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Abstract
We present a new search for narrow di-muon resonances in the CDF Run II data.
Our method is new, relying only on an a priori parametrization of the di-muon
continuum to test for the presence of new resonances. We assume that the width of
any new resonance is small compared to the mass resolution, which is already quite
good at CDF: σM/M2 ≈ 2 × 10−4. We have applied this method to data taken
with the SUSY di-lepton trigger, corresponding to a luminosity of approximately
195 pb−1. There is no evidence for any new resonances over the range 4 < Mµµ <
200 GeV, and so we have derived limits on the cross section, using the Feldman-
Cousins prescription.
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1 Motivation

There are three basic motivations to look for a narrow resonance in the di-muon data:

1. The data are there. We are obliged to explore them!

2. Evidence for a new resonance at Mµµ = 7.25 GeV was found in the Run I data [1]. We
must check this with Run II data.

3. There are many theoretical motivations for one or more extra gauge bosons which
will decay into lepton pairs. There are other hypothetical objects which can produce a
narrow peak in the di-muon mass spectrum as well. It is useful to test these speculations
in an inclusive manner.

It also true that historic discoveries have been made in di-muon channels, such as the dis-
covery of the Υ resonance [2].

Our approach is purely “data-driven” – we do not involve any theoretical models in any
of our work. When we obtain a cross section measurement or limit, we assume that the
acceptance for any narrow resonances is the same as for the Drell-Yan di-muon production
at that same mass.

2 Method

The goal is to identify a narrow peak on top of a smooth continuum. Usually this is done by
filling a histogram and scanning for a peak. We can avoid the difficulties and arbitrariness
of binning by performing an unbinned likelihood fit to all the events in a given mass range.
If some parametrization B(x) of the continuum exists, and we know a priori the resolution
σ(x) on the mass x, then we can define the probability density simply as

P(x; a) = aG(x) + (1− a)B(x) (1)

where G(x) represents the shape of the signal, and the “amplitude” a is the only free pa-
rameter. For our analysis, we take G(x) to be a Gaussian with width σ(x), but of course
any shape could be used that is sufficiently narrow compared to the range xLO < x < xHI.
Necessarily, G(x) and B(x) are both normalized to unity when integrated over this range.
We allow a to be non-positive as it must sometimes be in order to accommodate the data
in the absence of a signal. As is customary and convenient, we work with the negative
log-likelihood, F ≡ − lnP .
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If a peak is present at x = xPK, then the minimization of F (xPK, a) with respect to a will
give us the “best” value for the amplitude, aBEST. We can expect that

1. ∆F (xPK, aBEST) ≡ F (xPK, aBEST) − F (xPK, 0) will be very different from zero (and
negative, of course), and

2. the best amplitude is positive, aBEST > 0.

Equivalently, one can say that aBEST will be positive and significantly different from zero,
where the uncertainty on the amplitude, σa, is determined by the shape of F (xPK, a) near
a = aBEST.

We want to test for the presence of a peak anywhere in the range xLO < x < xHI. Our
procedure, then, is to scan this range in steps of ∆x ∼ σ(x), and at each value of x, find
aBEST and calculate ∆F . We hope to see, at one particular point xPK, a deep minimum in
∆F and a positive aBEST. In that case, the number of signal events will be aBEST × Ntot,
where Ntot is the total number of events in the given range.

If we see evidence for a peak, then we must evaluate its significance, taking into account
the fact that we have made a scan in small steps ∆x across the range xLO < x < xHI. Since
the continuum must give us small, insignificant peaks (and an equal number of negative
contributions with aBEST < 0), a single positive aBEST does not necessarily carry much
significance. In other words, for a particular value of x, a value such as ∆F = −52/2 = −12.5
does imply a significance of about “5σ” but since we have tried N values of x, this significance
is diluted. In essence, we have pulled M values from a Gaussian distribution (for a), not
one, so the probability to get a value at 5σ or higher is M × 5.7 × 10−7. If the successive
steps ∆x are equal to σ(x), then we find from toy Monte Carlo calculations that M ≈ N/4.

If there is no evidence for a peak, then we need to set limits on the production of the
peak, as a function of mass. Naively one could simply take the upper limit on the number
of signal events to be Nlim = (aBEST +1.96σa)Ntot, however, the fact that aBEST < 0 half the
time means that sometimes Nlim can be negative, which is nonsense, physically. Fortunately,
the Feldman-Cousins prescription [3] solves this problem for us. It also solves the problem
of deciding when to switch from quoting an upper limit and when to report evidence for a
signal; as they point out clearly in their article, the common practice of declaring “evidence”
as soon as aBEST > 3σa leads to statical under-coverage, which means that 95% confidence
levels are less than 95% and 3σ evidence is not 3σ, etc. It is important to realize that the
Feldman-Cousins prescription gives us a preferred range for the signal cross section (at some
confidence level such as 95%), which may or may not include zero. We can expect that for
some values of mass, this preferred range will not include zero due to upward fluctuations of
the continuum. This does not mean that a signal is present, and typically zero signal will be
excluded at a higher though still reasonable confidence level, if indeed no signal is present.

One of the nice features of this method is the escape from simulations; at no point do we
need to know our sample composition. Of course, we do need to have a basic idea of what data
we are analyzing, but the outcome of the scan does not depend on this in any quantitative
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way. Furthermore, we will only need to know muon efficiencies, acceptance and luminosity in
order to convert the number of signal events (or limits on the number of signal events) into a
cross section. Thus, uncertainties on the background do not enter at all. We will remove the
luminosity uncertainty and reduce the efficiency and acceptance uncertainties by normalizing
our cross sections to that measured for the Z-boson resonance [4]. The estimation of the
acceptance demands a model for the signal. We will assume that the acceptance for Drell-
Yan events at a given mass is a good approximation for the signal acceptance. If the narrow
resonance were produced in the decay of a more massive state, then the acceptance would
probably be higher, since the muons would receive a higher transverse momentum from the
decay of that state, particularly for lower di-muon masses, and they would be more centrally
produced.

To recapitulate, this method relies on the following assumptions:

1. the continuum B(x) can be parametrized in a simple manner across the range xLO <
x < xHI; and,

2. the signal G(x) is narrower than the mass resolution, and the total number of signal
events is small compared to the total number of events.

In this sense the search is entirely data-driven, and is keyed to the shape of the observed
distribution.

The first assumption will fail when we go to very high masses where the data become
too sparse to allow for a simple parametrization. In this case one could rely on simulations.
Instead, we have developed a different procedure which still focuses on the shape of the
distribution. This method is described in Section 8.

3 Event Sample and Selection

The events are drawn from a sample of SUSY di-lepton events, and the event selection is
very simple. We give details below.

3.1 Event Sample

Since we want to probe as wide a range of masses as possible, we cannot use the high-pT

inclusive muon sample. For the current analysis, we therefore turned to the SUSY di-lepton
sample, which has relatively low pT requirements for the muons.

According to the studies of the New Mexico group [5], the SUSY di-muon trigger demands
the following:

• two muons both with pT > 4 GeV

• the muons have stubs in one of these combinations: CMUP/CMUP, CMUP/CMX.
(We ignore the cases of CMU-only muons, for now.)
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We ran on most of the edil0d data sample, using good run list version 7 (“muon no Si”),
for a luminosity of about 195 pb−1.

3.2 Event Selection

The event selection is very simple. We demand:

• two good identified muons,

• they both must have pT > 5 GeV,

• the muons must have opposite signs,

• their separation along the beamline is |∆z0| < 2 cm,

• the event is not tagged as a comic ray.

We checked the bit for the level-3 SUSY di-muon trigger, also.

3.3 Muon Identification

Our muon identification is close to the standard “tight” cuts, except that we impose sliding
cuts for the track-stub match and for the isolation, as described and justified in our earlier
note Ref. [7]. We recapitulate the requirements here:

• track cuts

1. |z0| < 60 cm

2. at least 3 axial and 2 stereo layers with ≥ 5 hits each

3. χ2/dof ≤ 3

4. |d0| < 0.02 cm if Silicon hits are present, 0.15 cm otherwise

• fiduciality requirement

1. CMP: xfid < 0 cm, zfid < −3 cm, not bad blue-beam

2. CMX: xfid < 0 cm, zfid < −3 cm, not bad keystone or miniskirt

3. CMX: ρ > 140 cm

4. (no CMU fiducial cuts)

• muon reconstruction

1. require a stub linked with loose matching requirements

• muon ID cuts
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name xLO (GeV) xHI (GeV) Ntot

1 J/ψ 2.6 4.5 8102
2 4–9 3.8 9.1 2000
3 Υ 9 14 12349
4 13–84 13 84 8148
5 Z 80 120 3781
6 high 100 200 186
7 sparse 200 none –

Table 1: regions defined for scanning

1. Eem < 2 GeV or Eem < 2 GeV + 0.0115(p− 100 GeV) for p > 100 GeV

2. Ehad < 6 GeV or Ehad < 6 GeV + 0.028(p− 100 GeV) for p > 100 GeV

3. matching cuts:

(a) |∆XCMU| < 6 cm

(b) |∆XCMP| < max(6 cm, 150/pT )

(c) |∆XCMX| < max(6 cm, 125/pT )

• isolation

1. I < max(2 GeV, 0.1× pT )

4 Continuum Parameterizations

We need, first, a parametrization of the continuum, B(x). Recognizing that there are several
sets of known di-muon peaks, we divide the spectrum into six regions, as listed in Table 1,
and parametrize each region individually. These regions overlap to a limited extent in order
to avoid a compromised result at the extremes of each range. There is a seventh region,
“sparse” which is not parametrized – see the discussion in Section 8.

Each of these regions needs to be described by an analytical function. We ignore the
presence of any possible signal and provide Gaussians only for the known resonances. The
choice of functions is arbitrary, and success is defined by examining the residuals with respect
to parametrization for an appropriately binned histogram. The parameters for each function
are set by minimizing an unbinned likelihood. For this we used a series of stand-alone
programs with carefully optimized code; each region can be fit in a matter of seconds. In
the subsections which follow, we give the details of the parameterizations and the fit. The
parameters are listed with many significant figures in order to state exactly what was used
for the scans discussed later.
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4.1 The J/ψ Region

There are two visible peaks corresponding to the J/ψ and the ψ′. We use two Gaussians
with a common mean for the J/ψ and a single Gaussian for the ψ′. The continuum under
the peaks is described by a linear function. The complete likelihood is:

P1(x) = (1− f1 − f2 − f3)L(x) + f1G1(x) + f3G2(x) + f3G3(x)

where the fractions f1, f2 and f3 are to be determined by the minimization. The functions
L(x) and G(x) are given by

L(x) =
A+Bx

A(xHI − xLO) +B(x2
HI − x2

LO)/2

G(x) =
1√
2π σ

exp

(
−1

2

(x− µ)2

σ2

)
(2)

and integrate to unity over the range xLO < x < xHI. The minimization procedure leads to
the following values:

A = 0.709± 0.027
B = −0.1150± 0.0042

µ1 = µ2 = 3.08639± 0.00050 GeV
σ1 = 0.02380± 0.00030 GeV
σ2 = 0.0580± 0.0014 GeV
µ3 = 3.67428± 0.00197 GeV
σ3 = 0.02860± 0.00140 GeV
f1 = 0.5460± 0.0054
f2 = 0.2205± 0.0042
f3 = 0.04790± 0.00215

A comparison of this fit to the data is shown in Fig. 1, which shows a binned histogram
with the fit superimposed, and also the absolute residuals. The fit is good.

4.2 The 4–9 Region

There are no known resonances in this region, so we fit the continuum to a second order
polynomial:

P2(x) =
A+B(x− C)2

A(xHI − xLO) +B[(xHI − C)3 − (xLO − C)3]/3

where A, B and C are free parameters. Their values are:

A = 20.990± 4.29
B = 1.476± 0.270
C = 6.403± 0.110.

A comparison of this fit to the data is shown in Fig. 2. The fit is good.
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Figure 1: fit to region 1. Top: binned histogram and the parametrization; Bottom: absolute
residuals
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Figure 2: fit to region 2. Top: binned histogram and the parametrization; Bottom: absolute
residuals
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4.3 The Υ Region

This is the most complicated region. There are three distinct peaks, and also the continuum
requires a second-order polynomial. We have fit a broad mass range above the Υ resonances
in order to get a good handle on this continuum, and also to anchor the lower area of region 4,
which is problematic due to the trigger threshold.

Our parametrization for this region is

P3(x) = (1− f1 − f2 − f3)Q(x) + f1G1(x) + f2G2(x) + f3G3(x)

where G(x) is defined in Eq. (2) and Q(x) is defined by

Q(x) ≡ A+B(x− xD) + C(x− xD)2

A(xHI − xLO) +B[(xHI − xD)2 − (xLO − xD)2]/2 + C[(xHI − xD)3 − (xLO − xD)3]/3
(3)

and xD ≡ 11.0 GeV arbitrarily. This choice leads to smaller correlations among the param-
eters A, B and C. The parameter values are

A = 120.0± 7.6
B = 18.40± 0.70
D = −7.60± 0.50
µ1 = 9.42912± 0.00075 GeV
σ1 = 0.0602± 0.0007 GeV
µ2 = 9.99508± 0.00189 GeV
σ2 = 0.0562± 0.0016 GeV
µ3 = 10.32526± 0.00246 GeV
σ3 = 0.05932± 0.0020 GeV
f1 = 0.2538± 0.0036
f2 = 0.1000± 0.0018
f3 = 0.07345± 0.0016.

The fit is good, as can be seen from Fig. 3.

4.4 The 13–84 Region

We begin this parametrization well above the trigger threshold, so so this entire region
benefits from an acceptance that rises relatively slowly – there is no sculpting of the di-
muon pT (qT ) distribution. This region extends up to the onset of the Z-resonance, and we
describe this “toe” with a rising exponential. The likelihood function is, then,

P4(x) = (1− f1 − f2)E3(x) + f1E1(x) + f2H(x)

where E(x) and H(x) are exponential functions:

E(x) =
exp(−x/λ)

λ[exp(−xLO/λ)− exp(−xHI/λ)]
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Figure 3: fit to region 3. Top: binned histogram and the parametrization; Bottom: absolute
residuals
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H(x) =
exp(−(xHI − x)/λ)

λ exp(−xHI/λ)[exp(−xHI/λ)− exp(−xLO/λ)]
(4)

there are three λ parameters (λ2 goes with H(x)). The parameter values are

λ1 = 15.2025± 0.416 GeV
λ2 = 6.6015± 0.7699 GeV
λ3 = 3.5532± 0.068 GeV
f1 = 0.3050± 0.0106
f2 = 0.0350± 0.018.

The quality of the fit can be gleaned from Fig. 4. Notice that the first couple of bins are not
included in the fit, nor will we be scanning that region with this parametrization; rather,
those bins are covered by the scan in the Υ region.

4.5 The Z-Peak Region

The Z-peak is not a simple Gaussian because the natural shape is really a Lorentzian, and
also the mass resolution is not truly Gaussian. We parametrize this region with the sum of
two Gaussians with a common center, and a linear function for the continuum:

P5(x) = (1− f1 − f2)L(x) + f1G1(x) + f2G2(x)

where L(x) and G(x) are defined in Eq. (2). The parameter values are

A = 9.077± 0.880
B = −0.210± 0.040
µ = 90.843± 0.0048 GeV
σ1 = 2.060± 0.051 GeV
σ2 = 5.140± 0.212 GeV
f1 = 0.577± 0.007
f2 = 0.327± 0.008.

The comparison of this fit to the data is given in Fig. 5.

4.6 The High-Mass Region

The so-called “high-mass” region, which extends up to 200 GeV, has already been explored
by previous analyses [6]. As far as we know, all the other regions have not been investigated
in Run II. After some trial-and-error, we settled on the sum of two exponential functions to
describe the continuum:

P6(x) = (1− f)E1(x) + fE2(x)

where E(x) is already defined in Eq. (4). The parameters are:

λ1 = 4.3006± 0.7919 GeV
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Figure 4: fit to region 4. Top: binned histogram and the parametrization; Bottom: absolute
residuals
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Figure 5: fit to region 5. Top: binned histogram and the parametrization; Bottom: absolute
residuals
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λ2 = 31.52± 5.90 GeV
f = 0.4975± 0.0530.

The fit is compared to the binned data in Fig. 6.

5 The Scans

Given the parameterizations detailed in Sec. 4, we can proceed with the scan as described
in Sec. 2.

We have chosen not to search for resonances in the J/ψ region as this region is well
known already, and the “space” for peaks among the known resonances is quite small. We
therefore tackle regions 2–6 and describe the results in the following subsections.

As pointed out before, these regions overlap somewhat in order to avoid gaps in the
coverage. Due to the definition of the signal shape as a Gaussian as in Eq. (2), we cannot
set the center of the Gaussian too close to xLO or xHI or the requirement that G(x) be
normalized to unity will not be met. In practice we begin the scan at xLO + 2σ(xLO) and
end it at xHI − 2σ(xHI). For the sake of clarity, we designate the coverage of the mass range
as follows:

mass range region

4 – 9.05 2
9.05 – 13.5 3
13.5 – 82 4
82 – 105 5
105 – 200 6

This gives us full coverage from 4 GeV through 200 GeV. The region above 200 GeV is
discussed separately in Sec. 8.

5.1 Signal Shape

We have taken a very simple view of the signal shape, ignoring details such as radiative tails
or the tails in the pT resolution function. These details would not be important if a clear
signal were observed, nor will they have a large impact on the cross section limits when none
is observed. An update with a more refined signal shape is always possible.

We do take into account the increase of the mass resolution with mass. For this we
start with the studies done for another search project, the “sliding-qT ” search – see cdf
note 7560 [7]. According to those studies, the mass resolution varies as

σ(x)

x2
= (1.6× 10−4) + (1.4× 10−4) exp(−(x− 20)/20) (5)
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Figure 6: fit to region 6. Top: binned histogram and the parametrization; Bottom: absolute
residuals
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Figure 7: measurement error on the mass as a function of true mass. Curve (1) corresponds
to Eq. (5), which does not take into account the qT bias of the event selection and hence
underestimates the measurement errors at low masses. Curve (2) is an update which takes
this qT bias into account and is described by a straight-line fit as in Eq. (7).

where x is in GeV.

This expression is appropriate for unbiased data, i.e., for events with full acceptance as
a function of qT . Once we consider masses below the threshold defined by the pT > 5 GeV
requirement, however, the measurement error of the mass will be larger than that given by
Eq. (5). We have addressed this effect in a generator-level study in which we apply the
nominal kinematic and fiducial requirements to the muons, and then smear their momenta.
We take the triple-Gaussian fit shown in Fig. 20 of cdf 7560 [7] and use it as the error function
for the pT of each muon. We scale the three Gaussian widths by a function which changes
with mass:

σpT
→ σpT

× (1 + exp(−(pT − 10)/6)) (6)

which reproduces the behavior shown in Fig. 21 of cdf 7560 [7]. With this formula, we find
a measurement error on the mass as a function of mass, as indicated by the dots in Fig. 7.
Curve (1) represents formula Eq. (5) which clearly underestimates the error on the mass for
Mµµ < 12 GeV. The dots lie on a straight line given by curve (2) and parametrized by:

σM = 0.035 GeV + 0.006× (Mµµ − 5 GeV). (7)

We use this formula when setting the width of our signal peak as a function of mass, until
the original formula in Eq. (5) takes over (i.e., gives a larger value for σM).

For reference, we list here the mass resolutions obtained with these two formulas:
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mass range (GeV) assumed mass resolution (GeV)

4 – 9 0.029 – 0.059
9 – 13 0.059 – 0.085
13 – 84 0.085 – 1.20
84 – 110 1.20 – 1.97
110 – 200 1.97 – 6.40

We can make a comparison to the fitted widths of the known resonances as a cross-check:

resonance fitted width (GeV) assumed mass resolution (GeV)

J/ψ 0.024 0.024
ψ′ 0.029 0.027

Υ(1s) 0.060 0.061
Υ(2s) 0.056 0.056
Υ(3s) 0.059 0.059
Z 3.17 1.39

With the modification represented by Eq. (7), we obtain satisfactory agreement with the
data for all of the low-lying resonances. The natural width of the Z-resonance contributes
a lot to the fitted widths. The number 3.17 GeV is the weighted average of the two σ
parameters from the parametrization. If one subtracts ΓZ = 2.5 GeV from 3.17 GeV one
obtains 1.95 GeV, which is not so far from the value σM = 1.39 GeV. This check is very
crude, and a more careful verification of the mass resolution will be attempted in the future.

5.2 Finding the Minimum

The shape of ∆F is not simple due to the finite numbers of events in each region, and in
fact there tend to be many local minima. This gave us some difficulty – a naive calculation
of ∆F displayed jumps. In principle this was OK since the jumps and difference in local
minima corresponded to a fraction of σa, but we did not like the idea of a chaotic result.

After some investigations and a little trial-and-error, we settled on the following prescrip-
tion.

1. find an approximate local minimum ∆Fmin.

2. sample ∆F in several points around this minimum correspond to ∆F < ∆Fmin + 1.

3. fit these points to a parabola as a function of a.

4. define ∆F with respect to this parabola at a = 0.

5. use the parabola to find aBEST and σa as well.



20 Search for Narrow di-Muon Resonances

This procedure produced no biases and lead to an intuitive and clean behavior of ∆F as
a function of x. We checked that there were no strange differences between the answer
obtained this way and that obtained by brute-force searching for the minimum. If a true
signal were present, then one could discuss possible tiny differences in the significance of the
peak. For setting limits, the difference is a fraction of σa and hence, irrelevant.

Fig. 8 shows four examples of the true chaotic ∆F , the parabola, and the bounds on the
amplitude.

5.3 The 4–9 Region

We carried out the scan for this region using Eq. (1), the continuum parametrization given
in Sec. 4 and a Gaussian for the signal with a width given by Eq. (5). The number of events
is listed in Table 1.

The best fitted amplitude, aBEST, oscillates around zero as we step across the mass range.
The change in the negative log-likelihood, ∆F , shows only modest spikes toward negative
values, and many of these correspond to aBEST < 0. See Fig. 9 for the actual results. In
short, there is no signs of any signal.

We discuss the particular case of Mµµ = 7.25 GeV later, in Sec. 7.

5.4 The Υ Region

Although this area has been extremely well studied, especially in e+e− collisions, it is still
tempting to look here for anomalies, as there is a fair amount of space available for small
peaks. Consequently, we have scanned this area as we have scanned the others. Fig. 10
shows the ∆F and aBEST results as a function of mass. Although there is a tiny peak near
Mµµ = 9.2 GeV, it is not significant.

5.5 The 13–84 Region

We scanned the region between the Υ resonances and the Z-peak. See Fig. 11 shows ∆F
and aBEST as a function of mass. There is no evidence for any new peaks in this region.

5.6 The Z-peak Region

We scanned the region around the Z-peak. This may seem odd, looking for a peak on top
of a peak, but there is a possibility of observing something like A→ µ+µ− which would be
narrower than the Z-peak, and much smaller, obviously. The results of the scan are shown
in Fig. 12. It is clearly more difficult to identify a peak in this region since there is a larger
number of events from the Z-peak which can fluctuate up or down. This is reflected in the
gentle maximum in the dashed line in the lower plot indicating that the uncertainty σa is
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Figure 8: four example scans, from real data. The chaotic nature of the raw ∆F is evident.
The parabolas are used for defining ∆F as used in the scans, as well as aBEST and σa. The
thick red line shows the range allowed at 95% CL by the Feldman-Cousins prescription.
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Figure 9: scan of region 2. Top: ∆F as a function of mass. Bottom: aBEST as a function of
mass. The dashed lines show the expected σa in the absence of signal.
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Figure 10: scan of region 3. Top: ∆F as a function of mass. Bottom: aBEST as a function
of mass. The dashed lines show the expected σa in the absence of signal.
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Figure 11: scan of region 4. Top: ∆F as a function of mass. Bottom: aBEST as a function
of mass. The dashed lines show the expected σa in the absence of signal.
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larger on the Z-peak. There is a slight excess around Mµµ = 91 GeV which is is not evident
in Fig. 5. It significance is slightly more than “2σ” and so is far from significant.

5.7 The High-Mass Region

We scanned the high-mass region, up to 200 GeV only. The result is shown in Fig. 13, which
indicates no evidence for any signal.

6 Limits

None of the regions 2–6 show any signs for a new resonance, so we turn to setting limits
on signal cross sections. First we review the basis and our implementation of the Feldman-
Cousins prescription. This allows us to obtain an upper limit on the number of signal events.
In order to convert this into a cross section, we need to understand something about the
muon efficiency, the acceptance, and the luminosity.

6.1 The Feldman-Cousins Prescription

The Feldman-Cousins prescription [3] was designed to solve two problems:

• the preferred value for a parameter may fall inside an unphysical region.

• the distinction between setting a limit on a signal and quoting evidence, discovery or
making a measurement is arbitrary and historical. This leads to under-coverage.

We refer to reader to the original article for a thorough discussion – we recap only a few
points here.

One starts by constructing “confidence belts” for an observable a in terms of the physical
parameter µ one wants to extract from the data. (In the original article, X represents the
observed / measured quantity. We use a here since that is our measured quantity, and we
have been using x for the mass.) The authors consider two examples: a Poisson distribution
and a Gaussian. Our amplitude, a, is distributed as a Gaussian, so that is the case that
pertains here. The physical parameter µ is the number of signal events; naively one thinks
of µ = a×Ntot within a given region.

We reproduced the results of the Feldman-Cousins paper, for a 95% CL – see Fig. 14.
Given an actual, observed value for X (in the figure), one infers range of µ given by the two
lines. For example, if X = 2 (corresponding in our case to aBEST = 2σa), then 0.4 < µ < 4
at 95%CL. From the shape of the contours it is clear that the lower bound for µ is never
negative, by construction. Note, also, that for a mild fluctuation (such as aBEST = 2σa),
µ = 0 does not lie in the 95% confidence belt.
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Figure 12: scan of region 5. Top: ∆F as a function of mass. Bottom: aBEST as a function
of mass. The dashed lines show the expected σa in the absence of signal.
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Figure 13: scan of region 6. Top: ∆F as a function of mass. Bottom: aBEST as a function
of mass. The dashed lines show the expected σa in the absence of signal.
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We computed the coordinates of this belt over a wider range than in the Feldman-Cousins
article, and wrote a routine which interpolates between points to obtain the range for µ for
any X.

We checked that our implementation of the the Feldman-Cousins procedure led to correct
results when the fitted amplitude was zero, or significantly greater than zero. For several
interesting examples from the actual analysis, see Fig. 8.

6.2 Efficiency, Acceptance and Luminosity

We will use the yield at the Z-peak and the known cross-section for pp→ Z → µ+µ− to set
the overall value for ε×A×L, where ε is the net muon efficiency, A is the acceptance (as a
function of mass), and L is the total luminosity, which we know to be approximately 195 pb−1.

6.2.1 Normalization

In the mass range 66 < Mµµ < 116 GeV, we observe 3843 events passing our cuts. Our
rough estimates for the identification efficiency is 0.8, for the isolation requirement, 0.9, for
muon reconstruction, 0.95, and for the trigger, 0.80 per event. The overall acceptance times
efficiency is A × ε = 0.077. Ignoring backgrounds, which we know to be very small in this
mass range [7], and taking the cross section to be σ = 255 pb [4], we predict 3824 events.
We conclude that A× ε×L = 15.0 pb−1. We use that figure for normalizing all of the cross
sections:

σ(x) =
Nev(

A(x)
A(MZ)

)
× 15.0 pb−1

.

In this we assume no variation of ε with mass. We discuss the systematic uncertainty
associated with the assumption below.

6.2.2 Acceptance vs. Mass

The acceptance varies with mass. We have estimated the acceptance function A(x) by
running a generator-level Monte Carlo simulation and applying the basic cuts pT > 5 GeV
and |η| < 1 for both muons. We fit the function A(x) as a function mass in several piece-
wise continuous functions which are forced to agree at their mutual boundaries. The result
is displayed in Fig. 15. We plan to replace this with an acceptance function which is based
on the full simulation.

For Mµµ > 12 GeV, this works well. Below that point, the requirement pT > 5 GeV
suppresses events which small qT , and the fidelity of the simulation becomes an issue. Fur-
thermore, the acceptance will depend on the assumed qT distribution, which is different for
Drell-Yan and for, say, Υ(1s) events. We discuss this model-dependence in detail below.

First we check that our parametrized acceptance curve (Fig. 15) successfully represents
the distribution obtained at generator level. Fig. 16 shows a direct comparison of the
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Figure 14: Feldman-Cousins confidence belt for a parameter µ which must be non-negative,
and a Gaussian-distributed observable, X. This belt corresponds to 95% CL.
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Figure 15: acceptance as a function of mass. The solid blue line is a parametrization.
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Figure 16: generator-level comparison of accepted events (points) and the generated mass
spectrum weighted by the acceptance function (shaded histogram).

generator-level mass distributions for four regions. The points represent the events which
pass the nominal acceptance cuts pT > 5 GeV and |η| < 1 (both muons), and the shaded
histogram is the generated mass distribution weighted by the acceptance function displayed
in Fig. 15. The agreement is good, except that the acceptance function may be a little bit
too low for Mµµ < 7.5 GeV. We do not attempt to correct this deficiency.

Next we compare the fast simulation with nominal acceptance cuts to the full simulation
– see Fig. 17. The full simulation is Drell-Yan set z8v2gt generated by John Zhou with a
minimum di-muon mass of 5 GeV. In all of the comparisons we show in this section, we
therefore impose Mµµ > 5 GeV. As seen in Fig. 17, the agreement between the fast and the
full simulation is very good, so we can rely on the acceptance estimate that we obtained for
Drell-Yan events from the fast simulation.

6.2.3 Full Simulation vs. Real Data

The ultimate test of our understanding of the acceptance is the direct comparison of the
mass distribution to data. For this, we must understand contributions from non-Drell-Yan
sources.

Based on studies by the New Mexico group [5], we expect that the main non–Drell-Yan
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Figure 17: comparison of accepted generator-level events (points) and the full simulation
(shaded histogram).
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contribution will come from heavy-flavor production. We will use the same-sign events to help
estimate this contribution. Considering the origin of muons in bb̄ events, one expects that
most of them will have opposite-sign, so one must be prepared to scale up the contribution
inferred from the same-sign sample. For the analysis done by the New Mexico group, for
example, the ratio of opposite-sign to same-sign samples is about three.

In order to get a handle on this scale factor, we generated a very large sample of bb̄
events using PYTHIA, and applied our nominal kinematic and fiducial cuts to any muons
produced. The fraction of such events was very small; nonetheless, we are able to see that
the opposite-sign contribution is indeed larger than the same-sign by a factor of 1.5± 0.4.

We do not use this number since it is based on a generic PYTHIA simulation at generator-
level. Rather, we use certain kinematic distributions to tune to Drell-Yan template from
the full simulation and the same-sign distribution from data to describe the opposite-sign
distribution from the data (which is the basis for our search). In particular, we look at the
distributions of the pT of the two muons (two entries per event), of the di-muon transverse
momentum (qT ), and the rapidity distribution y of the di-muon pair, in addition to the
mass (Mµµ) distribution itself. Region-by-region, these are able to distinguish Drell-Yan and
same-sign (i.e., heavy-flavor) contributions.

First, we scale the simulated Drell-Yan distributions to match the observed number of
events at the Z-peak (region 5). There are no same-sign events in this region, nor is there
any contribution from τ+τ− pairs. If the acceptance from the simulation were correct, and if
there were no heavy-flavor contributions, then the mass distributions should be reproduced
region-by-region, without further modifications.

The comparison of the Drell-Yan simulation and the real data for region 5 (the Z-peak
region) is shown in Fig. 18. The agreement is quite good, as expected. Next we show region 6
(the “high-mass” region) in Fig. 19, where again there is no contribution from heavy-flavor
or τ+τ−.

In region 4, which falls below the Z-peak and above the Υ resonances, we begin to see the
appearance of the heavy-flavor contribution for Mµµ < 22 GeV. This is also seen by the New
Mexico group [5]. In Fig. 20 we compare the sum on the simulation and same-sign to the
opposite-sign from the data. In this figure, the points represent the opposite-sign data, the
green histogram represented the simulated Drell-Yan contribution scaled according to the
yield at the Z-peak, and the red histogram presents the same-sign spectrum scaled so that
the sum of the total number of same-sign events and the simulated Drell-Yan events matches
the number of opposite-sign events, for this mass region. The yellow histogram represents
the sum of the scaled same-sign and the simulated Drell-Yan contributions, and is directly
comparable to the points. Note that these histograms are not stacked. The agreement is very
good for all four distributions. We tried, as a counter-example, to fix the same-sign with no
scale factor, and scale up the Drell-Yan spectrum. This produced distributions which were
much too hard in qT and pT , and made a noticeably poorer match to the mass distribution.
Thus, we believe that our acceptance in this region is correctly given by the simulation, and
the scale factor for the same-sign distribution is 2.05 with a small statistical uncertainty.
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Next we consider region 3, the Υ region. Since Υ production was not included in the
simulations, we cut out a mass window 9.1 < Mµµ < 10.6 GeV. Fig. 21 compares the
prediction to the data; the colors of the plots, etc., are the same as in Fig. 20. Once again,
the best match to the opposite-sign data is obtained by scaling up the same-sign spectrum,
this time by a factor of 2.03. We do not scale-up the simulated Drell-Yan spectrum at all.
There is some evidence, however, for a shortfall for 8 < Mµµ < 9.1 GeV; this might indicate
that the acceptance is underestimated in that region. We do no attempt any correction.

Finally, we show the comparisons for region 2 in Fig. 22. As in regions 3&4, the sum
of the numbers of simulated Drell-Yan and the same-sign data is smaller than the number
of opposite-sign events. However, if we scale up the same-sign events, we obtain spectra
for pT and qT which are too soft. We also obtain a rapidity distribution which is a bit too
pointy. Instead, a very good description is obtained if we scale up the Drell-Yan contribution
by a factor of 2, and the same-sign by a factor of 1.55, as displayed in Fig. 22. It may be
that this mix of scale factors also would apply to the interval 8 < Mµµ < 9.1 GeV in
region 3. Although there is a possibility, therefore, that the acceptance for Drell-Yan events
for Mµµ < 9 GeV is significantly underestimated, we do not try to correct our acceptance
(cf. Fig. 15) in this region. Given that we will set cross-section limits as a function of mass,
this is a conservative choice. We feel that more work would be needed to justify such a
correction, and this work has not been done.

In summary, the agreement between the predictions based on the fully simulated Drell-
Yan events and rescaled same-sign spectra from real data, and the opposite-sign data which
we use for our search, is quite good even in regions where the acceptance is falling rapidly.

6.2.4 The Υ Yield

The Υ(1s) provides another benchmark for testing our understanding of the acceptance. It
is a non-trivial one, since already at Mµµ = 9.34 GeV the acceptance is falling rapidly and
only the high-qT events survive the momentum requirements. Furthermore, PYTHIA does
not predict correctly the qT spectrum for the Υ(1s) (see Fig. 24, and we will have to employ
the measurement done by CDF in Run I [8] and also the one done by DØ in Run II [9].

The first step is to obtain the acceptance as a function of qT . This is obtained from
PYTHIA and is displayed in Fig. 23 along with a simple parametrization. If we convolve
this acceptance with the PYTHIA qT distribution, we obtain the same number as simply
counting the number of accepted events, as we should. If we convolve this acceptance with
the differential cross-section measured by CDF, we obtain AΥ = 0.0123, which is about a
factor of two higher. Given the acceptance of the Z (which is 0.206), the numbers of Z and
Υ(1s) events, and the Z cross-section, we can obtain a cross-section σ(Υ(1s)) as follows:

σ(Υ(1s)) =
(

3134

3871

)
×
(

0.0123

0.206

)
× 255 pb = 3540± 85 pb

where the error is purely statistical coming from the number of events; the uncertainty on
the cross-section normalization amounts to about 2.8%, or ±98 pb. The CDF measurement
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Figure 18: comparison of opposite-sign events from data (points) to the full simulation (yellow
histogram), for events in region 5 (the Z-peak region).
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Figure 19: comparison of opposite-sign events from data (points) to the full simulation (yellow
histogram), for events in region 6 (the high-mass region).
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Figure 20: comparison of opposite-sign events from data (points) to the prediction (yellow
histogram), which is the sum of the simulated Drell-Yan events (green histogram) and the
scaled same-sign spectrum from data (red histogram), for events in region 4 (the “11 – 84”
region).
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Figure 21: comparison of opposite-sign events from data (points) to the prediction (yellow
histogram), which is the sum of the simulated Drell-Yan events (green histogram) and the
scaled same-sign spectrum from data (red histogram), for events in region 3 (the Υ region).
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Figure 22: comparison of opposite-sign events from data (points) to the prediction (yellow
histogram), which is the sum of the simulated Drell-Yan events (green histogram) and the
scaled same-sign spectrum from data (red histogram), for events in region 2 (the “4–9” re-
gion).
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gives
dσ

dy
= 670± 15± 18 pb

which applies for yµµ near zero. The DØ measurement is dσ/dy = 732 ± 19 ± 73 ± 48 pb,
where the last uncertainty pertains to the luminosity. In order to obtain a total cross-
section, we integrate the rapidity distribution from PYTHIA, which is displayed in Fig. 25,
normalized according to the CDF measurement. Integrating over all rapidity, we obtain
σ = 3366 ± 118 pb, where the error is simply scaled from the CDF measurement and does
not include the probably small increase expected for the higher center-of-mass energy, nor any
systematic uncertainty due to the use of the PYTHIA rapidity distribution. The difference
in cross-section is

σinferred − σCDF I = 174± 176 pb,

which shows adequate agreement. If one wanted to demand better agreement, one would
guess that the acceptance were, once again, slightly underestimated. A more likely expla-
nation is that the cross-section for

√
s = 1.96 TeV should be a little higher than the CDF

Run I measurement. If we use the central value from the DØ measurements, for example,
then the difference in cross-section would be ∆σ = −137 pb.

The conclusion is that we understand the acceptance for Υ(1s) at least at the 10% level,
or better, provided that the rapdity distribution from PYTHIA (Fig. 25) is not too far off
from reality. The acceptance for Υ(1s) → µ+µ− in this analysis is good for |y| < 0.9.

It is worth pointing out that the DØ analysis demonstrates with small uncertainties that
the shape of the differential cross-section dσ/dqT hardly changes across the rapidity range
−1.8 < y < 1.8. Also, the shape of the cross-section dσ/dqT shows no change between√
s = 1.8 TeV and 1.96 TeV – see Fig. 26.

6.2.5 Acceptance vs. qT for Υ-like Objects

It turns out that the acceptance for Υ(1s) is about twice that for Drell-Yan events of the
same mass, due mainly to the more central production of the Υ mesons. We need to make
a separate estimate for the acceptance of Υ-like objects as a function of mass, in order to
interpret the results in the low-mass region 2.

We generated a series of Υ-clones with masses of 4, 5, 6, 7, 7.25, 8 and 9 GeV, and
obtained for each one an acceptance function similar to the one displayed in Fig. 23. We
parametrized each one in the same manner: a straight line with a flat top. The intercepts,
slopes and flat-top values evolved with mass just as one would expect – the bias in qT gets
worse as the mass falls.

In order to obtain a net acceptance, we need to have a model for the differential cross-
section dσ/dqT , since PYTHIA is unreliable for this. Clearly dσ/dqT will soften as the mass
decreases. Hence, so will the mean qT . We computed 〈qT 〉 for each of our Υ-clones, and
found that it decreases linearly with mass; according to PYTHIA, we have

〈qT 〉 = 3.42 GeV + 0.213 (Mµµ − 9.34 GeV) (8)
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Figure 23: acceptance as a function of qT obtained from PYTHIA. The lines show a simple
parametrization used when computing the net acceptance.

Figure 24: qT distributions from straight PYTHIA (triangles) and the CDF Run I measure-
ment (circles)
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Figure 25: normalized qT distribution for the Υ(1s) from PYTHIA
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Figure 26: normalized differential cross-sections (1/σ)(dσ/dqT ) from the CDF Run I mea-
surement (small circles) and the DØ Run II measurement (larger squares)
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Figure 27: 〈qT 〉 as a function of mass. Lower solid line with points shows straight PYTHIA.
Upper solid line shows the PYTHIA curve scaled by the ratio of 〈qT 〉 for CDF data and
PYTHIA. The dashed line shows a linear curve which passes through the CDF measurement
at Mµµ = M(Υ), and the PYTHIA value at zero.

where, clearly, 〈qT 〉 = 3.42 GeV for the Υ(1s) in PYTHIA (for all rapidity). Our guess as to
how the true 〈qT 〉 evolves is obtained by scaling the values from Eq. (8) by the ratio of true
〈qT 〉 = 4.58 GeV (from the CDF measured cross-section) to the PYTHIA value. We show
this in Fig. 27 as the upper solid line. The PYTHIA behavior is the lower solid line with the
dots.

It is interesting that the PYTHIA curve suggests 〈qT 〉 ≈ 1.4 GeV for zero mass. This
may arise from a non-perturbative effect, such as the intrinsic-kT of the partons inside the
proton, of some sort of transverse momentum scale associated with gluon radiation. It may
be that that value is fundamental, so we construct an alternative hypothesis for 〈qT 〉 as a
function of mass, which is a straight line passing through the CDF value on the Υ(1s) and
that value ≈ 1.4 GeV at zero. This is shown as the dashed line in Fig. 27.

We summarize our values for the acceptance in Table 2 and display them in Fig. 28.
The table also lists the acceptance predicted for Drell-Yan like processes, and also for the
alternative hypothesis given by the dashed line in Fig. 27.

6.3 Systematic Uncertainties

All of the systematic uncertainties enter with the calculation of the limits on the cross section
from the limits on the number of signal events. We consider the following:
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Figure 28: acceptance for Υ-like objects as a function of mass

mass Drell-Yan–like Υ–like
(GeV) PYTHIA best guess alternative

9.34 5.71 5.99± 0.25 12.31 12.31
9 4.60 3.92± 0.20 9.15 9.08
8 2.44 1.56± 0.12 5.16 5.02

7.25 1.51 0.74± 0.09 3.28 3.10
7 1.29 0.76± 0.09 3.81 3.50
6 0.68 0.33± 0.06 1.98 1.45
5 0.36 0.15± 0.04 1.17 0.86
4 0.19 0.02± 0.01 0.43 0.12

Table 2: acceptance as a function of mass. All numbers are ×10−3
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• mass-dependence of the efficiency

• mass-dependent uncertainties on the acceptance (under our given premise that the
acceptance for the signal coincides with that for Drell-Yan di-muon production)

• the mass resolution

• the uncertainty on the overall normalization

At present we have an approximate evaluation for these uncertainties, as we now describe.
We will work to refine these evaluations later as we expand the data sample.

We devised the sliding cuts on ∆X and the isolation in order to reduce the pT -dependence
of the efficiency. As shown Ref. [7], this works very well down to a pT = 10 GeV, and we
expect it is good down to pT = 5 GeV at the level of 5% or better. As a check that the
simulation is not very wrong for ∆X, we show this quantity for data and simulated Drell-Yan
events in Fig. 29 for the CMP and CMX, for two ranges of muon pT . The agreement is quite
good. We assign an uncertainty of 0.02 for Mµµ > 10 GeV, and a rising uncertainty at lower
masses: 0.02− 0.01(Mµµ − 10 GeV).

The mass resolution was investigated in some detail in Ref. [7]. By considering extreme
modifications in the parametrization of the mass resolution, the expected yields changed by
< 3%. The main issue there was the feed-down of the Z-peak into the lower-mass regions,
which is of no concern for the present analysis. Since the first version of this note, we have
more carefully described the mass resolution for Mµµ < 14 GeV where the requirement
pT > 5 GeV begins to make a difference. Our study reproduces well the observed widths of
the Υ(1s) and J/ψ resonances. We assign an uncertainty of 3% for all masses.

The acceptance uncertainty would come mainly from the PDF’s, and simulation of the
qT distribution. We have evaluated both in Ref. [7] down to Mµµ = 20 GeV and also
verified carefully the generator-level mass distribution of the γ∗/Z’s by comparing PYTHIA
to RESBOS [10] and PHOZPRMS [11]. On this basis we would assign a PDF uncertainty
of 0.02 for Mµµ > 14 GeV and a rising uncertainty 0.02 − 0.004(Mµµ − 14 GeV) for lower
masses.

For the case of Υ-like objects, there are additional significant uncertainties coming from
the strong bias in qT and the lack of knowledge of the differential cross-section. We varied the
parameterizations of the acceptance function and found maximum excursions of 15%, so we
assign that as a systematic. The propagation of the errors of the CDF Run I measurement
contributes 4%. The comparison of the defaults model for 〈qT 〉 as a function of mass, and
of the alternative model gives another systematic which is given by the ratio of the two
relevant columns in Table 2. This is, for example, 40% for Mµµ = 5 GeV. Finally, there is
an uncertainty for the unknown polarization of a new vector state; this amounts to about
10% for the Υ and increases at lower masses. It is absent for a scalar state, of course.

Finally, there is some uncertainty in the overall normalization. The statistical uncertainty
is only 1.7%. There is also the systematic uncertainty on the measured value of σ(pp→ Z →
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`+`−), which is 2.2%, setting aside the error on the luminosity which cancels out. We assign
an overall normalization uncertainty of 2.8%.

We add the contributions in quadrature as a function of mass. Above Mµµ = 20 GeV all
components are constant, and the total systematic uncertainty is 4.7%. In region 2 the total
uncertainty us much larger and varies strongly with mass. A plot of the total and the main
components is shown in Fig. 30.

To take systematics into account, we consider that we would normally convolute a Gaus-
sian probability density function representing the total systematic uncertainty with the prob-
ability density function for the fitted amplitude, which is itself a Gaussian. The result would
be analogous to a simple increase in the width of the original Gaussian for the amplitude
from σa to σa × (1 + κ), where κ is the total relative uncertainty. Thus, when applying the
Feldman-Cousins prescription, we simply take X = a/[σa × (1 + κ)] and then derive the
corresponding limit on µ. The impact is quite small, of order κ or less.

6.4 The 4–9 Region

Armed with the Feldman-Cousins prescription and a preliminary estimate for the total sys-
tematic uncertainty, we can go ahead and derive the limits on the number of signal events,
and on the signal cross section. The result is shown in Fig. 31.

The result here is, numerically, rather poor due to the very bad acceptance for the SUSY
di-lepton trigger and our cut pT > 5 GeV for mass states below Mµµ = 10 GeV. This region
could be greatly improved by using one the triggers implemented by the B-group.

6.5 The Υ Region

We derived limits on the numbers of signal events and signal cross section (still normalizing
to the Z-peak) – see Fig. 32. The small fluctuation near Mµµ = 9.2 GeV is evident in the
excursion away from zero of the lower limits on the number of signal events and the cross
section. However, this does not mean that a signal is present, as explained earlier in Sec. 6.1.
There is no evidence for any new signal in this region.

6.6 The 13–84 Region

The limit plots for this region are shown in Fig. 33. The signal cross section generally must
be below roughly 20 pb. We note for comparison that the Drell-Yan cross-section is much
larger than this for most of this range.

6.7 The Z-peak Region

Fig. 34 shows the limits on the number of signal events and the signal cross section for this
region. As expected they are quite weak given the huge background provided by the Z-peak
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Figure 29: muon matching quantity ∆X for the CMP (left) and the CMX (right), for pT <
10 GeV (top) and pT > 20 GeV (bottom). The points are data and the histogram, simulated
Drell-Yan events.
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Figure 30: relative systematic uncertainties as a function of mass. The components from
efficiency, acceptance, mass resolution, and overall normalization are indicated. The total is
the quadratic sum of all these. All components have a constant value above Mµµ = 20 GeV.
Also shown is the model uncertainty when assuming an Υ-like object.

itself.

6.8 The High-Mass Region

The results for this region are shown in Fig. 35. Here we finally enter the regime of sub-pb
cross sections. Toward the high end of the plot, the limit is about 200 fb.

7 The Specific Case Mµµ = 7.25 GeV

G. Apollinari et al. published a report of evidence from Run I data for a new state decaying to
opposite-sign muon pairs with a mass at Mµµ = 7.25 GeV. They refer to it as a “fluctuation”
but still quote a probability of 4.1× 10−4 corresponding to 3.5σ.

William Wester queried the Run I data also, and found no statistically significant excess
in the region 6.35 GeV < Mµµ < 9 GeV [12]. Thus the evidence for this new state was not
firmly established with the Run I data.

With the much larger data sample available to us now, and with the improved tracking
and muon systems, it is possible to probe this region again.

The conclusion of the Apollinari paper, which was published in Physical Review, includes
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Figure 31: limits for region 2. Top: limit on the number of signal events as a function of
mass, based on the Feldman-Cousins prescription. Bottom: limit on the signal cross section.
The dashed lines show the expected limit in the absence of signal.
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Figure 32: limits for region 3. Top: limit on the number of signal events as a function of
mass, based on the Feldman-Cousins prescription. Bottom: limit on the signal cross section.
The dashed lines show the expected limit in the absence of signal.
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Figure 33: limits for region 4. Top: limit on the number of signal events as a function of
mass, based on the Feldman-Cousins prescription. Bottom: limit on the signal cross section.
The dashed lines show the expected limit in the absence of signal.
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Figure 34: limits for region 5. Top: limit on the number of signal events as a function of
mass, based on the Feldman-Cousins prescription. Bottom: limit on the signal cross section.
The dashed lines show the expected limit in the absence of signal.
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Figure 35: limits for region 6. Top: limit on the number of signal events as a function of
mass, based on the Feldman-Cousins prescription. Bottom: limit on the signal cross section.
The dashed lines show the expected limit in the absence of signal.



54 Search for Narrow di-Muon Resonances

the statement that

σε ×Br(ε→ µ+µ−)

σΥ(1S) ×Br(Υ(1S) → µ+µ−)
= (3.6± 0.9)% (9)

where “ε” is their name for the state. There are two motivations for reporting their result
in this form:

• the Υ(1S) resonance is close-by in mass, and therefore provides an appropriate nor-
malization point. Furthermore, they optimized their quality cuts on the basis of the
significance of their Υ(1S) signal.

• this paper discusses the possibility that the new ε state might be the bound-state of
two down-type scalar quarks. Theoretical predictions for the production and decay of
such a state can safely be related to the Υ.

We will therefore re-cast our limits in this region in terms of our yield of Υ → µ+µ−, though
we have made no attempt at present to apply quality cuts to improve our Υ(1S) signal. We
note in passing, however, that this Run II Υ(1s) signal is very clean (see Fig. 3) and stands
on only half of the continuum than does the Υ(1s) signal published in the Apollinari paper.
The cleanliness of our signal comes from demanding two “tight” muons. The Run I analysis
used also stub-less muons, which helped avoid the strong qT bias which is a difficult in this
analysis.

Due to the strong qT bias (see Fig. 23), we are forced to consider some model-dependence
for our results, since the primary qT distribution will vary from process to process. We can
envision three realistic models:

1. Drell-Yan–like production, such as would be expected for a very light neutral gauge
boson of some sort,

2. Υ–like production, such as would be appropriate for a bound state of two quarks or
two squarks; and,

3. a light state which is produced in the decay of a heavier one: pp→ AX with A→ BY
and B → µ+µ− where it is the B particle that we observe.

At this time we do not address the third possibility. We believe the first one to have the
poorest acceptance in region 2, and the second to have somewhat better acceptance, and the
third, much better acceptance.

According to this analysis, the upper limit on the number of events at Mµµ = 7.26 GeV
is 11.6 events (see Fig. 31). Indeed, let’s first check this number by opening a window of
±3σ about Mµµ = 7.25 GeV and counting the number of events. (Since σM = 0.049 GeV at
Mµµ = 7.25 GeV, this window is 7.104 < Mµµ < 7.396 GeV.) We count Nobs = 114 events,
and from the continuum parametrization, we expect Nexp = 135 events. Thus there is a
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downward fluctuation at this mass value. The one-sided 95% CL upper limit corresponds to
1.645σ = 19.1 events. However, since the data have fluctuated downward, the upper limit
from these data is lower, namely 11.6 events. If we were not using the Feldman-Cousins
prescription, then the upper limit would be much lower than this.

Consider the Υ–like model first. In this case the acceptance is estimated to be A(7.25) =
3.28 × 10−3 and A(9.34) = 12.31 × 10−3 (see Table 2). The upper limit on the ratio of
cross-section is, then,

σ ×Br(ε)

σ ×Br(Υ)
<
(

11.6

3134

)
×
(

12.31× 10−3

3.28× 10−3

)
= 0.014. (10)

This is a little bit “lucky” due to the downward fluctuation in the data; the expected limit
would be 0.023. These numbers ignore systematics, however. Referring to Fig. 30, we see
that the the systematic uncertainty for Mµµ = 7.25 GeV is 24% for the qT model, on top of
8% for all other systematics; adding this in quadrature gives 25%. Much of this systematic
uncertainty would cancel in the ratio in Eq. (10), but we will ignore that fact. Furthermore,
the convolution of a Gaussian uncertainty of width 0.25 amounts to a modest effect, but to
be very conservative we will simply downgrade our result by 25%, and obtain

σ ×Br(ε)

σ ×Br(Υ)
< 0.018 at 95% CL (11)

for the case in which the ε particle is produced in a manner similar to the Υ. The expected
limit is 0.029. A plot of the ratio in Eq. (11) as a function of mass is given in Fig. 37.
We remind the reader that there is evidence discussed earlier that our acceptances may be
underestimated, which if corrected would lead to stricter bounds than these. These results,
with this model under consideration, do not confirm the measurement by Apollinari et al.
in Eq. (9).

We now consider the case of Drell-Yan–like production. We must first convert the Run I
result into a cross-section, which we do as follows: Numerically, Eq. (9) leads to dσ(ε)/dy =
24 pb, based on the Run I measurement of Υ(1s) production [8]. We integrate this now over
the Drell-Yan rapidity distribution from PYTHIA (Fig. 36), and obtain

σ ×Br(ε→ µ+µ−) = 201± 50 pb (12)

to be compared to the upper limit we obtained from the data:

σ ×Br(ε→ µ+µ−) < 114 pb at 95% CL (13)

where again, we have degraded our limit by the total systematic uncertainty of 8%. Also in
this case, the observation of Apollinari et al. is not confirmed.

Finally, we filled a histogram with the data so that it can be compared to the distribution
published by Apollinari et al. – see Fig. 38.
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Figure 36: PYTHIA-generated rapidity distribution for Drell-Yan events in the Υ region
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Figure 37: limits on the ratio of cross-sections. The measurement reported by Apollinari et
al. is also indicated.
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Figure 38: comparison of the di-muon mass spectrum published by Apollinari et al. (left),
and from this analysis (right)

We would like to emphasize that the limits we have produced are model-dependent. We
have taken up two examples which we believe are physically reasonable, and we have tried
to make reasonable estimations of systematic uncertainties and have injected conservatism
in various ways. Nonetheless, it may be true that some other model produces a peak at
Mµµ = 7.25 GeV for which we have little sensitivity; in this sense our results cannot be
said to be definitive except within the stated models. If someone is able to devise a realistic
model in which the qT spectrum is softer, then we would like to attempt to estimate our
sensitivity for that model.

8 The Case of Sparse Data

The key element of this analysis is the shape of the mass distribution – whether there is a peak
on top of a smooth continuum or not. When we extend our investigations into the highest
mass region, however, we will not be able to parametrize the continuum any longer. Also,
this is not the region in which one can be certain of Monte Carlo predictions. Nonetheless,
we can still key in on the shape of whatever sparse distribution we see.

Suppose we observe N = O(10) events past the point where the parametrization for the
high-mass region predicts more than a couple of events. Distinguish two cases:

1. the events are distributed flatly.

2. the events are clumped together, like a Gaussian.
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We will not consider the case where some events are from a flat distribution and the others
are Gaussian – we want to test these two hypotheses.

It is pessimistic and probably unrealistic to assume that the continuum is flat. One could
instead use the fit from the high-mass channel. However, there could be a background, such
as cosmic rays, or poorly-reconstructed events, which appear only once the real Drell-Yan
events have petered out. Thus using the fit from the high-mass channel would be optimistic,
and potentially quite wrong. On the other hand, it is not at all likely that the continuum
mass distribution increases with mass.

In making the assumption of a flat continuum, and following the procedure specified
below, we give away some important information: the prediction of the number of events, and
the observation. One could quantify that probability (with whatever substantial systematic
uncertainty attaches to the prediction), and consider it separately or in addition to the
probability to be derived from the shape (flat vs. clumped) alone.

It should be kept in mind that one would not perform the following shape analysis unless
there were a surprising number of events observed.

We need to define our mass range for investigating the distribution: is it flat or clumped?.
The lower point can be defined by the parametrization of the high-mas region. For example,
xLO could be the point beyond which the extrapolation of the fitted continuum would give
one event or fewer. The upper point is more difficult to choose. It turns out that the more
‘conservative’ choice is to take it as low as possible. So we take xHI to be the mass of the
highest-mass event.

Given N events in the range xLO < x < xHI with mass values xi, we order them in
increasing mass, and then compute the N − 1 intervals di ≡ xi+1 − xi. Clearly one expects
the typical interval for xi from a flat distribution to be characteristically larger than for
a clumped distribution. This can be quantified by constructing two probabilities: PF , the
probability to observe the given N − 1 values {di} if the underlying distribution for the N
measurements {xi} is flat, and PG, the corresponding probability if they are Gaussian.

Our test statistic will be based on the ratio of these probabilities:

S ≡ − ln(PG) + ln(PF ). (14)

This will tend to be positive if the masses come from a Gaussian distribution, and negative
if they come from a flat distribution.

In order to illustrate these ideas, we ran a toy simulation with N = 10. We set xLO =
200 GeV, and compared a truly flat distribution to a Gaussian with xPK = 750 GeV, which
gives σM = 90 GeV. The distribution of intervals is exponential to a good approximation.
For a flat distribution, the correct parameter λ (as in Eq. (4)) is simply (xHI − xLO)/N . For
the Gaussian distribution, we found the correct λ by Monte Carlo methods. The comparison
of these two interval distributions is given in Fig. 39.

How well can flat and clumped distributions be distinguished with this test statistic, S?
We simulated a thousand pseudo-experiments to form the distribution of S for a flat and for
a Gaussian distribution, in order to get the distribution for S in both cases. Fig. 40 shows
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Figure 39: comparison of distributions of intervals obtained for the toy Monte Carlo simu-
lation

the result: S is peaked toward 9 for the Gaussian distributions, and toward −4 for the flat
distributions. The overlap of the two distributions is quite small, so these two hypotheses
could be cleanly distinguished in this case.

We have not yet revealed what the real data hold for Mµµ > 200 GeV. Once this proce-
dure for “sparse data” has been discussed in the relevant CDF meetings, we will proceed.

9 Summary and Conclusions

We have developed a new method to look for narrow peaks in the di-muon mass spectrum
recorded by the CDF experiment. This method has been applied to about 195 pb−1 of data
recorded with the SUSY di-lepton trigger. We divided the mass spectrum in several regions,
which together span the range 4 < Mµµ < 200 GeV. We see no evidence for any peaks in
this range, and have derived limits on the signal cross section using the Feldman-Cousins
procedure.

We put together all cross section limits – in correspondence of our original goal – and
plotted them at once in Fig. 41. The limit can be compared to the theoretical cross-section
obtained with program PHOZPRMS [11].

The region above Mµµ = 200 GeV cannot be addressed with this procedure, so we suggest
a second procedure appropriate for “sparse” data. We have illustrated how this procedure
would work, but we have not yet applied it to the data.

Much more data have been recorded by CDF, and we are preparing to analyze it with
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Figure 40: distribution of the test statistics S for events from a flat distribution and from a
Gaussian. The two cases could be clearly distinguished in this toy example.

Figure 41: cross-section limits for all regions. The solid red line shows the theoretical Drell-
Yan cross section.
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the methods described in this note.

10 Version History

version 0: March 20, 2006. Original version posted to the web.

version 1: April 19, 2006. Update and improve understanding of mass resolution (relevant
for region 2). Include studies comparing generator-level simulations, full simulations, and
data. Discussion of non–Drell-Yan backgrounds as estimated with the same-sign events.
Discussion of Υ(1s) yield and acceptance as a function of qT . More complete treatment of
systematics. More detailed discussion of the ε case.
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