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ABSTRACT: Monolithic Active Matrix with Binary Counters (MAMBOQO) V ASIC has been
designed for detecting and measuring low energy X-rays. A nested well structure with a buried
n-well (BNW) and a deeper buried p-well (BPW) is used to electrically isolate the detector from
the electronics. BNW acts as an AC ground to electrical signals and behaves as a shield. BPW
allows for a homogenous electric field in the entire detector volume. The ASIC consists of a
matrix of 50x52 pixels, each of 105x105um’. Each pixel contains analog functionality
accomplished by a charge preamplifier, CR-RC? shaper and a baseline restorer. It also contains
a window comparator with Upper and Lower thresholds which can be individually trimmed by
4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit counter which is
reconfigured as a shift register to serially output the data from the entire ASIC.
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1. Introduction

Combining the detector with the signal processing electronics without requirement of bump or
other post-fabrication bonding techniques is possible using the Silicon on Insulator (SOI)
process. Several designs of pixel detectors with complete in-pixel processing chain for imaging
and test structures to explore the properties of the process have been manufactured using the
Lapis (OKI) SOI process, available through the SOIPIX collaboration. Detailed tests have led
to the conclusion that the process suffers from direct capacitive coupling between the detector
and electronics. Hence it requires a careful approach for shielding the detector and electronics
from each other.

2. Nested well structure

2.1 Concept

A fully depleted (FD) CMOS SOI 0.2 um process is the base for this development. The nested
well structure is shown in Figure 1. It consists of a buried n-well (BNW) underneath all the
electronics which acts as an AC ground to all electrical signals capacitively coupling to BNW.
A deeper buried p-well (BPW) allows for a homogenous electric field through the entire
detector volume and is the charge collection electrode.



Figure 1 Conceptual view of the nested well structure, where BNW acts as a shield between the
detector and the electronics

The nested well structure was collaboratively developed by Fermilab and Lapis Semiconductor
Ltd (formerly OKI) and KEK as an effective method of shielding.
The main advantages of the structure includes
e Full isolation of the electronics and the detector charge collection node,
e Electric potential under any circuitry is kept constant at AC ground.
e Allows designs with amplification stages and virtual ground such as charge sensitive
amplifier (CSA)
e Removes parasitics feedbacks and instabilities
The main disadvantage of the structure is
e Increased input capacitance of CSA which is directly dependent on the size of the
designed pixel.

2.2 Simulation
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Figure 2 Pixel with Burried P Well (BPW), a Figure 3 Pixel with nested well structure a step
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metal to determine charge coupling from the determine effectiveness of the shielding between
electronics to the detector the electronics and the detector

The structures showed in Figure 2 and Figure 3 were simulated in Silvaco (device physics
solver) to test the effectiveness of the nested well approach. The substrate is connected to a
voltage called Die Pad. The interference metal is about 1um wide. The capacitance between an



interference metal and pwell (BPW) contact increases as the width of the BPW increases and
saturates when the interference metal is within the well boundary as shown in Figure 4, it is
independent of the Die Pad (DP) voltage. The structure with just the BPW showed that any
activity on the interference metal was directly injected into the p-well contact which would then
be erroneously treated as an input signal by the amplifier as shown in . A step of voltage of
100mV is applied at the interference metal for various dc bias voltages (V_bias) of 0, 1 & 2V.
The charge injected is a function of the BPW width as shown in Figure 5. Hence the nested well

structure was developed to overcome these issues.

20E-01

1.5E-01

contact (#Fium)

1.0E-01

S0E-02

Capactancebetween Interference and Pwel

0.0E+00

Raa-=a

/ —=- DP=0.5V

/ DP =2V

0 0z 4 B ® W 12 14 1 18 IC

BPWWidth (um)

Figure 4 Capacitance between interference metal
and pwell contact vs. BPW width which shows
that the capacitance is directly proportional to
the placement of the interference metal and it
saturates once it is outside the well width
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Various simulations are performed for optimizing the capacitances between interference metal
and BNW contact and interference metal and pwell (BPW) contact as shown in Figure 6 and
Figure 7 respectively. They depend on the combination of doping energies and the doses of
Phosphorous in the implanting of BNW. For better shielding it is desired to have as high a dose
and implantation energy for BNW as possible which is only limited by its effects on transistors.

The diode capacitance (junction of BNW and BPW) is strongly dependent on the size of the
designed pixel, namely on the area of the deep BPW and BNW. In the current layout the diode
capacitance is approximately equal to 2.1pF for an area of 105umx105um; in the final design it
is estimated that reducing the size of the pixel by 25-30% while maintaining the same
functionality and further optimizing the conditions of doping of the implant will reduce this
capacitance to 1 pF or even less. The ASIC was design to study the concept and hence the
design and layout was optimized for testability and not for smallest achievable size.

3. MAMBO V ASIC: In-pixel electronics

Monolithic Active Matrix with Binary Counters MAMBO V ASIC contains a matrix of 50
x 52 pixels of size 105pum x 105pm and occupies an area of 6mm x 6mm. Each pixel contains
analogue functionality accomplished by a charge preamplifier, CR-RC* Shaper and a baseline
restorer.

The preamplifier and shaper both use a regulated cascode with gain boosting of the input
transistor to achieve a high open loop gain. Cascoding is essential in deep submicron processes
because channel conductances (gqs) are typically high, resulting in low dynamic resistances
below 1MQ. The preamplifier uses a 14fF feedback capacitance. The shaper uses an active
transistor feedback resistance of 28MQ and the input transistor transconductance (g, is equal
to 6.5uS. A test capacitance of 1.7fF is connected at the input of the preamplifier for analog
calibration.

The pixel also contains a window comparator with upper and lower thresholds which can
be individually trimmed by 4 bit current steering DACs to remove systematic offsets. The
window comparator consists of two hysteresis comparators and double discriminator logic
(DDL). If the output of the shaper is within the upper and lower threshold it is counted as a hit,
all other signals are discarded. The hits are registered by a 12 bit counter which is reconfigured
as a shift register to serially output the data from the entire ASIC. The pixel contains an
analogue and a digital buffer which can be enabled for single pixel tests. It also contains a
configuration register, which controls various testing modes and can be used to disable the
pixel. The pixel block diagram is shown in Figure 8.
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Figure 8 MAMBO V Pixel Block Diagram, each pixel contains a preamplifier, shaper, baseline
restorer, window discriminator with 4 bit trimming DACs and reconfigurable counter/shift register

The ASIC can be configured into several test modes such as analog calibration, DAC trimming
and counter test modes as shown in Figure 9 to enable efficient characterization tests.
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Figure 9 Each pixel of the ASIC can be tested individually in the analog calibration mode, DAC
trimming mode or the counter test mode.



4., Tests

A 6x6mm? ASIC was manufactured in March 2012 using a Czochralski substrate with less
than 1kQ resistance for a detector area of 5.3x5.3mm? and wafer thickness of 325um. Detector
leakage, C/V and I/V measurements were performed for the entire area of the ASIC.

4.1 Detector performance
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Figure 10 Detector I-V characteristics Figure 11 Detector 1/C*-V characteristics shows
shows that breakdown occurs at around that the detector is not fully depleted before
130V. breakdown occurs

The detector breakdown voltage is equal to 130V as shown in Figure 10, however as
shown in Figure 11 full depletion is not achieved before voltage breakdown occurs. This would
indicate that the doping level of the substrate in not adequate and a higher resistivity substrate is
desirable.

4.2 Transistor performance in nested wells

The transfer characteristics (lgs vs. Vg) of NMOS and PMOS transistors is plotted in
Figure 12 and Figure 13 respectively. As expected the performance of the electronics is
independent of the substrate material. For an NMOS transistor of size 41x (0.64pm/0.8pum) and
PMOS transistor of size 41x(2um/0.5um), the plots indicate that there is no threshold voltage
shifts, on increasing the voltage on the Die Pad from 0-100V whereas on increasing the voltage
of BNW (Vgnw) from 1-5V threshold voltage shift of approximately 100mV for PMOS and
150mV for NMOS transistors is observed, as expected.
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Figure 13 PMOS transistor characteristics,
changing Die Pad voltage does not cause any
threshold shifts in the transistor. Whereas on

increasing the BNW voltage the transistor
threshold increases.

increasing the BNW voltage the transistor
threshold increases.

4.3 DAC scans

Figure 14 and 15 shows the results of the 4 bit current steering DAC threshold scans for Die Pad
(DP) voltages of 2V and 20V respectively, for all the 2600 pixels. The test is performed by
connecting one input of the comparator to the shaper output and the other to baseline, which is
the reference voltage for the analog signal. The current is varied in both the arms of the
comparator by changing the DAC value, the counter records the number of noise hits obtained
within a pre-determined time interval. A data set consists of the counter output vs. DAC value
for each pixel and repeated 500 times. Each data set is Gaussian fitted and subsequently
normalized. All these plots are then averaged at discrete data points corresponding to the DAC
value. The tuning range for DAC values from 0000 to 1111 corresponds to £90mV to = 200mV
for DAC currents ranging from 8nA to 64nA per pixel respectively. The plots show that
increasing the DAC current allows for a wider range of offset to be corrected. The results
confirm that increasing the Die Pad voltage to further deplete the detector does not alter the
transistor performance.
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Figure 16 Average Counter output vs. Threshold
Voltage for Counter supply voltage of 1.2, 1.6

and 1.8V
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Baseline is set to 400mV and applied as an external voltage to the baseline restorer. The
DAC is set at the nominal value obtained from the DAC scans to cancel offset, the lower
threshold of the window comparator is scanned to obtain plots shown in Figure 16 and 17 by
varying counter power supply and the DAC current respectively. The DAC performance is
independent of the supply voltage. Increasing the DAC current allows for a wider range of
offset to be corrected, hence it has a slightly broader distribution.



4.4 Imaging

Figure 18 and 19 are images taken with the ASIC with offset cancellation using a '*Cd 22keV
source and a 1mm thick tungsten rectangular mask of 1.9mm x 1.9mm, and no mask

respectively at a Die Pad voltage of 2V. The shadow around right and lower edge of the images
is a result of the PCB obscuring the detector.
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Figure 18 Image with tungsten mask shows Figure 19 Image without any mask shows
that there are no hits where the mask is placed. hits in the entire area of the ASIC



5. Conclusions

The OKI process is a step toward a new generation of monolithic detectors. Future process
optimizations of doping to decrease parasitic capacitance are being performed. Preliminary
tests indicate that the nested well structure successfully shields the detector and electronics.
Detailed tests are underway of the signal processing chain and the detector- electronics
combination.
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