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ABSTRACT 

A short  overview of the current  state in the field of quasicrys- 
tals is presented with an emphasis on the fundamental  questions 
brought  into focus by the advent of the field. Placing the research 
on quasicrystals in a broader context,  it becomes apparent  tha t  the 
main  questions which remain open are about  the connections be- 
tween the ground state s t ructure and the interparticle interactions 
and between the nonequil ibrium growth conditions and metastable  
states. From the point  of view of experimental  results, the main  
question about  the s t ructure  of real quasicrystals remains unre- 
solved. 

Like in so many  other  cases in physics, the discovery of "real" icosahedral 

quasicrystals [1] was anticipated, al though not predicted, several years earlier [2]. 

In fact~ long before the discovery of quasicrystals, the group theory community 

had an oppor tuni ty  to witness a development of the theoretical ground-work for 

s tudying quasicrystals as a special case of incommensurate  crystals. For example, 

Janner  and his co-workers [3] have insisted on several previous conferences on a 

beautiful and now indispensible view of incommensurate  crystals as cuts through 

higher-dimensional crystals [4-6]; Reciprocal space description of translational or- 

der, now essential in the classification of Bravais classes of incommensurate  a ud 
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quasicrystals [7,8], was employed by Jarid [9] in the context of structural phase 

transitions; Kramer and his collaborators [10] initiated the use of group theoretical 

analysis to construct regular structures with non-crystallographic symmetry from 

higher-dimensionM, reducible, but crystallographic, representations of the same 

Symmetry [11]; Mackay [12] presented optical transform of the Penrose quasilat- 

tice and suggested, what  is now a common knowledge, it consisted of Bragg spots, 

manifesting a perfect, albeit aperiodic translational order. 

In this lecture, I would like to present a short overview of the state of the art 

ia the field which has experienced an exponential growth over the last three years. 

l~ather than going into reviewing numerous detailed and specialized contributions, 

Often with a narrow and technical point of view, I would like to take a step back 

and try to place this field in a broader context so that  unresolved fundamental  

and general questions, whose answers have ramifications beyond the current qua- 

sicrystal research, are brought into focus. More detailed introductory reviews of 

the field can be found in several new books [13]. 

What  is, then, the reason many researchers are still skeptical about the ex- 

istence of icosahedral quasicrystals? Are they right or has the existence been at 

least experimentally verified? Before answering these questions, we will first have 

to specify what is an acceptable mathematical ideal of a quasicrystal, what are the 

Physical requirements for this ideal to be realized, and to which extent the real, 

experimentally observed quasicrystals exhibit the properties of this ideal. 

A mathematically ideal translationally ordered structure should be represented 
by: 

(a) Discrete set of point-like atoms (delta functions); 

(b) Non-zero lower bound on the separation between the atoms; 

(c) Diffraction pattern consisting of Bragg peaks (purely discrete Fourier trans- 

form) at integral linear combinations of a finite set of scattering vectors. 

The first two conditions are appropriate for a classical zero-temperature structure. 

At finite temperatures it might be more useful to view the structure in terms of 

raore general occupation probability (density), in which case (a) and (b) should 

l~e replaced by a more subtle condition. Note that  the last condition also implies 

that a structure which satisfies Ca) and (b) fills the whole space uniformly. 
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If the minimal  number  of scattering vectors which generate the diffraction 

pa t te rn  is D, and the maximal  number  of linearly independent  vectors among them 

is r, then the s tructure is periodic if and only if D = r. Therefore, incommensurate  

crystals are fur ther  specified by: 

(d) D > r .  

Since r is at most  equal to d, the dimensionality of the physical space, a s t ructure  is 

incommensura te  whenever D > d. However, it is possible to encounter  a situation 

when d > D > r in which case the s t ructure  would be an incommensura te  liquid 

crystal, uniform in the (d- r ) -d imens ional  space perpendicular  to the r-dimensional 

space in which the density is quasiperiodic. 

Since all integral linear combinations of the D fundamental  scattering vec- 

tors form by definition a D-dimensional  lattice, they can be embeded in a D- 

dimensional real space and chosen, for example, to generate a D-dimensional  hy" 

percubic reciprocal lattice. The physical "reciprocal" space with nonvanishing 

scattering intensity corresponds to an r-dimensional hyperplane.  In fact, it can be 

shown that  whatever density produced the  diffraction pat tern ,  it can be always rep" 

resented by a d-dimensional planar cut through a (D + d -  r)-dimensional density, 

hypercubic in the D-dlmensional  subspace and uniform in the remaining (d - r) 

dimensions. In particular,  ideal atomic positions of an incommensura te  (liquid) 

crystal, must  be represented by the d~dimensional cut  th rough the (D + d - r)- 

dimensional (liquid) crystal of (D - d)-dimensional atomic hypersurfaces. 

It is conceptually impor tant  to make a distinction between the usual incom" 

mensura te  crystals and quasicrystals characterized by the condit ion which implies 

and, consequently, replaces condition (d): 

(e) Diffraction pa t te rn  has a non-crystallographic symmetry.  

Not only that  the difference between quasicrystals and the usual incomme g" 

surate crystals is manifested in some physical properties, such as the absence of 

hydrodynamic  phase degrees of freedom, bu t  it also played an impor tan t  role i~ 

the initial skepticism about  quasicrystals. Namely, by a small incommensurate 

modula t ion  of a crystal structure,  it is easy to construct  incommensurate  str uc~ 

tures which satisfy conditions (a)-(d). Since the modula t ion  is by assumptiO~ 

small, such an incommensurate  s t ructure  has symmet ry  which is a subgroup of 
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the original crystal symmetry. Therefore, it is crystallographic. On the other 

hand, incommensurate structures with noncrystallographic symmetry can not be 

Constructed in such a simple way; necessary symmetry increase requires a modu- 

lation amplitude on the order of the original interatomic spacing [14], so that  it 

is nontrivial to guarantee the fulfillment of the condition (b). Only after the ex- 

perimental discoveries of icosahedral and decagonal quasicrystals, it was realized 

that the decagonal Penrose quasilattice [15], and its icosahedral three-dimensional 

extension, the Ammann quasilattice [16], satisfy all the conditions (a)-(e). 

In terms of the atomic hypersurfaces, the difference between crystallographic 

and noncrystaUographic symmetry is manifested in the fact that noncrystallo- 

graphic symmetry forces discontinuity of these hypersurfaces. Whether  the hy- 

Persurfaces are continuous or not has important consequences on the excitation 

dynamics and elasticity at low temperatures [17]. Discontinuity of the hypersur- 

faces leads to the presence of (d - r - 1)-dimensional structural defects whose 

energy is only (d - r - 2)-dimensional. One of the possible consequences is the 

"hierarchical" melting of quasicrystals on successively shorter scales, accompanied 

With a broadening of diffraction peaks [17]. 

The most important requirement which a mathematically ideal quasicrystalline 

Structure must  satisfy in order to represent a physical idealization, is that  it min- 

i~aizes a physically reasonable interaction energy or, at finite temperature,  a ther- 

raodynamic potential. Of course, what should be accepted as a "physically rea- 

sonable" interaction, is not at all obvious. Certainly, the interaction should be 

finite-range, decaying, for example, exponentially at large distances, sufficiently 

repulsive below certain distance (to prevent a local collapse), and attractive above 

certain distance (to ensure a solid-like ground state at zero external pressure). 

FUrthermore, the interaction should not be too specific. In a certain sense, it 

Should be generic. Namely, one would like to be able to construct a family of 

irlteractions, parametrized by some physically significant quantities such as inter- 

action strength, range, anisotropy, etc. Then, this parameter space should have 

sui~iciently large dimensionality and richness to allow various equilibrium struc- 

tares, such as periodic and perhaps aperiodic ones, occupying in the parameter 

space regions of nonzero volume (i.e. of co-dimension zero). 

Most of the current skepticism about quasicrystals is based on the following 
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conjecture: 

The ground state of an infinite number  of (classical) particles of finitely 

many types, interacting via "physically reasonable" interactions, contains 

only a finite number  of different environments.  

Clearly, a s t ructure  with a finite number  of distinct infinite-range environments  is 

indeed periodic. However, the above conjecture is based on t h e / a c t  that  for most 

interactions there is a finite number  of min imum energy finite-range environments,  

and on the hope that  for finite-range interactions, such (sufficiently large) finite- 

range environments  could be assembled into a m in imum energy infinite structure. 

In this way minimizat ion of the interaction energy would become a tiling problem. 

Unfortunately, even in the tiling problem, given a finite number  of tiles, with a 

finite-range matching rules, it can not  be generally asserted that  a space-filling 

tiling with a finite number  of infinite-range environments would result. Indeed, 

even the space-filling proper ty  might  not be satisfied. 

For example, most  of the  central potentials for a single species system have 

thirteen-particle icosahedral clusters as a min imum energy finite-range environ" 

ment,  so that  the minimization problem reduces to the tiling problem with regular 

dodecahedra.  Clearly, dodecahedra do not  tile the three-dimensional space. This 

is an expression of the "frustration" which is intrinsic to such potentials and which 

is thought  responsible for the formation of amorphous  structures.  On the other 

hand,  a class of quasilattices, including Penrose and A m m a n n  quasilattices, which 

satisfy (a)-(e), can be constructed having a finite set of finite-range environments 

and, at the same time, an infinite number  of infinite-range environments.  U~" 

fortunately, except for the obvious and clearly non-generic interaction expressed 

by the  matching rules, no generic interaction has been invented for which such ~ 

quasilattice would be the  ground state. Similarly, most  of the model  free energies 

which can give quasicrystaI states, fail the requirement that  they are generic. The 

only exceptions can be found in the approximate density functional theories [18] 

and [19], the latter of which gives only a metastable quasicrystalline state. 

Therefore, the conjecture is neither proved, nor a counter example is knoW~' 

Those who believe in periodicity of the ground state do not  seem too eager to find 

a proof, and often look for an excuse in the  s ta tement  tha t  a proof of the conjecture 

must  be too complicated, otherwise it would have been already found. On the othe~ 
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hand, those who are looking for an analytical counter example to the conjecture 

have not been successful. In this situation it seems most promising to resort 

to computer  simulations. Unfortunately, even computer simulations have so far 

failed to produce quasicrystaline equilibrium states. Current molecular dynamics 

Simulations [20] of a system of Lennard-Jones clusters with an orientatlonally 

dependent modulation could change this situation dramatically. 

An additional difficulty in understanding the occurence of quasi-crystalline 

Structures stems from the impossibility of growing such ideal structures using only 

local growth rules [21]. For example, in the case of the Penrose quasilattice, in 

Order to decide whether a portion of the lattice contains a defect or is in equilib- 

rium, it is generally necessary to examine parts of the lattice arbitrarily far from 

this portion [22]. However it might be possible to always relax such defects by a 

soliton-like rearrangement of a number of sites of the order of the sample's surface, 

although the rearranged sites will generally not be confined to the surface. In case 

~f the Penrose quasilattice, defective sites at the surface of a finite quasilattice, 

Can be confined to the boundary of a Conway decagon, and thus eliminated by 

Successful soliton-like flipping of Conway worms. This mode of annealing and 

~rowth is not that  much different from growth of ordinary crystals. 

Without any conclusive theoretical results about the existence or nonexistence 

of quasicrystals one would like to turn to experiments for an answer. Unfortu- 

nately, the experimental results are not conclusive either: The diffraction patterns 

Show distortions from perfect icosahedral symmetry; The peak widths indicate 

translational correlation lengths no longer than ~.1000~; The diffraction pattern 

of a single quasicrystallite can not be fitted using a single, perhaps twinned crystal 

Structure; No Uquasicrystalline" structure seems to be stable. 

Three proposals, the twin model, the icosahedral glass model, and the qua- 

alcrystal model, are currently competing for an explanation of the experimental 

data. In twin models [23] appearance of icosahedral symmetry is interpreted as 

resulting from twinning a cubic or rhombohedral crystal in five or twenty icosa- 

hedrally related orientations. Current twin models are unable to explain a single 

~°raplete set of diffraction data. They require crystals with unit cells containing in 

e~cess of ~-1000 atoms and, more seriously~ different grains of the same quasicrysta] 

~eera to require different size unit cells. 
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The icosahedral glass models [23] a t tempt  to explain the structure of "qua- 

sicrystals" as perfectly orientationally ordered but positionaIly glassy with a finite 

translational correlation length. Such an "icosahedratic" state emerges naturally 

as an intermediate state between a liquid and a perfect quasicrystal [18]. The 

icosahedral glass model has a difficulty explaining apparent regularity in trans- 

mission electron micrographs along the high symmetry axes. It is also difficult to 

obtain peak widths, shapes, and intensities in good agreement with experiments. 

A satisfactory phenomenological ideal-quasicrystal model must first describe 

the ideal atomic structure of the quasicrystal, that  is, it must  provide a description 

of the three-dimensional atomic surfaces decorating the equivalent six-dimensional 

hypercrystal. Then, some kind of disorder must be introduced to account for 

deviations observed in experiments. Unfortunately, neither of these two steps haS 

yet been completed. Several partial answers to the first step have been proposed 

in terms of tiling models [23]. In such models a quasicrystal structure is described 

by identifying certain structural units, atomic clusters, which are then packed 

using a tiling such as the Ammann tiling. An alternative approach, which seems 

quite successful [24], is to directly describe the three-dimensional atomic surfaces 

in six-dimensions. 

A procedure which combines both of the above approaches, would be to con" 

sider a known large unit cell crystallographic structure related to the quasicrystal 

structure as a rational cut through the hypercrystal. In this way a finite set of 

points at the atomic surface would be determined, and the surface could be i~" 

terpolated. By extending each point into a locally planar surface, one would be 

embedding the atomic clusters from the crystal into the quasicrystal in a system" 

atic fashion. Whether a crystal structure is a good candidate for this procedure 

can be decided by directly using the diffraction data: one first constructs the 

six-dimensional Patterson function (density-density correlation function, Fourier 

transform of the diffraction pattern); the three-dimensional Patterson function of 

a good candidate crystal structure should be well approximated by the appropriate 

cut through the six-dimensional Patterson function of the hypercrystal. 

As we mentioned above, it is not sufficient just  to describe the atomic surfaces' 

In order to reproduce experimental results, it is necessary to be able to identify and 

describe disordering mechanisms responsible for peak shifts, broadening, asym ~e" 
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try, etc. Several groups have been able to qualitatively account for some features 

of the experimentally observed disorder assuming quenched phase dislocations [25] 

in addition to a growth induced uniform phase strain [26]. Another possible source 

of disorder is provided by the low energy structural defects, mentioned earlier in 

the text [17], which are characteristic of quasicrystals. 

Nature of disorder in real quasicrystals can not be fully addressed without 

a reference to their metastability and nonequilibrium nature of their growth. It 

is quite possible, and suggested by experiments, that  depending on the cooling 

rate, a transition could be observed between crystal, quasicrystal, orientationally 

Ordered glass, and the usual glass structures. This brings into the focus another 

fundamental question: what is the nature of nonequilibrium structure formation 

and how the cooling rates affect the resulting structure. For example, even the 

equilibrium growth of large unit cell crystals is poorly understood. 

In conclusion, the discovery of the icosahedral quasicrystals brought into focus 

two fundamental  questions, about the nature of ground state structures and about 

the nature of nonequlibrium growth of stable and metastable structures. This 

in itself could turn out to be a sufficient outcome of the quasicrystal euphoria. 

MOreover, even if it turns out that  real quasicrystals are orientationally ordered 

glasses, or even (twins of) large unit cell crystals, the ideal quasicrystal with a 

Prescribed "disorder" will probably offer the most efficient and natural  description 

of the system. 

Quasicrystals are dead. Long live quasicrystals! 
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