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Abstract. The principle of maximum likelihood reconstruction has proven to
yield satisfactory results in the context of quantum state tomography for many-
body systems of moderate system sizes. Until recently, however, quantum state
tomography has been considered to be infeasible for systems consisting of a
large number of subsystems due to the exponential growth of the Hilbert space
dimension with the number of constituents. Several reconstruction schemes have
been proposed since then to overcome the two main obstacles in quantum many-
body tomography: experiment time and post-processing resources. Here we
discuss one strategy to address these limitations for the maximum likelihood
principle by adopting a particular state representation to merge a well established
reconstruction algorithm maximizing the likelihood with techniques known from
quantum many-body theory.
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1. Introduction

The ability to prepare and manipulate quantum mechanical states is crucial for implementing
quantum information processing and hence for building quantum computers [1]. Thus, it is
important to verify the algorithms realized on quantum mechanical systems by conducting
measurements on the system. This is achieved by means of quantum state tomography [2, 3],
quantum process tomography [4] and quantum detector tomography [5, 6], which together are
capable of characterizing the three main stages of a quantum experiment. Here we concentrate
on the task of quantum state tomography for an informationally incomplete set of observables.
Deducing a quantum mechanical description of the system from these measurements is by no
means trivial and what is the most appropriate method to invert the experimental data is still a
matter of controversy [7, 8]. The strategies of quantum state tomography range from directly
inverting the measurements [9] to statistical approaches known from classical probability
theory such as maximum likelihood estimation [9, 10] and Bayesian inference [8, 11]. The
latter methods where introduced into the field of quantum state tomography to circumvent the
possibility of negative eigenvalues of the state estimation arising by inverting Born’s rule for
relative frequencies, i.e. noisy data. In principle, maximum likelihood estimation and Bayesian
inference divide the approach to statistical inference into two schools. The former is the
method at hand for the frequentist statisticians where probabilities are interpreted as the infinite
limit of relative frequencies obtained in a measurement process. Principally, the probabilities
can be determined solely by repeating the measurements on the system infinitely often. For
Bayesian statisticians, probabilities are a degree of belief in a certain event. The prior probability
distribution imposed by the observer is then updated exploiting additional knowledge (i.e.
measurements) of the system. Both principles have their advantages and drawbacks in the field
of quantum state tomography. While maximum likelihood estimation is biased towards rank
deficient states, no prior knowledge is required. In contrast, in Bayesian inference it is often not
clear how to choose the prior distribution, whereas the estimates will have full rank [8, 11]. In
this paper, we will focus on the frequentist approach to quantum state tomography.

Maximum likelihood estimation is currently the method of choice and has proven to yield
satisfactory results for moderate system sizes [12]. However, as the system sizes realized in the
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laboratory steadily increase [12–16], new techniques for performing quantum state tomography
on large system sizes are required due to the exponential growth both in the number of required
measurements and in the classical post-processing that is required to connect the measured data
with a description of the quantum state. Recently, several scalable schemes for verifying the state
in the laboratory by a fidelity estimation or learning the state via a concrete state reconstruction
have been presented [17–26]. The efficiency of the scalable schemes stems from the exploitation
of additional structure of the considered states such as low rank, local nature of correlations or a
specific form of the state. If these assumptions are true, they allow for a reduction of the number
of parameters that have to be determined experimentally and, simultaneously, for a reduction
of the experiment time. To obtain an estimate of the state within these models, the scalable
tomography schemes come along with efficiently implementable reconstruction algorithms
to reduce the required post-processing resources. The algorithms are designed, for instance,
to optimize a fit function over pure states [24], to adopt maximum likelihood estimation to
permutationally invariant states, which can be represented efficiently [25], or to invert local
measurements to obtain a (not necessarily positive) state estimate [26].

In this paper we strive to push the applicability of large scale state tomography further
towards an efficient implementation of a maximum likelihood estimation scheme exploiting
both the spirit of maximum likelihood reconstruction and adopting a specific representation
of the states. We are considering one-dimensional quantum systems composed of N finite-
dimensional d-level subsystems (e.g. qubits with d = 2). To realize the scalable tomography
scheme we show how to implement a well established fixed point algorithm [7] maximizing the
likelihood function by means of matrix product states and operators [27–29]. Note that in this
paper we restrict to the iterative fixed point algorithm for maximizing the likelihood function.
One could, however, also adopt a direct maximization of the likelihood function using convex
optimization tools together with a suitable representation of the considered states (this has been
demonstrated, e.g., for permutationally invariant systems in [25]). This paper is organized as
follows. We start by reviewing the maximum likelihood approach to quantum state tomography
in section 2. Then, we introduce the fixed point algorithm and discuss a modification of the latter
when a pure state estimate is desired. In section 3 we show that all operations necessary for
executing the maximum likelihood algorithm can be implemented by means of matrix product
states and operators. Here, we solely discuss the individual computational steps and postpone
details to the appendix. If a certain operator comprising the positive operator-valued measure
(POVM) elements of the measurement setting has a matrix product operator representation of
low bond-dimension, we show how this can be done efficiently. In the appendix we discuss
how this operator can be recast to fit into the framework of matrix product states and operators
for two specific measurement settings. In the last section of this paper, section 4, we present
numerical results demonstrating the performance of the algorithm for numerically simulated
states.

2. Quantum state tomography via maximum likelihood estimation

In this section we review the maximum likelihood approach to quantum state tomography
and discuss a fixed point algorithm that maximizes the likelihood function [3, 7]. We
further motivate a modification of the algorithm when a pure state estimate is desired. The
latter reformulation reduces the computational cost of the algorithm since it only requires
matrix–vector multiplications instead of matrix–matrix multiplications.
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Quantum state tomography is a procedure for estimating the density matrix from repeated
measurements on M identically prepared quantum systems. Let {5̂i}, i ∈1, be the set of all
POVM elements corresponding to the measurements performed on the system where 1 is
an index set associated with these measurements2. In the measurement process we record the
number of times ni the outcome 5̂i is obtained for all i ∈1, i.e. M =

∑
i∈1 ni . Now, let D be the

state space of the physical system under consideration. According to Born’s rule, the conditional
probability of measuring outcome i given state %̂ ∈ D is equal to pi = p(5̂i |%̂)= tr[5̂i %̂]. The
joint probability p(n|%̂) of registering the specific outcomes ni , i ∈1, is given by

L(%̂)= p(n|%̂)=

∏
i∈1

pni
i =

∏
i∈1

tr[5̂i %̂]ni . (1)

The likelihood function L(%̂) is interpreted as the conditional probability of measuring on the
state %̂ when registering outcome n, i.e. it is considered to be a function on D for a specific
outcome of a measurement series. The maximum likelihood estimate %̂ML is the element of the
state space D which maximizes the likelihood function. Therefore, it is considered as the most
likely state given a set of measurement outcomes.

Instead of maximizing the likelihood function L(%̂) directly, one maximizes the log-
likelihood function

logL(%̂)=

∑
i∈1

ni log(tr[5̂i %̂]), (2)

which yields the same estimate %̂ML due to the fact that the likelihood function L(%̂) is positive
on the state space and the logarithm is strictly increasing. The resulting function reveals the
property of being concave and since we are optimizing over a convex set we are left with a
convex optimization problem [30]. It is well known that the state %̂ML maximizing the log-
likelihood satisfies %̂ML = R̂(%̂ML)%̂ML where the positive operator R̂(%̂) is given by [3]

R̂(%̂)=
1

M

∑
i∈1

ni

pi
5̂i =

1

M

∑
i∈1

ni

tr[5̂i %̂]
5̂i . (3)

Since both the operator R̂(%̂) and %̂ are Hermitian, the extremal equation %̂ML = R̂(%̂ML)%̂ML can
be transformed to yield a well-established fixed point algorithm [3]

%̂k+1 = N [R̂(%̂k)%̂k R̂(%̂k)], (4)

where the operation R̂(%̂k)%̂k R̂(%̂k) preserves the positivity of the current iteration, the function
N : Hd N

×d N
→ D mapping Hermitian matrices to states denotes normalization to trace one and

the algorithm is usually initialized by an unbiased initial state such as the completely mixed
state. Note that, although heuristically convergent, there is no analytical proof that the fixed point
algorithm (4) converges to the maximum of the log-likelihood function. Diluting the operator
R̂(%̂) to (1 + ε R̂(%̂))/(1 + ε), one can show that for ε � 1 the log-likelihood increases in each
step of the fixed point algorithm at the expense of the rate of convergence [7]. Since the log-
likelihood function is concave, this guarantees that the diluted fixed point algorithm converges
to the maximum.
2 We label operators using hats, i.e. %̂ for a density matrix, rather than applying this notation to estimates of the
underlying system.
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Under the assumption that the state in the laboratory is pure, the fixed point algorithm can
be rewritten to optimize only over pure states. In particular, iterating

|ψk+1〉 = N [R̂(|ψk〉)|ψk〉] (5)

will yield a pure estimate of the desired state. Note, however, that restricting the state space
to rank one matrices alters the optimization problem to being non-convex. This implies that
although the objective function, i.e. the log-likelihood, is still concave, the feasible set, i.e. the
set of rank one matrices, is non-convex and hence it is not guaranteed that the global maximum
is attained by increasing the log-likelihood in every step, both in the standard formulation and
the diluted version of this pure state algorithm. Nevertheless, as we will see, iterating only
over pure states yields satisfactory results in practice even for noisy data. Now, of course, in a
realistic setting the state prepared in the laboratory will never be pure. A pure state estimate,
however, can nevertheless be used to certify whether the (possibly mixed) state implemented in
the laboratory is close to this pure estimate by means of the techniques described in [24]. With
this, one can construct a lower bound on the fidelity of the pure state estimate with respect to
the actual state only by means of the (experimentally determined) reduced density matrices.

3. Merging matrix product operators with the maximum likelihood algorithm

In this section, we introduce the family of matrix product states and operators [27–29]
and further show that the iterative fixed point algorithm (4) can be implemented using this
formalism. We only give a brief summary of the individual steps and postpone details to the
appendix.

Let %̂ ∈ D be a state describing a physical system comprising N d-level subsystems. Then,
%̂ can be written as

%̂ =

∑
α1,···,αN

P1[α1] · · · PN [αN ] P̂ (α1)

1 · · · P̂ (αN )

N , (6)

where {P̂ (αk)

k } is an operator basis of Cd×d for site k, αk = 1, · · · , d2 enumerates the basis
elements per site and Pk[αk] ∈ CDk×Dk+1 are complex matrices for k = 1, . . . ,N, with D1 = 1
and DN+1 = 1. Every state can be brought to this form and the exponentially growing dimen-
sion of the Hilbert space (with respect to the number of subsystems N ) can be covered by
exponentially growing matrix dimensions Dk . However, many interesting quantum states (in
particular living on one-dimensional structures) can be represented with a moderate number
of parameters. Examples, amongst others, are ground states and thermal states of gapped local
Hamiltonians [31–36]. These states have in common that they can be approximated very well
by states with low bond-dimension D = maxk Dk . We call states of the form of equation (6)
matrix product operators or matrix product states depending on {P̂ (αk)

k } being a basis of Cd×d

or Cd [28, 29] (note that every matrix product state with bond-dimension D is a matrix
product operator with bond-dimension at most D2) and collect such states with maximum
bond-dimension equal to D in the setMD.

Next, we list the operations required to run the algorithm and then proceed by pointing out
the corresponding matrix product operator equivalents. In what follows, we restrict ourselves
to a POVM which contains solely observables of tensor product form, i.e. 5̂i = π̂ i

1 ⊗ · · · ⊗ π̂ i
N

with i ∈1. The fixed point algorithm is commonly initialized with the completely mixed state.
Then, in the kth iteration, the algorithm
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1. determines the expectation values of the POVM elements {5̂i}, i ∈1, i.e. pi = tr[5̂i %̂k],

2. constructs the operator R̂(%̂k),

3. multiplies the current iteration %̂k from both sides with R̂(%̂k) and

4. normalizes the output to obtain iteration k + 1.

Whenever %̂k , R̂(%̂k) and hence R̂(%̂k)%̂k R̂(%̂k) may be written as matrix product operators
of small bond-dimension, all these steps may be performed efficiently (for a detailed outline of
the different operations that are required we refer to the literature [28, 29] and appendix A):

We now outline how the four steps above may be performed efficiently. Firstly, computing
expectation values of product observables of the form 5̂= π̂1 ⊗ · · · ⊗ π̂N is straightforward:

tr[%̂ 5̂] =

N∏
k=1

Ek, (7)

where Ek =
∑d2

αk=1 Pk[αk] tr[π̂k P̂ (αk)

k ].

Secondly, the operator R̂(%̂k) has to be determined. This operator acts on the state space
and hence, generally, has the same dimension as %̂k . To efficiently implement the maximum
likelihood algorithm we therefore need to represent this operator as a matrix product operator
with small bond-dimension. Since R̂(%̂k) is basically a weighted sum of the POVM elements,
this restricts the set of measurements for which this is possible. To give an example for which
this can be achieved, consider POVM elements 5̂i

k of the form

5̂i
k = 1 ⊗ · · · ⊗ 1 ⊗ π̂ i

k ⊗ · · · ⊗ π̂ i
k+R−1 ⊗ 1 ⊗ · · · ⊗ 1 (8)

where k = 1, · · · , N − R + 1 labels all blocks of R consecutive spins and i enumerates the set
of local POVM elements. Key point for the efficient representation of the operator R̂(%̂k) is that
with this specific kind of measurement set-up this operator is in fact a local Hamiltonian. But
local Hamiltonians are matrix product operators of low bond-dimension and hence R̂(%̂k) can
be stored efficiently in its matrix product operator representation (see appendix B for further
details). Note again that every measurement setting where the operator R̂(%̂k) has an efficient
matrix product operator representation with small bond-dimension is suitable for the efficient
implementation of the maximum likelihood algorithm and the above form is merely an example.
One may also add global observables to the POVM set, a scenario which we consider for the
reconstruction of a Greenberger–Horne–Zeilinger (GHZ)-type state below, with a discussion of
the construction of the operator R̂(%̂k) in appendix C.

Thirdly, to compute the next iteration of the algorithm (4) we need to multiply the current
iteration %̂k with the operator R̂(%̂k) from both sides. Both objects are stored as matrix product
operators. Multiplying two matrix product operators with bond-dimensions D1 and D2 results
in a matrix product operator of dimension D1 · D2, i.e. bond-dimensions multiply. To keep the
bond-dimension at a certain level (e.g. D), we compress the current iteration R̂(%̂k)%̂k R̂(%̂k) that
has been obtained after multiplication of the previous estimate %̂k with the operator R̂(%̂k), i.e.
we solve [28]

ξ̂k = argmin[‖%̂− R̂(%̂k)%̂k R̂(%̂k)‖
2
| %̂ ∈MD], (9)

where ‖ · ‖ denotes the Hilbert–Schmidt norm and MD comprises all matrix product operators
with bond-dimension D, see appendix A for a detailed discussion. Obviously, solving
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1 2 k k + 1 k +R− 1 N

. . . . . . . . .

. . . . . .π̂i,jk,...,k+R 1

Figure 1. The considered measurements on blocks of R consecutive spins. For
π̂

i, j
k,...,k+R−1 see equation (11). Here, k = 1, . . . , N − R + 1 labels the block of size

R, i = 1, . . . , 3R enumerates the basis rotation (all combinations of orientations
along the X, Y and Z directions) and j = 1, . . . , 2R denotes the corresponding
projectors per basis orientation on the eigenbasis of the respective Pauli spin
operators.

equation (9) is a crucial point in the algorithm. If the operator is not compressible to a low
bond-dimension, the algorithm will not be efficient. To recognize this issue in the execution of
the algorithm, we choose a method that allows us to track the error made in the compression, i.e.
the algorithm aborts when the minimum in equation (9) is not zero (or greater than a prescribed
tolerance). Hence, if the norm difference does not converge to zero, we either choose a larger
bond-dimension or abort the maximum likelihood algorithm (i.e. throw a flag and abort the
tomography scheme).

Fourthly, in the final step of one iteration we have to normalize the current estimate to
trace one. Again, this can be done efficiently since the trace of a matrix product operator can be
computed directly using equation (7). Normalization is then equivalent to dividing each matrix
by a fraction of the initial trace.

4. Numerical simulations

In this section we present results of our implementation of the maximum likelihood algorithm
iterating over matrix product states and operators.3 The results suggest that applying maximum
likelihood reconstruction to system sizes where the conventional implementations of full
tomography fail due to (i) the number of required measurement settings and (ii) the limited
post-processing resources is still manageable for appropriate POVM settings.

We are considering a one-dimensional chain of quantum systems implemented on
N d-level systems with d = 2, i.e. qubits. We let the POVM elements be of the local form

5̂
i, j
k =W(11,...,k−1 ⊗ π̂

i, j
k,...,k+R−1 ⊗ 1k+R,...,N ), (10)

see figure 1. Here,

π̂
i, j
k,...,k+R−1 = |yi, j

k,...,k+R−1〉〈yi, j
k,...,k+R−1|, (11)

3 Due to the multiplication of the matrix product operators and a subsequent compression one has to be careful
implementing the algorithm to maintain the Hermiticity in the current iteration.
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with k = 1, . . . , N − R + 1 labelling the block of size R, i = 1, . . . , 3R enumerating the basis
rotation (all combinations of orientations along the X, Y and Z directions) and j = 1, . . . , 2R

denoting the corresponding projectors per basis orientation on the eigenbasis of the respective
Pauli spin operators. This corresponds to measurements on blocks of R contiguous spins. For
fixed R, the experimental effort, and hence the associated experiment time, grows linearly in the
number of subsystems N reducing the exponential scaling of the total number of measurements
from M = 3N m to a linearly scaling M = 3Rm(N − R + 1). Here, m denotes the number of
measurements per basis orientation.

We verify the performance of the maximum likelihood algorithm optimizing over matrix
product operators (and matrix product states) for thermal states and ground states of next-
neighbour Hamiltonians and for GHZ-type states. For the latter, we need to enlarge the above
POVM, resulting in a set of measurements determining the GHZ-type state uniquely and a total
number of measurements M = 3Rm(N − R + 1)+ K m, where K is the cardinality of the set of
additional (global) measurements.

We simulate the measurements by drawing m times from the exact multinomial
distributions corresponding to the POVM elements specifying each basis orientation. Hence,
the input to the reconstruction scheme are the relative frequencies f i, j

k = ni, j
k /m for all i, j and

k approximating the exact probability distributions. The reconstructed states %̂rec are compared
to the exact states by means of the renormalized Hilbert–Schmidt norm difference D(%̂, %̂rec)=

‖%̂− %̂rec‖
2/‖%̂‖2, the fidelity f (|ψ〉, %̂rec)= |〈ψ |%̂rec|ψ〉| or f (|ψ〉, |ψrec〉)= |〈ψ |ψrec〉|

2.
The first example outlines the performance of the algorithm (4) iterating over matrix

product operators for thermal states of random next-neighbour Hamiltonians,

Ĥ =

N−1∑
i=1

r̂i,i+1, (12)

where the Hermitian matrices r̂i,i+1 act on sites i and i + 1. The real and imaginary parts of
these matrices are drawn from a Gaussian distribution with zero mean and standard deviation
one. Thermal states %̂ = e−β Ĥ/Z are obtained by an imaginary time evolution using the time
evolving block-decimation algorithm4 [37]. From these states, we compute the exact probability
distributions corresponding to all contiguous blocks of size R for local tomographically
complete measurements, simulate the measurements and reconstruct a state estimate %̂rec.
Results are shown in figure 2. The plot indicates that, as expected, (i) the accuracy of the
reconstruction scheme increases with increasing number of measurements and (ii) extending
the range R over which measurements are performed decreases the error of the reconstructed
estimate. Notably, the mean error for the reconstruction of thermal states corresponding to
45 different random Hamiltonians of the form of equation (12) with R = 3 and perfect
measurements, i.e. m = ∞, is of order 10−3.

Ground states of Hamiltonians of the form of equation (12) serve as our second example.
We obtain the ground states by minimizing the expectation value of the Hamiltonian with
respect to a matrix product state with given bond-dimension5. Sweeping through the chain and
optimizing the matrices in the matrix product state site by site such that in each iteration the

4 We use a fourth order Trotter expansion with a step size in the imaginary time evolution of δT = 10−3. We
approximate the state as a matrix product operator with bond-dimension D = 100.
5 The random character of the Hamiltonian suggests that the eigenfunctions of the Hamiltonian are strongly
localized and hence the ground state is very well approximated by a matrix product state of low bond-dimension.
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TS: R = 2
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Figure 2. Performance of the iterative algorithm (4) for thermal states (TS) of
random next-neighbour Hamiltonians of the form of equation (12) for N = 16
qubits with β = 2 after 1000 iterations. Input to the reconstruction scheme
are relative frequencies corresponding to a tomographically complete set of
measurements on all blocks of R contiguous sites. These relative frequencies
are obtained by drawing from the exact probability distributions m times.
Downward-pointing triangles: R = 2, upward-pointing triangles: R = 3. The
densities illustrate the results for 45 random Hamiltonians and corresponding
reconstructions while the triangles emphasize the mean value. All estimates have
a bond-dimension of D = 16.

expectation value with respect to the Hamiltonian decreases, we will end up with a stationary
point which serves as an approximation to the exact ground state6 [28]. Again, we compute
the exact expectation values corresponding to local measurements on all blocks of R sites,
simulate the measurements by drawing m times from the exact multinomial distributions and
reconstruct the state using the maximum likelihood algorithm. Here, we are optimizing only
over pure states using the iterative algorithm in equation (5). Figure 3 presents the results. Even
for very small m we obtain a mean fidelity larger than 0.80 for N = 20 qubits. Moreover, for the
exact probabilities (m = ∞) the mean fidelity is close to 1.00 after 5000 iterations indicating
that iterating only over pure states does not get stuck in local minima. Note that the iterative
algorithm is known to converge very slowly in comparison to other maximization techniques
for the likelihood function [25].

Finally, let us consider GHZ-type states of the form

|ψN (φ)〉 = [|0〉
⊗N/2

|1〉
⊗N/2 + eiφ

|1〉
⊗N/2

〉|0〉
⊗N/2]/

√
2 (13)

where the number of sites N is even and φ ∈ [0; 2π) is a relative phase. These states are not
uniquely determined by local measurements. The relative phase φ is a global feature and hence,
besides local measurements, we need to perform some global measurements to fully determine

6 We approximate the ground state with matrix product states of bond-dimension D = 20.
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GS: N = 10G

GS: N = 20GG

m

Figure 3. Results for the maximum likelihood algorithm iterating over matrix
product states after 5000 iterations. The exact states are ground states (GS) of
random next-neighbour Hamiltonians of the form of equation (12). Note that the
reconstructed estimates have a bond-dimension of D = 5. Downward-pointing
triangles: N = 20 sites, upward-pointing triangles: N = 10 sites. Measurements
are simulated for all blocks of R = 2 contiguous sites by drawing from the
exact multinomial distributions m times. For each m we generate 30 random
Hamiltonians. The densities depict the distributions of the obtained fidelities
while triangles indicate the mean value. Here, for N = 20, one iteration of the
algorithm takes about one second on a standard laptop.

the state. This could be done by additionally measuring the operators X̂⊗N and Ŷ ⊗ X̂⊗N−1 since
the expectation values

〈ψN (φ)|X̂
⊗N

|ψN (φ)〉 = cos(φ) (14)

and

〈ψN (φ)|Ŷ ⊗ X̂⊗N−1
|ψN (φ)〉 = sin(φ) (15)

fix the local phase. Note that these expectation values can be determined experimentally
for large system sizes because only a simultaneous rotation of all spins is required plus
a single site addressing to rotate one spin (e.g. the spin on the very left-hand side) along
an orthogonal direction. We define the POVM {5̂i}, i = 1, . . . , 4, with 5̂1 = (1 + X̂⊗N )/4,
5̂2 = (1 − X̂⊗N )/4, 5̂3 = (1 + Ŷ ⊗ X̂⊗N−1)/4 and 5̂4 = (1 − Ŷ ⊗ X̂⊗N−1)/4. These operators
are positive and sum to one. Incorporating these operators into the POVM describing the
local measurements can be done by a straightforward normalization of the operators. Let us
denote the index set of the full POVM set by 1=11 ∪12 where 11 comprises the elements
corresponding to local measurements and 12 comprises the four elements defined above. To
apply the maximum likelihood algorithm for matrix product operators to this measurement
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Figure 4. Results for GHZ-type states as shown in equation (13) where we
choose φ = π/2. Apart from the local measurements (on all blocks of size
R = 2) global observables have to be measured given by {5̂i}, i ∈12. Here,
we draw m = 100 times from the exact probability distributions and reconstruct
30 states per N . Mean values are indicated by the downward-pointing triangles.
The reconstructed estimates have bond-dimension D = 10. The plot shows the
fidelity after 1000 iterations of the maximum likelihood algorithm.

scheme, it remains to show that the operator R̂(%̂), see equation (3), can be written as a matrix
product operator with small bond-dimension D. In fact, we find

R̂(%̂)= R̂1(%̂)+ R̂2(%̂), (16)

where R̂k(%̂)=
1
M

∑
i∈1k

ni
pi
5̂i for k = 1, 2. As before, R̂1(%̂) corresponds to a matrix product

operator with small bond-dimension D1 due to its local character. Moreover, R̂2(%̂) can be
written as a matrix product operator with bond-dimension D2 = 2 such that R̂(%̂) is a matrix
product operator with bond-dimension D = D1 + 2 (see appendix C for further details). We
simulate measurements on the exact GHZ-type state (which is a matrix product state with bond-
dimension DGHZ = 2) for R = 2 and use the algorithm iterating over matrix product operators
to obtain a state estimate. Results are shown in figure 4. This example illustrates that this
method is also applicable to states that are not uniquely determined by local measurements
only. In general, however, the experimentalist has to have some prior knowledge about the state
he intends to implement on a physical system to decide whether additional measurements are
necessary. The results suggest that even for a very small number of measurements where each
considered basis rotation is measured m = 100 times, the algorithm is capable of reconstructing
GHZ-type states very accurately.
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5. Conclusions

We presented a scalable maximum likelihood algorithm for quantum state tomography. The only
restrictions for the applicability is that the set of measurement operators is polynomial in the
system size and that the individual POVM elements are of tensor product form, both of which are
anyway generally desirable from an experimental point of view. The reconstruction technique
relies on a well-established fixed point algorithm for maximizing the likelihood function. We
have shown that this algorithm can be generalized to iterate over matrix product states and
operators and hence yields a scalable reconstruction algorithm for quantum state tomography.
Of course, for a general state where the measurements do not uniquely specify the state, the
fixed point of the scalable maximum likelihood algorithm will not always come close to the
true state. If the state is uniquely determined by the measured POVM elements, however, we
provided numerical evidence that the algorithm chooses a state estimate which is close to the
true state.

We observed that the convergence of the algorithm is very slow caused by the flat log-
likelihood function when measurements are done only on a small subset of the full Hilbert
space. Moreover, while our first and by no means optimal implementation is capable of dealing
with measurements on blocks of size R > 2 the execution of the algorithm becomes rapidly
slow with increasing R. An improvement of the implementation is left for future work. For
instance, one could think of directly maximizing the concave objective function (e.g. by gradient
descent methods) when the states are represented as matrix product states or in any other
tailored efficient form. Concretely, restricting to permutationally invariant states and directly
maximizing the likelihood, [25] has shown to yield superior performance when high accuracy
is required.

The numerical results, however, suggest that the generalization of the iterative algorithm to
matrix product operators is able to find state estimates which are close to the exact states already
for a small number of measurements, which we verified for thermal and ground states of random
next-neighbour Hamiltonians and for GHZ-type states. Furthermore, restricting the algorithm
to optimize only over pure states has shown to yield satisfactory results under the assumption
that the desired state is pure. This is remarkable since one iterates over a non-convex set. To
certify the reconstructed pure estimate one could use the techniques described in [24] to find a
lower bound on the fidelity of the state in the laboratory with respect to the pure state estimate.
The results presented in this paper add to recent research for large scale quantum tomography
and push the applicability of quantum state tomography to large system sizes.
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Appendix A. Implementation details for the maximum likelihood algorithm iterating over
matrix product operators

In the first part of the appendix we review some basic properties and specific operations applied
to matrix product operators (for a general overview we refer to [28, 29] where the ideas
discussed in the remainder of this section of the appendix are presented in far more detail). We
focus on the operations required for generalizing the maximum likelihood fixed point algorithm.

To set the notation, we recall the definition of a matrix product operator. For all sites
k = 1, · · · , N and αk = 1, · · · , d2, let {Pk[αk]} be a set of complex matrices of dimension
Dk × Dk+1 where D1 = 1 = DN+1. Further, let {P̂ (αk)

k } denote an operator basis for site k,
e.g. for spin-1/2 particles the orthonormal Pauli spin basis, i.e. P̂ (1)

i = 1i/
√

2, P̂ (2)
i = X̂ i/

√
2,

P̂ (3)
i = Ŷi/

√
2 and P̂ (4)

i = Ẑ i/
√

2. The state

%̂ =

∑
α1,...,αN

P1[α1] · · · PN [αN ] P̂ (α1)

1 · · · P̂ (αN )

N (A.1)

is called matrix product operator if D = maxk Dk is low with respect to the state space
dimension. Note, of course, that the notation of a low bond-dimension is a bit vague. The
efficient simulation of a matrix product operator of bond-dimension D certainly depends on
the computational resources available for the post-processing.

Basic matrix product operator manipulations. In the first section of appendix A we present
a derivation of equation (7) in the main text, yielding an efficient strategy for computing
expectation values of product observables with respect to matrix product operators. Further,
we show how to multiply matrix product operators and give a specific representation of the
completely mixed state. Let 5̂= π̂1 ⊗ · · · ⊗ π̂N be a product observable acting on N d-level
subsystems. The expectation value of 5̂ with respect to the matrix product operator %̂ is
determined via

tr [%̂5̂] =
∑

α1,...,αN

P1[α1] · · · PN [αN ] tr[P̂ (α1)

1 · · · P̂ (αN )

N π̂1 · · · π̂N ]

=
∑

α1,...,αN

P1[α1] · · · PN [αN ] tr[(P̂ (α1)

1 π̂1) · · · (P̂
(αN )

N π̂N )]

=
∑

α1,...,αN

P1[α1] · · · PN [αN ] tr[P̂ (α1)

1 π̂1] · · · tr[P̂ (αN )

N π̂N ]

=

N∏
k=1

Ek,

(A.2)

where Ek =
∑d2

αk=1 Pk[αk] tr[P̂ (αk)

k π̂k] ∈ CDk×Dk+1 . In the derivation we used the fact that for

systems i and i + 1 we have Âi B̂i+1Ĉi D̂i+1 = Âi ⊗ B̂i+1 · Ĉi ⊗ D̂i+1 = Âi · Ĉi ⊗ B̂i+1 · D̂i+1 =

Âi Ĉi B̂i+1 D̂i+1 and that tr[Ai Bi+1] = tr[Ai ⊗ Bi+1] = tr[Ai ]tr[Bi+1].
Naively multiplying two matrix product operators with bond-dimensions D1 and D2 yields

a matrix product operator with bond-dimension at most D1 · D2. In particular, given the matrix
product operators

%̂ =

∑
α1,···,αN

P1[α1] · · · PN [αN ] P̂ (α1)

1 · · · P̂ (αN )

N (A.3)
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with bond-dimension D1 and

ξ̂ =

∑
β1,···,βN

Q1[β1] · · · QN [βN ] P̂ (β1)

1 · · · P̂ (βN )

N (A.4)

with bond-dimension D2, we find

%̂ · ξ̂ =

∑
α1,···,αN

∑
β1,···,βN

P1[α1] · · · PN [αN ] Q1[β1] · · · QN [βN ] P̂ (α1)

1 · · · P̂ (αN )

N P̂ (β1)

1 · · · P̂ (βN )

N

=

∑
α1,...,αN

∑
β1,...,βN

(P1[α1] ⊗ Q1[β1]) · · · (PN [αN ] ⊗ QN [αN ])(P̂ (α1)

1 P̂ (β1)

1 ) · · · (P̂ (αN )

N P̂ (βN )

N ).

(A.5)

Now, for every site k = 1, · · · , N , {P̂ (αk)

k } denotes an operator basis such that we have
P̂ (αk)

k P̂ (βk)

k =
∑

γk
cαk ,βk
γk

P̂ (γk)

k with cαk ,βk
γk

= tr[(P̂ (γk)

k )† P̂ (αk)

k P̂ (βk)

k ]. Consequently, the product of
two matrix product operators gives

%̂ · ξ̂ =

∑
γ1,···,γN

(∑
α1,β1

cα1,β1
γ1

P1[α1] ⊗ Q1[β1]

)
· · ·

(∑
αN ,βN

cαN ,βN
γN

PN [αN ] ⊗ QN [βN ]

)
· P̂ (γ1)

1 · · · P̂ (γN )

N

=

∑
γ1,...,γN

R1[γ1] · · · RN [γN ] P̂ (γ1)

1 · · · P̂ (γN )

N (A.6)

with Rk[γk] =
∑

αk ,βk
tr[(P̂ (γk)

k )† P̂ (αk)

k P̂ (βk)

k ] Pk[αk] ⊗ Qk[βk]. Hence, the product of two matrix
product operators with bond-dimensions D1 and D2 is itself a matrix product operator with
bond-dimension at most D = D1 · D2.

The maximum likelihood algorithm is initialized by the completely mixed state. Choosing
the orthonormal Pauli spin basis in the matrix product operator representation, this state
corresponds to a matrix product operator with bond-dimension one. One possible choice of
the 1 × 1 matrices defining the completely mixed state is

Pk[1] =
1

N ·
√

d N
,

Pk[αk] = 0, for αk = 2, · · · , d2 and k = 1, · · · , N .
(A.7)

Therefore, initializing the matrix product operator formulation of the maximum likelihood
algorithm is straightforward.

Compressing matrix product operators. We have seen that the bond-dimension of the current
iteration %̂k increases in each step of the algorithm due to the matrix product operator
multiplication with the operator R̂(%̂k). Hence, it is essential to introduce subroutines to keep the
bond-dimension of the state estimate low. This is done by compressing the matrix product state
to a state with smaller bond-dimension at each iteration of the tomography algorithm [28]. In
the second section of appendix A we describe the compression of a matrix product operator
%̂ with bond-dimension D1 to a matrix product operator σ̂ with bond-dimension D2 < D1.
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For that, we show how to solve the optimization problem

σ̂ = argmin[‖%̂− %̂′
‖

2
| %̂′

∈MD2], (A.8)

see equation (9) in the main text.
Before we describe the iterative compression scheme, let us first introduce a convenient

representation of the matrix product operator. For this, note that the matrices {Pk[αk]} are
not unique since inserting 1 = UU † between sites k and k + 1 will not alter the state, but the
corresponding matrices {Pk[αk]} and {Pk+1[αk+1]}. This freedom in the choice of the matrices
allows (by a successive singular value decomposition starting from the left- and right-hand sides
of the chain) to write the matrix product operator as

%̂ =

∑
α1,···,αN

B1[α1] · · · BN [αN ] P̂ (α1)

1 · · · P̂ (αN )

N , (A.9)

where the matrices on sites l = 1, · · · , k − 1 satisfy∑
αl

Bl[αl]
† Bl[αl] = 1Dl+1×Dl+1 (A.10)

and where the matrices on sites l = k + 1, · · · , N satisfy∑
αl

Bl[αl]Bl[αl]
†
= 1Dl×Dl . (A.11)

We call matrix product operators satisfying these relations k-normal matrix product
operators [28]. Further, note that for k-normal matrix product operators the purity, i.e. the
squared Hilbert–Schmidt norm ‖%̂‖2

= tr[%̂†%̂], can be computed by

‖%̂‖2
=

∑
αk

tr[Bk[αk]† Bk[αk]]. (A.12)

Now, let

%̂ =

∑
β1,...,βN

A1[β1] · · · AN [βN ] P̂ (β1)

1 · · · P̂ (βN )

N (A.13)

be a matrix product operator with bond-dimension D1 (not necessarily in k-normal form) and σ̂
be a matrix product operator with bond-dimension D2 < D1 satisfying

σ̂ = argmin[‖%̂− %̂′
‖

2
| %̂′

∈MD2], (A.14)

i.e. σ̂ is the matrix product operator with bond-dimension D2 < D1 closest to %̂ with respect
to the Hilbert–Schmidt norm (hence a compression of the latter). To determine σ̂ , we use
a procedure where the minimization is performed iteratively by sweeping through the chain
several times while optimizing the compressed matrices site by site [28], i.e. we minimize

‖%̂− %̂′
‖

2
= tr[%̂†%̂] − tr[%̂†%̂′] − tr[(%̂′)†%̂] + tr[(%̂′)†%̂′] (A.15)

with respect to the complex conjugate matrices {Bk[αk]∗} on site k of the state

%̂′
=

∑
α1,...,αN

B1[α1] · · · BN [αN ] P̂ (α1)

1 · · · P̂ (αN )

N (A.16)
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given in k-normal form while keeping all the other matrices fixed. Note that only the last two
terms in (A.15) contribute to the minimization such that

∂

∂(Bk[αk]∗)ik ,ik+1

‖%̂− %̂′
‖

2
=

∂

∂(Bk[αk]∗)ik ,ik+1

(−tr[(%̂′)†%̂] + tr[(%̂′)†%̂′]). (A.17)

Since the state %̂′ is given in k-normal form, we find

∂

∂(Bk[αk]∗)ik ,ik+1

(tr[(%̂′)†%̂′])= (Bk[αk])ik ,ik+1 (A.18)

and

∂

∂(Bk[αk]∗)ik ,ik+1

(−tr[(%̂′)†%̂])= −(L1,...,k−1 · Ak[αk] · Rk+1,...,N )ik ,ik+1, (A.19)

where

L1,...,k−1 =

(∑
αk−1

(Bk−1[αk−1])†
(

· · ·

(∑
α1

(B1[α1])† A1[α1]

)
· · ·

)
Ak−1[αk−1]

)
(A.20)

and

Rk+1,···,N =

(∑
αk+1

Ak+1[αk+1]

(
· · ·

(∑
αN

AN [αN ](BN [αN ])†
)

· · ·

)
(Bk+1[αk+1])†

)
. (A.21)

Hence, the extremal point is given by

Bk[αk] = L1,···,k−1 · Ak[αk] · Rk+1,···,N . (A.22)

Finally, the iterative minimization of the norm difference can be performed by starting with a
N-normal matrix product operator of dimension D2, updating the matrices L1,··· ,N−1 and
{BN [αN ]} and a successive (N−1)-normalization of the resulting matrix product operator. The
matrices on site N − 1, · · · , 1 are subsequently updated by the rule (A.22) while one needs to
keep the matrix product operator in its k-normal form when optimizing on site k. Sweeping
through the chain back and forth several times will lead to a convergence of this procedure.
Since we are minimizing the norm distance in an iterative manner, this scheme might get stuck
in local minima [28]. Therefore we monitor the norm difference by exploiting that after updating
the matrices on site k we have

‖%̂− %̂′
‖

2
= ‖%̂‖2

−

∑
αk

tr[Bk[αk](Bk[αk])†]. (A.23)

With this, we can either abort the algorithm if the norm difference does not converge to zero or
increase the bond-dimension and redo the compression. To avoid the attraction of local minima,
one can consider two sites instead of only one site in each step of the compression algorithm.
Decomposing the optimized matrix products living on two sites by means of a singular value
decomposition yields the matrices living on the single sites and hence the matrix product
structure is preserved [28].
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Appendix B. R-local Hamiltonians are matrix product operators

In this section of the appendix we are considering the specific measurement setting where all
POVM elements act non-trivially only on subsets of R consecutive sites. In this scenario, the
operator R̂(%̂) has the structure of a R-local Hamiltonian and hence a matrix product operator
representation where the bond-dimension can be related to the interaction range R.

It is crucial for the scalability of the matrix product operator formulation of the maximum
likelihood algorithm, see equation (4) of the main text, that the operator [3]

R̂(%̂)=
1

M

∑
i∈11

ni

pi
5̂i =

1

M

∑
i∈11

ni

tr[5̂i %̂]
5̂i (B.1)

can be written as a matrix product operator of low bond-dimension. Now, let the POVM
elements {5̂i}, i ∈11, only act non-trivially on a subset of R consecutive sites. Then, we
find

R̂(%̂)=

N−R+1∑
i=1

n∑
α1,...,αR=1

ci [α1, · · · , αR] Ŝ(α1)

i · · · Ŝ(αR)

i+R−1, (B.2)

where we consider n operators on each site and comprise all coefficients of the operator R̂(%̂)
in ci [α1, . . . , αR]. Note, that the operator Ŝ(α1)

i · · · Ŝ(αR)

i+R−1 only acts on sites i, i + 1, · · · , i + R − 1
and that, for the moment, we do not require that {Ŝ(αk)

k } is a basis on site k = 1, . . . , N . In this
measurement setting, the operator R̂(%̂) obeys the form of a R-local Hamiltonian. It is well
known that R-local Hamiltonians are matrix product operators [28]. Before we show how to
convert a R-local Hamiltonian into its matrix product operator representation, let us discuss an
alternative representation of matrix product operators. Let %̂ be a matrix product operator of
bond-dimension D. Then [28]

%̂ =

∑
α1,...,αN

P1[α1] · · · PN [αN ] P̂ (α1)

1 · · · P̂ (αN )

N

=

∑
α1,...,αN

∑
i2,...,iN

(P1[α1])1,i2(P2[α2])i2,i3 · · · (PN [αN ])iN ,1 P̂ (α1)

1 · · · P̂ (αN )

N

(B.3)

=

∑
i2,...,iN

(∑
α1

(P1[α1])1,i2 P̂ (α1)

1

)
· · ·

(∑
αN

(PN [αN ])iN ,1 P̂ (αN )

1

)
= %̂[1]

· · · %̂[N ]

where the operator-valued matrix (%̂[k])ik ,ik+1 =

(∑
αk
(Pk[αk])ik ,ik+1 P̂ (αk)

k

)
acts only on system

k and where i1 = 1 and iN+1 = 1. We will refer to this representation of the matrix product
operators as the operator-valued matrix product operator representation. Note that, given the
operator-valued matrices, one can find the matrices of the matrix product operator representation
by inversion, i.e.

(Pk[αk])ik ,ik+1 = tr[P̂ (αk)

k (%̂[k])ik ,ik+1]. (B.4)
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We now set out to find an operator-valued matrix product operator representation of the
R-local Hamiltonian R̂(%̂), see equation (B.2). For this, we rewrite equation (B.2) as

R̂(%̂)=

N−R+1∑
i=1

n∑
α1,...,αR=1

ci [α1, . . . , αR] Ŝ(α1)

i Ŝ(α2)

i+1 · · · Ŝ(αR)

i+R−1

(B.5)

=

N−R+1∑
i=1

n∑
α2,...,αR=1

Q̂(α2,...,αR)

i Ŝ(α2)

i+1 · · · Ŝ(αR)

i+R−1

where Q̂(α2,···,αR)

i =
∑n

α1=1 ci [α1, · · · , αR] Ŝ(α1)

i for all i = 1, · · · , N − R + 1. Let us illustrate the

operator-valued matrices for R̂(%̂) in the case of next-neighbour interaction, i.e. we measure
only on all blocks of two contiguous sites and hence R = 2. It is easily verified that the operator-
valued matrices take on the form [28]

R̂[1]
=

[
0Q̂(1)

1 Q̂(2)
1 . . . Q̂(n)

1 1
]

∈ Cd×d(n+2) (B.6)

for site 1,

R̂[k]
=



1 0 . . . 0
Ŝ(1) 0 . . . 0

Ŝ(2)
...

...
...

. . .

Ŝ(n) 0 . . . 0
0 Q̂(1)

k Q̂(2)
k . . . Q̂(n)

k 1


∈ Cd(n+2)×d(n+2) (B.7)

for sites 2, · · · , N − 1 and

R̂[N ]
=



1
Ŝ(1)

Ŝ(2)
...

Ŝ(n)

0


∈ Cd(n+2)×d (B.8)

for site N , such that

R̂(%̂)= R̂[1]
· · · R̂[N ]. (B.9)

The rules to obtain the operator-valued matrices for R-local Hamiltonians can be generalized
straightforwardly. The dimensions of the resulting operator-matrices grow according to d(2 +∑R−1

i=1 ni) where d is the on-site dimension, n the number of considered operators per site (i.e.
the cardinality of the set {Ŝ(α)}) and R the number of consecutive sites in one block on which
measurements are performed. Equation (B.4) allows to compute the matrices of the standard
matrix product operator representation resulting in a bond-dimension of at most d(2 +

∑R−1
i=1 ni).
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For the quantum state tomography of qubits (d = 2) we have n = 6 since every basis rotation
(orientation along X, Y and Z) allows for two spin orientations (spin up or down in the respective
basis). Consequently, for realistic quantum state tomography settings the bond-dimension of the
operator R̂(%̂) still grows rapidly when measured on large block sizes R. Heuristically, it turns
out that the so constructed matrix product operator representation of the operator R̂(%̂) is not
optimal and that one can find a representation with smaller bond-dimension by compressing the
corresponding matrices.

Note that with the strategy discussed above one constructs an exact matrix product
operator representation of the operator R̂(%̂). Of course, to obtain a matrix product operator
approximation one could simply add the individual terms of the operator R̂(%̂), which are often
of matrix product operator structure or straightforwardly converted into the latter. Here, the
bond-dimensions of the individual terms add to the overall bond-dimension. To keep the bond-
dimension at a certain level, one could compress this operator as described in appendix A to keep
the bond-dimension fixed if one exceeds a predetermined threshold. This provides a general
strategy to obtain the matrix product operator representation of the operator R̂(%̂).

Appendix C. Greenberger–Horne–Zeilinger-type states

In this section of the appendix we discuss GHZ-type states of the form

|ψN (φ)〉 = [|0〉
⊗N/2

|1〉
⊗N/2 + eiφ

|1〉
⊗N/2

〉|0〉
⊗N/2]/

√
2 (C.1)

in terms of matrix product states and show how to represent the operator R̂(%̂) comprising the
POVM elements efficiently as a matrix product operator. Recall that for the GHZ-type state one
needs to incorporate two global observables into the set of POVM elements, see equations (14)
and (15) of the main text.

The GHZ-type state as a matrix product state. In this section we set out to find a matrix product
state representation of the GHZ-type state. First, note that

|0〉
⊗N/2

|1〉
⊗N/2/

√
2 =

∑
i1,...,iN

P1[i1] · · · PN [iN ]|i1, · · · , iN 〉, (C.2)

where

P1[1] =
1

√
2
,

Pk[1] = 1, for k = 2, · · · , N/2,

Pk[1] = 0, for k = N/2 + 1, · · · , N ,

Pk[2] = 0, for k = 1, · · · , N/2,

Pk[2] = 1, for k = N/2 + 1, · · · , N .

(C.3)

Similarly, we can find a matrix product state representation with bond-dimension D = 1
for the second term in the GHZ-type state. Further, adding two matrix product states with
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bond-dimension D1 = 1 = D2 results in a matrix product state with bond-dimension D = 2.
Finally, we have for the GHZ-type state

P1[1] =
1

√
2

(
1
0

)
,

Pk[1] =

(
1 0

0 0

)
, for k = 2, · · · , N/2,

Pk[1] =

(
0 0

0 1

)
, for k = N/2 + 1, · · · , N − 1,

PN [1] =

(
0

1

)
,

P1[2] =
eiφ
√

2

(
1
0

)
,

Pk[2] =

(
0 0

0 1

)
, for k = 2, · · · , N/2,

Pk[2] =

(
1 0

0 0

)
, for k = N/2 + 1, . . . , N − 1,

PN [2] =

(
1
0

)
.

(C.4)

Matrix product operator structure of the R̂-operator. For the GHZ-type states we suggest
to measure on all blocks of R contiguous sites and additionally determine the expectation
values of the observables 5̂1 = (1 + X̂⊗N )/4, 5̂2 = (1 − X̂⊗N )/4, 5̂3 = (1 + Ŷ ⊗ X̂⊗N−1)/4
and 5̂4 = (1 − Ŷ ⊗ X̂⊗N−1)/4. In this section of the appendix, we show that the operator

R̂(%̂)=
1

M

∑
i∈1

ni

pi
5̂i =

1

M

∑
i∈1

ni

tr[5̂i %̂]
5̂i (C.5)

can still be written efficiently in the matrix product operator formalism when incorporating
these global observables. Here, M is the total number of measurements, 1 an index set and
ni denotes the number of times outcome 5̂i is obtained for all i ∈1. Now, if 1 contains
all indices corresponding to the local measurements comprised by 11 plus the four indices
contained in 12 labelling the global POVM elements 5̂1 = (1 + X̂⊗N )/4, 5̂2 = (1 − X̂⊗N )/4,
5̂3 = (1 + Ŷ ⊗ X̂⊗N−1)/4 and 5̂4 = (1 − Ŷ ⊗ X̂⊗N−1)/4, the operator R̂ is given by

R̂(%̂)= R̂1(%̂)+ R̂2(%̂), (C.6)

where R̂1(%̂) contains the local measurements and R̂2(%̂) the four global POVM elements.
Now one agrees that R̂(%̂) is indeed a matrix product operator with small bond-dimension.
The first term is a matrix product operator with small bond-dimension D1 due to its locality
(see appendix B) and the global POVM elements are all matrix product operators with bond-
dimensions equal to 1. Hence, R̂(%̂) is a matrix product operator with bond-dimension equal
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to D1 + 4. In fact, we can even find a representation of R̂2(%̂) with a smaller bond-dimension.
We have

R̂2(%̂)=

4∑
i=1

fi

pi
5̂i =

(
f1

p1
+

f2

p2
+

f3

p3
+

f4

p4

)
· 1⊗N/4 +

(
f1

p1
−

f2

p2

)
· X̂⊗N/4

+

(
f3

p3
−

f4

p4

)
· Ŷ ⊗ X̂⊗N−1/4. (C.7)

In this notation, the second and third terms can be combined into a matrix product operator
with bond-dimension 1 such that R̂2(%̂) has bond-dimension D2 = 2. Consequently, R̂(%̂) is
a matrix product operator with bond-dimension D1 + 2. The matrices of the matrix product
operator representation of c1 · X̂⊗N + c2 · Ŷ ⊗ X̂⊗N−1 can be chosen as

Pk[1] = 0, for k = 1, · · · , N ,

P1[2] =
√

2c1

Pk[2] =
√

2, for k = 2, · · · , N ,

P1[3] =
√

2c2

Pk[3] = 0, for k = 2, · · · , N ,

Pk[4] = 0, for k = 1, · · · , N ,

(C.8)

where 1, 2, 3, 4 correspond to the normalized Pauli basis elements P̂ (1)
= 1/

√
2, P̂ (2)

=

X̂/
√

2, P̂ (3)
= Ŷ/

√
2 and P̂ (4)

= Ẑ/
√

2. Thus, we have

c1 X̂⊗N + c2Ŷ ⊗ X̂⊗N−1
=

3∑
i=2

P1[i]P2[2] · · · PL[2] P̂ (i)
1 ⊗ P̂ (2)

2 ⊗ · · · ⊗ P̂ (2)
N (C.9)

such that R̂2(%̂) is a sum of two matrix product operators with bond-dimensions equal to 1.
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[12] Häffner H et al 2005 Nature 438 643–6
[13] Leibfried D et al 2005 Nature 438 639–42

New Journal of Physics 15 (2013) 125004 (http://www.njp.org/)

http://dx.doi.org/10.1002/1521-3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E
http://dx.doi.org/10.1103/PhysRevA.40.2847
http://dx.doi.org/10.1038/nphys1133
http://dx.doi.org/10.1038/nphoton.2012.107
http://dx.doi.org/10.1103/PhysRevA.75.042108
http://dx.doi.org/10.1088/1367-2630/12/4/043034
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1103/PhysRevA.55.R1561
http://dx.doi.org/10.1103/PhysRevA.82.012104
http://dx.doi.org/10.1038/nature04279
http://dx.doi.org/10.1038/nature04251
http://www.njp.org/


22

[14] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Hänsel W, Hennrich M and
Blatt R 2011 Phys. Rev. Lett. 106 130506

[15] Yao X-C, Wang T-X, Xu P, Lu H, Pan G-S, Bao X-H, Peng C-Z, Lu C-Y, Chen Y-A and Pan J-W 2012 Nature
Photon. 6 225

[16] Islam R, Senko C, Campbell W C, Korenblit S, Smith J, Lee A, Edwards E E, Wang C-C J, Freericks J K and
Monroe C 2013 Science 340 583

[17] Flammia S T and Liu Y-K 2011 Phys. Rev. Lett. 106 230501
[18] da Silva M P, Landon-Cardinal O and Poulin D 2011 Phys. Rev. Lett. 107 210404
[19] Gross D, Liu Y-K, Flammia S T, Becker S and Eisert J 2010 Phys. Rev. Lett. 105 150401
[20] Gross D 2011 IEEE Trans. Inform. Theory 57 1548–66
[21] Flammia S T, Gross D, Liu Y-K and Eisert J 2012 New J. Phys. 14 095022
[22] Landon-Cardinal O and Poulin D 2012 New J. Phys. 14 085004
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