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Introduction
Nuclei in the A ≈ 200 region exhibit a va-

riety of structure phenomena. Isotopes with
sufficient valence nucleons show evidence of
deformation and collective excitations, how-
ever closer to neutron and proton shell clo-
sures, intrinsic degrees of freedom have a sub-
stantial contribution to the excited level struc-
ture. The study of Hg isotopes (Z=80), close
to doubly magic 208Pb (Z=82), provides an
opportunity to study this interplay between
collective and intrinsic excitation mechanisms.

High-spin data in neutron-rich Hg nuclei
are not as well established as in the proton-
rich region. The neutron-rich region can be
reached through projectile fragmentation and
multi-nucleon transfer reactions. Isotopes like
196,198,200Hg, have been studied using (α, xn)
reactions [1–5]. Isotopes like 202,204Hg have
been studied using (n,γ) and (d,pn) reactions
[6, 7]. To reach high spins, multi-nucleon
transfer reactions are quite useful. In this
work, transfer products 198,200,202Hg are stud-
ied at high spin. With the proton and neu-
tron orbitals almost filled, these Hg isotopes
are characterized by moderate oblate defor-
mation near their ground states.

Experiment and Analysis
In the present work, data from two exper-

iments performed at the Argonne National
Laboratory using the ATLAS superconduct-
ing linear accelerator and Gammasphere de-
tector array, have been analyzed. Excited
states in Hg isotopes were populated through
multi-nucleon (1p, xn) transfer reactions from
209Bi to 197Au, with a 1450-MeV 209Bi beam
incident on a thick (50 mg/cm2) Au target.
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The 209Bi beam, with the natural 82.5 ns
pulsing from ATLAS, was incident on the
197Au target. Further, using a 1430-MeV
207Pb beam incident on a similar 197Au tar-
get, multi-nucleon transfer followed by neu-
tron evaporation also produced a number of
Hg isotopes.

High-fold coincidence data with different
timing conditions were analyzed for verify-
ing the placement of known transitions, iden-
tifying new ones and their location in the
level scheme, and exploring the data for
the presence of high-spin isomers. Lifetimes
of metastable states in the nanosecond re-
gion were determined using the centroid shift
method. Spin assignments were done using
the DCO technique.

Results and Discussion
Previous information on 198Hg was limited

to spin 18+ and 13− in the yrast positive
and negative parity sequences, respectively
[1, 2]. In the present work, the decay scheme
for 198Hg has been expanded with the inclu-
sion of 11 new transitions at high spin upto
Ex ≈ 6 MeV. The new transitions include
two high spin coupled rotational sequences.
Based on the excitation energies, spin assign-
ments and observed coincidence relationships
between transitions in these two sequences,
the new sequence is assigned a 4-quasiparticle
configuration. Coincidence analysis also leads
to the reassignment of a 1022-keV γ-ray. DCO
analysis indicates quadrupole and dipole char-
acter for the 334-keV and the 1150-keV γ-rays,
respectively. The lifetimes of the metastable
10+, 12+ and the 5−,7− states have been also
measured and are in agreement with previ-
ously reported values.

In the previous work on 200Hg, levels upto
I=20~ have been established through the
198Pt(9Be,α3n) reaction [3]. The metastable
nature of the 12+ state in 196,198Hg and
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FIG. 1: Excitation energy vs neutron number for
Hg isotopes (A=192 to 204) displaying the exci-
tation energy of the 12+, 10+, 9−, and 7− states
along with their respective halflives.

the proximity of the 10+ and 12+ levels in
196,198,200Hg motivated inspection of the time
difference between the transition feeding the
12+ state (397 keV) and the one deexciting it
(574 keV) in 200Hg. A half-life of 1.2(5) ns
was obtained for the 12+ state in 200Hg.

In previous studies, excited levels in 202Hg
had been established upto Ex ≈ 2 MeV and
I ≈ 6~ [7, 8]. In the present work, the decay
scheme for 202Hg has been expanded with the
inclusion of 15 new transitions placed above
the 5− state. Two sequences of transitions are
found to be feeding the tentatively assigned
11− state. The analysis of delayed coinci-
dence data indicates the presence of an iso-
mer. The 7− and 9− states are observed to
be metastable in nature in the neighbouring
196,198,200Hg isotopes. Time difference analy-
sis resulted in a halflife of 10.4(18) ns for the
7− state and a halflife of 1.2(10) ns for the 9−

state.
Effective g-factor measurements for the

12+ state in 198Hg suggest a rotation-aligned
(νi−2

13
2

) configuration [9]. A pronounced align-

ment in the yrast positive parity sequences in
196,198,200Hg at ~ω ≈ 0.2 MeV in all three
isotopes is attributed to the decoupling of an

i13/2 pair occupying low-Ω orbitals at oblate

deformation. The close lying 5−, 7− and 9−

negative-parity states are built from a configu-
ration of aligned i13/2 and p3/2/f5/2 neutrons.

The trend in the excitation energy of the
positive and negative parity sequences in Hg
isotopes is illustrated in Fig. 1. With increase
in neutron number towards N=126, reduction
in collectivity is evident along with an abrupt
increase in the excitation energy of the 12+

state due to sub-shell gaps.
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