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Abstract
This paper is based on a series of talks given at the Erwin Schr\odinger Interna-
tional Institute for Mathematics and Physics (ESI) program on ‘Mathematical
Perspectives of Gravitation Beyond the VacuumRegime’ in February 2022. It is
meant to be an introduction to the field of relativistic elasticity for readers with
a good base in the mathematics of general relativity with no necessary previous
of knowledge of elasticity either in the classical or relativistic domain. Des-
pite its introductory purpose, the present work has new material, in particular
related to the formal structure of the theory.
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1. Introduction

Elasticity theory is the branch of continuum mechanics dealing with deformable solids, which
are ideal in the sense that dissipative processes can be ignored. Good introductions to the
nonrelativistic theory for the mathematically oriented reader are Ciarlet [1] and Marsden,
Hughes [2].

In the context of relativity elasticity was first treated (in special relativity) by Herglotz [3]
as early as 1911. For many years, with papers by many different authors, the subject remained
somewhat diffuse until the insightful work of Carter and Quintana [4], which became particu-
larly influential among authors seeking astrophysical applications [5]. The paper [4] had been
remarkably silent about what should be considered the basic dynamical variables of the theory.
Then, in the work of Kijowski and Magli [6], came the realization that the relativistic version
of the classical theory of hyperelastic materials is fundamentally a theory—derivable from
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an action principle—of maps subject to some conditions, which are sometimes called back-
to-label maps and called here configurations, from spacetime into a fictitious 3-dimensional
space called material space1. The recent work of Brown [8], similarly to Herglotz, describes
the theory in the material (often called ‘Lagrangian’) perspective with configurations replaced
by time dependent maps from material space into physical space relative to some slicing of
spacetime.

The present paper should be viewed as an introduction to the geometric structure of the
theory. A guiding principle throughout is the role of invariance under spacetime diffeomorph-
isms. This gives rise to a considerable departure from practically all the standard treatments of
nonrelativistic elasticity. So, for example, by working with a diffeomorphism invariant theory
on a general spacetime, the issue of ‘material frame indifference’ (see [1, 2]) is completely
bypassed. Furthermore the standard literature sees the theory primarily as a branch of mech-
anics, which results in a preference of the material picture.

In contrast we view elasticity as a field theory on spacetime, which makes the spacetime
(‘Eulerian’) - as opposed to the material—viewpoint, where diffeomorphism invariance is
manifest, the method of choice. Moreover: for whatever field is present in the vacuum region
surrounding the body, the material picture is a priori not even defined. On the other hand the
natural (in a sense described later) boundary conditions at the matter-vacuum interface render
this a free boundary, and this, for the actual solution of problems, makes an intermediate use
of the material picture—in which this boundary is fixed—indispensable.

Our treatment will be formal in the sense that there will be no function spaces—and also
in the sense of staying away from astrophysical applications (for a recent account see e.g. [9])
or detailed equations of state suitable for describing compact elastic bodies in astrophysics.

The plan of this paper is as follows. In section 2 we give a quick account of the Lagrangian
theory of maps from spacetime to some other manifold. This has applications ranging from
wave maps to continuum mechanics. In section 3 we study the kinematics of relativistic elasti-
city, namely the geometry of configurations. In section 4 we apply the results of section 2 to
a theory of configurations, namely relativistic elasticity. Barotropic perfect fluids turn out to
be a special case. But fluids in the Eulerian picture are usually described by the four-velocity,
energy density and pressure, all viewed as fields onM, which obey a 1st order system of partial
differential equations (PDE’s). There is no material manifold and no configurations.

In section 5 we describe a formulation in this spirit, due to Tahvildar-Zadeh [10], of elasti-
city in the so-called isotropic case. The next two sections concern the subjects of the nonre-
lativistic limit and linearization at a stressfree state. In section 8 there is a quick account of
causality and local wellposedness, which largely draws on [11]. In section 9we treat conditions
at the matter-vacuum interface appropriate for freely floating bodies. Our treatment is based on
the variational identity (95), which is in turn based on (5). These, to the best of our knowledge,
are new. The resulting boundary condition takes the form of the vanishing of normal stress on
an a priori unknown timelike hypersurface in spacetime, namely the boundary of the world
tube swept out by the congruence of timelike curves of the particles making up the material
manifold. In section 10 we for completeness derive the elastic action in the material picture,
although that is not used explicitly in the present work. In section 11 we review some time
independent problems which have so far been solved. Finally, in section 12, we give a short
description of what is known so far about the fully coupled Einstein-elastic system. These last
two sections exclusively treat the case of finite bodies surrounded by vacuum.

1 A lucid, but largely unnoticed, account had previously been given in the textbook of Soper [7].

2



Class. Quantum Grav. 40 (2023) 084001 R Beig

Note, finally, that we have tried our presentation to be mostly self-contained—with the
exception of sections 8, 11 and 12 which have review character.

2. Lagrangian theory of maps

A careful introduction to the Lagrangian theory of maps is given in [11], see also [12]. Absent
from these works is however a discussion of the role of diffeomorphism invariance, which is
a main focus here. The material in the present section is largely a generalization of [13].

Let fA(xµ),A= 1, ..m be maps from spacetime (M,gµν) with g of signature (−+++) to
an m-dimensional manifold N. The Lagrange function L should be L= L( f A,∂µ f A;gµν). For
the time being think of N as Rm or a manifold in a fixed chart. Our basic requirement is: L is
a scalar under general diffeomorphisms of M. Infinitesimally this means that:

ξµ∂µL=
∂L
∂f A

Lξ f
A(x)+

∂L
∂∂µ fA

Lξ ∂µ f
A(x)+

∂L
∂gµν

Lξ g
µν . (1)

Expanding the left side in (1) and using the arbitrariness of the vector field ξ, we find that:

(∂µ f
A)

∂L
∂ν f A

= 2gλν
∂L
∂gλµ

. (2)

The relation (2) is in particular satisfied when:

L= L( f A,HBC) where HAB = (∂µ f
A)(∂ν f

B)gµν . (3)

Suppose HAB is non-degenerate, which in particular entails that f is a submersion, i.e. ∂µ f A

has maximal rank (in particular m⩽ 4). Then (2) actually implies L= L( f A,HBC). To see this
first note that in that case the tangent space of (M, g) at the point x in the fiber over X= f(x)
splits into an (n−m) dimensional vertical (i.e. spanned by vectors in the null space of ∂µ f A)
distribution and an orthogonal m dimensional horizontal distribution, and HAB can be seen as
the inverse metric on the horizontal distribution. But (2) implies that:

∂L
∂gµν

vν = 0, (4)

for vµ any vertical direction. Thus L can depend on gµν only viaHAB, so L= L( f,A ,∂µ fB,HCD).
Inserting this back into (2) yields that actually L= L( f A,HBC), which ends the proof.

Note that (4) also means that Tµν has no mixed vertical-horizontal components. The iden-
tity (2) has further important implications.

Theorem. (F1) the canonical stress-energy tensor Tµν = (∂µ f A) ∂L
∂ν f A

−Lδµν satisfies

gνρTµρ = Tµν , where Tµν = 2 ∂L
∂gµν −Lgµν , that is the r.h. side of the Einstein equations. This

identity is a special case of the Belinfante–Rosenfeld theorem (see [14] and references therein.)
(F2) The Euler–Lagrange equations for the action S=

´
ML

√
−gd4x imply∇νTµν = 0 and

the latter 4 equations are in general not independent. More precisely, there holds the (Noether-
type) ‘off-shell’ identity (see also [14]):

∇νTµ
ν =−(∂µ f

A)EA, (5)

where:

−EA =
1√
−g

∂µ

(√
−g ∂L

∂µ f A

)
− ∂L
∂f A

. (6)

In the case f is a submersion, i.e. ∂µ f A has rank m= dimN, ∇νTµν = 0 is actually sufficient
for EA = 0.
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Proof. (F1) is a straightforward verification based on (2). (F2) is also easy, using Tµν on the
left side.

One way to think of the identity (5) is that it is a direct expression of diffeomorphism
invariance of the action in the same way as the contracted Bianchi identity for the Einstein
tensor is a consequence of the diffeomorphism invariance of the Hilbert action. To see this
vary the action S[ f,∂f;g] under a 1-parameter family of diffeomorphisms generated by a vector
field ξµ, there results:

0=
1
2

ˆ
Tµν(Lξ g

µν)
√
−gd4x+

d
dϵ

|ϵ=0 S[ f + ϵLξ f;g], (7)

where integration is carried out over some fixed domain in spacetime and ξµ is compactly
supported there. Now the 2nd term in (7) equals

´
EA(ξµ∂µ f A)dVg. Using that Lξ gµν =

−2∇(µξν) and integrating by parts the 1st term in (7) gives
´
(∇νTµν)ξµdVg. So (5) follows

using the arbitrariness of ξµ.
(F2) implies: Provided that the matter system has a well-posed Cauchy problem in the

background of any given spacetime (‘test case’), the combined matter-Einstein system is also
well-posed (see e.g [15]).

Clearly:

−EA =
∂2L

∂(∂µ f A)∂(∂ν fB)
∂µ∂ν f

B+ l.o.

More explicitly (setting Mµν
AB = ∂2L

∂(∂µ f A)∂(∂ν fB)
)

Mµν
AB = 2

∂L
∂HAB

gµν + 4
∂2L

∂HAC∂HBD
(∂ρf

C)(∂σf
D)gµρgνσ.

Note: only M(µν)
AB contributes to the equations of motion (EOM).

So far the f A’s were maps to some manifold N in a fixed coordinate system XA: f A : xµ ∈
M 7→ XA = f A(xµ) ∈ N. We consider two important cases:

(i) Homogenous case: N is viewed as an affine vector space and f A a collection of scalars
subject only to affine transformations. Suppose furthermore that L= L(HAB). Then the
exact Euler–Lagrange expression can be written as:

−EA =Mµν
AB∇µ∂ν f

B.

Proof: note Mµν
AB ( f,∂f;g) transforms as a (2,0)-tensor under spacetime coordinate trans-

formations and EA( f,∂f,∂2f;g,∂g)(x) as a scalar. Then, taking normal coordinates
centered at x gives the result. The ‘fully explicit’ proof is remarkably tricky.

(ii) Isotropic case: the target space N is a manifold equipped with a Riemannian metric
GAB(X), and L is a function of the principal invariants (or what is the same: eigenvalues) of
HA

B, where HD
A = GAC( f)(∂µ fC)(∂ν fD)gµν . For example, when m= 3, the Lagrangian

is then of the form:

L= (HA
A,H

A
BH

B
A,det(H

A
B)). (8)

Then the theory is also invariant under diffeomorphisms of N. Furthermore the exact
Euler–Lagrange expression is:

−EA =Mµν
AB∇µ∂ν f

B, (9)
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where:

∇µ∂ν f
A = ∂µ∂ν f

A−Γρ
µν∂ρf

A+ΓABC(∂µ f
B)(∂ν f

C), (10)

where ΓABC are the Christoffel symbols of GAB. The isotropic and homogenous case is
where GAB = δAB. Suppose, in the isotropic case, we take L= HA

A = GAB( f)HAB. The
EOM is then linear in f when GAB is flat and semilinear otherwise—these are called wave
maps in the mathematics [16] and sigma models in the physics [17] literature. One can,
as done here, also consider the general isotropic case. This happens e.g. for the Skyrme
model without the mass term [18] or isotropic relativistic elasticity. In this case the EOM
are quasilinear.

3. Geometry of configurations

We now specialize to the case N= B called material manifold or body, a domain in R3 with
smooth boundary or all of R3, thought of as the collection of elements making up the mater-
ial. Note: no further structure is imposed on B to start with. For bodies of everyday life that
is defined by the ‘making’ of the body, for astrophysical objects it is largely determined by
gravity.

Definition. The field f : (M,g)→B is called a configuration if ∂µ f A has everywhere maximal
rank and f is surjective with level sets timelike curves in M.

In other words: a configuration is a surjective submersion with timelike fibers. Codimension
1 means we are dealing with media composed of pointlike objects (‘particles’). Timelike fibers
means we are dealing with massive particles.

Given a configuration f A, there is then—subject to time orientation—a unique vector field
uµ, s.th:

uµ∂µ f
A = 0, gµνu

µuν =−1. (11)

Note that the concept of configuration is intrinsically nonlinear.
Let hµν = gµν + uµuν be the metric on the ‘horizontal distribution’ defined by uµ. There

then exists a unique field ψµ
A with ψµ

Auµ = 0 such that:

ψµ
A ∂ν f

A = hµν , ψµ
B ∂µ f

A = δAB. (12)

Furthermore HAB = (∂µ f A)(∂ν fB)gµν is now positive definite.
Note:HAB,uµ,hµν ,ψµ

A are all algebraic functions of (∂f,g). Some representative formulae
in this regard are:

ψµ
Aψ

ν
BH

AB = hµν , ∂ν f
A = ψµ

B hµνH
AB (13)

∂uµ

∂(∂ν f A)
=−uνψµ

A,
∂ψµ

A

∂(∂ν fB)
=−ψµ

Bψ
ν
A−HABu

µuν , (14)

where HABHBC = δCA or:

∂uµ

∂gνρ
=−1

2
uµuνuρ,

∂ψµ
A

∂gρσ
=−uµhν(ρuσ)ψν

A. (15)

We will later write down some coordinate formulae.
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3.1. Uncontorted configurations

In field theory time independent fields are often used as reference fields. For configurations
this means that there is a timelike Killing field ξµ on (M, g) such that Lξ f A = ξµ∂µ f A = 0,
which in turn says that the particle flow defined by f A is tangent to Killing trajectories: uµ ∼
ξµ with ξ a Killing field on (M, g). In the case of configurations there is available a slightly
weaker concept, which, for reasons explained below, we call uncontorted configurations and
which is the analogue of Riemannian submersions in the case gµν is Riemannian. Uncontorted
configurations are as close as configurations can get to being isometries.

Definition. A configuration is called uncontorted if uµ is Born-rigid (see [19]), i.e.:

Luhµν = 0. (16)

Clearly time independence implies uncontortedness. To explain the relation with more stand-
ard terminology recall the decomposition:

hµ
µ ′
hν

ν ′
∇(µ ′uν ′) = σµν +

1
3
hµνΘ, (17)

into shear σµν and divergenceΘ=∇µuµ. So a configuration is uncontorted if its particle world
lines are shear- and expansionfree. To explain the geometric meaning of non-contortedness
calculate:

Luhµν = Lu[(∂µ f
A)(∂ν f

BHAB)] = (∂µ f
A)(∂ν f

B)uρ∂ρHAB, (18)

where we were using (13) in the first equality and [L,d] = 0 in the second. So uncontortedness
is equivalent to:

uµ∂µHAB = 0 or uµ∂µH
AB = 0, (19)

which in turn means that there exists a Riemannian metric GAB(X) on B so that HAB(x) =
GAB( f(x)), i.e. hµν is the pull-back of G under f.

In a similar fashion a configuration whose particle flow is shearfree defines a conformal
metric on B which pulls back to the conformal metric defined by h, and a configuration which
is incompressible (i.e. has non-expanding flow: Θ= 0) defines a volume form ΩABC on B
which under f pulls back to the three-form ϵµνρσuσ on M. Shear and expansion are pieces
of information referring to the horizontal distribution defined by f. The remaining pieces of
horizontal data are the acceleration uν∇νuµ and rotation ωµν defined by:

ωµν = hµ
µ ′
hν

ν ′
∇[µ ′uν ′], (20)

which is the obstruction to integrability of the horizontal distribution.
Note finally that non-contorted configurations which are not time independent are rare,

since Born-rigid congruences are generically Killing. For example it is a theorem of Herglotz
and Fritz Noether (see [19]) that a congruence on Minkowski space which is Born-rigid and
non-rotating has to be Killing.

3.2. Back and forth between B and M under a configuration

The relation between hµν and GAB in the previous subsection is a special case of the following
observation: Let ΩA.. be a covariant tensor field on B. Then its pull-back ( f∗Ω)µ.. under a
configuration f A is a covariant tensor field on M of the same type and is horizontal, i.e. gives
zero under contraction with uµ over any index. Furthermore (Lu f∗Ω)µ.. = 0. The latter fact
can be easily checked explicitly by noting that Lu∂µ f A = 0.

6
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Conversely, let oµ.. be a covariant, horizontal tensor field on M with Luoµ.. vanishing for
the flow vector field uµ corresponding to some configuration f A. Then oµ.. arises as pull back
of a covariant tensor field ΩA... To see this pick a hypersurface Σ in M which is everywhere
transversal to uµ, e.g. spacelike. Thus the map f̄Σ : Σ→B is invertible and onto. Define a
tensor field ΩA.. on B by pull back of oµ..|Σ under f̄−1. The pull back of ΩA.. along all ofM is
Lie derived under uµ and coincides with oµ.. initially, thus everywhere. This ends the proof.

3.3. Some coordinate identities

Note first the map f A is a configuration onto its image, if HAB is positive definite and, in
local coordinates (t,xi) with t= constant being spacelike hypersurfaces, the matrix ∂i f A is
nonsingular2.

The coordinate velocity vµ∂µ = ∂t+V i∂i, since vµ∂µ f A = 0, is in terms of the configura-
tion given by V i =−ϕiA ∂t f A, where ϕiA ∂i fB = δBA.

Take more specifically ADM coordinates, i.e.(t,xi), where g(∂t−Y j∂j,∂i) = 0. Setting
g−1(dt,dt) =−N−2 and g(∂i,∂j) = gij:

gµνdx
µdxν =−N2dt2 + gij(dx

i +Y idt)(dxj+Y jdt) (21)

gµν∂µ∂ν =− 1
N2

(∂t−Y i∂i)
2 + gij∂i ∂j (22)

uµ∂µ =
(∂t−Y i∂i)+W i∂i

(N2 −W2)
1
2

,W i = Y i+V i, (23)

and W2 =W iW jgij =W iWi. We call the quantity W i relative shift, following a suggestion by
L.Andersson (private communication). Furthermore:

(∂µ f
A)dxµ = (∂i f

A)[−W idt+(dxi +Y idt)] (24)

HAB = (∂i f
A)(∂j f

B)

(
gij− W iW j

N2

)
(25)

uµdx
µ =

−N2dt+Wi(dxi +Y idt)

(N2 −W2)
1
2

(26)

ψµ
A ∂µ = ϕiA

[
Wi

N2 −W2
(∂t−Y l∂l)+

(
δ ji +

W jWi

N2 −W2

)
∂j

]
. (27)

3.4. Galilean configurations

A Galilean spacetime is affine R4 with the degenerate contravariant metric eµν∂µ∂ν = δij∂i ∂j
and covector τµdxµ = dt annihilated by eµν . Affine transformations leaving M= (R4,e, τ)
invariant form the 10 dimensional Galilei group.

2 Actually it is not hard to see that the latter condition follows from the former.
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Associated with a configuration f :M→B is the 4-velocity vµ∂µ, uniquely given by
vµ∂µ f A = 0 and vµτµ = 1, so:

vµ∂µ = ∂t+V i∂i = ∂t−ϕiA ∂i f
A, where ϕiA ∂j f

A = δij, (28)

and:

(∂µ f
A)dxµ = (∂i f

A)(dxi −V idt). (29)

The field ψµ
A is now defined by:

ψµ
A(∂ν f

A) = δµν − vµτν , (30)

which gives:

ψµ
A∂µ = ϕiA∂i (31)

Note: both ψµ
A and KAB = (∂µ f A)(∂ν fB)eµν depend only on spatial derivatives of f.

The analogue of uncontorted configurations are now those for which vµ leaves eµν and τµ
invariant. These are the infinite dimensional group of rigid body motions, i.e. a time dependent
rotations plus time dependent spatial translations plus time translations. Like in the relativistic
case, the uncontorted configurations considered here will always be ones constant along time
translations or rigid rotations.

3.5. Time independent configurations

For a time independent background the ADM variables (N,Y i,gjk) are unsuitable. We rather
take (V,Yi,hjk) defined by:

V2 =−ξµξνgµν = N2 −Y2, Yi = gijY
j, hij = gij−

1
N2

YiYj, (32)

whence:

gµνdx
µdxν =−V2(dt+Yi dx

i)2 + hijdx
i dxj. (33)

Geometrically hij is the metric on the space Q, which is the quotient space of (M,gµν) under
the action of ξµ.

The Killing vector ξµ∂µ = ∂t satisfies (uµ = V− 1
2 ξµ):

uµ∂µ =
1
V
∂t, uµdx

µ =−V(dt+Yi dx
i) (34)

gµν∂µ∂ν =− 1
V2
∂2
t + hij(∂i −Yjdt)(∂j−Yjdt) (35)

(∂µ f
A)dxµ = (∂i f

A)dxi, HAB = (∂i f
A)(∂j f

B)hij. (36)

We add two cautionary remarks on rotation:

• If the Killing vector is rotating, i.e.

ωµν dx
µdxν =−VD[iYj] dx

i dxj, (37)

is non-zero, time independence does not necessarily mean ‘stationarity’ in the usual sense.
Take Minkowski case with ξ the ‘helical Killing vector ξµ∂µ = ∂t+ωηi ∂i, where η is a
spatial rotation, so the configuration is ‘time independent in a rotating frame’.

8
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• Secondly, the theory as described breaks down if f−1(B) is too large in the sense of extending
across the ‘light cylinder’ where ξ becomes null.

4. Relativistic elasticity

Elasticity is a diffeomorphism invariant theory of configurations on a spacetime (M,gµν), thus
defined by an action:

S[ f;g] =
ˆ
ρ( f A,∂µ f

B;gµν)
√
−gd4x, (38)

with the f A’s configurations and with the Lagrangian (called L= ρ for reasons which will
become clear shortly) diffeomorphism invariant as described in section 2. We next derive
an intriguing-looking variational identity which among diffeomorphism invariant theories of
maps is specific to elasticity.

Theorem. Let δρ be the first variation of ρ w.r. to f, i.e.:

δρ=
∂ρ

∂f A
δf A+

∂ρ

∂∂µ f A
∂µδf

A. (39)

Then:

δρ−∇µ(ρψ
µ
Aδf

A) = Tµν∇µ(ψ
ν
Aδf

A). (40)

Proof. First note that:

δρ= EAδf A+∇µ

(
∂ρ

∂∂µ f A
δf A
)
=−(ψν

A∇µT
µ
ν)δf

A+∇µ

(
∂ρ

∂∂µ f A

)
, (41)

where (5) was used in the 1st term on the right. Writing:

−(ψν
A∇µT

µ
ν)∂f

A = Tµν∇µ(ψ
ν
Aδf

A)−∇µ(T
µ
νψ

ν
Aδf

A), (42)

using Tµν = (∂ν f A)
∂ρ

∂∂µ f A
− ρδµν in the 2nd term in (42) and inserting into (41), there is one

cancellation, and (40) results. This ends the proof.
Equation (40) of course entails the result that the EOM are given by ψµ

A∇νTνµ = 0, which
in turn is equivalent to∇νTνµ = 0. The total divergence on the l.h. side of (40) will play a role
when boundary conditions are treated in section 9.

To further develop the theory as a branch of continuum mechanics, the missing piece of
structure is a notion of ‘particle number density’. This is done by picking a volume form
ΩABC(X) on B and setting:

( f∗Ω)µνλ := Jµνλ = (∂µ f
A)(∂ν f

B)(∂λ f
C)ΩABC = nϵµνλσu

σ,n> 0. (43)

Note that n > 0 in (43) entails the assumption that configurations preserve orientation.
This defines n algebraically in terms of ( f,∂f;g) and is invariant under orientation preserving
diffeomorphisms. Moreover:

6n2 = HAA ′
HBB ′

HCC ′
ΩABCΩA ′B ′C ′ , (44)

and:

∂n
∂∂µ f A

= nψµ
A. (45)

Most importantly, ∇µ(nuµ) = 0 holds as an identity. To see this recall that the exterior differ-
ential d commutes with pull back and note that (dΩ)ABCD is zero.

9
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TakingΩABC = εABC, and in a local Lorentzian frame (t,xi) at p ofM where vµ∂µ|p = (∂t+
V i∂i)|p, there holds:

n= det(∂i f
A)(1−V2)

1
2 . (46)

More generally, in the language of section 3.2:

n2 = det(HAB) = [det
(
∂k f

A
)
]2 det

(
gij− W iW j

N2

)
. (47)

The importance of the concept of particle number density will become apparent soon. Fur-
thermore, as opposed to the nonrelativistic theory, particle number carries information about
kinetic energy.

We now come back to the elastic Lagrangian. From section 2 we know that diffeomorphism
invariance implies:

∂ρ

∂gµν
uµ = 0, (48)

so ∂ρ
∂gµν is ‘horizontal’. For example:

∂n
∂gµν

=
n
2
hµν =⇒ 2

∂n
∂gµν

− ngµν = nuµuν . (49)

In other words, the energy momentum tensor of the Lagrangian ρ= n is ‘purely vertical’,
i.e. Tµν = nuµuν—which is the energy momentum tensor of dust. Thus, if we factorize ρ as
ρ= nϵ, this gives the linear decomposition:

Tµν = nϵuµuν + 2n
∂ϵ

∂gµν
, (50)

into a vertical ‘energy- momentum part’ and a horizontal ‘stress part’. The latter is of course
the relativistic version of (minus) the Cauchy stress tensor. Furthermore Tµνuν = ρuµ which
justifies the terminology L= nϵ= ρ, the rest energy density of the elastic material. The quant-
ity ϵ is the relativistic version of the stored energy function of nonrelativistic elasticity. Note
that Tµν can never be zero, provided that ϵ> 0.

Consider the special case where ρ= nϵ(n). It turns out that:

Tµν = nϵuµuν + n2ϵ ′hµν , (51)

i.e. a barotropic fluid with energy density ρ= nϵ, internal energy ε and pressure p= n2ϵ ′.
The function ϵ(n) for fluids and ϵ( f A,HBC) in general is determined by the material in ques-
tion, i.e. plays the role of equation of state - ‘stored energy’ in classical elasticity. Finding the
‘right’ EOS for a particular material is a mixture of phenomenology together with ellipticity
conditions hopefully guaranteeing good causal properties or existence of equilibria in the time
independent case.

It might occasionally be useful to change the Lagrangian by changing the volume form
ΩABC for fixed stored energy ϵ. Here is how the EOM changes under L= Ω̄( f)L:

EA =ΩEA−
[
(∂ν f

B)
∂ρ

∂ν f A
− ρδA

B

]
∂BΩ. (52)

10
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The quantityMµν
AB = ∂2ρ

∂(∂µ f A)∂(∂ν fB)
, similarly to Tµν , will have a vertical part, determining

the leading-order ∂2
t term in the EOM plus a horizontal part containing the spatial derivatives.

In more detail (setting τAB = 2 ∂ϵ
∂HAB ):

Tµν = nϵuµuν + nτAB(∂σf
A)(∂λ f

B)gµσgνλ, (53)

then Mµν
AB =Mνµ

BA is given by:

Mµν
AB =−n(ϵHAB+ τAB)u

µuν +UACBD(∂σf
C)(∂λ f

D)gµσgνλ, (54)

where UACBD = UBDAC satisfies:

UACBD = n

(
τABHCD+ τACHBD+ τBDHAC+ 2

∂τAB
∂HCD

+ 2ϵHA[CHD]B

)
. (55)

Note Mµν
AB depends on ( f,∂f), so:

−EA = 0=Mµν
AB∂µ∂ν f

B+ l.o., (56)

is a 2nd order quasilinear system of PDE’s for f A.
The local initial value problem in the analytic case with initial surfaceΨ(x) = 0 is solvable

iff Mµν
AB (∂µΨ)(∂νΨ) is invertible. This can certainly be achieved when |τAB| and | ∂τAB∂HCD | are

both� ϵ and |HAB− δAB| is small. Note in particular that conditions on Tµν like the dominant
energy condition do not imply wellposedness—which is of course known already for perfect
fluids, since sound speed needs 2nd derivatives of ϵ.

Finally in this section we turn to the issue of simple solutions, which do not require solv-
ing any partial differential equations. In some field theories such are easy to find, typic-
ally ‘vacuum’ solutions e.g. spacetimes with constant curvature as solutions for the Einstein
vacuum equations with cosmological constant. In the case of elasticity, even in the background
of Minkowski spacetimes, this requires assumptions on the stored energy function.

As an example consider (M, g) an ultrastatic spacetime, i.e. with a timelike Killing vector
which is hypersurface orthogonal and geodesic, so that in suitable coordinates:

g=−dt2 + hij(x)dx
i dxj. (57)

For the body we take (B,GAB), where GAB(X)dXAdXB is isometric to hij, that is there exists a
diffeomorphism f̊ : xi 7→ XA = f̊ A(x), s.th.:

GAB(̊ f(x)) = (∂i̊ f
A)(x)(∂j̊f

A)(x)hij(x) or GAB = (Φ̊⋆h)AB, (58)

where Φ̊⋆ is pull-back under Φ̊ = (̊ f)−1, and for the volume element on B we take
√
detGεABC.

Clearly f A(t,x) = f̊ A(x) is an allowable, in fact: non-contorted, configuration with:

H̊AB(t,x) = GAB(̊ f(x)). (59)

Next require that the function ϵ( f A,HBC) satisfies:

∂ϵ(X,HCD)

∂HAB
|HCD=GCD(X) = 0. (60)

Then f̊ solves the field equations. To prove this assertion, first write:

T̊µν = n̊̊ϵuµuν + t̊µν , (61)

where uµ∂µ = ∂t and t̊µν∂µ∂ν = 2̊n∂ϵ(̊ f,HCD)
∂HAB |HCD=H̊CD(∂i̊ f A)(∂j̊fB)hikhjl ∂k∂l is clearly zero.

Then note that uµ∂µH̊AB = 0, whence n̊ and ϵ̊ are also invariant under uµ. Furthermore uµ

is geodesic. Thus the first term in T̊µν has zero divergence, which ends the proof.

11
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5. Elasticity à la Tahvildar-Zadeh

As we have seen in the last section, perfect fluids are a special case of our equations. However
those are usually, and preferably, described in terms of the quantities four-velocity and energy
density as function of pressure, all viewed as fields on M, which obey a 1st order system
of PDE’s. We repeat that in our present framework the four-velocity is a derived quantity,
namely an algebraic function of the partial derivatives of the configuration and of the spacetime
metric. Still one may ask if there is a formulation of elasticity in the spirit of hydrodynamics,
from which configurations whence the material manifold have disappeared. In this section we
describe such a formulation, due to Tahvildar-Zadeh [10], corresponding to elasticity in the
so-called isotropic case. Here the 3× 4= 12 partial derivatives of configurations are replaced
by the 3 + 6 = 9 independent quantities given by four-velocity uµ and a symmetric tensor
γµν describing ‘strain’, constrained by the conditions uµuµ =−1 and γµνuν = 0, all subject
to a 1st order system of PDE’s. Missing from this formulation are the 3 degrees of freedom
corresponding to rotations.

Suppose ρ depends only on eigenvalues of HAB w.r. to some a priori given metric GAB(X)
on B (isotropic case). The pull-back of G under f,

γµν(x) = (∂µ f
A)(x)(∂ν f

B)(x)GAB( f(x)), (62)

by fiat satisfies:

Luγµν = 0, γµνu
µ = 0, (63)

and the non-zero eigenvalues of γµν are identical with the eigenvalues of HA
B = GACHBC. By

the Cayley-Hamilton theorem Tµν is a linear combination of (1,1)-tensors uµuν ,hµν ,γµ
ν ,γ2

µ
ν

with coefficients depending only on the eigenvalues of γµν . Field equations are ∇νTµν = 0
together with (63) and the condition uµuµ =−1. The identity uµ∇νTµν = 0 will of course
still hold, but particle number conservation needs checking. Namely there holds:

6γµ[µ ′γ|ν|ν ′γ|ρ|ρ ′] = Jµνρ Jµ ′ν ′ρ ′ , (64)

Thus:

(LuJµνρ)Jµ ′ν ′ρ ′ + Jµνρ (LuJµ ′ν ′ρ ′) = 0, (65)

with Jµνρ nowhere zero. This further implies LuJµνρ = 0. But:

LuJ= u⌟dJ+ d(u⌟J) = u⌟dJ. (66)

Thus, since dJ is a four-form, dJ= 0, which we set out to prove. Thus we have a total of 6
independent 1st order equations for the 6 quantities (uµ,γνρ), that is a closed system from
which the material manifold has disappeared. In [10] it is shown that, under reasonable condi-
tions on the stored energy, the system is weakly hyperbolic in the sense that the characteristic
speeds are real, i.e. the characteristic polynomial is hyperbolic in the sense of section 8. Unfor-
tunately this does not always imply wellposedness. On the other hand, given a solution with
data on some spacelike hypersurfaceΣ so that the pull back toΣ of γµν is the pull back ofGAB

under some map f̄ : Σ→B, we can reconstruct the configuration f A by solving uµ∂µ f A = 0
with initial data f A|Σ = f̄ A.

12
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6. Nonrelativistic limit

Take (M, g) to be Minkowski spacetime (R4,ηµν) with ηµν∂µ∂ν =− 1
c2 (∂t)

2 + δij∂i ∂j and
take:

ϵ= m0c
2 +W( f,HAB) = m0c

2 +W
(
f,KAB

)
+O

(
1
c2

)
, (67)

where m0 is (rest-mass)/(particle)(volume). We set m0 = 1 from now on. Furthermore:

HAB = (∂i f
A)(∂j f

B)

(
δij− V iV j

c2

)
, (68)

with KAB = (∂i f A)(∂j fB)δij the so-called inverse Cauchy-Green strain tensor. W is called
stored energy3 and theories of this type are called ‘hyperelastic, frame-indifferent’. Hypere-
lasticity means that the theory is derivable from a Lagrangian, frame indifference corresponds
in our setting to diffeomorphism invariance.

Furthermore (recall from (28) that V i =−ϕiA ∂t f A):

n= (detHAB)
1
2 = det(∂i f

A)

(
1− V2

c2

) 1
2

(69)

S[ f ] =
ˆ

det(∂i f
A)

(
c2 − V2

2
+W

)
dtd3x+O

(
1
c2

)
. (70)

Note: the divergent term is a Null Lagrangian, i.e. the EL-equations for that term are identically
satisfied, i.e.:

∂i [det(∂k f
B)ϕiA] = 0, (71)

which is the famous Piola identity.
The ‘renormalized’ Lagrangian, i.e. with the divergent term omitted, breaks Galilean invari-

ance, but not of course the EOM. In fact the Galilean equations have a spacetime form. The
definition of the particle number density, now called k, is as before is:

(∂µ f
A)(∂ν f

B)(∂λ f
C)ΩABC = kϵµνλσu

σ, n> 0 (72)

or k= det(∂i f A), when ΩABC = εABC. Note k contains no time derivatives. The stress-energy
tensor Tµν is then given by:

Tµν = kvµvν + 2k
∂W
∂HAB

(∂ρf
A)(∂σf

B)eµρeνσ. (73)

Then ∂µ(kvµ) = 0 and τµ∂νTµν = 0 hold as identities, and the 3 EOM are ∂νTµν = 0.
In the presence of a gravitational potential U we define the ‘gravitational stress’ by:

Θµν =
1

4πG

(
eµρeνσ − 1

2
eµνeρσ

)
(∂ρU)(∂σU). (74)

Then:

∂νΘ
µν =

1
4πG

(eµν∂νU)∆U where∆= hµν∂µ∂ν , (75)

and the coupled system of equations can concisely be written as:

∂ν(T
µν +Θµν) = 0, ∆U= 4πGn. (76)

3 ThisW should not be confused with W appearing in W 2 =W iWi in section 3.1.
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7. Linearization at a stressfree state

We assume for simplicity that the material is homogenous and isotropic, so the EOM are:

−EA =Mµν
AB∇µ∂ν f

B = 0. (77)

Here: we linearize at a stressfree configuration in Minkowski, i.e. ηµν∂µ∂ν =− 1
c2 ∂

2
t + δij∂i ∂j

and take:

f̊ A = δAi x
i ⇒ ∂µ∂ν̊ f

A = 0 ⇒ E̊A = 0, (78)

and the linearized equations are of the form:

M̊µν
AB ∂µ∂ν δf

B = 0. (79)

Further constitutive assumptions are:

• ϵ|H=δ = c2

• ∂ϵ
∂HAB |H=δ = 0

• ∂2ϵ
∂HAB∂HCD |H=δ =

1
4 (qδABδCD+ 2rδC(AδB)D) r,q constants

So (note n̊= 1, H̊AB = δAB, ůµ = 1
c δ

µ
0, τ̊

AB = 0):

M̊µν
AB = [−δAB δµ0δ

ν
0 +(q+ r)δµAδ

ν
B+ rδνAδ

µ
B], (80)

so that:

δEi =−∂2
t δfi + ∂j (Lijkl ∂(kδfl)), (81)

where Lijkl = L(ij)(kl) = Lklij is given by:

Lijkl = qδijδkl+ 2rδi(kδl)j. (82)

The following ellipticity conditions for the spatial operator play a role:

(i) Lijklλiµjλkµl > 0: this is called rank-one positivity or the Legendre-Hadamard condition.
In the present case this means r= c22 > 0, 2r+ q= c21 > 0. It then follows that the char-
acteristic polynomial P(k) is given by (setting c= 1):

det(M̊µν
ABkµkν) = (gµν1 kµkν)(g

µν
2 kµkν)

2, (83)

gµν1 = ηµν + ůµůν
(
1− 1

c21

)
, gµν2 = ηµν + ůµůν

(
1− 1

c22

)
. (84)

The g1—cone determines the phase speed of longitudinal sound waves, the g2 one the
tranversal (‘shear’) waves.

(ii) Lijklmijmkl > 0: ‘pointwise stability’. This requires r> 0, 2r
3 + q> 0.

(iii) plays the following role. Consider the Neumann-type boundary value problem on R3

given by:

∂j(Lijkl ∂(k δfl)) = bi in f̊−1(B) ∈ R3, Lijkl ∂(k δfl) nj |̊f−1(∂B) = τi. (85)
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Then, in appropriate function spaces, this has the ‘right’ kernel and cokernel, namely kernel
spanned by Euclidean Killing vectors δfi = ξi, and the range spanned by:ˆ

f̊−1(B)

ξi bi d
3x+
ˆ
f̊−1(∂B)

ξi τi dS(x) = 0. (86)

In the language of nonrelativistic elasticity: ‘load bi and surface traction τ i have to be equilib-
rated’, see section 11.

8. Elastic causality, wellposedness

There is, for equations of the form:

Mµν
AB [ f,∂f;x]∂µ∂ν f

B+ l.o.= 0, (87)

withMµν
AB =Mνµ

BA a theory of local wellposedness by Hughes, Kato, Marsden [20] and in geo-
metrical form by Christodoulou in [11]:

Definition. The partial differential operator Mµν
AB ∂µ∂ν f

B+ l.o. is called regularly hyperbolic
w.r. to (ξµ,Xν), if there exists a ‘subcharacteristic’ covector ξµ and a ‘timelike’ vector Xµ with
Xµξµ > 0, s.th.

(i) Mµν
AB ξµξµ is negative definite.

(ii) Mµν
ABλ

AλBηµην > 0 for all ηµ with Xµηµ = 0.

Our case as above is regular hyperbolic w.r. to (ξµ =−uµ,Xµ = uµ) provided ϵHAB+ τAB is
positive definite andUACBD is rank-1 positive. The set of pairs (ξµ,Xν) consists of 2 connected
components of opposite pairs (ξ+,X+)∪ (ξ−,X−) all of which are convex.

The connection with the characteristic polynomial P(k) = det(Mµν
AB kµkν) is as follows. A

homogenous polynomial in kµ is called a hyperbolic polynomial (Garding [21]) w.r. to a cov-
ector ξµ if the equation:

P(η+λξ) = det[Mµν
AB (ηµ +λξµ)(ην +λξν)] = 0, (88)

has only real (in our case 2× 3= 6) solutions λ corresponding to the 6 sheets of the charac-
teristic set C. That can in general be complicated, have singularities and is perhaps ultimately
a matter for algebraic geometry.

For a regularly hyperbolic operator the set of ξ’s turns out to be equal to the union {ξ+}∪
{ξ−}. For our previous example 2 pairs of these solutions cones coincide.

Note: for the ξ+’s the faster (c1 > c2) cone lies inside the slower one. This is because
the covectors ξ describe ‘acoustically spacelike’ hypersurfaces, i.e. hypersurfaces foliating
a domain of dependence, which is the smaller the faster the phase velocity. The X’s are dual
objects describing ‘rays’, i.e. domains of influence. The faster the phase speed, the larger the
domain of influence. Formally:

gµν1,2 = ηµν + uµuν
(
1− 1

c21,2

)
, g1,2µν = ηµν + uµuν(1− c21,2). (89)

In nonrelativistic elasticity the same relations hold after replacing ηµν + uµuν with the
Galilean hµν and uµ by vµ with vµτµ = 1 and:

g1,2µν = hµν − τµτν c
2
1,2 with hµνhνρ = δµρ − vµτρ. (90)
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Christodoulou in [11] proved a uniqueness theorem for regularly hyperbolic equations in
domains of dependence foliated by spacelike surfaces. For existence one should be able to
use the results of Hughes et al [20].

As for the connection with symmetric hyperbolicity (Beig [22]): replace:

Mµν
AB ∂µ∂ν f

B = l.o., (91)

with:

Wµν
AB

(σ)∂σF
B
ν = l.o. wµ∂µ f

A = FA
µw

µ (92)

Wµν
AB

(σ) = wµMσν
AB + 2w[νMσ]µ

BA , (93)

for a suitable vector wµ. Clearly Wµν
AB

(σ) =Wνµ
BA

(σ), so the new system is symmetric.
Sometimes, when wµ = Xµ,Wµν

AB
(ρ)ξρ is positive definite, but that is not guaranteed, e.g. for

elasticity this requires pointwise stability. We remark that none of the above works for fluids
since the ‘spacelike’ term is degenerate there.

A local wellposedness result for elasticity coupled to gravity should follow the standard
path (see e.g. Ringström [15]), but a detailed presentation seems to be lacking. Whether the
gravitational cone is the fastest one or not should play no role, when only local wellposedness
is concerned.

Finally let us mention that for nonrelativistic elasticity there are even global results on
{t}×R3 for certain equations of state which lead to a null condition (see Sideris [23, 24]).

9. Bodies surrounded by vacuum

When B is compact, the Lagrangian density can only be integrated over f−1(B), which is the
infinite region of spacetime ‘inside’ the timelike hypersurface f−1(∂B). We write:

S[ f ] =
ˆ
f−1(B)

ρ
√
−gd4x=

ˆ
f−1(B)

ρdVg, (94)

where we assume that f−1(B) is cut off in the future and past by two non-intersecting spacelike
hypersurfaces Σ1 and Σ2. Suppose we vary (94) w.r. to f with the understanding that the f A’s
are all equal to a given map outside a compact proper sub-region which however may include
f−1(∂B). Then we have the

Theorem. There holds the identity:

δS=
ˆ
f−1(B)

Tµν∇µ(ψ
ν
Aδf

A)dVg, (95)

where δf A has ‘compact support in time’, i.e. vanish on Σ1 and Σ2, but need not satisfy any
further condition on f−1(∂B).

Proof. Using the identity (40) together with the formula:

δ

ˆ
f−1(B)

dVg =−
ˆ
f−1(∂B)

ψµ
Aδf

AdΣµ, (96)

the contribution from the total divergence in (40) drops out, and we get (95). Alternatively one
can prove (95) directly from diffeomorphism invariance of (94).

Suppose now we ask for an extremum of the action S[ f ] subject only to the condition that
variations have compact support in time. This is similar, in the calculus of variations (see e.g.
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[25]), to asking for ‘natural boundary conditions’. Then, using the identity (94), it is easy to
see that this implies both the Euler–Lagrange equation:

ψµ
A∇νTµ

ν = 0 in f−1(B), (97)

and the boundary condition:

ψµ
ATµ

νmν |f−1(∂B) = 0⇔ ∂ϵ

∂∂µ f A
mµ|f−1(∂B) = 0, (98)

to be satisfied, where mµ is the (spacelike) conormal of f−1(∂B). Recall that the vertical com-
ponent of ∇νTµν namely uµ∇νTµν is identically zero. Similarly the vertical component of
Tµνmν |f−1(∂B), namely uµTµνmν |f−1(∂B) also vanishes due to (4) since uµmµ = 0.

Summing up, we take as requirement on the matter-vacuum interface the condition that
Tµνmν |f−1(∂B) be zero with the idea that this corresponds to bodies ‘floating freely in space-
time’. This is supported by the following fact: let the spacetime (M,gµν) have a Killing vector
ξµ. Then the integral:

Eξ =

ˆ
Σ∩f−1(B)

ξµTµ
νdΣν , (99)

does not depend on the choice of spacelike slice Σ.
Let us point out that Tµνmν |f−1(∂B) = 0 is also natural when elasticity is coupled to gravity,

i.e.:

Gµν = κTµν χf−1(B), (100)

where χf−1(B) is the characteristic function of f−1(B). Now for elastic solids Tµν necessarily
drops to zero sharply at the matter-vacuum interface. For regularity it is sensible to require that
the first and second fundamental for the metric change continuously across f−1(∂B). But since
Gµ

νmν |f−1(∂B), as is well known, contains only up to 1st normal derivatives of the metric and
Gµν is zero in the vacuum region, it follows that Gµ

νmν |f−1(∂B) has to vanish, in accordance
with (98).

10. Material picture

Trying to solve the elastic equations in the presence of the ‘free’ boundary f−1(∂B) makes it
tempting (almost obligatory?) to rewrite these equations in terms of the inverse of f A relative
to some slicing ofM by spacelike hypersurfaces. We first write the action in terms of the ADM
variables introduced previously:

√
−gd4x= N

[
det

(
gij− Y iY j

N2

)]− 1
2

dtd3x. (101)

We had:

HAB = (∂i f
A)
(
∂j f

B
) (

gij− W iW j

N2

)
, (102)

so that:

n2 = det(HAB)Ω2( f) = [det
(
∂k f

A
)
]2 det

(
gij− W iW j

N2

)
Ω2( f). (103)
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Thus:

S=
ˆ
f−1(B)

ϵ( f A,HBC)

√
N2 −W2

N2 −Y2
NΩ( f)det(∂i f

A)dtd3x

=

ˆ
{T}×B

ϵ(X,H
AB
)

√
N

2 −W
2

N
2 −Y

2 NΩ(X)dTd3X, (104)

where an overbar denotes composition with Φi defined by:

f A(T,Φ(T,X)) = XA (105)

H
AB

= ρAi ρ
B
j

(
gij− W

i
W

j

N
2

)
, ρAj ∂AΦ

i = δij. (106)

Note that V
i
= ∂TΦ

i. Thus the ‘prefactor’ in the material action has no space derivatives.
Observe metric components are pulled back under Φ as scalars. So:

Lmat = ϵ(X,H
AB
)

√
N

2 −W
2

N
2 −Y

2 NΩ(X), (107)

is the material Lagrangian and the material EOM are:

−∂A
(

∂Lmat

∂(∂AΦi)

)
− ∂T

(
∂Lmat

∂(∂TΦi)

)
+
∂Lmat

∂Φi
= 0, (108)

with boundary conditions:(
∂ϵ

∂(∂AΦi)

)
nA
∣∣
∂B = 0, (109)

which are of course the equivalent of (97), (98) in the material picture.
Local wellposedness follows from a theorem by Koch [26], provided the initial config-

uration satisfies the material version of the previous hyperbolicity condition, involving e.g.
∂2ϵ

∂(∂AΦi)∂(∂BΦj) (see also [27, 28]).

11. Time independent problems

Suppose (M; g) has a timelike Killing vector ξµ. Recall the quotient space Q is endowed with
the metric hij. From (33) it follows that:

√
−gd4x= Vdt

√
hd3x, (110)

where −V2 = gµνξµξν . So the reduced action for time independent configurations f A(t,xi) =
f A(xi) is:

S[ f;hij,V] =
ˆ
f−1(B)

ρV
√
hd3x, (111)

where ρ is function of ( f A,HBC = (∂i fB)(∂j fC)hij). Note that the presence of the potential
V means that the diffeomorphism invariance of the action is now broken. In fact, let Φ be a
diffeomorphism from Q into itself. Then:

S[ f ◦Φ;Φ⋆h,V] = S[ f;h,V ◦Φ−1]. (112)
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So:

−
ˆ
f−1(B)

ρLηV
√
hd3x=

1
2

ˆ
f−1(B)

tijLηh
ij
√
hd3x+

d
dϵ

|ϵ=0 S[ f + ϵLξ f;g], (113)

where tij = 2 ∂ρ
∂hij − ρhij. Setting again ηi = ψiAδf A, where ψiA ∂i fB = δBA, we find that:

δS=
ˆ
f−1(B)

VtijD
i (ψ j

Aδf
A)
√
hd3x−

ˆ
f−1(B)

ρDiVψ
i
Aδf

A
√
hd3x, (114)

where Di is the covariant derivative associated with hij. So the field equations plus boundary
conditions are:

Dj(Vti
j)+ ρDiV= 0 in f−1(B), ti

jnj|f−1(∂B) = 0. (115)

Note the ‘force term’ ρDiV in (115) is zero if and only if the Killing vector ξµ is geodesic.
As an example consider Minkowski spacetime (M,ηµν) and ξµ∂µ = ∂t+ω∂ϕ with ω =

const, the ‘helical’ Killing vector corresponding to rigid rotations at angular frequency ω.
Then V2 = 1−ω2ρ2 where ρ2 = (x1)2 +(x2)2 and we have set c= 1. Furthermore:

hijdx
i dxj = δijdx

i dxj+
ω2

1−ω2ρ2
(x1dx2 − x2dx1)2 for ρ <

1
ω
. (116)

Here DiV describes the centrifugal force. One can [29] study (115) for small Ω (for which
V = 1 and hij = δij) and f close to a stressfree state f̊ (for which tij vanishes). Now the linearized
operator given by the pair:

δf A 7→
(
∂jδfti

j, δfti
j nj |̊f−1(∂B)

)
, (117)

has a kernel consisting (at least) of the 6 elements of the form δf A = ξi ∂i̊ f A, where ξi is a
Euclidean Killing vector. This operator also does not have full range, but the set of pairs (bi, τi)
in its image, due to the symmetry of tij plus the Killing equation, has to satisfy equation (86)
namely: ˆ

f̊−1(B)

ξi bi d
3x+
ˆ
f̊−1(∂B)

ξi τi dS(x) = 0, (118)

so the implicit function theorem does not directly apply. Still one can show existence of solu-
tions for small ω2 (see [29]), provided that there hold the constitutive conditions in section 6
with pointwise stability on the elastic constants. Furthermore: the undeformed body in space,
i.e. the domain f̊−1(B) should be such that the rotation axis (a) goes through the centroid and
(b) coincides with an axis of inertia. Finally (this can be relaxed) the 3 axes of inertia should
be all different4. Similar results [30] can be proved for a sufficiently small body moving along
a circular geodesic in Schwarzschild spacetime (note that such circular geodesics are orbits of
a helical Killing vector).

12. Coupling to gravity

12.1. Time independent case

The problems in the previous section with constructing time independent solutions near stress-
free configurations was ultimately due to the fact that these systems were not closed: an

4 The additional condition (97) in [29] turns out to be superfluous.
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external force acted on the system, so precautions had to be made in order for this force to
lie in the non-trivial range of the linearized operator. When gravity is coupled the system
becomes closed, so one might expect a difference—and there is. For simplicity we explain
this difference in the Newtonian case, see the end of section 6. Here the equations are (when
µ( f) = 1):

∂jti
j =−n∂iU in f−1(B)⊂ R3, ti

jnj|f−1(∂B) = 0 (119)

with tij = 2n ∂W
∂HAB (∂i f A)(∂j fB), n= det(∂f) and:

∆U= 4πGnχf−1(B), U→ 0 at∞. (120)

The range problem just mentioned results from the fact that (41) implies:ˆ
f−1(B)

nξi ∂iUd
3x= 0, (121)

for the 6 Euclidean Killing vectors. Put differently, the total self-force and the total self-torque
on the body due to gravity should be zero. But that is in fact true due to (120), as can either be
checked explicitly from:

U(x) =−G
ˆ
f−1(B)

n(x ′)
|x− x ′|

d3x ′, (122)

or by first recalling

∂jΘ
ij = n∂iUχf−1(B). (123)

Now integrate the l.h. side against ξi over R3: that is finite since ξ = O(r),Θij = O(r−4) and
gives zero after partial integration and using the Killing equations. Using this fact one obtains
[31] an existence theorem for small G and f A close to a stressfree configuration under appro-
priate conditions on the stored energy W. In spherical symmetry and for bodies B with the
topology of a shell an analogous theorem was proved in [32]. Calogero and Leonori in [33]
obtained solutions without these smallness assumptions, using the calculus of variations.

The Einstein-elastic equations for an elastic body in an asymptotically flat gravitational
field are a more complicated matter. But an argument in a similar spirit still works, where the
Bianchi identity plays a crucial role. In this manner Andersson et al [34] obtained existence
theorems for static elastic bodies with small G and with the configuration close to stressfree,
similarly for rigidly rotating ones for small G,ω in [35]. In the former case that provided the
first construction of static self-gravitating bodies in GR without symmetries.

In spherical symmetry the subject started with [36] (see also [5, 37, 38]) and has meanwhile
advanced much further, see the recent [39, 40] and references therein. In these works there is
no assumption of closeness to a stressfree configurations.

12.2. Dynamics

We finally make some remarks on the evolution problem for (possibly several) elastic bodies
interacting through Einstein gravity. For more material consult the review paper [41]. The
problem here lies mainly in the following facts.

The first problem is that of ‘corner conditions’ for the matter variable, i.e. f A. Namely the
matter boundary condition:

Tµ
νmν |f−1(∂B) = 0, (124)
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in order for a sufficiently regular solution to exist, requires that the initial data for f A satisfy
the restriction to the initial surface and (124) and that of a sufficient number of its time (i.e.
tangential-to-f−1(∂B) derivatives): this is already present for bodies moving in a given back-
ground and is addressed in [26, 28].5

The second problem comes from what Andersson, Oliynyk call the transmission conditions
[42]: these, loosely speaking result from the regularity condition mentioned earlier that first
and second fundamental form of the metric behave continuously across the timelike surface
f−1(∂B). In a similar vein as with the matter variable this condition implies a sequence of—in
this case—regularity conditions on the gravitational initial data. The corresponding evolution
problem has been solved in the works [42, 43], but compatibility with the GR initial value
constraints is still an open issue.
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