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ABSTRACT

For the next generation of ete™ linear colliders in the TeV range, the energy
loss due to beamstrahlung during the collision of the ete™ beams is expected to
be substantial. One consequence is that the center-of-mass energy between the
colliding particles can be largely degraded from the designed value. The knowl-
edge on the differential luminosity as a function of the center-of-mass energy is
essential for particle physics analysis on the interesting events. On the other hand,
the beamstrahlung photon spectrum provides useful information on the low en-
ergy backgrounds and high energy v luminosity. In this paper, we derive analytic
formulas for the ete™ and 7 energy spectra under multiple beamstrahlung pro-
cess, and the ete~ and 77y differential luminosities. Major characteristics of these

formulas are discussed.
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1. INTRODUCTION

It is known that beamstrahlung [1], the synchrotron radiation from the colliding
ete™ beams, will carry away a substantial fraction of the primary beam energy,
Ejy, in future linear colliders. This, for one thing, will result in a degradation of the
center-of-mass energy of the colliding beams. From the high energy physics point
of view, it is important to know the luminosity as a function of the effective ete”
center-of-mass, so as to unfold, e.g., the energy dependence of particle production
processes. In addition, the low energy end of the e*e™ and v spectra are also

important for background analysis.

When the average number of beamstrahlung photons radiated per beam par-
ticle is much less than unity, the energy spectrum for the final e* or e~ beams
is simply the well-known Sokolov-Ternov spectrum [2] for the radiated photons
with the fractional photon energy, y(= Ey/FEo), replaced by the corresponding fi-
nal electron (or positron) energy, = = 1 —y. When the condition is such that the
average number of photons radiated is not much less than unity, the effect of suc-
cessive radiation becomes important. Previously, the multiphoton beamstrahlung
process has been studied by Blankenbecler and Drell (3], and independently by
Yokoya and Chen [4]. In this paper, we shall adopt the formulation developed
in Reference [4] as the basis for our derivation of the differential luminosity. In
Section 2, we will review the electron spectrum under multiphoton beamstrahlung.
Section 3 will be devoted to the derivation of the ete™ differential luminosity. In
Section 4, we derive the phpton spectrum, and in Section 5, the 7y luminosity.
The characteristic feature of our formula is discussed and a comparison to com-
puter simulations is presented in the last section. Unless expressed explicitly, the

convention e = h = ¢ = 1 is assumed throughout this paper.



2. ELECTRON ENERGY SPECTRUM

Let ¢(z,t) be the energy spectral function of the electron for energy z = E /Eqy
at time ¢ normalized as [ (z,t)dz = 1. We assume that the emission of the photon
takes place in an infinitesimally short time interval. Then the interference between
successive radiation processes is negligible, and the evolution of the spectral func-

tion can be described by the rate equation
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where the first term corresponds to the sink, and the second term to the source,
for the evolution of ¥(z,t). F is the spectral function of radiation, i.e., F(z,z')da’
is the transition probability of an electron from energy z' to the energy interval
(z,z+dz) per unit time. Obviously, F(z,z') = 0if 2 > 2'. Notice, however, that F’
does not include the probability for electrons to remain at the same energy without
photon emission. Pulling out ¥(z,t) from the first term, which is independent of
2", the remaining integral represents the average number of photon radiated per
unit time by the electron with an instantaneous energy x:

V(:C)z/d:t"F(a:”,x) . (2)
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The spectral function of radiation can be characterized by the beamstrahlung

parameter T, defined as

B
T= 7OE ) (3)

where 79 = Eo/mc?, B is the effective field strength in the beam, and B, =

m?c3/eh ~ 4.4 x 10'3 gauss is the Schwinger critical field. High energy ete™ beams



generally follow Gaussian distributions in the three spatial dimensions. Thus the
- local field strength varies inside the beam volume. It can be shown [5], however,
through integrating over the impact parameter and the longitudinal variations,
that the overall beamstrahlung effect can be simply described as if all particles
experience, during an effective collision time 7 = /2 = V30,, a uniform mean

field,

Boean ~ 5 eN
60.(0p + 0y)

: (4)
where N is the total number of particles in a bunch, 0,0y, 0, are the rms sizes of
the Gaussian beam, and | = 2v/30, is the effective length of the oncoming bunch in
our model. Thus in the following calculations we will assume, for the entire beam,
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where r. is the classical electron radius, and « is the fine structure constant. For
YT < 1, the radiation is in the classical regime, such as that in the SLC, where
T ~ 0.004. In contrast, for the next-generation linear colliders, T ~ 0.1 to 1,
and it starts to enter into the quantum regime. Notice. however, that the typical
number of photons radiated per beam particle is of the order unity. Thus even
in the classical regime, such as that in SLC, the discrete nature of beamstrahlung

should not be overlooked.

The transition probability F' derived by Sokolov and Ternov (2] is

VelK
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where ¢ = 32'Y/2, n = [(1/x) — (}/z')], and for convenience, x = 2/(3Y). To
~ be sure, while T (and therefore ) is a global parameter in beamstrahlung, the

parameter ¢ as defined here is not. For any given T, ¢ ranges from 0 to 3Y/2,

according to the instantaneous energy carried by the individual particle between

successive radiation processes. K)s are the modified Bessel functions and v, is
photons per unit time (or length, with ¢ = 1), calculated by the
classical theory of radiation. By definition, this is also the limiting case for v(z)
where z — 0,
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vag=v(z=0)=

Note that for a given field strength v is independent of the particle energy. In

general, however,

V(l’) = I/CIU()(.TT) s (8)
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To look for a compact analytic solution for ¢ in Equation (1), the exact
Sokolov-Ternov spectral function in Equation (6) is somewhat cumbersome. One
can instead invoke an approximate expression [4], which is independent of £, to

replace f(£,n) in Equation (6):



With this approximation, Equation (1) can be solved by proper Laplace transfor-

- mations. The details can be found in Reference [4]. The solution is
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where 5, = k[(1/z) — 1], and
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with A > 0 and 0 < u < oco. The first term in Equation (10) represents the electron
population that suffers no radiation. The nt* term in the Taylor expansion of the

second term corresponds to the process of n-photon emissions.

For finite values of T, the rate equation cannot be solved exactly since v(x)
is not constant in time anymore. However, in the intermediate regime where T 5
©(10), v(z) should not deviate from v too significantly. This suggests a solution

based upon minor perturbation from the above classical result. It is found [4] that

-0
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for the intermediate regime, where
vy=v(e=1)=U(T)va , v=avg+ (1 —a)vy . (13)

In effect, ¥ is a linear interpolation between the two extrema vy and v,. We see
that ¥ — vy as £ — 1, since for the electron to remain at high energy after n-
photon process, it can only have radiated classically. On the other hand, v — v,
as z — 0. This indicates that low energy electron spectrum is mostly contributed

by quantum radiations.



3. CENTER-OF-MASS e*e” LUMINOSITY

To find the differential luminosity L£(s) as a function of the effective center-of-
mass energy squared, s, one needs to convolute the energy spectrum of one beam,
¥Y(z1,t), with the other, ¥(z2,t). Let t = 0 when the e*e~ bunches first meet.
In addition, let the longitudinal coordinate z along the beam be defined such that
z = 0 at the front of each beam. Then the first z-slice in beam #1 will always

encounter a “fresh” beam #2:

1/2
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0

where [ is the total length of each bunch. As explained in the previous section,
our model assumes a uniform field within an effective bunch length I = 2v/30, in
relating to the Gaussian distribution. The total collision time is {/2 because both
beams move with the speed of light against each other. A slice at z in beam #1,

however, will always see a beam #2 which has evolved for a time ¢ = z/2:
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Adding all z-slices in beam #1 together, we have
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Note that the two integrals in the last expression are functionally identical. Insert-

ing the spectral function in Equation (10), we find, for T <« 1,

(17)
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where n; = «{(1/z)—1], and N = v4l/2 is the average number of photons radiated
per particle during the entire collision of the ete™ beams. The function h(z) in

the second term is

00 n/3

— _ Nz
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where v(n + 1, N) is the incomplete gamma function.
The center-of-mass energy squared for the system of two particles with energies
r1 and z3, normalized to the reference center-of-mass energy squared, so = 4, is

s = z1z9. The differential luminosity as a function of s is therefore

dcC
6+e = CO//dxldxgé (s —ziz2)¥(21)¥(x2) (19)

where Lo is the nominal luminosity of the collider, including the enhancement

factor due to the beam-beam disruption effect {6]. It is straightforward to find

that

(20)




where n, = £[(1/s) — 1]. It can be shown that in the classical regime the last term

is much smaller than unity, and is negligible. Thus

dﬁe;;—(S) _ -f’—%{[l—e— “]25(1—s)+2[1—6—N°’] 161";71(3)}, T<1l. (21)

For the intermediate regime, the spectral function of Equation (10) should be

replaced by Equation (12). The derivation is essentially the same, and we find
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When the average energy loss per electron is becoming substantial, which is possible
in the transition regime, the integral term in Equation (20) should be retained. The

differential luminosity in this regime is therefore

el - Lol o2t -

(24)

1
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where, in addition to 7,, the  dependence of 7 in A(s) is also replaced by s.



4. PHOTON ENERGY SPECTRUM

Next we look for the companion formulas for the beamstrahlung photons. Let
us ignore the loss of photons due to beamstrahlung pair creation (7], which consti-
tutes only a fraction ~ a (fine structure constant) of the total photon population.
Then the time evolution of the spectrum is dominated by the beamstrahlung pro-

cess alone:

1
-g—f = /dxF(z —y,x)d)(ﬁf?»t) ’ (25)

where y = E./ Ey is the photon fractional energy. Therefore

i
s = [dt [axFie—yapiat) . (26)
0
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Note that while [ 3(z,t)dz = 1, which conserves the electron (or positron) num-
ber, the photon number accumulates along the course of collision, and in general

[ #(y,t)dy # 1. Combining Equations (6), (9), and (10), we have, for T <1,
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The above integrand is exponentially suppressed when z — y for any value of

y. On the other hand, when z — 1, it is dominated by the term (1 — )31 So it
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is a reasonable approximation by setting = ("+1)/3 ~ 1. Under this approximation,

- we find

1
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(28)
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where W, ,(z) is the Whittaker function:
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where wy ,(z) — 0 as z — oo. In the classical limit, & 3> 1. Thus x/(1—y) > 1 for

all y, and the Whittaker function takes the asymptotic form W, ,(z) = z#e~%/2.
We therefore have

% _ \2/3 nn
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Inserting Equation (30) into Equation (27), we find

t

1/3
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(31)
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The integration over time is -straightforward, and we finally obtain
Byst) = oy (1 = g0 Gy T<1 (32)
T T(/3) ’ )
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where .
G(y) = 4 1 — e~ 9Wwat|

gly) =1-(1 -y
Note that in the limit v4t < 1, the terms in the bracket can be replaced by g(y)v.t.
This recovers the known expression for the beamstrahlung photon spectrum using
single-photon (i.e., disregarding the loss of e~ energy between successive radiation
processes) picture:

1/3
lim ~

Jim é(y,t) = F—(l—/?)y_m(l —y) e/ -0y 1y (34)

In the y < 1 limit, the y dependence is approximately y~2/3,

To extend our result to the nonclassical regime, we find that a similar calcu-
lation as above but using Equation (11) for the electron spectrum would be quite
complex, due to the additional z dependence in v. Instead, we shall follow the same
philosophy as in Section 2 by adopting the form of Equation (32) and replacing v./’s
by v, and ¥ in a similar fashion. An inspection of I(y,t") in Equation (27) suggests
that, if one intends to extract (i#t')" out from the integrand such that a similar
calculation for the nonclassical regime can follow, the z-dependence in ¥ should be

properly averaged over the spectrum. Again, in the linear approximation, we find

1

(v) = - /dl‘[l‘l/cl +(1—z)vy] =

y

(1+y)va+ (1 —y)vy - (35)

N —

In principle, one could then express I(y,t') in terms of the Whittaker function.
But if one wishes to further simplify I(y,t') through the asymptotic expansion of

Equation (29), then it is necessary that the correction term w, ,(z) be retained.

12



In the n-photon process, the leading order n = 1 dominates, which gives u = —1/6

I

and v = 1/3. Ignoring the y-dependence in z, we find, that

K 1
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We then have
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5. CENTER-OF-MASS vy LUMINOSITY

The vv center-of-mass luminosity can be obtained in the same way we did in
Section 3. It amounts to looking for integration of ¢(y,t) over the ete™ collision

time. We find, for T <« 1,

1/2

4(y) =2 / dta(y,1)
0 (39)
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For the nonclassical regime, the corresponding expression reads

o) = gy ) POVEG) L Tss L (@
where
= l1—w 1 —§(y) N+ 1 -N,
G0 =S~ TN [1—e 9(”)N]}+w{1—m[1—e N]} . (42)

The center-of-mass 4+ luminosity is then

1

1
dLy4(s) _ Loy _// dy1dy26(s — y1y2)é(y1)é(y2) - (43)

ds
s 0

The integration is quite involved, and since simple expression of dL,/ds for the
whole range of 0 < s < 1 is not easily attainable, numerical calculations may be

necessary.

6. DISCUSSION

To confirm our theoretical formulas, we perform computer simulations using
the code ABEL [8]. The parameters of a linear collider with a center-of-mass energy
1/2 TeV designed by Palmer [9] (the Machine G in Table 1 in Reference [9]) was

used.

The parameter T = 0.39 in this example uses the nominal values of o, and oy.
As is well known, the field intensity of a flat beam (i.e., o; > 0y) is determined

largely by 0. In the case when the disruption in the z-dimension is not negligible,

14



the effective o, during collision is different from the nominal value. This is indeed

-the case for Palmer’s G-machine. The disruption parameter is defined as

2Nreo,

D =
>y Y¥0z,y(0z + 0y)

(44)

The effective o, can be deduced from the luminosity enhancement factor for round

beams [10]:

H =1+ D<1 . (45)

2
D ,
37
Since the enhancement results from the reduction of the effective beam size, we

can estimate the effective o, as

(46)

In our case, D, = 0.7. Thus &, ~ 0.890,, and we find the effective T ~ 0.44.

The simulation has the disruption effect included, but the beamstrahlung pa-
rameter as defined in Equation (5) was not calculated in ABEL. Instead, for every
photon radiated, there is a critical energy registered, using the local field strength
and the instantaneous energy of the radiating electron prior to its radiation. The
average of all the critical energies is then translated into an effective beamstrahlung
parameter T ~ 0.43, which is in very good agreement with what we estimated
above. Note that this effective T from simulation has been weighted by the pho-

ton number, and does not have a fixed electron energy.

Using this effective value of T(= 0.43), and with the bunch length { = 24/30, =
0.38 mm, we calculate the number of photons ¢(y,{/2)Ay, with Ay = 0.02, at the

end of the collision using Equation (37). Figure 1 shows the final photon spectrum

15



from our formula and from simulations. We see that the agreement is quite good
- for a large part of the spectrum. Both high and low energy ends of the spectrum
from our theory, however, tend to be softer than that from the simulation. But the
statistics from simulation is quite low at the high energy end, thus the discrepancy
there should not be overemphasized. The average number of photons radiated per
particle is obtained by integrating ¢(y,!/2) over y. We find [ ¢(y,1/2)dy ~ 3.27.
This agrees with the simulation result, ~ 3.55 photons per electron, to within
10%. Incidentally, the direct estimation: N, = v,I/2 ~ 3.55, however, agrees
almost perfectly with the simulation result. The discrepancy is due mainly to the

slight underestimation of photon spectrum, Equation (37), in the y <1 limit.

For the et e~ differential luminosity, a two-dimensional plot from the simulation
results of (d®L.+.-/dz1dz2)Az1Azy per beam crossing as a function of z; and
z, is shown in Figure 2. The example used in this calculation was Palmer’s F-
machine, the so-called flat beam design, for a 0.5 TeV collider. The beamstrahlung
parameter is T o~ 0.12, considerably smaller than the G-machine. Indeed, in
this case the average number of photons per electron is of the order one, and the
average energy loss is only ~ 4%. We see that the most striking character of the
ete™ luminosity spectrum in this particular case is that, aside from the sharp
delta function at the nominal machine energy, other contribution to the ete~
luminosity comes essentially from the matching between a full energy particle and
a beamstrahlung degraded particle. This is evidenced by the “walls” on the edges
of the 2-D plot, which corresponds to the second term in Equation (24). The last
(integral) term in that equation is seen to be negligible in this case. However, due
to the stronger beamstrahlung and larger number of photons per electron, there is

a finite contribution from this integral term in the case of Palmer’s G-machine.

16



It goes without saying that the ey luminosity can also be derived by convoluting

~ Y(z) and ¢(y).
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Figure 1:

Figure 2:

FIGURE CAPTIONS

Final beamstrahlung photon spectrum calculated by computer sim-
ulation, and by the analytic formula Equation (37). The number
of photons ¢(y,!/2)Ay is plotted against photon energy y, where
Ay = 0.02 in this case. Parameters from Palmer’s G-machine where

T = 0.43 were used.

Two-dimensional plot of the ete~™ differential luminosity
(d%Le+e-[dz1dz2)ATi ATy per beam crossing as a function of the
ete™ fractional energies, z;,z2, from computer simulation. The
width of the bins is Ax; = Ax; = 0.02. The example used is Palmer’s

F design for a 0.5 TeV linear collider, where Y ~ 0.12.
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