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Abstract

This paper is based on a series of talks given at the Erwin Schr\odinger Interna-
tional Institute for Mathematics and Physics (ESI) program on ‘Mathematical
Perspectives of Gravitation Beyond the Vacuum Regime’ in February 2022. Itis
meant to be an introduction to the field of relativistic elasticity for readers with
a good base in the mathematics of general relativity with no necessary previous
of knowledge of elasticity either in the classical or relativistic domain. Des-
pite its introductory purpose, the present work has new material, in particular
related to the formal structure of the theory.
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1. Introduction

Elasticity theory is the branch of continuum mechanics dealing with deformable solids, which
are ideal in the sense that dissipative processes can be ignored. Good introductions to the
nonrelativistic theory for the mathematically oriented reader are Ciarlet [1] and Marsden,
Hughes [2].

In the context of relativity elasticity was first treated (in special relativity) by Herglotz [3]
as early as 1911. For many years, with papers by many different authors, the subject remained
somewhat diffuse until the insightful work of Carter and Quintana [4], which became particu-
larly influential among authors seeking astrophysical applications [5]. The paper [4] had been
remarkably silent about what should be considered the basic dynamical variables of the theory.
Then, in the work of Kijowski and Magli [6], came the realization that the relativistic version
of the classical theory of hyperelastic materials is fundamentally a theory—derivable from
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an action principle—of maps subject to some conditions, which are sometimes called back-
to-label maps and called here configurations, from spacetime into a fictitious 3-dimensional
space called material space'. The recent work of Brown [8], similarly to Herglotz, describes
the theory in the material (often called ‘Lagrangian’) perspective with configurations replaced
by time dependent maps from material space into physical space relative to some slicing of
spacetime.

The present paper should be viewed as an introduction to the geometric structure of the
theory. A guiding principle throughout is the role of invariance under spacetime diffeomorph-
isms. This gives rise to a considerable departure from practically all the standard treatments of
nonrelativistic elasticity. So, for example, by working with a diffeomorphism invariant theory
on a general spacetime, the issue of ‘material frame indifference’ (see [1, 2]) is completely
bypassed. Furthermore the standard literature sees the theory primarily as a branch of mech-
anics, which results in a preference of the material picture.

In contrast we view elasticity as a field theory on spacetime, which makes the spacetime
(‘Eulerian’) - as opposed to the material—viewpoint, where diffeomorphism invariance is
manifest, the method of choice. Moreover: for whatever field is present in the vacuum region
surrounding the body, the material picture is a priori not even defined. On the other hand the
natural (in a sense described later) boundary conditions at the matter-vacuum interface render
this a free boundary, and this, for the actual solution of problems, makes an intermediate use
of the material picture—in which this boundary is fixed—indispensable.

Our treatment will be formal in the sense that there will be no function spaces—and also
in the sense of staying away from astrophysical applications (for a recent account see e.g. [9])
or detailed equations of state suitable for describing compact elastic bodies in astrophysics.

The plan of this paper is as follows. In section 2 we give a quick account of the Lagrangian
theory of maps from spacetime to some other manifold. This has applications ranging from
wave maps to continuum mechanics. In section 3 we study the kinematics of relativistic elasti-
city, namely the geometry of configurations. In section 4 we apply the results of section 2 to
a theory of configurations, namely relativistic elasticity. Barotropic perfect fluids turn out to
be a special case. But fluids in the Eulerian picture are usually described by the four-velocity,
energy density and pressure, all viewed as fields on M, which obey a 1st order system of partial
differential equations (PDE’s). There is no material manifold and no configurations.

In section 5 we describe a formulation in this spirit, due to Tahvildar-Zadeh [10], of elasti-
city in the so-called isotropic case. The next two sections concern the subjects of the nonre-
lativistic limit and linearization at a stressfree state. In section 8 there is a quick account of
causality and local wellposedness, which largely draws on [11]. In section 9 we treat conditions
at the matter-vacuum interface appropriate for freely floating bodies. Our treatment is based on
the variational identity (95), which is in turn based on (5). These, to the best of our knowledge,
are new. The resulting boundary condition takes the form of the vanishing of normal stress on
an a priori unknown timelike hypersurface in spacetime, namely the boundary of the world
tube swept out by the congruence of timelike curves of the particles making up the material
manifold. In section 10 we for completeness derive the elastic action in the material picture,
although that is not used explicitly in the present work. In section 11 we review some time
independent problems which have so far been solved. Finally, in section 12, we give a short
description of what is known so far about the fully coupled Einstein-elastic system. These last
two sections exclusively treat the case of finite bodies surrounded by vacuum.

! A lucid, but largely unnoticed, account had previously been given in the textbook of Soper [7].
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Note, finally, that we have tried our presentation to be mostly self-contained—with the
exception of sections 8, 11 and 12 which have review character.

2. Lagrangian theory of maps

A careful introduction to the Lagrangian theory of maps is given in [11], see also [12]. Absent
from these works is however a discussion of the role of diffeomorphism invariance, which is
a main focus here. The material in the present section is largely a generalization of [13].

Let f4(x*),A = 1,..m be maps from spacetime (M, g,,,,) with g of signature (— + ++) to
an m-dimensional manifold N. The Lagrange function L should be L = L(f*,9,,f*;g""). For
the time being think of N as R™ or a manifold in a fixed chart. Our basic requirement is: L is
a scalar under general diffeomorphisms of M. Infinitesimally this means that:

oL oL oL
MO, L= ——Lef* ——— L0, f* Legh. 1

E k afA ff (x)+aaqu € /f (X)+ag’“/ ¢8 ()

Expanding the left side in (1) and using the arbitrariness of the vector field &, we find that:
oL oL
A _ AV

(aﬂf )ayfA - 2g ag)\# . (2)
The relation (2) is in particular satisfied when:

L=L(f* H*C) where H' = (0,f")(0.f%)g"". 3)

Suppose H*? is non-degenerate, which in particular entails that f is a submersion, i.e. d,,f*
has maximal rank (in particular m < 4). Then (2) actually implies L = L( fA,HBC). To see this
first note that in that case the tangent space of (M, g) at the point x in the fiber over X = f(x)
splits into an (n — m) dimensional vertical (i.e. spanned by vectors in the null space of J,, Vi)
distribution and an orthogonal m dimensional horizontal distribution, and H"B can be seen as
the inverse metric on the horizontal distribution. But (2) implies that:

oL
aghv v

" =0, “

for v** any vertical direction. Thus L can depend on g** only via H*5, so L = L(f;* ,0,,.f%,HP).
Inserting this back into (2) yields that actually L = L( fA,HBC), which ends the proof.

Note that (4) also means that T),,, has no mixed vertical-horizontal components. The iden-
tity (2) has further important implications.

Theorem. (F1) the canonical stress-energy tensor n”:(aqu)%—Léu” satisfies

8uvp Ty’ =Ty, where T, = 2% — Lg ., that is the r.h. side of the Einstein equations. This
identity is a special case of the Belinfante—Rosenfeld theorem (see [ 14] and references therein.)

(F2) The Euler—Lagrange equations for the action S = fM Ly/—gd*ximply V., T," =0and
the latter 4 equations are in general not independent. More precisely, there holds the (Noether-

type) ‘off-shell’ identity (see also [14]):

vuTuV = _(8;th) &, (5
where:
1 OL oL
~&= =0 (\/fgaﬂ fA) ~ o ©

In the case fis a submersion, i.e. 0,, f4 has rank m = dimN, V., T." = 0 is actually sufficient
for 4 =0.
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Proof. (F1) is a straightforward verification based on (2). (F2) is also easy, using 7,,” on the
left side.

One way to think of the identity (5) is that it is a direct expression of diffeomorphism
invariance of the action in the same way as the contracted Bianchi identity for the Einstein
tensor is a consequence of the diffeomorphism invariance of the Hilbert action. To see this
vary the action S[f, Jf; g] under a 1-parameter family of diffeomorphisms generated by a vector
field £, there results:

1 d
0= E/Tuu(ﬁfg“”)\/jgd4x+ Jele=0SIf +eLefisl. @

where integration is carried out over some fixed domain in spacetime and £ is compactly
supported there. Now the 2nd term in (7) equals [ &4 (9, f*)dV,. Using that L¢ g =
—2V(#¢Y) and integrating by parts the 1st term in (7) gives J(V¥T,)E dV,. So (5) follows
using the arbitrariness of £#.

(F2) implies: Provided that the matter system has a well-posed Cauchy problem in the
background of any given spacetime (‘test case’), the combined matter-Einstein system is also
well-posed (see e.g [15]).

Clearly:

- O*L
00, f1)0(0uf®)

More explicitly (setting My, = W)

—&a 9,0,f% +Lo.

v oL ., O’L o
My :ngﬂ +4W(8Jc)(8af")g”"g .

Note: only M%) contributes to the equations of motion (EOM).
So far the f4’s were maps to some manifold N in a fixed coordinate system X4: f4 : x# €
M — X* = f4(x") € N. We consider two important cases:

(i) Homogenous case: N is viewed as an affine vector space and f4 a collection of scalars
subject only to affine transformations. Suppose furthermore that L = L(H*2). Then the
exact Euler-Lagrange expression can be written as:

—Ex =MV 01"

Proof: note MYy (f,9f; g) transforms as a (2,0)-tensor under spacetime coordinate trans-
formations and E4(f,0f,0°f.g,0g)(x) as a scalar. Then, taking normal coordinates
centered at x gives the result. The ‘fully explicit’ proof is remarkably tricky.

(ii) Isotropic case: the target space N is a manifold equipped with a Riemannian metric
Gap(X), and L is a function of the principal invariants (or what is the same: eigenvalues) of
H*p, where HP 4 = Gac(f)(9,.f€)(d,fP)g"" . For example, when m = 3, the Lagrangian
is then of the form:

L= (H*\, H'3H® 4, det(H"p)). (8)

Then the theory is also invariant under diffeomorphisms of N. Furthermore the exact
Euler—Lagrange expression is:

&y = MY, ©)
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where:
Vu0uf* = 0,0, = T0,0* +T5c(0,f”) (0uf€), (10)

where Fgc are the Christoffel symbols of G4p. The isotropic and homogenous case is
where G5 = 645. Suppose, in the isotropic case, we take L = H*4 = Gp(f)H*E. The
EOM is then linear in f when Gy is flat and semilinear otherwise—these are called wave
maps in the mathematics [16] and sigma models in the physics [17] literature. One can,
as done here, also consider the general isotropic case. This happens e.g. for the Skyrme
model without the mass term [18] or isotropic relativistic elasticity. In this case the EOM
are quasilinear.

3. Geometry of configurations

We now specialize to the case N = B called material manifold or body, a domain in R* with
smooth boundary or all of R?, thought of as the collection of elements making up the mater-
ial. Note: no further structure is imposed on B to start with. For bodies of everyday life that
is defined by the ‘making’ of the body, for astrophysical objects it is largely determined by
gravity.

Definition. The field f: (M, g) — B is called a configuration if d,,f* has everywhere maximal
rank and f is surjective with level sets timelike curves in M.

In other words: a configuration is a surjective submersion with timelike fibers. Codimension
1 means we are dealing with media composed of pointlike objects (“particles’). Timelike fibers
means we are dealing with massive particles.

Given a configuration 4, there is then—subject to time orientation—a unique vector field
ut, s.th:

utd, ft =0, g’ = —1. (11)
Note that the concept of configuration is intrinsically nonlinear.

Let h,,, = g, + u,u, be the metric on the ‘horizontal distribution’ defined by u*. There
then exists a unique field 1)*4 with ¢*4u,, = 0 such that:

Y A0 fA =0, PO ft = 5" (12)

Furthermore H*2 = (9,,*)(9,/®)g"" is now positive definite.
Note: HAB u* h s P 4 are all algebraic functions of (9f,g). Some representative formulae
in this regard are:

Pra g HYY =B, O ft = ¢t ghy, HYP (13)
Out 5 Oty , ,
o U ey T e s (9
where H g HBC = 6€, or:
Out 1 Oty ,
agup = _Eu#u”ul)’ agpo' = _u#hl/(pua)w A- (15)

We will later write down some coordinate formulae.
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3.1. Uncontorted configurations

In field theory time independent fields are often used as reference fields. For configurations
this means that there is a timelike Killing field £# on (M, g) such that L¢f4 = £49,,f* =0,
which in turn says that the particle flow defined by f* is tangent to Killing trajectories: u* ~
&* with € a Killing field on (M, g). In the case of configurations there is available a slightly
weaker concept, which, for reasons explained below, we call uncontorted configurations and
which is the analogue of Riemannian submersions in the case g,,,, is Riemannian. Uncontorted
configurations are as close as configurations can get to being isometries.

Definition. A configuration is called uncontorted if " is Born-rigid (see [19]), i.e.:
Ly, =0. (16)

Clearly time independence implies uncontortedness. To explain the relation with more stand-
ard terminology recall the decomposition:

! ’ 1
B N ity 1y = O+ 3, (17)

into shear 0,,,, and divergence © = V ,u". So a configuration is uncontorted if its particle world
lines are shear- and expansionfree. To explain the geometric meaning of non-contortedness
calculate:

Luhyy = La[(0uf*) (Ouf*Ha)] = (0uf*) (Ouf " u” Oy Has, (18)

where we were using (13) in the first equality and [£,d] = 0 in the second. So uncontortedness
is equivalent to:

uo,Hayp=0 or  u'0,H"™ =0, (19)

which in turn means that there exists a Riemannian metric Gag(X) on B so that Hyp(x) =
Gag(f(x)), i.e. h,, is the pull-back of G under f.

In a similar fashion a configuration whose particle flow is shearfree defines a conformal
metric on B which pulls back to the conformal metric defined by %, and a configuration which
is incompressible (i.e. has non-expanding flow: © = 0) defines a volume form 4pc on B
which under f pulls back to the three-form €, ,,4° on M. Shear and expansion are pieces
of information referring to the horizontal distribution defined by f. The remaining pieces of
horizontal data are the acceleration u”V,u* and rotation w,,,, defined by:

W = hy by Vo, (20)

which is the obstruction to integrability of the horizontal distribution.

Note finally that non-contorted configurations which are not time independent are rare,
since Born-rigid congruences are generically Killing. For example it is a theorem of Herglotz
and Fritz Noether (see [19]) that a congruence on Minkowski space which is Born-rigid and
non-rotating has to be Killing.

3.2. Back and forth between 1B and M under a configuration

The relation between h,,,, and G4 in the previous subsection is a special case of the following
observation: Let 4 . be a covariant tensor field on B. Then its pull-back (f*2),.. under a
configuration f* is a covariant tensor field on M of the same type and is horizontal, i.e. gives
zero under contraction with u* over any index. Furthermore (£, f*2),.. = 0. The latter fact
can be easily checked explicitly by noting that £,0,,f* = 0.

6
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Conversely, let 0,,.. be a covariant, horizontal tensor field on M with £,0,,.. vanishing for
the flow vector field u* corresponding to some configuration f*. Then 0,.. arises as pull back
of a covariant tensor field {24... To see this pick a hypersurface 3 in M which is everywhere
transversal to u*, e.g. spacelike. Thus the map fs; : ¥ — B is invertible and onto. Define a
tensor field (4. on BB by pull back of 0, . 5 under]_‘_l. The pull back of €24 . along all of M is
Lie derived under u* and coincides with o,,.. initially, thus everywhere. This ends the proof.

3.3. Some coordinate identities

Note first the map f4 is a configuration onto its image, if HA® is positive definite and, in
local coordinates (z,x') with t = constant being spacelike hypersurfaces, the matrix 9;f* is
nonsingular’.

The coordinate velocity v*'0,, = 0y + Vig;, since vHo, f4 =0, is in terms of the configura-
tion given by Vi = —¢'4 0,1, where ¢i4 0,18 = 68,4.

Take more specifically ADM coordinates, i.e.(r,x'), where g(0; — ¥/9;,0;) = 0. Setting
g '(dt,df) = —N~? and g(8;,9)) = g;:

gt dx” = —N?dF + gi;(dx' + Yidr)(dv + ¥Vdr) 1)
1 . "
g 0udy = — 30, — Y'0;)* +870; 0, (22)
_ Yi X 9. ) . .
uuauz (81‘ 81)"1"/}/817W1:Y1+V1’ (23)
(N2 —W?):

and W? = WiW/g; = WW,. We call the quantity W' relative shift, following a suggestion by
L.Andersson (private communication). Furthermore:

(O fh)dxt = (O, f*)[-W'dt + (dx' + Y'dr)] (24)
. WIW
HY = (8,/")(9,17) (g” Y ) (25)
A2 g i i
it — N>dr+ W;(dx Jer dr) 26)
(V2 —w2)i
, W; . WiW;
PHAOu = ' L\/zwz(at —Y'a) + (M + Nzwz) f”j] : 27)

3.4. Galilean configurations

A Galilean spacetime is affine R* with the degenerate contravariant metric e#* 9,0, = §70;;
and covector 7,dx* = dt annihilated by e*”. Affine transformations leaving M = (R*,e,T)
invariant form the 10 dimensional Galilei group.

2 Actually it is not hard to see that the latter condition follows from the former.

7
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Associated with a configuration f: M — B is the 4-velocity v#0,,, uniquely given by
Vi, f4 = 0and v, = 1, so:

W0, =0, + V'0; = 0,— ¢4 0if", where ¢’ Oif* = &', (28)
and:

(Ouft)dxt = (9,f4)(dx' — Vide). (29)
The field 1" 4 is now defined by:

YEA(O 1) = 61 — Vi, (30)
which gives:

Va0, = ¢'40; (€20)

Note: both ¢* 4 and K* = (8,,1*)(9,/®)e” depend only on spatial derivatives of f.

The analogue of uncontorted configurations are now those for which v* leaves ¢” and 7,
invariant. These are the infinite dimensional group of rigid body motions, i.e. a time dependent
rotations plus time dependent spatial translations plus time translations. Like in the relativistic
case, the uncontorted configurations considered here will always be ones constant along time
translations or rigid rotations.

3.5. Time independent configurations

For a time independent background the ADM variables (N,Y’, gj) are unsuitable. We rather
take (V,Y;, hy) defined by:
1

V3= =€ g =N = Y7, Yy =gy, hy =g — 15 YiY,, (32)

whence:
g dxtdx” = —V2(dt + Yidx')? + hydx' do. (33)

Geometrically A;; is the metric on the space Q, which is the quotient space of (M, g,,,) under
the action of £#.
The Killing vector {0, = 0, satisfies (u* = V’%fu):

utd, = ‘1/3,, uydxt = —V(dt + Y;dx') (34)
§" 0,0, = —% OF + h1(8; — Y;dt)(0; — Y;dt) (35)
OufMdxt = (D), HP = (8if) (9" )h”. (36)

We add two cautionary remarks on rotation:
e If the Killing vector is rotating, i.e.
Wy dxMdx” = —VDY; dx' d¥, (37)
is non-zero, time independence does not necessarily mean ‘stationarity’ in the usual sense.

Take Minkowski case with ¢ the ‘helical Killing vector 9, = 0, +wn' 9, where 7 is a
spatial rotation, so the configuration is ‘time independent in a rotating frame’.

8
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e Secondly, the theory as described breaks down if f~! () is too large in the sense of extending
across the ‘light cylinder’ where £ becomes null.

4. Relativistic elasticity

Elasticity is a diffeomorphism invariant theory of configurations on a spacetime (M, g,,,,), thus
defined by an action:

Slfig] = / p(Fh B f%: 6" =g d"x, (38)

with the f4’s configurations and with the Lagrangian (called L = p for reasons which will
become clear shortly) diffeomorphism invariant as described in section 2. We next derive
an intriguing-looking variational identity which among diffeomorphism invariant theories of
maps is specific to elasticity.

Theorem. Let dp be the first variation of p w.r. to f, i.e.:

ap ap
=7 oA + —— 9,0%. (39)

op 90,

Then:
5p =V u(pp*adft) = T,V u (¥ adf™). (40)
Proof. First note that:

6p=Eadf* +V,, (868:}/‘ 5fA) = —(Y"aV ") +V, (aaaﬂpfA> ,(41)
where (5) was used in the 1st term on the right. Writing:

—(W AV T ) = TN W (Y adf*) = V(T4 a0f7), (42)
using T, = (9,f*) aa‘i”fA — pd*, in the 2nd term in (42) and inserting into (41), there is one

cancellation, and (40) results. This ends the proof.

Equation (40) of course entails the result that the EOM are given by 4#4V, 7", = 0, which
in turn is equivalent to V,, 7, = 0. The total divergence on the L.h. side of (40) will play a role
when boundary conditions are treated in section 9.

To further develop the theory as a branch of continuum mechanics, the missing piece of
structure is a notion of ‘particle number density’. This is done by picking a volume form
Qapc(X) on B and setting:

(f*Q)p,l/)\ = J;Lu)\ = (aqu)(al/fB)(a/\fc)QABC = HEHV)\UMU,H > 0. (43)

Note that n > 0 in (43) entails the assumption that configurations preserve orientation.
This defines n algebraically in terms of (f, df;g) and is invariant under orientation preserving
diffeomorphisms. Moreover:

6n2:HAA/HBB,HCC/QABCQA/B/CI, (44)
and:
on
=y, (45)
90, fA A

Most importantly, V,,(nu*) = 0 holds as an identity. To see this recall that the exterior differ-
ential d commutes with pull back and note that (d2)pcp is zero.

9
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Taking Qupc = €apc, and in a local Lorentzian frame (7,x') at p of M where v*0,,|, = (9, +
Vid;)|p, there holds:

n = det(9,f*) (1 — V?)z. (46)

More generally, in the language of section 3.2:

(47)

n* = det(H"?) = [det (9 f*)]* det (g’j - Wle) .

N2

The importance of the concept of particle number density will become apparent soon. Fur-
thermore, as opposed to the nonrelativistic theory, particle number carries information about
kinetic energy.

We now come back to the elastic Lagrangian. From section 2 we know that diffeomorphism
invariance implies:

0
Py =, (48)
dghv
SO 8‘2& is ‘horizontal’. For example:
on n on
@ = Eh,uy — 2@ —nguv = nultuy- (49)

In other words, the energy momentum tensor of the Lagrangian p = n is ‘purely vertical’,
i.e. T),, = nu,u,—which is the energy momentum tensor of dust. Thus, if we factorize p as
p = ne, this gives the linear decomposition:

T,, = neuyu, + 211%7 (50)
into a vertical ‘energy- momentum part’ and a horizontal ‘stress part’. The latter is of course
the relativistic version of (minus) the Cauchy stress tensor. Furthermore 7", u” = pu* which
justifies the terminology L = ne = p, the rest energy density of the elastic material. The quant-
ity € is the relativistic version of the stored energy function of nonrelativistic elasticity. Note
that 7#¥ can never be zero, provided that € > 0.

Consider the special case where p = ne(n). It turns out that:

" = neulu” +n*e' W, (&3]
i.e. a barotropic fluid with energy density p = ne, internal energy ¢ and pressure p = n’e’.
The function (n) for fluids and e(f*, HC) in general is determined by the material in ques-
tion, i.e. plays the role of equation of state - ‘stored energy’ in classical elasticity. Finding the
‘right” EOS for a particular material is a mixture of phenomenology together with ellipticity
conditions hopefully guaranteeing good causal properties or existence of equilibria in the time
independent case.
It might occasionally be useful to change the Lagrangian by changing the volume form
Qupc for fixed stored energy e. Here is how the EOM changes under L = Q(f)L:

Ip
Ouft

EA = ﬁgA — (&,fB) - P6AB 8B§ (52)



Class. Quantum Grav. 40 (2023) 084001 R Beig

The quantity My, = W similarly to 7),,,, will have a vertical part, determining

the leading-order 97 term in the EOM plus a horizontal part containing the spatial derivatives.
In more detail (setting 745 = 2 525 ):

T = neuru” + npp(9.f") (Orf%)g" g, (53)
then MY, = M} is given by:
My = —n(eHap + Tag)ut'u” + Uacop(9af) (Of7)8"7 82, 4

where Uycpp = Uppac satisfies:

O7a
Uacgp =n (TABHCD + TacHpp + TppHac +2 o5 + 26HA[CHD]B> (55)

3HCD
Note MY, depends on (f,df), so:
—Ex=0=M'30,0,f* +1.o0., (56)

is a 2nd order quasilinear system of PDE’s for f.

The local initial value problem in the analytic case with initial surface ¥ (x) = 0 is solvable
iff M%;(0,,0)(9,¥) is invertible. This can certainly be achieved when |745| and | gggg | are
both < ¢ and |[H*? — 58| is small. Note in particular that conditions on 7),,, like the dominant
energy condition do not imply wellposedness—which is of course known already for perfect
fluids, since sound speed needs 2nd derivatives of e.

Finally in this section we turn to the issue of simple solutions, which do not require solv-
ing any partial differential equations. In some field theories such are easy to find, typic-
ally ‘vacuum’ solutions e.g. spacetimes with constant curvature as solutions for the Einstein
vacuum equations with cosmological constant. In the case of elasticity, even in the background
of Minkowski spacetimes, this requires assumptions on the stored energy function.

As an example consider (M, g) an ultrastatic spacetime, i.e. with a timelike Killing vector
which is hypersurface orthogonal and geodesic, so that in suitable coordinates:

g=—df + h(x)dx' dv. (57)

For the body we take (B,Gap), where Gp(X)dXAdX® is isometric to hy;, that is there exists a
diffeomorphism f: x' + X4 = f4(x), s.th.:

G (fx) = (O )@ )R (x)  or  Gap= (S M)as. (58)

where ®* is pull-backo under ® = (f) —1 and for the volume element on B we take v/detGepc.
Clearly f(t,x) = f4(x) is an allowable, in fact: non-contorted, configuration with:

B (1,x) = G** (f{x)). (59)
Next require that the function e(f*, H5C) satisfies:

Oe(X,HP

% |HCD:GCD(X) =0. (60)
Thenjof solves the field equations. To prove this assertion, first write:

T = héuu” + (61)

where u"9,, =0, and 0,0, = 2?’1668%15 )| yen—gren (O A Bf h* W' 9,0, is clearly zero.
Then note that u“@uHAB =0, whence n and € are also invariant under u*. Furthermore u*

is geodesic. Thus the first term in T" has zero divergence, which ends the proof. O

1
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5. Elasticity a la Tahvildar-Zadeh

As we have seen in the last section, perfect fluids are a special case of our equations. However
those are usually, and preferably, described in terms of the quantities four-velocity and energy
density as function of pressure, all viewed as fields on M, which obey a 1st order system
of PDE’s. We repeat that in our present framework the four-velocity is a derived quantity,
namely an algebraic function of the partial derivatives of the configuration and of the spacetime
metric. Still one may ask if there is a formulation of elasticity in the spirit of hydrodynamics,
from which configurations whence the material manifold have disappeared. In this section we
describe such a formulation, due to Tahvildar-Zadeh [10], corresponding to elasticity in the
so-called isotropic case. Here the 3 x 4 = 12 partial derivatives of configurations are replaced
by the 3 + 6 = 9 independent quantities given by four-velocity u* and a symmetric tensor
v, describing ‘strain’, constrained by the conditions u, u"* = —1 and v, u” = 0, all subject
to a Ist order system of PDE’s. Missing from this formulation are the 3 degrees of freedom
corresponding to rotations.

Suppose p depends only on eigenvalues of HAZ w.r. to some a priori given metric Gap(X)
on B3 (isotropic case). The pull-back of G under f,

Yy () = (9 f ) () (0f ) (x) Gap (), (62)
by fiat satisfies:
Lu’ﬂw =0, 'Y,uuuu =0, (63)

and the non-zero eigenvalues of ~,,” are identical with the eigenvalues of Hy® = G4cH?C. By
the Cayley-Hamilton theorem 7),” is a linear combination of (1, 1)-tensors u,u” , h,” ,v,", vﬁ v
with coefficients depending only on the eigenvalues of «,”. Field equations are V,,T,,” =0
together with (63) and the condition u*u,, = —1. The identity u,V,T,” =0 will of course
still hold, but particle number conservation needs checking. Namely there holds:

OVulu Vwlv Volp] = JuvpTurv s (64)
Thus:

(LuJ/wp)Ju/v/p’ JFJ/Wp ([:uJM'V'p/) =0, (65)
with J,,,,, nowhere zero. This further implies £,J,,,, = 0. But:

LJ=usd]+dusJ)=uidl. (66)

Thus, since dJ is a four-form, dJ = 0, which we set out to prove. Thus we have a total of 6
independent 1st order equations for the 6 quantities (u*,~,,), that is a closed system from
which the material manifold has disappeared. In [10] it is shown that, under reasonable condi-
tions on the stored energy, the system is weakly hyperbolic in the sense that the characteristic
speeds are real, i.e. the characteristic polynomial is hyperbolic in the sense of section 8. Unfor-
tunately this does not always imply wellposedness. On the other hand, given a solution with
data on some spacelike hypersurface X so that the pull back to 3 of 7y, is the pull back of G4
under some map f: ¥ — B, we can reconstruct the configuration f4 by solving u#9,f4 =0
with initial data 4|5 = fA.
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6. Nonrelativistic limit

Take (M, g) to be Minkowski spacetime (R*,7,,,) with 79,0, = —%(0,)* + 699,0; and
take:

e = moc® + W(f, H'®) = moc® + W (f,K*) + O <612> (67)

where my is (rest-mass)/(particle)(volume). We set my = 1 from now on. Furthermore:
. Vivi
HYE = (") (0,17 (6" e ) : (68)

with K48 = (9;f*)(9;f%)dV the so-called inverse Cauchy-Green strain tensor. W is called
stored energy® and theories of this type are called ‘hyperelastic, frame-indifferent’. Hypere-
lasticity means that the theory is derivable from a Lagrangian, frame indifference corresponds
in our setting to diffeomorphism invariance.

Furthermore (recall from (28) that Vi = —¢'4 0,f4):

2\ 7
n = (detH'®)? = det(8;f*) <1 - :;) (69)
2
sifl = [ dear) (c2 - W> ardx 10 (;) . (10)

Note: the divergent term is a Null Lagrangian, i.e. the EL-equations for that term are identically
satisfied, i.e.:

0i[det(0,f®)p'a] =0, (71)

which is the famous Piola identity.

The ‘renormalized’ Lagrangian, i.e. with the divergent term omitted, breaks Galilean invari-
ance, but not of course the EOM. In fact the Galilean equations have a spacetime form. The
definition of the particle number density, now called %, is as before is:

(0uf™) (0uf®) (O0fC)Qupe = keprou®,  n>0 (72)
or k= det(9;f*), when Qupc = apc. Note k contains no time derivatives. The stress-energy
tensor T+ is then given by:

ow
SEAB (0™ (0of®)etPe””. (73)

Then 9, (kv*) = 0 and 7,0, 7" = 0 hold as identities, and the 3 EOM are 0, T*" = 0.
In the presence of a gravitational potential U we define the ‘gravitational stress’ by:

T = kv’ +2k

1 1
wy _ = | oHpLVO _  pV PO . 4
€] G (e e Jee )(3PU)(8UU) (74)
Then:
1
2 N 1 — v
0,0M = 47TG(e 9,U) AU where A = h*9,,0,, (75)

and the coupled system of equations can concisely be written as:

d,(T™ +0")=0, AU=4rGn. (76)

3 This W should not be confused with W appearing in W2 = WiW; in section 3.1.

13



Class. Quantum Grav. 40 (2023) 084001 R Beig

7. Linearization at a stressfree state

We assume for simplicity that the material is homogenous and isotropic, so the EOM are:

—Ex =MV, 0.f% = 0. (77)
Here: we linearize at a stressfree configuration in Minkowski, i.e. 8,0, = — %07 + 670, ;
and take:

A= = 0,0,/ =0 = =0, (78)

and the linearized equations are of the form:
Y B
M5 0,0, 0 =0. (79)
Further constitutive assumptions are:

® €l=s= e

Jel
o 2l =0

. %ng = 2(q0a80cp + 2rdc(adp)p) 7,q constants

So (note 2 = 1, HAB = 548 jn = Lomg, #48 =0):

MY = [~0ap8#00"0 + (q+ 1) 6#48" 5 + 18" 40" 5), (80)
so that:

6& = =07 & + 9; Ly 0ufyy), (81)

where Ly = L)y = Liij 1s given by:
Lijii = q 00 + 21 6;(0y)- 82)

The following ellipticity conditions for the spatial operator play a role:

(1) Lijrai pbjAeper > O: this is called rank-one positivity or the Legendre-Hadamard condition.
In the present case this means r = ¢ > 0, 2r+ g = ¢} > 0. It then follows that the char-
acteristic polynomial P(k) is given by (setting ¢ = 1):

det(Mhyk,k,) = (85" kuk,) (84" kuky)?, (83)

1 1
g;luj _ nlu/ —I—Ijt“ljty <1 _ 2) , gle«l/ — nul/ +i’£ui>tl/ (1 — 2) . (84)
e )

The g;—cone determines the phase speed of longitudinal sound waves, the g, one the
tranversal (‘shear’) waves.

(ii) Lyjgmmy > 0: ‘pointwise stability’. This requires r > 0, % +qg>0.

(iii) plays the following role. Consider the Neumann-type boundary value problem on R3

given by:

@(LU;(,B(,( 5fl)) =b; in }_I(B) € R3, L,-jk,é)(k 5fl) nj|}*‘(36) =7. (85)

14
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Then, in appropriate function spaces, this has the ‘right’ kernel and cokernel, namely kernel
spanned by Euclidean Killing vectors df; = &;, and the range spanned by:

/ Eb; dx + / E'7dS(x) =0. (86)
f=1(B) F=1(oB)

In the language of nonrelativistic elasticity: ‘load b; and surface traction 7; have to be equilib-
rated’, see section 11.

8. Elastic causality, wellposedness

There is, for equations of the form:
MY 511, 0f:x] 0,0, f° + 1.0. =0, &N

with MY, = M} a theory of local wellposedness by Hughes, Kato, Marsden [20] and in geo-
metrical form by Christodoulou in [11]:

Definition. The partial differential operator M}, 9,0,/ + L.o. is called regularly hyperbolic
w.r. to (§,,X"), if there exists a ‘subcharacteristic’ covector £, and a ‘timelike’ vector X with
XHE, >0, s.th.

(i) My £,,€,, is negative definite.
(i) MiE XN, m, > 0 for all n,, with X¥n,, =0.

Our case as above is regular hyperbolic w.r. to (§,, = —u,,, X" = u*) provided e Hpp + Tap is
positive definite and Uacpp is rank-1 positive. The set of pairs (£,,,X”) consists of 2 connected
components of opposite pairs (£, X1) U (£7,X7) all of which are convex.

The connection with the characteristic polynomial P(k) = det(M, k,k, ) is as follows. A
homogenous polynomial in k,, is called a hyperbolic polynomial (Garding [21]) w.r. to a cov-
ector &, if the equation:

P(n+ ) = det[M) (1, + AE,) (m + AE)] =0, (88)

has only real (in our case 2 x 3 = 6) solutions A corresponding to the 6 sheets of the charac-
teristic set €. That can in general be complicated, have singularities and is perhaps ultimately
a matter for algebraic geometry.

For a regularly hyperbolic operator the set of £’s turns out to be equal to the union {1} U
{&~}. For our previous example 2 pairs of these solutions cones coincide.

Note: for the £’s the faster (c; > ¢;) cone lies inside the slower one. This is because
the covectors ¢ describe ‘acoustically spacelike’ hypersurfaces, i.e. hypersurfaces foliating
a domain of dependence, which is the smaller the faster the phase velocity. The X’s are dual
objects describing ‘rays’, i.e. domains of influence. The faster the phase speed, the larger the
domain of influence. Formally:

I
g =" + utu <1 - c2> s 8y = M Ty (1= ). (89)
1,2

In nonrelativistic elasticity the same relations hold after replacing n** + u*u” with the
Galilean ##" and u* by v* with v#7, = 1 and:

8y = hyy — TuT, ¢ with H*Vhy,, = 6", — VT, (90)
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Christodoulou in [11] proved a uniqueness theorem for regularly hyperbolic equations in
domains of dependence foliated by spacelike surfaces. For existence one should be able to
use the results of Hughes et al [20].

As for the connection with symmetric hyperbolicity (Beig [22]): replace:

M 9,0,* =1o., 1)
with:

W D0, FE, =1o.  whd,fA = FA, wh (92)

W 45 = wh MY + 2wl MO, (93)

for a suitable vector w*. Clearly WHY ,5(0) = Wi, (@) g0 the new system is symmetric.
Sometimes, when w# = X#, WV AB(P)g o 1s positive definite, but that is not guaranteed, e.g. for
elasticity this requires pointwise stability. We remark that none of the above works for fluids
since the ‘spacelike’ term is degenerate there.

A local wellposedness result for elasticity coupled to gravity should follow the standard
path (see e.g. Ringstrom [15]), but a detailed presentation seems to be lacking. Whether the
gravitational cone is the fastest one or not should play no role, when only local wellposedness
is concerned.

Finally let us mention that for nonrelativistic elasticity there are even global results on
{t} x IR? for certain equations of state which lead to a null condition (see Sideris [23, 24]).

9. Bodies surrounded by vacuum

When B is compact, the Lagrangian density can only be integrated over f~!(B), which is the
infinite region of spacetime ‘inside’ the timelike hypersurface f~!'(9B). We write:

S[f = / pv—gdix= / pdVy, (94)
f=1(B) F=1(B)

where we assume that f~!(B) is cut off in the future and past by two non-intersecting spacelike
hypersurfaces 31 and X,. Suppose we vary (94) w.r. to f with the understanding that the f4’s
are all equal to a given map outside a compact proper sub-region which however may include
f~1(0B). Then we have the

Theorem. There holds the identity:

ss= [ PV av, 95)
f=4(B)

where 6f4 has ‘compact support in time’, i.e. vanish on ¥; and X, but need not satisfy any
further condition on f~1(0B).

Proof. Using the identity (40) together with the formula:

) / dv, = — / Yr Aoy, (96)
1=1(B) £=1(88B)

the contribution from the total divergence in (40) drops out, and we get (95). Alternatively one
can prove (95) directly from diffeomorphism invariance of (94).

Suppose now we ask for an extremum of the action S[f] subject only to the condition that
variations have compact support in time. This is similar, in the calculus of variations (see e.g.
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[25]), to asking for ‘natural boundary conditions’. Then, using the identity (94), it is easy to
see that this implies both the Euler-Lagrange equation:

YAV, T, =0  inf'(B), (97)
and the boundary condition:
p o Oe
YEAT my |p-1a8) = 0 & Wmu[f—l(as) =0, (98)

to be satisfied, where m,, is the (spacelike) conormal of f~!(918). Recall that the vertical com-
ponent of V,, T,,” namely u*V,T," is identically zero. Similarly the vertical component of
T,"m, \f—l (o8), namely MIJ'THVmVlf—l (0B) also vanishes due to (4) since u*m,, = 0.

Summing up, we take as requirement on the matter-vacuum interface the condition that
T,"m,|s-1 (o) be zero with the idea that this corresponds to bodies ‘floating freely in space-
time’. This is supported by the following fact: let the spacetime (M, g,,,,) have a Killing vector
&*. Then the integral:

Ee = / TS, 99)
Sry-1(B)

does not depend on the choice of spacelike slice 3.
Let us point out that 7,,”m, |;-1() = 0 s also natural when elasticity is coupled to gravity,
ie.

GIW = HT/WXf*‘(B)a (100)

where x;-1() is the characteristic function of £~ 1(B). Now for elastic solids T,,, necessarily
drops to zero sharply at the matter-vacuum interface. For regularity it is sensible to require that
the first and second fundamental for the metric change continuously across f~! (9B). But since
G, "m, | r-1(08)> s is well known, contains only up to 1st normal derivatives of the metric and
G 1s zero in the vacuum region, it follows that G,V m,, |f71 (0B) has to vanish, in accordance
with (98).

O

10. Material picture

Trying to solve the elastic equations in the presence of the ‘free’ boundary f~!(9B) makes it
tempting (almost obligatory?) to rewrite these equations in terms of the inverse of f4 relative
to some slicing of M by spacelike hypersurfaces. We first write the action in terms of the ADM
variables introduced previously:

[NIE

V—gd*x=N {det (g"f - I;V?)] ) drd’x. (101)
We had:

H® = (0,1*) (0,/%) (g” — Wszw) , (102)
so that:

n* = det(H*?)Q(f) = [det (O f*)]* det (g"f - WNZW> Q(f). (103)
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Thus:
N2 _ W2

S = jl(B)e(fA,HBcj W[\]Q(f) det(&'fA)dtd3x

=2 =52
— N —W _—
{T}xB V N —Y

where an overbar denotes composition with ®' defined by:

AT,2(T,X)) = x* (105)

AB —ij Win i i
Y = oo, <gf_Nz>, P00 =5 (106)

Note that V' = 9;®'. Thus the ‘prefactor’ in the material action has no space derivatives.
Observe metric components are pulled back under ® as scalars. So:

—2 —2
La = (X, H'") | % NQ(X), (107)
N -7

is the material Lagrangian and the material EOM are:

aLmat aLmat 8Lmat .
O (8(@1@)> o (a(aT@)> t o =0 (108)
with boundary conditions:
Oe
(0(5&@")) 4]0 =0 (109)

which are of course the equivalent of (97), (98) in the material picture.
Local wellposedness follows from a theorem by Koch [26], provided the initial config-
uration satisfies the material version of the previous hyperbolicity condition, involving e.g.

W (see also [27, 28]).

11. Time independent problems

Suppose (M; g) has a timelike Killing vector £#. Recall the quotient space Q is endowed with
the metric h;;. From (33) it follows that:

V—gd*x = VdtvVhd’x, (110)
where —V? = guw &M€Y So the reduced action for time independent configurations fAx) =
FAG) s

S[fhY. V] :/ pVVhdx, (111)

f=H(B)

where p is function of (f*, HPC = (8,f%)(8;f€)h"). Note that the presence of the potential
V means that the diffeomorphism invariance of the action is now broken. In fact, let ® be a
diffeomorphism from Q into itself. Then:

S[f o ®;®*h, V] = S[f:h, Vo d~]. (112)
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So:

1 ) d
—/ pL,VVhdx = 5/ tiLoh VhdPx + —|c=o S[f + eLef gl (113)
F-1(8) F-1(8) de

where 1; = 200 _ phi;. Setting again ' = 1)'49f*, where 4 9,8 = 684, we find that:

Ohv

68 = / VD' (/4 0f*)\Whdx — / pD; Vi A 0fAVh dx, (114)
f=1(B) F=1(B)
where D; is the covariant derivative associated with /;;. So the field equations plus boundary
conditions are:

D;j(Vt!)+ pD;V=0inf""(B),  tInj|;-1(a8 =0. (115)
Note the ‘force term’ pD; Vin (115) is zero if and only if the Killing vector £ is geodesic.
As an example consider Minkowski spacetime (M,7,,,) and {40, = 0,4+ w0y With w =
const, the ‘helical’ Killing vector corresponding to rigid rotations at angular frequency w.
Then V? = 1 — w?p? where p? = (x')? + (x*)? and we have set ¢ = 1. Furthermore:

hyjdx! dy/ = §;dx’ dod + 1

1
szz(xldxz —dexl)z forp < a (116)

Here D; V describes the centrifugal force. One can [29] study (115) for small Q (for which
V =1and h; = &;) and f close to a stressfree state f (for which 7/ vanishes). Now the linearized
operator given by the pair:

o (31‘5}4/ , oyt ”j|}'—1(aB>) ) (17

has a kernel consisting (at least) of the 6 elements of the form §f4 = & 9;f4, where & is a
Euclidean Killing vector. This operator also does not have full range, but the set of pairs (b;,7;)
in its image, due to the symmetry of #; plus the Killing equation, has to satisfy equation (86)

namely:
/ Eb; dx + / £ dS(x) =0, (118)
f=1(B) f=1(8B)

so the implicit function theorem does not directly apply. Still one can show existence of solu-
tions for small w? (see [29]), provided that there hold the constitutive conditions in section 6
with pointwise stability on the elastic constants. Furthermore: the undeformed body in space,
i.e. the domain .)D“l (B) should be such that the rotation axis (a) goes through the centroid and
(b) coincides with an axis of inertia. Finally (this can be relaxed) the 3 axes of inertia should
be all different*. Similar results [30] can be proved for a sufficiently small body moving along
a circular geodesic in Schwarzschild spacetime (note that such circular geodesics are orbits of
a helical Killing vector).

12. Coupling to gravity

12.1. Time independent case

The problems in the previous section with constructing time independent solutions near stress-
free configurations was ultimately due to the fact that these systems were not closed: an

4 The additional condition (97) in [29] turns out to be superfluous.
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external force acted on the system, so precautions had to be made in order for this force to
lie in the non-trivial range of the linearized operator. When gravity is coupled the system
becomes closed, so one might expect a difference—and there is. For simplicity we explain
this difference in the Newtonian case, see the end of section 6. Here the equations are (when

pu(f) =1

ot! = —n0d;Uin f~1(B) C R, njli-108) =0 (119)
with t;; = 2n 20 (0,14)(9;f%), n = det(9f) and:

AU =41 Gnxp-1 (), U — 0 at co. (120)
The range problem just mentioned results from the fact that (41) implies:

/ n€oUdx =0, (121)

f=1(B)

for the 6 Euclidean Killing vectors. Put differently, the total self-force and the total self-torque

on the body due to gravity should be zero. But that is in fact true due to (120), as can either be
checked explicitly from:

U(x) = —G/ n(XI)I|d3x’, (122)
-1

B) |x —x
or by first recalling
9,07 =nd' Uxs-1(). (123)

Now integrate the Lh. side against &' over R: that is finite since £ = O(r), 0V = O(r~*) and
gives zero after partial integration and using the Killing equations. Using this fact one obtains
[31] an existence theorem for small G and f close to a stressfree configuration under appro-
priate conditions on the stored energy W. In spherical symmetry and for bodies 1 with the
topology of a shell an analogous theorem was proved in [32]. Calogero and Leonori in [33]
obtained solutions without these smallness assumptions, using the calculus of variations.

The Einstein-elastic equations for an elastic body in an asymptotically flat gravitational
field are a more complicated matter. But an argument in a similar spirit still works, where the
Bianchi identity plays a crucial role. In this manner Andersson et al [34] obtained existence
theorems for static elastic bodies with small G and with the configuration close to stressfree,
similarly for rigidly rotating ones for small G,w in [35]. In the former case that provided the
first construction of static self-gravitating bodies in GR without symmetries.

In spherical symmetry the subject started with [36] (see also [5, 37, 38]) and has meanwhile
advanced much further, see the recent [39, 40] and references therein. In these works there is
no assumption of closeness to a stressfree configurations.

12.2. Dynamics

We finally make some remarks on the evolution problem for (possibly several) elastic bodies
interacting through Einstein gravity. For more material consult the review paper [41]. The
problem here lies mainly in the following facts.

The first problem is that of ‘corner conditions’ for the matter variable, i.e. f4. Namely the
matter boundary condition:

T#”ml,\ffl(ag) :O, (124)
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in order for a sufficiently regular solution to exist, requires that the initial data for f4 satisfy
the restriction to the initial surface and (124) and that of a sufficient number of its time (i.e.
tangential-to-f~! (OB) derivatives): this is already present for bodies moving in a given back-
ground and is addressed in [26, 28].

The second problem comes from what Andersson, Oliynyk call the transmission conditions
[42]: these, loosely speaking result from the regularity condition mentioned earlier that first
and second fundamental form of the metric behave continuously across the timelike surface
£~1(0B). In a similar vein as with the matter variable this condition implies a sequence of—in
this case—regularity conditions on the gravitational initial data. The corresponding evolution
problem has been solved in the works [42, 43], but compatibility with the GR initial value
constraints is still an open issue.
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