , (A.2.1)

where 〈·, ·〉 is the inner product induced by g on the fibers of Λk(M). Then

∗ ∗ α = (−1)k(n−k)α ∀α ∈ Ωk(M) , X volg = ∗X[ ∀X ∈ X(M) .

The components of the codifferential of a k-form α satisfy

(∗d ∗ α)a1···ak−1
= (−1)k(n−k)+n+1∇bαa1···ak−1b .

The self-dual and anti-self-dual ’t Hooft symbols are defined by

ηa
ij = εaij4 + δaiδj4 − δajδi4 , ηa

ij = εaij4 − δaiδj4 + δajδi4 , (A.2.2)

where a = 1, 2, 3, and i, j = 1, 2, 3, 4. The Clifford product is defined, for α ∈ Ωk(M) and ψ a

spinor on M, by

α · ψ ≡ 1
k!

αa1···ak γa1···ak ψ . (A.2.3)



B
Details on Holographic Renormalization and

Supersymmetry

B.1 Construction of the five-dimensional solution

B.1.1 The general equations

In this appendix we provide details on how our five-dimensional supersymmetric solution

is constructed. We start by summarizing the conditions for bosonic solutions of minimal

gauged supergravity in five dimensions to be supersymmetric, first obtained in [108] and

recently revisited in [62]. The analysis of [108] shows that the supersymmetry equation

(4.4.4) implies the existence of a Killing vector field V that is either timelike or null. In this

thesis we just consider the timelike case. Choosing coordinates such that V = ∂/∂y, the

five-dimensional metric takes the form

ds2
5 = − f 2 (dy + ω)2 + f−1 ds2

B , (B.1.1)

where ds2
B is a Kähler metric on a four-dimensional base B transverse to V, while f and

ω are a positive function and a 1-form on B, respectively. We will work with a Kähler

form J that is anti-self-dual on B, namely, ∗B J = −J, so that the orientation on B is fixed as

187
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volB = − 1
2 J ∧ J. We will also need the Ricci form R and its potential P, satisfying R = dP.

The Ricci form is defined as Rmn = 1
2 Rmnpq Jpq, where Rmnpq is the Riemann tensor of the

Kähler metric and m, n = 1, . . . , 4 are curved indices on B. The Ricci potential also appears

in the relation ∇mΩnp + iPmΩnp = 0, where ∇m is the Levi-Civita connection of the Kähler

metric and Ω is a complex (2, 0)-form normalized as Ω ∧Ω = 2J ∧ J.

The geometry of the Kähler base determines the whole solution. The function f in (B.1.1)

is given by

f = −24
R

, (B.1.2)

where R is the Ricci scalar of the Kähler metric, and is required to be non-zero everywhere.

The equations for the 1-form ω are

dω + ∗Bdω =
R
24

(
R− 1

4
RJ
)

, (B.1.3)

and

(dω)mn Jmn = − 1
12

(
1
2
∇2R +

2
3

RmnRmn − 1
3

R2
)

. (B.1.4)

It was shown in [62] that for these conditions to admit a solution the Kähler metric on B

must necessarily satisfy the highly non-trivial sixth-order equation1

∇2
(

1
2
∇2R +

2
3

RmnRmn − 1
3

R2
)
+∇m(Rmn∂nR) = 0 . (B.1.5)

Finally, the expression for the Maxwell field strength is

F = −
√

3 d
[

f (dy + ω) +
1
3

P
]

. (B.1.6)

The solutions obtained from (B.1.1)–(B.1.6) preserve at least (and generically no more

than) two real supercharges.

B.1.2 The perturbative solution

We will make the assumption that the four-dimensional base B admits an isometry. This is

motivated by the fact that (after Wick rotation) we want the boundary metric to reproduce

the field theory background metric (4.2.8), and has the obvious advantage of simplifying

1The specialization of this equation for a particular Kähler metric appeared earlier in [98].
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the supersymmetry equations. With no further loss of generality, for the metric on B we can

choose

ds2
B = U(r, z, z̄)2

[
dr2

r2 + 4r2W(r, z, z̄)2dzdz̄
]
+

r4

U(r, z, z̄)2 (dψ̂ + φ)2 , (B.1.7)

where z is a complex coordinate, ψ̂ is the Killing coordinate (to be redefined later) and r will

play the rôle of the radial coordinate. Moreover, U(r, z, z̄), W(r, z, z̄) are functions while φ is

a ψ̂-independent 1-form transverse to ∂/∂ψ̂. This type of metric ansatz has been studied by

[158, 213] where it is shown to be the generic form satisfying our assumptions. The explicit

powers of r in (B.1.7) have been introduced for convenience: they are chosen so that the

asymptotic expansions of U and W start at order one – see below. We fix the orientation

choosing the volume form on B as

volB = 2ir3U2W2dz ∧ dz̄ ∧ dψ̂ ∧ dr . (B.1.8)

The ansatz for the Kähler form is

J = 2ir2U2W2 dz ∧ dz̄ + r dr ∧ (dψ̂ + φ) , (B.1.9)

which defines an almost complex structure, i.e. Jm
p Jp

n = −δm
n. The metric is Kähler if

dJ = 0 and the almost complex structure Jm
n is integrable. Together, these two conditions

are equivalent to imposing

dφ =
1
r

∂r
(
r2U2W2) 2i dz ∧ dz̄ + i(dz̄ ∂z̄ − dz ∂z)U2 ∧ dr

r3 , (B.1.10)

which determines the connection 1-form φ in terms of other metric data. Acting on this

equation with the exterior derivative, we find the integrability condition

∂z∂z̄U2 + r3∂r

[
r−1∂r(r2U2W2)

]
= 0 , (B.1.11)

which constrains the functions U, W. Using (B.1.10), the Ricci scalar of the Kähler metric

can be written as

R = − 2
r2U2W2

[
∂z∂z̄ log W + ∂r

(
rW∂r(r3W)

)
+ W∂r(r3W)

]
, (B.1.12)
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and the Ricci connection as

P = − 1
U2W

∂r(r3W)(dψ̂ + φ)− i(dz̄ ∂z̄ − dz ∂z) log W , (B.1.13)

with the Ricci form following from R = dP.

We will solve the supersymmetry equations in an asymptotic expansion around r = ∞.

To do so, we express all functions entering in the ansatz in a suitable expansion involving

powers of 1/r and log r. The requirement that the solution be AlAdS5 fixes the leading

order terms in the expansions, as explained in detail in [61].

For the function U(r, z, z̄) we take:

U = ∑
m≥0

∑
0≤n≤m

U2m,n
(log r)n

r2m

= U0,0 +
1
r2 (U2,0 + U2,1 log r) +

1
r4 (U4,0 + U4,1 log r + U4,2(log r)2) + . . . , (B.1.14)

with U2m,n = U2m,n(z, z̄). Similarly, for W we take

W = W0,0 +
1
r2 (W2,0 + W2,1 log r) +

1
r4 (W4,0 + W4,1 log r + W4,2(log r)2) + . . . , (B.1.15)

with all coefficients also being functions of z, z̄. As for the 1-form φ, note that by redefining

the coordinate ψ̂ in (B.1.7) we can always take the radial component φr = 0, namely we can

take φ = φz(r, z, z̄)dz + φz(r, z, z̄)dz̄. The expansion of φz is analogous to those of U and W

(albeit with complex coefficients), in particular it starts at order O(1).

We also need to expand the 1-form ω appearing in the five-dimensional metric (B.1.1). By

a redefinition of the coordinate y we can always choose ωr = 0. Then ω can be parameterized

as

ω = c(r, z, z̄)(dψ̂ + φ) + Cz(r, z, z̄)dz + Cz(r, z, z̄)dz̄ . (B.1.16)

The expansion of the real function c starts at order O(r2),

c = c−2,0 r2 + (c0,0 + c0,1 log r) +
1
r2

(
c2,0 + c2,1 log r + c2,2(log r)2)+ . . . , (B.1.17)

and a similar expansion is taken for Cz.

We next solve order by order the conditions on the four-dimensional metric on B.
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The explicit expressions are too cumbersome to be presented here and can only be dealt

with using a computer algebra system like Mathematica; we will nevertheless describe in

detail the procedure we followed. The constraints on the four-dimensional base metric

amount to the equation (B.1.10) for φ, its integrability condition (B.1.11), and the sixth-order

equation (B.1.5). We start from (B.1.11), that we solve for U2,1, U4,0, U4,1, U4,2, U6,0, U6,1,

U6,2, U6,3 in terms of U0,0, U2,0 and the coefficients of W. Then we solve the sixth-order

equation (B.1.5) at the first two non-trivial orders, which are O(1/r) and O(1/r3) (together

with the associated logarithmic terms). This fixes W4,2, W6,1, W6,2, W6,3 in terms of U0,0, U2,0,

W0,0, W2,0, W2,1, W4,0, W4,1, W6,0, which thus remain undetermined at this stage. Finally we

solve (B.1.10) for φ; the latter is explicitly determined, up to the leading O(1) term φ0,0,

which has to obey the equation

dφ0,0 = 4i (U0,0W0,0)
2dz ∧ dz̄ . (B.1.18)

Having fulfilled the constraints on the four-dimensional base B with metric (B.1.7), we

can solve the equations (B.1.3), (B.1.4) for the connection ω. Using the ansatz (B.1.16), these

become equations for c and Cz, that again we can solve order by order. We find that both

c and Cz are fully determined (in particular, the divergent O(r2) term in the expansion of

Czdz+Czdz̄ vanishes), except for the O(1) term C0,0 in the expansion of Czdz+Czdz̄, which

is left free. In addition, from the O(log r/r2) term in the expansion of (B.1.3) we obtain a

differential equation involving U0,0, W0,0, W2,0, W2,1, W4,1 and C0,0, that can most easily be

solved for W4,1 as the latter appears linearly and with no derivatives.2

We can next obtain the function f from (B.1.2). This concludes the construction of the

metric (B.1.1) and the gauge field (B.1.6) near to r → ∞. At leading order, we find that the

five-dimensional metric is

ds2
5 =

dr2

r2 + r2ds2
4 , (B.1.19)

2This is a new constraint on the Kähler base metric, that may be unexpected since we have already solved
all the conditions reviewed above for obtaining a supersymmetric solution from such metric. There is no
contradiction here: a priori we could avoid to further constrain the Kähler metric by interpreting the equation
under examination as a differential equation for the boundary function C0,0. However, shortly we will impose a
boundary condition setting C0,0 = 0; consistency with the present equation then fixes W4,1.
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where the metric ds2
4 on the conformal boundary is

ds2
4 =

1
4U4

0,0W2
0,0

[
2W0,0W2,1 − 2iU2

0,0(dC0,0)zz̄ − ∂z∂z̄ log W0,0
] (

dψ̂ + φ0,0
)2

− 2 (dy + C0,0)
(
dψ̂ + φ0,0

)
+ 4W2

0,0dzdz̄ .

(B.1.20)

This is in agreement with the general form of a supersymmetric Lorentzian boundary metric,

as can be seen by comparing with [61, eq. (4.12)]. In fact, it is even too general for our

purposes, as it does not admit a simple Wick rotation to Euclidean signature. In order to

be able to perform a simple Wick rotation and match (4.2.8), we will fix part of the free

functions in (B.1.20) as

C0,0 = 0 , W2,1 = 2U4
0,0W0,0 +

1
2W0,0

∂z∂z̄ log W0,0 . (B.1.21)

In this way, the perturbative solution takes a simpler form, and only depends on the free

functions U0,0, U2,0, W0,0, W2,0, W4,0, W6,0, where U0,0 and W0,0 are boundary data, while

the remaining four functions only appear at subleading order in the five-dimensional metric.

For convenience we will rename the boundary data as

U0,0 =
1
2

u1/2 , W0,0 = ew/2 , φ0,0 = a = azdz + azdz̄ , (B.1.22)

and the subleading functions as

U2,0 = ew/2k1 , W2,0 = ew/2k2 , W4,0 = ew/2k3 , W6,0 = ew/2k4 , (B.1.23)

where we recall that all functions depend on z, z̄. Also redefining the Killing coordinates

{y, ψ̂} into new coordinates {t, ψ} as

y = t , ψ̂ = ψ + t , (B.1.24)

the boundary metric becomes

ds2
4 = −dt2 + (dψ + a)2 + 4ewdzdz̄ , (B.1.25)
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with eq. (B.1.18) now being

da = i u ewdz ∧ dz̄ . (B.1.26)

At leading order, the gauge field strength reads

dA0 = − 1√
3

d
[
−u

8
dt +

u
4
(dψ + a) +

1
4
∗2dw

]
, (B.1.27)

where we denote ∗2d = i(dz̄ ∂z̄ − dz ∂z). The corresponding gauge potential is determined

up to a gauge choice that will play an important rôle. We see that after taking t = −iτ, these

agree with the field theory background fields (4.2.8), (4.2.10).

At subleading order the canonical form (B.1.1) of our five-dimensional metric is not of

the Fefferman–Graham type (4.4.5), (4.4.6). Besides being more standard, the latter is

desirable as it makes it simpler to extract the holographic data from the solution. We find

that Fefferman–Graham coordinates are reached after implementing a suitable asymptotic

transformation, sending {t, zold, ψold, r} into {t, znew, ψnew, ρ} and having the form:

r =
1
ρ

[
1 + ρ2(mr,2,0 + mr,2,1 log ρ) + ρ4(mr,4,0 + mr,4,1 log ρ + mr,4,2(log ρ)2) +O(ρ5)

]
,

zold = znew + ρ4 (mz,4,0 + mz,4,1 log ρ) +O(ρ5) ,

ψold = ψnew + ρ4 (mψ,4,0 + mψ,4,1 log ρ
)
+O(ρ5) , (B.1.28)

where all the m coefficients are specific functions of z, z̄. It should be noted that the

conformal boundary, originally located at r = ∞, is now found at ρ = 0. In section 4.4.1

we give further details on the subleading terms in the metric and in the gauge field in

Fefferman–Graham coordinates. There we drop the label “new”, being understood that we

always work in the new, Fefferman–Graham coordinates. Notice that since the metric can be

cast in Fefferman–Graham form it is asymptotically locally anti-de Sitter.
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B.2 Supersymmetry at the boundary

B.2.1 Killing spinors

At the boundary of a five-dimensional asymptotically locally anti-de Sitter solution, the

supersymmetry condition (4.4.4) gives rise to the charged conformal Killing spinor equation

∇A
i ζ± = −1

4
σ± iσ

j
∓∇A

j ζ± , (B.2.1)

where we are using the two-component spinor notation introduced in section 4.2.2 and

∇A
i ζ± = (∇i ∓ iAi) ζ± is the spinor covariant derivative, with ∇i the Levi-Civita connection

constructed with the boundary vierbein and A = −
√

3A(0) the canonically normalized

gauge connection. This holds both in Euclidean and Lorentzian signature, for details

see [145] and [61], respectively. Here we are identifying the Γ1, Γ2, Γ3, Γ4 matrices of Cliff(5)

with those of Cliff(4), and the Γ5 of Cliff(5) with the chirality matrix of Cliff(4); then we

pass to two-component notation. The same equation ensures that some supersymmetry is

preserved when a four-dimensional SCFT is coupled to background conformal supergravity,

and (for spinors with no zeros) can be mapped into the equation arising when one couples

the theory to new minimal supergravity [145, 90, 61].

One can see that the four-dimensional metric (4.2.8) and gauge field (4.2.10) allow for

solutions to (B.2.1) and thus define a supersymmetric field theory background as well as

supersymmetric boundary conditions for the bulk supergravity fields. Our scope here is to

illustrate the gauge choice that makes the spinors independent of the coordinate τ, so that

they are globally well-defined when this is made compact.

We choose the vierbein

e1 + i e2 = 2 e
w
2 dz , e3 = dψ + a , e4 = dτ . (B.2.2)

By studying (B.2.1) we find that in the generic case where u is non-constant, the solution

reads

ζ+ =
1√
2

eγ′τ+iγψ+iλ
(

0
1

)
, ζ− =

1√
2

e−γ′τ−iγψ−iλ
(

1
0

)
, (B.2.3)

where we have fixed an arbitrary overall constant. In the special case u = const there exist

additional solutions, however this enhancement of supersymmetry is not relevant for the
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present work and we will not discuss it further.

Kosmann’s spinorial Lie derivative along a vector v is defined as

Lvζ± = vi∇iζ± +
1
2
∇ivjσ

ij
±ζ± . (B.2.4)

For the Killing vectors in our background, we find:

L∂ψ
ζ± = ∂ψζ± = ±iγ ζ± ,

L∂τ
ζ± = ∂τζ± = ±γ′ ζ± ,

(B.2.5)

hence ±γ and ±γ′ are the charge of the spinors ζ± under ∂ψ and i∂τ, respectively. It follows

that the condition for ζ± to be independent of τ is

γ′ = 0 . (B.2.6)

B.2.2 Superalgebra

The algebra of field theory supersymmetry transformations generated by a pair of spinors

ζ+, ζ− solving (B.2.1) reads [145, 90, 61] (see also [64, sect. 5.1] for some more details):

[δζ+ , δζ− ]Φ = 2i (LK − i q KyAnm)Φ , δ2
ζ± = 0 , (B.2.7)

where LK denotes the Lie derivative along the complex Killing vector K defined in (4.2.7)

and q is the R-charge of a generic field Φ in the field theory. The gauge field Anm is defined

as Anm = A + 3
2 Vnm, where Vnm is a well-defined 1-form satisfying

∇iVnm
i = 0 , 2i σi

∓Vnm
i ζ± = ±σi

∓∇A
i ζ± . (B.2.8)

This actually only fixes KiVnm
i . In this way, Anm and Vnm can be interpreted as the auxiliary

fields of background new minimal supergravity (hence the label “nm”).

Let us now evaluate these quantities in our background (4.2.8), (4.2.10). With the

choice (B.2.3), the vector K takes precisely the form (4.2.9), K = 1
2 (∂ψ − i∂τ), while its dual

1-form is

K[ =
1
2
(dψ + a− i dτ) . (B.2.9)
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As long as u 6= 0 this has non-vanishing twist,

K[ ∧ dK[ =
i
4

u ew (dψ− i dτ) ∧ dz ∧ dz̄ . (B.2.10)

As discussed in [61], after Wick rotating to Lorentzian signature by τ = it this implies that

the five-dimensional bulk solution falls in the timelike class of [108]. Eqs. (B.2.8) for Vnm

are solved by

Vnm = −u
4
(dψ + a) + κ K[ , (B.2.11)

where κ is an undetermined complex function satisfying Ki∂iκ = 0. Then Anm reads:

Anm = A +
3
2

Vnm =
1
2
(3κ − u)K[ +

i
4
(dz̄ ∂z̄w− dz ∂zw)− iγ′dτ + γ dψ + dλ . (B.2.12)

Contracting with K gives K Anm = 1
2 (γ− γ′). Note from (B.2.5) that this is also the

charge of the Killing spinor under K, LKζ+ = i
2 (γ− γ′)ζ+.

We conclude that in the background of interest, and with the choice (B.2.6), the superal-

gebra reads

[δζ+ , δζ− ]Φ = i
(
− iL∂τ

+ L∂ψ
− iγ q

)
Φ . (B.2.13)

Passing to the corresponding generators gives

{Q+,Q−} = H + J + γ Q , (B.2.14)

where H and J are the charges associated with ∂τ and −∂ψ, respectively, while Q is the

R-charge. Taking the expectation value in a supersymmetric vacuum leads to the BPS

condition

〈H〉+ 〈J〉+ γ〈Q〉 = 0 . (B.2.15)

B.2.3 Twisted background

For the twisted background (4.4.54), (4.4.55), requiring that the Killing spinors ζ± are

independent of the new time coordinate and recalling relations (B.2.5), valid in the old

coordinates, immediately leads to γ′ = −i γ tan α. It is also straightforward to implement

the change of coordinates and obtain the new K (given in (4.4.56)) and the new form of the

superalgebra.
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