HEP data analysisusing jHepWork and Java

S Chekanov
HEP Division, Argonne National Laboratory, 9700 S.Cassrme Argonne, IL 60439 USA

Abstract

A role of Java in high-energy physics (HEP) and recent psxjire de-
velopment of a platform-independent data-analysis fraomkewHep-
Work, is discussed. The framework produces professioreghics
and has many libraries for data manipulation.

1 Introduction

Nowadays, the advantages of Java over C++ seem overwhelBgg the most popular open-
source programing languagelava retains the C++ syntax, but significantly simplifies -
guage. This is (incomplete) list of advantages of Java owet: ) Java is multiplatform with
the philosophy of "write once, run anywhere”; 2) Better sttwed, clean, efficient, simpler (no
pointers); 3) Stable, robust and well supported: Java progmwritten (or compiled) many years
from now can be compiled (or executed) without modificatiemen today. This is true even
for JAVA source code with graphic widgets. In contrast, C#egrams always require con-
tinues time-consuming maintenance in order to follow theettgoment of C++ compilers and
graphic desktop environment; 4) Java has reflection teolggpMhich is not present in C++.
The reflection allows an application to discover informatabout created objects, thus a pro-
gram can design itself at runtime. In particular, this issidared to be essential for building
"intelligent” programs making decisions at runtime; 5) &iatelligent integrated-development
environments (IDE), which are absolutely necessary faydasoftware projects 6) Automatic
garbage collection, i.e. a programmer does not need tonpenieemory management; 7) Ex-
tensive compile-time and run-time checking; 8) Programistewr in Java can be embedded to
the Web. This is important for distributed analysis envinemt (Java webstart, plugins, applets),
especially when HEP data analysis tools are not localizeshsingle laboratory but scattered
over the Web.

The importance of Java in HEP data analysis has been reengsiace establishing the
FreeHEP Java library and producing a first version of JASa(dealysis studio) [1]. Presently,
many elements of the grid software are written in Java. At | .BVa is used for event displays
and several other areas. While C++ language is remaining tbdomain programming language
at LHC, it lacks many features existing in Java, which makesantire LHC software environ-
ment tremendously complicated. The lack of robustness ackMmrd compatibility of C++ free
compilers leads to various HEP-supported “scientific” flavof Linux, with different architec-
ture (32 bit or 64), which are all tightened to particulardibes and hardware. For example,
the main computational platform for ATLAS is Scientific Lixnd4.6. It will be used for future

*According to SourceForge.net and Freshmeat.net statistie number of open-source applications written in
Java exceeds those written in C++.

2For example, the total number of lines of source code in ATlsABware is far higher than hundreds of thousands
lines.



data taking, however, even now it is several generationgibeéhe main-stream Linux modern
distributions (Fedora, Ubuntu, Suse etc) and cannot bé/easialled on modern laptops. Cur-
rently, the HEP community is required to support the entinmputing chain, from hardware and
operating systems, to the end-user programs, rather thmretrating on HEP-specific compu-
tational tasks. This is a significant difference from thé&idhiconcept, when HEP software could
be run essentially on any platform and a vendor-supportedatipg system.

It should be pointed out that C+ has been chosen as the magnapnaning language at
LHC at the time when Java was still behind C++, lacking Jansgirme (JIT) compilers to convert
parts of the bytecode to native code in order to improve di@ttime. At that time, Python [2],
another portable programming language, also did not havagimpower to be widely used in
HEP. As Java, Python has also become increasingly popuwargmming language in science
and engineering [3], since it is interactive, object-orgeh high-level, dynamic and portable. It
has simple and easy to learn syntax which reduces the cosigrigm maintenance. While being
portable, Python implemented in C (CPython) requires apecific C/C++ libraries for high-
performance computing, thus it cannot be considered a barsés multiplatform data-analysis
environment.

Jython [4] is an implementation of Python in Java and, as amng &pplication, is truly
multiplatform. In contrast to CPython, Jython is fully igtated with the Java platform, thus
Jython programs can make full use of extensive built-in &ird4party Java libraries. Therefore,
Jython programs have even more power than the standardrPiytiptemented in C. Finally, the
Jython interpreter is freely available for both commereiadl non-commercial use.

jHepWork [5] is a full-featured object-oriented data arsidyframework for scientists that
takes advantage of the Jython language and Java. Jythoosraerused for data manipulation,
data visualization (plotting 1D and 2D histograms), stitid analysis, fits, etc. Data structures
and data manipulation methods integrated with Java andAAReHEP libraries [6] combine
remarkable power with a very clear syntax. jHepWork Javatibs can also be used to develop
programs using the standard JAVA, without Jython macros.

Programs written using jHepWork are usually rather shod the simple Python syntax
and high-level constructs implemented in the core jHepWimaries. As a front-end data-
analysis environment, jHepWork helps to concentrate @raative experimentation, debugging,
rapid script development and finally on workflow of scientifasks, rather than on low-level
programming.

jHepWork is an open source product which is implemented Ei0gnt in Java. Since it
is fully multiplatform, it does not require installation égan be run on any platform where Java
is installed. It can be used to develop a range of data-asayplications focusing on analysis
of complicated data sets, histograms, statistical arsbyfsilata, fitting. It offers a full-featured,
extensible multiplatform IDE implemented in Java.

jHepWork is seamlessly integrated with Java-based Linediider Detector (LCD) soft-
ware concept and it has the core based using FreeHEP lbiami other GNU-licensed pack-
ages. While jHepWork is mainly designed to be used in higrgagnphysics, it can also be used
in any field, since all methods and classes are rather comm&giénce and engineering.

Below we will discuss only the key features of jHepWork, with the coverage of all



available methods, which can easily be found using an exeehglp system and the code com-
pletion feature of jHepWork. The main web page of jHepWorkdéntains the package itself,
user manuals and about 50 examples with various macros Wbldpconsists of two major li-
braries: jeHEP (jHepWork IDE) and jHPIlot (jJHepWork dataafysis library). Both are licensed
by the GNU General Public License (GPL).

2 Main differences with other data-analysis tools

Below we will compare jHepWork with two popular object-arted packages currently used in
high-energy physics: 1) JAS package [1], based on Java aeHEP libraries [6] and 2) C++
ROOT package [7].

2.1 Main differenceswith JAS
Compare to JAS, jHepWork:

e has a full-featured integrated development environmdDE)Iwith syntax highlighting,
syntax checker, code completion, code analyser, an Jytimlhasd a file manager.

e contains powerful libraries to display data (including 3tp) with a large choice for in-
teractive labels and text attributes (subscripts, sugptscoverlines, arrows, Greek sym-
bols etc.). jHepWork plots are more interactive than thogéem using FreeHEP JAIDA
libraries linked with JAS. The plotting part is based on thijot library developed for
the jHepWork project and JaxoDraw Java application [8]. TEtr can be used to draw
Feynman diagrams in addition to standard plots;

e is designed to write short programs due to several enhamteraed simpler class names.
The classes written for jHepWork were designed keeping mdrsimplicity of numerous
high-level constructs enabling the user to write programs a@re significantly shorter than
programs written using JAS;

e includes high-level constructions for data manipulatjodata presentations in form of
tables, data input and output, calculations of systematicars and visualization (plots,
tables, spreadsheet, neural networks) which have no aneld#S;

e Essentially all jHepWok objects, including histograms, ba saved into files and restored
using Java serialization mechanism. One can store callectf objects as well by using
Jython maps or lists.

e includes an advanced help system with the code completimnthE core jHplot package,
the code completion feature is complimented with a detafi@&d information on each
method associated with certain class.

2.2 Main differences with the ROOT package
Compare to ROOT, jHepWork:

e is seamlessly integrated with Java-based Linear Collidge&or (LCD) software concept;

e is a Java-based program, thus it is fully multiplatform amésinot require installation.
This is especially useful for plugins distributed via theéehmet in form of bytecode jar
libraries;



e Java is very robust. Java source codes developed many yearsnbw can easily be
compiled without any changes even today. Even class lgsawmpiled many years from
now can run on modern Java Virtual Machines. Therefore, thimtenance of jHepWork
package is much less serious issue compared to ROQOT;

e since jHepWork is 100% Java, it has automatic garbage ¢iecwhich is significant
advantage over C++/C;

e has a full-featured IDE with syntax highlighting, syntaxecker, code completion and
analyser;

e can be integrated with the Web in form of applets, thus it igdbesuited for distributed
analysis environment via the Internet. This is essentatlie for modern large collabora-
tions in high-energy physics and in other scientific fields;

e calculations based on Jython/Python scripts are typigaijtimes shorter than equivalent
C++ programs. Several examples are discussed in Ref. [5];

e calculations based on Jython scripts can be compiled tohldaeaode files and packed to
jar class libraries without modifications of Jython scriptscontrast, ROOT/CINT scripts
have to be written using a proper C++ syntax, without CINTrghas, if they will be
compiled into shared libraries;

e can access high-level Python and Java data structures;

e includes an advanced help system with a code completiordbase¢he Java reflection
technology. With increasingly large number of classes aathods in ROOT, it is difficult
to understand which method belongs to which particularscliésing the jHepWork IDE,
it is possible to access the full description of all classesraethods during editing Jython
scripts;

e automatic updates which does not depend on particularophatf For ROOT, every new
version has to be compiled from scratch;

e powerful and intelligent external IDEs (Eclipse, NetBe#r) €an be used productivity in
developing HEP analysis.

2.3 Howfastitis?

Jython scripts are about 4-8 times slower than equivalamt geograms and about a factor five
slower than the equivalent ROOT/CINT codes for operationprimitive data types (remember,
all Jython data types are objects). This means that CPU &xtetasks should be moved to Java
jar libraries.

jHepWork was designed for a data analysis in which progragedfs not essential, as it
is assumed that JHepWork scripts are used for operatiohsdatt and objects (like histograms)
which have alredy been created by C++, Fortran or Java camtesu€h front-end data analysis,
the bottleneck is mainly user input speed, interaction \aithraphical object using mouse or
network latency.

In practice, final results obtained with Jython programslmamwbtained much faster than
those designed in C++/Java, because development is so rasieh ie jHepWork that a user often
winds up with a much better algorithm based on Jython syntaxldepWork high-level objects



than he/she would in C++ or Java. In case of CPU extensive,tlik& large loops over primitive
data types, reading files etc. one should use high-levettstes of Jython and jHepWork or
user-specific libraries which can be developed using th@\Wek IDE. Many examples are
discussed in the jHepWork manual [5].

Acknowledgments. | would like to thanks many people for suppgdeas and debugging
of the current jHepWork version. This work supported in fgrthe U.S. Department of Energy,
Division of High Energy Physics, under Contract DE-ACOZ=06L1357.

References

[1] Java analysis studio.
URLhttp://jas.freehep.org/jas3/

[2] Python programming language — official website.
URL htt p: // ww. pyt hon. or g/

[3] H. P. Langtangen, Python Scripting for Computationak8ce (Texts in Computational
Science and Engineering), Springer-Verlag New York, IBecaucus, NJ, USA, 2005.

[4] The jython project.
URL htt p: //ww. j yt hon. or g/

[5] S. ChekanovJHEPWORK - JAVA object-oriented data analysis framework.
URL htt p: // proj ects. hepforge. org/jhepwork/

[6] FreeHEP java libraries.
URLhttp://java.freehep. org/

[7] R. Brun, F. Rademakers, P. Canal, M. Goto, ROOT statudande developments, ECONF
C0303241 (2003) MOJTOO0L1.

R. Brun, F. Rademakers, ROOT: An object oriented data aisdigsnework, Nucl.
Instrum. Meth. A389 (1997) 81.
URL http://root.cern.ch/

[8] D. Binosi, L. Theussl|, JaxoDraw: A graphical user inéeé for drawing feynman diagrams,
Comp. Phys. Commun. 161 (2004) 76.
URL htt p: //j axodr aw. sour cef or ge. net/



