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ABSTRACT

A short overview of the current state in the field of quasicrys-
tals is presented with an emphasis on the fundamental questions
brought into focus by the advent of the field. Placing the research
on quasicrystals in a broader context, it becomes apparent that the
main questions which remain open are about the connections be-
tween the ground state structure and the interparticle interactions
and between the nonequilibrium growth conditions and metastable
states. From the point of view of experimental results, the main
question about the structure of real quasicrystals remains unre-
solved.

Like in so many other cases in physics, the discovery of “real” icosahedral
quasicrystals [1] was anticipated, although not predicted, several years earlier 2]
In fact, long before the discovery of quasicrystals, the group theory community
had an opportunity to witness a development of the theoretical ground-work for
studying quasicrystals as a special case of incommensurate crystals. For example
Janner and his co-workers [3] have insisted on several previous conferences on 2
beautiful and now indispensible view of incommensurate crystals as cuts through
higher-dimensional crystals [4—6]; Reciprocal space description of translational or

der, now essential in the classification of Bravais classes of incommensurate and
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qQuasicrystals [7,8], was employed by Jari¢ [9] in the context of structural phase
transitions; Kramer and his collaborators [10] initiated the use of group theoretical
analysis to construct regular structures with non-crystallographic symmetry from
higher-dimensional, reducible, but crystallographic, representations of the same
Symmetry [11]; Mackay [12] presented optical transform of the Penrose quasilat-
tice and suggested, what is now a common knowledge, it consisted of Bragg spots,

manifesting a perfect, albeit aperiodic translational order.

In this lecture, I would like to present a short overview of the state of the art
in the field which has experienced an exponential growth over the last three years.
Rather than going into reviewing numerous detailed and specialized contributions,
often with a narrow and technical point of view, I would like to take a step back
and try to place this field in a broader context so that unresolved fundamental
and general questions, whose answers have ramifications beyond the current qua-
sicrystal research, are brought into focus. More detailed introductory reviews of

the field can be found in several new books [13].

What is, then, the reason many researchers are still skeptical about the ex-
istence of jcosahedral quasicrystals? Are they right or has the existence been at
leasy experimentally verified? Before answering these questions, we will first have
to specify what is an acceptable mathematical ideal of a quasicrystal, what are the
Physical requirements for this ideal to be realized, and to which extent the real,

€Xperimentally observed quasicrystals exhibit the properties of this ideal.

A mathematically ideal translationally ordered structure should be represented

bY:

(a) Discrete set of point-like atoms (delta functions);
(b) Non-zero lower bound on the separation between the atoms;

(c) Diffraction pattern consisting of Bragg peaks (purely discrete Fourier trans-

form) at integral linear combinations of a finite set of scattering vectors.

The first two conditions are appropriate for a classical zero-temperature structure.
At finite temperatures it might be more useful to view the structure in terms of
® nore general occupation probability (density), in which case (a) and (b) should

® replaced by a more subtle condition. Note that the last condition also implies

that a structure which satisfies (a) and (b) fills the whole space uniformly.
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If the minimal number of scattering vectors which generate the diffraction
pattern is D, and the maximal number of linearly independent vectors among them
is r, then the structure is periodic if and only if D = r. Therefore, incommensurate

crystals are further specified by:
(d)y D>r.

Since r is at most equal to d, the dimensionality of the physical space, a structure is
incommensurate whenever D > d. However, it is possible to encounter a situation
when d > D > r in which case the structure would be an incommensurate liquid
crystal, uniform in the (d—r)-dimensional space perpendicular to the r-dimensional

space in which the density is quasiperiodic.

Since all integral linear combinations of the D fundamental scattering vec-
tors form by definition a D-dimensional lattice, they can be embeded in a D-
dimensional real space and chosen, for example, to generate a D-dimensional hy-
percubic reciprocal lattice. The physical “reciprocal” space with nonvanishing
scattering intensity corresponds to an r-dimensional hyperplane. In fact, it can be
shown that whatever density produced the diffraction pattern, it can be always rep-
resented by a d-dimensional planar cut through a (D + d — r)-dimensional density
hypercubic in the D-dimensional subspace and uniform in the remaining (d —r )
dimensions. In particular, ideal atomic positions of an incommensurate (liquid)
crystal, must be represented by the d-dimensional cut through the (D +d — r)

dimensional (liquid) crystal of (D — d)-dimensional atomic hypersurfaces.

It is conceptually important to make a distinction between the usual incom~
mensurate crystals and quasicrystals characterized by the condition which implies

and, consequently, replaces condition (d):
(e) Diffraction pattern has a non-crystallographic symmetry.

Not only that the difference between quasicrystals and the usual incommen-
surate crystals is manifested in some physical properties, such as the absence of
hydrodynamic phase degrees of freedom, but it also played an important role i
the initial skepticism about quasicrystals. Namely, by a small incommensuraté
modulation of a crystal structure, it is easy to construct incommensurate stru¢
tures which satisfy conditions (a)-(d). Since the modulation is by assumptio®

small, such an incommensurate structure has symmetry which is a subgroup of
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the original crystal symmetry. Therefore, it is crystallographic. On the other
hand, incommensurate structures with noncrystallographic symmetry can not be
constructed in such a simple way; necessary symmetry increase requires a modu-
lation amplitude on the order of the original interatomic spacing [14], so that it
is nontrivial to guarantee the fulfillment of the condition (b). Only after the ex-
Perimental discoveries of icosahedral and decagonal quasicrystals, it was realized
that the decagonal Penrose quasilattice [15], and its icosahedral three-dimensional

extension, the Ammann quasilattice [16], satisfy all the conditions (a)-(e).

In terms of the atomic hypersurfaces, the difference between crystallographic
and noncrystallographic symmetry is manifested in the fact that noncrystallo-
graphic symmetry forces discontinuity of these hypersurfaces. Whether the hy-
Persurfaces are continuous or not has important consequences on the excitation
dynamics and elasticity at low temperatures [17]. Discontinuity of the hypersur-
faces leads to the presence of (d — r — 1)-dimensional structural defects whose
nergy is only {d — r — 2)-dimensional. One of the possible consequences is the
“hierarchical” melting of quasicrystals on successively shorter scales, accompanied
With a broadening of diffraction peaks [17].

The most important requirement which a mathematically ideal quasicrystalline
Structure must satisfy in order to represent a physical idealization, is that it min-
imizes a physically reasonable interaction energy or, at finite temperature, a ther-
Modynamic potential. Of course, what should be accepted as a “physically rea-
Sonable” interaction, is not at all obvious. Certainly, the interaction should be
ﬁnite—range, decaying, for example, exponentially at large distances, sufficiently
Tepulsive below certain distance (to prevent a local collapse), and attractive above
Certain distance (to ensure a solid-like ground state at zero external pressure).
FuI‘therlrnore, the interaction should not be too specific. In a certain sense, it
?holﬂd be generic. Namely, one would like to be able to construct a family of
lnteractions, parametrized by some physically significant quantities such as inter-
Action strength, range, anisotropy, etc. Then, this parameter space should have
suﬂ'iciently large dimensionality and richness to allow various equilibrium struc-
t“res, such as periodic and perhaps aperiodic ones, occupying in the parameter

5 . . . .
Pace regions of nonzero volume (i.e. of co-dimension zero).

Most of the current skepticism about quasicrystals is based on the following



338

conjecture;

The ground state of an infinite number of (classical) particles of finitely
many types, interacting via “physically reasonable” interactions, contains

only a finite number of different environments.

Clearly, a structure with a finite number of distinct infinite-range environments is
indeed periodic. However, the above conjecture is based on the fact that for most
interactions there is a finite number of minimum energy finite-range environments,
and on the hope that for finite-range interactions, such (sufficiently large) finite-
range environments could be assembled into a minimum energy infinite structure.
In this way minimization of the interaction energy would become a tiling problem.
Unfortunately, even in the tiling problem, given a finite number of tiles, with a
finite-range matching rules, it can not be generally asserted that a space-filling
tiling with a finite number of infinite-range environments would result. Indeed,

even the space-filling property might not be satisfied.

For example, most of the central potentials for a single species system have
thirteen-particle icosahedral clusters as a minimum energy finite-range environ-
ment, so that the minimization problem reduces to the tiling problem with regular
dodecahedra. Clearly, dodecahedra do not tile the three-dimensional space. This
is an expression of the “frustration” which is intrinsic to such potentials and which
is thought responsible for the formation of amorphous structures. On the othef
hand, a class of quasilattices, including Penrose and Ammann quasilattices, which
satisfy (a)-(e), can be constructed having a finite set of finite-range environment®
and, at the same time, an infinite number of infinite-range environments. Un~
fortunately, except for the obvious and clearly non-generic interaction expressed
by the matching rules, no generic interaction has been invented for which such 2
quasilattice would be the ground state. Similarly, most of the model free energi¢®
which can give quasicrystal states, fail the requirement that they are generic. The
only exceptions can be found in the approximate density functional theories [18]

and [19], the latter of which gives only a metastable quasicrystalline state.

Therefore, the conjecture is neither proved, nor a counter example is know™
Those who believe in periodicity of the ground state do not seem too eager to find
a proof, and often look for an excuse in the statement that a proof of the conjectur®

must be too complicated, otherwise it would have been already found. On the otb¢
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hand, those who are looking for an analytical counter example to the conjecture
have not been successful. In this situation it seems most promising to resort
to computer simulations. Unfortunately, even computer simulations have so far
failed to produce quasicrystaline equilibrium states. Current molecular dynamics
simulations [20] of a system of Lennard-Jones clusters with an orientationally

dependent modulation could change this situation dramatically.

An additional difficulty in understanding the occurence of quasi-crystalline
Structures stems from the impossibility of growing such ideal structures using only
local growth rules [21]. For example, in the case of the Penrose quasilattice, in
order to decide whether a portion of the lattice contains a defect or is in equilib-
Mum, it is generally necessary to examine parts of the lattice arbitrarily far from
this portion [22]. However it might be possible to always relax such defects by a
Soliton-like rearrangement of a number of sites of the order of the sample’s surface,
although the rearranged sites will generally not be confined to the surface. In case
of the Penrose quasilattice, defective sites at the surface of a finite quasilattice,
¢an be confined to the boundary of a Conway decagon, and thus eliminated by
2 successful soliton-like flipping of Conway worms. This mode of annealing and

8rowth is not that much different from growth of ordinary crystals.

Without any conclusive theoretical results about the existence or nonexistence
of Quasicrystals one would like to turn to experiments for an answer. Unfortu-
Nately, the experimental results are not conclusive either: The diffraction patterns
Show distortions from perfect icosahedral symmetry; The peak widths indicate
branslational correlation lengths no longer than ~1000A; The diffraction pattern
ofa single quasicrystallite can not be fitted using a single, perhaps twinned crystal

stl'ucture; No “quasicrystalline” structure seems to be stable.

Three proposals, the twin model, the icosahedral glass model, and the qua-
Sierystal model, are currently competing for an explanation of the experimental
daty, In twin models [23] appearance of icosahedral symmetry is interpreted as
result;ing from twinning a cubic or thombohedral crystal in five or twenty icosa-

edl‘ally related orientations. Current twin models are unable to explain a single
‘®Mplete set of diffraction data. They require crystals with unit cells containing in
®Xcess of ~1000 atoms and, more seriously, different grains of the same quasicrystal
Seern tq, require different size unit cells.
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The icosahedral glass models [23] attempt to explain the structure of “qua-
sicrystals” as perfectly orientationally ordered but positionally glassy with a finite
translational correlation length. Such an “icosahedratic” state emerges naturally
as an intermediate state between a liquid and a perfect quasicrystal [18]. The
icosahedral glass model has a difficulty explaining apparent regularity in trans-
mission electron micrographs along the high symmetry axes. It is also difficult to
obtain peak widths, shapes, and intensities in good agreement with experiments.

A satisfactory phenomenological ideal-quasicrystal model must first describe
the ideal atomic structure of the quasicrystal, that is, it must provide a description
of the three-dimensional atomic surfaces decorating the equivalent six-dimensional
hypercrystal. Then, some kind of disorder must be introduced to account for
deviations observed in experiments. Unfortunately, neither of these two steps has
yet been completed. Several partial answers to the first step have been proposed
in terms of tiling models [23]. In such models a quasicrystal structure is described
by identifying certain structural units, atomic clusters, which are then packed
using a tiling such as the Ammann tiling. An alternative approach, which seem$
quite successful [24], is to directly describe the three-dimensional atomic surfaces
in six-dimensions.

A procedure which combines both of the above approaches, would be to con”
sider a known large unit cell crystallographic structure related to the quasicry»*ital
structure as a rational cut through the hypercrystal. In this way a finite set of
points at the atomic surface would be determined, and the surface could be 8~
terpolated. By extending each point into a locally planar surface, one would b¢
embedding the atomic clusters from the crystal into the quasicrystal in a systern®”
atic fashion. Whether a crystal structure is a good candidate for this procedur®
can be decided by directly using the diffraction data: one first constructs the
six-dimensional Patterson function (density-density correlation function, Four ier
transform of the diffraction pattern); the three-dimensional Patterson function of
a good candidate crystal structure should be well approximated by the appropriate

cut through the six-dimensional Patterson function of the hypercrystal.

As we mentioned above, it is not sufficient just to describe the atomic surface®
In order to reproduce experimental results, it is necessary to be able to identify and

describe disordering mechanisms responsible for peak shifts, broadening, asymm®
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try, etc. Several groups have been able to qualitatively account for some features
of the experimentally observed disorder assuming quenched phase dislocations [25]
in addition to a growth induced uniform phase strain |26]. Another possible source
of disorder is provided by the low energy structural defects, mentioned earlier in

the text [17], which are characteristic of quasicrystals.

Nature of disorder in real quasicrystals can not be fully addressed without
4 reference to their metastability and nonequilibrium nature of their growth. It
is quite possible, and suggested by experiments, that depending on the cooling
Tate, a transition could be observed between crystal, quasicrystal, orientationally
ordered glass, and the usual glass structures. This brings into the focus another
fundamental question: what is the nature of nonequilibrium structure formation
and how the cooling rates affect the resulting structure. For example, even the

€quilibrium growth of large unit cell crystals is poorly understood.

In conclusion, the discovery of the icosahedral quasicrystals brought into focus
two fundamental questions, about the nature of ground state structures and about
the nature of nonequlibrium growth of stable and metastable structures. This
I itself could turn out to be a sufficient outcome of the quasicrystal euphoria.
MOreover, even if it turns out that real quasicrystals are orientationally ordered
glaSsess, or even (twins of) large unit cell crystals, the ideal quasicrystal with a

Prescribed “disorder” will probably offer the most efficient and natural description
of the system.

Quasicrystals are dead. Long live quasicrystals!
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