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Precision holography
and supersymmetric theories on curved spaces

Pietro Benetti Genolini

The formulation of rigid supersymmetric field theories on curved space leads to a
number of results on their strongly-interacting regime, crucial from both the mathematical
and physical point of view, starting from Witten’s topological twist of four-dimensional
Yang-Mills theory. At the same time, strongly-coupled field theories may also be studied
holographically via the AdS/CFT correspondence. The aim of this thesis is to study aspects
of the holographic dictionary for supersymmetric theories on curved manifolds.

A key aspect of the correspondence is the renormalization of gravity observables,
which is realized via holographic renormalization. If the dual boundary field theory
is supersymmetric, it is natural to ask whether this scheme is compatible with the rigid
supersymmetry at the curved boundary. The latter requires specific geometric structures, and
general arguments imply that BPS observables, such as the partition function, are invariant
under certain deformations of these structures. We may then formulate a precise check of
the holographic dictionary by asking whether the dual holographic observables are similarly
invariant, as the free energy of the gauge theory is identified with the holographically
renormalized supergravity action.

In the first part of the thesis, we consider this question in N = 4 gauged supergravity
in four and five dimensions for the holographic dual to the topological twists of ' = 4
gauge theories on Riemannian three-manifolds and N = 2 gauge theories on Riemannian
four-manifolds. We show that the renormalized on-shell action is independent of the metric
on the boundary four-manifold, as required for a topological theory. We then go further,
analyzing the geometry of supersymmetric bulk solutions. This allows us to show that the
gravitational free energy of any smooth filling vanishes in both AdS,/CFT3 and AdSs/CFTj.

In the second part of the thesis, we study the same question in minimal N = 2 gauged
supergravity in four and five dimensions. In four dimensions we show that holographic
renormalization precisely reproduces the expected field theory results for the dependence
of the partition function on the background. Surprisingly, in five dimensions we find that
no choice of standard holographic counterterms is compatible with supersymmetry, which
leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain
topological assumptions we provide some independent tests of these new boundary terms,
in particular showing that they reproduce the expected VEVs of conserved charges. We also
briefly comment on the relation between these terms and boundary supercurrent anomalies.
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Introduction

1.1 The AdS/CFT correspondence

Gravity is intrinsically different from quantum field theory. Despite the numerous simi-
larities in the classical formulation (think for instance to the relation between Yang-Mills
theories and general relativity), quantum gravity and field theory differ at a very fundamen-
tal level, for gravity describes spacetime itself and thus self-interactions produce phenomena
such as black holes. The appearance of black holes is at the root of a number of (conjectured)
peculiar features of quantum gravity, such as the absence of global symmetries (for a review
see [30]), and was the main stimulus for the development of the holographic principle
[34, 210, 206]. The latter is one of the very few properties of quantum gravity we think we
know, and succinctly states that the number of degrees of freedom of a gravitational system
in a volume is bounded by the area of the boundary of the volume. Therefore, quantum
gravity defies our naive notion of locality derived from quantum field theory['|

String theory naturally unifies gravity and field theories in a framework that a number
of highly non-trivial computations have shown to be self-consistent] In the perturbative

formulation of string theory on flat spacetime, the holographic principle is not immediately

TA more precise formulation involving the covariant entropy bound [56] is beyond the scope of this thesis,
and we refer the reader to the relevant literature for more information; for a review see [57].

*For the purposes of this chapter, “string theory” indicates both the perturbative formulations of the
ten-dimensional string theories, and the strongly-interacting completion and extension to eleven dimensions.
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manifest. However, non-perturbative phenomena hint at a relation between string theory
on a class of backgrounds and a conformal field theory [165) 116| 225]. Studying the low-
energy limit of string theories in presence of black branes indicates that quantum gravity on
AdS;1 is equivalent to a conformal field theory on a d-dimensional space isomorphic to
the boundary of AdS;4: this equivalence is the AdS/CFT correspondencel| More precisely,
one connects independently decoupled sectors of the open and closed string descriptions
of the same system. This correspondence looks holographic by construction, and a more
careful analysis of concrete instances shows that the holographic principle is satisfied also
quantitatively: the degrees of freedom of the bulk, being the same as the degrees of freedom
of the boundary, saturate the holographic bound [207]. Moreover, this correspondence
surprisingly defies our initial statement that gravity is intrinsically different from quantum
field theory. In fact, on a certain class of spacetimes, a theory involving quantum gravity is

fully equivalent to a particular quantum field theory.

The supergravity approximation to string theory is ten- or eleven-dimensional, so the
full solution is of the form AdS;,; x X, for a p-dimensional manifold X,. The ur-examples
of the original paper by Maldacena [165] are the maximally supersymmetric supergravity
solutions that are products of an anti-de Sitter factor and spheres, the most studied one
arguably being the duality between Type IIB on AdSs x S° with N units of flux through S°
and four-dimensional ' = 4 SU(N) super Yang-Mills theory. However, we may generalize
the setup by considering supergravity solutions with different internal spaces X, obtaining
less supersymmetric field theories [225]. For instance, one may obtain dualities with
four-dimensional N/ = 1 field theories by considering Type IIB on backgrounds of the
form AdSs x X5 with X5 being a Sasaki-Einstein manifolds: the physical interpretation
would be a number of branes probing the singularity at the tip of the metric cone over X5
[143) [148| 1, 181]]. In the effort of geometrizing high-energy physics, this leads to a number
of relations between the structure of the internal space and the dual field theory (e.g. the
geometric dual to 2 maximization [135) [177]).

From the physics point of view, an appealing aspects of the AdS/CFT correspondence
is that the dictionary found from string theory generally describes a strong-weak duality.

The low-energy and weak-coupling regime of string theory, described by a semi-classical

3By and large, in this thesis we will work on Riemannian spaces. Therefore, to be precise, AdS;,; does not
refer to anti-de Sitter space in its cosmological setting, but rather to the hyperbolic space H**1. However, “the
H/CFT correspondence” doesn’t have the same appeal as “AdS/CFT,” so we will stick to the standard wording.
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supergravity theory, is equivalent to the strong-coupling regime of the gauge theory. This is
clearly seen in the example of the relation between Type IIB on AdSs x S° and N = 4 super
Yang-Mills, obtained by studying D3-branes at the origin of R® = C(S°), the metric cone on

the five-sphere.

As the quantization of string theory on AdSs x S° is not yet fully understood, we should
restrict to a regime where the quantum corrections can be ignored. This requires the open
and closed string coupling to be small, that is g¢ < 1. The D3-brane solution can be
considered as a soliton in IIB supergravity, the low energy approximation of type IIB closed
superstring theory. The approximation is valid provided the string scale v/a' is negligible
compared to the extended structure of the solution L, which is fixed by the equations of
motion to be L* = 47tg.a’>N. Therefore, supergravity is a good approximation to the closed
string picture if gGN > 1. On the open string side, the D3-branes are four-dimensional
objects where open strings can end. At low energies, we can neglect the massive string states,
and the dynamics of the end-points of the open strings only involves the massless degrees
of freedom, which describe N' = 4 SU(N) super Yang-Mills theory. The gauge and string
coupling can be identified by analysis of the DBI action of the branes, but also by identifying
the complex moduli of type IIB supergravity and A" = 4 SYM, leading to g3, = 47gs.
We then have to rephrase the conditions for the weak-coupling of gravity in terms of gym:
gym < 1 and g%\;N > 1. This can only hold if N > 1. However, an old argument by
‘t Hooft explains that at large N the effective coupling of non-Abelian Yang-Mills theory
is A = g2\;N [208], which for us implies that the gauge theory is strongly-coupled in the

planar limit.

Strongly-interacting field theories are a largely unexplored territory, as by definition
they lie beyond the validity of the perturbative regime. The AdS/CFT correspondence
allows us to construct a dictionary between observables in the large N, but strongly-coupled,
limit of a field theory and observables in the calculable limit of supergravity. Therefore,
it opens the door to the investigation of a new domain in field theory. Said field theory
appears as formulated on a space that is isomorphic to the boundary of the AdS part of the
supergravity solution. Thus, possible backgrounds are round spheres, flat and hyperbolic
spaces: the many faces of anti-de Sitter space, corresponding to different radial coordinates

and slicings [93]. This list is fairly limited, and for various reasons one may want to consider
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more general backgroundsf We may also generalize the correspondence in this direction.

Anti-de Sitter space (read Poincaré hyperbolic space) in d + 1 dimensions can be de-
scribed as the open unit ball B! with metric 4ggai1/(1 — \x]z)z, which is normalized
to have constant sectional curvature —1 (that is, the AdS radius is one). Note that if we
multiply the metric by p2, with p = (1 — |x|*)/2, we obtain the closed unit ball B4+1 with the
flat Euclidean metric, which extends to the boundary S4 = 9Bt as the round metric g of
constant sectional curvature +1. The crucial property of p is that it is positive on B?*! and
has a first order zero only on 9B%+!, where dp # 0. However, any other function with these
properties would lead to a smooth metric on B#+1, and would differ from p by a positive
smooth function e®, leading to a smooth metric e*g. Since all extended metrics differ by a
conformal transformation, only the boundary conformal manifold (8%, [g]) is well-defined.

This construction can be generalized in a fairly straightforward way by using Penrose’s
idea of conformal infinity [193]. Let Y, be the interior of a compact (d + 1)-dimensional
manifold with non-empty boundary dY; 1 = M;. A complete Riemannian metric G on Y4
is conformally compact if there is a defining function p on Yy, such that the conformally
equivalent metric

G = p°G (1.1.1)

extends to a smooth metric on the compactification Y;, 1. A defining function is a smooth
non-negative function on Y;,; with p=1(0) = 9Y;,; and dp # 0 on dY;,1. As above, the
induced metric ¢ = Glay .., is not uniquely defined, but the conformal class [g] is, and the
conformal manifold (My, [g]) is called the conformal boundary (or infinity) of (Yz41,G). A
conformally compact manifold (Y1, G) is asymptotically locally hyperbolic if it has asymptotic
negative constant scalar curvature R[G] — —d(d +1). This corresponds to requiring
|dplsy,,, = 1. We may then find another smooth defining function z such that the metric in

a neighbourhood of the boundary is expressed as
G = L(d2
- 27( 2 +g), (1.1.2)

where g has an analytic expansion in z| The structure of the expansion depends on the

4Different slicings of anti-de Sitter space correspond to different choices of radial coordinate, which in turn
correspond to conformal transformations at the boundary. Indeed all the backgrounds collected above are
locally conformally flat.

5Tt is easily checked that the scalar curvature for this metric does indeed asymptote to —d(d + 1) near the
boundary.
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dimensionality of the spacetime and on the field content of the bulk supergravity theory
[93, [79, 212]. For instance, if d + 1 is odd there are logarithmic terms that are known
to be related to the conformal anomalies of the boundary field theory [225, 127]. The
general framework is on firm mathematical grounds only in the case of pure gravity with a
cosmological constant, when the metric G is Einstein and the existence of the expansion has
been proved by Fefferman and Graham [96]. Theories with more fields, such as required by
supersymmetry, have to be considered on a case by case basis, even though the structure
may be similar, as we will see in the body of the thesis.

Therefore, we may generalize the AdS/CFT correspondence to include curved back-
ground manifolds by requiring the bulk to be asymptotically locally hyperbolic rather than
just anti-de Sitter. Rephrased in these terms, the correspondence relates a field theory on
a Riemannian manifold (My, §) to supergravity on an asymptotically locally hyperbolic
space Yy, 1 such that (M, g) arises as the conformal boundary. However, this leads to the
next immediate question: how do we formulate the field theory on the curved manifold?
Even more specifically, how do we formulate a supersymmetric field theory on the curved

manifold preserving some supersymmetry?

1.2 Supersymmetry on curved spaces

The formulation of a field theory on a curved background is always ambiguous. We want
to deform the theory by relevant operators that leave the short-distance behaviour of the
theory unaltered, but we may rephrase the coupling of such operators in terms of curvature
tensors, showing explicitly that there could be different curved-space completions of the
same flat-space Lagrangian, as all the curvature terms vanish on flat R?. However, the
earlier discussion leads us to look for a completion that leaves the curved-space theory
supersymmetric.

The simplest way of formulating on a curved manifold (M, g) a generic field theory
described by a Lagrangian L. is by minimal coupling: every instance of the flat space
metric is replaced by ¢ and every partial derivative is replaced by the covariant derivative
V obtained from the Levi-Civita connection of g. This is what we learn in a General
Relativity course. However, it is not obvious that the resulting theory £y, will have the

same symmetries as the flat-space theory. This is trivial: if the variation of the flat space
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Lagrangian is a divergence on flat space, 6 Ls = 9, (- - - )¥, it’s not necessarily true that it
will be a divergence on My, 6'Ly, # V(- -+ )*.

The issue is directly related to the fact that the minimal coupling of a rigid supersym-
metric theory on a spin manifold M, requires the existence of a covariantly constant (or
parallel) spinor on M, representing the supersymmetry parameter of the supersymmetry
transformation. The existence of a parallel spinor sets a very stringent condition on the
geometry of the manifold: the holonomy has to be SU(n) C SO(2n),Sp(n) C SO(4n), G, C
SO(7),Spin(7) C SO(8) [216]f] In four dimensions, for instance, a covariantly constant
spinor on a compact manifold can only be found on flat tori T* and K3 surfaces with
Calabi—Yau metrics.

Yet, there are ways around this. First of all, field theories that are supersymmetric and
Weyl invariant on flat space can be placed on conformally flat spaces by virtue of their very
own definition. Therefore, for instance, we can define a curved-space Lagrangian on any
round sphere or S! x $4~1. Also, by exploiting the ambiguity in the curvature terms, we may
construct ad hoc curved-space completions of the flat-space Lagrangian that preserve some
supersymmetry on specific backgrounds. However, we are interested in more systematic

approaches to non-minimal coupling.

1.2.1 Twisting

The guiding principle is to generalize the necessity of covariantly constant spinor. Super-
symmetric field theories include a global symmetry, the R-symmetry, which is the outer
automorphism group of the supersymmetry algebra. We may couple the R-symmetry to a
background gauge field A and define a twisted supercharge with corresponding R-charged
spinor parameter satisfying

(Vy—iAy)C = 0. (1.2.1)

We can then choose a field configuration for the background A that cancels the spin

connection part of the covariant derivative, thus leaving us with 9, = 0, which is solved on

®We expect a relation with holonomy, because a covariantly constant spinor is invariant under parallel
transport and hence invariant under the holonomy group at any point. Moreover, the existence of a parallel
spinor implies that the manifold is Ricci-flat (simply take the integrability condition). The four-classes of
holonomy groups listed above are definitely Ricci-flat. However, is this the complete list? This question is still
to be solved. In the non-compact case, it is known that there are Ricci-flat metrics with SO(#) holonomy (and
not a subgroup): the Euclidean Schwarzschild metric is a complete metric on S? x R? with holonomy SO(4). In
the compact case, it is an open question whether there are simply connected manifolds that have vanishing
Ricci tensor but have generic holonomy.
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any background by a constant spinor. The systematic method of formulating a field theory
on an arbitrary curved manifold by coupling the R-symmetry to a background gauge field
that cancels the spin connection goes under the name of twisting. Since it mixes part of the
R-symmetry group with the structure group of the frame bundle of spacetime, this approach
requires the starting field theory to have a sufficiently high amount of supersymmetry.
Often, and quite surprisingly, it leads to sectors of the set of observables that depend only
on a small part of the background geometry. Famously, for four-dimensional A = 2 field
theories, it leads to observables that reproduce the Donaldson invariants of the background
four-manifold which, under some topological restrictions, only depend on the smooth
structure [85} 219, 32]]. For this reason, it is referred to as the topological twist. However, this
is not always the case: one may twist an N’ = 1 theory with U(1)g symmetry on Kéhler
surfaces (with U(2)-structure) obtaining observables that depend on the complex structure

of the underlying manifold [137, 223]7

At times, it is easier to appeal to different equivalent descriptions of the topological
twist. By phrasing it in terms of group theory, we consider the structure group K of the
frame bundle of the background manifold and the R-symmetry group H, and we aim to
find a subgroup K’ of K x H that is isomorphic to C but acts differently on the field theory.
Specifically, we aim to find a twisted structure group K’ such that a number of supercharges
Q! would transform as singlets under K’ and in some representation of the leftover global
symmetry group H'. For instance, in the case of the Donaldson-Witten twist of four-
dimensional ' = 2 SYM, we have K = Spin(4) = SU(2), x SU(2),, H = SU(2)r x U(1),
and K' = SU(2), x (SU(2), x SU(Z)R)diag The supercharges then become

7Here and throughout the thesis we consider the full topological twist, where we require the entire back-
ground to be arbitrary. However, one may also consider partial twistings, when the background is a product
manifold and one twists only on, e.g., one of the factors X. In this case, the field theory observables will usually
only depend in a simple way on the geometric structure of X. For instance, this is famously the case for class S
theories obtained by a partial twist on a Riemann surface ¥ of the worldvolume theory of a M5-brane wrapping
R13 x 3. The resulting theory only depends on the complex structure of ¥ [104].

8We are being a bit cavalier here. Generically, the SO(4) structure group of the frame bundle may not be lifted
to Spin(4) = SU(2) x SU(2), with the obstruction being the second Stiefel-Whitney class w,(My) € H?(My, Z5).
If this is not possible, and the manifold is not spin, we shall take the R-bundle to be just a SO(3)r bundle such
that wy (Pr) = wy(My), so that the spinors sections of S* ® Vg would exist. More details on the global structure
will be discussed in the concrete examples in the body of the thesis.
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KxH K x H'

QL (2,1,2)7! (2,2)71 1-form Gy,

7 scalar and
Q: (122! (1,1)'e(1,3)!
self-dual 2-form Q, X;va
This is often the quickest method to determine the feasibility of a twist and the representa-
tions of the twisted field content, as we will see later in the thesis.

In terms of the geometry, we consider the SO(d)-structure of the generic Riemannian
manifold and look for associated vector bundle V with connection wy. Supersymmetry
then requires the introduction of a R-symmetry gauge principal bundle Pr, with associated
vector bundle Vr and gauge connection wg. The twisting consists in the identification of the
Vr and V bundles and of their connections. As for the four-dimensional N = 2 twist, there
we have a Spin(4)-structure with associated rank 3 vector bundles A5 M — the bundles of
(anti-)self-dual 2-forms — which inherit the (anti-)self-dual part of the Levi-Civita connection
w+ (with respect to the Lie algebra-valued indices of the connection). Supersymmetry
requires the existence of an SU(2)r principal bundle, to which we associate a rank 3 vector
bundle Px — My with connection wg. The twist is the identification of A;r M, and Pg
together with w, and wgf)

Twisting allows us to define fermions on an arbitrary manifold: spinors would be
sections of the spin bundle tensored with the R-symmetry bundle, even though the factors
may not exist on their own. However, identifying spacetime and R-symmetry bundles allows
one to define different sections of the tensor product bundle, which always exists.

The three reformulations of the topological twists above are all equivalent, and provide
insights into different aspects of the twisted theories. We will see that we are going to need

all of them as we go on.

1.2.2 General coupling to gravity and holography

One may also generalize this procedure. In a supersymmetric field theory, we always have a
stress-energy tensor and a supersymmetric supercurrent, which (often) resides in the same
supermultiplet. This supermultiplet contains a number of other bosonic and fermionic

terms, which can be coupled to a number of bosonic and fermionic fields, Op and Or.

9See footnote [8f for more precision.
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For instance, Op contain the variation of the background metric Ag"" that couples to the
stress-energy tensor Ty,. In the deformed Lagrangian, the fermionic terms OF are set to
zero, and in order for the deformed theory to preserve supersymmetries Q!, their variation
under Q! should vanish. The equation 6oOf = 0 translates in a further generalization of

(1.2.1), which schematically reads

(Vi —iAu)0 = Xul, (1.2.2)

where both A, and X, belong to the set Op. We can give a physical interpretation to
in terms of background supergravity [97]. In ordinary supergravity, the metric
is dynamical, whereas now we want to view it as a classical background and allow it
to take an arbitrary configuration (which is going to be the metric of the background
space of our supersymmetric field theory). Of course, in supergravity the metric belongs
to a supermultiplet together with other bosonic and fermionic fields. These will be our
previous Op and Of. Since these fields are not dynamical, they must reside in an off-shell
supergravity multiplet, to which we couple the supermultiplet containing the stress-energy
tensor. This construction constitutes a rigid limit of off-shell dynamical supergravity: we
let the graviton and the other auxiliary fields of the multiplet fluctuate, then we freeze
their degrees of freedom by sending the Planck mass to infinity, effectively decoupling
gravity from the field theory. Looking for supersymmetric classical backgrounds requires
the vanishing of the variation of the gravitino, which gives (1.2.2). Therefore, the rigid
supersymmetry algebra arises as the subalgebra of the algebra of supergravity gauge
transformations that leaves the background invariant. As in ordinary supergravity, the
number of supercharges preserved by the background are determined by the number of
solutions to the generalized Killing spinor equation (1.2.2). This construction provides
a consistent way of formulating a supersymmetric field theory on a curved background,
and we may then ask which backgrounds admit such completion. Again, as in ordinary
supergravity, the allowed background can be found by studying the geometric conditions

required in order to solve the generalized Killing spinor equation.

For concreteness, we will review the example of N =1 field theories in four dimensions

with a U(1)g R-symmetry [97]. The stress-energy tensor resides in a R-multiplet that in
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components contains [107, [151]

(]';SR)/ Tyvs Spas Cw) ’

where j;SR) is the U(1)g-current, T,v the stress-energy tensor, S, the supercurrent, and Cy,
is a conserved 2-form current. A relevant off-shell formulation of four-dimensional A" = 1
supergravity is the new minimal formulation [5) 205]: the gravity multiplet of this theory

contains

(Ay/ glﬂ// T]la/ B]ll/) 7

where A, is a U(1) gauge field, g, is the graviton, ¥, is the gravitino, and By, is a 2-form

gauge field. We may also dualize the field strength of the latter to a 1-form gauge field
V = ixdB,

which is obviously conserved[] Coupling to new minimal supergravity allows us to
construct backgrounds for supersymmetric field theories by solving the generalized Killing
spinor equation coming from the vanishing of the supersymmetry variation of the gravitino.
In this context, we may consider supercharges of definite R-charge, corresponding to the

following charged conformal Killing spinor equations

(Vi Fidu)le = FVulozos)lx, (1.2.3)

where (. are two-component spinors and the generators of the Clifford algebra are
(0+) = (£, —ily). If there are both supercharges, we may define a Killing vector bi-
linear K = {0’ {_9;. The supersymmetry algebra is generated by the subalgebra of the
infinite-dimensional supergravity gauge transformations that leaves invariant the classical

background. In this case, acting on a field ® of R-charge g, it reads
[07.,6; 1@ = 2i (Lxk —igK=2 (A+3V))®@, &, = 0.

Notice the appearance of the R-charge on the right-hand side of the transformation.

1%Indeed
VHV, = ixd#(+dB) =ixd’B=0.
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We analyse the geometric conditions that imposes on the background [90]. In the
case of a single Killing spinor, say (., the background manifold turns out to be required to
be complex with Hermitian metric adapted to the complex structure constructed from the
spinor

, 2i ,
I = —wgi (‘7+)lj€+ .
We may then turn the problem upside down and try to reconstruct the fields of new minimal
supergravity from the geometry of the background (that is, ¢ and I): curiously, relates
the divergence of [ and V

Vil = 2V;.

This makes beautifully clear the relation between the twist and the “rigid limit” for V' =1

in four dimensions. Comparing (1.2.1) and (1.2.3), we notice that we recover the former

when V = 0 in the latter, and indeed V = 0 if and only if the manifold is K&hler, which is
the condition for the twist of A/ =1 SYM we saw in section On the other hand, the
gauge field V in new minimal supergravity allows us to extend the formulation to complex
manifolds that are not Kéhler, such as Hopf surfaces.

Notice that the analysis heavily depended on the choice of new minimal supergravity:
different choices of off-shell formulations of supergravity lead to different completions
of the stress-energy tensor multiplet and in general to different results. For instance, the
analysis based on new minimal supergravity has an evident problem: it does not lead to
an S$* background. However, S* is conformally flat and we know that superconformal field
theories always have a U(1)g symmetry. In fact, one may use different off-shell formulations
of the same dynamical supergravity, such as the so-called conformal supergravity or old
minimal, and indeed S* is among the backgrounds that one recovers by coupling to old
minimal, but not new minimal [g7] [

This approach has been generalized to a number of different dimensions and different
supergravities (for a review see [89]]), but for our purposes we are only going to need
the three-dimensional case with the same amount of supersymmetry, studied in [66].
Three-dimensional field theories with two supercharges and a U(1)g symmetry may be

formulated on manifolds admitting a transversely holomorphic foliation, with a metric

1We are being a bit sketchy for the sake of simplicity. It may be possible to recover S* from new minimal
supergravity, but the conformally charged Killing spinor would have zeroes where some geometric objects
constructed as spinor bilinears degenerate. This would be in analogy with recovering S* from conformal
supergravity: the complement of the zero locus is R*, which is obviously complex [145].
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that is transversely Hermitian. A transversely holomorphic foliation can be defined in
terms of a foliated atlas. Let {U,} be an open cover of a foliated manifold with local
submersions f, : Uy — C7 such that the fibers of f, are the leaves of the foliation (that
is, we are immersing the space transverse to the foliation). We say that the foliation is
transversely holomorphic if the local diffeomorphisms g, : fu(Ux N Up) — fz(U, N Up) such
that fg = Tgsfa, are biholomorphisms for all &, 8. Concretely, for a three-manifold this
means that there exists a unit vector field X determining the foliation and a basic integrable
complex structure | on the two-dimensional transverse spaces: X 2] = Lx] = 0. In three
dimensions, the only closed topological manifolds that admit a transversely holomorphic

foliation are the total spaces of Seifert fibrations and torus bundles over a circle [58].

Finally, for superconformal field theories there is also a third completely different method
to find supersymmetric backgrounds, based on a clever use of holography originated in [145].
By using the AdS/CFT correspondence, we may realize some superconformal field theories
on curved manifolds at the boundary of asymptotically locally hyperbolic bulk spaces. Start
with an appropriate (d + 1)-dimensional supergravity with an AdS vacuum obtained by
truncating the ten- or eleven-dimensional supergravity approximation to string theory, and
impose that the bulk is a supersymmetric solution. This results in a set of generalized
Killing spinor equations in the bulk. We may then consider such spinor equations in a
neighbourhood of the conformal boundary using the (generalized) Fefferman—Graham
expansion of the fields. The leading order contributions are going to be spinor equations on
the conformal boundary M;, and the existence on M, of a superconformal field theory with
a gravity dual requires the equations to have a solution. This in turn imposes some geometric
requirements on M;. More precisely, the AdS vacuum supergravity solution is dual to the
superconformal field theory on flat space (or on a conformally flat manifold, cf. footnote
l4). The asymptotically locally hyperbolic solution is dual to the relevant deformation of
the SCFT required to formulate it on a curved background, e.g., the background gauge
field coupling to the R-symmetry at the boundary extends to a non-trivial configuration of
the bulk gauge field dual to the R-symmetry. A priori, the hope of consistency is the only
reason why this latter holographic method should end with the same conclusions as the
previous method, based on the rigid limit of supergravity: for instance, in five dimensions it

is known that at the boundary of anti-de Sitter space one finds conformal supergravity and
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not new minimal [26][?] However, as we will see in detail in the bulk of the thesis, at least
for the instances we consider, this method leads to the same results as the previous one:
the boundary Killing spinor equations may be expressed as the generalized Killing spinor

equations of the appropriate supergravity of which we are taking the rigid limit.

1.3 Localization

The formulation of a supersymmetric field theory on a Riemannian compact curved manifold
greatly improves the convergence properties of the path integral, making at least plausible
the possibility of evaluating it in a rigorous way and computing some physical observables.
This relies on a beautiful interplay of quantum field theory, geometry and supersymmetric
ideas [221]. Let £ be the integration space for the path integral of a quantum field theory
with symmetry group F. If the action of F on £ is free, it generates a fibration & — £/F
and, by integrating first over the fiber, we may restrict the integral over £ to an integral over
E/F at the expense of an overall factor of Vol(F). For instance, for an F-invariant observable

O this would give the one-point function
/ DXe S0 = Vol(F) / DX'e50.
£ E/F

However, if the symmetry is fermionic the volume of the group vanishes. Therefore,
contributions to the one-point function of the observable may only come from the fixed
locus of the supersymmetry &y, where the action is not free, and we say we have localized on
this locus. In the generic case, we reduce to the evaluation of an integral over &, consisting
of a one-loop determinant. In some cases, aided by combinations of the symmetries of
the background manifold and the supersymmetries, such integral may condense into a
finite-dimensional one.

The idea of reducing the infinite-dimensional path integral to a much simpler (possibly
finite-dimensional) integral already appears in [217] as a generalization of the Atiyah-Bott
fixed point theorem. In that case, we are interested in the index of an operator over the
infinite dimensional loop space L(M;) of a Riemannian manifold M, (that is, the space of

maps S' — Mj), and it is shown that this reduces to a problem on the finite-dimensional

In fact, for five-dimensional background spaces it is not clear that the two methods lead to the same result
(see the discussion in [6]]).
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space of zeroes of the Killing vector of the canonical U(1) action on L(M;).

However, the full power of the technique arguably becomes first manifest in the context of
the topological twist in four dimensions [219]. After the topological twist, the path-integral
of four-dimensional A/ = 2 theory on an arbitrary background My localizes onto Yang—Mills
instantons on My, and correlation functions of a specific subset of operators localize to
integrals of forms over the moduli space of said instantons. Even more surprisingly, these
integrals may be evaluated (under some assumptions) and coincide with the Donaldson
invariants of My [223]! Moreover, the physical picture provides a much more powerful
computational tool: since the theory is independent of the background metric g, we may
consider a family of metrics g; = tg for t € IR, thus allowing us to move from long to
short distances. For t — 0 we are studying the short-distance description, which is weakly
coupled because of asymptotic freedom, and we have the classical picture of the Donaldson
invariants in terms of SU(2) instantons. However, we may follow the RG flow all the way
to t — oo and study the long-distance description of the same theory. The long-distance
strongly-coupled description is in turn dual to a weakly-coupled Abelian theory [203]. This
gives a different picture of the Donaldson invariants expressed in terms of solutions to PDEs
involving Abelian gauge groups, the so-called Seiberg—Witten invariants. Since we have
only followed an RG flow, we derive a conjectural equivalence between the two invariants

[222], [180), [162].

A similar localization reasoning goes through for twisted four-dimensional N' = 2
theories on manifolds with a U(1) isometry. In the language of section the eight
supercharges combine into a scalar, a 1-form and a self-dual 2-form of the twisted symmetry
group K’ = (SU(2)¢ x SU(2)Rr)diag X SU(2);. The scalar supercharge Q is the one familiar
from the topological twist, but one may also contract the fermionic 1-form with the Killing
vector of the U(1) isometry, obtaining a new conserved supercharge taking into account the
isometry. The paradigmatic example in this class is the so-called Q-background, R* with a
U(1) x U(1) action, where one is able to compute the partition function, as it localizes on

the moduli space of instantons equivariant with respect to the torus action [183) [184]].

It is perhaps interesting to observe that the latter localization with respect to a U(1)
action on the manifold is a field theory counterpart of an older observation in the context
of gravity [113]. For gravitational instantons with a U(1) isometric action, the on-shell

gravitational action can be computed in terms of geometric objects evaluated at the U(1)
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fixed points, the nuts and bolts

It is often the case, and it surely is in all the examples mentioned above, that the localiza-
tion computation is independent of the coupling parameter. Therefore, the localization of the
path integral with respect to a symmetry provides crucial insight into the strong-coupling
regime of the observables invariant under such symmetry. An important breakthrough
came with Pestun’s evaluation of the partition function and Wilson loop of N = 2* theory
on the four-sphere [194]. The entire idea is analogous to the original argument in [219].
Using a fermionic supersymmetry Q, the action of the theory can be deformed by a Q-exact
term +QV, and the modified partition function Z(t) is independent of t: the derivative Z’(t)

can be expressed as the path-integral of a Q-exact object
Z'(t) = /DCI) Q (exp*S*tQV V) ,

but the integration over the field space reduces to a boundary integration by an analog of
Stokes’ theorem, and under some assumptions on the behaviour of the fields, this leads to
zero. Then, if the bosonic part of QV is positive, in the t — oo limit the entire path localizes
on the Q-invariant subset, the BPS field configurations. This boils down to a (complicated)
finite-dimensional integral for a matrix model, which can be at least put in a closed form.
Pestun’s result opened the doors to a number of computations of supersymmetry-protected
observables in different dimensions, starting from three-dimensional N' = 2 Chern-Simons-
matter models on the three-sphere [139] (for a review collecting part of the results in the
topic see [195]).

Moreover, the extension of the spirit of the localization computations to more general
backgrounds (based on the considerations made in the previous section) helps in investi-
gating the dependence of the partition function of the field theory on the geometry of the
background. Indeed, in certain cases one may rewrite the variations of the Lagrangians
under specific variations of the background as Q-exact terms, and in these cases the variation
of the quantum observables would be zero by the same argument as above. For instance, in

the topologically twisted theory, the entire stress-energy tensor is Q-exact, which implies

3As already observed in the beginning, gravity and field theory are different. A field theory instanton
(e.g. Yang-Mills instanton [209, [35]) is a solution to certain partial differential equations on a manifold, and
sometimes gives us information about the topology of the background. A gravitational instanton is a spacetime
itself: it is a connected manifold with a complete Einstein Riemannian metric (e.g. Euclidean Schwarzschild or
the Gibbons-Hawking spaces) [124].
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that the partition function (and a certain set of observables) is independent of the back-
ground metric. This is the case, again, under some assumptions on the topology of the
manifold — in general there could be chambers and wall-crossing in the invariants [180]. In
the four-dimensional N/ = 1 case reviewed in section the partition function only de-
pends on the complex structure of the underlying manifold but not on the Hermitian metric
[68]. Similarly, for the analogous case of three-dimensional N' = 2 theories summarised
in the same section, the partition function only depends on the transversely holomorphic
foliation of the background three-manifold, and not on the Hermitian transverse metric
[68]. Note that, in addition to the aforementioned conditions required on the space of
fields, Q-exactness considerations require the path-integral measure to be consistent with
supersymmetry: in the original Witten’s case, this was justified a posteriori by the soundness
of the mathematical formulation of Donaldson theory. However, in general one is not
necessarily justified to make this assumption (see also footnote 2 of [68]).

Results from the strongly-coupled regime may also improve our understanding of
quantum field theory itself. Most mathematically rigorous formulations of relativistic
quantum field theory are based on the ideas of perturbation theory, and do not take into
account the existence of dualities However, we have known since the 70s, and in a even
more dramatic way since the Second Superstring Revolution, that the same physics can
be described by wildly different mathematical formulations: for instance, fermions can be
equivalent to bosons [71] and gauge redundancies of different types can be identified in
certain regimes [202} [134]. Dualities such as the latter, of Seiberg-type, may be checked in
greater detail by comparing the partition functions computed using localization, as they
are valid for supersymmetric field theories [140]. Moreover, as the partition function is
protected by supersymmetry, it can provide information about properties of the quantum
field theory along the renormalization group flow, such as the R-symmetry [136].

Since localization computations provide a glimpse into the entire supersymmetric sector
of the field theory observables, they are also crucial in establishing relations between
theories even in different dimensions. This successful exploration of such correspondences
is obviously guided by physical constructions, as in the notable case of compactifications
of the Ms-branes theory, but it heavily relies on the knowledge of the structure of the

observables gained by localizing the path integral (the paradigmatic example being the

™In addition, observe that the very hard problem of constructing the path integral measure of the field theory
collapses after localization to a well-defined measure.
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consideration of the structure of the partition function of N' = 2 field theories on the

four-sphere and its relation to Liouville theory [10, 227]).

1.4 Precision holography

In addition to all the above insight, an improved understanding of the strongly-coupled
regime can also lead to a better picture and more refined checks of the AdS/CFT correspon-
dence. The correspondence provides a dictionary between the operators of the two theories,
and with the help of additional symmetries, such as supersymmetry, we may be able to
sharpen the entries in this dictionary.

As already mentioned, the general prescription of the AdS/CFT correspondence is that
quantum gravity on an asymptotically locally hyperbolic manifold Y}, is fully equivalent to
a conformal field theory on a space isomorphic to the boundary of Y4, so in particular the
partition functions of the two theories (whatever this means) are the same[| Unfortunately,
we have very little understanding of quantum gravity, let alone of its partition function.
Therefore, we approximate it by supergravity, and the regime where the approximation
holds corresponds to the strongly-coupled regime of the field theory (in an appropriate
limit where the rank of the gauge group is large), as we saw in section

Also, as we reviewed in section rigid supersymmetry generically equips the
background manifold (M, g), on which the gauge theory is defined, with certain additional
geometric structure, such as an integrable complex structure for four-dimensional N' =1
theories. In the gravitational dual description, one seeks asymptotically locally hyperbolic
solutions to an appropriate supergravity theory in d + 1 dimensions, where (M, [g]) arises
as a conformal boundary. A saddle point approximation to quantum gravity in this bulk

then identified'®|

Z[My] = Ze_smﬂ]. (1.4.1)

Here, Z[M;] denotes the partition function of the gauge theory defined on M;, while S[Y;,1]

is the holographically renormalized supergravity action, evaluated on an asymptotically

5In this framework, by “quantum gravity” we really mean string theory: it includes a quantized theory of
pure gravity, but it also requires a number of other states and branes.

16We will focus on the on-shell action, corresponding to the partition function of the field theory, but an
analogous construction would allow us to compute the holographic counterparts of correlators in field theory in
terms of exchanges in the bulk (for instance, see the classic [100}83] and the more recent results on four-point
functions and quantum corrections [196] [7} [16])).
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locally hyperbolic solution to the equations of motion of the (d + 1)-dimensional theory.
The manifold M; = 9Y,;4, is the conformal boundary, with the boundary conditions for

supergravity fields on Y, fixed by the rigid background structure of M.

The general AdS/CFT relation is somewhat schematic, and both sides must be inter-
preted appropriately. The partition function of the field theory may suffer from ambiguities
related to choices of renormalization schemes, and even in the case of topological field
theories may be infinite due to the summing over topological sectors. Considering the

right-hand side is the main aim of this dissertation.

The gravitational action on a space with boundaries has to be supplemented by a
boundary term that makes the variational problem well-defined, reproducing the Einstein
equations in the bulk. This is the Gibbons—-Hawking—York term, proportional to the extrinsic
curvature of the boundary [229, 112]. When evaluated on a solution, the sum of the on-
shell action I,_s and the Gibbons-Hawking—York term Igyy will generically diverge. The
traditional method for removing this infinity is the background subtraction, that is, referring
all the quantities to their analogues on a “reference” spacetime, such as flat space. Even
though this prescription led to impressive agreements with quantum gravity computations
[112], it suffers from an important drawback, as in general one may not embed a reference
background in an arbitrary spacetime. However, for asymptotically hyperbolic spaces, there
is a way out of the impasse: all the divergences can be expressed as local integrals of geometric
quantities computed in terms of the induced metric on a surface of constant radial distance
(where the radius can be identified e.g. with 1/z in the Fefferman—-Graham expansion)
[27,93]. The holographic renormalization is the process of removing such divergences. Recall
that near the boundary of any asymptotically locally hyperbolic space we may introduce a
Fefferman—Graham-type expansion of the geometric quantities in terms of a coordinate z
with z = 0 at the boundary. We cut off the bulk at a radius z = ¢ near the boundary, define
Y; to be the internal region and evaluate I,—s + Iguy on Y; and its boundary. Then, we
introduce local counterterms I constructed from the geometry induced on the hypersurface
dY; in order to remove the divergences that would arise by taking the limit where Y; covers

the entire Y, 1. This method provides a finite quantity

S = (155% (Lo=s|v, + Iuylay; + Ltloy;) &
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which is the holographically renormalized on-shell action appearing on the right-hand side
of (1.4.1). Since the anti-de Sitter radius is identified with the energy scale of the field theory
by holography [207], the holographic renormalization corresponds to regularization of the
UV divergences in the dual field theory.

The method of holographic renormalization is a systematic method developed from
the very beginnings of the subject with a variety of approaches. This mirrors the corre-
sponding procedure in field theory and forms part of the foundations of the AdS/CFT
correpondence [225| 116} 127, 27, |78, [79} 47, 148} (170, 204]. The infinite counterterms obtained
via this approach are universal. However, the method leaves open the possibility of finite
counterterms compatible with the requirements of the theory. The existence of these terms
implies non-uniqueness of the renormalization scheme, and in such situations it is generally
unclear how to match schemes on the two sides. Given that the classical gravitational de-
scription is typically valid only in a strong-coupling limit of the field theory, in general it is
difficult to directly compute observables on both sides, and hence make precise quantitative
comparisons.

However, the results obtained for supersymmetric quantum field theories defined on
curved spaces, and specifically the exact computation of BPS observables such as the
partition function by means of localization techniques, give us the possibility of sharpening
(1.4.1): the field theory results may be compared with the holographic dual supergravity
computations and provide a precision check of AdS/CFT/[7|

Comparison of the two sides of the AdS/CFT correspondence using localization brought
a number of spectacular results, especially for AdS;/CFT;. To mention a few, the N3/2
scaling of the free energy of the M2-brane theory [147] was recovered from a field theory
computation in ABJM theory on S3 [88]], and the same free energy computation generalized
to a number of cases of ' = 3 [128] and N = 2 models [174]. Moreover, one may deform

the spherical background, and compute via localization to matrix models the free energy

*7Precision checks of the AdS/CFT correspondence have also been completed for AdS; and two-dimensional
conformal field theories, starting from the fareytail of type IIB string theory on AdS; x S®xK3 [84]. However,
because of the peculiar status of three-dimensional gravity and two-dimensional conformal field theory, that
case is very different from what is considered in this thesis. In the case of specific highly symmetric field
theories, such as V' = 4 SYM in four dimensions, one may take advantage of integrability in the planar limit,
and compute the scaling dimensions of some local operators as a function of the effective coupling constant A.
This corresponds, via the AdS/CFT, to integrability of the non-linear sigma model of the worldsheet theory
of type IIB string theory on AdSs x S, Precision computations have been done in this setting achieving full
agreement between the two sides of the correspondence. In this thesis we will consider field theories with less
supersymmetry and the effective lower-dimensional supergravity description, for a review of the integrability
phenomenon in the context of AdS/CFT see [33].
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of Chern-Simons-matter theories on squashed spheres and more general three-manifolds

[123| 11], matching precisely the holographic counterpart in the large N limit [172].

However, a more in-depth investigation of the precise match soon has to deal with at
least some of the issues involved in (1.4.1), as any ambiguities in defining finite renormalized
quantities in gravity are expected to be resolved in making such comparisons. Among
them is the question of symmetries of the two sides: regularization schemes are usually
expected to preserve the symmetries of the theory, and the choice of the radial cut-off in the
holographic renormalization scheme is not necessarily compatible with supersymmetry. As
well as trying to match precise quantities on both sides, there are more general predictions
that may also be compared, such as the dependence of BPS observables on given sets of
boundary data. These latter tests of the correspondence are inherently more robust than
comparing observables in particular theories/backgrounds, and will therefore be a main

focus of this dissertation.

There are numerous additional subtleties involved in that we have not yet men-
tioned and that will not feature prominently in the main body of the work; the most glaring
one being the domain of the sum on the right-hand side, which is not well understood. One
should certainly include all saddle point solutions on smooth manifolds Yj;.;. However,
the existence of such a filling immediately implies that M, has trivial class in the oriented
bordism group Q;O, in general constraining the choice of M;. That said, various explicit
examples (for example, [, I8} 28]) suggest that requiring Y;,1 to be smooth is in any case
too strong: one should allow for certain types of singular fillings of (My, g), and indeed
these may even be the dominant contribution in (1.4.1) (especially for non-trivial topologies
of My). There is no prescription on the inclusion of singular solutions, and the same is
true of contributions from complex saddle points, that is, complex-valued metrics (such as,
trivially, the Euclidean Kerr black hole). One would not expect a saddle point approximation
to give necessarily a real solution, so why should that be the case for quantum gravity?
There have been some speculations (e.g. [166]), but in this dissertation we will focus on
real solutions. Even for smooth solutions, one may question the topology of the bulk: the
supergravity action S typically scales with a positive power of N, and in the N — co limit
only the solution of least action contributes to at leading order, with contributions
from other solutions being exponentially suppressed. Topology changes in the bulk conjec-

turally correspond to phase transitions in the dual field theory (e.g. the transition of N’ = 4
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SYM dual to the Hawking—Page transition for black holes in anti-de Sitter [126} 225]), but
it is a priori not clear how to choose the right topology for the interior corresponding to
field theories on the boundary, and this has non-trivial consequences for the uplift to string

theory [125) [173| [214].

1.5 Outline

Following the previous boundary description of the context of the topic, the bulk of the
thesis is divided in two parts, corresponding to the holographic study of the approaches to
rigid supersymmetric field theories outlined earlier.

In the first part, we consider the holographic dual to the topological twist of supersym-
metric field theories in three and four dimensions. In both cases, we begin by introducing
the appropriate dual supergravity theory, the Fefferman—-Graham expansion of the fields
and holographically renormalizing the action. By expanding the bulk spinor equations, we
show that on the conformal boundary we have the generalized Killing spinor equations
of a conformal supergravity theory that admits the topological twist as its solution on any
Riemannian three-/four-manifold. We then prove that the on-shell gravitational action,
dual to the partition function of the boundary conformal field theory, is independent of the
metric on the conformal boundary. More geometrically, we reformulate the conditions for
a bulk supersymmetric solution in terms of a system of first-order differential equations.
Using this system, we show that both in three and four dimensions the on-shell supergravity
action vanishes for a smooth real solution dual to the boundary topological twist.

In the second part, we turn to approaches different from the topological twist. As
already outlined, one may define a supersymmetric field theory on a curved d-manifold by
coupling to d-dimensional supergravity and taking a rigid limit and also, for a conformal
field theory, by studying the conformal boundary of a (d + 1)-dimensional supergravity
solution and appealing to the AdS/CFT correspondence. In three and four dimensions, the
results of the two methods agree and we refer to them as “rigid supersymmetry.” In these
two dimensions, the analysis of the dependence of field theory partition function on the
background geometry leads to a set of supersymmetric Ward identities. The second part of the
dissertation is concerned with the study of the holographic dual of such identities. After

the introduction of the relevant supergravity theories in four and five dimensions and their
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holographic renormalization, we show that the gravitational on-shell action satisfies the
supersymmetric Ward identities in the former case, but fails to do so in the latter. In four
dimensions, we are then able to evaluate the on-shell action for a large class of self-dual
solutions and match it to the field theory counterpart. In five dimensions, we have to
introduce a set of novel (finite) boundary counterterms such that the improved on-shell
action satisfies the supersymmetric Ward identities. Then, under some global assumptions
we evaluate the renormalized on-shell action and compute the conserved charges, showing
that they satisfy a BPS condition. Finally, we consider a number of examples, illustrating
further the role of our new boundary terms and matching the gravity and field theory
observables.

The AdS/CFT correspondence has been a source of great discoveries for the last twenty
years. Yet there are many subtleties to be clarified in the dictionary between gravity and
field theory. The work presented in this dissertation sheds some light on the gravity side
of the duality by studying cases where supersymmetry is crucial to obtain a handle on
the field theory. By doing so, it highlights many crucial points that are sometimes skirted
— one might wryly condense the entire thesis as a long gloss over two footnotes (number
10 in [219] and number 2 in [68]). However, this is not the case, for as soon as one opens
Pandora’s box a number of questions arise, some of which are considered at the end of each

part of the thesis.
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2.1 Introduction

In the first part of the thesis, we propose to formulate a “topological” version of AdS/CFT,
where the boundary theory is a topological QFT (TQFT). A key motivation for studying
AdS/CFT in this set up is that the field theory is potentially under complete control:
observables are mathematically well-defined and exactly computable. TQFTs of this sort
typically have a finite number of degrees of freedom, and in some instances can be solved
completely]] These theories are often also of independent mathematical interest, since
observables are topological/diffeomorphism invariants.

Under these desirable assumptions for the field theory, one can then focus on the dual
gravitational description. In principle this is defined by a quantum gravity path integral,
with boundary conditions determined by the observable one is computing. However, we
have no precise definition of this, and in practice an appropriate strong-coupling (usually
large rank N) limit of the QFT is described by supergravity. This classical limit is to be
understood as a saddle point approximation to the quantum gravity path integral, where one

instead finds classical solutions to supergravity with the appropriate boundary conditions.

*For example, the Donaldson-Witten twist of A" = 4 SU(N)) super-Yang-Mills is relevant for the set up in
this chapter. For N = 2 the topological correlation functions have been computed explicitly for simply-connected
spin four-manifolds of simple type in [154]; they may be written in terms of Abelian Seiberg—Witten invariants.

25



26 Topological AdSs/CFT,

Yet, as already emphasised, even this is quite poorly understood. When the dual theory is a
TQFT, in principle all observables are exactly computable in field theory for many classes of
theories defined on different conformal boundary manifolds. Since the semi-classical gravity
result must match the TQFT description, the AdS/CFT correspondence can potentially help
to clarify the answers to some of the questions arising in the saddle point approximation
and discussed in chapter

Of course, one is tempted to push this line of argument further and speculate that this
is a promising setting in which to try to formulate a topological form of quantum gravity
on the AdS side of the correspondence. Such a theory should be completely equivalent to
the dual TQFT description. At present this looks challenging, to say the least, but there is
an analogous construction in topological string theory. Here U(N) Chern-Simons gauge
theory (a Schwarz-type TQFT) on a three-manifold M3 is equivalent to open topological
strings on T*Mj3 [224]. There is a large N duality relating this to a dual closed topological
string description. For example, for M3 = S3 the closed strings propagate on the resolved
conifold background, with N units of flux through the S? [188]. Here both sides are under
computational control, and relate a TQFT to a topological sector of quantum gravity (string
theory). This duality shares many features with AdS/ CFT and might hint at how to attack
the above problem.

For the time being, we begin much more modestly, setting up the basic problem in
N = 4 gauged supergravity in five dimensions. With appropriate boundary conditions this
defines the Donaldson-Witten topological twist of the dual A/ = 2 theory on the conformal
boundary four-manifold, and we focus on the simplest observable, namely the partition
function. Under AdS/CFT in the supergravity limit, minus the logarithm of the partition
function is identified with the holographically renormalized supergravity action. We refer
to this as the gravitational free energy.

The Donaldson-Witten twist may be interpreted as coupling the theory to a particular
background N = 2 conformal gravity multiplet, and in the next section we briefly review
some aspects of the twisted theory relevant to the holographic construction. On the other
hand, four-dimensional ' = 2 conformal gravity arises on the conformal boundary of
asymptotically locally hyperbolic solutions to the Romans [197] N' = 4" gauged supergrav-

ity in five dimensions [186]. The real Euclidean signature version of this theory described

2This was emphasized by C. Vafa in his recent talk at the Princeton Workshop 20 Years Later: The Many Faces
of AdS/CFT.
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in section [2.3| has, in addition to the bulk metric G,,, an SU(2) R-symmetry gauge field
.Ai, (I =1,2,3), a 1-form C, and a scalar field X. (In general there is also a doublet of
B-fields, but this is zero for the topological twist boundary condition, and moreover may be

consistently set to zero in the Romans theory.)

The main property of a topological field theory is that appropriate correlation functions,
including the partition function, are independent of any choice of metric. Assuming one is
given an appropriate solution to the Romans theory with (My, g) as conformal boundary,
we therefore expect the holographically renormalized action to be independent of g. Here
one can mimic the field theory argument in [219], and attempt to show that arbitrary
deformations g;; — g;j + 6g;; leave this action invariant. We have the general holographic

Ward identity formula

55 = / dix\/detg (17687 + i oAl +26X:) . (2.1.1)
My

Here S is the renormalized supergravity action of the Euclidean Romans theory, defined in
section while ( Sijs A{ , X1) are the non-zero background fields in the N’ = 2 conformal
gravity multiplet for the topological twist. Equivalently, these arise as boundary values of
the Romans fields: in particular A! is simply the restriction of the bulk SU(2) R-symmetry
gauge field to the boundary at z = 0, while X; = lim,_,o(X — 1) /z*log z. For the topological
twist these quantities are all fixed by the choice of metric gj;: Al is fixed to be the right-
handed spin connection, while X; = —R/12, where R = R(g) is the Ricci scalar for g. Thus
the variations of these fields appearing in are all determined by the metric variation
6gij. On the other hand, Tj;, 7/ and Z are respectively the holographic vacuum expectation
values (VEVs) of the operators for which these boundary fields are the sources. In particular
Tj; is the holographic stress-energy tensor. As is well-known, the expansion of the equations
of motion near z = 0 does not fix these VEVs in terms of boundary data on My, but rather
they are only determined by regularity of the solution in the interior. Determining these
quantities for fixed boundary data is thus an extremely non-linear problem. What allows
progress in this case is supersymmetry: the partition function should be described by a

supersymmetric solution to the Romans theoryP| By similarly solving the Killing spinor

3If the dominant saddle point in the AdS/CFT relation were non-supersymmetric, this would
presumably be interpreted as spontaneous breaking of supersymmetry in the dual TQFT. This is certainly not
expected in the case at hand, but would be interesting to investigate further.
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equations in a Fefferman—Graham-like expansion, we are able to compute these VEVs
for a general supersymmetric solution. This still leaves certain unknown data, ultimately
determined by regularity in the interior, but remarkably these constraints are sufficient
to prove that is indeed zero, for arbitrary Jg;;! More precisely, in section we
show that the integrand on the right hand side is a total derivative, and its integral is then
zero provided My is closed, without boundary. The computation, although in principle
straightforward, is not entirely trivial, and along the way we require some interesting
identities that are specific to Riemannian four-manifolds (notably the quadratic curvature
identity of Berger [45])).

We next analyse in more detail the geometry of supersymmetric solutions to the five-
dimensional bulk supergravity theory in section Because of the R-symmetry bundle,
this geometry is characterized by what we call a twisted Sp(1) structure satisfying a certain
first-order differential system. Using these equations, remarkably we are able to show
that the bulk on-shell action is always a total derivative. By carefully analysing the global
structure of the twisted structure, and how this behaves where the bulk spinor becomes
zero, this is shown to be globally a total derivative for any smooth solution. This is true
on any five-manifold Y5 that fills a four-manifold boundary My = 9Y5. Moreover, on
applying Stokes’ theorem the bulk integral then always precisely cancels the boundary
terms (including the holographic counterterms) in the action, with the net result being that
the gravitational free energy of any smooth solution is zero!

These are the main results of the chapter, but they immediately raise a number of
interesting questions. We postpone our discussion of these until the end of part I, after

considering a lower-dimensional twist in the next chapter.

2.2 The Donaldson—-Witten twist

In [219], Witten gave a physical construction of Donaldson invariants of four-manifolds
[85, 86, 187] as certain correlation functions in a topological quantum field theory. This theory
is constructed by taking pure N = 2 Yang-Mills gauge theory and applying a topological
twist: identifying a background SU(2) R-symmetry gauge field with the right-handed
spin connection results in a conserved scalar supercharge Q, on any oriented Riemannian

four-manifold (My, g). This has been reviewed in some detail in section [1.2.1]
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The path integral of the twisted theory localizes onto Yang-Mills instantons, and cor-
relation functions of Q-invariant operators localize to integrals of certain forms over the
instanton moduli space M. These are precisely Donaldson’s invariants of My. They are,
under certain general conditions, independent of the choice of metric ¢ on My, but in
general depend on the diffeomorphism type of My. In particular, Donaldson invariants
can sometimes distinguish manifolds which are homeomorphic but not diffeomorphic.
That this is possible is because the instanton equations are PDEs, which depend on the
differentiable structure. From the TQFT point of view, independence of the choice of metric
follows by showing that metric deformations lead to Q-exact changes in the integrand of the
path integral. For example, the stress-energy tensor is Q-exact, implying that the partition
function is invariant under arbitrary metric deformations, and hence (at least formally) is a

diffeomorphism invariant.

Donaldson-Witten theory is typically studied for pure N' = 2 Yang-Mills, with gauge
group ¥ = SU(2) or 4 = SO(3). However, the topological twist may be applied to any
N = 2 theory with matter, and also for any gauge group ¢. For example, ¥ = SU(N)
Donaldson invariants were first studied in [168]], with further mathematical work in [152].
In particular the latter reference contains some explicit large N results for the partition
function on certain four-manifolds. As recounted in chapter |1} historically the development
of Donaldson-like invariants took a rather different direction after the introduction of
Seiberg-Witten invariants in [222]. The former may be expressed (conjecturally) in terms of

the latter, but Seiberg-Witten theory is simpler and easier to compute with.

The Donaldson-Witten twist of N = 2 gauge theories can also be understood as a special
case of rigid supersymmetry. Soon after Witten’s paper, Karlhede-Rocek interpreted the
construction as coupling the gauge theory to a background (i.e. non-dynamical) N' = 2
conformal gravity [142]. The background SU(2) R-symmetry gauge field is part of this
gravity multiplet, and is embedded into the spin connection in such a way that the Killing
spinor equations of the theory admit a constant solution, leading to the conserved scalar
supercharge Q. There is also an auxiliary scalar field turned on in this background gravity
multiplet, proportional to the Ricci scalar curvature of (My, g). Generalizing [142], N = 2
theories may be coupled to a background N = 2 conformal supergravity in the spirit of
[97] reviewed in section [146]. Generically this requires the existence of a conformal

Killing vector on (My, §), but the topological twist arises as a degenerate special case, in
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which (My, ) is arbitrary.

2.2.1  Half-twisted N = 4 super Yang-Mills

The procedure of topological twisting may also be applied to theories with different amounts
of supersymmetry, and in various dimensions. For example, the larger SU(4) R-symmetry
of four-dimensional N = 4 Yang-Mills leads to three inequivalent twists (two of them were
constructed by Yamron in [228], and a third one is briefly mentioned there as a “private
communication” from Witten). To classify them, it is easier to see the twists from the group-
theoretic point of view: the spacetime symmetry group is still £ = Spin(4) = SU(2), x
SU(2),, but the R-symmetry group is H = Spin(6)r = SU(4)r, and the supercharges

transform under IC x H as

Qe (2,1,9), 0, (1,2,4). (2.2.1)
One then looks for a homomorphism from Spin(4) into SU(4)r, and defines the twisted
spacetime symmetry group to be the diagonal combination of Spin(4) and the image of
the homeomorphism in SU(4)g, thus obtaining a new group isomorphic to Spin(4), but a
different physical theory (at least generically). Concretely, the twists can be characterised
by the way the representation 4 of SU(4)r transforms as a representation of Spin(4), so
we need to look for four-dimensional representations of Spin(4), and then choose those
giving a supercharge that is a scalar under X'} We obtain three inequivalent twists by the

following four-dimensional representations of K

(i) (21)e(12),
(i) (2,1)® (2,1), (2.2.2)

(iii) (L,1)®e(1,1)e(1,2),

4The difference between 4 and 4 is accounted for by the different charge under the remnant U(1) symmetry
of the twisted theory, which we are not mentioning in this section. For more details, see [141].
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and obviously their mirrors (with the two SU(2) factors exchanged). Under the twisted

spacetime group K, the supercharges transform as

(i) 2(1,1)® (1,3)® (3,1)®2(2,2),
(i) 2(1,1)@2(3,1) ©2(2,2), (2.2.3)

(i) (1,1)®2(2,1) ®2(1,2) & (1,3) & (2,2).

It is easy to do some further group theory and show that these are the only four-dimensional
representations that result in a scalar supercharge. For instance, obviously the trivial

4 — 4(1,1) does not produce scalar supercharges, and so does (1,1) & (1,3), which yields
(2,1)92(1,2)$(2,3) ¢ (1,4). (2.2.4)

The first twist in (2.2.2), which is the one privately communicated to Yamron by Witten,
was originally studied by Marcus [167], and later found an application to the Geometric
Langlands program thanks to the work of Kapustin and Witten [141]. The second twist is
the Vafa-Witten twist, for which the only non-vanishing observable is the partition function
corresponding to the Euler characteristic of a moduli space of instantons [215] | For both
these twists there are two scalar supercharges. However, the third twist only contains one
scalar supercharge, and is thus often referred to as the “half-twisted” N = 4 theory. This is
the theory relevant for this paper, and can be also obtained by viewing the A/ = 4 theory as
an N/ = 2 theory coupled to an adjoint matter multiplet and applying the Donaldson-Witten
twist [228]. An important restriction on the possible background manifolds is given by the
fact that the half-twisted theory still contains spinor fields [228]. Therefore, it can only be
defined on spin manifolds.

For general gauge group ¢, the path integral localizes [153} [154] onto solutions to a
non-Abelian [156] version of the Seiberg—Witten equations, in which the spinor field is in
the adjoint representation of ¢ (see also the review in [163]). In particular the (virtual)
dimension of the relevant non-Abelian monopole moduli space M may be computed using

index theory, leading to

dimM = —1dim% - 2x(Ms) +30(Ms)] . (2.2.5)

5The virtual dimension of the relevant moduli space is exactly zero, so the only observable that can be
non-vanishing is the partition function. Any other observable would vanish because of fermionic zero-modes.
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Because of the associated fermion zero modes, the partition function of the theory vanishes
unless the right hand side of is also zero. On the other hand, when the right hand side
of is positive, one obtains non-zero invariants in the TQFT by inserting appropriate
Q-exact operators into the path integral.

An important observation is that is independent of the topology of the gauge
bundle over My, unlike the corresponding case for Donaldson theory (pure N' = 2 Yang-
Mills with gauge group ¢). Because of this, all choices of gauge bundle seem to contribute to
the partition function at the same time. The left hand side of then needs appropriately
interpreting for such twists of four-dimensional N' = 2 SCFTs, as taken at face value it
may be divergent. There is a standard way to deal with this, namely to refine the partition
function via the U(1)r charge. For example, this is discussed at the end of section 2 of [117],
and in [118]@ This could play an important role in making sense also of the right hand side
of — we will briefly comment on this at the end of section

As far as we are aware, computations of topological observables in the half-twisted
N = 4 theory, for general ¥ = SU(N), have not been done explicitly. However, for
¢ = SU(2) the partition function and topological correlation functions have been computed
explicitly for simply-connected spin four-manifolds of simple type [154]. This is done by
giving masses, explicitly breaking N' = 4 to N' = 2, leading to an N/ = 2 gauge theory
with a massive adjoint hypermultiplet, a twisted version of the N’ = 2* theory. The twisted
theory is still topological, and the relevant observables are written in terms of Seiberg—Witten
invariants using the methods of [180]. Observables for the original theory are then identified
with the massless limit of these formulae (when this makes sense), although the validity of
this assertion is not completely clear. In any case, to compare to the holographic construction
in this chapter one should compute the large N limit for gauge group ¢ = SU(N). We note
that an analogous large N limit of Donaldson invariants (for pure N' = 2 SU(N) Yang-Mills)
has been computed in [152]. Unlike the formula , here the dimension of the moduli
space of instantons depends on the topology of the gauge bundle. One can then choose
this bundle in such a way that dim M = 0. The partition function is a certain signed count

of the points that make up M, and the large N limit was computed for a certain class of

®The necessity of refinement is not clear in the literature, as the partition function for twisted N = 2 SCFTs
(for which the bundles would all be on the same footing) has been computed without refining and without
divergences [179]. Moreover, for the case of the half-twist of N' = 4 SYM, the partition function is known on K3,
and the instantons contribute weighted by their instanton number g = €27, where 7 is the complexified gauge
coupling. Therefore, the series already contains a counting parameter.
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four-manifolds in [152][]

2.2.2 Uplifting

As we saw in chapter [1} in order to make quantitative comparisons between calculations
on the two sides of the AdS/CFT correspondence, the holographic computation in the
lower-dimensional effective supergravity needs to be embedded in string theory. For the
case at hand this is straightforward, especially thanks to the amount of work done on
five-dimensional supergravity dual to four-dimensional field theories. The relevant five-
dimensional gauged supergravity we are interested in was constructed some time ago
by Romans, it is usually referred to as N/ = 4" model and admits a supersymmetric
anti-de Sitter vacuum [197]. It is a consistent truncation of both Type IIB supergravity
on S° [164], and also of eleven-dimensional supergravity on N [110], where Ng are the
geometries classified by Lin—-Lunin-Maldacena [160]. This means that any solution to the
five-dimensional Romans theory uplifts (at least locally — see below) to a string/M-theory
solution, and the details of the dual field theory are encoded in the geometry of the internal

space involved in the uplifting.

In order to be concrete, let us focus on the case of N = 4 Yang-Mills theory considered
above. For 4 = SU(N), AdS/CFT should relate the large N limit of this theory to an
appropriate class of solutions to the Romans A/ = 4% theory in five dimensions, uplifted on
S° to give full solutions of Type IIB string theory. This is where the restriction that My is spin
enters: if My is not spin then the background SU(2) R-symmetry gauge field we turn on to
perform the twist is not globally a connection on an SU(2) bundle over My. On the other
hand, the Type IIB solution is an S° fibration over the filling Y5, where S> C C2& C, and
SU(2) acts on C? in the fundamental representation. Thus if My is not spin, this associated
bundle is not well-defined. This is the gravity dual appearance of the requirement we saw
directly in the TQFT: for the half-twist of A' = 4 Yang-Mills there are still spinors in the
twisted theory, which only make sense if My is spin. Finally, we note that for the large

N limit of the ¥ = SU(N) half-twisted N' = 4 Yang-Mills theory, a standard AdS/CFT

7In particular the final section of [152] computes the large N limit of the partition function Z for a four-
manifold with boundary, constructed as S' x M3 where Mj is a knot complement. One finds Z ~ Nloga,
where « is a certain knot invariant (the Mahler measure).
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formula fixes the dual effective five-dimensional Newton constant as

1 N?
K—g = 12 (2.2.6)

Similar remarks apply to twists of N/ = 2 SCFTs with M-theory duals. Indeed, an
important restriction on the class of N' = 2 gauge theories to which this holographic
description applies is that they are conformal theoriesﬂ A large number of examples arise as
class S theories [104], obtained by wrapping Ms-branes over punctured Riemann surfaces,
for which the gravity dual was found in [105] using the construction of [160]. Romans
solutions uplift on the corresponding internal spaces N to solutions of M-theory [110].
At the level of the five-dimensional theory, all that changes is the formula for the

effective Newton constant, which in general reads [127]

- = =, (2.2.7)

where a is the a central charge. In the supergravity limit recall that a = c. For the above-
mentioned M5-brane theories the central charge scales with N3 as N — oco. Indeed, the
partition function will a priori depend on both the choice of N/ = 2 SCFT that is being
twisted, and also on the four-manifold My on which it is defined. The choice of theory
corresponds to the choice of internal space in the uplifting to ten or eleven dimensions.
The structure of the dual supergravity solution as a fibration of the internal space over the
spacetime filling of My then implies that the large N limits of the partition functions should
also factorize. That is, the dependence on the choice of theory should only be visible via the
central charge a, which via fixes the overall normalization of the supergravity action.
On the other hand, the dependence on the choice of M, is then captured by the effective

five-dimensional Romans theory we will describe ]

81n particular this is not true of pure N = 2 Yang-Mills, from which the original Donaldson invariants are
constructed.

9This structure can already be seen in the more general formula for dim M given in [117]. For the general
class of twisted field theories considered there, equation (2.42) of [T17] implies that in the large N limit where
a = c, one has dim M = —a[2x(My) + 30(Mj)], generalizing (2.2.5). The central charge appears as an overall
factor, at large N.
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2.3 Holographic supergravity theory

In section we define a real Euclidean section of V" = 4" gauged supergravity in five
dimensions. A Fefferman—Graham expansion of asymptotically locally hyperbolic solutions
to this theory is constructed in section for arbitrary conformal boundary four-manifold

(My, g). Using this, in section we holographically renormalize the action.

2.3.1 Euclidean Romans N = 4% theory

The Lorentzian signature Romans N = 4" theory [197] is a five-dimensional SU(2) x U(1)
gauged supergravity which admits a supersymmetric AdSs vacuum. The bosonic sector
comprises the metric Gy, a dilaton ¢, an SU(2)r Yang-Mills gauge field AL (I=1,23),a
U(1)r gauge field A, and two real anti-symmetric tensors Bj,, a = 4,5, which transform
as a charged doublet under U(1)g = SO(2)g. It is convenient to introduce the scalar field
X = ef%ﬁ ? and the complex combinations B+ = B* £+ iB°. The associated field strengths are
F=dA, Fl =dA' — %eI]KA] A AKX, and H* = dB* FiA A B*. We have set the gauged
supergravity gauge coupling to 1]

The bosonic action and equations of motion in Lorentzian signature appear in [164].
However, as we are interested in holographic duals to TQFTs defined on Riemannian four-
manifolds, we require the Euclidean signature version of this theory. The Wick rotation in
particular introduces a factor of i into the Chern-Simons couplings, leading to the Euclidean

action

1

[ =——
2x2

/ [Ro1 = 3X2dX A #dX + 402 +2X 1) 1 = X F A+ F
(2.3.1)
—IX2(FIANF 4 B AxBT) + 1B  AHY =BT AH —1F'AFIAA|.
Here R = R(G) denotes the Ricci scalar of the metric G, and * is the Hodge duality
operator acting on forms. The associated equations of motion are{"|
d(X ' xdX) = X FARF - SX2(FIA«F + B~ A«BT)

2.3.2
‘s B (2.3.2)
— (X2 X1 x1,

AX 2 F) = e X 25 FINAK—iFI A F, (2.3:3)

1°Tn addition we have rescaled the SU(2)r gauge field and the anti-symmetric tensors by a factor of 1/1/2,
compared to [164]].
1 Equation incorporates a correction to the Lorentzian equation, in line with [TT0].
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dX**F) = - 1FIAFI —1B- A BT, (2.3.4)
H* = £ X2« B*, (2.3.5)

Ry =3X20,X0,X — 3(X* +2X NG + 1 X*(Fuf Fop — LG F?) (56
2.3.

+ 1 X H(FUPF) = §Gw(F)? + B (B}, »— 5GuB e B .

Here F2 = FuFW, (F I )2 = Zi’:l ]-"PIW]-" Inv In general equations — are complex,
and solutions will likewise be complex. However, note that setting iA = C effectively
removes all factors of i. We may then consistently define a real section of this Euclidean
theory in which all fields, and in particular C and B* = B*+iB5, are real. We henceforth
impose these reality conditions. Although globally A is a U(1)r gauge field in the original
Lorentzian theory, after the above Wick rotation the real field C = iA effectively becomes an
SO(1,1)r gauge field. We may then think of C as a global 1-form, but for which the theory
has a symmetry C — C — dA, for any global function A. We denote the corresponding field
strength as G = dC = iF.

In the Lorentzian theory the fermionic sector contains four gravitini and four dilatini,
which together with the spinor parameters € all transform in the fundamental 4 representa-
tion of the Sp(2)r global R-symmetry group. The SU(2) x U(1) C Sp(2) gauge symmetry
arises as a gauged subgroup. Since Sp(2) = Spin(5) it is natural to introduce the associated
Clifford algebra Cliff(5,0), with generators T'y, A = 1,...,5, satisfying {T'4,I'p} = 245.
We then decompose I,],K = 1,2,3, transforming in the 3 of SU(2), and «,f = 4,5 in
the 2 of U(1). In Euclidean signature the conditions for preserving supersymmetry are
then the vanishing of the following supersymmetry variations of the gravitini and dilatini,

respectively:

0 = Dye+ juy (X + 5X72)Tse

(2.3.7)
+ 25 (1" — 40,7°) (X*1 (FooT1+ BiTa) + Xz]:vp) €,
0 = Liy! X719, Xe + L (X _ X*2> Tuse
(2.3.8)

s (X FLT+ BuTa) = 2% )e,

where the covariant derivative is

Dye = Vye+ 3 A Tuse + LA yse . (2:3.9)
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Here v, u =1,...,5, are generators of the Euclidean spacetime Clifford algebra, satisfying
{'yy, MWt = 2Gyy, where recall G, is the metric. Given the gauging it is natural to introduce

the following choice of generators:

FI = 0307, I:1/2/3/ r4 = Jl®]12/ r5 = 02®]12/ (2‘3‘10)

where o7 are the Pauli matrices, and 1, denotes the 2 x 2 identity matrix. In particular

notice that I'ys = io3 ® 1, squares to —14, and we may write

€ = , (2.3.11)

where the spinor doublets e denote projections onto the i eigenspaces of T'ss, respectively.

One then has

ore™ B e
® g
e = , By Tae = . (2.3.12)
—o€e” Bje*

We next introduce the charge conjuguation matrix ¢ for the Euclidean spacetime Clifford
algebra. By definition 7} = ¢ ~19,%, and one may choose Hermitian generators ’)/;r, = Yu
together with the conditions ¢ = ¢* = —%¢7, ¥? = —1. We may then define the following

charge conjugate spinor in Euclidean signature

€ = (;3®im) Ce” . (2.3.13)
It is straightforward to check that ()¢ = €. Moreover, provided C = i4 and B* (and all
other bosonic fields) are real, then one can show that € satisfies the gravitini and dilatini
equations (2.3.7), (2.3.8) if and only if its charge conjugate € satisfies the same equations.
Given this property, we may consistently impose the symplectic Majorana condition € = €.

We will be interested in solutions that satisfy these reality conditions.

2.3.2 Fefferman-Graham expansion

In this section we determine the Fefferman—Graham expansion [96] of asymptotically locally
hyperbolic solutions to this Euclidean Romans theory. This is the general solution to the

bosonic equations of motions (2.3.2)—(2.3.6), expressed as a perturbative expansion in a
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radial coordinate near the conformal boundary:.

We take the form of the metric to be [96]
Gdxtdx¥ = ldz2 + lg‘-dxidxj = ldz2 + hjidx'dx/ (2.3.14)
H 22 72 8ij 22 ij : 3
where the AdS radius ¢ = 1, and in turn we have the expansion
gij = g% + Zzgfj +z* (g?]' + h?j(log z)% + hllj logz) +o(z*%) . (2.3.15)

Here g?j = gij is the boundary metric induced on the conformal boundary M, at z = 0.

It is convenient to introduce the inner product (&, ) between two forms w,  via (A.2.1).

The volume form for the five-dimensional bulk metric is
1 1 1 4
vol; = Z—5dz Avolg = Z—Sdz Ay/detgdx” A--- Adx™. (2.3.16)

The determinant may then be expanded in a series in z, around that for go, as follows

Vdetg = /detgd [1+ 513 + 5 (1@ — 1122 4 1(1))?

(2.3.17)
+u®(logz)? + uM log z)} +o(z%).

Here we have denoted ¢ = Tr [(g°) 'g"], u™ = Tr [(g°) 'h"] and +>?) = Tr [(go)_lgz]z.

The remaining bosonic fields are likewise expanded as follows:

X =1+2*(Xilogz+ Xp) +z*(X3logz + X4) +o0(z%), (2.3.18)
Al = AT+ 22 (allogz +ab) 4+ 0(2?), (2.3.19)
A =a+z%(ajlogz +ay) +0(z%), (2.3.20)
B* = %bi +dz Abf +z(b5 logz + bF) +o(z) , (2.3.21)

A priori there are additional terms that appear in these expansions. However, these may
either be gauged away, or turn out to be set to zero by the equations of motion, and we have
thus removed them in order to streamline the presentation.

We now substitute the above expansions into the equations of motion (2.3.2)-(2.3.6)

and solve them order by order in the radial coordinate z in terms of the boundary data
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g = g, X1, Al a and b*. This will leave a number of terms undetermined. For the Einstein

equation (2.3.6) we will need the Ricci tensor of the metric (2.3.14):

R, = — % —~ %(Tr [gflaﬁg} —iTr [g’lazg} —5Tr [g’lazgr) , (2.3.22)

Rij =~ ;izgij — (30% - 20.g— 1(0:8)g ' (0:8) + }(2:8)Tr & "0ug .
2.3.2

~Rlg)~ £eTr[s "2.g] ) i

R;=— %(g D (Vigjk,z - ngij,z) . (2.3.24)

Here V is the covariant derivative for g, and we have corrected the sign of R(g);; and the

right hand side of compared to [212].

Examining first the equation (2.3.5) gives at leading order
*go b:t = :Fbi , (2-3~25)

so that the boundary B-fields bT,b~ are required to be anti-self-dual and self-dual, respec-

tively. At subleading orders one finds
b = F *g0 (db* Fianb*), *g0 by = £(by —2Xb%). (2.3.26)

In particular notice that the first equation fixes bf[ in terms of boundary data, while the
second equation determines only the anti-self-dual/self-dual parts of b5, respectively. An

equation may also be derived for b3, although we will not need this in what follows.
Next the gauge field equations (2.3.3), (2.3.4) determine

a; = —% *god*gof+%*go (b_/\bi‘_—f—b-i_/\bl_) ,
(2.3.27)
a{ = —%*goD*goFI,
in terms of boundary data, where the curvatures are f = da, Fl =dA!l — %el ]KA] A AKX and
we have introduced a gauge covariant derivative with respect to the boundary SU(2) field:

Dal = da! —€! ]KAI A aX. In addition we have the constraints

dxgay = —jF'AFT, Dxgay = 0, (2.3.28)
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which leave a, and 4} partially undetermined.

Turning next to the scalar equation of motion (2.3.2) we find

4X3 = — V23X -2 (t(2)X1 — 2X%) — a1 (b7, 05 )0+ (b7, b7 ) 0) (2.3.29)
4X4 = — VZXZ - (t(Z)X] + 2t(2)X2 - X% - 4X]X2 +4X3> - 2174<PI/ F1>g0 + %<f’f>g0
— (b by o+ 15 (b7, gm0 b ) g — 25 (b7, 55 ) g0 + (b7, b5 )g0) - (2.3.30)

We regard these as determining X3, Xy in terms of X; (a boundary field), and X, (which is
undetermined by the equations of motion), together with the other fields in the expansion.

In the second equation we have used the definition

(80 a)iiy = (&) @y (23:31)

where « is a p-form on M. Here indices are always raised with g%, so (g?)/ = (g2)i(g”)¥.

Finally, we introduce the matter-modified boundary Ricci tensor
Kij = %i(g") = Ry(g”) — 1(0F)* (™) - (2.3.32)

Notice the scalar curvature is Z(g°) = R(g%), due to the opposite duality properties (2.3.25)
of b*. From the ij component of the Einstein equation (2-3.6), using gives

g = — 1(%j— g8 7). (2.3.33)

The right hand side is a matter-modified form of the Schouten tensor. From this expression

we immediately deduce the traces
t? = — 1o, 22 = Y(g,%7 - 297 . (2.3.34)

The zz component of the Einstein equation in (2.3.6), together with (2.3.22), determines the

traces of higher order components in the expansion of the bulk metric:

u® — _ox? , (2.3.35)

4V = —AX1Xp + o (b1, b5 g + (67,65 ) ) (2.3.36)
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4 = 122 — ) — 3D —3x3 — 8X3 — 12X, X, + & (£, f)g + S (F, Fl))

(2.3.37)
- %<b;r’ b;>g0 - 1172<b71 (g2 © b+)>g0 + 2174 (<b+lb5>go + <bilb;>g0) .
Returning to the ij component we may determine the logarithmic terms in (2.3.15):

Hy = 1% (u® +2ul) 18X, X,) )
— % [(b+)(ik(b5)j)k + (b)) (63 ) — %g%(<b+,b£>g0 + <b7b£L>g0)} ,

By = g () 8] + Je (41 2102 4 ) 4 8X3)
+ 1 (VVigh + ViVigh — Vgl = ViVit®) = 5((6])(br)y) — 5561 by D)
+ 5[0 (&) (07 iy — &5 (7)™ (&) (07 )]
— g [(O")EO3) e+ (07)((03) )k — 585 (67,03 ) g0 + (b7, b3 ) )]
— 3 [faf + JERE* — g (£ B g + 3 (FLF )] (2:3.39)

The structure of the ij component of the Einstein equation in four dimensions is such
that g* always appears with zero coefficient, and so is left undetermined. In the original
literature [79] the iz component has been used to determine g* up to an arbitrary symmetric
divergence-free tensor. However, in the supergravity we are considering the presence of a
(logz)? contribution to the bulk scalar field expansion means that X, appears without a
derivative, which hence spoils this approach. In section we will see that by imposing
supersymmetry we obtain further constraints on the fields, and in particular this leads to an

expression for g* in terms of other data.

2.3.3 Holographic renormalization

Having solved the bulk equations of motion to the relevant order, we are now in a position
to holographically renormalize the Euclidean Romans theory. The bulk action is
divergent for an asymptotically locally hyperbolic solution, but can be rendered finite by the
addition of appropriate local counterterms. The corresponding computations in Lorentzian

signature have been carried out in [186].

We begin by taking the trace of the Einstein equation (2.3.6). Substituting the result
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together with into the Euclidean action (2.3.1), we arrive at the bulk on-shell action

1
Ios = @A [%(XZ—FZX_l) *1—}-%){4]:/\ *]2‘_{_%)(—2]:1/\*]:1
T (2.3.40)

— 5X72B- A«BY + FIAF! /\A] :

Here Y5 is the bulk five-manifold, with boundary dYs = M,. In order to obtain the equations

of motion (2.3.2)—(2.3.6) from the original bulk action on a manifold with boundary,
one has to add the Gibbons-Hawking—York term

Icny = —12/ d*x VdethK = lz d*xzd,Vdeth. (2.3.41)
Kz Jovs ks Javs

Here, more precisely, one cuts Y5 off at some finite radial distance, or equivalently non-
zero z > 0, and (My, h) is the resulting four-manifold boundary, with trace of the second

fundamental form being K. Recall from lh that h;; = Z%gi]-.

The combined action Ion-shenl + IcHy suffers from divergences as the conformal boundary
is approached. To remove these divergences we use the standard method of holographic
renormalization [93) 212} [79]. Namely, we introduce a small cut-off z = § > 0, and expand
all fields via the Fefferman—Graham expansion of section to identify the divergences.
These may be cancelled by adding local boundary counterterms. We find

1
le = — | dixdeth {3+ 1R() +3(X ~1)* = (B, B),
K5 Jovs
+1log 6 [ - %(@ij(h),@if (h) — %%(h)z) +3(logd) (X —1)2  (2342)
+ d(H H o+ 1F, P+ (L F1)] b
Notice the somewhat unusual form of the logarithmic term for the scalar field X, but cf.
the expansion (2.3.18). As is standard, we have written the counterterm action (2.3.42)

covariantly in terms of the induced metric hij on M4 = dYs. The total renormalized action is

then

S = lim (s + Iguy + Iet) , (2.3.43)
6—0
which by construction is finite.

The choice of local counterterms (2.3.42) defines a particular renormalization scheme,

that is in some sense a “minimal scheme” in the case at hand. However, we are free to
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consider a non-minimal scheme where we add local counterterms to the action which
remain finite as 6 — 0. For the supergravity theory we are considering, the following are an

independent set of finite counterterms that are both diffeomorphism and gauge invariant{™|

1 . . .
L, fnte = — 5 [ d*xvdeth |R + 0aCuCTM + G Fy P+ LaF P
5 5

) ) (2.3.44)
+ 05€ + L6P + L7 Fij Fa + §8€l]kl]:i§'fkll} :

Here 3, ..., {s are arbitrary constant coefficients, C;j; denotes the Weyl tensor of the metric
hij, while the Euler scalar £ and Pontryagin scalar P are defined by (A.1.2). In particular,
notice that for compact My = 9Ys without boundary, the second line of are all
topological invariants: they are proportional to the Euler number x(Mjy), the signature
0(My), and the Chern numbers || M a(L)? | w, €2(V) respectively, where £ and V denote
the rank 1 and rank 2 complex vector bundles associated to the U(1)g and SU(2)r gauge
bundles, respectively. In the real Euclidean theory in which we are working, recall that
F = dA is globally exact (and purely imaginary), and in any case for the topological
twist studied later in the chapter we will have A |51, = 0. Being topological invariants, the
variation of the action we shall compute in section [2.5| will be insensitive to the choice of
constants (s, . .., (g.

As emphasized in the Introduction, in order to make quantitative comparisons in
AdS/CFT it is important to match choices of renormalization schemes on the two sides. In
particular, localization calculations in QFT make a (somewhat implicit) choice of scheme. In
the case at hand, we note that in [73] a supersymmetric Rényi entropy, computed in field
theory using localization, was successfully matched to a gravity calculation involving a
supersymmetric black hole in the NV = 4% Romans theory. Here the supergravity action was
computed using the minimal scheme. Our computation in section [2.5| will imply that this
minimal scheme is indeed the correct one to compare to the topological twist of [219].

Given the renormalized action we may compute the following VEVs:

2 05 oy _ L 0S5
- 1 68 . 1 65 (2.3.45)
(J1) = () =

= Vs

>We may also add finite local counterterms constructed from the B-field. For example, terms proportional to

Jovs d*xv/deth (H=,H™),, or Jovs d*xv/deth R(h)(B~,B");,. However, for the topological twist we will later
set the B-field to zero, and these terms will not be relevant to our discussion.

= VgoAl’
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Here, as usual in AdS/CFT, the boundary fields g?/- = gij, X1, All and a; act as sources for

operators, and the expressions in compute the vacuum expectation values of these

operators. Similar expressions may also be written for the boundary fields b* for B+, but

these will be zero for the topological twist of interest and play no role in the present chapter.

Using the above holographic renormalization we may write as the following limits:
(Tyj) = Klé lim 512 [— Kij+ Khij — (34 3(X = 1)*) by + 5 (%;(h) — 32 (h) hyj)

+1og5<1@ij(h)+;ﬁkﬂk—;h,,-<f,f>h+ 1FaF = 36hig(FL, Fly (2.3.46)

+ H HY M — khi(H-, HYY), — 3(logd) 2(X — 1)2hij>] ,

where Kj; is the second fundamental form of the cut-off hypersurface (My, hij) and the

B-field modified Bach tensor is (cf. (2.3.32))

@ij = — %V,-Vj%’ — V2 (%i]' — %hiﬁ%)) + kaV(i%kj) — Z@ik%kj + %%%ij
(2.3.47)
+ %hij (%kl%kl — %%Z) ,
together with
(B) = L 1im 19801 _3x-255 X+6(X—1)+3(logs) (X —1)
(I = P (HO 5 { dx A (X% x5 ]:I+i]-"1/\./4)} +10g5D]']:“j} , (2.3.48)
i lim — x4 log &V, F'l
) = 2K5513854[ (dx A Xt 7) + log Vf}

Here *;, denotes the Hodge duality operator for the metric h;;. A computation then gives

the finite expressions
1
(1) =% [zg,@ L = (A — 2122 1 1)g0 g0 2 202
5

+ 3 (VVigh+ VIV igh - Vg - Vivii?) + gl (ghRY) — ek

= g [0 (b3 )i+ (07) (03 )k — 285 ({67, b3 )0 + (07,09 ) o)

(2.3.49)

[1]

(B) = %Xz, (2.3.50)
K5
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() = = g [t 2y =i @aF)) ] (235)
() = —;Kéuamz(az)i] . (2.3.52)

Notice that these expressions contain a number of terms that are not determined, in terms of
boundary data, by the Fefferman-Graham expansion of the bosonic equations of motion. In
particular the gfj term in the stress-energy tensor TZ-]-, the scalar X, that determines &, and aé,
ap appearing in the SU(2)r and U(1)g current, respectively. The general holographic Ward

identity corresponding to the first three variations of the action is given by equation (2.1.1).

We will need the expressions (2.3.49)—(2.3.51) in section

2.4 Supersymmetric solutions

In this section we study supersymmetric solutions to the Euclidean N' = 4" theory. We
begin in section [2.4.1] by deriving the Killing spinor equations on the conformal boundary,
starting from the bulk equations (2.3.7), (2.3.8). We precisely recover the Euclidean NV = 2
conformal supergravity equations of [146]. In section we then recall from [142] how
the topological twist arises as a special solution to these Killing spinor equations, that exists
on any Riemannian four-manifold (My, g). We rephrase this in terms of the quaternionic
Kéhler structure that exists on any such manifold, involving (locally) a triplet of self-dual
2-forms J!. Finally, in section we expand solutions to the bulk spinor equations in a

Fefferman—Graham-like expansion.

2.4.1 Boundary spinor equations

We begin by expanding the bulk Killing spinor equations (2.3.7), (2.3.8) to leading order

near the conformal boundary at z = 0. We will consequently need the Fefferman—-Graham

expansion of an orthonormal frame for the metric (2.3.14), (2.3.15), together with the

associated spin connection. The following is a choice of frame Eg for the metric 1)

, (2.4.1)
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where e? is a frame for the z-dependent metric g. The latter then has the expansion 1b

but for the present subsection we shall only need that
el = el +0(z%), (2.4.2)

where eg is a frame for the boundary metric g’ = ¢. The non-zero components of the spin

connection Q,ﬁ at this order are correspondingly

7 1 7 ik ik
07 = Eei]JrO(z), QO = (0 +0(z%), (2.4.3)

1
where (w(o))zj ¥ denotes the boundary spin connection.

The generators 7 of the Clifford algebra Cliff(5,0) in this frame are chosen to obey

Yz = Y123 - (2.4-4)

It follows that 72 = 1, and we may identify —v: with the boundary chirality operator. The

bulk Killing spinor is then expanded as
e = z7 V24212 1 o(217?) . (2.4.5)

As in (2.3.11), we may further decompose the spinors ¢, 77 into their projections ¢, 7% onto
the +i eigenspaces of I'y5. At leading order in the z-component of the gravitino equation

one then finds
— yzet = de*, (2.4.6)

so that the I'y5 eigenvalue of the leading order spinor ¢ is correlated with its boundary
chirality. Similarly, at the next order in the gravitino equation one finds the opposite
correlation for the spinor #:

+

— = Fy (2.4.7)

Recall that the boundary B-fields satisfy *4b* = Fb* (see (2.3.25)). This together with
the chirality conditions (2.4.6) implies that

bt .ef =0, (2.4.8)
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where - denotes the Clifford product defined in (A.2.3) (using the boundary frame). Using
this, the leading order term in the i-component of the gravitino equation is then seen to be

identically satisfied. The next order gives the pair of boundary Killing spinor equations:

D e — LTyl F o =0, (2.4.9)

1

where we have defined the covariant derivative
Dfo) = VZ(O) + %ai + %Afal . (2.4.10)

Here VEO) denotes the Levi-Civita spin connection of the boundary metric g?j = gij, and
i = 7€), s0 that {7;, 7} = 2gij.

Turning to the bulk dilatino equation (2.3.8), the leading order term is in fact equivalent
to the duality properties of b+, given the chiralities of eT. At the next order we obtain the

boundary dilatino equation
—f-e" £ 3Flop-e" F3iXyem + 50T nT F 30T €T = 0. (2.4.11)

The supersymmetry equations for four-dimensional Euclidean off-shell N' = 2 conformal

supergravity have been studied™| in [146], and our equations (2.4.9), (2.4.11) precisely

reproduce the equations in this reference["| Notice in particular that one can solve for the

(conformal) spinor 7 by taking the trace of (2.4.9) with 9/, to obtain
nt = i%D(O)si , (2.4.12)

where )(0) = 'yiDZ.(O) is the Dirac operator. Taking the covariant derivative of 1) and

using the integrability condition for [Dl-(o),D;O)] then leads to the following form of the

dilatino equation
DD —iD;(b7) 7/eT + (4X1 + 3R) eF F2if &5 = 0, (2.4.13)

where R = R(g) is the Ricci scalar of the boundary metric. Requiring the boundary fields

13See [120] for related earlier work and [81] for a recent construction of Euclidean N/ = 2 conformal
supergravity from a timelike reduction of a five-dimensional theory.
™4The explicit notation change is AEZ = —ia, AII<Z = Al TIE_LZ = —bF, eliz =¢F, dxz = 2X;.
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gij, X1,a, Al,b* to solve the spinor equations , 1i for ¢* in general imposes
geometric constraints. Remarkably, in [146] it is shown that generically these conditions are
equivalent to the boundary manifold (My, g) admitting a conformal Killing vector. However,
the topological twist background of [142] arises as a very degenerate case, where in fact
(My, g) may be an arbitrary Riemannian four-manifold. We turn to this case in the next

subsection.

2.4.2 Topological twist

The topological twist background of [142] is obtained by setting in the first place
e =0, a=20, bt =0, 17*20. (2.4.14)

The boundary Killing spinor equation (2.4.9) immediately implies that ¢* is covariantly
constant

DVt = 0. (2.4.15)

The dilatino equation, in the form (2.4.13), then fixes
X; = —%R . (2.4.16)

Recall that €™ is a doublet of positive chirality spinors: the Pauli matrices o7 act on these
doublet indices, while the Clifford matrices <; act on the spinor indices. We may write out
the covariant derivative in (2.4.15) more explicitly by first introducing the following explicit

Hermitian representation

0 oy 0 -1, 1, O
Ya = , Vi = , Yz = . (2.4.17)
—ic; 0 -1, 0 0 -1,
Here a = 1,2,3. Since y;¢" = —¢™, we may identify each of the two spinors in the doublet

¢ with a two-component spinor, acted on by the second 2 x 2 block. With these choices

(E415) reads

DVt = de™ + iyt (w©) Foret + 1Aloet = 0, (2.4.18)

where 17% are the self-dual 't Hooft symbols defined in (A.2.2), and recall that («w(®)) l-jik is the



2.4 Supersymmetric solutions 49

spin connection for the boundary metric g;;. One may then solve (2.4.18) by taking
Al = S (@, (Y = (o) e, (2.4.19)

Here i = 1,2 labels the doublet indices, while a = 1,2 labels the positive chirality spinor
indices, and notice that the frame index @ = 1,2,3 is identified with the gauge indices
I =1,2,3. It is straightforward to check that solves (2.4.18), for any constant c.
The SU(2)r gauge field A’ given by is precisely the right-handed part of the spin
connection, where recall that Spin(4) = SU(2), x SU(2),. Thus the SU(2)g gauge bundle is
identified with SU(2),. This is a beautiful concrete realization of the geometric interpretation

of the topological twist discussed at the end of section m

More invariantly, ¢* is a section of ST ® V, where St denotes the positive chirality
spinor bundle over My, while V is the rank 2 complex vector bundle for which Al'is an
associated SU(2) connection. A priori this makes sense globally only when My is a spin
manifold, when ST and V both exist as genuine vector bundles. However, the topological
twist identifies V with S, and their tensor product then always exists globally, even
when M, is not spin™| This topological construction of a spin-type bundle on a manifold
which is not necessarily spin was first suggested in [21], and is sometimes referred to as a
Sping structure, where here the group ¢ = SU(2). Perhaps more familiar is the Abelian case
of Spin® structures, where instead ¢ = U(1). (For example, this arises in Seiberg—Witten
theory.) Note the consistency with the realization of the theory from branes: the half-twist
is obtained by wrapping D3-branes on Cayley submanifolds in Spin(7) manifolds, and their

normal bundle indeed has the structure ST ®@ V [46].

It will be convenient later to introduce the triplet of self-dual 2-forms

, (2.4.20)

—

where recall that e? is the boundary frame for g;;. More explicitly, these read

' = e2ned+elnet, 172 = S nel+e?net, P =ene?+ednet. (2.4.21)

'5There are various ways to see this. For example, the lack of a spin structure on My is detected by a non-zero
second Stiefel-Whitney class w,(My) € H?(My, Z5). Concretely this means the cocycle condition for the spin
lift of the frame bundle fails up to some minus signs. However, if two copies are tensored together all such
signs square to +1, and the tensor product is a well-defined bundle.
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Of course, in general a frame e? is only defined locally on M4, in an appropriate open set,
and likewise the ]! in are then well-defined forms only locally. More globally, local
frames are patched together with SO(4). The spin cover is Spin(4) = SU(2), x SU(2),,
and the self-dual/anti-self-dual 2-forms are precisely the representations associated to
SO(3)¢/y = SU(2)¢r/Z2. In particular, the {J'} rotate as a 3-vector under SO(3), C SO(4).
In this sense the J! in general don't exist individually as global 2-forms on My, but instead

as a triplet of forms that rotate appropriately. We comment further on this below.

One can also write the ]! in terms of spinor bilinears. Recall from the end of section M
that the bulk spinors satisfy a symplectic Majorana reality condition. In particular the

boundary spinor ¢ satisfies
(7)) = i€ (e")" = et (2.4.22)

where recall that ¢ is the charge conjugation matrix for the spacetime Clifford algebra. In

the explicit basis (2.4.17) we may take

¢ = . (2.4.23)
0 iO’z

Given the solution (2.4.19) one finds that the reality condition (2.4.22) is satisfied provided

the constant ¢ € R. Explicitly, the components of the doublet ¢ are
(et = (0,0,0,c)T, (e7)? = (0,0,—c,0)T. (2.4.24)
We then define the boundary spinor
x = (). (2.4.25)

This has square norm jx = c?, where the bar denotes Hermitian conjugate, and x of course

has positive chirality, —y:x = x. One easily checks that

=C

. 1 _
P4t = I X)X P = —Xrox., (2.4.26)

where x¢ = €x*.
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From the original definition (2.4.20), the J! inherit a number of algebraic identities from

those for the 't Hooft symbols. For example,

Tl = sigji — Sugjk + €ijia - (2.4.27)

Using the metric to raise an index, one obtains a triplet (I')! = g*(J1); of endomorphisms

of the tangent bundle of M,. These satisfy the quaternionic algebra
ol = —6U — eUKII< . (2.4.28)

One also finds that

Vz‘]]I'k = €I]KAZI]]I'§<, (2.4.29)

where the R-symmetry gauge field A’ here is precisely the right-handed spin connection
given by the topological twist (2.4.19). Notice that we may correspondingly write the
curvature as

Fi = LR, (2.4.30)

where R;jy is the boundary Riemann tensor.

In general a quaternionic Kihler manifold is a Riemannian manifold of dimension 4n
with holonomy Sp(n) - Sp(1) C SO(4n) Such manifolds admit, locally, a triplet of skew
endomorphisms I! of the tangent bundle satisfying , for which the corresponding
triplet of 2-forms J! satisfy . Here A! is the Riemannian connection corresponding
to the Sp(1) part of this holonomy group. For n = 1 notice that Sp(1) - Sp(1) = SO(4),
and such a structure exists on any Riemannian four-manifold (M, g) (as we have just
seen). Crucially, the 2-forms are not in general defined globally, but are (in our
language) twisted by the R-symmetry gauge field, transforming as a vector under SO(3)r =
SU(2)r/Z,. As such, they don’t define a reduction of the structure group to SU(2),, as a
global set of such forms would do. Indeed, the globally defined tensor on a quaternionic
Kahler manifold is the 4-form ¥ = J' AJ! (summed over I), and in four dimensions (n = 1)
this is proportional to the volume form. The stabiliser of ¥ is Sp(n) - Sp(1), which is SO(4)
whenn = 1.

In dimensions n > 2 irreducible quaternionic Kahler manifolds are automatically Ein-

16Gee, for example, [201].
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stein. Some authors choose to define a quaternionic Kdhler four-manifold to be an Einstein

manifold with self-dual Weyl tensor, but we shall not use this terminology.

2.4.3 U(1)R current

Before continuing to expand the spinor equations into the bulk, in this subsection we pause
briefly to consider the VEV of the U(1)r current given by (2.3.52). In the topological twist
background equation, (2.3.27) gives a; = 0, so that (J) = —ap/x2. On the other hand, from

(2.3.28) we obtain the U(1)g anomaly equation

i
dx4 (J) = @Pl ANEL, (2.4.31)
5

where 4 denotes the Hodge duality operator on (Mjy,g). Using equations (2.4.30) and
(2.4.27) this may be rewritten as

i

dxa (J) = 32«2
5

(E+P)voly, (2.4.32)

where £ and P are the Euler and Pontryagin densities, (A.1.2). On a compact M, without
boundary these integrate to [, £voly = 327°x(Ma), [y, P voly = 487°(My), so that

integrating (2.4.32) over My giveq"|

g,
i
dxg (J) = 55 [2x(Ma) +30(Ms)] . (2.4.33)
M, 2Kz
It follows that if ap, or equivalently (J), is a global 1-form on My, then by Stokes’ theorem

the left hand side of (2.4.33) is zero, implying the topological constraint
2X(M4) +30(My) = 0. (2.4.34)

Indeed, in section we noted that we are studying gravitational saddle points in the real
Euclidean Romans theory, where the U(1)r gauge field A is a (purely imaginary) global
1-form. Related to this, the U(1)g symmetry effectively becomes an SO(1,1)g symmetry

after Wick rotation, as also emphasized in [146] (see also [194]). A number of gravity

7 A little less laboriously we can instead note that F I'is the curvature of the bundle of self-dual 2-forms A2+ My,
and the integral of the right hand side of is proportional to the first Pontryagin class p;(Ay My) =
2X(M4) + 30’(M4)
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expressions that we shall obtain below only make sense if a, is interpreted as a global 1-form
on My, at least in the set-up we have defined. Thus already restricts the topology of
M,. Interestingly, the same formula appeared in section in relation to the dual TQFT.
Specifically, if or, equivalently, does not hold, the dimension of the relevant

moduli space is non-vanishing, and the partition function is zero

The two expressions are directly related, since the virtual dimension (2.2.5) of M com-
puted in field theory is proportional to this integrated U(1)g anomaly. In the holographic

set-up, we can see this explicitly by using the normalization of the effective gravity constant

(2.2.6) In the large N limit, using (2.4.33) we may then write

dimM = 2i [ dx4(]), (2.4.35)
My

in terms of the integrated (holographic) U(1)g anomaly]™|

2.4.4 Supersymmetric expansion

In this section we continue to expand the bulk spinor equations to higher order in z. From
this we extract further information about some of the fields which are not fixed, in terms of
boundary data, by the bosonic equations of motion. We will continue to use the boundary
conditions appropriate to the topological twist. In particular we note that the boundary
B-fields b* = 0 in this case, and that setting the bulk B* = 0 is a consistent truncation of
the Euclidean V' = 4" theory. Moreover, in this case the bulk spinors €* satisfy decoupled
equations, and since the leading order term ¢~ = 0 it is then also consistent to set the bulk
€~ = 0. We henceforth work in this truncated theory. This subsection is somewhat technical.

All of the relevant formulas that we need in section |2.5|are in any case summarized in that

section, and a reader uninterested in the details may safely skip the present subsection.

The frame, spin connection and spinor expansions beyond the leading order given in

8In passing we note that corresponds (with an appropriate choice of orientation) to equality in the
Hitchin-Thorpe inequality. In particular the only Einstein manifolds satisfying this condition are the flat torus,
a K3 surface, or a quotient thereof [129]. A non-example is S*, for which 2x(S*) + 3¢(5*) = 4. On the other
hand, for a complex surface 1) is equivalent to [ M, €1 Ac1 =0, where ¢ = ¢1(My) is the first Chern class
of the holomorphic tangent bundle (the anti-canonical class).

190f course, the same formula holds for the A/ = 2 SCFTs of class S: one starts from the dimension of the

moduli space derived in footnote|o] from (2.42) of [117] and uses and (:2.7).
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section [2.4.1 will be needed, so we first give details of these. The frame expansion is

of = el +22(e®)i+2* [(log2)2(eW)] +logz(@W) + (eW)]] +0("),  (2436)

where in particular ef is a frame for the boundary metric. The additional spin connection

components we will need are

OF = e?— %gfkej:azgik erf = gijel[;aze?. (2.4.37)

\
N | =

The bulk spinor has €~ = 0 in our truncated theory, and we thus henceforth drop the
superscript on €™ — €, €7 — & (we hope this abuse of notation won't lead to any confusion).

The bulk spinor then has the following expansion
e =z Y2+ 2228 + 222 (logz & + &) +27/%((log z)? & +logz& +€7) +0(z"/?), (2.4.38)
where ¢ is constant with positive chirality under —v;. As in equation (2.4.22) the bulk spinor

€ satisfies the reality condition

C

€ = in%e" = €. (2.4.39)
We start by analysing the bulk dilatino equation. At lowest order we find

0 = Xye+iF - (0le) = (Xi+ 5R)e, (2.4.40)

which is satisfied identically, where we have used (2.4.16) and (2.4.30). At the next order we

find

ia] - (07€) = —1(dR) - €. (2.4.41)

This is effectively a matrix equation, of which we shall see many more. Components of such

equations may be extracted by first noting that

e = , (2.4.42)

in the notation of section For example, one can then take the first component of

(2.4.41), and apply X7; on the left. Taking the real part, and using the definitions (2.4.26) of



2.4 Supersymmetric solutions 55

J! in terms of spinor bilinears, one obtains

(a1)'T; = ViR (2.4.43)

We shall make use of similar manipulations throughout this subsection. Focusing on (2.4.43),

recall that a! is already fixed in terms of the SU(2) covariant divergence of F!, via equation

lb The latter reads (al); = %DjFig. Starting from this and , and using the
identity tqu]fn’“],[ﬂ = Qppn — 2(*)mn, where &pg is any 2-form, one can show that is
an identity. We may then differentiate and, upon using the quaternionic Kahler
equation (2.4.29), we obtain

(Day)]jj = —3V°R. (2.4-44)

This relation appears frequently hereafter.

At the next order in the dilatino equation we find an equation involving several undeter-
mined fields:

ia} - (o7e) = (2iap +3dX> + §dR) - ¢, (2.4.45)

from which we similarly extract
(a3)7T5 = —2i(a2); —3V;Xp — §VjR.. (2.4.46)
From this expression, taking a covariant derivative and symmetrizing indices gives
3ViViXa = Di(a3)"jy —2iVi(a2); — §ViViR . (2.4-47)
At higher order still we have
Xse = Xi(1+7z)e — £5Daj - (oe) . (2.4.48)

As ¢ has positive chirality we can act with P_ = 1(1+ ;) to deduce that & also has positive

chirality. It then follows that
X3 = —4(Da))]; = £VR. (2.4-49)

where we have used (2.4.44). This expression for X3 is equivalent to that in (2.3.29), for the
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topological twist. Finally, at order O(z”/2) we have

Xge = —1Xae—1X1& — 4| (Da}) - (01¢) — 26 -+ F' - (07%)]
o (2.4.50)
— e (el ))§Pi]-'y” (o7€) .

Here eé is the inverse frame to e!, with e% and (e(z))é being coefficients in its expansion,
precisely as in (2.4.36). We have also defined f, = day. Since & is so far undetermined, we

cannot yet extract an expression for X4. This concludes the expansion of the bulk dilatino

equation.

Turning next to the bulk gravitino equation, at lowest order in the z direction we find,

after using the fact that > has positive chirality, that
& = LRe—1dVel (e(2))§'yﬁe. (2.4.51)

As a metric defines the frame only up to an arbitrary local SO(4) rotation, it is convenient

to gauge fix this arbitrariness. A consistent gauge choice is (e(z))iT = %(Sz)l}e{ and (e(2))§ =

— %e} ( gz)f ;, where recall that g2 is fixed in terms of the boundary Schouten tensor via (2.3.33).

This then implies that

TRON 1.2 TIRERON 1/.2

gijei () = —38%, g€l (e?); = (e, (2.4.52)

and, being symmetric, their contraction with any anti-symmetric tensor automatically

vanishes. Consequently, this gauge choice reduces the relation between the spinors ¢ and e
to simply

e = 4i8R8. (2.4.53)
Having found this relation we may substitute for ¢ into the right hand side of (2:4.50),
extract X; and then substitute for g2, X;, X3 and F! to obtain

ij
Xy = 5gR* — ARyR¥ — LV?R — L (Daé) Jii- (2.4.54)

Here strictly speaking we have taken the real part of this equation, where the term involving
f, is purely imaginary, and thus doesn’t appear. Using the trace of (2.4.47), together with
several other equations derived so far, one can check that the expression (2.4.54) for Xy
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agrees with the expression (2.3.30), obtained from the equations of motion.

At the next orders we find

(5—7:)& = —28 +2(%iap +dXy) - ¢, (2.4.55)

G-72)8 = %a{ ~(ore) = _%dR "€ (2.4.56)

We could continue and analyse higher order terms in this z component of the gravitino
equation, but the subsequent expressions are not required, nor particularly enlightening,

and so we stop here.

The remaining equation to study is the i direction of the gravitino equation. Crucially this
involves the spin connection components 0%, which introduce the metric expansion fields
from (2.3.15). Of course, the leading order equation is satisfied by construction. Remarkably,
at the next order we find a non-trivial equation which is also identically satisfied given the

chirality of € and the algebraic properties of the Riemann tensor. At the following order we

find another condition on &°:

Y [3i(1 + 728 +ajf - (018)] =0, (2.4.57)
which, used in conjunction with (2.4.56), allows us to determine
8 =&, & = —LdR-e. (2.4.58)
We now substitute & into equation (2.4.55):
(5—72)¢ = (2iap +2dX, + 15dR) - e. (2.4.59)

Acting on this last equation with <, and taking the difference, implies that ¢> is a negative

chirality spinor: ;e = €. We thus find
& = (Yay+ 3dX, + £dR) -e. (2.4.60)
At the next order we begin to see the metric fields appearing:

h%.’yjs = — o RPye — tys(1+72) . (2.4.61)
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Using the chiral projector P_ again we see that & has positive chirality, and we may extract
ho:

This agrees with the expression i), = —3¢;;X, given by equation |i derived from the

expansion of the bosonic field equations. The next order gives

hil].ryfs = —Iy(1+7:)& — %h%’yfe — X1 Xoy;e+ V& + %A%((T]?,S)

. = s U (2.4.63)
— 21 X1 (77" — 4007 ) F (1) + 35 (77" — 4019") (Da)e(0e)

As before, we can show that & has positive chirality and hence drops out of (2.4.63). Now

using the definition of & in (2.4.58) allows us to write everything acting on the spinor «.

After using the intermediate result
— %]I(Z-k(Da{)]-)k = —% (Rl‘kR]'k + Rikl]'Rkl — VZRZ‘]‘ + %G(j‘kmn‘RklRmni)O P (2464)
and substituting for the known expressions, we can then read off h}j:

hjj = 38R + 138ijRX2 — 5RRjj — 3;ViV;R — 458;;V°R a9
2.4.65
—3 (RikRjk + RygjR — V2R;; + %€(j\kmn\RklRmni)z) -
Once again, we have found another expression for something we have already derived: h}j is

also given by equation (2.3.39). However, in this instance the equality of the two expressions

(2.4.65) and (2.3.39) is non-trivial. It is equivalent to the equation

0 = (RRjj — 2R/ Ry + 2RjqiR¥ + Ry R™ %) — 1g1i(R* — 4Ry R + R, R™™)
(2.4.66)
5 [€mnpa (= 18 R™ R 4 gieR™ iy RMM) = 26y R¥R™ ]
The first line quite remarkably is known to be zero for any Riemannian four-manifold, and is
called Berger’s identity [45]. One can also show that the second line is equal to zero, which
amounts to an algebraic identity that holds for any tensor sharing the algebraic symmetries

of the Riemann tensor.
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Finally, at the last order we find™

(4gh + hh)ve = =231+ 72) +4 (V;65 + LAl (016") ) — 2XG;e — 2g20€°
. H” 7T
+ 17/ — 4609%) | (Dah)l(re) + (B2) e + F(1’) = XoFh(ere)
+ 2e§(e(2))%F]§<(me)} -2 [eﬁé (e(2))§ + (e(z))z—:eﬂ glzjyfs. (2.4.67)

Again there is a positive chirality condition on &’ which removes it from the above equation.

Using the many intermediate results we have derived, we then find

4g;1]- -+ h}j = ZVZ'V]' (Xz + 21711{) + ZiV(i(az)j) + (X2 — %R) Ri]'
+ g (—%RXZ X2y f—szle’) + 1RyRY; (2.4.68)

— 3" RyiRi! + $RiiRY + [2Daj — +(Day)] ] ) -
2.5 Metric independence

Our aim in this section is to show that, for any supersymmetric asymptotically locally
hyperbolic solution to the Euclidean N = 4% supergravity theory, with the topologically
twisted boundary conditions on an arbitrary Riemannian four-manifold (M, g), the varia-
tion (2.1.1) of the holographically renormalized action is identically zero. As explained in
the introduction, this implies that the right hand side of is independent of the choice
of metric g, precisely as expected for the holographic dual of a topological QFT. We find that
this is indeed the case, using the minimal holographic renormalization scheme described in

section We comment further on this at the end of section

2.5.1 Variation of the action

As discussed in section the Donaldson-Witten topological twist corresponds to the

following boundary conditions on the supergravity fields on My:
0=0b" =a=c¢, X, = _117R' Al = %wijk];—kdxi. (2.5.1)

Here the boundary Riemannian metric g;; on My is arbitrary, with wi]k being the spin

connection, R being the Ricci scalar curvature, and the triplet of self-dual 2-forms J! being

2°0f course, knowing h}? we could write an expression for g% alone, but it is only the combination 4g;.17 + h}?

which we shall need in the next section.
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given by (2.4.21). The holographic Ward identity for the variation of the renormalized action
(2.3.43) with respect to general variations of the non-zero boundary fields is

0S = 6,8+ 0mS + 6%, = /

[ dix/detg [%Tijégfw FIAl+ 86X | (25.2)
5=1Vl4

It is worth pausing to consider carefully why this equation holds. A variation of the
boundary data on M4 will induce a corresponding variation of the bulk solution that fills
it. However, we are evaluating the action on a solution to the equations of motion, and
by definition these are stationary points of the bulk action. Thus the resulting variation
of the on-shell action is necessarily a boundary term, and this is the expression on the
right hand side of (2.5.2). This argument requires that the equations of motion are solved
everywhere in the interior of Ys: if the latter has internal boundaries, or singularities,
the above in general breaks down, and one will encounter additional terms around these

boundaries/singularities on the right hand side of (2.5.2).

For the topological twist all boundary fields are determined by the metric g;;. Since

X1 = —%R, to compute 6X; we need the variation of the Ricci scalar:
SR = Rydg' + V; <gf’<5r;ik - gif(sr;?k) , (2.5.3)
with the variation of the Christoffel symbols being
T = 38" (Vidgi+ Vogi — Vidgj) - (2.5.4)
After integrating by parts twice we obtain
6x,S = —— e [(ERZ-]- +gijVZE — V;V,E) 58" voly + Klg%(lvoh , (2.5.5)

where voly = /detgd*x is the Riemannian volume form on (My, g), and all geometric

quantities appearing are computed using the boundary metric g;;. Substituting the value of

= from leads to

5%,8 = ——

412 /Z)Y [ (X2Rij + 8iiV? X2 — ViV X2) 68" voly + £ x,voly |, (2.5.6)
5 /oY
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where the total derivative term is

Px%, = —3V; [kazgifégjk — Vingjkég]-k — ngjkgil(vkéglj — Vlégjk)] . (2.5.7)

For 6 A! we first need the variation of the spin connection. After a short calculation we

have

5wij7k = %e’]emi(vmég,-l — V10gim) - (2.5.8)
Thus

SAl = %mfk]]% = L(Vidgi)I*. (2.5.9)

After integrating by parts, the SU(2)g current contribution is hence

1

— /a { {Dk(a{ + Zﬂé)i]}k} 6g" voly + 2 41voly }, (2.5.10)
Ys5

58 = —
Al 82

where we have substituted for the SU(2)g current using (2.3.51), and used the quaternionic
Kihler identity (2.4.29). The object in square brackets is a tensor with indices ij: only the

symmetric part contributes. The total derivative term is

Dy =V, {(a{ +2a£)k]1ij5gjk] . (2.5.11)

It remains to evaluate the stress-energy tensor contribution (2.3.49) and combine it with

(2.5.6) and (2.5.10). Doing so leads to

1

55 = —
4ic2

/ (72]' (Sgij voly + s V014> , (2.5.12)
dYs

where the total derivative term is

Ds = —3Dx, — 2D a1, (2.5.13)
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and

Ti = [4g) +hij — 4g; (W — 322 — Lu) — 2243 — 6;,X3
+5(ViVigh + ViV gk — Vel — ViVit?) — JgiR + 1gii(enRY)]  (25:14)
— (XzRij + gijVZXZ — ViVjXZ) - % [,Dk(a{ + 2‘1%)(1' ]Ij)k] .

Here the first two lines come from the stress-energy tensor (2.3.49), while the last line
combines (2.5.6) and (2.5.10). Provided My, is a closed manifold, without boundary, the

integral of the total derivative term is zero, and we have simply

1

5S = —
4x2

/ Tij 6gij voly . (2.5.15)
AVs=M,

The tensor 7;; is thus an effective stress-energy tensor, for variations of the renormalized
on-shell action with respect to the boundary metric, all boundary data being determined by
this choice of metric. Our claim that the on-shell action is invariant under an arbitrary metric
deformation dg;; is thus equivalent to the statement that 7}]' = 0, for every Riemannian

four-manifold. Remarkably, despite there being several undetermined quantities in (2.5.14),

using the results of sections [2.3.3| and [2.4.4| we will show that indeed 7;; = 0 in the next

subsection.

2.5.2  Proof that 65/4g;; =0

We begin by substituting expressions from section [2.3.2| into (2.5.14)), which recall follow

from the Fefferman—Graham expansion of the bosonic equations of motion. In particular we
substitute for V2X; using equation (2.3.30), as well as various metric quantities, except for
the combination 4gfj + h}] With the topological twist boundary conditions this leads

to the expression

Ti = (3R — X2) Rij — 3RyR"; — IRy;R" — 1V, VR + V;V; (X2 + iR)
+ 1V2Rij + gij (2X5 — 5 R* + 1RXp — 5 VPR +4X5 + 4X,) (2.5.16)

In particular we have used the identity

- %VkV(iRkj) = —%RikRkj — %Riklijl — %VZ‘V]'R ’ (2.5.17)
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in deriving (2.5.16).

The equations of motion, or equivalently supersymmetry conditions, determine
ij
Xy = V2R, Xy = psR*— ERuR" — LV2R— % (Da}) T} (2.5.18)

On the other hand, in section the expansion of the supersymmetry conditions led to
the expression (2.4.68), which we repeat here:

dgh+hl; = 2V,V; (Xo+ 4R) +2iV(a2);) + (X2 — 5R) R;;
+gi (—%RXZ —ax2 4 %Rkle’) + IRyRY, (2.5.19)

k !
— 3" RyuiiRy' + {1 RiiRY + §[2Daj — +(Day)] ™) -
Substituting into (2.5.16), after several immediate cancellations we are left with

Tii = 1V°Ryj — $6"™RypiRe? — $RixR ; — JRii R +3V,V; Xy — 3D (a1) ('

ki (2.5.20)
+2iV;(a2) ) — £8ij (Dﬂé) Ji + 3(2Day — «Dab) ] ) — D*(ag) (I ik -
Using the expression
(a1)i = —%ﬁnnijmnji ’ (2.5.21)
together with the contracted second Bianchi identity, we find that
Dk (al); ]lk = —3e/"VVuRyi — IV*V Ry (2.5.22)

Substituting this expression, together with equation 1i into 7j; in l) we arrive at

Ti = V2R —§ViV;R+ IV*V!Ryy; — IRyR*; — 1Ry RY
ki
— 8ij (Dﬂ£> Ji + 312Day — «(Day)] ™) — (Dag) a5

+ %ejkmn (kavani - Rmnilel>

(2.5.23)

=0.

Here, remarkably, each of the three lines vanishes separately. The first line is zero using
again (2.5.17) and the contracted second Bianchi identity, whilst the terms in the second line
combine to give zero after using the self-duality property of the J' tensors to remove the

Hodge dual acting on the field strength Dal. The final line is zero after applying the Ricci
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identity for a rank 2 covariant tensor, followed by the first Bianchi identity and using the

symmetry of the summed indices.

We emphasize again that this proof that §5/4¢;; = 0 uses the minimal holographic
renormalization scheme defined in section Up to finite counterterms in (2.3.44)
that are topological invariants, which have identically zero variations, another choice of
scheme would spoil the above result. Another important comment is that the original
path integral arguments in [219] are essentially classical (see footnote 10 of [219]). In
particular there might have been an anomaly, implying that the partition function (and
other correlation functions) are not invariant under arbitrary metric deformations. In this
case, the topological twist would not have led to a TQFT. This might seem like a strange
comment, given that the topologically twisted N' = 2 Yang-Mills theory of [219] at least
formally reproduces Donaldson theory, which of course certainly does rigorously define
diffeomorphism invariants of My. However, it has recently been argued that precisely
such an anomaly exists for four-dimensional rigid N’ = 1 supersymmetry [191, 2]. The
computations in these papers are in fact holographic, and rely on the fact that in AdS/CFT
the semi-classical gravity computation is a fully quantum computation on the QFT side,
including any potential anomalies. Specifically, it is argued that there is an anomalous
transformation of the supercurrent under rigid supersymmetry on the conformal boundary,
implying that the partition function is not invariant under certain metric deformations that
are classically Q-exact. These particular anomalous transformations were first discovered in
[39,38], via essentially the same computation we have followed in this chapter, although this
was not interpreted as an anomaly in [39, [38] (this will be the content of chapterl). Returning
to our present problem, the QFT is in any case coupled to an A/ = 2 conformal supergravity
background, and for the N =2 topological twist we find no anomaly. In particular our
topologically twisted supergravity theory, formally at least, defines a topological theory. We
discuss this further in section

2.6 Geometric reformulation

In this section we present a geometric reformulation of the bulk supersymmetry equations.
In section we describe how (twisted) differential forms built out of bilinears in the

bulk spinor define a twisted Sp(1) structure on Ys, and in section we then derive
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a set of first order differential constraints on this structure. On the conformal boundary
this restricts to the quaternionic Kéhler structure that exists on any oriented Riemannian
four-manifold (M, g), described in section In section we use the information
from the differential constraints to evaluate the gravitational free energy for smooth filling.

Finally, we also discuss some general aspects of the filling problem in section [2.6.4}

2.6.1 Twisted Sp(1) structure

Recall from section that the bulk spinor € of the Romans N = 47 theory is originally
a quadruplet of spinors. These split into two doublets €*, with eigenvalues +i under I's5
(see equation (2.3.11)). Beginning in section we worked in a truncated theory in which
B* = 0and e~ = 0. We may then define

€ = , (2.6.1)

_é'C

where ( is a spinor on Y5, and recall that {¢ = €'(*. Equation (2.6.1) is the solution to the sym-
plectic Majorana condition (e7)¢ = €. More globally, and as on the conformal boundary
M,, the spinor €™ in (2.6.1) is a Sping spinor, where & = SU(2)g — see section [2.4.2]

With this notation we may define the following (local) differential forms

S

Il
o~
N
e
Il
_ =
N
=2
=
~

(2.6.2)
J? = Cr2)8 J*+igt = géc')’(z)ér

where in our Hermitian basis of Clifford matrices recall that a bar denotes Hermitian
conjugate. There are a number of global comments to make. First, as in the discussion in
section the fact that ¢ is globally a twisted spinor, rather than a spinor, means that
in general only locally defines an SU(2) 2 Sp(1) structure’] More globally, the 7'
are twisted via the SU(2)r symmetry, transforming as a triplet. We shall call this a fwisted
Sp(1) structure. Another comment is that in any case the structure is well-defined only
where ¢ # 0. In general there may be solutions to the spinor equations where { = 0 on
some locus. We should hence more precisely define Yéo) = Y5\ {¢ = 0}, so that is

well-defined on Y5(0). One will then need to impose certain boundary conditions on this

21 A general discussion of global Sp(1) structures on five-manifolds may be found in [72].
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structure, near {{ = 0}, in order that the solution on Ys is appropriately regular. The

bilinears 1) define a twisted Sp(1) structure on Yéo).

Continuing the analysis of section the expansion of the spinor (2.4.38) implies that

near the conformal boundary

[ =z 2x+ 2/ (£R) x + 2% (— 4dR logz + tay + 3d Xz + dR), 7'x
+27/2 [ — 111@1{2 log2z + 41—8 (RXZ + 11—6R2 — %VZR) log z

L ; (26.3)
-1 (X% + 1RXp + 3R — £ VPR — LR;RY — ﬁ(daz)iﬂZ]) }X

—1—27/2[% (Da£> 'y”(me’l)l] +o(zh).

ij
where x is the boundary spinor defined in section In particular for the topological

twist this is constant, with constant square norm xx = ¢ (see equations (2.4.24), (2.4.25)).

Without loss of generality we henceforth set ¢ = 1, so that

_ 1z 5/2
S = _ 4R+ (2.6.4)

In particular notice that { # 0 near to the conformal boundary at z = 0. The last line of
(2.6.3), seemingly, cannot be written in terms of the lowest order constant spinor x, however

it will not play a part in the following.

2.6.2 Differential system

Starting from the bulk Killing spinor equations (2.3.7), (2.3.8) one can derive a system of
differential equations for the twisted Sp(1) structure (2.6.2). In the notation (2.6.1)) the spinor

equations read

Vid = A+ (A A € - 3+ (X X
35X (Fly = iP5 (1 = 4010°)0° — &5 (X7 Fy 4 X2Fp) (1 — 400°)C,
0 = 3iX 19, XYL +i(X = X2) T — §X 1 (Fp, —iFp )"

+ 3 (XTVF, = 2X2 Fu )y T (2.6.5)
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As in section it will be convenient to introduce the real 1-form
C =iA. (2.6.6)
Using these equations, a standard calculation|leads to
X 2K =dlog(XS)+cC, (2.6.7)

together with the triplet of equations

d(ST") = —CAST"+ 22X+ X )KL AST + el g AV ASTK
(2.6.8)
+AXTIS(xFI KA F).
Here the Hodge dual is constructed from the volume form vols = —K A voly, where

voly = %\7 EA T The sign here is chosen to match our earlier choice of orientation, via

(2.3.16), as we shall see shortly.

We may read the first equation (2.6.7) as determining the 1-form C in terms of geometric
data and the function X:

C = X %K —dlog(XS) . (2.6.9)

In particular, the associated flux is then
G =dC = iF = d(X %K) . (2.6.10)
Substituting into (2.6.8), the latter simplifies to
dg! = eI]KA} ANTE + (dlog X +2XK) AT+ 1X 1+ FI+ KA FT) . (2.6.11)

Recall that in the original Lorentzian theory A is a U(1)g gauge field. In the real
Euclidean section we have defined C = iA, which is a real 1-form, but there is then a
residual part of the (complexified) gauge symmetry C — C — dA, where A is a global real

function. The fields transform as follows:

. — M, S = e's, ¢ — C—dA, (2.6.12)

*?For example, see [8].
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with everything else invariant. In particular it is immediate to see that (2.6.9), are
invariant under these gauge transformations. In our boundary value problem recall that we
fixed C |p,= 0, and in order to preserve this gauge condition on the conformal boundary
one should restrict to gauge transformations that vanish there, so that A |5, = 0. With this
caveat, one might use this gauge freedom to effectively remove one of the functional degrees

of freedom.

Let us look at the asymptotic form of the differential conditions near the conformal
boundary at z = 0. Recalling the Fefferman-Graham expansion of the fields (2.3.18)—(2.3.20),
together with the topological twist boundary conditions (2.5.1), we have

X =1-— 11—222 logz R + 22X, + 41—824 log z V2R
+24( = 1V2% — AVIR+ R — ARRT — (€ +P)) +0(z*),
‘ (2.6.13)
Al = /T dx' — {22 1og 2], V;R™ dx' + 2%a} + 0(2%),

A = 22a2 —i—O(ZZ).

Here R, R;; and R,,;; are respectively the boundary Ricci scalar, Ricci and Riemann tensor
and &, P are the Euler and Pontryagin densities constructed from these curvature tensors.
The boundary spin connection is w;* and ]! are the triplet of boundary self-dual 2-forms.

The 1-form iaj is real. Using also (2.6.4), equation (2.6.7) then implies that

dz

K=-=
V4

+2%( — fylogzdR +iag + dXz + 5 dR) +0(z*?). (2.6.14)

Recall that in section we defined the triplet of boundary almost complex structures

(1 )i]. = ¢ (J1)y;. If we define the boundary (almost) Ricci 2-forms
pz-l]- = Rk[i(II)kj] , (2.6.15)

where R;; is the boundary Ricci tensor, then similarly from the definition (2.4.26) we have

1
T'= @ ukl -z (26.16)
2.6.1
+zdz AT (= L logzdR +iax + dXp + 4dR) +0(z%?) .
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Here I!(7); = (I )j ;77; for a 1-form 7 tangent to the boundary. It is interesting to note that the
O(1) terms in J! above may also be written as f—ZR]I — %pl = (g? o J!), where recall from
equation that g2 is (minus) the Schouten tensor of the conformal boundary. From
we hence read off the leading order the boundary equation

dJ' = elAl ATE. (2.6.17)

Equation (2.6.17) follows from taking the skew symmetric part of (2.4.29). In fact since the

exterior derivatives of the boundary SU(2) structure J' completely determine the intrinsic

torsion (this is true for an SU(n) structure in real dimension 2n [114]), it follows that (2.6.17)
also implies (2.4.29).

We may always choose a frame 5,? for the bulk metric on Y5 such that

K= -&, J' = ENE+ENE,

T> = ENEV+EXNEH, T = E'NEP+ENEL. (2.6.18)

In particular (2.6.14) identifies &° ~ dz/z to leading order, and the sign for K in (2.6.18)
follows since —:x = x, where E? = dz/z. The volume form is vols = &3, Notice
that the expansions 1’ 1) imply that in general we may not identify é”f near the
conformal boundary with the Fefferman-Graham frame EZ in 1} except to leading

order.

2.6.3 On-shell action

In the consistent truncation of the supergravity theory that we used to construct the dual

to the topological twist, the on-shell action obtained using the Einstein equation reads

(compare with (2.3.40))

1

Ios = —
0-s 2K§

/ [B(X*+2X ) 1+ IXPFAF + X2 F A F!
¥ (2.6.19)

+IFIAFIAA].
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However, by additionally using the scalar field equation twice and to rewrite

the Chern-Simons term we arrive at the following simpler expression

1
los = 55 [ [BX T x1-d(2X 1 wdX - XAANF)]. (2.6.20)
2k5 JYs
Now with some simple manipulation of the differential system (2.6.7)—(2.6.8) we can show

that
dXx2g'Agh = —8X 1«1, (2.6.21)

and immediately conclude that the on-shell action is (locally) exact;

1

Ibs = ——
0-8 ng

/' d(AX 27 A J!+2X T dX — XEAN £F) | (2.6.22)
Y5

In addition to A being a global 1-form, with F a global 2-form, we assume that X > 0 is
a smooth global function on Ys. Further, note that J IA T o K and K is fixed by in
terms of X, A and S. Hence K is globally defined as long as the spinor norm S = {{ # 0.
Therefore, we should more precisely work on Y5(0), so that (S, KC, J I ) are well-defined and
the gravity solution is smooth. In summary, the on-shell action is globally exact apart from
a set which we assume has zero measure. As in section we cut off the bulk Y5 at some
small radius z = § > 0, so that dY5s = My = {z = 6} = M. Using Stokes’ theorem, we may

then write the on-shell action as integral over 8Y5(0):

1

Ios = ——
0-S 21(%

/ (X727 AT +2X e dX - XEA AR F] (2.6.23)
vl

Here E)YS(O) comprises the conformal boundary My = M, and the boundaries T, of the small

)

tubular neighbourhoods of radius € > 0 surrounding the subsets Y5 \ YS(O where the spinor

norm vanishes.

The above on-shell action must be supplemented by the standard Gibbons-Hawking—

York term at the UV boundary, Ighy as in section and the divergences may be cancelled
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by adding the local boundary counterterms coming from the truncation of (2.3.42):

I = lz d4x\/det { 1R(h) +3(X —1)?

K5
+1logé [ (R,](h)Rff (h)— 1 R(h)2> 4 3(logd) A(X —1)>  (2624)
+3F+ K(FD) )
As the on-shell actions given by (2.6.19) and (2.6.23) are equivalent, I must also cancel

divergences arising from the latter when supplemented by the common Gibbons-Hawking-

York term. The total renormalized action is then

S = lim (Io-s + Iguy + Ict) . (2.6.25)
6—0

In order to calculate the UV contribution to S of the term lezj EA TN in I, we use

the expansion of the spinor (2 and the definition of the bilinears in (2.6.2), determining

VAVNVAI

=[5 R+} (3R = RyRT) — 4R log? 6 + RX, logd oat
2.0.2
+ 1k (~384X3 + €+ P) |voly + 0(6'/2)

Here we have restricted the 2-forms to the boundary at constant z = . On forming the
exterior product there are several simplifications, in particular the anti-symmetric indices of
day and Da} are traced over and do not contribute. This can also be shown by expanding

the equation K A JI A J! = —6vols.

We are finally in the position to evaluate the UV contribution to the renormalized

on-shell action (2.6.25). We find

1
guv _ };5%;{%/% [logé(%(é’—f—P) w1+ 4d *4dR> —Ld *4d(R+24X2)] . (26.27)

At first sight the log  term is problematic as it diverges. However, as we saw in section [2.4.3)
the topological condition | oy, (€ +P)#41 = 0 is required in order for A to be a global 1-form,
or equivalently to have a non-zero partition function for the boundary TQFT. Moreover,
the Ricci scalar is a globally defined function on M, and consequently for boundaryless
four-manifolds, i.e. 0M;s = 0, the second term vanishes on using Stokes’ theorem. The same

argument applies to the finite piece of SVV as the bulk scalar X, and hence X, is a global
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smooth function. It follows that the UV contribution to the renormalized action is zero for
smooth fillings.
That now leaves us with the contribution from the small tubular neighbourhood T.

where the spinor norm vanishes:

5 = L lim [ X 2AT AT =X T dX + 1XP AN F] . (2.6.28)

1(&.2) e—0.JT,

However, this gives zero for a smooth solution. The contributions from the second and third
forms vanish in the limit € — 0: A is assumed to be a global smooth 1-form on Y5, and the
bosonic field is assumed to be smooth. In particular, X = e%‘i’, so X > 0 (indeed, bounded
below by a positive constant since Y5 is compact). Thus the integrals tend to zero as the

volume enclosed by T, tends to zero. In addition, the first term may be written as
— %X’Zjl AT = X2xK. (2.6.29)

One may worry that K is not defined as the norm of the spinor vanishes. However, we may

use (2.6.7) to rewrite the relation above as
X 2% K = (dlogp + C)* 1vols, (2.6.30)

where p = XS can be used as a radial coordinate near to the locus where the spinor
vanishes, where p = 0, and one defines T = {p = € > 0}. It follows that (apart from a
contribution from the smooth gauge field) X2 K is directly proportional to the volume
form (dlogp)? Jvols induced on T, from the five-dimensional bulk metric. The integral
hence vanishes in the limit € — 0, where the volume of the tubular neighbourhood T,
vanishes. We conclude that the renormalized action for any smooth supergravity solution is
zero.

Topologically, a smooth filling Y5 of M, exists if and only if the signature c(M;) = 03]
Together with the constraint (2.4.34)), one necessarily has Euler number and signature of My
equal to zero: x(Mi) = 0 = 0(M4). Apart from this, no other topological assumption is

made about My or its filling in the above computation.

#3In four dimensions, the oriented bordism group is Qio = Z, with the map to the integers being given
by the signature o(My) = by (My) — by (My) = } jM4 p1(My), where p; denotes the first Pontryagin class. A
generator of (00 2 Z is the complex projective plane.



2.6 Geometric reformulation 73

2.6.4 Filling problem

As explained in chapter 1} given a Riemannian four-manifold (M,, g) as a fixed conformal
boundary, at least to a zeroth order approximation in AdS/CFT one wants to find the least
action supersymmetric solution to the five-dimensional ' = 4" supergravity theory, with
this boundary data. Such a solution will be the dominant saddle point on the right hand
side of (1.4.1).

As we have seen in the previous subsection, supersymmetric solutions on Y5 are char-
acterized geometrically in terms of a set of first order differential equations (2.6.9)-(2.6.11)
for a certain twisted Sp(1) structure. In particular there is a triplet of twisted 2-forms J7,
I =1, 2,3, which locally at the conformal boundary restrict to an orthonormal set of self-dual
2-forms on (M, g). The differential equations become tautological on the boundary, and
are equivalent to the fact that every oriented Riemannian four-manifold has a quaternionic
Kihler structure, i.e. has holonomy group Sp(1) - Sp(1) = SO(4) [ This differential system
on Ys, regarded as extending that on (M, §), clearly deserves closer study.

An important question is: what are the global constraints on Y5? As already mentioned,
a smooth filling Y5 of M, exists if and only if the signature of the boundary four-manifold
vanishes. Moreover, as explained in section for solutions embedded in string theory
one also needs these manifolds to be spinf| This restriction would seem to rule out
many interesting four-manifolds However, as mentioned at the end of chapter [1| as
well, requiring Y5 to be smooth is almost certainly too strong. Already from AdS/CFT
in other contexts, it is clear that the dominant saddle point contribution can be singular,
and one might anticipate that this is somewhat generic, at least for general M,. Perhaps
the appropriate question is then: what are the relevant singularities of Y5, for a given My?
Mathematically one would need control over existence and uniqueness of the differential
equations for the twisted Sp(1) structure, for appropriate Y5 (with singularities/appropriate
internal boundary conditions) filling M4. However, one might also anticipate that the
supergravity action could be evaluated without knowing the detailed form of the

solution, but instead in terms of appropriate global data, and perhaps local data associated

24This result is parallel to the study of rigid supersymmetric backgrounds using holography for four-
dimensional N = 1 theories [145]. There, the boundary structure was found to be an integrable almost complex
structure.

?5The relevant spin bordism group is then Qip "~z generated by a K3 surface, where the map to the
integers is 0(My)/16.

26Al’chough it leaves, for example, My = S1 x Mj, for any oriented three-manifold M3, and products of
Riemann surfaces.
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to singularities. Notice that one constraint on such singularities/internal boundaries is that
they do not contribute to the variation of the action — see the discussion after

Less ambitiously, one might also try to find explicit solutions; for example, via symmetry
reduction so that the equations reduce to coupled ODEs. An obvious case is solutions
with Y5 = S x By, where By is a four-ball so that 0Ys = My = S! x S3, and seek solutions
invariant under U(1) x SU(2) (the latter acting on the left on S*> = SU(2)).

In this case it seems that the refinement of the partition function discussed in section
could play an important role: the refined partition function is closely related to the
Coulomb branch index, as explained in [82]. One might then try to reproduce this from
a dual supergravity solution for which Y5 = S! x By. More generally, for a four-manifold
S x M3 with product metric both £ and P vanish, and the holographic U(1)r current is
conserved, as can be seen from (2.4.32). The associated conserved holographic R-charge
might then provide a natural holographic correspondent to the refinement of the partition
function for the twisted four-dimensional SCFT.

Finally, the present problem may be contrasted to the general hyperbolic filling problem
described in [13]. Here one also begins with an arbitrary Riemannian (My, g), which is a
conformal boundary, but one instead asks for the filling to be an Einstein metric of negative
curvature. This problem is still quite poorly understood: there are in general obstructions
and non-uniqueness, and one should at least impose that ¢ has a conformal representative
with positive scalar curvature [226] (physically, so that the CFT is stable). The geometric
problem in the present chapter is likely to be much better behaved: the equations are first

order, not second order, and the solutions should be dual to a TQFT.

*7For example, the singularities in the gravity fillings in [g} 8] are isolated conical singularities. Provided the
radial dependence of fields near to the singular point are no worse than for smooth fields in flat space, such
singularities will not spoil the result (2.5.2).
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3.1 Introduction

In the previous chapter, we considered the gravitational dual to the Donaldson-Witten
twist on four-dimensional backgrounds. Since four-manifolds are notoriously difficult, in
this chapter we set up an analogous problem in one dimension lower. The relevant bulk
supergravity theory is a Euclidean version of N' = 4 Spin(4) gauged supergravity in four
dimensions. As well as the metric, the bosonic content of the theory contains two scalar
fields and two SU(2) gauge fields. Here Spin(4) = SU(2)4 x SU(2)- is the spin double
cover of SO(4), and the fermions transform in the fundamental 4 representation of this
R-symmetry group. The topological twist in particular identifies the boundary value of one
of these two SU(2) R-symmetry gauge fields with the spin connection of the conformal
boundary three-manifold (M3, g). There is then a consistent truncation in which the other
SU(2) gauge field is identically zero in the bulk. Such Witten-type twists of N = 4 gauge
theories in three dimensions have been studied in [51]. In the first part of the chapter
we establish that the gravitational free energy of such solutions is indeed invariant under

arbitrary deformations of the boundary three-metric on (M3, g).

In analogy with the previous chapter, we next consider the geometry of supersymmetric

solutions to the bulk supergravity theory. They are characterized by a twisted identity structure.

75
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We show that a supersymmetric solution to the bulk supergravity equations equivalently
satisfies a certain first order differential system for this twisted identity structure. As before,
studying these equations allows us to show that the bulk on-shell action is always a total
derivative, and careful consideration of the degeneracy locus of the frame shows that this
holds globally for smooth solutions. Stokes’ theorem then leaves us with a boundary integral
that vanishes in perfect analogy with the results of the previous chapter. Therefore, in the
case of a boundary three-dimensional TQFT as well, the gravitational free energy of any

smooth solution is zero.

At first sight, this result and its counterpart obtained in the previous chapter are
somewhat disappointing: the classical free energy is zero for smooth fillings, irrespective of
their topology. Zero is a topological invariant, but not a very interesting one. However, if
one believes that smooth real saddle points are the dominant saddle points in gravity, this is
then a robust prediction for the large N limits of various classes of topologically twisted
SCFTs, in both three and four dimensions. For example, since N' = 4 gauged supergravity in
four dimensions [77] is a consistent truncation of eleven-dimensional supergravity on S’ (or
S7/Zy) [75], as we discuss later in the chapter this leads to a prediction for the large N limit
of the partition function of the topologically twisted ABJM theory, on any three-manifold Ms3.
On the other hand, with the exception of the SU(N) Vafa—Witten partition function on
M, = K3 discussed in section to date none of these large N limits have been computed
in field theory: such computations now become very pressing! It might be that these match
our supergravity results for smooth solutions, but if not then one necessarily has to consider
more general saddle points, allowing e.g. for appropriate singularities and/or complex
saddle points. Notice that although our computation of the classical gravitational free energy
will in general break down for such solutions, the result that this quantity is independent of

boundary metric deformations is a priori a more general result.

The outline of the chapter is as follows. First, in section [3.2| we review the topological
twists of three-dimensional supersymmetric field theories, as they are perhaps less well
known than their four-dimensional relatives, and discuss the gravity dual to the ABJM
theory. In section [3.3| we introduce the relevant four-dimensional ' = 4 Euclidean gauged
supergravity. Surprisingly the supersymmetry transformations of this theory, as formulated
in [75], do not appear in the literature, and we hence first fill this gap. After holographi-

cally renormalizing the action, in section we identify the conformal boundary Killing
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spinor equations which admit a topological twist as a particular solution on any oriented
Riemannian three-manifold (M3, g). The bulk spinor equations are then expanded in a
Fefferman—-Graham-like expansion. In section [3.5| we prove that the gravitational free energy
is independent of the metric ¢ on M3, following similar methods to the previous chapter.
In section [3.6| we show that a supersymmetric solution to the bulk equations of motion
equivalently satisfies a first order differential system of equations for a twisted identity
structure. Using this we prove that the gravitational free energy of any smooth real solution
is zero. We conclude in section [3.7] with a discussion of some of the issues of topological

AdS/CFT that arose in this first part of the dissertation.

3.2 3d TQFTS and topological twists

We begin in section [3.2.1] by reviewing topological twists of three-dimensional supersymmet-
ric QFTs. In section we focus on the ABJM theory, its gravity dual, and the consistent
truncation of eleven-dimensional supergravity on S”/Z to four-dimensional N' = 4 gauged

supergravity.

3.2.1 Twisting N = 4 theories

One perspective on the topological twist is that it involves a modification of the global
symmetry group of the theory, obtained by combining the spacetime symmetries with the
R-symmetry of the theory. Concretely, one looks for group products such that a supercharge
would transform as a singlet under an appropriate diagonal subgroup. In three dimensions
every orientable manifold is spin[| Therefore, the frame bundle of any orientable three-
manifold may be lifted to a Spin(3) = SU(2)g, which constitutes the (Euclidean) spacetime

symmetry.

On the other hand, the R-symmetry group of a three-dimensional field theory with N/
supersymmetries is Spin(N')g. The minimal amount of supersymmetry required for a twist

on a three-manifold of generic holonomy is N' = 4f] in the N = 3 case the supercharges

'This follows from the fact that in three dimensions the second Stiefel-Whitney class is the square of the first
Stiefel-Whitney class, w, = w%. Since a manifold is orientable if and only if w; = 0, we see that an orientable
three-manifold is automatically spin.

2If the manifold has U(1) holonomy, one may twist with only A/ = 2 supersymmetry, in analogy with the
corresponding four-dimensional case [[137, [223]. Note that this is specific to the case of the full twist, and not
the case of the partial twist, see footnote [ﬂ
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transform as (2,3) under SU(2)g x Spin(3)g, and in the tensor product there is no singlet
2®3 =2 @ 4. The R-symmetry group of ' = 4 theories is Spin(4)r = SU(2)4+ x SU(2)_,
and the supercharges transform as doublets under each of the two factors. The N' = 4
multiplets are vector multiplets and hypermultiplets. The vector multiplet contains the gauge
connection 7, a gaugino A and three real scalars ¢ = (¢1, 2, ¢3), respectively transforming
under SU(2)g x SU(2)4 x SU(2)_ as (3,1,1), (2,2,2) and (1,3,1). The hypermultiplet
contains two complex scalars g and two spinors ¢, each forming R-symmetry doublets, that
is, transforming as (1,1,2) and (2,2,1). There is an outer automorphism of the superalgebra
exchanging SU(2); and SU(2)_. Under this automorphism, a vector multiplet is taken
to a twisted vector multiplet, whose scalars transform as (1,1, 3), and a hypermultiplet is
taken to a twisted hypermultiplet, whose scalars and spinors form doublets, respectively, of
SU(2)4+ and SU(2)_. The field components of the twisted multiplets will be denoted by a
tilde.

One may twist using either SU(2) or SU(2)_, obtaining generically inequivalent TQFTs.
The inequivalence of the two twists is not immediate from the supercharges: they transform
as (2,2,2) under SU(2)g x SU(2)4 x SU(2)_, so taking diagonal combinations of SU(2)
with either factors of the R-symmetry group leads to (1,2) & (3,2). Nevertheless, the twisted
fields transform differently in the two twists, as can be seen from the scalars. For instance,
consider the scalars in a hypermultiplet g: after the two twists, they would transform as (1, 2)
under (SU(2)g x SU(2)+ )diag X SU(2)—, or (2,1) under (SU(2)g x SU(2)-)diag X SU(2)+.
On the other hand, because of the exchange of SU(2), and SU(2)_, the scalars in the
twisted hypermultiplet transform in the opposite way. The same goes for vector multiplets
and twisted vector multiplets: the scalars in a vector multiplet form a triplet under SU(2) 4
and a singlet under SU(2)_, so they distinguish between the two twists, but the opposite is
true of the scalars in the twisted vector multiplet.

In a three-dimensional A/ = 4 super-Yang-Mills (SYM) theory, with a vector multiplet,
the two twists are inequivalent. The first twist may also be recovered by dimensionally
reducing the four-dimensional N/ = 2 Donaldson-Witten twist. The resulting model is
sometimes referred to as super-BF or super-IG model, and the partition function reproduces
the Casson invariant of the background three-manifold [220, [49} [50]; and conjecturally, via

renormalization group flow, the Rozansky—Witten invariants [52, 178]F| The second twist,

3More precisely, the Casson invariant arises when the gauge group ¢ = SU(2), for three-manifolds M3
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instead, is intrisically three-dimensional (it is not known to arise from the reduction of
any four-dimensional theory) and supposedly provides a mirror-symmetric description
of the Casson invariant [51]. There exists a third topologically twisted three-dimensional
SYM theory with two twisted scalar supercharges, which may be obtained by a partial
twist of three-dimensional N/ = 8 SYM, or via dimensional reduction of the half-twist of
four-dimensional ' = 4 SYM. It is closely related to the Casson model, but differs from it
by the matter content [111].

In three dimensions it is also possible to couple Chern-Simons theory to free hypermul-
tiplets to obtain N = 4 supersymmetries [106], and twist the resulting theory [138| [149]. As
in the previous case, if there are only untwisted or twisted hypermultiplets in the theory the
two twists are inequivalent, and usually referred to as an A-twist and B-twist, respectively.
However, in a theory with both hypers and twisted hypers, the difference between the
two twists amounts to the exchange between the untwisted and twisted matter. Therefore,
one may consider a twist by a single factor in Spin(4)r and exchange the “quality” of the
hypermultiplets, obtaining theories, called AB-models, which have both types of hypermul-
tiplets. For concreteness, after the twist, an AB-model contains matter transforming under

(SU(2)E X SU(2) 4 )aiag X SU(2) as

7:(112) — (1,2),

P (2,2,1) — (1,1)@(3,1),

q: (1,2,1) — (2,1), 629
P (2,1,2) — (2,2).

Therefore, the bosonic fields are two scalars and a spinor, whilst the fermionic fields are
a scalar, a 1-form and two spinors. Chern-Simons-matter theories with N > 4 contain an
equal number of untwisted and twisted hypermultiplets, so the symmetry between the A
and B twist is automatically implemented.

In the present chapter, we will be particularly interested in topological twists of the

ABJM theory [4] (see [159] for twists of the BLG [23} 25, 24, 121] models) Classically

with the same homology groups as S3. It was originally defined in terms of the combinatorics of SU(2)-
representations of 71y (Ms). However, the Casson invariant naturally generalizes to the Lescop invariant, which
is defined on any oriented three-manifold. Moreover, the TQFT Casson model suggests an extension of this
invariant to any gauge group ¥.

4The BLG models are Chern-Simons-matter theories with manifest A" = 8 supersymmetry and concretely
describe two M2-branes. On the other hand, ABJM theories, in the UV, are N’ = 6 U(N); x U(N)_; Chern—
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this theory has N' = 6 supersymmetry, so let us consider topological twists of N' = 6
Chern-Simons-matter theories. Here the R-symmetry group is Spin(6)g = SU(4), and there

are two decompositions

(i) Su4) — Su(2)xsu(2),
(3.2.2)
(ii) SU(4) — SU(2) x SU(2) x U(1).
In the first case we are viewing SU(4) = Spin(6) as a double cover of SO(6) — SO(3) X
SO(3), the latter being the two diagonal 3 x 3 blocks. In the second case instead the two
copies of SU(2) are the two diagonal 2 x 2 blocks in SU(4). Alternatively, projecting to
SO(6) the second decomposition is simply SO(6) — SO(4) x SO(2), with the obvious
4 4 2 block decomposition, where SU(2) x SU(2) = Spin(4) is the double cover of SO(4),
and U(1) = SO(2). The supercharges transform in the 6 of SU(4), which decompose under
the above as
(i) 6 — (1,3)®(3,1),
(3-2.3)
(i) 6 — (22)0® (1L, 1)12®(1,1)—.
In the first case it is clear that a twist with SU(2)g does not lead to any scalar supercharge,
while for the second twist one reduces to the AB-model [149].

It is not completely clear what the observables of the topologically twisted Chern—
Simons-matter theories compute. In [149] it was argued that the A-model is related via the
novel Higgs mechanism [182] to the super-BF theory obtained by twisting N' = 4 SYM,
and thus computes the Casson invariant of the background three-manifold. Similarly, the
mathematical content of the observables of the topological models of [138] is also currently
unclear.

The group-theoretic point of view on the topological twist considered above is not
the only possible viewpoint. One may also describe the topological twist in the context
of background rigid supersymmetry. Three-dimensional field theories with N’ = 2 have
been extensively studied in the context of rigid supersymmetry, both from holography
[145, [131] and by coupling to supergravity [66]. However, the same cannot be said for

N = 4 theories. We will find very concretely that the topological twist corresponds to

Simons-matter theories describing N M2-branes for any N. For k = 1,2, the supersymmetry is enhanced to
N = 8. For certain values of N, k there exist equivalences between the BLG, ABJM and ABJ models [3} 157, 3T, 2.
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identifying the boundary value of one SU(2) factor of the gauged R-symmetry with the spin
connection. This allows us to construct a solution to the Killing spinor equation obtained
from three-dimensional N/ = 4 conformal supergravity, in analogy with the standard

approach.

3.2.2 The ABJM theory and its supergravity dual

The AdS/CFT correspondence has been especially influential in the context of three-
dimensional field theories. In particular the AdS, x S” near-horizon geometry describing
a stack of N M2-branes provided strong evidence for the existence of a strongly-coupled
maximally supersymmetric conformal field theory with N3/2 degrees of freedom. After
initial work by Bagger-Lambert-Gustavsson [23} 25| 24}, 121], the worldvolume theory of
N M2-branes probing C*/Z; was eventually found ten years ago by Aharony-Bergman-
Jafferis—Maldacena [4].

The ABJM theory in flat spacetime IR!? is conjectured to be holographically dual to
M-theory on AdS, x S7/Zj. In order to study the gravity dual of the field theory defined
on different manifolds M3 in the large N limit, one may consider a consistent truncation
of eleven-dimensional supergravity on S’, or S’ /Z, to an effective four-dimensional bulk
supergravity theory. Such a consistent truncation has been found in [75], where it is shown
that any solution to the four-dimensional N = 4 supergravity theory of Das-Fischler-Rocek
[77] uplifts to an eleven-dimensional solution. In particular this supergravity theory has
a Spin(4) = SU(2) x SU(2) gauged R-symmetry, where the massless gauge fields arise,
as usual in Kaluza—Klein reduction, from a corresponding isometry of the internal space.
Specifically, the uplifting/reduction ansatz in [75] identifies the SU(2) x SU(2) isometry
as acting in the 2 of each factor in C* = C? x C?, where the internal space S’ is the unit
sphere in C*. This description makes it clear that one may also replace the internal space
by S7/Z, where the Z; acts on the coordinates of C* via the diagonal action z' ~ e?™/kz.
This manifestly commutes with the SU(2) x SU(2) C SU(4) ~ C* action above. There is
another notable geometric symmetry, namely the Z, that acts by exchanging the two copies
of C? in C*, and thus exchanges the SU(2) isometries. This symmetry is then inherited by
the four-dimensional N = 4 gauged supergravity theory.

According to the holographic dictionary, symmetries of the eleven-dimensional solution

correspond to symmetries of the field theory. In particular the SU(2) x SU(2) isometry
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of the internal space, which becomes a Spin(4)r gauged R-symmetry of the consistently
truncated four-dimensional theory, corresponds to the Spin(4)r R-symmetry of the field
theory dual. The Z; that acts as an outer automorphism, exchanging the group factors in
Spin(4)r C Spin(6)g, is indeed a symmetry of the N' = 6 ABJM theory, since the latter
has an equal number of untwisted and twisted hypermultiplets, in N/ = 4 language, and

therefore its matter content is symmetric under the exchange of SU(2) and SU(2)_ [130].

In the rest of the chapter we will work entirely within the Das-Fischler-Rocek four-
dimensional N' = 4 gauged supergravity theory. Any solution to this theory, for a bulk
asymptotically locally hyperbolic four-manifold Yy, automatically uplifts on S”/Z to give a
gravity dual to the ABJM theory defined on the conformal boundary M3z = 9Y4. In particular

we note that the effective four-dimensional Newton constant is

1/2
1 K1/ 3/

= — . 2.
2x2 12427 (-2.4)

3.3 Holographic supergravity theory

We begin in section [3.3.1] by defining a real Euclidean section of ' = 4 gauged supergrav-
ity in four dimensions and determine the fermionic supersymmetry transformations. A
Fefferman—Graham expansion of asymptotically locally hyperbolic solutions to this theory
is constructed in section for arbitrary conformal boundary three-manifold (Ms, ).
Using this, in section we holographically renormalize the action.

3.3.1 Euclidean N = 4 gauged supergravity

As outlined so far, holographic duals to three-dimensional SCFTs with a Spin(4) =
SU(2)4 x SU(2)- R-symmetry should be solutions of a four-dimensional ' = 4 SU(2) x
SU(2) gauged supergravity. As discussed in the previous subsection, the Das-Fischler—
Rocek [77] theory has a supersymmetric AdS; vacuum and was shown in [75] to be a

consistent truncation of eleven-dimensional supergravity on S”/Z.

In Lorentzian signature the bosonic sector of this N' = 4 supergravity theory comprises

the metric Gy, two real scalars ¢, ¢ which together parametrize an SL(2,R) coset, and two
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triplets of SU(2) gauge fields A/, fllﬂ (I =1,2,3). The associated field strengths are
Fl = dAl+ %ge”K.A] A AKX, Fl = dAl 4+ %ge”Kfl] A AKX, (3.3.1)

and we have taken equal gauge couplings g for each of the SU(2) factors in the non-simple
gauge group. It is convenient to introduce the scalar field X = e2% and define X = X ~1g
where ¢*> = 1 + ¢>X*. The bosonic action and equations of motion in Lorentzian signature
appear in [75]. However, as we are interested in holographic duals to TQFTs defined on
Riemannian three-manifolds, we require a Euclidean signature version of this theory. After

a Wick rotation the action becomes

1 )
I — —%/[R*l—ZXde/\*dX—;X4dgo/\*d(p+gz(8—|—2X2—i—2X2)*1

—AIXH(FARF +ipXPFIANFY) = X2 (FI A F —ipX?FI A FD] . (3.3.2)

Here R = R(G) denotes the Ricci scalar of the metric G, and * is the Hodge duality

operator acting on forms. The equations of motion which follow from this action aref|

Ex: 0 =d(X '+dX)— ;X*dp A xdp + ¢*(X* — X (1 — ¢°X*)) x 1

(3-3:3)

FIXT2FIAF - 12 (1 — ? XN gt FI A« F 4+ JXHFIAFT,

Eo: 0 =d(X**de) +4¢°XPp*1— i F A F!
o o o (3.3-4)
+ XX FI A F 4 (1 - ? XHXHFIAFT,
Eg: 0 =D(X 2% Fl) +ide A FI, (3.3.5)
Ep: 0 =DX 2« F) —id(pX*X 2) A F', (3.3.6)
EGg: 0 =Ry +¢°Gu(4+ X*+ X*) — 2X 20, X0, X — 1 X*9,,90, ¢

(33.7)

~ T = G~ IR HFE ~ G (F1).

Here (FI)2 = Y3_, .7-"}1”/.7-" I (FD)? =y3_, .7:"}1”/.7:" v and the Bianchi identities define the

SU(2) covariant derivatives

By DF! =dFl +gel’ A ANFK = 0, (3.3.8)

5The Einstein equation (3.3.7) incorporates the potential-like term which is missing from the Lorentzian
version in [75].
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B : DFl = dF! + g A NFK = 0. (3-3.9)

In general, equations (3.3.3)—(3.3.7) are complex, and solutions will likewise be complex.
However, note that taking the axion ¢ to be purely imaginary effectively removes all factors
of i. Note also that the action and equations of motion are invariant under the Z, symmetry:
g— —g, Al - — Al AT — — Al There is a second Z, symmetry, discussed in section
which corresponds to the field theory outer automorphism exchanging the group factors
in Spin(4)r = SU(2)+ x SU(2)_. This second Z, symmetry acts on the supergravity fields
as X = X, pX? - —¢X?, Al — Al and A' — A!. Whilst not manifest in the action and
equations of motion, it can be made so upon rewriting the scalar kinetic terms in as

2XXdX A xdX — 1d(9X?) A xd(pX?).

In the Lorentzian theory the fermionic sector contains four gravitini, lp;, and four
dilatini, x*, which together with the spinor parameters €” all transform in the fundamental
4 representation of the Spin(4) global R-symmetry group, which we labelby a =1,...,4.
The supersymmetry transformations are not given in [75] and the form of the action is
different to that appearing in the original literature [77]; in particular the parametrization of
the scalars and their coupling to the gauge fields is different. We cannot, therefore, simply
take the supersymmetry transformations given in [77]. Of course, the two actions represent
the same theory but presumably in different symplectic duality frames, and possibly with
different gauge fixed SL(2,R) scalar coset representatives. Instead of translating between
the different presentations in Lorentzian signature and then Wick rotating to the Euclidean,

we have instead derived the conditions for preserving supersymmetry by a different method.

We started with a general ansatz for the gravitino and dilatino variations and then acted
on the dilatino with the Dirac operator, adding additional field dependent multiples of the
dilatino variation in order to recover a subset of the bosonic equations of motion (3.3.3)-
(3-3.7). This essentially shows that the dilatino field equation (in a bosonic background)
maps to some of the bosonic field equations. Computing the integrability condition on the
spinor parameter, which can be rephrased in terms of the free Rarita-Schwinger equation
for the gravitino, and adding further dilatino variations recovers the remaining bosonic

equations of motion. Hence the fermionic field equations map to bosonic ones, i.e. the
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theory is supersymmetric. At the end of this analysis we find:

0y = 0 =Dye — o X FRTTye’ + oy XTI X725, I T, [1 4 ipX°Ts e’

+ 1 X?0u9T5e" — sg[(X + X71) —ipXT5]Tye”, (3.3.10)

SX" = 0 = gyp X ' FL Tl + 4l XX 2 F), [1 - ipXPTs) TV el

(3.3.11)
+ 5[ X0, X + 3X20,9T5|TVe” + 7a[(X — X71) +ipXTs]e”.
Here the gauge covariant derivative acting on the supersymmetry parameter is
Dyue" = Vye" — 1o 7mALe’ + g ﬁihv‘t;ﬂebr (3-3.12)

and 751,, 771, are respectively the self-dual/anti-self-dual 't Hooft symbols of (A:2:2). In
addition, I'y, p = 1,...,4, are generators of the Euclidean spacetime Clifford algebra,
satisfying {FV,FV} = 2G,y, and we define I's = —T'1234. Note that the Z, symmetry
that reverses the signs of g and the two SU(2) gauge fields is also a symmetry of these

supersymmetry equations, provided one combines it with I'* — —T*.
For the purpose of completeness, we note that the transformations satisfy

T#Dyox"+31 X0, I 'T56x"

- 1 a_ _i_y-2 a
= ﬂEXG 2\/§X E(pr5€

(3.3.13)
+ 4L, XN (B ) unTM e + L, XX 72(B 1) T4 [1 — i X°T5 | €
+ 11X (Eq1)uT"€” + 175X (E40), T [1 — i X°Ts €’
and
[V[Dy, Dyle” — V2X 10, X0x" + S5 X*9,9T'50x" — 3a[(X — X71) +ipXTs|T,ox"
+ S X VFT, Tuoxt + 3 X IX T2 (1 — ipXPTs | Ty o)
= 3(Ec)wl"e” — goa X 1 (Bar) * TupoT e’ (3-3-14)

+ 2o, X X2 (B 41) P Tope Ty [1 + i X?Ts) €
— sl X(Ea) TTye® + 7oy X1 (E 40) ' ToTy[1 + i@ XTs]e”.

In deriving these conditions we have not needed to specify the type of spinor we are using.

Later, in section we will deal with a truncation of this theory in which one triplet of
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gauge fields is set to zero and the spinors are taken to be symplectic-Majorana.

3.3.2 Fefferman-Graham expansion

In this section we determine the Fefferman—Graham expansion of asymptotically locally
hyperbolic solutions to this Euclidean supergravity theory. This is the general solution to

the bosonic equations of motion (3.3.3)—(3.3.7), expressed as a perturbative expansion in a
radial coordinate near the conformal boundary.

We take the form of the metric to be
Guditdy’ = 2d2? + Lgidridd = —d2 + hydxidy
yvxx—Z—Zz+?g1JXX—?z+l]xx. (3.3.15)
The AdS radius ¢ = 1, and in turn we have the expansion
gij = g +2g; +7°8 +0(2). (3.3.16)

Here g?j = gij is the boundary metric induced on the conformal boundary M3 at z = 0. The

volume form for the four-dimensional bulk metric is
voly = Z%dz Avolg = Zl—4dz A \/del Adx? Adx®. (3.3.17)
The determinant may then be expanded in a series in z, around that for g?, as follows
Jdetg = /detgd [1 +Z4@ 4 %t(ﬂ +o(2%). (3.3.18)

Here we have denoted ") = Tr [(go)*1 g”] and indices are always raised with g.

The remaining bosonic fields are likewise expanded as follows:

X =1+zX +2°Xp +2°X3 + 0(2%), (3-3.19)
¢ =zg1+2g2+ 293 +0(2%), (3-3.20)
Al = At zal +2%a) +0(2?), (3.3.21)
Al = Al 4 zal 4228 +o(2%). (3.3.22)

We have chosen a gauge in which all dz terms in the gauge field expansions are set to zero.



3.3 Holographic supergravity theory 87

We now substitute the above expansions into the equations of motion (3.3.3)-(3.3.7)
and solve them order by order in the radial coordinate z in terms of the boundary data

g’ = ¢,X1, 91, Al and A!. For the Einstein equation (3.3.7) we will need the Ricci tensor of
the metric (3.3.15):

__3 1 ~152 1 -1 1 -1 2
Rz = — 5~ §<Tr [g azg} — I {g azg} —5lr {g azg] ) (3-3-23)
Ry = — g~ (10% — log— L(0-g)e (0:8) + L(0:g)Tr [ 19
ij Zzgl] 70,8 — ;028 — 510:8)8 28 31028 g 08
: ) (3-3-24)
—R(g) — peTr [g’ azg} )
1
1 ..
R;i = — E(g 1)]k (Vigjk,z - ngij,z> , (3-3-25)
where V is the covariant derivative for g.
Examining first the axion equation (3.3.4) gives at the first two orders
0= (1-2¢%¢1, 0= (1-20%)(2X1g1+2), (3-3.26)

which can be solved by setting g = j:%. These equations fix the gauging coupling in terms

of the AdS, length scale, which we have set to unity. At even higher order we find
Vi =2¢° (901 () +2X7 +4Xp) + 4X1 92 + 2(P3) : (3.3:27)
Moving on to the dilaton equation (3.3.3) we find
0= (1-2¢9)X1, 0= (1-28")(X2— 31X +107), (3.3.28)
which are again solved by g = j:\% together with
ViX) =2¢° <2X3 + X1 (1) +2X3 - 2X5 + 9F) + q)1§02) —2¢1(X191+¢2).  (3.3.29)
Next the A! gauge field equation (3.3.5) yields
0 = Dxgaf, aj = Xjaj+3%0DxpF —LgrxuoF', (3.3.30)

where the curvature is F! = dA! + % gel/KAJ A AX. Notice that al, and hence al, is partially
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undetermined. Similarly, the other gauge field equation (3.3.6) gives
0=D * g0 é{ , éé = —Xlé{ + % #g0 D * g0 4+ %gol *g0 £, (3.3.31)

with FI = dA! + %g ellKAT A AK,

The non-trivial information from the ij component of the Einstein equation (3.3.7), using

(3324, is
g; = — [Rij(e") — 18R (e")] — g (3 X1 + 591), (3.3.32)

which is again a matter-modified version of the boundary Schouten tensor. From this

expression we immediately deduce that the trace of glz]- is

2 = —1R(g%) — 3x} — 34}. (3:333)

The zz component of the Einstein equation in (3.3.7), together with (3.3.23), determines the

trace of the highest order component in the expansion of the bulk metric:
19 = 13X - 3X1(4X + ¢7) — S9192. (3:3:34)

3.3.3 Holographic renormalization

Having solved the bulk equations of motion to the relevant order, we are now in a position
to holographically renormalize the Euclidean N = 4 gauged supergravity theory. The
bulk action is divergent for an asymptotically locally hyperbolic solution, but can be
rendered finite by the addition of appropriate local counterterms. We begin by taking the
trace of the Einstein equation (3.3.7). Substituting the result into the Euclidean action

with g = i%, we arrive at the bulk on-shell action

1 i
Ios = —Z/Y [—(4+X2+X2)*1—%X_Z(fl/\*fl+igpxzfl/\fl)
4

(3-3-35)
— X (P AF - igX2FT A P

Here Y, is the bulk four-manifold, with boundary 0Yy = M3. In order to obtain the equations

of motion (3.3.3)—(3.3.7) from the original bulk action on a manifold with boundary,
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one has to add the Gibbons-Hawking—York term
Icny = — 12/ d*xVdeth K = 12 d3xz0,Vdeth. (3-3.36)
K3 Jov, K3 Jov,

More precisely one cuts Y; off at some finite radial distance, or equivalently non-zero z > 0,
and (Ms3, h) is the resulting three-manifold boundary, with trace of the second fundamental
form being K. Recall from that h;; = Zizgi]-.

The combined action I,s + Ighy suffers from divergences as the conformal boundary is
approached, which are removed by the standard method of holographic renormalization.
As before, we introduce a small cut-off z = § > 0, and expand all fields via the Fefferman-
Graham expansion of section to identify the divergences. These may be cancelled by

adding local boundary counterterms:

1
le = — [ dxVdeth 2+ IR0 + (X 1)+ 1¢?]. (3:3.37)
4 4

As is standard, we have written the counterterm action (3.3.37) covariantly in terms of the

induced metric h;; on M3 = dYy. The total renormalized finite action is then
S = lim (Ios + Igay + L) - (3.3.38)
6—0

The choice of counterterms defines a particular renormalization scheme. For this
theory there are other local, gauge invariant counterterms that one can construct from the
boundary fields, that have non-zero (and finite) limits as 6 — 0. It is straightforward to check
that there are no such finite counterterms constructed without using the scalar fields; but
including the latter we may write down finite counterterms proportional to the boundary
integrals of ¢%, (X —1)3, pR(h), etc. There are also local but non-gauge invariant terms
that one might consider. For example, boundary Chern-Simons terms for the SU(2) gauge
tields, and the boundary gravitational Chern-Simons term. However, such terms would
change the gauge invariance of the theory, and we shall hence not consider them furtherﬁ

In principle we should use a supersymmetric holographic renormalization scheme, but in

®The topological twist will later identify one boundary SU(2) gauge field with the boundary spin connection
of (M3, g), so that these Chern-Simons terms are the same. Moreover, since any oriented three-manifold is
parallelizable there is always a globally defined frame. Choosing such a frame then allows one to interpret the
gravitational Chern-Simons term as a global 3-form on M3. However, its integral depends on the choice of
framing,.
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the absence of a prescription for this we shall use the minimal scheme with counterterms
(3.3.37) in the remainder of the chapter, cf. the discussion in [39, 38, 191, 12]. In any case,
for the topological twist boundary condition the boundary values ¢, X; of ¢ and X will be

zero, and the above-mentioned finite gauge invariant counterterms are all zero.

Given the renormalized action we may compute the following vacuum expectation

values (VEVs):

2 S - _ 158 _ 165
Wit = gegit ST gax BT g

1 58 N 1 55 (3-3-39)
(7 = ’ (J1) =

N NG 5A1

Here, as usual in AdS/CFT, the boundary fields g;;, X1, ¢1, AZ-I and AZ-I act as sources for
operators, and the expressions in (3.3.39) compute the VEVs of these operators. Using the
above holographic renormalization we may write (3.3.39) as the following limits:

o1
(Tij) = lim = [ — Kij + Khij + Rij(h) — 3hijR(h) + hij(=2 — (X —1)* — }14’2)} ,
(B) = = lim 7[ 26X 29,X +2(X — 1)} ,
4
1
(Z) = Zlim = [ 30X* 950 + 24’} (3-3-40)
4
; .1 _ .
(71 = —ihr% [ *h<dx A (X 2*4.7-"1%—1(;)]:1))} ,

(Aly =1 1[ *h<dx N (X 25y FT—ipX?X 271)}

lim
2K 51—>0 &3

Here K;; is the second fundamental form of the cut-off hypersurface (Ms, h;;), and *,
denotes the Hodge duality operator for the metric /;;. A computation then gives the finite

expressions

1
(Ty) = 2 [%813] - %g?j (3t +4X, Xz + (Pl(PZ)} , (3.3.41)
4
- 1 2
(B) = P(4X1 —2X5), (3-3-42)
1

1
(Z) = - 5 (2Xig1 + 192), (3-3-43)
4
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</i1> = - 27&(31)1' ’ (3-3-44)
(A = —Zlki(é{)i- (3.3.45)

Notice that each of these expressions contains terms that are not determined, in terms of
boundary data, by the Fefferman—-Graham expansion of the bosonic equations of motion.
In particular the g?j term in the stress-energy tensor Tj;, the scalars X5, ¢, that determine
respectively &, £, and al, 4] appearing in the SU(2)g currents.

As a quick check/application of these formulae, consider a boundary Weyl transfor-
mation do under which 6¢/ = 2¢%c, the scalars X1, 91 have Weyl weight 1: 6X; = X;d0,

d¢p1 = @100 and the gauge fields Weyl weight o. Then it is a simple exercise to show that
5,8 = /a vol, [%Tijégij + E6Xy + S + _FlsAT + /}15/@”] =0, (3.3.46)
Yy

which is consistent with the fact that there is no conformal anomaly in three-dimensional

SCFTs.

3.4 Supersymmetric solutions

In this section we study supersymmetric solutions to the Euclidean N = 4 supergravity
theory. We begin in section [3.4.1] by deriving the Killing spinor equations on the conformal
boundary from the bulk supersymmetry equations, and then compare them to the compo-
nent form equations of off-shell three-dimensional N = 4 conformal supergravity. In section
we describe how the topological twist arises as a special solution to these Killing spinor
equations, that exists on any Riemannian three-manifold (M3, g). Finally, in section we

expand solutions to the bulk spinor equations in a Fefferman—Graham-like expansion.

3.4.1 Boundary spinor equations

We begin by introducing the charge conjugation matrix ¢ for the Euclidean spacetime
Clifford algebra. By definition I';, = ¢~'T,¢, and one may choose Hermitian generators

F;j = I, together with the conditions ¢’ = ¢* = 6T, €2 = —1. We may then define
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spinors in Euclidean signature to satisfy the symplectic-Majorana condition
e = O4(eh), (3.4.1)

with ) = 03 ®i0,. It is straightforward to check that when Al = 0, and provided the
axion ¢ is purely imaginary with all other bosonic fields being real, the supersymmetry
variations (3.3.10), (3.3.11) are compatible with this symplectic-Majorana condition. We will
be interested in solutions that satisfy these reality conditions, and henceforth work in the
truncation of the bulk supergravity theory for which the triplet of SU(2) gauge fields flﬁ is

set to zero. For completeness we record here the truncated bulk supersymmetry conditions:

0 = Vyue" = JanpAie’ — glony XTI FL T e’ + 1 X209, ¢Tse” (3.4.2)
3.4.2

— 550 (X +X71) —ipXTs|Tye”,
0 = gi7gpX " FuIMe’ + S5 [XT10X + 5 X29,9T 5| Te" 0)
343

+ 1g[(X — X71) +ipXTs]e.

We next expand the bulk Killing spinor equations (3.4.2), (3.4.3) to leading order near the
conformal boundary at z = 0. We will consequently need the Fefferman-Graham expansion

of an orthonormal frame for the metric (3.3.15), (3.3.16), together with the associated spin
connection. The following is a choice of frame EZ for the metric 1}

, (3-4-4)

where e? is a frame for the z-dependent metric g. The latter then has the expansion 1)

but for the present subsection we shall only need that
e = e +0(z%), (3-45)

where ef is a frame for the boundary metric g” = ¢. The non-zero components of the spin

connection QHW at this order are correspondingly

717 K ji
07 = —e/+0(z), 0 =« +0@), (5-4.6)

1
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jk . .
where w;/* denotes the boundary spin connection.

We take as the generators of the Clifford algebra the following

1, 0 0 o
Fi = rz = ’ rm — s (347)
0 —]lz o3 0
so that
0 —il,
r5 = 7 (3'4'8)
il, 0
and
102 0
¢ = , (3-4.9)
0 —i0'2

where o7 the usual Pauli matrices. The bulk Killing spinor is then expanded as
€' = z7 V2" 4 71230 4 o(21/2). (3-4.10)
From the z-component of the gravitino equation (3.4.2) one then finds
0= —z V(1 £T:)e" + 22 [J(1F )& + igiTs(1 £T5)e"] +0(z1?),  (3.4.11)

with the upper/lower signs corresponding to taking g = j:\%. We can then satisfy this
equation by taking &” to have a definite chirality under I'; and ¢ to have the opposite chirality.
Recall that there is a Z; symmetry of the action, equations of motion, and supersymmetry
equations, that sends g — —g, Al — — Al T# — —T*. Using this, without loss of generality

1

we set g = — 7 from now on, so that &* has positive I'; chirality and ¢” negative chirality,

and we write them as

o — , & = . (3.4.12)

The leading order term in the i-component of the gravitino equation is then seen to be
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identically satisfied. The next order gives the boundary Killing spinor equation (KSE):

0 = Vil +0:&% — Loioiet . (3-4.13)

Here Vel = Vet + 2%/217 I Aleb  where the covariant derivative is with respect to the Levi-
Civita spin connection of the boundary metric gi- = gij, and 0; = 07 el,, so that {0;, 07} = 2g;;.
Note that after redefining the conformal spinor parameter such that {% = &% — 1€, the

boundary KSE becomes
0 =Vl +0,&%. (3.4.14)

This is the equation which results from setting to zero the gravitino supersymmetry variation

of off-shell 3d N = 4 conformal supergravity [29].

Turning to the bulk dilatino equation (3.4.3), the leading order term is equivalent to the
chirality property of &”. At the next order we obtain two conditions, corresponding to the

left and right-handed components

0 = \[4’151{ (X2 2Xp)el + 2\/3 P10'¢] + i Fiolel (3.4.15)
0 = V2XiZk + 55 (Xigr + g2)ef — J50:X10"e] + iyg(at)ice] . (3-4.16)

After the redefinition of the conformal spinor parameter and Hodge dualising one term

these read
0= - %@16?{ zf(z(P% + X - 2Xp)el + 2\[8 p10'e] 8’7ubF1 olle] (3.4.17)
0 = V2X: &k + % (X1€01 +5¢2)¢] %aixlffiﬁfi — ap(xai)ioler . (3-4.18)

These equations are not equivalent, and matching them to the single algebraic condition
arising from setting a three-dimensional dilatino variation to zero is not therefore entirely
straightforward. The Weyl multiplet of off-shell N' = 4 conformal supergravity contains
two auxiliary scalar fields S1, So of Weyl weight 1 and 2 respectively, and generically six

gauge fields. The vanishing of the dilatino supersymmetry transformation [29] when one
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triplet of gauge fields is turned off is, schematically,
0 = 518+ Spe" +9,510%e" + W;bFij(Tiij . (3.4.19)

Clearly (3.4.17) is of this form once we identify S; ~ ¢1, S ~ %go% + X2 — 2X,. However,
(3-4.18) does not match so neatly as *al is not a field strength. Moreover, our spinor

expansion should recover a single equation, and so it is perhaps some linear combination of

and (3.4.18) that reproduces (3.4.19). In any case, it is not clear that the leading order

dilatino equation should match this particular off-shell formulation of ' = 4 conformal

supergravity.

3.4.2 Topological twist

Recall that the boundary Killing spinor equation written in full is
0 = def + jwi‘oge] + slzmAlel] +0iCk — proie] - (3-4.20)

To solve this equation with a topological twist, we begin by setting the boundary scalar ¢,
and conformal spinor parameter % to zero. We then identify the boundary SU(2) gauge

field with the spin connection as follows

Al = %elj—kwijk . (3.4.21)

The constant spinor which solves the Killing spinor equation is then

g = io , (3.4.22)

where w is any complex number and

(c") = (0!,0%,0°, —ily) . (3-423)
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It is useful to note that the 't Hooft symbol action on ¢/ may be exchanged for the Pauli

matrix action:

Taper = —io'ef. (3-4-24)

We have solved the leading order KSE. Turning to the algebraic spinor equations we note

that, in general, the conformal spinor parameter ¢% can be solved for by taking the o' trace

of the KSE (3.4.13). Substituting this generic expression for % into and rescaling by
V2 leads to

0 = — V2% + 5[V, Vel + 10ip107el + L(39F —2X3 +4X, + R)ef,  (3.4.25)

with R = R(g) the boundary Ricci scalar. Specialising to the field configuration which solves

the boundary KSE above, this simplifies to
0 = 1(—2X} +4X> + R)e], (3.4.26)
and therefore fixes
X, = 32X —R). (3-4-27)
The other algebraic relation now reads
0 = 55gae] — J50:X10"e] + iz (ai)ic’el - (3-4.28)

Here recall that a! is (proportional to) the VEV of the remaining SU(2)r current. One can
use to swap the 't Hooft symbol for a Pauli matrix, plus the usual relation
oo; = o5+ ie;z0y - (3-4-29)

]

The resulting equation takes the algebraic form

cpole® =0, (3-4-30)

where (¢?) are the extended Pauli matrices (3.4.23), and the coefficients c; are real. In
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particular here we use that ¢, is purely imaginary. Using the solution (3.4.22), one can easily
check that as long as w # 0 equation implies that ¢, = 0 for all a = 1,2, 3,4. We thus

conclude the equations

¢2 = %(a{)ﬂﬁ, X1 = 5se(ai) . (3-431)

Note here the trace over frame indices and SU(2)r indices in the expression for ¢;: this
makes sense globally, since the topological twist identifies the gauge bundle with the spin

bundle. Having identified indices we may view (a{); as a two-tensor.

3.4.3 Supersymmetric expansion

In this section we continue to expand the bulk spinor equations to higher order in z. From
this we extract further information about some of the fields which are not fixed, in terms of
boundary data, by the bosonic equations of motion. We will continue to use the boundary
conditions appropriate to the topological twist. The frame, spin connection and spinor
expansions beyond the leading order given in section will be needed, so we first give

details of these. The frame expansion is

of = ef+37°(g) el +2°(e)i +0(2%), (3-432)

where in particular efﬁ is a frame for the boundary metric and we have used a local SO(3)
rotation to gauge fix the order z? term. The additional spin connection components we will

need are
el — igheldgn, Q.7 = g efaze? : (3.4-33)
The bulk spinor then has the following expansion

e = V20 4 P12 512 4 (552 (3.4.34)

where ¢ are constant with positive chirality under I'.

The remaining orders of the bulk dilatino equation give us

0 = 555(X] —4X1Xp + 4X3)e] + 2\%376/’2‘758% + §la (g — X)) oel, (3.4.35)

S
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— _fX1£3R \/—(3X1¢2—|—2§03)£L—|—\/—(a -Xp — Xlal*Xl)O'{E%

. (3-436)
— 11 (2(22)7 — X (a1); )‘TlSL/
where F| = Dal = dal — ﬁeUKA] A aK. The remaining gravitino expansions give
0 =ej, +gXie] — 16\/’;7ab 5‘71]%/ (3.4-37)
0 =i p — j9aef + ;5 (al)io'el, (3-4-38)
0 = % 207e8 + 1X30et — le/iiyabFI ooeh (3.4.39)
0 =efy — H(X] —2XiXa)e] — Zmma (F)y — XiEf)o'lef, (3-4-40)
0 =elp— 5(3X192+2¢3)e] + 8\[%5( (a5); — Xa(a1);) o'l (3.4-41)
k
0 =oesp+ Vies, +1 ‘U(Z)] TieL — (X192 + @3)ope]
10 ((s2\J Al N-Yeb 1 b 34.42)
- rﬁﬂub((g )f]Aj — Xi(ay)7)el 4\[175127( (a ) Xi(a ) )UJSL/
0 = %gqﬂe + VA — H(XF - 2X1X0) 03], — 10790267
N (3-4-43)
— sualla (F)z — XiF) o/ oge]
From the topological twist condition the boundary gauge field strength is
I I kI
Fﬁ == %e ST (3-4-44)

Substituting this and the expressions for X, al and ¢, into (3:4.37), allows us to
identify

e = —11—6(2X% —R)ef, 3R = Tooef — %B;Xwis‘i. (3-4-45)

We also find that equation (3.4.39) is identically satisfied given the expression for

g? found in solving the Einstein equation. Equations (3.4.40) and (3.4.41) are solved by

removing the unknown quantities F{, a} using (3.4-35) and (3.4-36):

e, = — 5 (XiR —2X7 +8X3)ef — $,9;920" ¢, (3.4.46)
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ehr = 3(2X192 + @3)e] — £0;(2X] — R) o'¢f . (3.4.47)
We will not solve as knowledge of aé or w® is not relevant for our purposes.

Turning now to (3.4.43), using previous results we can re-express this particular equation as

0 = [fg] — 1VioyX1 — §XiRog] ole}
o A (3-4.48)
1 1 ‘
+ 3019261 — 55w ((F)je — Xa Fp) 0 oe
By taking the real part we can extract the remaining term in the Fefferman—-Graham

expansion of the bulk metric

" N
g = 3Vid; X1 + § XiRo; + o5 (Fi) ey — 505 (F) e o
~ X155 (F)em — 505 (F9) genml -

3.5 Metric independence

Our aim in this short section is to show that, for any supersymmetric asymptotically locally
hyperbolic solution to the Euclidean N = 4 supergravity theory, with the topologically
twisted boundary conditions on an arbitrary Riemannian three-manifold (M3, ), the vari-
ation with respect to the arbitrary boundary metric of the holographically renormalized

action is identically zero.

An arbitrary deformation of the renormalized action can be written as

58 = / dx \/det g |1 Tyog + E6X: +Zogr + #loA + Fl6A] . (51)
AYy=M;,

For the topological twist we set ¢ = 0 and A/ = %61 jfkw,jik, together with truncating the

bulk SU(2) triplet A! = 0. At this point we have not chosen a value for the freely specifiable
boundary field X; which, recall, has Weyl weight 1. In order for 6X; to be relatable to ¢ gif ,
X1 must be a scalar function built from the boundary curvature tensors, R;j, R;; and R.
However, from these tensors we cannot construct a Weyl weight 1 object. Consequently we

choose to set X; = 0 as part of the topological twist boundary conditions.

To evaluate §A! we require the variation of the boundary spin connection in terms of
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the boundary metric:

Swil* = lelle (Vi8¢ — Vidgi) . (3-52)
Thus
(5A11 — \%elj—k&ufk = %elrkeﬁekkvwgij, (3-5.3)

and the variation of the action for the topological twist boundary conditions reduces to

oS = /M3 K L V (i€ Ijke ek)) 0g" + Vi ( ]k /Ie e kégzj)} vols, (3.5.4)

where we have introduced vol; = /det ¢ d®x. Dropping the total derivative, which is zero

for the closed three-manifolds we are considering, and inserting the expressions for the

stress-energy tensor and SU(2) current from (3.3.41) and (3.3.44) gives

= 12 )y / Tiogvols, (3.55)

where the effective stress-energy tensor is

T = 3g13j + %Vk (e (a1)y)) - (3-5.6)

Note that because we have identified spacetime and R-symmetry indices, the covariant

derivative in 7;; acts on both the I and 7 indices of (al);. Inserting the expression for g’ f from

(3-4-49) when X; = 0 gives
Tii = eiejl 505 (Fip)enm — 75 (B genm) + 05 Vi (enual)y) - (3-5.7)

Expanding the field strengths we have

2V2T; —ee[vk(au Ve + (@) ) e +2V(ah) ey s + 2(wp) @) ey

Here covariant derivatives of (al); in the first line are understood to act with respect to the
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index outside the bracket only, in contrast to the action on the second line. By carefully
expanding, using the definition of the spin connection as the connection of the frame bundle,
and recalling from section that when X; = 0, (al); is symmetric in I and i indices, we
find delicate cancellations and ultimately that 7;; = 0. Notice this is true for an arbitrary
background closed three-manifold (M3, ), and that while the Fefferman—Graham expansion
does not determine (a});, nevertheless the expression for Tj; is identically zero.

In analogy with our comments after (2.5.2), we close this section by commenting on
more precisely when the derivation in this section holds, and in particular when the formula
holds. The latter computes the variation JS of the on-shell action. A variation of the
boundary fields induces a corresponding variation of the bulk fields. Since the background
solution that we are varying about solves the bulk equations of motion, crucially the bulk
contribution to the resulting variation of the on-shell action is zero (by definition, this bulk
integrand multiplies the bulk equations of motion). Thus 45 is necessarily a boundary term,
and for smooth saddle point solutions dual to the vacuum, one expects the only boundary to
be the conformal boundary dY, = M3. Equation is the resulting boundary expression.
However, as in five dimensions, this computation would also hold if the bulk solution is
singular, or has internal boundaries, provided these do not contribute a corresponding
surface term in the interior, in addition to . The internal boundary conditions for
fields are clearly then relevant, but if one is going to allow internal singularities/boundaries
of this type in a putative saddle point, the absence of these additional surface terms is a

fairly clear constraint.

3.6 Geometric reformulation

In this section we first reformulate the bulk supersymmetry conditions (3.4.2), (3.4.3) in
terms of a local identity structure. We then use this structure in section to determine
the renormalized on-shell action for any smooth filling with topological twist boundary

conditions.

3.6.1 Twisted identity structure

Recall that the bulk spinor is originally a quadruplet of Dirac spinors, and we halved the

number of degrees of freedom by requiring that it solve the symplectic-Majorana condition
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(3-4.1). Therefore, the quadruplet of spinors has the form

e’ = (el,—(el)’:,ez,(ez)c) , (3.6.1)

1,2

where €' are Dirac spinors on the four-manifold Yj and the charge conjugate is €© = ¢e™.

Notice that the Weyl condition imposed with I's acting on the spinor indices is not compatible

with the topological twist. One sees this from the expressions (3.4.8) and (3.4.12): the leading

order term in the expansion of the bulk spinor is chiral if and only if it is zero. However, we

may instead act with I's on the R-symmetry indices of the spinor and require
(T5)",e? = +e*. (3.6.2)

This condition is compatible with the gravitino and dilatino equations and (3.4.3),
since I's commutes with the self-dual 't Hooft symbols. Projecting onto the subspaces with

positive or negative “internal chirality” in (3.6.2) further reduces the bulk spinor to

e = (¢, -, g, Fi)" . (3.6.3)

Using the single Dirac spinor , we may define the following (local) differential forms

S =z, P = (TsC,
1— if

K= 2Ty, V'FiVP =_ITyIsg, V= SoTmTst, (3.6.4)

|

where a bar denotes Hermitian conjugation. Globally, the full bulk spinor is a section of
Spin(Ys) ® E, where E is a real rank 4 vector bundle associated to the principal SU(2)g
bundle. By considering the change between local trivializations of the spinor under the
SU(2)r C Spin(4), one can check that S and P are global smooth functions. Moreover, K is
a global 1-form on Yy \ {S = 0}, whilst (V!,V?2,V?) are sections of Q' (Y, \ {S=0})®V,
where V is the rank 3 vector bundle associated to the SO(3)g = SU(2)r/Z;.

In order to have a globally well-defined bulk spinor €, we have to lift the SO(3)r bundle
acting on V to an SU(2)g bundle acting on E. Moreover, we should define the spinor in the
first place, thus lifting the orthonormal frame bundle of the tangent bundle to a Spin(4)

frame bundle. In both cases, the obstruction to the lifting is the second Stiefel-Whitney class
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of the real vector bundles, that is, w,(V), wy(Yy) € H?(Yy, Z,). However, because the full

bulk spinor is a section of S pin(Yy) ® E, we only need

wr (V) = wa(Ya), (3.6.5)

in order for the tensor product of the “virtual” bundles to be defined. As in the previous

case, we say that the bulk spinor is a Sping(») spinor.

Geometrically, a single Dirac spinor in four dimensions defines a local identity structure
on the four-manifold, or equivalently a local orthonormal frame. In order to construct it,
we split the bulk spinor into its components with positive and negative chirality under I's,

{ ={++{_, and define

Ot
= , 6.6
e = e (3.6.6)
where S1 = {.{+. Then an orthonormal frame can be defined by
iE> —E* = 7-Tqyny, iE'—E® = 5T yne, (3.6.7)

and we choose the orientation induced by the volume form E*'?%. We also define the function
0 by

.0
sin“ - = —. (3.6.8)

We may then re-express the local differential forms above in terms of the frame as
P = Scosf#, K = —sinfE*, V! = —sinfE!, 1=1,23. (3.6.9)

This canonical frame degenerates at 8 = 0,71, where the spinor has positive/negative
chirality, and also when S = 0, where the spinor vanishes. The subset of Y, with these points
excluded will be denoted Y4(0). From the global considerations above it then follows that E*
is a global 1-form on Yio), and E! are sections of Q! (Y4(0)) ® V. Therefore, the E! rotate into
each other in the fundamental representation of SO(3)r between local trivializations, and

the orthonormal frame is not global in general.

Starting with the bulk Killing spinor equations and (3.4.3), we may find a set of
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Killing spinor equations for {. Choosing negative internal chirality in (3.6.2)), they read

Vil = — - ( +iA5)C + 57 FLTT L - 1X%0,9T5
. (3.6.10)
+ 55X (fle HIF )T, — 1(X+ X NI,0 — LpXT,I5g,
0 = X T10,XIVE+ gX T FLT + g X (Fyy +iF0,) T
(3.6.11)
—5 szavgoF"Fg;g——(X XN - \[QDXFE,g

From these equations, one can use standard spinor bilinear manipulations to obtain

differential conditions for the frame and the fields:

d(XS) = SsinfE*, (3.6.12)
d(XScosf) = %SsinGEIJ}"I, (3.6.13)

—D(SsinfE!) = %X‘ls(*}"l — cos O.F")
+(X+Xx1Hs <EI4 cos@eUKE]K) (3.6.14)

+ipXS (cosOE" — Je!FEIX)

de = %X_SCSCQE]J (]-"]+c059*}"]>

(3.6.15)
+ X 3 csch (1X(X — X 1) cosh — (sz) E*
dX = — LCSCGE]J cos O Fl + «FI
2v2 ( ) (3.6.16)

—Lesco (X(X— X1 - iq)chos9> E*.

Here the covariant derivative acting on E is DE! = dE! — \%e”K.A] A EK. We may in

particular combine these equations to obtain an expression for ¢:
¢ = iX 2cosh+a(XS) 1, (3.6.17)

where a € iR, and we have used that everything in this last equation is globally defined to

integrate, assuming that Y; is path-connected.

The system of equations (3.6.12)—(3.6.16) is in fact necessary and sufficient to have a

supersymmetric solution to the bulk equations of motion. There are several steps involved
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in showing this. Firstly, we note that for a Dirac spinor  the set {{, (¢, T,{T;,(°} spans the
spinor space. Thus contracting the dilatino equation (3.6.11) with the Hermitian conjugate

of each element of this set gives a collection of equations which are equivalent to the dilatino

equation. In turn, these equations can be shown to be equivalent to (3.6.15) and (3.6.16). On

the other hand, since we have a (local) identity structure, the intrinsic torsion is determined

by the exterior derivatives in (3.6.12)—(3.6.14). It follows that (3.6.12)—(3.6.16) are equivalent

to the Killing spinor equations. One next considers the truncated integrability conditions

derived from (3.3.13) and (3.3.14). From these it is straightforward to show that the Killing
spinor equations imply the equations of motion, while the Bianchi identity for ! has to
be imposed additionally. In particular the proof of this uses the fact that the bulk spinor ¢

is Dirac. The upshot is that the complete system of equations to solve is given by the first

order differential system (3.6.12)—(3.6.16).

It is interesting, especially in light of the computation of the on-shell action in the next
section, to consider the expansion of the bilinear equation near the boundary. Using the

Fefferman—-Graham coordinate z, the bulk spinor ¢ has the expansion

1 1 i
X R X —129%920'X
g =z +32 ] + 2572 2 i +0(2%?), (3.6.18)
0 Toox Lo;Ro'x
where x is a constant 2-component spinor given by
c
X = / (3.6.19)

with ¢ € R (compare with with ¢ = —w). Without loss of generality, we may set

¢ = 1 in the following, and the norm of the spinor takes the form

S = % + ZR +o(2). (3.6.20)
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We also find

4
¢ = \kzz(a{)1+o(z3), (3.6.21)
2 — —ER, 3 = 0.

The vanishing of ¢, allows us to fix the constant a in (3.6.17): expanding the latter equa-
tion leads to ¢; = a/2, so under the assumption of the topological twist, « = 0. In a

neighbourhood of the conformal boundary, the bulk frame has the form

N (3.6.22)

Near the boundary, the leading order of the equations (3.6.12)—(3.6.16) is trivial apart from
(3-6.14), which corresponds to the condition that e! satisfy the first Cartan’s structural
equation

de! + wI] nel =0. (3.6.23)

Here the spin connection w! ; arises from the topological twist boundary condition for the

gauge field (3.4.21). In some sense (3.6.23) is a redundant equation, simply stating that
the frame defined by supersymmetry is compatible with the boundary metric. As in the
AdSs/CFT4 example, the bulk differental equations are tautological on the boundary, where

they simply define a (twisted) frame for the three-manifold Ms.

3.6.2 On-shell action

Thanks to these results, we can now greatly simplify the expression for the on-shell action.

We start with the expression (3.3.35) and set F! = 0, obtaining

1

Ios = ——
o 2ic2

[ =@+ X724+ 92X 11— IX2(F A wF! +igX2F A F)].
Yy

(3.6.24)
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Then, using (3.3.3) and (3.3.4), we may exchange the gauge field contribution for an exact

term

1

Ios = ——
0-s 2Ki

/ [—(4+2X 2 +2¢°X*) x1+d(2X ' «dX — pX*xdg)].  (3.6.25)
Yy

Notice that, using the equations for the orthonormal frame and (3.6.17), we can write
d(X7K) = — (24X 2sin?0) + 1, (3.6.26)

and this, using the expression (3.6.17) for ¢, is exactly (modulo a numerical factor) the
potential term in the on-shell action (3.6.25). Therefore, the on-shell action is exact

Ihs = ——2/ d (X‘l * K+ X 1xdX — %q)X4 * dq)) . (3.6.27)
ki Jv,

The global arguments discussed above imply that the 4-form in the action
Y = X 'K+ X 1xdX - loX*xde, (3.6.28)

is globally well-defined on Y4(0). In what follows we assume that the subset of Y; where the
spinor becomes chiral or zero is measure zero. As in section we cut off the bulk Yy
at some small radius z = § > 0, so that Yy = M; = {z = §} = M3. We may then appeal
to Stokes’” theorem and write the on-shell action as integrals over the conformal boundary
M3 = M, and over the boundaries T, of the small tubular neighbourhoods of radius € > 0
surrounding the subsets Y \ Y4(0) where the frame degenerates. Let us consider first the
contribution from the conformal boundary: using the expansion of the spinor and
of the fields (3.6.21)), it is easy to show that near the conformal boundary

Y = (1 - iR +0(1)> kg0 1. (3.6.29)

3 86 &

To this we should add the contributions from the Gibbons-Hawking—York term and
the counterterms (3.3.37), which in a neighbourhood of the boundary are

1 3 1
I = — —— 4+ —R 1 1, .6.
GHY 2 /M3 ( 3 + 35 +o( )) * g0 (3.6.30)
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1 2 1

Once we take into account the change in sign of the on-shell terms, due to the orientation of
the bulk compared to the orientation of the boundary, the contribution to the renormalized

action from the conformal boundary is zero in the limit § — 0.

Therefore, the renormalized gravitational action only receives contributions from the

subsets where the frame degenerates:

1
S§= 5lm/ Y, (3.6.32)
Ky €=0JT,

where the limit collapses the small neighbourhood around the degeneration locus. As in
section these contributions are zero. That is, a supergravity solution with a smooth
metric and smooth bosonic fields. Clearly the last two forms in Y, which only involve X, ¢,
are well-defined if the bosonic fields are smooth. The last two terms in Y therefore provide
zero contribution when integrated over a subset of vanishing measure. The only non-trivial

contribution could arise from X1 % K.

Consider first the subset where the spinor is chiral but non-vanishing. While changing
from local SU(2)r gauge patches of definition for €, { is a linear combination of { and ¢,
but note that in four dimensions I's{ = £( if and only if I's(¢ = £(°. Therefore, spacetime
chirality is a well-defined global concept for the Sping;(») spinor. If the spinor is chiral but
non-vanishing, S # 0 and the bilinears K and V! vanish, so X~ ! % K is zero there, and the

integral is zero.

Secondly, consider the subset where the spinor is vanishing. Note that we may write
X 1% K=—-X"tsinfE* voly. (3.6.33)
Using we then in turn have
X 'singE* = dlogp, where p = XS. (3.6.34)

We may thus use p > 0 as a radial coordinate near to the where the spinor vanishes at p = 0,
and more precisely define T = {p = € > 0}. It follows that X! x K is the product of a

bounded function X !sinf (as long as X > 0 is smooth), and the volume form E* Jvoly
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induced on T¢ from the four-dimensional bulk metric. The integral hence vanishes in the
limit € — 0, exactly as in section [2.6.3}

We conclude that the renormalized action for any smooth supergravity solution is zero.
In particular, we have made no assumptions at all here on the topology of M3, or of its

path-connected filling Y, with 0Yy = M3.

3.7 Discussion

In the first part of the thesis, we have defined and studied a holographic dual to the
topological twist of ' = 2 gauge theories on Riemannian four-manifolds and A" = 4 gauge
theories on Riemannian three-manifolds, and verified that the renormalized gravitational
free energy is independent of the boundary metric in both cases. We have also reformulated
the bulk supersymmetry equations in terms of G-structures twisted by R-symmetry bundles,
and used these structures to prove that the gravitational free energy of all smooth bulk
fillings, irrespective of their topology, is zero. Let us emphasize one more time that the latter
result does not make the former result of sections [2.5/and [3.5/ redundant: the computation
of the variation of the gravitational free energy holds for smooth solutions, but a priori it
is more general. Metric-independence will still hold for singular solutions, provided the
additional surface terms around the singularities are zero. In fact if one allows singular
saddle point solutions at all, this should be a clear constraint.

The results presented here raise a number of interesting questions and directions for
future research. In general the classical supergravity limit of the AdS/CFT correspondence
identifies

—logZgrr = S. (3.7.1)

Here on the right hand side we have the least action solution to the given filling problem
in the bulk supergravity, while the left hand side is understood to be the leading term
in the corresponding strong coupling (typically large rank N) limit of the QFT partition
function. For example, uplifting the four-dimensional ' = 4 gauged supergravity solutions
to M-theory on S”/Zj leads to the effective four-dimensional Newton constant in (3.2.4),
which scales as N3/2. The latter multiplies the holographically renormalized on-shell action
S on the right hand side of (3.7.1). On the other hand, in this chapter we have shown

that this gravitational free energy is always zero, for any smooth supergravity filling of
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any conformal boundary three-manifold M3;. We have already noted that every oriented
three-manifold is spin, but another important topological fact is that every such three-
manifold bounds a smooth four-manifold (which may be taken to be spin). There is thus
no topological obstruction to finding such a bulk filling of M3. Of course, an important
assumption here is that there exist smooth fillings that solve the supergravity equations, with
prescribed conformal boundary (M3, g). We have recast the supergravity equations as the
first order differential system (3.6.12)-(3.6.16), and thus existence and uniqueness theorems
for solutions to these equations will play an important role. Given that such solutions
are supersymmetric and are dual to a topologically twisted theory, one naturally expects
better behaviour than the non-supersymmetric Einstein filling problem, typically studied by
mathematicians. In any case, assuming that such smooth fillings are the dominant saddle
points in (3.7.1), the results of this chapter imply that the large N limit of the topologically
twisted ABJM partition function is 0o(N3/2), for any three-manifold Ms. This should be
contrasted with the non-twisted partition function on (for example) S3, where both sides
of 1) agree and equal ”T‘/TkNS/ 2 in the large N limit [88]. It thus remains an interesting
open problem to compute the large N limit of the topologically twisted ABJM theory, on
a three-manifold M3, and compare with our holographic result. Moreover, if the leading
classical saddle point indeed contributes zero, the next obvious step is to try to compute the
subleading term, as a correction to the supergravity limit. Since by construction everything
is a topological invariant, this may well be possible.

Similar remarks apply to the Donaldson-Witten twist studied holographically in the
previous chapter. Here the bulk five-dimensional N' = 4" gauged supergravity solutions
uplift on S° to solutions of type IIB supergravity, where now the five-dimensional New-
ton constant is given by The resulting solutions are holographically dual to the
Donaldson-Witten twist of N/ = 4 SYM on the conformal boundary four-manifold Mj.
Similar remarks apply to those made in the paragraph above, although there is an impor-
tant difference: the partition function is only non-zero when 2x (M) + 30(Ms) = 0, and
moreover My bounds a smooth five-manifold if and only if 0(Mys) = 0. The fact that the
gravitational free energy is zero for smooth fillings, as shown in section is therefore
only directly applicable when x(Ms) = 0 = 0(M,). In this case, the topologically twisted

partition function of A" = 4 SYM should be 0(N?), assuming the dominant saddle point

7As already noted, one may also uplift to solutions of M-theory, which are dual to N = 2 theories of class S
with N3 scaling, but we won’t discuss this further here.
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solution is indeed smooth.

On the other hand, the Donaldson-Witten twisted partition function has been computed,
for general rank gauge group ¢ = SU(N), on My = K3 in [215} 211]. This follows from the
fact that on the hyperKéhler K3 manifold the Donaldson-Witten and Vafa—Witten twists
are equivalent (and in fact equivalent to the untwisted theory). However, |0 (K3)| = 16 and
a smooth filling by Y5 does not exist in this case, so there is no obvious classical gravity

solution to compare to. Nevertheless, the partition function is (for N prime) [215] 211]

Z(K3) = lc( N)+l iG(wI “N) (3.7.2)
N2 q NI:1 q 4 37

where g = exp(2rit), with T = % + % the usual complexified gauge coupling, w =
exp(27ti/N), and G(q) = 1/7?**(7), with 5 the Dedekind eta-function. Taking the "t Hooft
coupling A = ¢g%\(N fixed and large, the N — oo limit is dominated by the first term in
(3.7-2), resulting in the leading order behaviour

8712 N?

log Z(K3) ~ ———. (3.7:3)

As mentioned above, in general the classical gravitational free energy is order N2, which for
smooth fillings of M4 we have shown is multiplied by zero for the holographic Donaldson-
Witten twist. However, there is no such smooth filling of My = K3, so it is not clear what
the dual classical solution should be. Perhaps one should allow for certain singular Ys,
and/or fill the boundary S° x K3 with a topology that is not simply an S°> bundle over
Ys5. These would lie outside the class of smooth solutions to the consistently truncated
five-dimensional ' = 4" gauged supergravity we have studied. That said, a perhaps naive
interpretation of is that the leading classical O(N?) term is indeed zero, with the
N?/A term being a subleading string correction to this. This particular example clearly
deserves much further study.

Perhaps the most immediate generalization of the computations of topological AdS/CFT
in five bulk dimensions would be to the so-called ()-background of [184] mentioned in
section Here (Msy, g,¢) is an arbitrary Riemannian four-manifold, equipped with a
Killing vector field §. As for the pure topological twist, this geometry also arises by coupling
an N = 2 gauge theory to a certain background of A/ = 2 conformal supergravity, and is

briefly mentioned at the end of section 3 of [146]. The non-zero Killing vector ¢ requires
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turning on a boundary B-field: specifically one needs to take b~ (or b™) proportional to the
self-dual (or anti-self-dual) part of the 2-form d&*, where & is the Killing 1-form dual to
¢. Correspondingly, both boundary spinor doublets ¢ and e~ are now non-zero, and one
needs to work with the full Romans theory, rather than the truncated version with B*=0
we used from section onwards. One expects the supergravity action now to depend on
the choice of Killing vector ¢ on My, but otherwise not on the metric. One should thus look

at metric deformations g;; — g;; + 0gij, where Lz dg;; = 0.

One may also want to consider the other (generically inequivalent) topological twists
of N/ =4 Yang-Mills. The two twists not considered here are the Vafa-Witten twist [215],
and the twist studied by Kapustin—Witten in [141]. In particular in the former theory the
only non-trivial observable is the partition function, and this has been studied for gauge
group ¢ = SU(N) in [155) 211]. These twists require the larger SU(4)r R-symmetry of the
N = 4 theory, meaning for the holographic dual one needs to start with a Euclidean form
of N' = 8 gauged supergravity theory. Optimistically, one might hope to embed within
the SU(4) ~ SO(6) truncation of the latter theory studied in [76], which is a consistent
truncation of Type IIB supergravity on S5, and contains the five-dimensional Romans N/ = 47

theory (with zero B-field) as a further truncation.

More generally, there are a wide variety of possible topologically twisted theories in
diverse spacetime dimensions. One could ask if zero action/gravitational free energy for
smooth supergravity solutions dual to TQFTs is a general property. Perhaps this is specific to
cases in which the preserved supercharge Q in the TQFT satisfies Q> = 0, which is generally
not the case. The apparent simplicity of our results suggests there should be a more elegant
way to set up the holographic problem. Recall that in field theory, invariance of the TQFT
partition function with respect to metric deformations crucially relies on the stress-energy
tensor being Q-exact. We have shown the corresponding result holographically, but in a less
direct manner. It is natural to conjecture that a topological sector of gauged supergravities,
in this holographic setting, may be similarly described using a boundary BRST symmetry
[218] 133, 200, 22} [80].

Finally, in these chapters we have focused exclusively on the partition function. However,
in general TQFTs have non-trivial topological correlation functions, involving the insertion
of Q-invariant operators into the path integral. For example, this is true of Donaldson

theory, where such insertions are required to obtain non-zero invariants in field theory
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whenever dim M = d > 0, due to fermion zero modes. Geometrically these invariants arise
as the integral of a d-form over M, where this top form is itself constructed as a wedge
product of certain closed forms. The operators are constructed via a descent procedure
[219]. It would be very interesting to understand the holographic dual computation of these
correlation functions. Of course, correlation functions are well studied in AdS/CFT. In
the present setting one would again hope to be able to work in a truncated supergravity
theory, containing the fields whose boundary values act as sources for the operators (so,
concretely, the boundary conditions for the supergravity fields would be different from
those considered in the last two chapters). Being topological, the correlation functions
should be independent of the positions at which the local operators are inserted, and also
independent of the metric. These statements might be proven along similar lines to the

present dissertation.
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Holographic Renormalization and Supersymmetry

4.1 Introduction

Holographic observables in the AdS/CFT correspondence typically need regularizing, and
the very structure of anti-de Sitter space provides a renormalization method. As we saw
in the previous part of the thesis, the infinite local boundary counterterms found via the
holographic renormalization are universal, but there exist finite counterterms as well. Such
ambiguities in the renormalization scheme can be clarified by comparing specific observables
on the two sides of the correspondence, for instance those protected by supersymmetry,
and particularly by requiring them to depend in the same way on the background. In the
previous part of the dissertation, we saw that the on-shell supergravity action of N' = 4
gauged supergravity in four and five dimensions, renormalized using the minimal scheme,
is independent of the boundary metric provided we impose the boundary conditions
corresponding to the topological twist of the boundary field theory. In this chapter, we will
study minimal N = 2 gauged supergravity in four and five dimensions, whose bosonic
sectors are simply Einstein-Maxwell theory with a negative cosmological constant (and
Chern-Simons coupling in dimension five). Solutions to these theories uplift either to
M-theory or to type II string theory, and there are large classes corresponding to known

field theory duals.
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Asymptotically locally AdS supersymmetric solutions induce a rigid supersymmetric
structure on the conformal boundary, which has been studied in both Lorentzian and
Euclidean signature [145, 61][] The boundaries M3 of asymptotically locally hyperbolic

supersymmetric solutions to four-dimensional supergravity have metric of the form
ds3 = (dy +a)®+4eVdzdz . (4.1.1)

Here 9y is a nowhere zero Killing vector on M3, and we have used the freedom to make
conformal transformations to take this to be a unit norm vector. This generates a transversely
holomorphic foliation of M3, allowing one to introduce a canonical local transverse complex
coordinate z. The function w = w(z,Z) is in general a local transverse function, while
a = a,(z,z)dz + a,(z,2)dz is a local 1-form. We may also write da = iue®dz A dz, where
u = u(z,z). In addition to the background metric there is also a non-dynamical
Abelian R-symmetry gauge field, which arises as the restriction of the bulk Maxwell field to
the conformal boundary and whose form is specified by supersymmetry.

It is a general result of [68, 7] that the partition function of any N = 2 field theory
in three dimensions, with a choice of Abelian R-symmetry coupling to the background
R-symmetry gauge field, depends on the above background geometry only through the
choice of transversely holomorphic foliation. Concretely, this means that the field theory
partition function is invariant under deformations w — w + éw, u — u + du, where dw(z, z),
du(z, z) are arbitrary smooth global functions on M3, invariant under dy. This is proven by
showing that these deformations of the background geometry lead to Q-exact deformations
of the Lagrangian, where Q is a supercharge, and a standard argument then shows that
the partition function is invariant. This general result has also been borne out by explicit
computations of localized partition functions (such as [11], where M3 has the topology of
S3).

The field theory results in the previous paragraph then lead to a very concrete prediction:
the holographically renormalized on-shell action of a supersymmetric asymptotically locally
hyperbolic solution to four-dimensional supergravity, with conformal boundary M3 and
metric , should be invariant under the arbitrary deformations w — w + dw, u —

u + éu defined above. As we shall review, in four dimensions holographic renormalization

T Asymptotically locally AdS manifolds are the Lorentzian version of the asymptotically locally hyperbolic
manifolds defined in section
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leads to a unique set of standard counterterms for minimal N = 2 gauged supergravity —
there are no finite ambiguities’] - and we prove that the renormalized on-shell action has
indeed the expected invariance properties. Since we do this for an arbitrary solution, and
arbitrary deformation, this constitutes a robust check of the AdS/CFT correspondence, in
particular that holographic renormalization corresponds to the (unique) supersymmetric
renormalization scheme employed implicitly in the localization computations. We also go
further, and show that the on-shell action itself correctly evaluates to the large N field theory
partition function obtained from localization, in the cases where this is known.

The corresponding situation for five-dimensional supergravity turns out to be more
involved. We will consider Euclidean conformal boundaries My given by the direct product
of a circle S! with M3 equipped with the metric , although we shall later generalize
this slightly to a simple class of twisted backgrounds in which S! is fibred over Mj;
the boundary value of the Abelian gauge field in the supergravity multiplet is again
determined by supersymmetry. The general dependence of the four-dimensional field theory
partition function on the background is similar to the one in three dimensions: for A" =1
theories with an R-symmetry (and thus for any A = 1 superconformal field theory), the
supersymmetric partition function is invariant under deformations w — w + dw, u — u 4 du
[68, |67, [19]. Although contrastingly with the three-dimensional case these “supersymmetric
Ward identities” a priori only hold up to anomalies and local finite counterterms, it was
shown in [18] that the supersymmetric renormalization scheme used in field theory is
unique, i.e. free of ambiguities. Moreover the background M, we consider is such that there
are no Weyl and R-symmetry anomalies [63] | Therefore the statement on invariance of the
partition function should hold exactly in our set-up.

In five-dimensional supergravity, holographic renormalization contains a set of diffeo-
morphism-invariant and gauge-invariant local boundary terms corresponding a priori to
the same ambiguities and anomalies as in field theory [225, 127, 27]. One might thus have
expected that there is a unique linear combination of the finite holographic counterterms that
matches the supersymmetric field theory scheme, i.e. such that the renormalized action is
invariant under deformations w — w + éw, u — u + du of My. Surprisingly, we find that no

choice of these counterterms has this property. If the AdS/CFT correspondence is to hold, we

*More precisely there are no finite diffeomorphism-invariant and gauge-invariant local counterterms con-
structed using the bosonic supergravity fields.

3See the discussion at the end of the chapter for some brief remarks on the possibility of supercurrent
anomalies.
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must conclude that holographic renormalization breaks supersymmetry in this case (or, perhaps
more precisely, is not compatible with the four-dimensional supersymmetry determining
the Ward identities above). However, remarkably we are able to write down a set of non-
standard, finite boundary terms that do not correspond to the usual diffeomorphism and

gauge invariant terms and that give the on-shell action the expected invariance properties.

The approach we follow in our supergravity analysis starts in Lorentzian signature. In
particular we will rely on the existing classification of Lorentzian supersymmetric solutions
to minimal gauged supergravity [108] to construct a general asymptotically locally AdS
solution in a perturbative expansion near the boundary. Then we perform a Wick rotation;
this generally leads to complex bulk solutions, however we focus on a class with real

Euclidean conformal boundary My = S x Ms.

The fact that supersymmetric holographic renormalization is more subtle in five di-
mensions was already anticipated, and in fact the issue can be illustrated by considering
the simple case of AdSs. In global coordinates, and after compactifying the Euclidean
time, the conformal boundary of AdSs can be taken to be My = S x §3, with a round
metric on S. This space is expected to be dual to the vacuum of a superconformal field
theory (SCFT) on Mjy. In this background, such theories develop a non-ambiguous non-zero
vacuum expectation value (VEV) for both the energy and the R-charge operators [19 [18].
On the other hand, standard holographic renormalization unambiguously yields a van-
ishing electric charge for AdSs, which leads to an immediate contradiction with the field
theory result. In fact this mismatch holds much more generally than just for AdSs space.
For instance, in [64] a family of five-dimensional supergravity solutions was constructed,
where the conformal boundary comprises a squashed S3, and it was found that no choice
of standard holographic counterterms correctly reproduced the supersymmetric partition
function and the corresponding VEV of the energy (the supersymmetric Casimir energy).
Our general results summarized above explain all these discrepancies, and moreover the
new counterterms we have introduced solve all of these issues. In fact we go further, and
show that for a general class of solutions satisfying certain topological assumptions (which
may be argued to be required for the solution to correspond to the vacuum state of the
dual SCFT), our holographically renormalized VEVs of conserved charges quantitatively

reproduce the expected field theory results.

The rest of the chapter is organized as follows. In section |4.2| we review the relevant
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field theory backgrounds and the properties of supersymmetric partition functions. In
section |4.3| we present our four-dimensional supergravity analysis, showing in particular
that standard holographic renormalization does satisfy the supersymmetric Ward identities,
and evaluating the on-shell action for a large class of self-dual solutions. In section |4.4| we
turn to five-dimensional supergravity. We prove that standard holographic renormalization
fails to satisfy the supersymmetric Ward identities and we introduce the new boundary terms
curing this issue. Then under some global assumptions we evaluate the renormalized on-
shell action and compute the conserved charges, showing that they satisfy a BPS condition.
Section |4.5|discusses a number of examples in five dimensions, illustrating further the role
of our new boundary terms and making contact with the existing literature. In section
we conclude and consider some of the questions raised by this work. Finally, appendix
illustrates our construction of the five-dimensional perturbative solution, and appendix

discusses the Killing spinors at the boundary.

4.2 Field theory

In this chapter we are interested in the holographic duals to both three-dimensional and
four-dimensional supersymmetric field theories, defined on general classes of rigid super-
symmetric backgrounds. More precisely, these are three-dimensional N = 2 theories and
four-dimensional N = 1 theories, in both cases with a choice of Abelian R-symmetry. For
superconformal field theories, relevant for AdS/CFT, this R-symmetry will be the supercon-
formal R-symmetry. Whilst in the previous chapters we considered topologically twisted
theory that can be formulated on any Riemannian manifold, putting such theories on curved
backgrounds in a way that preserves supersymmetry requires particular geometric struc-
tures. As reviewed in sections there are two general approaches: one can either couple
the field theory to supergravity, and take a rigid limit in which the supergravity multiplet
becomes a set of non-dynamical background fields; or take a holographic approach, realizing
the background geometry as the conformal boundary of a holographic dual supergravity
theory [97, 145} [90, 66]. In the case at hand, both lead to the same results, although the

holographic approach will be particularly relevant for this chapter.

We will focus on backgrounds admitting two supercharges of opposite R-charge. The

resulting geometric structures in three and four dimensions are very closely related, and
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this will allow us to treat some aspects in parallel. In particular certain objects will appear
in both dimensions, and we will use a common notation — the dimension should always be

clear from the context.

4.2.1 Three-dimensional backgrounds

The three-dimensional geometries of interest belong to a general class of real supersymmetric
backgrounds, admitting two supercharges related to one another by charge conjugation [66].

If ¢ denotes the Killing spinor then there is an associated Killing vector

¢ = 0’7o = dy - (4.2.1)

In an orthonormal frame here the Clifford algebra generators ¢” may be taken to be the
Pauli matrices, where a = 1,2, 3 is an orthonormal frame index. The Killing vector
is nowhere zero, and thus defines a foliation of the three-manifold Mj. This foliation is
transversely holomorphic, with transverse local complex coordinate z. In terms of these

coordinates the background metric is
dsj = Q?[(dy +a)® +4e¥dzdz] . (4.2.2)

Here Q) = Q)(z,2) is a conformal factor, which is a global nowhere zero function on M3,
w = w(z,Z) is in general a local transverse function, while a = a,(z,z)dz + a,(z,z)dz is a
local 1-form. The metric and Riemannian volume form on the two-dimensional leaf space

are
ds3 = 4e%dzdz, vol, =2ie“dz Adz. (4.2.3)

Notice that a is not gauge invariant under local diffeomorphisms of 1. On the other hand

the 1-form

" dy +a (4-2.4)
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is a global almost contact form on M3, where the Killing vector { = dy is the associated Reeb

vector field. It will be convenient to write
dp =da = iue¥dzAdz, (4-2.5)

where u = u(z,Z) is a global function that parametrizes the gauge-invariant data in a.

Since we are mainly interested in conformal theories with gravity duals, we will (without
loss of generality) henceforth set the conformal factor () = 1. With this choice, the non-

dynamical R-symmetry gauge field that couples to the R-symmetry current is
A = Z(dgb +a)+ i(azwdz — d.wdz) + ydy +dA . (4.2.6)

Notice this is determined entirely by the metric data in (4.2.2), apart from the last two terms
which are locally pure gauge. Here A = A(z, %), and the constant 7 will play a particularly

important réle in this chapterff]

4.2.2 Four-dimensional backgrounds

There is a related class of rigid four-dimensional supersymmetric backgrounds, first
discussed in [145) [90]. These again have two supercharges of opposite R-charge, with
corresponding Killing spinors {+. We use the spinor conventions of [9o, [19], in which
the positive/negative chirality {4+ are two-component spinors with corresponding Clif-
ford algebra generated by (0+)? = (£, —ily), where a = 1,...,4 is an orthonormal

frame index and ¢ = (c!,02,0%) are the Pauli matrices. In particular the generators of

SU(2),, C Spin(4) = SU(2), x SU(2), are (04)™ = 1 (040% —obot) . As in (4.2.1) we

may define the vector field

K = 04009 (4.2.7)

This is a complex Killing vector, satisfying K'K; = 0. Following [19, [176], and to parallel

the three-dimensional discussion in section we consider a restricted class of these

4Compared to the conventions of [94), [95], we have reversed the overall sign of A. However, as noted in the
first of these references, for real A sending A — — A is a symmetry of the Killing spinor equation, provided one
also charge conjugates the spinor { — ¢¢. This Z; symmetry also reverses the sign of the Killing vector (4.2.1).
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backgrounds in which the metric on My takes the product form
dsj = dr®+ (dy +a)® +4eVdzdz . (4.2.8)

Thus My = S! x M3, where T € [0, ) parametrizes the circle S! = 5115. More generally one
can also introduce an overall conformal factor Q = )(z,2), as in (4.2.2), and the T direction

may be fibred over M3, as we will discuss later in section The complex Killing vector
takes the form

K = S(E-io), (429

where again ¢ = dy. The induced geometry on M3, on a constant Euclidean time slice T =
constant, is identical to that for rigid supersymmetry in three dimensions. Moreover, the

non-dynamical R-symmetry gauge field is
A = %(dgb +a) + i(azwdz — d,wdz) + ydy + dA + %u dr —iy'dr. (4.2.10)

We stress that this is the gauge field of background conformal supergravity, rather than the
gauge field of new minimal supergravity [5), [205] used in [go]. The former arises as the
restriction of the bulk graviphoton to the conformal boundary in the holographic approach
to rigid supersymmetry [145] [61]. Notice that setting T = constant, reduces to the
three-dimensional gauge field (4.2.6). The last term in (4.2.10), proportional to the (real)
constant v/, is again locally pure gauge, although via a complex gauge transformation. In
contrast to three dimensions here A is generically complex, although after a Wick rotation

T = it to Lorentzian signature it becomes real.

The geometry we have described above is ambi-Hermitian: the two Killing spinors (+

equip My with two commuting integrable complex structures

(L)} = _|€2ii|2€+i(0'i)ij€i- (4.2.11)

The metric (4.2.8) is Hermitian with respect to both of these, but where the induced
orientations are opposite. The complex Killing vector (4.2.7) has Hodge type (0,1) with

respect to both complex structures. On the other hand, the local 1-form dz has Hodge type
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(1,0) with respect to I, but Hodge type (0,1) with respect to I_.

4.2.3 Examples

In both cases the geometry involves a three-manifold M3, equipped with a transversely
holomorphic foliation generated by the real Killing vector ¢ = dy. Any such three-manifold,
with any compatible metric of the form (4.2.2), defines a rigid supersymmetric background
in both three and four dimensions. If all its orbits close ¢ generates a U(1) isometry, and the
quotient space X, = M3/U(1) is an orbifold Riemann surface, with induced metric (4.2.3).
Such three-manifolds are classified, and are known as Seifert fibred three-manifolds. If ¢ has
a non-closed orbit then M3 admits at least a ll(l)2 isometry, meaning that the transverse
metric ds3 also admits a Killing vector.

The simplest example has M; = S3, with ¢ generating the Hopf fibration of the round

metric on S3 In this case ¥, 2 S?, equipped with its round metric. More generally one can

think of S> € C & C, and take
¢ = Dbidy, + b0y, , (4.2.12)

where @1, ¢, are standard 27 periodic azimuthal angles on each copy of C. For b; = +b,
this is again the Hopf action on S3, but for by /b, irrational the flow of ¢ is irregular, with
generically non-closed orbits. In this case ¢ and argz are not good global coordinates on the
three-sphere. It is straightforward to write down the general form of a compatible smooth
metric in this case, of the form - see [19]. From the perspective of complex geometry,
these manifolds with S! x S® topology (and largely arbitrary Hermitian metric) are primary

Hopf surfaces.

A large and interesting class of examples are given by links of weighted homoge-
neous hypersurface singularities. Here one begins with C* with a weighted C* action
(Z1,2Z2,23) — (q“1Z1,9"2Z3,q" Z3), where w; € N are the weights, i = 1,2,3, and q € C*.

The hypersurface is the zero set

X = {f =0} c C®, (4.2.13)

5Throughout the chapter, the symbol 2 means “diffeomorphic to”. In general, M; = S? does not imply that
the metric is the round metric on $7; we will always specify when this is the case.
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where f = f(Z1,Z,,Z3) is a polynomial satisfying

G 21,4 22,4 23) = q"f(Z1,72,73), (4.2.14)
where d € N is the degree. For appropriate choices of f the link
My = Xn{|Zi]* +|Z* +|Zs)* = 1} (4.2.15)

is a smooth three-manifold. Moreover, the weighted C* action induces a U(1) isometry
of the metric (induced from the flat metric on C3), and the associated Killing vector &
naturally defines a transversely holomorphic foliation of Mz. Here ¥, = M3/U(1) is the
orbifold Riemann surface given by {f = 0} in the corresponding weighted projective space
WC]P%wLme]. This construction covers all spherical three-manifolds S3/T Apg, but also
many three-manifolds with infinite fundamental group. One can further generalise this

construction by considering links of complete intersections, i.e. realizing X as the zero set of

m weighted homogeneous polynomials in C*™.

4.2.4 A global restriction

If we take the product Xy = R-¢ x M3, then we may pair the Reeb vector ¢ with a radial
vector rd,, where r is the standard coordinate on IR-(. Notice this is particularly natural in
four dimensions, where we may identify T = logr, with Xy = R>¢ X M3 being a covering
space for My = S! x Mj3. Then X is naturally a complex manifold, with the complex vector
field ¢ — ird, being of Hodge type (0,1). In fact Xy may be equipped with either the I,
or the I_ complex structure, with the former more natural in the sense that z is a local
holomorphic coordinate with respect to I.. In the following we hence take the I, complex
structure.

The examples in section all share a common feature: in these cases the complex
surface Xy admits a global holomorphic (2,0)-form. That is, its canonical bundle K is
(holomorphically) trivial. This is obvious for S, where X, = C2\ {0}, while for links
of homogeneous hypersurface singularities X we may identify Xo = X \ {0}, where the
isolated singular point o is at the origin {Z; = Z, = Z3 = 0} of C3. In this case the
holomorphic (2,0)-form is ¥ = dZy AdZ,/(df/9Z3) in a patch where df /9Z3 is nowhere

zero. One can easily check that ¥ patches together to give a smooth holomorphic volume
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form on Xp. Such singularities X are called Gorenstein.

As shown in [176], the 1-form A in is (in our sign conventions) a connection on
KC1/2. 1t follows that when the canonical bundle of Xj is trivial A may be taken to be a
global 1-form (this is true on M3 or on My = S' x M3). This global restriction on A will
play an important role in certain computations later. For example, the computation of
the supersymmetric Casimir energy in [176] requires this additional restriction on My =
S! x Mj3, and the same condition will also be needed in our evaluations of the renormalized
gravitational actions in four and five dimensions. That said, other computations will not
require this restriction, and we shall always make clear when we need the global restriction

of this section, and when not.

As explained in [176], when the canonical bundle of Xj is trivial the constant -y in (4.2.6),
may be identified with } the charge of the holomorphic (2,0)-form ¥ under the

Reeb vector ¢. Thus for example we have

(b1 + 1), S3 with Reeb vector ¢ = b10y, + b20y,

NI—=

Y=Y (-d+y w),  M;= link of weighted homogeneous (4.2.16)

hypersurface singularity, ¢ = by .

Here in the second example the normalized generator of the U(1) C C* action for the link
has been denoted by x, and b is an arbitrary scale factor. The local function A(z,z) in (4.2.6),
(4.2.10) is chosen so that A is a global 1-form on Mj3. The form of this depends on the choice
of transverse coordinate z, and then A is fixed uniquely up to a shift by a global function
on Mj3 that is invariant under ¢: this is just a small gauge transformation of A. Finally, on
My = S' x Mj3 the constant v/ is fixed by requiring the Killing spinors {+ to be invariant
under d.. This is necessary in order that the Killing spinors survive the compactification
of R x M3 to S! x M. In fact as we show in appendix this sets o/ = 0, but it will be
convenient to keep this constant since the more general background with S! fibred over M3

we will discuss in section will require 7/ # 0.

In order to compute the four- and five-dimensional on-shell supergravity actions later in
the chapter, we will also need some further expressions for the constant . Since we may
always approximate an irregular Reeb vector field (with generically non-closed orbits) by a

quasi-regular Reeb vector field (where all orbits close), there is no essential loss of generality
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in assuming that ¢ generates a U(1) isometry of M3. Equivalently, M3 is the total space of a
U(1) principal orbibundle over an orbifold Riemann surface X, with metric (which is
smooth where U(1) acts freely on M3). Since the orbits of ¢ = dy close, for a generic orbit
we may write ¢ ~ 1 4 27/b, with b € R a constant. This allows us to write the following

relation between the almost contact volume and characteristic class

b2
o /M3 nAdy = /22 a(L), (4.2.17)

where ¢; (£) € H? (X;,Q) is the first Chern class of £, the orbifold line bundle associated
to S — Mz — Xo. If the U(1) action generated by ¢ is free, then X, is a smooth Riemann
surface and the right hand side of is an integer; more generally it is a rational
number. Analogously, by definition the first Chern class of X is the first Chern class of its

anti-canonical bundle, which integrates to

= -1 — 1/
/22 c1(Xp) = /22 €1 (ICZZ) = ik, Ry vol; . (4.2.18)

Here R,; = —[w is the scalar curvature of the metric on XY, expressed in terms of
the two-dimensional Laplace operator [J = e %92, (we are using the notation 9% = 9,9).

Equivalenty we may write this as an integral over Ms:

b
o) = —— R I . 2.
/chl( 2) = g /M3 241 A vol (4.2.19)

Given these preliminary formulas, we next claim that the expression (4.2.6) for A

describes a globally defined 1-form on M3 if and only if -y is given by

_?fzzcl(zz) B _lfM3R2d77 Avoly
2 [y, a1 (L) 4 fynndg

(4.2.20)

To see this, recall from our discussion above that 2A is a connection on the canonical bundle
K of Xy. The latter is (by assumption) holomorphically trivial, with global holomorphic
section a (2,0)-form ¥. It follows that 2y may be identified with the charge of ¥ under the
Reeb vector ¢ = dy [176]. On the other hand, ¥ in turn may be constructed as a section of
the canonical bundle Ky, of X, tensored with a section of some power of L£*, say (L"),

where L* is the bundle dual to £. The former must be dual line bundles in order that ¥ is
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globally defined as a form, meaning that

pa(LY) = —a(ly) = a(X). (4.2.21)

Since exp(biy) is a section of L, which has charge b under § = dy, and ¢ (L") = —c1(L),

this means that the charge of ¥ is fixed to be

Jr, a1(%2)

2y = bp = —b fzzcl(ﬁ) . (4.2.22)

Rearranging gives (4.2.20). We stress again that although we have derived (4.2.20) for

quasi-regular Reeb vector fields, by continuity the expression for y given by the first equality

holds also in the irregular case.

These Seifert invariants are readily computed for particular examples. For example, in
sectionwe considered M3 =2 S3 with Reeb vector ¢ = b1dy, + b20y,, Where @1, ¢ are
standard 27t periodic coordinates. The foliation is quasi-regular when by /b, = p/q € Q
is rational. Taking p,q € IN with no common factor, we have the so-called “spindle”
o =83/U(1)pq = WC]P%p’q]. This weighted projective space is topologically a two-sphere,
but with orbifold singularities with cone angles 27t/p and 271/q at the north and south

poles, respectively. Recalling that £ is the line bundle associated to S! < S* — %, it is

straightforward to compute that

1

1 _ p+g
/chm = /2201(22)— e (4.2.23)

Similarly, for M3 a link of a weighted homogeneous hypersurface singularity, described in

section one finds

d d(—d + Y2, w;)
= — , Z = 1= . oo
./22 “ (E) [ %X /Zz Cl( 2) w1wrws (4-2:24)

These invariants are also often referred to as the virtual degree and virtual Euler characteristic
of the weighted homogeneous hypersurface singularity, respectively. Notice that
may be derived from as a special case: we may take weights (wy, w2, w3) = (p,q,1),
together with the polynomial f(Z;,Z,, Z3) = Z3, which has degree d = 1. The zero set of f

is then C?, with coordinates Z;, Z,, with weighted Reeb vector & = pdg, + 0,
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Finally, it is worth pointing out there are interesting examples that are not covered by the
restriction we make in this section. In particular setting the connection 1-form a = 0 gives a
direct product M3z = S! x ¥, but unless I, =2 T? the canonical bundle of X; is non-trivial
(being the pull back of the canonical bundle of ¥,). This rules out M3 = S! x S2, where the
Reeb vector rotates the S!. In this case A is a unit charge Dirac monopole on S. Localized

gauge theory partition functions on such backgrounds have been computed in [43) 44, |69].

4.2.5 The partition function and supersymmetric Casimir energy

The general results of [68, 67] imply that the supersymmetric partition function of an
N = 2 theory on M3, or an A/ = 1 theory on My = S! x M3, depends on the choice of
background only via the transversely holomorphic foliation of M3. Concretely, this means
that the partition function is invariant under deformations w — w + éw, u — u + éu, where
dw(z,Z), 6u(z,z) are arbitrary smooth global functions on M3, invariant under ¢ = dy. Rigid
supersymmetric backgrounds M, with a single supercharge ( are in general Hermitian, and
more generally the partition function is insensitive to Hermitian metric deformations and
depends on the background only via the complex structure (up to local counterterms and
anomalies) [68]]. It is important to note that these statements are valid when the new minimal
formulation of four-dimensional supergravity [205] (or its three-dimensional analogue) is
used to couple the field theory to the curved background. We will refer to these results as
supersymmetric Ward identities.

The Lagrangians for general vector and chiral multiplets on these backgrounds may
be found in the original references cited above. In [68, 67] the strategy is to show that
deformations of the background geometry that leave the transversely holomorphic foliation
(or more generally in four dimensions the complex structure) fixed are Q-exact. A standard
argument then shows that the partition function is invariant under such deformations (up
to invariance of the measure).

These general statements are supported by explicit computations of localized partition
functions. In three dimensions the simplest case is M3 = S3, with general Reeb vector .
This was studied in [11]. The partition function of a general N' = 2 gauge theory coupled to
arbitrary matter localizes to a matrix model for the scalar in the vector multipet, where this
matrix model depends on the background geometry only via by, br. The large N limit was

computed for a broad class of Chern-Simons-matter theories in [172] using saddle point
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methods. The final result for the free energy .# = —log Z in the large N limit is

(b1 + bz)z . 4772

00, Ki . (4.2.25)

0‘\:

Here

F = — .2.26
Sround K4 (4 )

is the free energy on the round S3, which scales as N3/2 [88], where Kﬁ is the four-dimensional
effective coupling constant of the gravity dual. The partition function has also been
computed on (round) Lens spaces $°/Z, in [42, g]. Here the partition function localizes
onto flat gauge connections, and thus splits into a sum over topological sectors. However,
in the large N limit of the ABJM theory studied in [9] it was shown that only certain flat
connections contribute, all giving the same contribution as the trivial flat connection. The
upshot is that the large N free energy is simply % times the free energy on S°. As far as
the author is aware, there are no explicit results for the partition function, or its large N
limit, on more general links of homogeneous hypersurface singularities. However, it is
tempting to conjecture that for appropriate classes of theories with large N gravity duals,
the large N free energy may be computed from the sector with trivial gauge connection.
The one-loop determinants here should be relatively straightforward to compute, in contrast
to the full partition function which localizes onto solutions of the Bogomol'nyi equation, i.e.

flat connections (on a closed three-manifold).

The partition function for general N' = 1 theories with an R-symmetry, defined on Hopf
surfaces My = S! x S3, was computed using localization in [19] (the chiral multiplet was
also studied in [7o]). With two supercharges of opposite R-charge one localizes onto flat
gauge connections, which on S! x S* amount to a constant component of the dynamical
gauge field along S!. The resulting matrix model is similar to that in three dimensions, albeit
with additional modes along S!, and indeed in [19] the results of [11] were used. Besides
checking explicitly that the supersymmetric partition function depends on the transversely
holomorphic foliation defined by the Reeb vector on M3 =2 $3 and not on the choice

of Hermitian metric on the Hopf surface, the main result of [1g] was that the partition
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function factorizes as

Zgyo = e P, (4.2.27)

where 7 is the supersymmetric index originally defined in [199, 144] and

2 (bl + b2)3

2
Esusy = ﬁ b1b2 (3C - 2&1) + §(b1 + bz)(a — C) (4.2.28)

was dubbed the supersymmetric Casimir energy. Here, a and c are the usual trace anomaly
coefficients for a four-dimensional SCFI; more generally, for a supersymmetric theory with
a choice of R-symmetry one should replace a and c in by the corresponding "t Hooft
anomaly formulae, involving traces over the R-charges of fermions. This result has been
argued to be scheme-independent, provided one uses a supersymmetric regularization
scheme, hence Egysy is an intrinsic observable [20, 18]. One can see that Esysy corresponds to
a Casimir energy by showing that it is the vacuum expectation value of the Hamiltonian

generating translations along the Euclidean time, in the limit p — co [161) 18]

For field theories admitting a large N gravity dual in type IIB supergravity, to leading
order in the large N limit one has a = ¢ = %/ K%, where K% is the five-dimensional
gravitational coupling constant and we have set the AdS radius to 1. Moreover, one can see
that the index Z does not contribute at leading order [144]. Then at large N the field theory
partition function reduces to
2(by + bp)®

7T
log ZSEXS3 = Esusy = WF . (4229)
5

1

B

The right hand side is expressed in terms of the five-dimensional gravitational coupling

constant, and one of our aims will be to reproduce this formula from a dual supergravity

computation. For the locally conformally flat Sk x §3, where M3 = S3. is equipped with the
standard round metric of radius r3, we have b; = by = 1/r3, leading to

1 16 2
_BIOgZSéXS?S - ESUSY,S}SXS’;*S - K2 (4.2.30)

Following [18), [161]], in [176] the supersymmetric Casimir energy was studied on the

more general class of My = Sé x M3 backgrounds, by reducing to a supersymmetric
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quantum mechanicsﬁ The short multiplets that contribute to Esysy were shown to be in 1-1
correspondence with holomorphic functions on Xy = R> X M3, with their contribution
being determined by the charge under the Reeb vector ¢. This makes it manifest that Egyusy
depends on the background only via the choice of transversely holomorphic foliation on
M3. From this it follows that Egusy may be computed from an index-character that counts
holomorphic functions on Xy according to their Reeb charge. Again, more precisely this is
true in the sector with trivial flat gauge connection, while more generally one should look
at holomorphic sections of the corresponding flat holomorphic vector bundles. In any case,
in the sector with trivial flat connection on M3 one can use this result to show that for links

of homogeneous hypersurface singularities

2b dcd b dg
E - = 1 -2 2 (2 — . 2.
susy 27 Wiy ws (3c —2a) + 3 Wy wyws (cf —c2)(a—c) (4.2.31)
Here we have defined
3 3
¢ = —d+) w, o = —d*+ ) w? . (4.2.32)
i=1 i=1

In particular, c; is precisely the charge of the holomorphic (2,0)-form under the generator
x of the U(1) action. Equivalently, this is the orbifold first Chern number of the orbifold
anti-canonical bundle of the orbifold Riemann surface ¥, = M3/U(1), which is an integer
version of the second invariant in (4.2.24). Again, for theories with a large N gravity dual,
in the large N limit this becomes

2b dc} m?

27 witwyws ng . (4.2.33)

Esusy

Assuming that the dominant contribution comes from this sector with trivial flat connection,

(4.2.33) is hence the prediction for the gravity dual.

An aim of this chapter will be to reproduce these field theory results holographically

from supergravity.

Other methods to extract the supersymmetric Casimir energy on Hopf surfaces use equivariant integration
of anomaly polynomials [53] or exploit properties of the supersymmetric index [17}, 59]. See also [185] for
localization on backgrounds with more general topologies.
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4.3 Four-dimensional supergravity

In this section we are interested in the gravity duals to three-dimensional ' = 2 field
theories on the backgrounds Mj; described in section The gravity solutions are
constructed in N = 2 gauged supergravity in four dimensions. The general form of (real)
Euclidean supersymmetric solutions to this theory was studied in [91]. In particular they
admit a Killing vector, which for asymptotically locally Euclidean AdS solutions restricts on
the conformal boundary Mj to the Killing vector ¢ defined in (4.2.1). Indeed, we will see
that the conformal boundary of a general supersymmetric supergravity solution is equipped
with the same geometric structure described in section We show that the renormalized
on-shell supergravity action, regularized according to standard holographic renormalization,
depends on the boundary geometric data only via the transversely holomorphic foliation,
thus agreeing with the general field theory result summarized in section Moreover,
for self-dual supergravity solutions we show that the holographic free energy correctly
reproduces the localized field theory results (in the cases where these are available) described
in section We thus find very general agreement between large N localized field
theory calculations, on general supersymmetric backgrounds M3, and dual supergravity

computations.

4.3.1 Supersymmetry equations

The Euclidean action for the bosonic sector of four-dimensional N' = 2 gauged supergravity

[99] is

I = —21;{2 d*xV/G (R+6 — FuF1) . (4.3.1)
4

Here R = R(G) is the Ricci scalar of the four-dimensional metric G,,, F = d.A is the field
strength of the Abelian graviphoton .4, and the cosmological constant has been normalized

to A = —3. The equations of motion are

1
RHV + 3GHV - 2 <FH‘D.F]/‘0 - 4.FPUF‘DUGP“/> 7

dxg F = 0. (4.3-2)
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A supergravity solution is supersymmetric if it admits a non-trivial Dirac spinor € satisfying

the Killing spinor equation
i 1 .
(Vy + Efvprvpry + Ery + 1Ay> €e=0, (4.3.3)

where T', generate Cliff(4) in an orthonormal frame, so {I';, Ty} = 2G,,. Locally, any such
solution can be uplifted to a supersymmetric solution of eleven-dimensional supergravity in
a number of ways, as explained in [109]. Strictly speaking the latter reference discusses the
Lorentzian signature case, while the corresponding Euclidean signature result was studied
in [95]. We also note that there may be global issues in uplifting some solutions, as discussed
in detail in [173]. However, these considerations will not affect any of the statements and

results in the present chapter.

The general form of real Euclidean supersymmetric solutions to this theory was studied
in [91]. There is a canonically defined local coordinate system in which the metric takes the

form

1 uv
2 _ 2 “v 2 w _
dsy = yleV(dl'b +¢)°+ " (dy* + 4e"dzdz) . (4.3.4)
Here ¢ = 9y is a Killing vector, arising canonically as a bilinear from supersymmetry, and
W=W(y,zz),U=U(yzz),V=V(yzz), while ¢ is a local 1-form satisfying § /¢ = 0

and Lz¢ = 0. In addition, the following equations should be imposed:

Y f
U=1-=9,W+z, (4-3-5)
1 _
LW +e" [aij + Z(ayW)2 + 3y 2 f2] =0, (4.3.6)
2 e 2 3
=i+ f(F2+2) —y (20yf +Sfo,W ) +
3 3 5 (4.3.7)
2 2 2 2 _
. 1% 1% _
d¢p = 1LIV[azlogu dy/\dz—agloga dy Adz
(4.3.8)

2

+2e" <aylogl‘j[—|—y LI—V)> dz/\dz} ,

where we have introduced f = U — V. The first equation (4.3.5) defines U in terms of W and

f, and we could therefore use it to substitute in and conclude that the entire geometry
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is fixed by a choice of W and f (apart from a possible gauge transformation/diffeomorphism

on ¢). In deriving this form of the solutions, (4.3.5), (4.3.6) and (4.3.8) follow from imposing

the Killing spinor equation (4.3.3), while (4.3.7) is required for the equation of motion for F
(the Maxwell equation) to be satisfied.

The graviphoton is determined by the above geometry, and is given by
1 f i _
A = 77_)(&/) +¢) + 1(85Wdz —9,Wdz) . (4.3.9)

In general this expression is only valid locally, and we will see later that we need to perform
a local gauge transformation in order that A is regular.

A rich subclass of solutions are the self-dual solutions, studied in [92} 94]. Here one
imposes F to be anti-self-dual, which together with supersymmetry implies that the metric
has anti-self-dual Weyl tensor [92]. We adopt the same abuse of terminology as [94], and

refer to these as “self-dual” solutions. This amounts to setting
f = %ayW (self-dual case). (4.3.10)

This in turn fixes U = 1, and therefore self-dual solutions to N/ = 2 gauged supergravity in
four dimensions are completely specified by a single function W = W(y, z, Z), which solves

(4.3-6). This turns out to be the SU(co) Toda equation]]

4.3.2 Conformal boundary

In order to apply the gauge/gravity correspondence we require the solutions described in
the previous subsection to be asymptotically locally hyperbolic. This is naturally imposed,
with the coordinate 1/y playing the role of the radial coordinate. Indeed, there is then a
conformal boundary at y = 0, and the metric has the leading asymptotic form dy—y; + %ds%/h.

More precisely, this all follows if we assume that W(y, z,z), f(y, z,z) are analytic functions

in y around y = Oﬂ

2

W(y,22) = w)(z2) +yw (.2) + Twe) (z2) + O,

2 3
fW,22) = fo) =2 +f) (@D + T fio (20 + LD+ 00, @3

70f course for self-dual solutions the Maxwell equation is automatic, and indeed one can check that, with

(4.3.10) imposed, equation (4.3.7) is implied by the other equations.

®Note that this is not true in general. For more details see section 3 of [94].
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and the 1-form ¢ can be expanded as

2
$,22) = ag)(z2) +ya(22) + Tap) (22 + 0. (4312)

This implies that to leading order
dsy = [+0W] gz +y 7 l[d¢+ag) +4e"0dzdz+0@)],  (43.13)

confirming that the metric is indeed asymptotically locally hyperbolic around the boundary
{y = 0}. A natural choice of metric (rather than conformal class of metrics) on the boundary

is therefore
ds%\/h = (dyp+ a(o))z + 4e*0dzdz. (4-3.14)
The boundary 1-form 7 = d + a(g) has exterior derivative
dy = 2ie”0 f(;) dz A dz, (4.3.15)

as can be seen by expanding to leading order and using f(o) = 0, the latter coming
from the leading order term in (4.3.6). More specifically, # is a global almost-contact 1-form

and ¢ is its Reeb vector field, as

Eanp =1, dady = 0. (4.3.16)

On the conformal boundary ¢ is nowhere vanishing, which implies that it foliates M3. This
Reeb foliation is transversely holomorphic, with locally defined complex coordinate z. The

leading term of the expansion of the bulk Abelian graviphoton is

f i _
Ay = Aly-o = % (dl,b —i—a(o)) + 1 (E)zw(o)dz — Bzw(o)dz) , (4.3.17)

where as usual this expression is only valid locally, and we are free to perform (local) gauge

transformations.

Of course, we see immediately that we recover the rigid supersymmetric geometry of

M3 described in section More precisely, comparing (4.3.14) and we identify
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a() = 4, W(g) = w, with the choice of conformal factor (3 = 1 so that the Killing vector ¢ has
length 1 (as usual in AdS/CFT, the conformal factor () on the boundary appears as a Weyl
rescaling of the radial coordinate y — Q)~'y). Moreover, comparing and we

see that

fay = Sl - (4.3.18)

Finally, the background R-symmetry gauge field arises as the restriction to the conformal
boundary of the bulk Abelian graviphoton, as shown by comparing (4.3.17) and (4.2.6).

Thus we identify Ay = A (up to local gauge transformations).

By expanding (4.3.6), (4.3.7) and to higher order we obtain the relations

we = —e 0w - 3f 0~ 1Y (4.3.19)
f(3) = _w azzf f ( ( ) + Zw ) 3f f ZU(l) , (4320)
P = 1 (aff(l)dz - aZf(1)dz) : (4.3.21)

This (and expansions to higher orders) allows us to see an interesting difference between
the self-dual and non-self-dual case. In general a representative of the boundary conformal
class is fixed by the choice of two basic functions w) = w and f(;) = u/2. However, in
the general case there are in addition two free functions in the expansion into the bulk,
namely w(;) and f ), that appear in the Taylor expansions of W and f in the inverse radial
coordinate y. In general these functions are not determined by the conformal boundary data,
but only by regularity of the solution in the deep interior of the bulk solution. However,
given w(g), w(y), f(1) and f(y), the series solutions of W and f are then uniquely fixed by the
supersymmetry equations/equations of motion. On the other hand, in the self-dual case,
instead f and W are related by (4.3.10), so that the coefficients of the power series expansion

fn) and w(,,) are related by

f(l’l) = Z(J(n) (self—dual Case) . (4322)

Thus the gravitational filling of a given conformal boundary has a unique power series

solution with self-dual metric, while there is no such uniqueness in the general case.



4.3 Four-dimensional supergravity 139

4.3.3 Holographic renormalization

The Euclidean supergravity action (4.3.1), with the Gibbons—Hawking-York term added to
obtain the equations of motion on a manifold with boundary, diverges for asymptoti-
cally locally hyperbolic solutions. However, we can use (the by now standard) holographic

renormalization to remove these divergences.

In order to obtain a finite value for the on-shell action we need to consider a cut off
space Y5, where the y coordinate extends to y = 4, and add to the regularized action the
appropriate local counterterms on the hypersurface M; = {y = ¢}. One then sends § — 0.

Explicitly, we write the bulk action as

I = Igrav + Igauge ’ (4323)
where
1 1
Iy = —= | d** VG (R+6),  Laue= —5 | d**xVGF,,F". 3.
grav ZKE Y, X ( + ) gauge ZKZ Y; X W (4 3 24)

As we are considering a manifold with boundary we must add the Gibbons-Hawking—York

term to make the variational problem well-defined
1 3
Icny = —— [ dx VhK . (4.3.25)
Ky JM;

Here h is the induced metric on M, and K is the trace of the second fundamental form of

M; with the induced metric. Finally, we add the counterterms

1 1
Ii = — dBxvVh(2+ =R), 3.26
t 2 x\f( +5 ) (4.3.26)

where here R is the scalar curvature of h. These counterterms cancel the power-law
divergences in the action. Note the absence of logarithmic terms, which are known to be
related to the holographic Weyl anomaly, as the boundary is three-dimensional and therefore
there is no conformal anomaly. The on-shell action is the limit of the sum of the four terms
above

S = lim (Iofs + Iguy + Ict) . (4.3.27)

0—0
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The holographic energy-momentum tensor is the quasi-local energy-momentum tensor of
the gravity solution; that is, the variation of the on-shell gravitational action with respect to

the boundary metric g;;, i,j = 1,2,3, on Ms:

2
TR

(4.3.28)

The holographic energy-momentum tensor can be expressed as a limit of a tensor defined

on any surface of constant y = 4. In our case this is

1 .. 1 1
Tij = 2 lim <_Kij + Khij —2hij + Rij — 5R hij) , (4.3-29)

where the tensors in the bracket are computed on M; using h;j, the induced metric. One can

define a holographic U(1)g current in a similar way as

_ 1
JZ A

i

(4.3.30)

where A = Ay is the boundary R-symmetry gauge field. In three boundary dimensions, this

current can be extracted from the expansion of the bulk Abelian graviphoton as
A = Ao 5x5jy+ 0O (). (4-3.31)

The holographic energy-momentum tensor and R-current are identified with the expectation
values of the respective field theory operators in the state dual to the supergravity solution

under study.

From the definitions, a variation of the renormalized on-shell action can be expressed as

1. i
5S = /M d3X\/§<2Ti]"SgU+]Z5AOi> : (4-3.32)
3

This formula can be used to check several holographic Ward identities. Invariance of the
action under a boundary gauge transformation gives the conservation equation of the

holographic R-current

Vi =0. (4-3-33)

Invariance under boundary diffeomorphisms generated by arbitrary vectors on M3 leads to
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the conservation equation for the holographic energy-momentum tensorp]

ViT; = Fyyjf', (4-3-34)

where Fy = dAy. Performing a Weyl transformation at the boundary 6g;; = 2g;i60, 6Ag = 0,
for infinitesimal parameter function ¢, we obtain for the trace of the holographic energy-

momentum tensor,

T =0, (4-3-35)

consistently with the fact that there is no conformal anomaly in three-dimensional SCFTs.

As reviewed in section the field theory supersymmetric Ward identities of [68), 67]
imply that the supersymmetric partition function of A" = 2 theories on M3 depends on
the background only via the transversely holomorphic foliation of M3;. AdS/CFT thus
implies that the holographically renormalized on-shell supergravity action evaluated on a
solution with boundary M3 should also depend on the geometric data of M3 only through
its transversely holomorphic foliation. Concretely, this means that the on-shell action should
be invariant under arbitrary deformations wy) — w(g) + dw(gy, a0y — a(0) + da(y), where
6w g (z,Z) is an arbitrary smooth basic global function on M3, and éa(g)(z,Z) is an arbitrary
smooth basic global 1-form on Mj3. Recall that the Reeb foliation induces a basic cohomology

on Mj3: a p-form & on M3 is called basic if { ~a = 0, Lz« = 0, and the set of basic forms ()}

together with the exterior derivative dp = d g constitute the basic de Rham complex.

We may now check this directly by evaluating for the general class of supersym-
metric solutions described in sections The holographic R-current is obtained
from the subleading term in the expansion (4.3.31), and a computation reveals that this is

given by

1

j = 22 [(f(z) +f(1)w(1)) 1 +dCBw(1)} : (4.3.36)

9This is easily seen by recalling that if v’ is the boundary vector generating the diffeomorphism, then
6g'l = —2Vlivl) and 6A; = /V;A; + Vvl A;.
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We find that the holographic energy-momentum tensor (4.3.29) evaluates to

4;T = — [2f(1) (f(z) +f(1)w(1)) + Dwu)] "’

+2 <w(1)d%f(1) + d%f(2)> ©n+ an(o) © aBZU(l) + EBZU(O) © 5}3@0(1) (4-3-37)

+2¢°0 2f) (fioy + fywq) +Owg | dadz,

where © denotes the symmetrized tensor product with weight 1/2. In writing these
expressions we have used the almost contact form on M3, 7, the differential operators
of the basic cohomology, dg = dp + 5B,d% =1 (53 — BB), and the transverse Laplacian

W 2
O=e “009z.

We next plug these expressions for the holographic energy-momentum tensor and R-
current in . We assume that the boundary Mj3 is closed, which allows us to use
Stokes’ theorem to simplify expressions. Moreover the resulting integrand can be simplified
by recalling that all functions are basic, as is the deformation dap). We find that the general

variation of the on-shell action is

i 1
% = 2k2 I 1A dp [(f(z) + w(l)f(l)) 0a() + 5 *2 (§w(0) dBw(l))} : (4.3.38)

Notice this a priori depends on the non-boundary functions w(y, f(2), which (with the
exception of self-dual solutions) are not determined by the boundary data, but only via

regularity of the supergravity solution in the deep interior.

However, this expression vanishes because of an analogue of Stokes” theorem, valid for
almost contact structures (for instance, it can be found as Lemma 9.1 of [103]). Let X be a
(2m + 1)-dimensional manifold with almost contact 1-form #: if « is a basic (2m — 1)-form,

then

/X nAdpx = 0. (4-3-39)

The vanishing of the variation of the action §S = 0 under arbitrary deformations of
the background that leave the transversely holomorphic foliation fixed is a very general
check of the AdS/CFT relation (1.4.1): it shows that both sides depend on the same data,
which a priori is far from obvious. Anticipating the (contrasting) results in AdSs/CFT4
we shall obtain later in the chapter, we might also stress that this means that standard

holographic renormalization agrees with the supersymmetric renormalization scheme used
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in the boundary three-dimensional field theory to obtain the results of [68].

In the next section we go further, and show that for a suitable class of solutions the
holographically renormalized action reproduces the known field theory results, the latter

obtained by supersymmetric localization methods.

4.3.4 Evaluation of the on-shell action

In this section we evaluate the regularized on-shell action for a class of self-dual
supersymmetric asymptotically locally hyperbolic solutions. The supergravity equations are
simpler in the self-dual case, and moreover the geometry is better understood; there are
also more known examples [94]. However, explicit families of non-self-dual supersymmetric
solutions are known [173], and it would be interesting to generalise the computations in

this section to cover the general case.

As already mentioned the self-dual condition fixes U = 1, so that the metric locally takes

the form

1 Vv
2 - 2 v 2 w —
ds’ = oy Ay )+ (dy? +4e"dzdz) . (4.3.40)
The graviphoton is
11-V i ~
= v (dy+¢) + 1 (0:Wdz — 9,Wdz) + ydy +dA, (4.3.41)

where A = A(y, z,Z) is a local basic function. Moreover, the following equations should be

imposed

1
Vo= 1- W,
d¢p = i9.VdyAdz—id:VdyAdz+2id, (VeW) dzAdz,

0 = AW+ ajew . (4-3.42)

Here the first equation may be used to eliminate V in terms of W = W(y, z, Z), the second
equation simply fixes d¢, while the final equation is the SU(o0) Toda equation. We begin by
following part of the global analysis in [94] — the latter reference focused on solutions with

U(1)? isometry and M, diffeomorphic to a ball, with conformal boundary M3 = S°, but in
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fact a number of key arguments go through more generally.

First we recall that the coordinate ¥ may be more invariantly defined as

-

y- = 7 where 8 =

(déb + *4déb) L (4.3-43)

N =

Here the self-dual 2-form = is called a twistor, and is constructed from the Killing 1-form
& = (1/y?V)(dy + ¢) dual to the Killing vector & = 9. The conformal boundary is at
y = 0. Assuming the metric is regular in the interior, the twistor form is then also regular,
and thus y is non-zero in the interior. There can potentially be points at which [|Z] = 0,
where y then diverges, and indeed there are smooth solutions for which this happens.
However, this can only happen at fixed points of the Killing vector { — see the discussion
in section 3.4 of [94]. It follows that y is a globally well-defined non-zero function on the
interior of My \ {¢ = 0}. These self-dual solutions are also (locally) conformally Kihler, with

Kahler 2-form
w = —yPE = dyA(dy+¢)+VeV2idzadz. (4.3-44)

It follows from the first equality that w is also well-defined on the interior of My \ {¢ = 0}.
Since dy = —¢_w, we see that y is also a Hamiltonian function for ¢, and in particular is a
Morse-Bott function. In particular this implies that y has no critical points on My \ {¢ = 0}.
We may hence extend the y coordinate from the conformal boundary y = 0 up to some
Yy = yo > 0 in the interior, where on the locus y = yy the Killing vector ¢ has a fixed point
(this may include yy = o0). Moreover, the preimage of (0,1o) in My is topologically simply a

product, (0,y0) x M3, where the Killing vector is tangent to M3 and has no fixed points.

With these global properties in hand, we can now proceed to compute the regularized
on-shell action. We deal with each term in turn. Consider first the gravitational part of the

action. Using the equation of motion we may write R(G) = —12, so that on-shell
3
Igray = — / voly , (4.3-45)
Ky JMs
where the Riemannian volume form is

voly = ;4dy A (dy + ¢) A Ve"2idz A dz. (4-3-46)
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We can write this as an exact form
—3voly = dYy, (4.3-47)

with

y — zlyz(dl[J + ) Adg+ yls,)(dl/J +¢) A VeVaidz A dz . (4.3.48)
The global arguments above imply that Y is well-defined everywhere on My \ {¢ = 0}: in
the first term y is a global regular function and ¢ does not vanish, guaranteeing that dy + ¢
is a global 1-form. The second term is simply 1/y°(dy + ¢) A w, which is also globally
well-defined and regular on M, \ {¢ = 0}. Having written the volume form as a globally
exact form on My \ {¢ = 0}, we can then use Stokes’ theorem to write (4.3.45) in terms of
integrals over the conformal boundary M3 = {y = ¢}, and over the boundary T, of a small
tubular neighbourhood of radius € around the fixed point set of ¢. Using the expansion of
the Toda equation and near the conformal boundary, we can simplify the

resulting expression to

Igray = 1213/ n Avolp + 3212/ w()y N Avoly — % / Y. (4-3-49)

Ky 0° Im, dxy 0% M, Ky JTe
Here vol, is the two-dimensional volume form (with w(g) = w). In general the fixed
point set of ¢ may have a number of connected components, consisting either of fixed points
(NUTs) or fixed two-dimensional surfaces (bolts). More precisely the last term in is
then a sum over connected components, and the integral should be understood as a limit

llmeﬁo fTe .

The first two divergent terms in (4.3.49) are cancelled by the Gibbons-Hawking—York
term and the local counterterms (4.3.26), which in a neighbourhood of infinity become

1 3 11
Icuy + It = —32—&% /Ms (w(l) + 4w(1)Dw(0)) n Avolp — K—ié—s /M3 n Avolp ( |
4.3.50
31
_ Qﬁ " wyn Avoly,
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where again [J = e~ “©92.. Overall, the contribution from gravity is hence

1 3 1
Igrav + Iony + Lot = T /M3 (wu) T 4w(1)Dw<o>) 1 Avol — 2 /T Y @351

Next we turn to the contribution of the gauge field to the on-shell action. Here for
the first time in this section we impose the additional global assumption in section
that is, we take A = Ag = A |y:0 to be a global 1-form on the conformal boundary Ms.
Equivalently, My |(o,,)= (0,%0) X M3 is conformally Kahler, and we are imposing that the
associated canonical bundle is trivial. If this is true throughout My \ {¢ = 0} then F = dA

is globally exact on the latter[|and we may again use Stokes’ theorem to deduce

1 1 1
Igauge = —— | FAF = —2/ AoNFp—— | ANF. (4-3.52)
Ky JJmy K5 JMs Ky JTe

In order to further evaluate the first term on the right hand side of (4.3.52), recall that in the

self-dual case the boundary gauge field is

1 1
Ao = qway + ;(9:w(g)dZ — d:w()dz) +ydy +dr. (4-3:53)

Carefully integrating by parts then leads to

1
K2 AOAFO:_%/ Ryq1m A volp
Ky /M 4k 1M,
3 (4.3.54)
ﬂ /M3 (w(l) + 4w(l)Dw(O)) n Avoly .
Here the first term arises by noting that Ryy = —Uwq) is the scalar curvature for . Notice

that the second term perfectly cancels the same term in (4.3.51). In general the total action,

obtained by summing (4.3.51) and (4.3.52), is thus

12/ (Y+ANF) . (4.3.55)

v
S = ——/ R A voly —
412 Jmy 21 2 k3 J1.

This hence splits into a term evaluated at the conformal boundary M3, and an integral

around the fixed points of ¢.

We may next further evaluate the first term on the right hand side of (4.3.55) using some

10Tf the canonical bundle is non-trivial in the interior of My \ {¢ = 0} there would also be contributions from
Dirac strings, but we shall not consider that further here.
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of the results of section As argued there, since we may approximate an irregular
Reeb vector field by quasi-regular Reeb vectors, there is no essential loss of generality (for
the formulas that follow) in assuming that M3 is quasi-regular. This means that Mj3 is the

total space of a circle orbibundle over an orbifold Riemann surface X, with associated line

orbibundle £. Combining equations (4.2.19) and (4.2.20) then allows us to write the action

G353) as

2
> (fzz Cl(ZZ)) 1
s - MW—Ki/e(Y—FAA]—"). (4.3.56)

N

The contribution of the conformal boundary is now written purely in terms of topological
invariants of the Seifert fibration structure of M3. We will not attempt to evaluate the
contributions around the fixed points in in general - this would take us too far from
our main focus. Instead we will follow the computation in [94], where M, has the topology
of a ball, with a single fixed point at the origin (a NUT). In this case A is a global 1-form
on My, and correspondingly fTe AN F = 0. Similarly, since the Kéhler form w is smooth
near the NUT, one can argue that the second term in Y in does not contribute to the
(limit of the) integral in (4.3.56). However, the first term in Y does contribute. Using Stokes’

theorem we may write this as

1 11
=5 Y = -5 5 Ady, (4-3-57)
. & 2 S

where yNur is the function y evaluated at the NUT. Since the Reeb vector ¢ has norm ||| ~
near the NUT, where r denotes geodesic distance from the NUT, one concludes from the
form of the metric that V ~ r~2. Since ¢ 1A is necessarily zero at the NUT in order
that A is smooth there, from we hence deduce that

1
ey 3.58
or T (4-3-58)

which allows us to relate ynut to ¥["| Thus we may also express the contribution to the

"'The same formula was derived in [g4] using a different, much longer, route. In the latter reference it was
concluded that all cases where by /by > 0, and by /by = —1, are regular. The case by /b, = —1 is qualitatively
different from the former: the NUT is a point at infinity in the conformal Kahler metric, and the Kéahler metric
is asymptotically locally Euclidean. The instanton is regular at the NUT because it vanishes there, and V ~ 72,

S0 does not hold. Nevertheless, a careful analysis shows that the action evaluates to (4.3.60).
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action from the NUT (4.3.57) purely in terms of topological invariants of Ms:

2
1 1 (27)? 272 <fzz €1 (Zz))
K2 Jr, e 2 s, c1(L) @ Lal) (4-359)
Thus in this case the total action (4.3.56) becomes simply
2
5 2 (fzz 01(22)) (4.3.60)
= —a—t 4.3.60
K3 fzz c1(£)

Using we reproduce the result of [94], where recall that b; /b, = p/gq. However,
we can now generalise this further: in the above computation all that we needed was the
existence of a supergravity solution with topology X = C(M3), a real cone over M3, where
the tip of the cone is the only fixed point of ¢, hence a NUT. If M3 is not diffeomorphic to
S3 this will not be smooth at the NUT, but we can formally consider such singular solutions.
The assumptions we made about the behaviour of the metric near to this point are then

satisfied if the metric is conical near to the NUT. In this situation all of the above steps are

still valid, and we obtain the same formula for the action.

In general

"1
/ (%) = 2-29-n+) (4.3.61)
2 =1

where the smooth Riemann surface associated to X, has genus g, and there are n orbifold
points with cone angles 27t/k;, k; € N, I = 1,...,n. When the first Chern class above is
positive, ¥y hence necessarily has genus ¢ = 0 and so is topologically S2. It then follows that
M3 =2 §3/ A, where A is a finite group. This shows that the class of weighted homogeneous
hypersurface singularities with —d + Y7 ; w; > 0 have links M3 which are all quotients of
S? by finite groups. Corresponding supergravity solutions can hence be constructed very
simply as quotients by A of smooth solutions M, with ball topology. The supergravity
action should then be 1/|A| times the action for the ball solution. It is simple to check this
is indeed the case from the formula (4.3.60). For weighted hypersurface singularities this
reads

am2d (_d +X0 wi)2

S = . .3.6
K3 4w worws (4.3.62)
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As summarized in [176], we may construct supersymmetric quotients M3 = S3/A where
A = Appg C SU(2). These may equivalently be realized as links of ADE hypersurface

singularities, and one can check that indeed

4w1 Wworws

d(~d+ 5l w)

For example, the Eg singularity has weights (wy, ws, w3) = (6,10,15) and degree d = 30,
for which the left hand side of (4.3.63) gives |Ag,| = 120, which is the order of the binary

icosahedral group.

Our formula for the action reproduces all known large N field theory results,
summarized in section In particular, we may realize squashed three-spheres, with
rational Reeb vector ¢ = b1dy, + b204,, Where by /b, = p/q € Q, as links of hypersurface
singularities with weights (wy, w2, w3) = (p,q,1) and degree d = 1, for which
reproduces the field theory result (4.2.25). Similarly, we may realize Lens spaces L(p,1) =
S3/Zp = 53//\,%_l as links of A,_; singularities, with weights (w1, w2, w3) = (2, p, p) and
degree d = 2p. Here |A4, ,| = p, and we reproduce the field theory result of [9] that
the large N free energy is simply % times the free energy on S°. The formula was
derived by assuming supergravity solutions with appropriate general properties exist. For
more general M3, and in particular for M3 with negative ¢ (%), more work needs to be done

to investigate such solutions. We leave this interesting question for future work.

4.4 Five-dimensional supergravity

In the remaining part of the chapter we turn to five-dimensional supergravity. We start by
constructing a very general asymptotically locally AdS supersymmetric solution of minimal
gauged supergravity, in a perturbative expansion near the conformal boundary. Then we
perform holographic renormalization, extract the holographic energy-momentum tensor
and R-current and compare with the field theory results reviewed in section We will
show that standard holographic renormalization violates the field theory supersymmetric
Ward identities. However, we will prove that the latter can be restored by introducing new,

unconventional boundary terms.
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4.4.1 The perturbative solution

Differently from what we did in four-dimensional supergravity, we will initially work in
Lorentzian signature (—, +, +, +, +) and discuss an analytic continuation later. In this way
we take advantage of the known technology for constructing the solution and postpone the
complexification of the supergravity fields.

The bosonic action of minimal gauged supergravity in five dimensions reads [T19]"]

I '1/1LPxVQE(R——]}%FVV+12)

B B 8
_2K§

ANFAF|. 4.
33 (4-4.1)

Here R = R(G) denotes the Ricci scalar of the five-dimensional metric G, G = |det G, |, A
is the Abelian graviphoton and F = d.A. Moreover, 2 is the five-dimensional gravitational
coupling constant, and the cosmological constant has been normalized to A = —6. The

Einstein and Maxwell equations read

1

R?‘v + Zfﬂp}_pv + G;lv <4 + 3-FPU~FPU> = 0, (442)
2

d«F+"_FAF = 0. 4.

Ne (4-4.3)

All solutions of these equations uplift to solutions of type IIB supergravity 60} 109]{"]
A bosonic field configuration is supersymmetric if there exists a non-trivial Dirac spinor
€ satisfying the generalised Killing spinor equation

i

1
WE (T —2V3iA,) | e = 0, (4.4-4)

i+ :

(ryvﬂ-45;rA> Fr —
where the I’ generate Cliff(1,4), with {I',,T,} = 2G,,. The conditions for a bosonic
supersymmetric solution were worked out in [108] and discussed further in [62]. The
solutions relevant to us are those in the timelike class of [108] and are largely determined by
a certain four-dimensional Kéhler structure. In appendix B.1)we review such conditions and
solve them in a perturbative expansion. A suitable ansatz for the Kahler structure eventually
yields a metric and a gauge field on the conformal boundary of the five-dimensional solution

which, after a Wick rotation, match the field theory Euclidean background fields (4.2.8),

"2This section is independent of section We will thus adopt the same notation for the five-dimensional
supergravity fields as for the four-dimensional ones with no risk of confusion.

3As for the four-dimensional supergravity solutions discussed in section this statement holds locally, see
e.g. [62] for some global issues.
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(4.2.10). Here we present the final result after having cast it in Fefferman—-Graham form,

which is most convenient for extracting the holographic data.
The Fefferman—Graham form of the five-dimensional metric i

2 dp’ i 9.7
ds; = ra + hij(x,p)dx'dx’, (4-4.5)

with the induced metric on the hypersurfaces at constant p admitting the expansion
h(x,p) = Plz 8"+ %% + (&' + 7 logp?) p* + O(o°) | - (4.4.6)
The gauge field is of the form
A(x,0) = Ao+ (A2 + Azlogp?)p® + O(p°), (4-4-7)

The hypersurfaces at constant p will be described by coordinates x' = {t,z,2,1}. As
discussed in detail in appendix we find that the solution depends on six arbitrary
functions u(z,z), w(z,2), k1(z,2), ka(z,2), k3(z,z), ka(z,Z). The functions u and w control
the boundary geometry and will be referred to as the boundary data; these are the same
functions appearing in the field theory background (4.2.8), (4.2.10). The functions ki, ky, k3,
ky first show up in the hY and A, subleading terms of the Fefferman-Graham expansion

and will be denoted as the non-boundary data of the solution.

The first two terms in the expansion of the induced metric read

g’ = —df? + (dy +a)* + 4e“dzdz,

800w + u? 80w + 7u? 1600w + 5u?
2 _ 2 2 w355 (4.4.8)
g 9% dt %6 (dyp+a)” + 7 e’dzdz
1
- 1( odu)(dy +a),

where a satisfies as in the field theory background. Moreover, [J = e %92, is the

Laplacian of the two-dimensional part of the boundary metric g, which coincides with

T We use p instead of z to denote the Fefferman—Graham coordinate in this section in order to avoid confusion
with the z coordinate on X,
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(4.2.3), and we are using the notation
xod = i(dzod; —dzd,) . (4-4.9)

One can check that g? is determined by the Schouten tensor of g° [79, 212]

) 1 1, (0)
& = —3 (Rij—6Rgi]-> . (4.4.10)

Here and in the formulae below, a superscript (°) outside the parenthesis reminds the reader
that all quantities within the parenthesis are computed using the boundary metric g” (and,

as far as the formulae below are concerned, the boundary gauge field Ap).

In order to determine the on-shell action and the holographic charges we will also need
the 7° and g* terms in the Fefferman-Graham expansion (4.4.6). We have explicitly verified

that /° is determined by the boundary data as

; 1 ©)
= -3 (Bif+8Fiijk—2g§}szF"’) , (4.4.11)

where B;; is the Bach tensor, see appendix for its definition. Recalling that the variation

of the integrated Euler density vanishes identically in four dimensions, we can write

- 1 ) 0)

o _ __ - 4 0(_ klmn __ kl

if 16@5g0if /d X\ g ( E + CiimnC 8F,F ) . (4-4.12)
Hence fl?j is proportional to the metric variation of the integrated holographic Weyl

anomaly/™|a fact that for vanishing gauge field was first observed in [79].

As for g?j, this contains the four non-boundary functions ki, ky, k3, k4, as well as the
boundary functions u, w (hit by up to six derivatives); we will not give its explicit expression
here as it is extremely cumbersome. As a sample we provide two simple relations between
some of the components:

1 1 1 17 3
g‘t}t — g?pw = —k3 + gk% + ﬂDkz + ﬁ(?_Dw + Mz)kz + ml/ﬂ! — RDUZ

| PR T T S 2
+96e 82u82u+192 (u w ZDw (Ow)~ |, (4-4.13)

'5The functional being varied is also the action of four-dimensional conformal supergravity.
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1 1 1 1
g + Epp — 281 = _Eukl - guzkz + muél + @uzﬂw . (4.4.14)

We also checked that the trace is determined by boundary data as

y 1 i (0)
g8 = 15 <4Rin” — R2> : (4.4.15)
As a consequence of supersymmetry, the gauge field is entirely determined by the
metric and does not contain new functions (apart for the gauge choice to be discussed
momentarily). In particular, Ag and A; just depend on the boundary metric functions, while
Aj also depends on three of the four non-boundary functions, that is ky, k», k3. The explicit

expressions are

Ay = —\1@ {—;u dt + %u(dlp%—a) - }1 *zdw+d)\+7d¢+7’dt] , (4.4.16)
~ 1 1
Ay = —— |—Oudt+ (20u — u0w — =u® ) (dw + a) + *»d ZDw—f—uz], 4.1
el ( 2°) (A +a) + x2d | a1
1 3
Ay = —— | | 96k; + 32uk —4qu—u3> dt — sod (32k; + u®
2= s | (98t + 32k ; 2d (322 +12)
1 64 5 32 ) )
+ " 128ks — 32uk; — gkz + 1600k, — gngw — 16u“ky 4+ 30(0Ow + u”)
2 Do —w 5 4
— 2(0w)” — U Ow — 3e”“0,udzu — Tk (dt+dyp+a)| . (4-4.18)
Clearly, upon performing the Wick rotation + = —it we can identify g’ = g, Ag =

—%A, where ¢ and A were given in (4.2.8), and define the four-dimensional SCFT
background. We recall that the last three terms in are gauge choices: vy, 7’ are two
constants while A is a function of z, Z; these will play an important role in the following.

One can check that

(A2); = _i(ijﬁ)(o) : (4.4.19)

In analogy with /%, we see that A, is obtained by varying the integrated holographic Weyl
anomaly, this time with respect to the boundary gauge field Ay.

Generically, the boundary is not conformally flat and the solution is asymptotically
locally AdSs. In the particular case where the boundary is conformally flat and the boundary
gauge field strength vanishes — i.e. when the solution is asymptotically AdS rather than
asymptotically locally AdS — both /1 and A; vanish. This is in agreement with the general

fact that the logarithmic terms in the Fefferman—Graham expansion vanish for a conformally
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flat boundary.

The solutions described above preserve at least (and generically no more than) two
real supercharges. We have also verified that the five-dimensional metric and gauge field
discussed above satisfy the Einstein and Maxwell equations at order O(p?), which is the

highest we have access to given the order at which we worked out the solution.

4.4.2 Standard holographic renormalization

Following the standard procedure of holographic renormalization a finite on-shell action
S is obtained by considering a regularized five-dimensional space Y; where the radial
coordinate p does not extend until the conformal boundary at p = 0 but is cut off at p = J,

so that My = dY5 = lims_,g dYs = lims_,g M. Then one evaluates the limit
S = (151% (Iofs + Igny + Lot + Ict,ﬁnite) : (4‘4‘20)

Here, I, is the bulk action (4.4.1) evaluated over Y;. Ighy is the Gibbons—-Hawking—York

boundary term, which makes the Dirichlet variational problem for the metric well-defined

and reads
1
Icny = = d*xVhK, (4.4.21)
K& JM;
TH o ohij
where K = h'K;; is the trace of the extrinsic curvature K;; = —%a—p/ of M;. The counterterm

action I¢ is a boundary term cancelling all divergences that appear in I,_s + Iggy as 6 — 0;

it reads
Ie = —— [ d%vi |34+ 2R+ - (€ = CCiM 4 87, Fii) log s
ct = 2 x "’4 + 16 ijkl + 8/ 0go| . (4-4.22)

The first two terms cancel power-law divergences while the logarithmically divergent term
removes the holographic Weyl anomaly. Here, £ is the Euler density and Cij is the
Weyl tensor of the induced metric, see appendix for their definition. Note that since
Vh(E — Cijleijkl +8F; F i/) remains finite as § — 0, it can equivalently be computed using
the boundary metric g” and gauge field Ao.

Finally, I finite comprises local counterterms that remain finite while sending 6 — 0. In

general, these may describe ambiguities in the renormalization scheme or be necessary in

16See [z12) [48] for the modifications due to the inclusion of a Maxwell field.
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order to restore some desired symmetry that is broken by the rest of the action. In our case,
requiring diffeomorphism and gauge invariance the linearly independent such terms may

be parameterized as
1 r y 3
Letfinite = — / d*xvh (Q R*— ¢ FijFi+¢" Cijle”kl> , (4-4.23)
K JM;

where ¢, ¢/, ¢ are a priori arbitrary numerical constants ][]

The holographic energy-momentum tensor is defined as the variation of the on-shell

action with respect to the boundary metriﬁ

2 4S5
Ty = —ﬁ@/ (4-4.24)

and can be computed by means of the general formula

1. 1 1 1
Tij = Kié (ISIL% ﬁ |: — Kl']‘ + Khl']' — 3]11‘]‘ + 5 <Rl‘]' — ER hij>
Y (B + 8FuF, — 2y FuF¥) log 6
+i(1]+ ik/7j = “Nij Skl >Og
+ (26H;j+4¢"By + ¢ (4FuF} — hyFaFH)) ] , (4-4.25)
where all quantities in the square bracket are evaluated on M5, and we refer to appendix
for the definition of the tensor Hj;.

The holographic U(1)g current is defined as

s 145
I = ﬁrz‘lz' (4.4.26)

Note that we defined the variation in terms of the rescaled boundary gauge field A =

—+/3Ay. In this way the holographic R-current is normalised in the same way as the field

17We could also include in the linear combination the terms [ d*xv/h€, [ d*xvhP and [ d*xvhe'™ F; Fy,
where P is the Pontryagin density on Mz, however these are topological quantities that have a trivial variation;
moreover, as we will see below they vanish identically in the geometries of interest for this chapter.

18The minus sign that appears here, as opposed to the corresponding equation in four-dimensional su-
pergravity, is due to the different signatures. In particular compare the four-dimensional Euclidean supergravity
action with the five-dimensional Lorentzian action (4.4.1). On Wick rotation of the latter the conventions
are compatible.
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theory R-current. This yields the expression:

: 2 1 : 4 ; ;
= g lim g e (a7 5 A0 F) | P g 420,71 e
5

where the first term comes from varying the bulk action I,_s, the second from I and the

third from I finite-

Given the definitions (4.4.24) and (4.4.26), the variation of the renormalized on-shell

action under a generic deformation of the boundary data can be expressed via the chain

rule as

6S = / d*x\/3 <—1Tij(5gij+ j%A,) : (4.4.28)
AYs 2

Starting from this formula, one can check several Ward identities holding in the holographic
renormalization scheme defined above. Invariance of the action under a boundary diffeo-
morphism generated by an arbitrary vector on 95 yields the expected conservation equation

for the holographic energy-momentum tensor,
VT = Fij' — AjVij . (4-4.29)

Studying the variation of the on-shell action under a boundary Weyl transformation such
that dg;; = 2g;;60, 6A; = 0, one finds for the trace of the holographic energy-momentum

tensor [[127]:
1

T = —
16x2

o 8\ 12
<—(€ + Ci]‘klcl]k] - 3Fi]'Fl]> - 72(; LR ’ (4430)
5

which reproduces the known expression for the Weyl anomaly of a superconformal field
theory [15, [63], with the standard identifications a = ¢ = 7%/x2. Studying the variation
under a gauge transformation at the boundary one obtains for the divergence of the
holographic R-current [225) |63]]:

. 1 .
Vi = 272 M FijFa , (4.4.31)

which again is consistent with the chiral anomaly of the superconformal R-symmetry.
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4.4.3 The new boundary terms

We now specialize to the family of asymptotic supersymmetric solutions constructed in
section and test whether the supersymmetric Ward identities reviewed in section
are satisfied holographically. We will consider variations of the boundary functions that
preserve the complex structure(s), and compute the corresponding variation of the on-shell
action via (4.4.28). As discussed in section the input from field theory is that this
variation should vanish if supersymmetry is preserved. A priori one might expect that there
is at least a choice of the g-coefficients in the standard finite counterterms such that
the supersymmetric Ward identity is satisfied. However, we will show that this is not the
case and that new, non-standard finite counterterms are required.

Before going into this, it will be useful to notice that the boundary metric and gauge

field in (4.4.8), (4.4.16) satisfy
=P =¢eNFF =0, (4-4.32)

where P is the Pontryagin density on d M. Moreover, supersymmetry implies [63]]

8

CijuuC™ = ZFjFT = 0. (4-4-33)
It follows that (4.4.29)—(4.4.31) simplify to
. . . . 12
Vi =0, VT =Fj, T= _;TZQ OR . (4-4-34)
5

Relation (4.4.33) also implies that by redefining the coefficients ¢/, ¢” we can set ¢’ =
0 in the finite counterterm action as well as in all its variations that preserve
supersymmetry at the boundary. Below we will assume this has been done.

As explained in section a variation of the boundary data that preserves the complex
structures 14 on the boundary corresponds to deformations u — u + du, w — w + dw such
that du = du(z,z) and dw = dw(z,z) are globally well-defined functions. In the following
we study the consequences of such variations. We will also assume that 9Y5 is closed and
that the non-boundary functions ki, ky, k3, k4 are globally well-defined functions of their
arguments z,Z. This will allow us to apply Stokes’ theorem on the boundary and discard

several total derivative terms.
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We first vary w keeping the 1-form a fixed. From (4.2.5), we see that this is possible
provided the variation preserves e“u, hence we also need to take du = —udw. After
dropping several total derivative terms involving the boundary functions and k»(z,z), we

find that the corresponding variation of the on-shell action is:

1
 263x2 Jov;

5 d*x /g ow [ (—1+96g —16¢") u*Rpg — % (1 —96g +28¢") Ou?

1 8
+3 (19 — 288¢ +192¢") u* — §('y +29") (2uRys +20u — u®)  (4-4.35)

—12¢"u00u + 8(—24¢ + ¢')(R3; + 20Ry) | ,

where we recall that Ry; = —Ow is the Ricci scalar of the two-dimensional metric (4.2.3). If

instead we vary u while keeping w fixed we obtain

1

0uS = =
29322 Jays

d*x\/gdu [24 (1 —96g +16¢") Ry + 288¢'Cu
(4.4.36)

32
— (19 — 288¢ + 192¢) u® — 3(7 +29")(3u* — 4Ryy) |,

where again we dropped many total derivative terms, some of which containing the non-
boundary data k, k3. In order to do this, we used that da is globally defined; this follows
from the assumption that the complex structures are not modified.

Inspection of (4.4.35), shows that there exists no choice of the coefficients ¢, ¢’

such that 6,5 = 6,5 = 0. Therefore we conclude:

Standard holographic renormalization does not satisfy the field theory supersymmetric

Ward identities.

Remarkably, we find that this can be cured by introducing new finite terms. Both variations
0»S and 9,5 vanish if we take ¢ = ¢/ = 0 (that is, if we set I finite = 0) and add to the

on-shell action the new terms

1

128
/BY d4x\/§ [19u4 — 48u*Ryy + 7(2’/ +9)(u® —4uRyy)| . (4.4.37)
5

In other words, the new renormalized action

Ssusy = (151_1;% (Iofs + Iguy + Ict) + Alnew (4438)
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does satisfy the supersymmetric Ward identities. We claim that this is the correct supersymmetric
on-shell action that should be compared with the supersymmetric field theory partition

function.

It should be clear that the terms Alhew cannot be written as local actions that are: i)
invariant under four-dimensional diffeomorphisms, ii) invariant under gauge transforma-
tions of A, and iii) constructed using the boundary metric, the boundary gauge field and
their derivatives only. If this was the case, Alw would fall in the family of standard finite
counterterms (4.4.23), which we have just proven not to be possible. We will comment on
this issue in the conclusions. Here we make a first step towards clarifying it by observing
that the gauge-dependent part of Al — that is, the term containing the gauge parameters
7,7 — has to come from a term linear in the boundary gauge potential A = —+/34,. So

we may write

1

AInew = > / (A NP+ ‘Y) ’ (4439)
K5 JoYs

where ¥ is gauge-invariant. Matching this with (4.4.37), we obtain

@ = s (1~ duRy) ie¥dz A dz A (2dy — df),
; (4-4-40)
¥ = sig <19u4 —48u2R2d) CENE

Notice that d® = 0, so Al,ew is invariant under small gauge transformations. However, it de-
pends on the choice of flat connection for A when 9Y5 has one-cycles. Also notice that (4-4.39)
implies that AlLew yields a new contribution to the holographic R-current (4.4.26). Below

we will show that this modifies the R-charge precisely as demanded by the superalgebra.

4.4.4 Evaluation of the on-shell action

In this section we evaluate the renormalized supergravity action on the class of
five-dimensional solutions constructed above. Since this involves performing a bulk integral,
a priori one would need to know the full solution in the interior, while we just have it in a
perturbative expansion near the boundary. However, we show that under certain global
assumptions the on-shell action reduces to a boundary term that can be evaluated exactly as

a function of boundary data only.

The assumptions consist in requiring that the solution caps off regularly and with no
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boundary in the interior, and that the graviphoton A is a global 1-form[®] As shown in [64],
this allows to express the bulk action of supersymmetric solutions in the timelike class as

the boundary term
1

I,.s = —
o7 3x2 .

/M (dyAPAN]—2AN%5F), (4-4.41)

where the coordinate y, the Ricci 1-form potential P and the Kéhler form | are those of the
“canonical structure” dictated by supersymmetry [108] and are defined in appendix
We remark that while demanding that A is a global 1-form we are also taking P as a
global 1-form, see eq. (B.1.6). Notice this implies that the canonical bundle of the 4d Kihler
metric is trivial, cf. an analogous global assumption in section The integral on the
hypersurface M; at constant p can be explicitly evaluated for our solution after passing to

Fefferman-Graham coordinates as discussed in appendix

Even if the on-shell action is now reduced to a boundary term, generically it still depends
on the arbitrary non-boundary functions appearing in the solution. We now generalize
an argument given in [64] and show that the assumption of global regularity also entails
a relation between these non-boundary functions and the boundary ones that is precisely

sufficient for determining the on-shell action.

Let C be a Cauchy surface (namely, a hypersurface at constant t), with boundary

M3 = C N dYs, and consider the Page charg

O = /M3 (*5.7:—1— \%A/\]—‘) . (4-4-42)

Since A is globally defined and 0Y5s is by assumption the only boundary of the space, we

can apply Stokes” theorem and then use the Maxwell equation to infer that ® must vanish:

® — M3<*5}'+\%A/\}“> _ /(j(d*5]-“+\%}"A]-“> — 0. (4.4.43)

We now replace the Fefferman—Graham expansion of the graviphoton field strength

F = dAo+p* (dA, + dAz logp?) +2pdp A (Az + Az + Az log p?) + o(p?) (4-4-44)

9For example this excludes supersymmetric black hole solutions [122} 65].
2°This the name reserved for a charge that is localized and conserved, but not gauge invariant (see also
[189) [169]).
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and its Hodge dual restricted to the hypersurfaces at constant p,
(#5F) | gy = 2% (A2 + A2 + Azlogp?) + O(p) , (4.4-45)

where *,0 is the Hodge star of the boundary metric gO It is easy to see that expression

then becomes

) 2
e - /Ma (2vols (4> + 42), + AN dAo) , (4.4.46)

where we are using the notation volz = d3x\/§ for the Riemannian volume form on M;.
The condition ® = 0 is thus equivalent to the statement that the integrated time component
of Ay, which a priori is controlled by non-boundary data and is thus not fixed by the
equations of motion, is actually determined by boundary data. Evaluating this on our
perturbative solution, we find the following integral relation between the non-boundary

functions k1, kp, k3 and the boundary functions u, w:

1 1
= — | vols |—(384k; — 64k3 + 480k, + 32k, Ryy + 90,1051
96\/§ M 3 [u< 3 2 2 21\24 zu0z

1
— 90IR,y — 6R§d> + 48uky — Z5u3 192k,

0=0

1 4 (4-4-47)
+6e3Y[V.(e73"0zu) + c.c.] + (13u — 167)Ryy

- 6\1/5 M3d1p/\d[u(d/\—’ya)] :

We can now give our result for the renormalized on-shell action. Adding up all contri-
butions to (4.4.38), including the new counterterms (4.4.37), and without making further

assumptions, we obtain

Jat

Ssusy = 271(%

9
/
{ /M3 vols [(’y —7)YR2a + g (4 — ’W>]
+ 612 / d [dy A (96k2 +12Rpg — 3u? +16(7' — 7)u) (4dA — 474 + sodw)]
M;

+6V3(7 —7) 9} : (4-4.48)

The Laplacian term in the first line and the whole integrand in the second line are total

*Note that the logarithmic divergence drops out of the quantities we are interested in. Indeed, recall-
ing (4.4.19), we see that *g0 Ay o (d*F )(9) is a total derivative, hence it drops from any boundary integral.
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derivatives of globally defined quantities and therefore vanish upon integration. The term
O in the third line, given by (4.4.47), also vanishes as just seen. So we obtain a very simple

expression for the on-shell action, depending on boundary data only:

(' =7)r ‘
Ssusy = TR / dt /M3 volz Ryg - (4-4-49)
We next implement the analytic continuation t = —it, which renders the boundary metric

Euclidean, and assume that T parameterizes a circle of length . The expression for the
on-shell action thus becomes™]
ply =

)y
Ssusy - W /M3 V013 de . (4450)

It is interesting to note that, as we show in appendix the flat connection parameters 7y
and 9’ also correspond to the charge of the boundary Killing spinor { under dy and id-,
respectively. Hence v — 7 is twice the charge of { under the complex Killing vector K

introduced in section

Recall from section that the requirement that the boundary gauge field is globally

defined fixes 7y as
_1 st V013 de

4 | M, 1A Y '
Recalling (4.2.4), (4.2.5), the contact volume of M3 appearing in the denominator can also be

(4.4.51)

expressed as [y, 7 Adyy = 3 [y, volyu.

As far as the bosonic solution is concerned, expression makes sense for any
value of 7'. However, for Ssusy to be the on-shell action of a proper supersymmetric solution
we also need to impose that the Killing spinors are independent of 7, so that they remain
globally well-defined when this coordinate is made compact. Since 7 is the charge of the
Killing spinors under id;, we must take 7" = 0.

We conclude that for a regular, supersymmetric five-dimensional asymptotically locally
AdS solution satisfying the global conditions above, and such that the conformal boundary
has a direct product form S! x M3, the supersymmetric on-shell action is given by

B*

Ssusy = 27;{%

/ vols Ry, (4-4.52)
M3

?2The overall sign change comes from the identification 5y orentzian, t=—ir = —SEuclidean-
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where v is fixed as in (4.4.51). Note that because of the dependence on 72, Seusy cannot itself
be written as a local term in four dimensions.
In section |4.5| we will show that this result precisely matches the large N limit of the

SCFT partition function in all known examples (and beyond).

4.4.5 Twisting the boundary

We can easily discuss a slightly more general class of solutions, having different boundary

geometry. This is obtained by making the local change of coordinates
T — cosaT, Y — Pp+sinaT, (4-4-53)

where 0 < & < 71/2 is a real parameter| Then the old boundary metric and gauge field

G-238), become

ds3 = (dt+sina (dy +a))* + cos® a (dg + a)? + 4e“dzdz , (4-4.54)

A = (icosa + 2sina) gdr—i— %(dlp +a) + i s*pdw
(4-4.55)
+ (ysina — iy’ cosa)dt + ydy + dA .

Although this configuration is locally equivalent to the original one, if we take for the new
coordinates the same identifications as for the old ones (in particular T ~ T+,  ~ ¢ as
one goes around the S! parameterised by T one full time), then the new boundary geometry
with & # 0 is globally distinct from the original one. From (4.4.54) we see that the S!
parameterised by 7 is fibered over M3, although in a topologically trivial way since dy 4 a
is globally defined; moreover, the term (dy + a)? in the Mj part of the metric is rescaled by
a factor cos® x. We will denote as “twisted” the new four-dimensional background (4-4.54),
(4.4.55), as well as the corresponding five-dimensional solution obtained by implementing
the transformation (4.4.53) in the bulk] In fact we can show that the complex structure
of the twisted boundary is inequivalent to the complex structure with & = 0. Recall from

section that four-dimensional field theory backgrounds with two supercharges of

?3In Lorentzian signature, the change of coordinates reads t — coshap t, ¢ — i + sinhay, f, with ap, constant.
This is related to (4.4.53) by t = —iT and a, = ia.

24 An equivalent description would be to maintain the metric and gauge field (4.2.8), and modify the
identifications for the periodic coordinates, so that going around the circle parameterised by T also advances the
coordinate ¢ in Mj3. This is what is commonly known as twisting, see e.g. [68].



164 Holographic Renormalization and Supersymmetry

opposite R-charge admit a globally defined, complex Killing vector K holomorphic with
respect to two complex structures I+. For our untwisted background, this was given
in (4.2.9). For the twisted background, and in terms of a coordinate ¥ = 7/ with canonical
unit periodicity, it reads

1

We infer that Bel* is a complex structure parameter of the background (while the overall
factor in K does not affect the complex structure). Depending on the specifics of M3, the
background may admit additional complex structure moduli, however the one discussed
here is a universal modulus of manifolds with S! x M3 topology and metric (4.4.54).

The results of [68] then imply that the supersymmetric partition function on the twisted
background should be related to the one on the untwisted background by replacing 8 — Be'®.
It would be interesting to check this expectation by an explicit localization computation.
To date, only partial localization computations have been carried out for four-dimensional
supersymmetric field theories on similarly twisted backgrounds [70]

We can compare with the on-shell action of the twisted bulk solutions. This is evaluated
in the same way as for a = 0, with just two differences: i) the volume form on M3 is rescaled
by a factor cosa, and ii) the boundary Killing spinors are independent of the new time

coordinate for a different value of 7': as discussed in appendix now we must take

7 = —iytana. (4-4.57)
Starting from it is thus easy to see that the net result of the twist by « is to multiply

the on-shell action of the untwisted solution by a phase:

Ssusy,zx = eizx Ssusy,oc:O ’ (4458)

where Sqy, «—0 is given by (4.4.52). Here the imaginary part is a consequence of the choice of
7', that is of the way the terms depending on large gauge transformations A — A + constdt
are fixed in the on-shell action. Effectively, the phase e* can be seen as a complexification of

B. So we find that the twisting has the same consequence for the on-shell action as expected

35In [19] the two complex structure parameters p, q of primary Hopf surfaces were assumed real, however in
appendix D therein it was discussed how to generalize the background so that p, g become generally complex.
It would be interesting to evaluate the partition function of general supersymmetric gauge theories on such
backgrounds.
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for the field theory partition function: the parameter B is replaced by Be'*.
Besides being interesting per se, this complexification of the on-shell action will serve as

a tool for computing the charges below.

4.4.6 Conserved charges

We now compute the holographic conserved charges taking into account the contribution of
the new counterterms Alnew and verify that they satisfy the expected BPS condition.

Let us first consider the currents defined by standard holographic renormalization. Recall
from (4.4.34) that the R-current j' is conserved and thus provides a conserved R-charge.
In addition, given any boundary vector v preserving the boundary fields, i.e. such that

L, = L,A = 0, we can introduce the current
Y = (T} + Ajf') . (4.4.59)

Using the modified conservation equation of the energy-momentum tensor in (4.4.34), it is
easy to see that Y is conserved and thus defines a good charge for the symmetry associated
with v.
Although we do not know how exactly the new counterterms affect the energy-momentum
tensor (because we do not know the variation of Al,ew With respect to the metric), we will
show how the relevant charges can be computed anyway by varying the on-shell action
with respect to appropriate parameters. We will just need to assume that Alne, can be
expressed as a quantity invariant under diffeomorphisms and small gauge transformations,
constructed from the boundary metric and the boundary gauge field (and necessarily other
boundary fields), so that the chain rule (4.4.28) and the conservation equations make sense
also after S is replaced by Seusy, and Tj;, j* are replaced by their supersymmetric counterparts
defined by varying Ssysy-

We will discuss the charges for the untwisted background with & = 0, although it would
be straightforward to extend this to general a. The background with a # 0 will however

play a role in the computation of the angular momentum.

R-charge The supersymmetric holographic R-charge is defined as

QSUSY = _/M vols jéusy = —i /M V013j§usy 7 (4460)
3 3
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where

jéusy = ji + Aji (4.4.61)

is the sum of the current (4.4.27), obtained in a minimal holographic renormalization scheme,

and
;10
N = JReA

Using (4.4.27), the former contribution is found to be

Alnew - (4.4.62)

2 1
vols /! = O+ / de A d [1(4dA — 4ya + sodw
/M3 3] \/§K§ 108K§ M, ¥ [( v 2dw)]
, (4.4.63)
— 15 (8yR AuRoy — ud)
+216K§/M3V03< YRoq + 4uRpy — u°)

where O is again given by expression (4.4.47). Both ©® and the other integral in the first
line vanish due to the global assumptions we made in section so the R-charge in a
minimal holographic renormalization scheme is given by the second line only. The shift in

the current due to the new counterterms can be read from (4.4.39), and leads to

/ vol3 Aj' = / voly (—4uRyy + 1) . (4.4.64)
M; M

21612

Adding the two contributions up, the expression for the supersymmetric holographic
R-charge simplifies to

1
Qsusy = —27,);%/]\43 vols Ryy = —'B—,ySsusy- (4.4.65)

We notice that a faster way to arrive at the same result is to take the derivative %a%/ of the

action (4.4.50). Indeed, a variation of the parameter 7' amounts to shift by a constant the

time component of the gauge field, which computes the electric charge.

Energy We define the energy H of the supergravity solution as the charge associated with

the Killing vector 9; (or d in Euclidean signature). This is given by

H = vols (Ty + Asj) = / volz (—Trr + A+jc) - (4.4.66)
M3 M;
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Since we wish to compute the supersymmetric energy, we need to use the supersymmet-
ric versions of the energy-momentum tensor and R-current, which receive contributions
from the new boundary terms Alnew. Although we do not know the contribution to the
holographic energy-momentum tensor, we notice that the chain rule implies that H
is obtained by simply varying the on-shell action with respect to . This is easily seen by
rescaling T so that it has fixed unit periodicity while B appears in the expressions for the

metric and gauge field. Hence we obtain

0 1
Hsusy = %Ssusy = Bssusy~ (4467)

Angular momentum We denote as angular momentum the charge associated with —dy.

This is given by

J=-— / voly (T + Agji) = —i / voly (Try — Ayjr) - (4.4.68)
M3 MS

Again we can circumvent the problem that we do not know how Al affects the energy-
momentum tensor by varying the supersymmetric on-shell action with respect to a parameter.
In this case the relevant parameter is « introduced via the twisting transformation of

section Using the chain rule (4.4.28) and recalling (4.4.54), (4-4.55), we find that the

variation of the on-shell action with respect to « (keeping 7' fixed) gives:

d
a Ssusy

- / dhxy/8 (= Tep + Ayjr) g = —iBlousy , (4-4-69)
=0

o

where as indicated all quantities are evaluated at « = 0, namely in the original, untwisted,
background. On the other hand, we can vary the explicit expression for Sqsy. Since 7’ is
kept fixed, we just need to vary the overall factor cos a. This gives %Ssusy\azo = 0 and thus

we conclude that

]susy =0, (4.4.70)

that is all untwisted solutions have vanishing angular momentum.
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BPS relation In summary, we obtained the following expressions for the holographic

charges associated with our supersymmetric, untwisted solutions:

1
Hsusy = - qusy = Bssusy/ ]susy =0. (4471)

Via the AdS/CFT correspondence, these should be identified with the vacuum expectation
values of the dual SCFT operators. The SCFT superalgebra implies that the latter satisfy the

BPS relation

(H)+ () +v(Q) =0, (4.4.72)

see appendix B.2[for its derivation. Of course, here it is assumed that the vacuum expectation
values are computed in a supersymmetric scheme. We see that the holographic charges
(4.4.71) do indeed satisfy the condition. This can be regarded as a further check that the

proposed boundary terms Alnew restore supersymmetry.

4.5 Examples in five dimensions

We now discuss some examples of increasing complexity. This will offer the opportunity to
illustrate further the role of the new boundary terms and make contact with the existing

literature.

4.5.1 AdSs

It is instructive to start by discussing the simplest case, that is AdSs space.
Euclidean AdSs is just five-dimensional hyperbolic space. In global coordinates, the unit

metric can be written as

do> (1 p\° 1 p)?
2 2 2
dS5 = ? + (p + 41%> dr°+ (p - 471% d553 ’ (451)
where
r2 . 2
dst, = 2 |(d + cosfdg)’ + d6? + sin 6dg?| (452)

is the round metric on a three-sphere of radius r3, with canonical angular coordinates
6 € [0,7], ¢ € [0,271], ¢ € [0,47]. Here p is a Fefferman—-Graham radial coordinate,

extending from the conformal boundary at p = 0 until p = 2r3, where the three-sphere
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shrinks to zero size. The conformal boundary is R x S3, equipped with the conformally-flat
metric

ds2 = dr?+ d5§3 . (4-5-3)

We compactify the Euclidean time so that T ~ 7 + B and the boundary becomes 5}3 x 83
For the relevant Killing spinors to be independent of time, we need to switch on a flat gauge
field on S,

—VBA = A = —id“{. (4.5.4)
3

It is natural to assume that AdSs is dual to the vacuum state of a SCFT living on the
conformal boundary Sé X 55’3 In the following we illustrate how the on-shell action and the
holographic charges of AdSs match the SCFT supersymmetric vacuum expectation values only after

holographic renormalization is supplemented with our new boundary terms.

In the standard scheme of section [4.4.2} the renormalized on-shell action and holographic

energy are found to be

3(1—966)B *

473 K% 7 (4‘5'5)

S = BH =
while both the angular momentum | and the holographic R-charge Q vanish. The latter
value follows from formula using F = 0. Thus, by dialing ¢ the holographic energy
H may be set either to agree with Q = 0, so that the BPS condition stating the proportionality
between energy and charge is satisfied, or with the field theory result in (4.2.30), but not

with both. Hence even in the simple example of AdS we see that standard holographic

renormalization disagrees with the supersymmetric field theory results.

Let us describe how this discrepancy is solved by the new terms introduced in sec-

tion[4.4.3} Starting from the general boundary geometry (4.2.8), we take u = const =

w
_é, ej

> = %ﬁ, and make the change of coordinate z = cot§ e™¢, ¢y = 2¢. Then the

two-dimensional metric, its curvature and the volume form are

2

2
ds? = %d@2 +sin?0d¢?), Ry=—, voh= %sin@d@ Adg, (4.5.6)

w\ﬂm‘ o

. . _ r3
and eq. for the connection 1-form a is solved by a = % cos §d¢. Moreover to recover

26The possibility that a different asymptotically AdS supergravity solution may be dual to the SCFT vacuum

on Sll3 X 53’3 was considered in [62]. The analysis of that chapter, though not exhaustive, indicates that this is not

the case, and strongly suggests that AdS is the natural candidate.
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the correct gauge field we need to take

Y=, v =0, Az—g, (4.5.7)

the value of v being in agreement with (4.4.51). In this way our general boundary metric

and gauge field reduce to (4.5.3), (4.5.4).

The new boundary terms (4.4.39) then evaluate to (after Wick rotation):

178 2
Alhew = — — 5.
ne 1087’3 K% (4 5 8)
so that we obtain for the supersymmetric on-shell action of AdSs:
16 B
Ssusy = Sg:O + Alhew = %g . (459)

This result also follows directly from since AdSs satisfies all global assumptions that
were made in section to derive it Then the energy is just H = %Ssusy and the angular
momentum vanishes, | = 0.

Using eq. (4.4.64), we see that the new terms also shift the value of the holographic

R-charge from zero to
16 72

Qsusy = _Eg' (4.5.10)

Therefore we have found for the supersymmetric energy, charge and angular momentum:

16 72

27r3 k2’ Jsusy = 0. (4.5.11)

1
Hsusy = _ngusy =

Besides respecting the BPS condition, these values precisely match the supersymmetric field
theory vacuum expectation values of [19} 18], cf. eq. for the energy.

It is worth pointing out that the choice (4.5.4) for the flat gauge field does not affect the
conserved charges of AdSs computed via standard holographic renormalization, while it

plays a crucial réle in our new boundary terms. Indeed in the formulae of section

27For generic asymptotically AdS solutions, conformal flatness of the boundary metric (4.2.8) on Sll; X M3

amounts to u = const and Ryy = ”72 ; it also implies dA = 0. Then from we find y = — 4. If the solution
satisfies the global assumptions made in section our formula applies and the supersymmetric

On—SheH aCtiOn reads
S usy — 75 3 V()13
sus 2 3 K52 M3 '

For a round sphere M3 = 53, we set u = — £, [¢; vol3 = 27173 and the result (4.5.9) follows.
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the only term potentially affected by a flat gauge connection is the bulk Chern-Simons
term f AN F N F, which however vanishes on AdSs as F = 0. On the other hand, Al ew
in (4-4.39) depends on a flat connection on S! since the 3-form ® does not vanish on the S°
at the boundary of AdSs, and this affects the holographic charges. In particular, it gives the

full answer for the holographic R-charge associated with AdSs.

4.5.2 Twisted AdSs

We can take advantage of the very explicit example of AdSs to further illustrate the twisting

of section [4.4.5|
Starting from the AdSs metric (4.5.1), we make the change of coordinates

- .2
T — COSK T, Py — l,lJ—l—r—sinzxr, (4.5.12)
3

with 0 < a < 7t/2. Then the new bulk metric reads

2 2
dsz = d%—i— <1 —|—p2) cos?adt?
Y p  4r3

+ (1 - p) %3 [(dl/?—l— isinzxdr%—cos@dgo) + d6? + sin? Gdgoﬂ . (4-5.13)

The new boundary metric may be written as

ds] = [dT - %3 sina(dy + cos qu))} ’ - Tf [cos2 a(dgp + cos Gdgo)2 + d6? + sin? Gdgoﬂ :
(4.5.14)
Since we do not transform the range of the coordinates, i.e. we take T € [0, 8], ¥ € [0,47]
also after the transformation, the new geometry is globally distinct from the original one.
However, both the boundary and the bulk metric remain regular The choice of boundary
gauge field A ensuring that the Killing spinors are independent of the new time coordinate

on S' was explained in section [4.4.5, cf. eqs. (4-4-55), (4-4-57). For AdSs this also corresponds
to the bulk gauge field:

—VBA = A = i(—coso&%—Zisintx)dT. (4.5.15)
3

8Regularity of the boundary metric follows from the fact that d¢ + cos @dg is globally defined. Regularity of
the bulk metric as p — 2r3 can be seen by noting that the G;r component remains finite, that the components
Gop, Goa, Goo, GW) and GL/; " asymptote to the metric on the cone on a round S3 (i.e. the flat metric on R*), and

finally that the Gy, Grg components go to zero. It follows that as p — 2r3 the space looks like St x R*.
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Note that this has both a real and an imaginary part.

The on-shell action in the standard holographic scheme is found to be

3(1 —96¢)p T

2 7 (4516)

S = cosa
47’3 K3

as the only consequence of the twist in the computation is to rescale the volumes by cos a.

The new boundary terms (4.4.39) are evaluated as for untwisted AdSs, except that one must

implement the transformation and use the gauge field (4.5.15). This gives

17 16 . . 2
Alnew = (—108coso¢+ ol smzx) ZK% . (4.5.17)

Then the supersymmetric on-shell action evaluates to

16B e 7'(72

27r3 x%

Ssusy = Sg:O+AInew = (4518)

This illustrates in a concrete example the general result of section [4.4.5] that the on-shell
action in the twisted background is related to the one in the untwisted background by the

replacement 8 — el*B.

4.5.3 A simple squashing of AdSs

A different one-parameter supersymmetric deformation of AdSs was presented in [64]. In
this solution, the boundary geometry is non conformally flat as S*> C 9AdSs is squashed.
The squashing is such that the Hopf fibre of S' < S — S? is rescaled with respect to the
S? base by a parameter v, and thus defines a Berger sphere S3 with SU(2)-invariant metric.

The boundary metric then reads

2
ds? = dr? +%3 [0%(dg + cos 6dg)” + do? + sin? 6dg? | , (4.5.19)

which for v = 1 reduces to (4.5.2), (4.5.3). The boundary geometry is controlled by the three

parameters f3, r3, v, however the complex structure on the boundary is determined just by the

ratio -— specitying the relative size o to the Ho ibre, hence the supersymmetric tie
io £ specifying the relative size of S} to the Hopf fibre, hence the supersy ic field

theory partition function depends on these parameters only through this combination [68,

19].
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As for the solutions in section the supergravity solution of [64] was constructed in
Lorentzian signature and then analytically continued so that the boundary is Riemannian,
while the bulk metric becomes complex. It is known analytically at first order in the
squashing and numerically for finite v. While we refer to [64] for more details, here it will be
sufficient to mention that the solution is regular and such that the global assumptions made
in section to derive the on-shell action formula (4.4.52) are satisfied. In fact, as already
mentioned, the strategy followed in section is a generalization of the one in [64]. Since
its near-boundary behaviour falls in the larger family of perturbative solutions constructed
in the present chapter, the solution of [64] also provides a concrete example that the latter
can admit a smooth completion in the interior also when the boundary is not conformally
flat.

While the field theory results predict that the on-shell action only depends on the ratio £

orz’

it was found in [64] that after performing standard holographic renormalization this depends

both on vﬂ and v. Indeed, in a minimal scheme where the finite counterterms are

r3

set to zero one obtaing®|

8vB [ 2 2 13 , 19 ,\ 72
Smin = — | 755 + 735 — =5 —U | =, 5.
3 (2702 27 7 108" T 288" > x2 (4-5.20)
so only the first term in parenthesis has the correct dependence on P In addition, it was

ors

shown in [64}, sect. 5.3] that there is no combination of the ordinary finite counterterms
that cancels all but the first term in (4.5.20). It was then proposed that a new counterterm
should be added, and it was found that a certain term involving the Ricci form, combined
with the standard finite counterterms, does the job (cf. eq. (5.51) therein). However, in
the light of our more general analysis that specific prescription turns out incorrect, as the
proposed term does not evaluate to Alnew in (4.4.37) for the more general boundary metric
and gauge field considered in the present chapter. This also follows from the fact that the
term proposed in [64] is gauge invariant, while in order to adjust the holographic R-charge
so that the BPS condition is satisfied a dependence on large gauge transformations is needed.
Therefore while the idea of correcting the holographic renormalization scheme by new
boundary terms survives and is much strengthened by the general analysis performed in

the present chapter, a covariant form for these terms remains to be found.

29See also. eq. (4.15) of [64]. The present variables are obtained setting Athere = 7B and 871G/ 2 =2,
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Let us show how Al,ew removes the terms in (4.5.20) not depending solely on v% The

metric on S! x S3 is obtained from our general boundary metric (3.2.8) by modifying

1

slightly the transformations made for the example of AdSs. Again we take e? = %W

and z = cot § e71, so that the two-dimensional formulae hold the same. Choosing
u= —%, the connection 1-form a can be taken a = % cos 0d g, while the coordinate on the
Hopf fibre with canonical period 47t is ¢ = 0—331/1. In this way (4.2.8) reduces to (4.5.19). Also
choosing

1
7:7 ’)/:O/ )\:—

— , (4.5.21)

where again the value of 7 is in agreement with (4.4.51), the boundary gauge field

reduces to the SU(2)-invariant expressionp”]

—V3Ag = A = —?dT + %(1 — 0?)(d¢ + cos 0de) . (4.5.22)
3

Then our formula for the supersymmetric on-shell action evaluates to

16 m*
27vr3 k2

Ssusy = (4.5.23)

that only depends on v% as predicted by the field theory arguments. In fact our new

counterterms evaluate to

8B (2 13 , 19 ,\ 7?
Aoy = —20P (2 202y 27 4 7T 5.
new 2 <27 1087 T 288" > K2’ (45-24)

which precisely accounts for the difference between (4.5.20) and (4.5.23)). One could also con-
sider twisting this five-dimensional solution by the parameter « as discussed in section [4.4.5|
and further illustrated in the example of AdSs, thus introducing an overall phase e in the

on-shell action.

Eq. gives for the holographic charges:

1 16 72
Hsusy = vir?’qusy = ng ’ ]susy =0. (4525)

3°These boundary fields agree with those of [64] upon identifying pthere = ¢, fthere — ;—’3’1’ and affere = 3.
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The electric charge given in [64, sect. 4] reads in the present normalization

1672

there _
Q 27«2

(02 - 1)2 ’ (4-5-26)

while the shift due to our new boundary terms evaluates to

1672

27x3

AQ = —/Vol3 Ajt = (v* —20%), (4.5.27)

therefore Qe 4+ AQ matches the supersymmetric charge in (4.5.25). When compar-
ing with the energy and angular momentum computed in [64] one needs to take
into account both the contribution of the new boundary terms and the fact that in [64]
these quantities were defined in terms of the energy-momentum tensor alone (which for
the present solution still yields conserved quantities), while here we presented the charges

(4.4.66), computed from the current (4.4.59) that is always conserved in the presence
of a general background gauge field.

4.5.4 Hopf surfaces at the boundary

We can also evaluate our on-shell action formula for the more general boundary
geometry with S! x S® topology considered in [19]. Contrarily to the previous examples in
this section, in this case we do not have a general proof of existence of regular bulk fillings
satisfying all the global properties we required in section [4.4.4] to evaluate the on-shell action.
However, we are going to show that if we assume that such supergravity solutions exist,
then eq. gives the correct holographic dual of the supersymmetric Casimir energy
of [19, 18].

In [19] the three-sphere is described as a torus foliation: the torus coordinates are
¢1 € [0,27], ¢o € [0,27], while the remaining coordinate is p € [0,1]P"] The four-
dimensional complex manifolds with topology S' x S® are Hopf surfaces, and in [19]
the complex structure moduli are two real, positive parameters Bb;, fb, (as above, B denotes

the circumpherence of the S! parameterized by 7). These characterize the choice of complex

3'The coordinate p is defined on the four-dimensional boundary and should not be confused with the radial
coordinate p used elsewhere in this chapter.
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Killing vector (4.2.7) as
1 ) 1 .
K = 5 (0p —id7) = > (b19g, + 120y, —107) . (4.5.28)

The four-dimensional metric is taken as

dsj = O [d7* + (dy + a,dx)® + Q 2 f2dp* + dx’]
(4.5.29)
= QZde + fzdﬁZ + Tl’l]]d(pjd(p] ,

where I, ] = 1,2. The first line is the canonical form dictated by supersymmetry (with ds3 =
O72f2dp? + c2dx?), while the expression in the second line is convenient for discussing
global properties, since it uses periodic coordinates. When passing from the first to the

second expressions one identifies the coordinates as

_l(or ¢ _l(gr ¢
lp - 2 <b1 + bZ > 4 X - 2 <b1 b2 (4530)
and the functions as
1 2b1by
= 53 (b%mn — b%mzZ) , c= 3 \/detmy; . (4.5.31)

Moreover supersymmetry imposes the relation
0% = bImUb] , (4.5.32)

which ensures Hermiticity of the metric. Here, f and mj; are functions of p satisfying
suitable boundary conditions at 0 = 0 and p = 1 so that the metric is regular and describes

a smooth S topology. As p — 0, one requires that

f—fo, m—m(0), myp=(fp)*+0E), mpn=0(p*, (4.5.33)

where f, > 0 and m11(0) > 0 are constants, and similarly for p — 1 (see [19]).

In principle our on-shell action formula (4.4.52) is derived for a boundary metric of the
type (4.2.8), thus with trivial conformal factor () = 1, however we now show that the same

formula gives the correct result even for general () if it is evaluated using the metric in the
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square bracket of

Using the expressions above, we can compute

2 0
/ volzRy; = /8 ( dplogc > doNndxy ANdy = —;lib [Qaﬁc}
M e Lf T 1o

(4-5-34)
2b1 + by

= 87 biby

where in the last equality we used the behaviour of the functions at the extrema of the p

interval. Similarly,

/M377/\d17 = /Bpaxdﬁ/\d)(/\dlp = ;T[Z X} = —;1172. (4-5.35)
Then formula for vy gives
1
Y= E(bl +by) (4.5.36)
and the on-shell action evaluates to
Ssusy = ig (blbzz)z (4-5.37)

which perfectly matches the field theory prediction This result was the main point

emphasized in our short communication [39].

4.5.5 General M;

In section we derived the general formula for the supersymmetric on-shell
action (evaluated with our new counterterms). Here the conformal boundary has topology
S! x M3, and the derivation of the formula requires certain global assumptions about the
topology of the five-dimensional bulk supergravity solution that fills this boundary. In
particular, we required the graviphoton field A to be a global 1-form. Particular explicit
examples have been studied in the subsections above. In this subsection we present a

more general but abstract analysis, and show that our supergravity result (4.4.52) always

32QOtherwise one can choose 1j; so that is satisfied with () = 1, which is not a serious loss of generality
since it still allows for general by, by.

33This agrees with eq. (5.18) of [19], upon identifying |by|there = %b?ere and 87Gthere = x2.
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reproduces the supersymmetric Casimir energy, as computed in field theory in [176] /]

We begin by rewriting the supersymmetric on-shell supergravity action (4.4.52) in terms
of Seifert invariants of M3. In particular, using equations (4.2.19) and (4.2.20) we may write

22 (), 01(22))3
Ssusy = . (4.5.38)

271(% (sz C1(£>>2

Recall here that i has period 27t/b, so that the Reeb vector { = dy = by, where y is the

normalized vector field which exponentiates to the corresponding U(1) action on M.

Under the same global assumptions on My = Sé x M3, the supersymmetric Casimir

energy Esusy was computed in field theory in [176]. More precisely, in the path integral
sector with trivial flat gauge connection on M3, Esusy may be computed from an index-
character that counts holomorphic functions on Xy = R~ x M3. The formula for weighted
homogeneous hypersurface singularities was given in equation (4.2.31), with large N
limit (4.2.33). Substituting for [ c1(X2) and [ c1(L) for hypersurface singularities using
formulas (4.2.24), the supergravity result precisely agrees with the large N field
theory computation of BEgysy, with Egysy given by !

This agreement between exact field theory and supergravity calculations is already
remarkable. However, we can go further and present a very general derivation of this
agreement, based on a formula for the index-character appearing in [177]. Recall first that
the U(1) Seifert action on M3 extends to a holomorphic C* action on Xy = R~y x M3, and
hence on X = C(M3). Following [176, 177], we denote the index-character that counts
holomorphic functions on X (or equivalently Xy) according to their weights under g € C* by
C(9,q,X). If the U(1) C C* action is free, meaning that ¥, = M3/U(1) is a smooth Riemann

surface, then we may write

C0,9.X) = Y 4 /Z —ka(L) . Todd () (4.539)
k>0 2

= Zq/ [ key( £)+%Cl(22) . (4-5.40)
k>0 X

The first equality is the Riemann—-Roch theorem, and the second equality uses Todd =

1+ Jc1+ - -+, where the higher order terms do not contribute in this dimension. We may

34There are caveats to this statement, that we will clarify below.
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then sum the series for |g| < 1 to obtain the formula

] Sy, e1(22) =4 (fy, 201(£) + e1(2))

C(0,q,X) = 21— q)2 : (4-5.41)

We emphasize that this formula is valid for regular Reeb vector fields, so that X is a
smooth Riemann surface, and is not valid in the quasi-regular case, where %, has orbifold
singularities. However, as we shall explain below, one may effectively still use this formula
to compute the large N supersymmetric Casimir energy even in the general quasi-regular

case.

The full character that computes the supersymmetric Casimir energy is given by [176]
- c
ClauX) = q =92k c@,q,x). (45-42)

Here the power of g in the first factor is precisely /b, which arises as 3 the charge
of the holomorphic (2,0)-form under the canonically normalized vector field x. The
supersymmetric Casimir energy is then obtained by setting ¢ = e, u = e, where
u = (r — 1)7 for a matter multiplet of R-charge r, and extracting the coefficient of —t in
a Laurent series about t = 0. For field theories with a large N gravity dual in type IIB
supergravity one has a = ¢ = 2/ K%, where the trace anomaly coefficients may in turn be

expressed in terms of certain cubic functions of the R-charges (r — 1) of fermions. Using this

prescription applied to (4.5.42), (4.5.41), we find that the large N field theory result gives

3
27 (Jy, e1(22))
27k2 (fzz Cl(ﬁ))z ’

so that the supergravity action Sgusy in (4.5.38) agrees with BEgusy computed in field theory.

(4-5-43)

susy

Although only holds in the regular case, in fact this formula is sufficient to
compute the correct large N supersymmetric Casimir energy in in the general
quasi-regular case. The point is that when X, has orbifold singularities there are additional
contributions to Riemann-Roch formula (4.5.41). However, also as in [177], the general form
of these contributions is such that they do not contribute to the relevant limit that gives
(4.5.43). Thus the latter formula holds in general (we have already shown independently

that it holds for homogeneous hypersurface singularities, which are generically not regular).
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Finally, although the agreement of the two computations is remarkable, without more
work it is also somewhat formal. In particular, in the field theory computation we have
assumed that the sector with trivial flat gauge connection dominates at large N, while the
general supergravity computation assumes the existence of an appropriate solution with
the required global properties. Known examples suggest that these are not unreasonable
assumptions, but there is clearly a need for further work to clarify how general a result this

is. We leave these interesting questions for future work.

4.6 Discussion

Since the early days of the AdS/CFT correspondence, it has been clear that in order to define
observables holographically, infinities have to be subtracted [225), 127, 27]. These initial
findings developed into the systematic framework of holographic renormalization, which
has taken various incarnations [[79} 47, 148} |78} [170} 204, [192} [187]. Despite the fact that this has
proved to be very robust as a method for subtracting infinities in the context of asymptotically
locally hyperbolic solutions, the problem of matching finite boundary terms in holographic
computations to choices of renormalization schemes in quantum field theory has remained
a subtle question requiring further study. Recent exact results in supersymmetric quantum
field theories, in part obtained through the technique of localization, have sharpened this
question within a large class of holographic constructions. In this chapter, we have presented
a systematic study of the interplay of holographic renormalization and supersymmetry, in
the context of minimal A/ = 2 gauged supergravity theories in four and five dimensions.
These theories are consistent truncations of eleven-dimensional and type IIB supergravity
on very general classes of internal manifolds with known field theory duals. They thus give
access to a vast set of examples of supersymmetric gauge/gravity dual pairs, where both
sides are well understood [198) (172} [175), [173| 171, 132, 64} 94, 162, 59].

In this chapter we have made certain simplifying assumptions; in particular our studies
apply to asymptotically locally hyperbolic solutions of the given supergravities, where the
boundary geometry admits at least a pair of Killing spinors. Under these assumptions,
our main results may be summarized as follows. In four-dimensional minimal N' = 2
gauged supergravity, the on-shell action, renormalized using standard counterterms, is

supersymmetric. In particular, as expected, we did not find any ambiguities related to finite
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counterterms | In five-dimensional minimal gauged supergravity, we showed that there is
no choice of standard finite counterterms (i.e. four-dimensional diffeomorphism and gauge
invariants) that renders the holographically renormalized on-shell action compatible with
the boundary supersymmetry obtained by coupling to off-shell new minimal supergravity.
Thus, surprisingly, standard holographic renormalization breaks supersymmetry in five
dimensions. We then found a specific set of new boundary terms that restores supersymme-
try of the on-shell action, as well as the validity of certain supersymmetric Ward identities
inferred from field theory [68, 67]. We provided some independent tests of these new terms,
illustrating their application in smooth asymptotically locally AdS solutions with topology
R x R%.

Although our analysis provides a very strong evidence that in order to formulate
holographic renormalization in a supersymmetric fashion a new set of boundary terms is
needed, a more fundamental understanding of the origin of these terms is clearly desirable.
As already mentioned at the end of section after the publication of the work in this
chapter in [39, [38]], the same expressions for the variation of the on-shell action (4.4-35),
were recovered independently in [191], but interpreted in a different way. Since
under AdS/CFT semi-classical gravity computations correspond to quantum field theory
computations, the non-vanishing variation of the on-shell action was interpreted as an
anomalous variation of the fermionic part of the supercurrent on the boundary. Led by this
result, Papadimitriou concluded that rigid supersymmetry is anomalous on generic non-
Ricci-flat backgrounds, and so that the results in [68] on the dependence of BPS observables
on the background are flawed (as noticed in footnote 2 of [68]], the authors require the absence
of such anomalies) — a similar computation for a non-minimal gauged supergravity was then
carried out in [12]. As written in these latter articles, the interpretation of the non-vanishing
variation in terms of a supercurrent anomaly cast doubts on localization computations for
four-dimensional field theories. However, there are subtle nuances in these results and
some room for maneuvering: for instance, bulk minimal gauged supergravity reduces at the
boundary to conformal supergravity, whereas the localization computations are done using

the coupling to (non-dynamical) new minimal supergravity Moreover, it is paramount to

35This situation is radically different in supergravity models coupled to matter. The interplay of holographic
renormalization and supersymmetry in the presence of scalar fields has been discussed for conformally flat
boundaries in [47), 102} 54} 55} 101, [150].

3%Notice that this difference is crucial for the case of the topological twist: there, we found that the inclusion
of any additional finite counterterm would have spoiled the result of the independence of the gravitational free
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emphasize that all the works cited assumed the validity of the gauge/gravity dictionary,
and used this to either obtain constraints on the gravity side from exact results originally
derived on the field theory side (as in this chapter), or find supersymmetric anomalies
in field theory from gravity computations (as in [1971, [12]). It is still an open problem to
perform a first principles analysis of supersymmetry of supergravities in asymptotically
locally hyperbolic space-times, or to directly derive this anomalous transformation from the
QFT in a new minimal supergravity background.

Let us mention some possible avenues that could be pursued to achieve the former
goal. A direct approach to retrieve the correct boundary terms is to work on a space with a
boundary at a finite distance and to impose that the combination of bulk plus boundary
supergravity action is invariant under supersymmetry (of course the bulk action is invariant
under supersymmetry up to boundary terms). Notice that, in different situations, this approach
has been recently advocated in [14), 101]. One could also attempt to derive the boundary
terms by enforcing the holographic Ward identities stemming from supersymmetry, using
the Hamilton—Jacobi approach [170, 190]. It may also be fruitful to extend to higher
dimensions the approach of [37, [115], where the standard holographic counterterms in three-
dimensionalP7| V' = 1 supergravity were argued to preserve supersymmetry, by working in
an off-shell formulation. It would be very interesting to see whether any of these methods,
or possibly others, may be used to shed light on the origin of the boundary terms proposed
in the present chapter.

We conclude by alluding to a few possible generalizations of our results. Perhaps the
most straightforward extension will be to lift the simplifying assumption that the metric on
the four-dimensional conformal boundary is of a direct product type S' x Mj. We expect
that the new boundary terms arising from this analysis will be more general than those
found presently, and this could help achieving a better understanding of them. One could
also study the consequences on such terms following from a Weyl transformation of the
boundary metric. In minimal gauged supergravity, to complete the program we initiated it
will be necessary to address the supersymmetric solutions in the null class [108], which are

known to comprise asymptotically locally AdS solutions. Another obvious generalization

energy from the background metric. In the language of this chapter, the supersymmetric Ward identity was
satisfied in the minimal scheme. However, the topological twist can be obtained as a special case of the rigid
limit coupling to conformal supergravity. Is it possible that this difference is crucial?

37 An off-shell formulation of four dimensional supergravity in the presence of a boundary has been considered
in [36], however as far as we are aware the application to the study of holographic renormalization is lacking in
the literature.
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would be to investigate similar gauged supergravities in three, six, and seven space-time
dimensions. In particular, it is expected that defining two- and six-dimensional SCFTs
in curved backgrounds leads to suitable versions of the supersymmetric Casimir energy
[53], and reproducing these in dual holographic computations remains an open problem.
The fact that in odd bulk dimension one has anomalies and ambiguities in holographic
renormalization suggests that at least in these dimensions a supersymmetric formulation of
holographic renormalization will lead to a set of new boundary terms, analogous to those
we uncovered in five-dimensional supergravity.

Finally, we emphasize that in the derivation of the boundary terms, we made no
assumptions on the properties of the supersymmetric solutions in the bulk. In particular,
our boundary terms should be included in holographic studies of supersymmetric solutions
with topologies different from R x R*. For example, it will be nice to investigate how the
analysis of the properties of supersymmetric asymptotically locally AdS black holes [122} |65]

(or topological solitons [74), 62]) will be affected by our findings.






Some conventions

A.1 Curvature tensors

Our sign convention on the Riemann tensor is fixed by
Rijg = Ty + T, Tl —k = 1,

and the Ricci tensor is R;; = Rk,-kj. We next give some formulae by specializing to four

dimensions. The Weyl tensor of a metric g;; and its square are given by

1
Cij = Rijpr — GieRnj + &jeRi + 3R Gipesuyj » (A.1.1)

. ’ s
CijuC™ = RyjyR™ —2R;RY + ng :

The Euler and Pontryagin densities can be written as

. . 1 ..
£ = RijuR™ —4R;RY + R?, P = Eelf"lR,-]-,ﬂanlm”. (A.1.2)

From the metric and the Levi-Civita symbol we can construct four linearly independent
functionals: [ d*x,/g & (proportional to the Euler characteristic), [ d*x,/g P (proportional

to the signature invariant), f d4x\/§ Ci]-kICijkl (the conformal gravity action) and f d4x\/§ R?
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(which is neither topological nor conformal). While the metric variation of the first and the

second vanishes identically in four dimensions, varying the third defines the Bach tensor

1 9 4 Kl
By = 3 gag7 | VB CumC™
1 2 1 2 Ko, 2 1 o 1o
= gvlv]R -V Rij -+ Eg’] VR — ZRikle -+ gRRij + Eglj Ry R™ — gR . (A13)

This is covariantly conserved and traceless. Varying the fourth functional yields the tensor

19 4 2 2 1 w2
Hy= =5 /d xVER? = 2V,V;R - 2g; V2R + SR> — 2R Ry,
which is covariantly conserved and satisfies H;/ = —6V2R.

A.2 Hodge dual conventions

The Hodge dual is defined for two k-forms « and 8 by

1 1
aNxp = F(zx,ﬁ) vol, = Eaalmakﬁ”l'“”kvolg, (A.2.1)

where (-, -) is the inner product induced by g on the fibers of A*(M). Then
sxa = (=) Ry va e OF(M), Xavoly = #X° VX € (M).
The components of the codifferential of a k-form a satisfy

(*d * ‘X)lll"'ak—l = (_1)k(n_k)+n+1vb“ﬂ1"‘ﬂk—lb :

The self-dual and anti-self-dual 't Hooft symbols are defined by

Mij = €aija + 6aibja — bajia, 7Mi; = €aija — Saibja + bajdia , (A.2.2)

wherea =1,2,3,and i,j = 1,2,3,4. The Clifford product is defined, for a € OF(M) and Ppa
spinor on M, by

1
a-P = H(xal...ukfy“l . (A.2.3)
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Supersymmetry

B.1 Construction of the five-dimensional solution

B.1.1 The general equations

In this appendix we provide details on how our five-dimensional supersymmetric solution
is constructed. We start by summarizing the conditions for bosonic solutions of minimal
gauged supergravity in five dimensions to be supersymmetric, first obtained in [108] and
recently revisited in [62]. The analysis of [108] shows that the supersymmetry equation
(4.4-4) implies the existence of a Killing vector field V that is either timelike or null. In this
thesis we just consider the timelike case. Choosing coordinates such that V = d/dy, the

five-dimensional metric takes the form
ds? = —f2(dy+w)*+ f1ds3, (B.1.1)

where ds% is a Kdhler metric on a four-dimensional base B transverse to V, while f and
w are a positive function and a 1-form on B, respectively. We will work with a Kéahler

form ] that is anti-self-dual on B, namely, *p] = —], so that the orientation on B is fixed as
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volg = —3] A J. We will also need the Ricci form R and its potential P, satisfying R = dP.
The Ricci form is defined as R, = %Rmnr,q JP1, where Rynpq is the Riemann tensor of the
Kéhler metric and m,n =1,...,4 are curved indices on B. The Ricci potential also appears
in the relation V;,Q);, +iP,;, )y = 0, where V,;, is the Levi-Civita connection of the Kéhler
metric and Q) is a complex (2,0)-form normalized as QA Q = 2] A J.

The geometry of the Kihler base determines the whole solution. The function f in
is given by

f=-= (B.1.2)

where R is the Ricci scalar of the Kihler metric, and is required to be non-zero everywhere.

The equations for the 1-form w are

R 1
dw + *xpdw = ﬂ(R_ ZLR]) , (B.1.3)
and
1 /1 2 1
mn _ [ =72 < mn _ * p2

It was shown in [62] that for these conditions to admit a solution the Kidhler metric on B

must necessarily satisfy the highly non-trivial sixth-order equation{’|

\V& GVZR + %Rman’“ — ;R2> + V" (Ryyd"R) = 0. (B.1.5)

Finally, the expression for the Maxwell field strength is

F = —v3d|f(dy+w) + %P] . (B.1.6)

The solutions obtained from (B.1.1)—(B.1.6) preserve at least (and generically no more

than) two real supercharges.

B.1.2 The perturbative solution

We will make the assumption that the four-dimensional base B admits an isometry. This is
motivated by the fact that (after Wick rotation) we want the boundary metric to reproduce

the field theory background metric (4.2.8), and has the obvious advantage of simplifying

"The specialization of this equation for a particular Kédhler metric appeared earlier in [98].



B.1 Construction of the five-dimensional solution 189

the supersymmetry equations. With no further loss of generality, for the metric on B we can

choose

4
urz)z(dﬁﬁ +¢)*, (B.1.7)

dr?
2 _ )2 2 N2 1=
dsz = U(r,z2) r—2+4r W(r,z,z)°dzdz| + o

where z is a complex coordinate, 1 is the Killing coordinate (to be redefined later) and r will
play the role of the radial coordinate. Moreover, U(r,z,z), W(r,z,z) are functions while ¢ is
a {-independent 1-form transverse to d/9¢. This type of metric ansatz has been studied by
[158, 213] where it is shown to be the generic form satisfying our assumptions. The explicit
powers of r in have been introduced for convenience: they are chosen so that the
asymptotic expansions of U and W start at order one — see below. We fix the orientation

choosing the volume form on B as
volg = 2ir*U*W2dz Adz AdPp Adr. (B.1.8)
The ansatz for the Kéhler form is
] = 2irPUPW?dz Adz+rdr A (d +¢), (B.1.9)

which defines an almost complex structure, i.e. [,F]," = —d,". The metric is Kéhler if
dJ = 0 and the almost complex structure J,," is integrable. Together, these two conditions

are equivalent to imposing

dp = %ar (PUPW?) 2idz A dz +i(dzd; — dzd.)U* A (j; / (B.1.10)

which determines the connection 1-form ¢ in terms of other metric data. Acting on this

equation with the exterior derivative, we find the integrability condition
9,0:U? + 139, [r’18r(r2U2W2)} = 0, (B.1.11)
which constrains the functions U, W. Using (B.1.10), the Ricci scalar of the Kdhler metric

can be written as

2
R = T2V [0:0:1og W + 9, (rWa,(rPW)) + Wa,(r*W)] , (B.1.12)
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and the Ricci connection as

1

P=—trw

3, (rPW)(d¢ + ¢) —i(dzd; — dzd,)logW, (B.1.13)

with the Ricci form following from R = dP.

We will solve the supersymmetry equations in an asymptotic expansion around r = co.
To do so, we express all functions entering in the ansatz in a suitable expansion involving
powers of 1/r and logr. The requirement that the solution be A1AdSs fixes the leading

order terms in the expansions, as explained in detail in [61].
For the function U(r, z,Z) we take:

u = Z Z UZm’n(I(:’gr)"

2m
m>0 0<n<m

1 1
= Upo + fz(ulo + Uy logr) + r—4(U4,0 + Uy logr + U4,2(logr)2) +..., (B.1.1g)
with Uy, = Uomn(z,Z). Similarly, for W we take

1 1
W = Woo+ —5(Wao + Wailogr) + — (Wap + Wy logr + Wyo(logr)?) +..., (B.1.15)
with all coefficients also being functions of z,z. As for the 1-form ¢, note that by redefining
the coordinate ¢ in (B:1.7) we can always take the radial component ¢, = 0, namely we can
take ¢ = ¢.(r,z,2)dz + ¢-(r,z,2)dz. The expansion of ¢, is analogous to those of U and W

(albeit with complex coefficients), in particular it starts at order O(1).

We also need to expand the 1-form w appearing in the five-dimensional metric (B.1.1). By
a redefinition of the coordinate y we can always choose w;, = 0. Then w can be parameterized
as

w = ¢(r,z,2)(dY + ¢) + C.(r,z,2)dz + C;(r,z,2)dz . (B.1.16)

The expansion of the real function c starts at order O(r?),
1
¢ = co0r*+ (cop+cor1logr) + = (c20+ c21logr +cap(logr)?) + ..., (B.1.17)

and a similar expansion is taken for C,.

We next solve order by order the conditions on the four-dimensional metric on B.
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The explicit expressions are too cumbersome to be presented here and can only be dealt
with using a computer algebra system like Mathematica; we will nevertheless describe in
detail the procedure we followed. The constraints on the four-dimensional base metric
amount to the equation for ¢, its integrability condition (B.1.11), and the sixth-order
equation (B.1.5). We start from (B.1.11), that we solve for Uy, Uspo, Us1, Uso, Uso, Usp,
Ug 2, Ug 3 in terms of Uy, Uz and the coefficients of W. Then we solve the sixth-order
equation at the first two non-trivial orders, which are O(1/r) and O(1/7%) (together
with the associated logarithmic terms). This fixes Wy, Wg 1, We2, We3 in terms of Ug g, Uz,
Wo,0, Wa0, Wa1, Wapo, Wy 1, Weo, which thus remain undetermined at this stage. Finally we
solve for ¢; the latter is explicitly determined, up to the leading O(1) term ¢,

which has to obey the equation

dgoo = 4i (UO,OWO,O)ZdZ AdzZ. (B.1.18)

Having fulfilled the constraints on the four-dimensional base B with metric (B.1.7), we
can solve the equations (B.1.3), for the connection w. Using the ansatz (B.1.16), these
become equations for ¢ and C,, that again we can solve order by order. We find that both
¢ and C; are fully determined (in particular, the divergent O(r?) term in the expansion of
C.dz + C.dz vanishes), except for the O(1) term Cp in the expansion of C.dz + C.dz, which
is left free. In addition, from the O(logr/r?) term in the expansion of we obtain a
differential equation involving Uy, Wo,0, Wa,0, Wa,1, Wa1 and Cop, that can most easily be

solved for Wy as the latter appears linearly and with no derivativesp]

We can next obtain the function f from (B.1.2). This concludes the construction of the
metric (B.1.1) and the gauge field (B.1.6) near to r — co. At leading order, we find that the
five-dimensional metric is

2 dr* 5o
dss = 7 +rodsy, (B.1.19)

>This is a new constraint on the Kéhler base metric, that may be unexpected since we have already solved
all the conditions reviewed above for obtaining a supersymmetric solution from such metric. There is no
contradiction here: a priori we could avoid to further constrain the Kahler metric by interpreting the equation
under examination as a differential equation for the boundary function Cpo. However, shortly we will impose a
boundary condition setting Co = 0; consistency with the present equation then fixes Wy ;.
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where the metric ds? on the conformal boundary is

1

. ~ 2
dSZ = W [ZWO,()WZJ — 21u§,0(dC0,0)Z7: — azaz log Wo/o] (dl[) + 4)0/0)
0,0"70,0

(B.1.20)
—2(dy + Cop) (d¢ + o) + 4Wjdzdz .

This is in agreement with the general form of a supersymmetric Lorentzian boundary metric,
as can be seen by comparing with [61, eq. (4.12)]. In fact, it is even too general for our
purposes, as it does not admit a simple Wick rotation to Euclidean signature. In order to
be able to perform a simple Wick rotation and match (4.2.8), we will fix part of the free
functions in (B.1.20) as

1
C(),() = 0, W2,1 = Zu(%OW(),() + 78282 log WO,O . (B.I.Zl)
4 ZW0,0

In this way, the perturbative solution takes a simpler form, and only depends on the free
functions Uy, Uz, Woo, Wa0, Wao, Weo, where Upo and Wy are boundary data, while
the remaining four functions only appear at subleading order in the five-dimensional metric.

For convenience we will rename the boundary data as

1
Uop = Eul/z, Woo = ew/z, $oo = a = a,dz+a,dz, (B.1.22)

and the subleading functions as

UQ,() = ew/2k1 , WZ,O = ew/2k2 , W4,0 = ew/2k3 , W6,0 = ew/2k4 , (B.1.23)

where we recall that all functions depend on z,z. Also redefining the Killing coordinates

{y, ¥} into new coordinates {t, ¢} as

y=t, P =p+t, (B.1.24)
the boundary metric becomes

dsj = —dt* + (dy +a)? + 4e“dzdz (B.1.25)
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with eq. (B.1.18) now being
da = iue¥dzAdz. (B.1.26)

At leading order, the gauge field strength reads

1 U u 1
dAy = _%d _gdt+1(d¢+a)+1*2dw , (B.1.27)

where we denote *,d = i(dZ9d; — dzd;). The corresponding gauge potential is determined
up to a gauge choice that will play an important role. We see that after taking t = —it, these
agree with the field theory background fields (4.2.8), (4.2.10).

At subleading order the canonical form of our five-dimensional metric is not of
the Fefferman—Graham type (4.4.5), (4.4.6). Besides being more standard, the latter is
desirable as it makes it simpler to extract the holographic data from the solution. We find
that Fefferman—Graham coordinates are reached after implementing a suitable asymptotic

transformation, sending {t,z°'4, ¢°!4, 7} into {t,z"¢", y"¥, p} and having the form:

1
r=3 [1+ 0% (my 20 + my2110g p) + p* (40 + my41log p + mya2(logp)®) + O(p%)],

Zold — phew + p4 (mz,4,0 4 My 41 Ing) + O(p5) ,

IPOId _ lpnew +P4 (m¢,4,0 + My a1 IOgP) + O(p5) i (B.1.28)

where all the m coefficients are specific functions of z,z. It should be noted that the
conformal boundary, originally located at r = co, is now found at p = 0. In section
we give further details on the subleading terms in the metric and in the gauge field in
Fefferman—-Graham coordinates. There we drop the label “new”, being understood that we
always work in the new, Fefferman-Graham coordinates. Notice that since the metric can be

cast in Fefferman-Graham form it is asymptotically locally anti-de Sitter.
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B.2 Supersymmetry at the boundary

B.2.1 Killing spinors

At the boundary of a five-dimensional asymptotically locally anti-de Sitter solution, the
supersymmetry condition (4.4.4) gives rise to the charged conformal Killing spinor equation

1 .
Vits = —Zlaiigivf@i , (B.2.1)

where we are using the two-component spinor notation introduced in section and
VAZL = (V; FiA;) {4 is the spinor covariant derivative, with V; the Levi-Civita connection
constructed with the boundary vierbein and A = —+/3A(%) the canonically normalized
gauge connection. This holds both in Euclidean and Lorentzian signature, for details
see [145] and [61]], respectively. Here we are identifying the 'l T2,1%,T* matrices of Cliff(5)
with those of Cliff(4), and the I'® of Cliff(5) with the chirality matrix of Cliff(4); then we
pass to two-component notation. The same equation ensures that some supersymmetry is
preserved when a four-dimensional SCFT is coupled to background conformal supergravity,
and (for spinors with no zeros) can be mapped into the equation arising when one couples

the theory to new minimal supergravity [145), 90, 61].

One can see that the four-dimensional metric and gauge field allow for
solutions to (B.2.1) and thus define a supersymmetric field theory background as well as
supersymmetric boundary conditions for the bulk supergravity fields. Our scope here is to
illustrate the gauge choice that makes the spinors independent of the coordinate 7, so that

they are globally well-defined when this is made compact.

We choose the vierbein
el +ie? = 2e2dz, e = dyp+a, et = dr. (B.2.2)

By studying (B.2.1) we find that in the generic case where u is non-constant, the solution

reads

1 s . 0 1 I ; 1
_ N T+1’Yll)+l/\< ) , = e Tl’ﬂl’l/\< ) , B.o.

where we have fixed an arbitrary overall constant. In the special case u = const there exist

additional solutions, however this enhancement of supersymmetry is not relevant for the
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present work and we will not discuss it further.

Kosmann's spinorial Lie derivative along a vector v is defined as
Lol = 0'ViLs + 2 V00 B
ol+ = V'Vt + 5 0040 (B.2.4)
For the Killing vectors in our background, we find:

Ly, 0+ = dypls = £iyls,

L50+ = 000 = 9T,

(B.2.5)

hence 4= and £+ are the charge of the spinors {+ under 9y and id., respectively. It follows

that the condition for {4 to be independent of T is

Y =0. (B.2.6)

B.2.2 Superalgebra

The algebra of field theory supersymmetry transformations generated by a pair of spinors

{+,C— solving (B.2.1) reads [145} 90, 61] (see also [64) sect. 5.1] for some more details):
[67.,6; |® = 2i(Lx —igKLA™) D, 62, =0, (B.2.7)

where Lk denotes the Lie derivative along the complex Killing vector K defined in
and g is the R-charge of a generic field ® in the field theory. The gauge field A™ is defined

as AM™ = A + %V“m, where V™™ is a well-defined 1-form satisfying
ViV =0, 2i0hVMmL = +0lVAZL . (B.2.8)

This actually only fixes K'VA™. In this way, A™ and V"™ can be interpreted as the auxiliary

tields of background new minimal supergravity (hence the label “nm”

Let us now evaluate these quantities in our background (4.2.8), (4.2.10). With the
choice (B:2.3), the vector K takes precisely the form (.2.9), K = 3(dy — idr), while its dual
1-form is

K = - (d¢ +a—idr). (B.2.9)

N —
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As long as u # 0 this has non-vanishing twist,

K AdK = iu ¥ (dyp —idr) AdzAdz . (B.2.10)

As discussed in [61]], after Wick rotating to Lorentzian signature by T = it this implies that
the five-dimensional bulk solution falls in the timelike class of [108]. Egs. (B.2.8) for V"™
are solved by

ymm = —%(dl[]—l—a) + kK, (B.2.11)
where « is an undetermined complex function satisfying Ki9;x = 0. Then A™ reads:

A = A+ %V”m = % (3k —u) K> + i(dz@zw —dzo,w) —iydt+ydyp +dA. (B.2.12)

Contracting with K gives K JA™ = 1(y—19'). Note from that this is also the
charge of the Killing spinor under K, Lx{4 = (v — /).

We conclude that in the background of interest, and with the choice (B.2.6), the superal-
gebra reads

07,,07 | = i( —ily, + Lo, — iy q)qD . (B.2.13)

Passing to the corresponding generators gives

{Q+, Q- =H+]+7Q, (B.2.14)

where H and | are the charges associated with d; and —dy, respectively, while Q is the
R-charge. Taking the expectation value in a supersymmetric vacuum leads to the BPS

condition

(H)+ () +7(Q) = 0. (B.2.15)

B.2.3 Twisted background

For the twisted background (4.4.54), (4.4.55), requiring that the Killing spinors {4 are
independent of the new time coordinate and recalling relations (B.2.5), valid in the old
coordinates, immediately leads to 4/ = —i tana. It is also straightforward to implement
the change of coordinates and obtain the new K (given in (4.4.56)) and the new form of the

superalgebra.
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