
HEP data analysis using jHepWork and Java

S. Chekanov
HEP Division, Argonne National Laboratory, 9700 S.Cass Avenue, Argonne, IL 60439 USA

Abstract
A role of Java in high-energy physics (HEP) and recent progress in de-
velopment of a platform-independent data-analysis framework, jHep-
Work, is discussed. The framework produces professional graphics
and has many libraries for data manipulation.

1 Introduction

Nowadays, the advantages of Java over C++ seem overwhelming. Being the most popular open-
source programing language1, Java retains the C++ syntax, but significantly simplifies the lan-
guage. This is (incomplete) list of advantages of Java over C++: 1) Java is multiplatform with
the philosophy of ”write once, run anywhere”; 2) Better structured, clean, efficient, simpler (no
pointers); 3) Stable, robust and well supported: Java programs written (or compiled) many years
from now can be compiled (or executed) without modificationseven today. This is true even
for JAVA source code with graphic widgets. In contrast, C++ programs always require con-
tinues time-consuming maintenance in order to follow the development of C++ compilers and
graphic desktop environment; 4) Java has reflection technology, which is not present in C++.
The reflection allows an application to discover information about created objects, thus a pro-
gram can design itself at runtime. In particular, this is considered to be essential for building
”intelligent” programs making decisions at runtime; 5) Free intelligent integrated-development
environments (IDE), which are absolutely necessary for large software projects2; 6) Automatic
garbage collection, i.e. a programmer does not need to perform memory management; 7) Ex-
tensive compile-time and run-time checking; 8) Programs written in Java can be embedded to
the Web. This is important for distributed analysis environment (Java webstart, plugins, applets),
especially when HEP data analysis tools are not localized inone single laboratory but scattered
over the Web.

The importance of Java in HEP data analysis has been recognized since establishing the
FreeHEP Java library and producing a first version of JAS (Java analysis studio) [1]. Presently,
many elements of the grid software are written in Java. At LHC, Java is used for event displays
and several other areas. While C++ language is remaining to be the main programming language
at LHC, it lacks many features existing in Java, which makes the entire LHC software environ-
ment tremendously complicated. The lack of robustness and backward compatibility of C++ free
compilers leads to various HEP-supported ”scientific” flavors of Linux, with different architec-
ture (32 bit or 64), which are all tightened to particular libraries and hardware. For example,
the main computational platform for ATLAS is Scientific Linux 4.6. It will be used for future

1According to SourceForge.net and Freshmeat.net statistics, the number of open-source applications written in
Java exceeds those written in C++.

2For example, the total number of lines of source code in ATLASsoftware is far higher than hundreds of thousands
lines.



data taking, however, even now it is several generations behind the main-stream Linux modern
distributions (Fedora, Ubuntu, Suse etc) and cannot be easily installed on modern laptops. Cur-
rently, the HEP community is required to support the entire computing chain, from hardware and
operating systems, to the end-user programs, rather than concentrating on HEP-specific compu-
tational tasks. This is a significant difference from the initial concept, when HEP software could
be run essentially on any platform and a vendor-supported operating system.

It should be pointed out that C+ has been chosen as the main programming language at
LHC at the time when Java was still behind C++, lacking Just-in-time (JIT) compilers to convert
parts of the bytecode to native code in order to improve execution time. At that time, Python [2],
another portable programming language, also did not have enough power to be widely used in
HEP. As Java, Python has also become increasingly popular programming language in science
and engineering [3], since it is interactive, object-oriented, high-level, dynamic and portable. It
has simple and easy to learn syntax which reduces the cost of program maintenance. While being
portable, Python implemented in C (CPython) requires user-specific C/C++ libraries for high-
performance computing, thus it cannot be considered a basisfor a multiplatform data-analysis
environment.

Jython [4] is an implementation of Python in Java and, as any Java application, is truly
multiplatform. In contrast to CPython, Jython is fully integrated with the Java platform, thus
Jython programs can make full use of extensive built-in and third-party Java libraries. Therefore,
Jython programs have even more power than the standard Python implemented in C. Finally, the
Jython interpreter is freely available for both commercialand non-commercial use.

jHepWork [5] is a full-featured object-oriented data analysis framework for scientists that
takes advantage of the Jython language and Java. Jython macros are used for data manipulation,
data visualization (plotting 1D and 2D histograms), statistical analysis, fits, etc. Data structures
and data manipulation methods integrated with Java and JAIDA FreeHEP libraries [6] combine
remarkable power with a very clear syntax. jHepWork Java libraries can also be used to develop
programs using the standard JAVA, without Jython macros.

Programs written using jHepWork are usually rather short due the simple Python syntax
and high-level constructs implemented in the core jHepWorklibraries. As a front-end data-
analysis environment, jHepWork helps to concentrate on interactive experimentation, debugging,
rapid script development and finally on workflow of scientifictasks, rather than on low-level
programming.

jHepWork is an open source product which is implemented 100 percent in Java. Since it
is fully multiplatform, it does not require installation and can be run on any platform where Java
is installed. It can be used to develop a range of data-analysis applications focusing on analysis
of complicated data sets, histograms, statistical analysis of data, fitting. It offers a full-featured,
extensible multiplatform IDE implemented in Java.

jHepWork is seamlessly integrated with Java-based Linear Collider Detector (LCD) soft-
ware concept and it has the core based using FreeHEP libraries and other GNU-licensed pack-
ages. While jHepWork is mainly designed to be used in high-energy physics, it can also be used
in any field, since all methods and classes are rather common in science and engineering.

Below we will discuss only the key features of jHepWork, without the coverage of all



available methods, which can easily be found using an extensive help system and the code com-
pletion feature of jHepWork. The main web page of jHepWork [5] contains the package itself,
user manuals and about 50 examples with various macros. jHepWork consists of two major li-
braries: jeHEP (jHepWork IDE) and jHPlot (jHepWork data-analysis library). Both are licensed
by the GNU General Public License (GPL).

2 Main differences with other data-analysis tools

Below we will compare jHepWork with two popular object-oriented packages currently used in
high-energy physics: 1) JAS package [1], based on Java and FreeHEP libraries [6] and 2) C++
ROOT package [7].

2.1 Main differences with JAS

Compare to JAS, jHepWork:

• has a full-featured integrated development environment (IDE) with syntax highlighting,
syntax checker, code completion, code analyser, an Jython shell and a file manager.

• contains powerful libraries to display data (including 3D plots) with a large choice for in-
teractive labels and text attributes (subscripts, superscripts, overlines, arrows, Greek sym-
bols etc.). jHepWork plots are more interactive than those written using FreeHEP JAIDA
libraries linked with JAS. The plotting part is based on the jHPlot library developed for
the jHepWork project and JaxoDraw Java application [8]. Thelatter can be used to draw
Feynman diagrams in addition to standard plots;

• is designed to write short programs due to several enhancements and simpler class names.
The classes written for jHepWork were designed keeping in mind simplicity of numerous
high-level constructs enabling the user to write programs that are significantly shorter than
programs written using JAS;

• includes high-level constructions for data manipulations, data presentations in form of
tables, data input and output, calculations of systematical errors and visualization (plots,
tables, spreadsheet, neural networks) which have no analogy in JAS;

• Essentially all jHepWok objects, including histograms, can be saved into files and restored
using Java serialization mechanism. One can store collections of objects as well by using
Jython maps or lists.

• includes an advanced help system with the code completion. For the core jHplot package,
the code completion feature is complimented with a detailedAPI information on each
method associated with certain class.

2.2 Main differences with the ROOT package

Compare to ROOT, jHepWork:

• is seamlessly integrated with Java-based Linear Collider Detector (LCD) software concept;

• is a Java-based program, thus it is fully multiplatform and does not require installation.
This is especially useful for plugins distributed via the Internet in form of bytecode jar
libraries;



• Java is very robust. Java source codes developed many years from now can easily be
compiled without any changes even today. Even class libraries compiled many years from
now can run on modern Java Virtual Machines. Therefore, the maintenance of jHepWork
package is much less serious issue compared to ROOT;

• since jHepWork is 100% Java, it has automatic garbage collection, which is significant
advantage over C++/C;

• has a full-featured IDE with syntax highlighting, syntax checker, code completion and
analyser;

• can be integrated with the Web in form of applets, thus it is better suited for distributed
analysis environment via the Internet. This is essential feature for modern large collabora-
tions in high-energy physics and in other scientific fields;

• calculations based on Jython/Python scripts are typically4-5 times shorter than equivalent
C++ programs. Several examples are discussed in Ref. [5];

• calculations based on Jython scripts can be compiled to Javabytecode files and packed to
jar class libraries without modifications of Jython scripts. In contrast, ROOT/CINT scripts
have to be written using a proper C++ syntax, without CINT shortcuts, if they will be
compiled into shared libraries;

• can access high-level Python and Java data structures;

• includes an advanced help system with a code completion based on the Java reflection
technology. With increasingly large number of classes and methods in ROOT, it is difficult
to understand which method belongs to which particular class. Using the jHepWork IDE,
it is possible to access the full description of all classes and methods during editing Jython
scripts;

• automatic updates which does not depend on particular platform. For ROOT, every new
version has to be compiled from scratch;

• powerful and intelligent external IDEs (Eclipse, NetBean etc) can be used productivity in
developing HEP analysis.

2.3 How fast it is?

Jython scripts are about 4-8 times slower than equivalent Java programs and about a factor five
slower than the equivalent ROOT/CINT codes for operations on primitive data types (remember,
all Jython data types are objects). This means that CPU extensive tasks should be moved to Java
jar libraries.

jHepWork was designed for a data analysis in which program speed is not essential, as it
is assumed that JHepWork scripts are used for operations with data and objects (like histograms)
which have alredy been created by C++, Fortran or Java code. For such front-end data analysis,
the bottleneck is mainly user input speed, interaction witha graphical object using mouse or
network latency.

In practice, final results obtained with Jython programs canbe obtained much faster than
those designed in C++/Java, because development is so much easier in jHepWork that a user often
winds up with a much better algorithm based on Jython syntax and jHepWork high-level objects



than he/she would in C++ or Java. In case of CPU extensive tasks, like large loops over primitive
data types, reading files etc. one should use high-level structures of Jython and jHepWork or
user-specific libraries which can be developed using the jHepWork IDE. Many examples are
discussed in the jHepWork manual [5].

Acknowledgments. I would like to thanks many people for support, ideas and debugging
of the current jHepWork version. This work supported in partby the U.S. Department of Energy,
Division of High Energy Physics, under Contract DE-AC02-06CH11357.

References

[1] Java analysis studio.
URL http://jas.freehep.org/jas3/

[2] Python programming language – official website.
URL http://www.python.org/

[3] H. P. Langtangen, Python Scripting for Computational Science (Texts in Computational
Science and Engineering), Springer-Verlag New York, Inc.,Secaucus, NJ, USA, 2005.

[4] The jython project.
URL http://www.jython.org/

[5] S. Chekanov,JHEPWORK - JAVA object-oriented data analysis framework.
URL http://projects.hepforge.org/jhepwork/

[6] FreeHEP java libraries.
URL http://java.freehep.org/

[7] R. Brun, F. Rademakers, P. Canal, M. Goto, ROOT status andfuture developments, ECONF
C0303241 (2003) MOJT001.

R. Brun, F. Rademakers, ROOT: An object oriented data analysis framework, Nucl.
Instrum. Meth. A389 (1997) 81.
URL http://root.cern.ch/

[8] D. Binosi, L. Theussl, JaxoDraw: A graphical user interface for drawing feynman diagrams,
Comp. Phys. Commun. 161 (2004) 76.
URL http://jaxodraw.sourceforge.net/


