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Abstract

This thesis is devoted to a study of certain examples of gauge/string duality related

to warped throat backgrounds in string theory. Namely, we consider a family of

IIB SUGRA solutions dual to a moduli space of certain cascading N = 1 gauge

theory. This theory exhibits rich low-energy behavior, including chiral symmetry

breaking and confinement. The first part of this thesis is focused on the gravity dual

description of these phenomena. In particular, we discuss string theory description

of the continuous gauge theory moduli space, evaluate the tension of BPS domain

wall, and calculate baryonic condensates. The second part of the thesis is devoted

to the embedding of the warped throat backgrounds into flux compactifications.

To this end we calculate the nonperturbative superpotential of the D3-D7 system

on warped conic geometries. This superpotential plays an important role in fixing

Kähler moduli and is an important ingredient in constructing consistent compact-

ification scenarios. In the last part of the thesis we apply this superpotential to a

particular cosmological inflation scenario based on the dynamics of a D3-brane mov-

ing along the throat. We conclude that the realization of stringy inflation within

this scenario is possible only around an inflection point of the potential and requires

a fine tuning of the parameters.
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Chapter 1

Introduction

String theory was originally proposed in the late 60’s as a theory of strong interac-

tions. However, some problems with these applications and the discovery of QCD,

led a change of its purpose in 1974. In these new applications the string tension

was scaled up by 38 orders of magnitude, and string theory became a leading candi-

date for quantum gravity and the unified theory of all other interaction. Its role was

solidified in the mid-80’s when new models and constraints on string theory were un-

derstood. Since string theory is formulated in ten dimensions, the main goal was to

compactify extra dimensions into a suitable manifold M, leaving four non-compact

dimensions describing the observable Universe. Although significant progress was

made in understanding various aspects of string theory compactifications, the goal

of finding the unified theory still seems too ambitious to be achieved in the near

future.

In an unexpected twist, about a decade ago the AdS/CFT correspondence [1, 2, 3]

returned string theory to its role in studying the strong coupling dynamics of gauge

theories. The idea behind the AdS/CFT correspondence is to consider the stack

of N D3-branes placed in the flat ten-dimensional space [4, 5]. For very large N ,

D3-branes produce back reaction on the metric

ds2
10 = h−1/2dx2 + h1/2

(
dr2 + ds2

Ω5

)
,

h(r) = 1 +
R4

r4
, R4 ≡ 4πgsα

′2N , (1.1)

1
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and induce the R-R flux C4 = dx0 ∧ ..∧ dx3h−1. The dynamics of the effective field

theory on the branes can be described by String Theory in the curved space (1.1).

The effective field theory on the branes is still coupled to gravity at this point. The

crucial step is to consider the low-energy limit which decouples the field theory from

gravity. On the string theory side this is equivalent to taking a formal limit r → 0

[1]

h(r) → R4

r4
. (1.2)

The resulting geometry is a product of AdS5 and S5. The field theory on the

branes is N = 4 SYM, which can be identified by counting supersymmetries of the

background. The conformal symmetry of the theory SO(4, 2) is realized through the

geometrical symmetries of AdS5. Because of N = 4 supersymmetry this background

is believed to be the solution to string theory at the quantum level. This setup

leads to the original AdS/CFT conjecture that the N = 4 SYM in the planar limit

N →∞ and fixed t’ Hooft coupling λ = g2
Y MN is dual to the IIB String Theory on

AdS5 × S5 of radius R4 = 4πα′2λ.

The duality in question is weak-strong, i.e. the perturbative phase of one theory

matches the nonperturbative phase of the other. One the one hand when λ is small,

the Feynman diagram expansion in field theory is convergent and hence the dynamics

is controllable. At the same time the radius of geometry (1.1) is small and all higher

corrections in α′ are important making dual string theory non-perturbative. On

the other hand when λ → ∞, we do not have any suitable technique to deal with

field theory, but the curvature of the dual background is small everywhere and

string theory can be successfully approximated by supergravity in the semi-classical

regime. The latter correspondence can be extended to the non-conformal theories

and constitutes the gauge/gravity duality.

The AdS/CFT correspondence was studied extensively over the last ten years.
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Perhaps one of the most important achievements in this area is the recently devel-

oped technique of calculating anomalous dimensions of gauge-invariant operators

with the help of auxiliary spin chains (see [6] for an overview of the method). The

newly discovered spin-chains [7] are believed to provide a smooth extrapolation of

the theory between the weak and strong coupling regimes [8]. This is one of the few

known examples of a theoretical approach which can successfully interpolate to the

strong coupling regime.

The dynamics of N = 4 SYM is drastically different from the one of confining

gauge theory, like QCD, because of conformal and super symmetries. In order

to generalize gauge/string duality to a more “realistic” field theory, one needs to

construct an example with few or no supersymmetries.

To this end one can consider D3-branes at conical singularity called the conifold

4∑
i=1

z2
i = 0 , (1.3)

rather than putting them into the flat space. The resulting theory is a certain

superconformal N = 1 gauge theory with SU(N) × SU(N) gauge group [9]. It is

discussed in detail in section (2.1.1). The resulting geometry

ds2
10 = h−1/2dx2 + h1/2

(
dr2 + ds2

T 1,1

)
,

h(r) = 1 +
R4

r4
, R4 ≡ 4πgs

27

16
α′2N ,

C4 = dx0 ∧ .. ∧ dx3h−1 , (1.4)

is similar to (1.1) with five-sphere S5 replaced by the Sasaki-Einstein manifold

T 1,1. The resulting six-cone over T 1,1 is a toric Calabi-Yau with Ricci-flat met-

ric ds2
6 = dr2 + ds2

T 1,1 . This example was generalized to the case of D3-branes

probing arbitrary toric Calabi-Yau singularity. The dual quiver field theory, i.e. the

symmetries, field content, corresponding charges and superpotential of field theory

can be unambiguously determined from the geometrical data [10].
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The field theories resulting from toric Calabi-Yau singularities are superconfor-

mal. It is desirable to get rid of conformal symmetries to extend gauge/string duality

to the theories with confinement. It was done, for example, in the case of field the-

ory on conifold singularity introduced above. The gauge group SU(N) × SU(N)

can be extended by adding M extra colors SU(N + M) × SU(N). This breaks

conformal symmetry and the theory becomes confining in the IR. It exhibits a cas-

cade of Seiberg dualities [11] which can be described by introducing an effective

scale-dependent number of colors N . On the gravity side, the running of Neff is ac-

commodated by the radius dependence of warp-factor h(r). In the case of N = kM

for integer k the theory is confining in the IR. Because of dimensional transmutation

the dual geometry (1.3) is modified near the tip r → 0 by a dimensionful parameter

ε

4∑
i=1

z2
i = ε2 . (1.5)

This changes the topology at the tip r = 0 and leads to the smooth supergravity

solution [12]. The metric of the singular conifold (dr2 + r2ds2
T 1,1) from (1.4) is

transformed into a Ricci-flat metric ds2
M on the deformed conifold (1.5). In the

planar limit M → ∞ and for large gsM , the curvature is small everywhere and

higher α′ corrections are negligible. Therefore the string theory can be truncated to

supergravity and the SU((k +1)M)×SU(kM) theory can be successfully described

via gauge/gravity duality.

The cascading SU((k +1)M)×SU(kM) has rich IR dynamics resembling many

features of non-SUSY gauge theory. Nevertheless it is different in many aspects

from QCD, in particular because of a different gauge group. Therefore it is highly

desirable to develop our understanding of gauge/gravity duality and to construct a

gravity dual to the pure SU(M) N = 1 SYM – a closest supersymmetric cousin of

the non-SUSY gauge theory. This would provide the description to the phenomenon

of confinement in SU(N) YM which is a crucial step toward understanding QCD.
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Unfortunately this goal cannot be achieved at the present level of understanding.

This is because pure SU(N)N = 1 SUSY gauge theory may correspond to the highly

curved background. Indeed SU(M) theory can be achieved by taking gSM → 0

limit and sending the scale of the last step of the cascade SU(2M) × SU(M) to

infinity. This is opposite to the limit gSM → ∞ which makes the curvature small.

Therefore all stringy corrections in α′ are important for small gSM . One cannot

rely on gauge/gravity duality and has to incorporate an infinite tower of stringy

corrections. This task is very difficult and can not be done with available techniques.

Therefore even if the dual background would be somehow constructed it still may

be of not practical use. We therefore return to the cascading theory with large gsM .

The confining SU((k+1)M)×SU(kM) theory has a non-trivial continuous space

of supersymmetric vacua known as baryonic branch. Although continuous moduli

space are typical for N = 1 theories with unbroken SUSY, this example is special

because its gravity dual is known. On the gravity side the moduli space corresponds

to the continuous family of supergravity backgrounds, sharing the same behavior in

the UV region. This family was recently constructed [13] using the newly developed

SU(3) structure method. Although each particular solution on the branch is an

ordinary example of gauge/gravity duality, the continuous family of solutions poses

some new interesting questions. For a given supergravity solution free parameters

like the asymptotic value of dilaton can be arbitrarily changed without violating the

duality. For a family of solutions this change should be “uniform” to preserve the

same UV universality class of gauge theory. In other words, the requirement that

the family of gravity solutions describes the same microscopic theory in different IR

phases specifies the boundary condition at r → ∞. The leading asymptotic of all

solutions from the family should share the same behavior in the UV region[14].

The gauge/gravity duality we have discussed so far is a powerful String Theory

method to study gauge theory dynamics. It was noted in the beginning that in order

to decouple the filed theory from the gravity, string theory should be considered on
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an infinite warped throat like h1/2(dr2 + ds2
5) of (1.4). An intriguing idea is to

apply the results of gauge/gravity duality toward compactifications of string theory.

This can be done by considering a special compactification manifold M (usually of

Calabi-Yau type) with a region resembling the throat geometry [15]. One can start

with a compact Calabi-Yau with singularity, similar to the conifold singularity (1.3).

Then the D3 brane placed near the singular locus will be described by field theory

from above. The separation of scales between gauge theory and gravity (Planck

scale) is related to the “length” of the throat stretching from the bulk of Calabi-

Yau. This scenario has several advantages. First, it admits an elegant solution to the

hierarchy problem through the geometrical parameters of the manifold M. There is

some evidence that singularities like (1.3) are typical features of a generic compact

Calabi-Yau [16]. Therefore this scenario may be natural from the stringy landscape

point of view [17]. Finally, the physics below the Planck scale is governed by the

dynamics in the throat. Since the geometry in the throat is usually known explicitly

and in general is much simpler than that in the bulk of Calabi-Yau one can effectively

use theoretical tools of gauge/string duality to study the low energy dynamics in

very detail. In other words, the warped throat scenarios have an advantage of being

controllable and have predicting power unlike many other compactification scenarios

of String Theory.

It is convenient to divide the low-energy phenomena into two groups – originating

in the throat and in the bulk. The former are controllable, while the latter can be

analyzed only with some uncertainty. Even if the underlying mechanism is clear,

few explicit predictions can be made about the phenomena from the second class.

Again, this is because the detailed information about the geometry and fluxes in

the bulk are usually not known.

To construct a realistic compactification of String Theory one has to avoid un-

naturally light modes – the moduli of the background. Fixing these moduli is a

crucial step in model building [18]. There are a few typical scenarios which allow
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all moduli to be fixed dynamically. The one we are focused on in this work is an

orientifold of type IIB theory with D3 and D7-branes. As will be discussed in more

detail in chapter 4, all the moduli are fixed in this setup dynamically with help

of flux and nonperturbative superpotentials. Although the main features of this

mechanism are already well-understood, they originate in the bulk and the detailed

prediction of fixed moduli values are not possible.

Large scale isotropy of our Universe together with the recent studies of the

Cosmic Microwave Background have solidified inflation as a successful scenario of

the early Universe. Precise measurements of the CMB anisotropy provide a very re-

strictive check of theoretical models. To match cosmological predictions, the stringy

models of the early Universe require carefully designed fine tuning of the parameters.

The ambiguity in values of fixed moduli and an excessively large number of stringy

flux compactifications favor the ad-hoc logic that the compactification with neces-

sary values of parameters always exists. This logic is usually applied to the various

models of stringy inflation as the flat inflational potential is difficult to achieve. The

main theoretical problem is then to show that a given model can sustain inflation

at least for a certain choice of parameters.

One of the most popular scenarios of stringy inflation is based on the dynamics

of D3 moving along the throat down to the tip [18]. The effective mass of D3 is

expected to be much lighter than the Planck scale and that is why the location of D3

is a promising candidate for inflaton field. In a general model proposed and studied

in [18], in addition to the force coming from the nonperturbative superpotential due

to gluino condensation on D7, the D3 is also a subject to force from anti-D3 located

at the tip. The latter is required to uplift the potential to a positive value to match

observations of the cosmological constant. The potential generated by anti-D3 at

the tip is not flat enough by itself to support inflation. A crucial question is whether

the contribution of nonperturbative superpotential can flatten it enough at least for

some choice of parameters. We provide evidence for this using a specific embedding
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of D7-branes.

1.1 Outline

This thesis is devoted to certain examples of gauge/gravity duality and their appli-

cations to cosmology along the lines outlined in the introduction. Our main example

is the theory on conifold singularity (1.3). As was discussed above, the theory with

M extra colors SU((k + 1)M) × SU(kM) has continuous moduli space (baryonic

branch), which corresponds to the family of gravity backgrounds. We review the

gauge/gravity duality for this theory in chapter 2.

We start with a review of the conformal SU(N)×SU(N) theory on conical sin-

gularity in section (2.1.1) and proceed with the detailed discussion of dual geometry

(1.4) in section (2.1.2). Section (2.2.1) generalizes our consideration to the field the-

ory with M extra colors. The dual geometry of deformed conifold (1.5) is discussed

in detail in section (2.2.2).

Section (2.3) is devoted to the family of supergravity backgrounds, BGMPZ solu-

tions of [13], dual to the gauge theory on baryonic branch. We review the geometrical

properties of the solutions and present explicit formulae for the metric and fluxes

whenever possible. We also discuss proper choice of boundary conditions reflecting

the UV universality of gauge theory. The section concludes with a discussion of the

κ-symmetry condition for a D-brane placed on the conifold at an arbitrary point on

the branch.

The main focus of chapter 3 is the gauge/gravity duality along the branch.

Section 3.1 is devoted to the BPS domain wall which separates isomorphic vacua with

different values of gluino condensate. Gauge theory analysis suggests the tension of

such an object to be moduli independent. We study D5-brane which is gravity dual

to the domain wall in question and confirm this result by use of κ-symmetry and

geometry of BGMPZ solutions.
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We proceed with another example of gauge/gravity duality, the string theory

description of baryon operators, in section 3.2. The baryon operator is dual to a

D5-brane wrapping the base of the conifold. This can be used to measure baryonic

condensate on the gravity side. It is given by the DBI action of the Euclidean

D5-brane covering entire six-dimensional internal space. Using this prescription we

found the relation between the parameter along baryonic branch in gauge theory,

〈A〉, and the corresponding parameter on the gravity side. We have also reproduced

the quantum constraint [19] along the branch

〈AB〉 = const . (1.6)

The two examples of chapter 3 confirm that the family of BGMPZ solutions

provides a correct description of SU((k+1)M)×SU(kM) gauge theory on baryonic

branch on moduli space.

Chapter 4 develops the ideas of warped throat compactification presented in the

introduction. Namely, we calculate nonperturbative contributions to the superpo-

tential of D3-D7 system placed on the throat, which is assumed to be a part of

a compact Calabi-Yau manifold. The nonperturbative superpotential in question

governs the dynamics of mobile D3 as it depends on the D3’s location on conifold

zα, α = 1, 2, 3. For the case of N7 D7-branes wrapping a four-cycle Σ4 in conifold

(1.3), defined by f(zα) = 0, the non-trivial part of superpotential turns out to be

Wnp ∝ f(z)1/N7 . (1.7)

This result was a missing ingredient in understanding the dynamics of the D3-D7

system. It allows a detailed study of D3 rolling down to the tip.

Chapter 5 is devoted to a string inflation model based on this setup. The location

of D3 plays the role of an inflaton. The inflation occurs when the potential for

moving D3 is sufficiently flat. Our analysis reveals that in general the potential is

too steep to support inflation near the tip. Nevertheless with appropriate fine tuning
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of parameters, the potential has an inflection point where inflation can occur. The

cosmological predictions of such model are highly sensitive to initial conditions and

the model itself requires unexpectedly large amount of fine-tuning to support enough

e-fold of expansion. Our findings clarify the status of such models and propose new

directions of study.

Chapter 6 concludes the thesis with a discussion of the results.



Chapter 2

The warped deformed conifold and

the dual gauge theory

2.1 D-branes at conical singularities and confor-

mal gauge theories

The simplest example of gauge/string duality refers to the stack of D3-branes on a

smooth manifold. In the planar limit g2
Y MN - fixed, N →∞ the D-brane dynamics

reduces to the superconformal N = 4 gauge theory on the world-volume. The same

physical system can be described via string theory on AdS5 × S5. The observation

that gauge theory in planar limit can be described via string theory on special AdS5

background constitutes the main idea of AdS/CFT correspondence [1, 2, 3].

Similarly, Klebanov and Witten [9] suggested that N D-branes at the singularity

zi = 0 of the conifold

4∑
i

z2
i = 0 , (2.1)

will result in “conifold” field theory – certain N = 1 superconformal field theory

dual to the string theory on AdS5×X, where X was identified as Einstein manifold

T 1,1. The introduction to the “conifold” field theory below is followed by a detailed

discussion of the dual geometry.

11
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2.1.1 The “conifold” field theory

D-branes on conifold singularity

We start with identifying the field content of the effective theory on the stack of N

D3-branes placed on the conical singularity (2.1). Following Klebanov and Witten

[9] we start with only one brane placed on the cone. Its moduli space is described

by (2.1), which can be “solved” in terms of 4 independent complex numbers Ai, Bj,

with i, j = 1, 2 subject to “gauge symmetry” Ai → λAi, Bj → λ−1Bj

Wij = AiBj . (2.2)

The complex matrix Wij is related to zi via (2.14). The SO(4) symmetry of the

geometry (2.1) is a group of global symmetries of the gauge theory. This suggests

the SU(2) × SU(2) doublets Ai, Bj are chiral superfields and the constraint (2.1)

detW = 0 should follow from dynamics.

In the case of N D3-branes the abelian gauge group becomes SU(N)× SU(N)

with Ai and Bj in the (N, N) and (N, N) representation correspondingly [9]. The

U(1) factors of U(N)×U(N) decouple when theory flows in the IR to a line of fixed

points.

In addition to the SU(2) × SU(2) symmetry there is anomaly-free U(1)R R-

symmetry which shifts arguments of Ai, Bj. It acts on geometry (2.1) by shifting

arguments of zi. Both Ai and Bj has 1/2 charge under U(1)R and the most general

superpotential respecting SU(2)× SU(2)× U(1)R is [9]

W0 =
λ

2
εii′εjj′Tr(AiBjAi′Bj′) . (2.3)

There is another anomaly-free abelian symmetry U(1)baryon which shifts Ai, Bj

is opposite directions

Ai → Aie
iϕ , Bj → Bje

−iϕ . (2.4)

.
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At the classical level the superpotential (2.3) describes symmetric product of N

points on the conifold (2.1). This can be seen by considering diagonal Ai and Bj.

Klebanov and Witten argued that the theory in question flows to the supercon-

formal point in the IR. They conjectured that the resulting planar CFT is dual to

the string theory on AdS5 × T 1,1.

String theory on AdS5 × T 1,1

The solution of string theory on AdS × T 1,1 is specified by the warp factor HKW

ds2
10 = H

−1/2
KW dx2

3,1 + H
1/2
KW (dr2 + r2ds2

T 1,1) ,

C4 = dx0 ∧ ...dx3H−1
KW ,

HKW =
L4

r4
, L4 = 4πgsN(α′)2 . (2.5)

This background is different from AdS × S5 of [1, 2, 3] by the substitution of ds2
T 1,1

instead of ds2
S5 . The dual field theory was identified in the previous subsection

through the analysis of global symmetries. Here we follow [20] to give a supporting

argument which goes beyond simple symmetry analysis. Let us consider a Z2 orbifold

of N = 4 SYM which breaks supersymmetry to N = 2. The orbifold group acts

by changing sign of 4 directions in R6 ⊃ S5 i.e. 4 chiral real fields ΦI of gauge

theory. These fields will be denoted as Ai, Bj, while the invariant fields are Φ and

Φ̃. The orbifold breaks the gauge group U(2N) to U(N) × U(N) and the cubic

superpotential of N = 2 in new notations is

gTrΦ(A1B1 + A2B2) + gTrΦ̃(B1A1 + B2A2) . (2.6)

If we perturb the theory by a Z2 odd operator

m

2
Tr(Φ2 − Φ̃2) , (2.7)

the N = 2 supersymmetry will be broken down to N = 1, and conformal symmetry

will be broken by m2. The field theory will flow to the IR fixed point. By integrating
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out massive fields Φ, Φ̃ we recover the superpotential (2.3)

g2

2m
Tr (A1B1A2B2 −B1A1B2A2) . (2.8)

Therefore we conclude that this theory flows to the “conifold” CFT discussed above.

It can be shown that the dual geometry of T 1,1 emerges from S5/Z2 via blowing-up

of orbifold singularity of S5/Z2. It can be shown that this mechanism is dual to the

RG flow in gauge theory [9]. The detailed discussion of blow-up is quite lengthy and

we substitute it by another observation confirming T 1,1 as dual geometry for field

theory with superpotential (2.3). We compare the evolution of central charge along

RG flow in both gauge theory and string theory on AdS5 × X. In the conformal

case the matrix of fermion R-charges is traceless TrR = 0 and the central charge c

[21, 22]

c =
9

32
TrR3 , (2.9)

is given in terms of dual geometry [23]

c =
π3N2

4Vol(X)
. (2.10)

The Einstein manifold X is normalized such that RIJ = 4gIJ i.e. in our case it is

either S5 of unit radius or T 1,1 with metric (2.35). The matrix R is diagonal in both

cases. In the case of Z2 orbifold ofN = 4 there are 3 pairs of chiral N×N superfields

Ai, Bj, and (Φ, Φ̃), each has R-charge 2/3. Hence the fermion components have

charge −1/3. The fourth pair of fermions χ1, χ2 from vector multiplets have charge

1 and therefore N−2TrR = 6(−1/3) + 2 = 0. The central charge

c

N2
=

9

32
(6(−1/27) + 2) =

1

2
, (2.11)

in coincidence with Vol(S3/Z2) = π3/2. In the case of “conifold” filed theory the

fields Φ, Φ̃ are integrated out and the R-charge of remaining fields Ai, Bj is 1/2 as

follows from the quartic form of superpotential. The R-charge of vector multiplet
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remaines the same. Then N−2TrR = (4(−1/2) + 2) = 0 and

c

N2
=

9

32
(4(−1/8) + 2) =

27

64
. (2.12)

This confirms the choice of T 1,1 as of dual geometry since Vol(T 1,1) = 16π3

27
. The

latter follows from (2.35) and can be easily verified.

2.1.2 Geometry of singular conifold

This subsection is devoted to the geometry of singular conifold – a cone over T 1,1.

We start with introducing the notation in the next subsection and then proceed

with a derivation of Ricci-flat metric on singular conifold.

Geometry of Singular Conifold

The singular conifold C0 is a complex 3-dimensional subspace in C4 defined by the

equation [24]

4∑
i=1

z2
i = 0 , (2.13)

where {zi; i = 1, 2, 3, 4} are complex coordinates in C4. The conifold constraint

(2.13) may be formulated with help of complex matrix W

detW = 0 , W ≡ 1√
2
(zασα + iz41) =

1√
2


 z3 + iz4 z1 − iz2

z1 + iz2 −z3 + iz4


 , (2.14)

where {σα; α = 1, 2, 3} are Pauli matrices satisfying σασβ = δαβ1 + iεαβγσγ. The

radial coordinate of the conifold, r̂, is defined by [24]

r3 ≡
(

2

3

)3/2

r̂3 ≡ Tr(WW †) =
4∑

i=1

|zi|2 . (2.15)

Equation (2.13) defines complex structure on the conifold. The metric can be spec-

ified through Kähler potential k(zi, zj). To preserve SO(4) symmetry of (2.13) we
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focus on the potential of the form k(r3). In this case the metric gαβ ≡ ∂α∂βk is

given by

ds2 = ∂α∂βk duαduβ

= k′′ |Tr(W †dW )|2 + k′ Tr(dWdW †) , (2.16)

where prime stands for derivative with respect to r3 and {uα} are some complex

coordinates on the conifold, say uα = zα. These variables may not be independent

coordinates. If uα satisfy some constraint f(uα) = 0, one just needs to impose a

constraint duα∂αf = 0 on differentials duα in (2.16).

Singular conifold is a Calabi-Yau manifold and admits Ricci-flat metric. Any

Kähler potential

k′ =
(

1

r3
+

c

r9

)1/3

, (2.17)

leads to a Ricci-flat metric through (2.16) [24, 25]. In the special case c = 0 the

metric (2.16) has the form of conic geometry ds2 ' dr2+r2ds2
T 1,1 , where the base T 1,1

is r-independent. Compact space T 1,1 will be discussed in more detail later in this

section. At this point it is convenient to introduce unconstrained real coordinates

on conifold. To keep the description explicitly SU(2) × SU(2) invariant we start

with introducing angles θ, φ, ψ on SU(2)

L(θ, φ, ψ) =


 a b

−b∗ a∗


 ∈ SU(2) , (2.18)

a = e
i
2
(ψ+φ) cos

θ

2
, b = e−

i
2
(ψ−φ) sin

θ

2
, (2.19)

and express matrix W through a pair L1(θ1, φ1, ψ1), L2(θ2, φ2, ψ2)

(L1, L2) ∈ SU(2)× SU(2) , (2.20)

W = L1ZL+
2 , (2.21)

Z =


 0 r3/2

0 0


 . (2.22)
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Obviously, equation detW = 0 is invariant under W → U1WU+
2 , where (U1, U2) ∈

SU(2)×SU(2). To complete the construction we need to get rid of one extra angular

variable as the total number of real coordinates on conifold is six. Explicit check

confirms that W depends on ψ1 and ψ2 only through the combination ψ = ψ1+ψ2 ∈
[0..4π]. We choose ψ to be a new independent coordinate in addition to θi, φi and

r.

The coordinates zi can be expressed through angular variables θi, φi, ψ and r as

follows

w1 = 2−1/2(−z1 − iz2) = r3/2e
i
2
(ψ−φ1−φ2) sin

θ1

2
sin

θ2

2
, (2.23)

w2 = 2−1/2( z1 − iz2) = r3/2e
i
2
(ψ+φ1+φ2) cos

θ1

2
cos

θ2

2
, (2.24)

w3 = 2−1/2( z3 + iz4) = r3/2e
i
2
(ψ+φ1−φ2) cos

θ1

2
sin

θ2

2
, (2.25)

w4 = 2−1/2( z3 − iz4) = r3/2e
i
2
(ψ−φ1+φ2) sin

θ1

2
cos

θ2

2
. (2.26)

Here we also introduce another set of coordinates on C4, wi, which is a subject to

constraint

w1w2 − w3w4 = 0 . (2.27)

Before we return to the discussion of the metric, let us define a complete (together

with dr) set of one-forms εα
I via

iεα
I = Tr

(
L+

I dLIσ
α
)

, I = 1, 2 , α = 1, 2, 3 , (2.28)

ε1
I = sin ψI sin θIdφI + cos ψIdθI ,

ε2
I = cos ψI sin θIdφI − sin ψIdθI ,

ε3
I = dψI + cos θIdφI . (2.29)

Each one-form εα
I is obviously invariant under SU(2)× SU(2). Therefore the form

g5 = ε3
1 + ε3

2 = dψ + cos θ1dφ1 + cos θ2dφ2 , (2.30)
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is also invariant. We will discuss how to construct a general SU(2)×SU(2) invariant

(0, 2) tensor later in the section (2.2.2). It is sufficient for now that any combination

of ε1
I , ε

2
I , g5 is invariant by construction.

Now we are ready to return back to the metric (2.16). The Kähler potential

[24, 25]

k(zi, zi) =
3

2

(
4∑

i=1

|zi|2
)2/3

=
3

2
r2 = r̂2 , (2.31)

leades to the Ricci-flat conic geometry. Using the explicit form of wi (2.23-2.26) we

find

Tr(dWdW †) =
∑

i

|dwi|2 =
9r

4
dr2 +

r3

4

[
g2
5 + (ε1

1)
2 + (ε2

1)
2 + (ε1

2)
2 + (ε2

2)
2
]

,(2.32)

and

Tr(W+dW ) =
∑

i

widwi =
r2

2
(3dr + irg5) . (2.33)

Eventually we find metric on conifold to be

ds2 = dr̂2 + r̂2ds2
T 1,1 , (2.34)

with

ds2
T 1,1 =

1

9

(
dψ +

2∑
i=1

cos θidφi

)2

+
1

6

2∑
i=1

(dθi + sin2 θidφ2
i ) . (2.35)

The metric above defines Einstein space T 1,1. The real coordinates have the range

{r ∈ [0,∞], θi ∈ [0, π], φi ∈ [0, 2π], ψ ∈ [0, 4π]}. To find the symmetries of T 1,1

we fix radius r3 =
∑

i |zi|2 and describe points on T 1,1 through pair (L1, L2) ∈
SU(2)×SU(2) via r−3/2L1ZL+

2 . As we already mentioned before, W depends on ψi

only through ψ1 + ψ2. This means that the map r−3/2W : SU(2)× SU(2) → T 1,1 is

degenerate. It maps an orbit of U(1) which shifts ψ1 and ψ2 in opposite directions
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into the same point on T 1,1: (L1, L2) ∼ (L1U,L2U
−1)

L1ZL+
2 = (L1U)Z(L2U

−1)+ , (2.36)

U =


 eiΨ 0

0 e−iΨ


 ∈ U(1) . (2.37)

Therefore T 1,1 can be defined as

T 1,1 =
SU(2)× SU(2)

U(1)
. (2.38)

We conclude this section by noting that besides being invariant under SU(2)×
SU(2), T 1,1 has additional symmetry U(1)R, which acts by shifting ψ,

(L1, L2) → (L1UR, L2UR) . (2.39)

The matrix UR given by (2.37). This follows either from (2.35) or, in the case of

more general Kähler potential, from the invariance of (2.13) as well as (2.32,2.33)

under (2.39). This symmetry is dual to U(1) R-symmetry in gauge theory and plays

an important role in establishing gauge/string duality as we have seen above.

2.2 Cascading gauge theory and deformed coni-

fold

This section is devoted to the confining SU(N + M)×SU(N) gauge theory and its

dual description in terms of IIB SUGRA. Firstly we review the properties of field

theory including classical and quantum moduli space in section (2.2.1) and then

proceed with a detailed discussion of dual geometry in section (2.2.2).

2.2.1 Cascading gauge theory

We start with SU(N)× SU(N) “conifold” gauge theory of section (2.1.1) and add

M colors to one of the gauge groups SU(N + M)× SU(N). The field content and
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superpotential (2.3) remain the same. Extra M colors break conformal invariance

and the combination of couplings

8π2

g2
1

− 8π2

g2
2

= 6M log(Λ/µ)
(
1 +O (

(M/N)2
))

, (2.40)

runs with the scale, although the combination

8π2

g2
1

+
8π2

g2
2

(2.41)

remains scale invariant [12]. Equation (2.40) suggests that the coupling g1 of SU(N+

M) diverges as the theory flows from UV into IR. At this point the old microscopic

description is not valid anymore and one has to switch to a Seiberg-dual description

of the theory [12, 11]. The gauge group SU(N+M) has 2N flavors and thus becomes

SU(2N − (N + M)) = SU(N −M) in the Seiberg-dual description. In addition to

the existing superpotential (2.3)

W0 =
λ

2
εii′εjj′TrMijMi′j′ , (2.42)

rewritten through the meson matrix Mij = AiBj, the dual theory acquires extra

term

W = W0 + µTrMijA
′
iB

′
j . (2.43)

Here A′
i, B

′
j are the bi-fundamental fields in SU(N − M) × SU(N) theory. The

meson field Mij is massive an can be integrated out leaving superpotential (2.3)

with renormalized coupling constant λ′

W =
λ′

2
εii′εjj′Tr(AiBjAi′Bj′) . (2.44)

Therefore the dual theory has SU(N −M)×SU(N) gauge group and the superpo-

tential (2.3) with the new coupling constant λ′. This is essentially the same gauge

theory with the number of colors N shifted by M . The behavior when effective

number of colors N runs with the scale is called duality cascade (see [26] for a

review).
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The last step of the cascade depends on p̃ = N mod M . In this thesis we focus

on N = kM , when the last step is described by SU(2M) × SU(M) → SU(M).

The gauge theory is confining in this case and its gravity dual has small curvature

everywhere. Hence SUGRA approximation is consistent. Otherwise, if p̃ 6= 0 the

confinement doe not occur. If p̃ is large enough to produce back reaction captured

by dual geometry i.e. p̃/M = const in the planar limit M → ∞ the absence of

confinement will be reflected by the IR behavior of the warp factor H(0) →∞.

Adding fractional D5 branes

The extra M colors introduced above have simple meaning in terms of dual geometry.

These are M fractional D5 branes wrapping non-compact 2-cycle of singular conifold

[27]. The fractional D5-branes create M units of flux through the 3-cycle and the

effective number of colors N is given by an integral over base of the cone

1

4π2α′

∫

S3

F3 = M ,
1

(4π2α′)2

∫

T 1,1

F5 = N . (2.45)

Unlike the three-form, dF3 = 0, five-form is not closed dF5 = H3∧F3 and its integral

over the base of the cone
∫

T 1,1 F5 depends on radius r of the conifold. According

to the general gauge/gravity duality, radius r is associated with the energy scale of

gauge theory µ. Therefore the dependence of effective number of colors N on radius

is a gravity dual of cascade behavior in gauge theory. In fact this can be confirmed

by comparing the logarithmic running of coupling constants (2.40) obtained from

gauge theory with the result of calculation in IIB SUGRA [12].

Non-vanishing flux through S3 leads to a singular energy density if S3 shrinks

near the tip. Klebanov and Strassler suggested that the S3 at the tip should be

blown-up to a finite size to avoid singularity. They proposed the topology of de-

formed conifold Cε

∑
i

z2
i = −ε2

2
, (2.46)
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as the candidate for the gravity-dual of SU(N + M)× SU(M) gauge theory. This

choice does not affect UV dynamics as the deformed conifold resembles the singular

one for large radius i.e. for large energy scale. But the non-trivial deformation ε 6= 0

prevents S3 from shrinking at the tip and keeps solution smooth everywhere.

There are a number of ways to justify the geometry (2.46). The most straight-

forward way is to see how it emerges directly from field-theory analysis. Following

Klebanov and Strassler we consider a theory with an extra color SU((k + 1)M +

1)×SU(kM + 1). The idea is that the additional degrees of freedom corresponding

to extra color will “probe” the geometry of moduli space. The theory at the bot-

tom of the cascade has gauge group SU(M + 1) and fields Ai, Bj in M + 1, M + 1

representation correspondingly. The gauge-invariant meson matrix Mij = AiBj en-

ters classical superpotential W0 = λDetMij and leads to the classical moduli space

DetM = 0 i.e. to the singular conifold C0. In the far IR this theory develops non-

perturbative Affleck-Dine-Seiberg superpotential [28] which is responsible for chiral

symmetry breaking

W = λDetM+ (M − 1)

[
2Λ3M+1

DetN

] 1
M−1

. (2.47)

The supersymmetric vacua are given by

DetMij =

[
2Λ3M+1

(2λ)M−1

] 1
M

. (2.48)

Notice that the geometry of (2.48) coincides with (2.46).

The R-symmetry is broken by (2.48) to Z2 and there are M distinct solutions

related to each other by ZM ⊂ U(1)R. These M branches of moduli space are

characterized by M different values of gluino condensate 〈λλ〉M ∼ Λ3M . Eventually

we find M copies of deformed conifold

⊕M
r=1Cε (2.49)

labelled by the phase of gluino condensate e
2πr
M to be the moduli space of the probe.
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In the following we will recover the same result for moduli space without introducing

probe branes.

Classical flat directions

We start with classical flat directions of SU(N+M)×SU(N) theory. At the classical

level, we have the F and D-flatness conditions. The latter is

∑
i AiA

†
i −

∑
j B†

jBj = U
N

1IN ,

∑
i A

†
iAi −

∑
j BjB

†
j = U

M+N
1IM+N , (2.50)

where 1IN and 1IM+N are N × N and (M + N) × (M + N) unit matrices. Real

constant

U = Tr

(∑
i

AiA
†
i −

∑
j

B†
jBj

)
, (2.51)

parameterizes the family of solutions and plays the role of flat parameter. In the

quantum theory, U is an operator (2.129), whose expectation value labels different

ground states.

The solutions of these equations for the case of interest N = kM can be divided

into two groups – mesonic and baryonic.

Mesonic flat direction

The mesonic flat directions correspond to the non-zero meson matrix Mij = AiBj.

In the general case it can be diagonalized and the solution has the form

Ai =




A1
i1

A2
i2

.

.

AN
αN



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Bj =




B1
j1

B2
j2

.

.

BN
jN




∀a ∑
i |Aa

ia|2 −
∑

j |Ba
ja|2 = 0 . (2.52)

This solution breaks gauge symmetry to SU(M) × U(1)N−1 and the moduli space

is characterized by N sets of coordinates Ma
ij = Aa

iaB
a
ja with Detij(Ma) = 0 up

to permutations over the index a. This is a symmetric product of N copies of the

(singular) conifold C0 [14]

SymN(C0) , (2.53)

which resembles conformal field theory with M = 0.

Baryonic flat directions

The baryonic flat direction of confining SU(N +M)×SU(N) theory with N = kM

is given by [14]

Aα=1 = C




√
k 0 0 . 0 0

0
√

k − 1 0 . 0 0

0 0
√

k − 2 . 0 0

. . . . . .

0 0 0 . 1 0




⊗ 1IM ,

Aα=2 = C




0 1 0 . 0 0

0 0
√

2 . 0 0

0 0 0
√

3 . 0

. . . . . .

0 0 0 0 .
√

k




⊗ 1IM ,
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Bα̇=1 = 0 ,

Bα̇=2 = 0 . (2.54)

The arbitrary complex number C is related to the modulus U of (2.51) via U = k(k+

1)M |C|2. Non-zero C breaks U(1)baryon which gives the name to the flat direction.

There is gauge and SU(2)×SU(2) invariant baryonic operator A ∼ (A1A2)
k(k+1)M/2,

with appropriate contraction of indexes [29], which has non-zero expectation value

along the branch 〈A〉 ∼ Ck(k+1)M . It is equivalent to the combination of real para-

meter U and the charge under U(1)baryon.

There is another classical baryonic branch isomorphic with (2.52) under the Z2

symmetry I exchanging A ←→ B, accompanied by complex conjugation. In this

case U = −k(k + 1)M |C|2 and expectation of baryon B ∼ (B1B2)
k(k+1)M/2 (also

called anti-baryon) serves as the module.

Each of these branches has one complex dimension and is parameterized by

Ck(k+1)M . They touch each other at the origin, C = 0. On quantum level these

branches merge into a single smooth branch as will be discussed below.

Quantum moduli space and gluino condensate

Both mesonic and baryonic branches discussed above preserve SU(M) gauge symme-

try on classical level. In case of mesonic branch this SU(M) is a part of SU(N +M),

and in the case of baryonic branch SU(M) ⊂ SU(M)1×SU(M)2 where SU(M)1 ⊂
SU(M)k+1 ⊂ SU((k + 1)M) and SU(M)2 ⊂ SU(M)k ⊂ SU(kM). The unbroken

SU(M) is confining and this leads to the well-known gluino condensation phenom-

enon. Namely, the classical moduli space Ccl is multiplied into a sum of isomorphic

branches parameterized by the value of gluino condensate 〈λλ〉 ∼ Λ3e
2πir
M

⊕M
l=1Cqm . (2.55)

The gluino condensate breaks non-anomalous subgroup Z2M ⊂ U(1)R down to Z2.

The discussion above is somewhat schematic because classical moduli space Ccl is
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different from its quantum analog Cqm. In fact the mesonic branch SymN(C0) is

changed by ⊕k
l=0SymN−lM(Cεl

) on quantum level [14]. We proceed with a detailed

discussion of the quantum moduli space Cqm for the bottom of the cascade k = 1

below.

Bottom of the cascade SU(2M)× SU(M)

The SU(2M)×SU(M) theory at the bottom of the cascade has baryons [12, 29, 30]

A = εα1α2...α2M
(A1)

α1
1 (A1)

α2
2 . . . (A1)

αM
M (A2)

αM+1

1 (A2)
αM+2

2 . . . (A1)
α2M
M ,

B = εα1α2...α2M (B1)
1
α1

(B1)
2
α2

. . . (B1)
M
αM

(B2)
1
αM+1

(B2)
2
αM+2

. . . (B1)
M
α2M

. (2.56)

and mesons Mb
ija = (Ai)

c
a(Bj)

b
c. The baryons are singlets under gauge groups and

global symmetry SU(2)×SU(2) while the mesons are charged under SU(2)×SU(2)

and SU(M). It follows from the definitions above that the fields M, A and B are

not independent: on classical level DetijabM−AB = 0. At the quantum level, this

constraint is modified by nonperturbative quantum corrections [19]

DetijabM−AB = Λ4M
2M , (2.57)

which follows from the effective superpotential [19]

Weff = W0 + L
(
DetijabM−AB − Λ4M

2M

)
. (2.58)

The field L is a Lagrange multiplier and has no kinetic term i.e. it is infinitely

massive. The superpotential (2.58) is applicable only at zero energy, not a low

energy. It describes moduli space but not the low-energy dynamics. It includes

massive fields like L and one massive component of M, A or B which are not

associated with any massive particles in the spectrum. Instead, they should be

interpreted as auxiliary fields in the low energy theory.

The theory with superpotentail (2.58) is IR free and its moduli space can be easily

analyzed. There are two branches at the quantum level – mesonic and baryonic,

which are related to the classical ones.
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The mesonic branch is characterized by A = B = 0 and M constrained by

DetijabM = Λ4M
2M . Together with D-term constraint this leads to the moduli space

⊕M
r SymM(Cε) with the deformation parameter of conifold ε ∼ Λ3

2M .

The baryonic branch has M = 0 and AB = Λ4M
2M . The two classical branches

with AB = 0 are combined into a single smooth one complex dimensional branch

parameterized by the parameter ζ

A = iΛ2M
2Mζ ,

B = −iΛ2M
2Mζ−1 . (2.59)

The symmetry I exchanges A ↔ B+ and inverts ζ:

I : ζ → 1

ζ∗
. (2.60)

The low energy theory includes SU(M) gauge sector which enhances the moduli

space into M distinct but isomorphic branches via gluino condensation.

We have already stated that the expectation values of the mesons are interpreted

as D3-branes in the bulk of the deformed conifold M = Cε.

2.2.2 Geometry of deformed conifold

The deformed conifold Cε is defined similarly to the singular conifold C0 of (2.13) by

imposing an equation in C4

∑
i

z2
i = −ε2

2
. (2.61)

This constraint can be rewritten with help of complex matrix W similarly to (2.14)

detW = −ε2

2
, (2.62)

where

W = L1ZdL
+
2 , (2.63)

Zd =
ε√
2


 0 et/2

e−t/2 0


 . (2.64)
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New radial variable t ∈ [0..∞) can be matached with r at large t (UV) region

r3 = ε2 cosh(t) → ε2et/2 . (2.65)

Although Zd is different from Z of (2.22), analog of equation (2.36) is satisfied

UZd(U
−1)+ = Zd and W depends on ψi only through ψ = ψ1 +ψ2. Nevertheless the

metric is not invariant under U(1)R : Zd → URZdU
+
R and the group of symmetries

reduces to SU(2)×SU(2). The explicit expressions for zi(θi, φi, ψ, r) can be obtained

from (2.14) and (2.63). These formulae are quite bulky and we will not write them

here. Instead we calculate Tr(dW+dW ) and Tr(W+dW ) which are the building

blocks of Kähler metric (2.16). These expressions are obviously SU(2) × SU(2)

invariant, although it may be tricky to see that once they are written through θi, φi

and ψ. One way to prove invariance is to express everything in terms of εα
i and

check that ψi enter only through ψ = ψ1 + ψ2 in the resulting expression. Here we

use slightly different approach and following [25] we introduce new set of one-forms1

e1 = dθ1 , e2 = − sin θ1dφ1 ,

εα = εα
2 |ψ2=ψ , α = 1, 2 . (2.66)

Next, we would like to show that the combination e1ε1 + e2ε2 is invariant under

SU(2) × SU(2)2. To make the logic transparent we label the SU(2)’s as follows

SU(2)1 × SU(2)2 and notice that forms e1, e2 are invariant under SU(2)2. This is

because e1, e2 are one-forms on SU(2)1 and thus not affected by SU(2)2. The forms

ε1, ε2 are also invariant under SU(2)2 as follows from (2.28). Therefore the whole

expression e1ε1 + e2ε2 is invariant under SU(2)2.

To show that e1ε1 + e2ε2 is also invariant under SU(2)1 we introduce yet another

set of one-forms

ê1 = dθ2 , ê2 = − sin θ2dφ2 ,

ε̂α = εα
1 |ψ1=ψ , α = 1, 2 . (2.67)

1This is equivalent to fixing the “gauge” ψ1 = 0, ψ = ψ2.
2Alternatively one can check that

∑
α εα

1 εα
2 depends on ψi only through ψ.
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which is different from (2.66) only by interchange of index 1 ↔ 2. Therefore ê1ε̂1 +

ê2ε̂2 is invariant under SU(2)1. A straightforward check shows that

e1ε1 + e2ε2 = ê1ε̂1 + ê2ε̂2 , (2.68)

which completes the proof. Expression above is invariant under SU(2)1 and under

SU(2)2 and therefore it is SU(2)× SU(2) invariant.

Now we are ready to proceed with Kähler metric (2.16)

Tr(dW+dW ) =
∑

|dzi|2 =
ε2

4
cosh(t)

[
g2
5 + (ε1

1)
2 + (ε2

1)
2 + (ε1

2)
2 + (ε2

2)
2
]
+

+
ε2

2
(e1ε1 + e2ε2) , (2.69)

Tr(W+dW ) =
∑

i

zidzi =
ε2

2
sinh(t)(dt + ig5) . (2.70)

Notice that (2.69) is not invariant under UR as was mentioned before.

Again we focus on Kähler potential of the form k = k(t) to preserve explicit

SO(4) invariance. Similarly to the singular conifold, the deformed conifold is Calabi-

Yau and admits Ricci-flat metric. The corresponding one-dimensional family of

Kähler potentials is

dk

ε2d cosh(t)
≡ k(t)′ =

1

ε2 cosh(t)

(
3

2
ε4 [cosh(t) sinh(t)− t] + c

)1/3

. (2.71)

The Kähler potential (2.17) can be recovered by taking ε → 0 while keeping ε cosh(t)

fixed.

A particular choice of c = 0 leads to the metric on deformed conifold, used in

Klebanov-Strassler solution

ds2
M =

ε4/3K(t)

2

[
sinh2

(
t

2

) (
g2
1 + g2

2

)
+ cosh2

(
t

2

) (
g2
3 + g2

4

)
+

1

3K(t)3

(
dt2 + g2

5

)]
,

(2.72)

with

K(t) ≡ (sinh(t) cosh(t)− t)1/3

sinh(t)
. (2.73)
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To make a connection with original paper by Klebanov and Strassler [12] we have

used the set of one-forms gi which makes metric diagonal. They are related to the

forms ei, εi as follows

g1 ≡ e2 − ε2√
2

, g2 ≡ e1 − ε1√
2

,

g3 ≡ e2 + ε2√
2

, g4 ≡ e1 + ε1√
2

. (2.74)

Deformed conifold at the tip

The metric (2.72) is not singular and smooth everywhere unlike (2.34) which has

conical singularity at the tip r = 0. To investigate the behavior of (2.72) at the tip

we take t = 0 and rewrite deformed conifold constraint detW = − ε2

2
as

|X|2 + |Y |2 =
ε2

2
, (2.75)

where X and Y are

X =
ε√
2
e

i
2
(φ1+φ2)

(
eiψ/2 cos

θ1

2
cos

θ2

2
− e−iψ/2 sin

θ1

2
sin

θ2

2

)
,

Y =
ε√
2
e

i
2
(φ1−φ2)

(
eiψ/2 cos

θ1

2
sin

θ2

2
− e−iψ/2 sin

θ1

2
cos

θ2

2

)
. (2.76)

Two complex numbers X,Y (θi, φi, ψ) parametrize the 3-sphere through the con-

straint (2.75). The metric of confiold reduces to the metric of Euclidean S3 as well.

To see that we write the metric on a S3 of unit radius

ds2
S3 =

2

ε2
(|dX|2 + |dY |2) =

1

4

(
g2
5 + 2g2

3 + 2g2
4

)
, (2.77)

and compare it with small t expansion of ds2
M [31]

ds2
M '

(
2ε4

3

)1/3
1

4

(
g2
5 + 2g2

3 + 2g2
4

)
+

1

8

(
2ε4

3

)1/3

t2
(
g2
1 + g2

2

)
+O(t3) . (2.78)

We find that near the tip the deformed conifold degenerates into Euclidean 3-sphere

of finite radius
(

2ε4

3

)1/6

.
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Holomorphic (0, 3) and Kähler forms on deformed conifold

To make the description of geometry complete we would like to present here the

expressions for the closed holomorphic 3-form Ω̃KS and Kähler form JKS

Ω̃KS =
ε2

96
(dt + ig5) ∧ [(e1 ∧ e2 + ε1 ∧ ε2) +

+i sinh(t)(e1 ∧ ε1 + e2 ∧ ε2) + cosh(t)(e1 ∧ ε2 + ε1 ∧ e2)] , (2.79)

J̃KS = fKS (e1 ∧ e2 − ε1 ∧ ε2) + dfkS ∧ g5 ,

fKS =
ε4/3

4
(cosh(t) sinh(t)− t)1/3 . (2.80)

Klebanov-Strassler solution

The geometry of Klebanov-Strassler (KS) [12] solution is a warped product of de-

formed conifold (2.72) and flat Minkowski space

ds2 = HKS(t)−1/2dx2
3,1 + HKS(t)1/2ds2

M . (2.81)

with warp factor HKS(t)

HKS(t) = (gsMα′)22ε−8/3I(t) ,

I(t) ≡
∫ ∞

t

dx
x coth(x)− 1

sinh2(x)
(sinh(x) cosh(x)− x)1/3 . (2.82)

This integral cannot be performed analytically. Therefore we present here some

numerical results about I(t) near t = 0 and at t → ∞. In the small t region I(t)

approaches constant value

I(t) = 0.5699− 2−2/33−2t2 +O(t4) . (2.83)

In the UV region I(t) can be approximated by

I(t) = 2−8/33(4t− 1)e−4t/3 − 27/35−3
(
25t2 − 85t + 12

)
e−10t/3 +O(e−16t/3) .(2.84)

The fact that HKS is finite at t = 0 indicates that the dual gauge theory is in the

confining phase.
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KS solution has nontrivial NS-NS 3-form H = dB2,

B2 =
gsMα′

2

t coth(t)− 1

sinh(t)

[
sinh2

(
t

2

)
g1 ∧ g2 + cosh2

(
t

2

)
g3 ∧ g4

]
, (2.85)

and the R-R fluxes, which can be compactly written as

F3 =
Mα′

2

{
g3 ∧ g4 ∧ g5 + d

[
sinh(t)− t

2 sinh(t)
(g1 ∧ g3 + g2 ∧ g4)

]}
, (2.86)

F̃5 = dC4 + B2 ∧ F3 = (1 + ∗) (B2 ∧ F3) . (2.87)

It is also useful to to write down corresponding R-R potentials:

C2 =
Mα′

2

[ψ

2
(g1 ∧ g2 + g3 ∧ g4)− 1

2
cos θ1 cos θ2 dφ1 ∧ dφ2

− t

2 sinh(t)
(g1 ∧ g3 + g2 ∧ g4)

]
, (2.88)

C4 =
1

gsHKS(t)
dx0 ∧ dx1 ∧ dx2 ∧ dx3 . (2.89)

The R-R 2-form is not well-defined as it does not preserve ψ → ψ + 4π symmetry.

This reflects the fact that F3 contains non-exact piece g3∧g4∧g5 responsible for the

flux through S3. Explicit ψ dependence in (2.88) corresponds to the gravity dual

mechanism of chiral-symmetry breaking [32].

The complex form G3 = H3 + igsF3 is imaginary self dual ∗6G3 = iG3 with

respect to the six-dimensional metric (2.72). This implies constant dilaton φ = 0.

The forms (2.85,2.86) are invariant under SU(2)× SU(2). Although this is not

obvious from the expressions above this can be easily established. One way is to

represent B2 and G = H3 + igsF3 through zi and dzi [31]. Another approach is to

use ei, εi basis instead of gi. This method will be employed in the next section where

we discuss SU(2)× SU(2) invariant ansatz for metric and fluxes.

There is an additional Z2 symmetry of KS solution, I, which exchanges (θ1, φ1)

with (θ2, φ2) accompanied by the action of −I of SL(2, Z) which changes sign of H3

and F3. This symmetry plays an important role in identifying KS solution with Z2

invariant point on moduli space of gauge theory in section (3.2.1).

From here on we set the deformation parameter ε to unity for notational sim-

plicity, and also choose Mα′ = 2 and gs = 1, unless they are written explicitly.
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Klebanov-Tseytlin limit of the Klebanov-Strassler solution

The Klebanov-Tseytlin (KT) solution [33] is dual to the SU(N + M) × SU(N)

theory with N not necessarily proportional to M . In that sense it is more general

than KS. In fact, the KT solution is singular at IR and thus provides a reliable

description for gauge theory only in UV. Therefore, the KT can be understood as

an intermediate step between the conformal KW solution dual to SU(N)× SU(N)

theory and singularity-free KS with N ∼ M . KT solution was constructed before

KS and it is simpler than KS because it captures physics only in UV region. That

is why we present KT as a certain simplifying limit of KS solution unlike traditional

approach when KT precedes KS.

The KT solution is a UV limit of KS and hence can be obtained from KS by

taking the limit t → ∞. It is convenient to use radial variable r which is (2.65)

which is

r3 =
ε2

2
et . (2.90)

Then the metric (2.81) reduces to

ds2
10 = H

−1/2
KT dx2

3,1 + H
1/2
KT

(
dr2 + r2ds2

T 1,1,

)
, (2.91)

with warp factor HKT (r) [33]

HKT =
27π(α′)2 (2πgsN + 3(gsM)2 log(r/r0) + 3(gsM)2/4)

8πr4
. (2.92)

Instead of size of deformation ε we have “minimal radius” r0 where the naked

singularity occurs. Warp factor HKT also contains N in addition to M as was

discussed above. It is clear that only a combination of N and r0 is meaningful.

The R-R fluxes and B2 field are also simplified in KT limit. Since the manifold

M is simply a cone over T 1,1 ∼= S2 × S3 the fluxes can be represented through the
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volume forms of the 2 and 3-cycles

w2 =
1

2
(e1 ∧ e2 + ε1 ∧ ε2) , w3 = g5 ∧ w2 , (2.93)

∫

S2

w2 = 4π ,

∫

S3

w3 = 8π2 , (2.94)

w2 ∧ w3 = 54Vol(T 1,1) . (2.95)

Namely [33]

B2 =
3α′gsM

2
log(r/r0)w2 , H3 =

3α′gsM

2r
dr ∧ w2 , (2.96)

F3 =
Mα′

2
w3 , F5 = 27π(α′)2Neff (r)Vol(T 1,1) , (2.97)

Neff = N +
3

2π
gsM

2 log(r/r0) . (2.98)

The effective number of colors Neff runs with energy scale r according to the

cascade behavior [20].

As we will see in the next section, the BGMPZ solutions dual to the gauge theory

on baryonic branch share the same behavior in the UV region. Therefore the formu-

lae above provide a simple description for the geometry far away from the tip, not

only for KS but for the whole BGMPZ family. Many applications of gauge/gravity

duality are not sensitive to the IR physics. In this case, KT solution is preferable

as it simplifies the calculation. Thus in chapter 4 we calculate superpotential on

the D3-brane placed in the throat together with D7, assuming that neither brane is

close to the tip. This calculation is quite lengthy and usage of KT geometry rather

than KS or BGMPZ is a valuable advantage.

2.3 BGMPZ family of solutions and baryonic branch

of the gauge theory

In this section we are going to review the BGMPZ family of solutions [13]. These

solutions preserve N = 1 SUSY and global SU(2) × SU(2) symmetry. They were
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found with the help of the PT ansatz [25] and SU(3) structure method [34, 35]. We

proceed by reviewing the PT ansatz in the next section and later we briefly explain

the main idea of the SU(3) structure method. We refer the reader interested in

more details to the original papers.

2.3.1 The PT ansatz and method of SU(3) structure

Papadopoulos-Tseytlin ansatz

In section (2.2.2) we discussed how to show that the symmetric tensor on conifold

e1ε1 + e2ε2 (2.99)

is SU(2)× SU(2) invariant. The main idea was to represent (2.99) through a dual

basis (2.67)

e1ε1 + e2ε2 = ê1ε̂1 + ê2ε̂2 . (2.100)

Besides (2.99) we also have invariant combinations

e2
1 + e2

2 = ε̂2
1 + ε̂2

2 , (2.101)

ε2
1 + ε2

2 = ê2
1 + ê2

2 , (2.102)

as well as dt and g5. The PT ansatz for ten-dimensional metric

ds2 = e2Adx2
3,1 + ds̃2

M = e2Adx2
3,1 +

6∑
i=1

G2
i , (2.103)

is a warped product of flat Minkowski space and a conifold M, where the warped

metric on conifold dS̃2
M is a combination of the invariant pieces above

dS̃2
M =

6∑
i=1

G2
i = exv−1(dt2 + g2

5) +

+ex−g
[
(e2g + a2)(e2

1 + e2
2) + (ε2

1 + ε2
2)− 2a(e1ε1 + e2ε2)

]
. (2.104)

The Z2 symmetry which exchange (θ1, φ1) with (θ2, φ2) is broken unless e2g +a2 = 1.
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The choice of vielbeins Gi is not unique. Our choice below is dictated by a

requirement that three complex forms GI = (G2I−1 + iG2I)

G1 ≡ e(x+g)/2 e1 , G2 ≡ cosh(t) + a

sinh(t)
e(x+g)/2 e2 +

eg

sinh(t)
e(x−g)/2 (ε2 − ae2) ,

G3 ≡ e(x−g)/2 (ε1 − ae1) , G4 ≡ eg

sinh(t)
e(x+g)/2 e2 − cosh(t) + a

sinh(t)
e(x−g)/2 (ε2 − ae2) ,

G5 ≡ ex/2 v−1/2dt , G6 ≡ ex/2 v−1/2g5 , (2.105)

are holomorphic, i.e. the eigenvectors of the complex structure. While in the KS case

there was a single warp factor h(t), now we find five functions A(t), x(t), g(t), a(t), v(t).

In terms of these one-forms the warped “holomorphic” (3, 0) form is

Ω = (G1 + iG2) ∧ (G3 + iG4) ∧ (G5 + iG6) , (2.106)

and the warped fundamental (1, 1) form is

J =
i

2

[
(G1 + iG2)∧ (G1− iG2)+(G3 + iG4)∧ (G3− iG4)+(G5 + iG6)∧ (G5− iG6)

]
.

(2.107)

If manifold M is a Calabi-Yau with Ricci-flat metric as it is in the KS case, Ω and J

are closed holomorphic and Kähler forms multiplied by the warp factors H3/2 and H

respectively. This result can be generalized to the non Ricci flat metric, provided the

background preserves N = 1 SUSY. In the IIB theory the SU(3) structure manifold

M is complex, the pseudo-Kähler form e2A−φJ is not necessarily closed, but the

3-form is closed d(e3A−φΩ) = 0. In the case of IIA theory the SU(3) structure

manifold is Kähler i.e. e2A−φJ is closed, but e3A−φΩ is not (see, for example, [35]).
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To write down PT ansatz for R-R and NS-NS forms we need to find antisym-

metric analog of (2.99). Here we list such combinations together with their repre-

sentations via dual basis3

e1 ∧ ε1 + e2 ∧ ε2 = ε̂1 ∧ ê1 + ε̂2 ∧ ê2 ,

e1 ∧ ε2 − e2 ∧ ε1 = −ê1 ∧ ε̂2 + ê2 ∧ ε̂1 ,

e1 ∧ e2 = −ε̂1 ∧ ε̂2 , ε1 ∧ ε2 = −ê1 ∧ ê2 . (2.108)

The PT ansatz contains 4 functions h1, h2, χ, b(t) in the flux sector and one constant

P = − (
Mα′

4

)
, which is P = −1/2 in our notations

B2 = h1 (ε1 ∧ ε2 + e1 ∧ e2) + χ (e1 ∧ e2 − ε1 ∧ ε2) + h2 (ε1 ∧ e2 − ε2 ∧ e1) ,

F3 = Pg5 ∧
[
ε1 ∧ ε2 + e1 ∧ e2 − b (ε1 ∧ e2 − ε2 ∧ e1)

]
+ P dt ∧ [

b′ (ε1 ∧ e1 + ε2 ∧ e2)
]

,

F̃5 = F5 + ∗10F5 , F5 = 2P (h1 + bh2) e1 ∧ e2 ∧ ε1 ∧ ε2 ∧ g5 . (2.109)

The R-R 3-form F3 has the same non-vanishing flux through S3 as in KS case (2.86).

The exact part of F3 is parameterized by b(T ) which turns out to be the same as in

the KS case.

The R-R scalar vanishes C = 0, but the dilaton φ(t) may depend on radial

coordinate t, as the background is not imaginary self dual. This completes our

discussion of the PT ansatz and we proceed with a brief discussion of the method

of SU(3) structure.

Method of SU(3) structure

The method of SU(3) structure is an approach to classify classical supersymmetric

solutions of supergravity. To be supersymmetric the background must be invariant

under algebra of supersymmetry transformations. In the case of classical bosonic

3Again, invariance of (2.108) can be demonstrated by expressing them through εα
I and checking

that ψi appears only through the combination ψ = ψ1 + ψ2.
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background the only non-trivial transformations are those of fermion fields [36] (here

we assumed R-R scalar is zero)

δλ =
i

2
∂AφΓAΨ∗ − i

24
(G3)A1A2A3Γ

A1A2A3Ψ = 0 ,

δψA = DA Ψ +
i

1920
(F5)A1···A5 ΓA1···A5ΓAΨ +

+
1

96
(F3)A1A2A3

(
Γ A1A2A3

A − 9δA1
A ΓA2A3

)
Ψ∗ = 0 . (2.110)

Here the Killing spinor Ψ is a parameter of supersymmetry transformation and Ψ∗

denotes its charge conjugate BΨ∗. We do not write charge conjugation matrix B

explicitly assuming Majorana representation of gamma-algebra with B = 1.

For the background based on warped product of flat Minkowski space and six-

dimensional manifold M it is useful to represent Ψ via four and six-dimensional

parts ζ−,η−

Ψ = a ζ− ⊗ η− + b ζ+ ⊗ η+ ,

η+ = (η−)∗, ζ+ = (ζ−)∗ . (2.111)

In the IIB case the spinors ζ−,η− have definite chirality in four and six dimensions

Γ7 = Γ1..6 , Γ± =
1

2
(1± Γ7) ,

ψ = ζ− ⊗ η− , Γ7ψ = iψ , (2.112)

such that Ψ is ten-dimensional chiral spinor Γx0..x31..6Ψ = −Ψ. Any chiral spinor η−

in six dimensions is a pure spinor i.e. it is annihilated by half of gamma-algebra

(Γ1 − iΓ2)ψ = (Γ3 − iΓ4)ψ = (Γ5 − iΓ6)ψ = 0 , (2.113)

with appropriated choice of Γ1, .., Γ6. Therefore there is SU(3) which acts on com-

plexified tangent space leaving η− invariant. In that sense pure six-dimensional

spinor η− specifies SU(3) structure on manifold M. The idea of the SU(3) struc-

ture method is to decompose equations (2.110) into the representations of SU(3).
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This is an elegant way of dealing with tensor equations. The same result can be

achieved by multiplying (2.110) by all possible combination of gamma matrixes and

(η−)T or (η−)+. The unknown Killing spinor Ψ will disappear and the resulting

equations can be rewritten through “holomorphic” (3,0)-form

ΩABC = ψT ΓABCψ , (2.114)

and pseudo-Kähler (1, 1) form

JAB = iψ+ΓABψ . (2.115)

If Ω and J are specified through an ansatz like (2.106,2.107) the equations (2.110)

provide a set of first order differential equations on the ansatz functions and a, b

from (2.111). If the choice of the ansatz for forms and vielbeins was correct the re-

sulting system of coupled differential equations can be solved and hence the classical

supergravity solution can be found.

The agenda above was fulfilled for the choice of veilbeins (2.105) and PT-ansatz

for the forms (2.109) in [13] by Butti, Grana, Minasian, Petrini, and Zaffaroni. They

assumed that a is real when b is pure imaginary and succeeded in solving resulting

set of differential equations. This step involves a lot of technicalities and is quite

complicated. Therefore we will not discuss it here. In the next subsection we present

the result of their calculation and discuss the family of classical solutions they found.

2.3.2 The BGMPZ family of solutions and boundary condi-

tions

The family of solutions found in [13] also known as BGMPZ family of solutions is

formulated through a system of coupled first order differential equations for functions
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a(t) and v(t)

a′ = −
√−1− a2 − 2 a cosh t (1 + a cosh t)

v sinh t
− a sinh t (t + a sinh t)

t cosh t− sinh t
,

v′ =
−3 a sinh t√−1− a2 − 2 a cosh t

+

+v
[−a2 cosh3 t + 2 a t coth t + a cosh2 t (2− 4 t coth t) + cosh t

(
1 + 2 a2

− (
2 + a2

)
t coth t

)
+

t

sinh t

]
/
[(

1 + a2 + 2a cosh t
)
(t cosh t− sinh t)

]
. (2.116)

This equations are highly non-lineal and its analytical solutions is known only in the

KS and MN [37] cases. The system above has two-dimensional family of solutions.

Nevertheless only one-dimensional subfamily is of interest as other solutions are

singular at t = 0 [13]. Small t expansion of (2.116) suggests that regular solution

has asymptotic a → −1 and v → 0 and can be found near t = 0 by Taylor expansion

[13]

a = −1 +

(
1

2
+

y

3

)
t2 +O(t4) ,

v = t +

(
−2

5
+

7

9
y2

)
t3 +O(t5) . (2.117)

The integration constant y ∈ (−1..1) parameterizes subfamily of regular solutions.

The solutions (2.117) share leading asymptotic in UV

a = −2e−1 + U(t− 1)e−5t/3 +O(e−7t/3) ,

v =
3

2
+

9

16
U2(6− 4t + t2)e−4t/3 +O(e−2t) , (2.118)

where the integration constant U(y) ∈ (−∞..∞) specifies the behavior at t → ∞
and can be determined through y. It is more convenient to use U rather than

y to parameterize the family because the behavior in UV region admits simple

interpretation via gauge/gravity duality [14].

Some functions are unambiguously determined in terms of a, v and t or even

known explicitly for the whole BGMPZ family

b = − t

sinh(t)
,

e2g = −1− a2 − 2a cosh(t) . (2.119)
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The next step after a, v(t) are known is to integrate the equation for dilaton

φ′ =
(C − b) (aC − 1)2

(bC − 1) S
e−2 g , (2.120)

C ≡ − cosh(t), S ≡ − sinh(t) .

This equation is obviously invariant under the shift of dilaton φ → φ + cosnt. For

the given solution this in nothing else as rescaling of coupling constant gs and is

perfectly permissible. In the case of family of solutions we need to be more careful.

For the solutions to describe different IR vacua of the same gauge theory these

solutions should lie in the same UV universality class and share the same coupling

constant. Therefore to describe gravity dual of baryonic branch we require the UV

asymptotic value of dilaton to be U -independent [14]. It is convenient to choose it

to be zero

∀ U lim
t→∞

φ(t) → 0 . (2.121)

In this case the UV expansion for dilaton is

φ = − 3

64
U2(4t− 1)e−4t/3 +O(U4e−8t/3) . (2.122)

It turn out that the (2.120) can be integrated. This is done in later section (2.3.2).

Once φ is determined all other functions can be expressed through a, v, φ and

t. The additional integration constant η [13] appears in the process of integra-

tion. Its meaning can be understand by considering equation for warp factor

A′ = A′(a, v, φ, t, η), which can be integrated [14]

e−4A =
(
e−2φ − η2

)
e−4A0 . (2.123)

To decouple gravity and make possible interpretation of supergravity solution as

of dual to a gauge theory, the warp factor (2.123) should approach zero in UV

and therefore η = e−φ(t=∞) = 1 . Further for the solutions to lie in the same UV
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universality class we reuqire the (sub)leading asymptotic to be universal i.e. U -

independent. This is archived through a particular choice of integration constant

A0

e−4A = U−2
(
e−2φ − 1

) → 3

32
(4t− 1)e−4t/3 +O(e−10t/3) . (2.124)

This expression means that the warp factor e−4A is U -independent at infinity and

can be substituted by HKS in certain UV calculations.

All other functions x, h1, h2, χ can be expressed determined a, v and φ through

the relations

e2x =
(bC − 1)2

4(aC − 1)2
e2g+2φ(1− η2e2φ) , h1 = −h2 C ,

χ′ = a(b− C)(aC − 1)e2(φ−g) , h2 =
ηe2φ(bC − 1)

2S
. (2.125)

Here we assume boundary conditions (2.121) and (2.124). The solutions with these

specific boundary conditions are dual to SU((k + 1)M) × SU(kM) theory on the

baryonic branch of moduli space [13, 14]. Therefore from now on we will denote

this family as baryonic branch, although one need to have in mind that this is not

an accurate definition. The baryonic branch itself is a part of gauge theory moduli

space when the solutions in question is gravity dual description to it.

The KS solution corresponds to

aKS = − 1

cosh(t)
,

vKS =
3

2

cosh(t) sinh(t)− t

sinh(t)2
, (2.126)

and hence y = U = 0.

The Z2 symmetry I exchanges θ1, φ1 and θ2, φ2 and hence exchanges e−g and

eg + e−ga2 in the metric (2.104). It can be defined through the action on PT ansatz

a → − a

1 + 2a cosh(t)
, (2.127)
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with φ,v and other fields except g stay invariant. Actually it is easy to show that

ae−g also stays invariant while (1 + a cosh(t))e−g changes sign. Large t expansion of

(2.127) gives that I changes sign of U

I : U → −U , (2.128)

i.e. non-zero U leads to I breaking. This helps to clarify the gauge theory inter-

pretation of U as a dual parameter to the expectation value of the Z2 breaking

operator

U = Tr

(∑
α

AαA†
α −

∑
α̇

B†
α̇Bα̇

)
. (2.129)

Indeed the Z2 breaking occurs through a difference in the radii of two S2 formed by

θi, φi. In the UV limit it is

ex−g
(
e2g + a2 − 1

) ' Ut3/2e−2t/3 + ... (2.130)

This is in agreement with (2.129) having dimension 2 [14, 38]. Consequently we

identify

〈U〉QFT ∼ U . (2.131)

Closed holomorphic 3-form and expression for dilaton

The method of SU(3) structure guarantees that the six-dimensional manifold of

compactification is a complex manifold [35]. In the case of baryonic branch the

solutions share the same complex structure on deformed conifold, inherited from C4

via (2.61). Actually this complex structure on deformed conifold is unique for fixed

value of ε. For a compact Calabi-Yau 3-fold the space of (2, 1) cohomologies H2,1

can be identified with a tangent space in the space of complex structures. H2,1 is not

empty in our case: the non-vanishing RR flux through non-shrinking S3 is exactly of

(2, 1) type [13]. But because of non-compact geometry of conifold the corresponding
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deformation of complex structure is trivial and equivalent to an infinitesimal change

of coordinate system.

The metric (2.72) is Ricci-flat and corresponding closed holomorphic 3-form Ω̃KS

which satisfies DetgKS = i
8
Ω̃KS ∧ Ω̃KS was given in (2.79). For all other BGMPZ

solutions there also should be a closed holomorphic form Ω̃ since these solutions

are equivalent as complex manifolds. Thus we conclude that Ω̃ is equal to Ω̃KS

multiplied by some constant. Notice that such Ω̃ does not necessarily satisfy Detg =

i
8
Ω̃ ∧ Ω̃, where gIJ is the unwarped metric on the deformed conifold. From another

side equation (2.106) defines holomorphic form which satisfies DetG = i
8
Ω ∧Ω, but

it is not closed. It is clear that Ω is proportional to Ω̃ although the non-holomorphic

proportionality function can not be fixed by holomorphic properties of geometry.

The method of SU(3) structure explicitly predicts this function and guarantees

that

Ω̃ = e3A−φΩ , (2.132)

is closed dΩ̃ = 0 [35]. This equation, together with (2.106) leads to the following

expression for Ω̃ in the BGMPZ case

Ω̃ = e3A−φ+3x/2v−1/2(dt + ig5) ∧
(
− i

sinh(t)
(e1 ∧ e2 + ε1 ∧ ε2) +

+(e1 ∧ ε1 + e2 ∧ ε2)− i
cosh(t)

sinh(t)
(e1 ∧ ε2 + ε1 ∧ e2)

)
. (2.133)

A straightforward check confirms that Ω̃ is closed if

e3A−φ+3x/2v−1/2 ∼ sinh(t) . (2.134)

The proportionality coefficient is obviously not fixed by dΩ̃ = 0 and is reflected in

(2.132) as an ambiguity in definition of φ and A. Nevertheless since A is known

through a, v and φ (2.123) up to an additive constant equation (2.134) can be used

to find φ [39]

e4φ = − 64v(a cosh(t) + 1)3 sinh(t)5

3U3(−1− a2 − 2a cosh(t))3/2(t cosh(t)− sinh(t))3
e4φUV . (2.135)
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This expression does not depend on η or choice of boundary condition for A and can

be checked by differentiating and substituting it into equation for φ′ (2.120). The

boundary condition for dilaton at t →∞ is specified by φUV .

From now on we put φUV = 0 according to the discussion in the previous section.

This choice immediately implies that Ω̃ = Ω̃KS for all solutions on the baryonic

branch i.e. the proportionality coefficient from (2.134) is U -independent. To show

that one can take t to infinity and notice that Ω has to have U -independent leading

asymptotic to satisfy DetG = Ω ∧ Ω. Since the leading asymptotics of A and φ

are also U -independent Ω̃ should be U -independent for large t as well. It means

Ω̃(U) = Ω̃KS for large t and hence everywhere.

2.3.3 D-Branes on the conifold and kappa-symmetry

A Dirichlet brane with p spatially extended dimensions is described by the sum

of Dirac-Born-Infeld and Chern-Simons action. The former is a generalization of

“geometrical” Nambu action when the latter describes the interaction of D-brane

with the R-R fields [40, 41, 42]

S = SDBI + SCS = −
∫

Σ

dp+1σe−φ
√
− det(g + F) +

∫

Σ

eF ∧ C . (2.136)

The worldvolume of the brane Σ has induced metric g and the brane tension Tp is

set to unity. There is induced gauge filed A1 on Σ which enters the action through

the combination F = F2 + P [B2] with F2 = dA1. Finally C =
∑

i Ci is the formal

sum of the R-R potentials.

If D-brane is supersymmetric the action (2.136) is invariant under κ-symmetry

on-shell [43, 44, 45]. Kappa-symemtry provides first-order Bogomolny-type equation

Γκε = ε , (2.137)

which is easier to deal than equations of motion. Here spinor ε is a generator of the

supersymmetry transformation and Γκ is specified below.
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Any ε satisfying (2.137) guarantees world-volume supersymmetry in the probe

aproximation. If further ε coincides with the generator of supersymmetry in the

bulk Ψ the supersymmetry of the brane is compatible with that one of background.

In type IIB theory the ten-dimensional spinor ε is a pair of Majoran-Weyl spinors

ε =


 ε1

ε2


 ,

ε1 = (ε + ε∗)/2 ,

ε2 = (ε− ε∗)/2i . (2.138)

For the (9, 1) signature the κ-symmetry operator Γκ is

Γκ =

√− det g√
− det(g + F)

∞∑
n=0

(−1)n /FnΓ(p+1) ⊗ (σ3)
n+ p−3

2 iσ2 ,

Γ(p+1) ≡ 1

(p + 1)!
√− det g

εµ1...µp+1γµ1...µp+1 ,

/Fn ≡ 1

2nn!
γν1...ν2nFσ1σ2 . . .Fσ2n−1σ2ngν1σ1 . . . gν2nσ2n , (2.139)

where Pauli matrixes σα act on the doublet (2.138). The Greeks are the indexes

for the worldvolume coordinates and Γµ are the “pull-back” of gamma-algebra from

ten dimensions. We use x0 . . . x3 for the directions in Minkowski space and indexes

1, 2 . . . 6 for the veilbeins (2.105) along M.

For the BGMPZ family, including KS solution the Killing spinor Ψ is given by

(2.111) with [13, 14]

a =
eφ/4(1 + eφ)3/8

(1− eφ)1/8
, b = i

eφ/4(1− eφ)3/8

(1 + eφ)1/8
, (2.140)

(this expression for b is for U > 0; b changes sign when U does). The corresponding

Majorana-Weyl spinors used in the κ-symmetry equation (2.137) are

ε1 =
1

2

(
(a + b∗)ζ− ⊗ η− + (a∗ + b)ζ+ ⊗ η+

)
,

ε2 =
1

2i

(
(a− b∗)ζ− ⊗ η− − (a∗ − b)ζ+ ⊗ η+

)
. (2.141)



Chapter 3

Gravity-dual description of

low-energy dynamics: probe

branes in the throat

3.1 BPS domain wall and D5 brane

3.1.1 Domain wall in gauge theory and supergravity

BPS domain wall in the gauge theory

In this section we examine BPS domain walls separating different vacua in field

theory. Namely we consider two isomorphic copies of baryonic branch, different by

the value of gluino condensate l (2.55) but identical otherwise. These branches are

transformed one into each other by the action of ZM ⊂ Z2M ⊂ U(1)R [46, 47, 48].

It is easy to see that the tension of this domain wall should be moduli indepen-

dent. Indeed the tension of the domain wall separating two supersymmetric vacua

characterized by the parameters l, l′ and the parameters U and U ′ along the branch.

It is given by the difference of superpotentials T = |Wl(U) − Wl′(U
′)|. Since the

branch is flat, Wl(U) does not depend on U . Therefore tension is independent on

both U and U ′ and depends only on the quantum numbers l, l′.

47
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In the case of baryonic branch Wl(U) = MΛ3(M,k)e
2πl
M and [14]

T ∼ M
∣∣∣Λ(M, k)3(e

2πil
M − e

2πil′
M )

∣∣∣ . (3.1)

For large M this becomes

M
∣∣∣Λ(M,k)3(e

2πil
M − e

2πil′
M )

∣∣∣ → 2π
∣∣Λ(M, k)3(l − l′)

∣∣ . (3.2)

Standard large M counting has Λ(M,k)3 ∼ M [46], and the tension of the domain

wall is of order M . Therefore, in the ‘t Hooft limit, this scales as a D-brane tension

[46]. Indeed, in the string theory dual of our gauge theory these domain walls are

the D5-branes wrapping the S3 at the bottom of the deformed conifold l − l′ times

[12, 37, 49].

Domain wall and dual geometry

We have identified D5-brane wrapping S3 at the tip of the conifold as the BPS

domain wall separating two vacua with different value of gluino condensate l. Later

in this section we will show that the tension of this brane is independent on the

baryonic branch modulus U , in agreement with the field theory consideration above.

Therefore, in order to calculate the tension of the wrapped D5-brane, we will work

at the Z2 symmetric locus on the baryonic branch, |A| = |B|, described by the KS

solution [12]. Recall that the KS metric is

ds2
10 = H

−1/2
KS (t)dx2 + H

1/2
KS(t)dsM6 , (3.3)

where dsM6 is the Calabi-Yau metric on the deformed conifold Cε (2.72). At the

tip t = 0 one finds a 3-sphere of radius ε2/3(2/3)1/6 (2.78). Hence, its volume is

2π2ε2
√

2/3 and the tension of the domain wall is

T = ε2

√
2/3

16π3gs(α′)3
. (3.4)

Note that powers of HKS(0) cancel in this calculation, since the D5-brane has three

directions within IR3,1 and three within the deformed conifold.
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To match the string and field theory parameters, we set (3.4) equal to the field

theory result,

Λ(M,k)3 ∼ M
ε2

gsM(α′)3
. (3.5)

Since both ε and gsM are held fixed in the ‘t Hooft limit, we see that Λ(M, k)3 is

of order M [46].Thus, the IR scale kept fixed in the large M limit is

Λ̃(M, k) = M−1/3Λ(M, k) , (3.6)

and we find

ε2

(α′)3
∼ gsM Λ̃(M, k)3 . (3.7)

3.1.2 Domain wall along the baryonic branch

In this subsection we follow [39] to show that the D5 brane wrapping minimal S3

at the tip of the conifold is BPS saturated and its tension is constant along the

baryonic branch. First, we reformulate the kappa-symmetry equation in the form

of calibration condition [50, 51]. Then we demonstrate that the D5 brane saturates

the calibration condition and hence it is BPS. The U -independence of the tension

will follow from the fact that calibration form is independent on the moduli.

Kappa-Symmetry

We start with a general kappa-symmetry equation (2.137) applied to the case of D5

brane stretched along three directions in Minkowski space and wrapping a 3-cycle

Σ on the conifold M. We reserve the Greek indices for the directions along Σ while

the directions in Minkowski space will be denoted as x0, x1, x2. The pull-back of

the NS-NS form B2 and the induced gauge field F2 = dA1 are not extended into

Minskowski directions, Mµν = P [B2]µν + (F2)µν . Consequently we can use gamma-

algebra identity

1

2!
Mµνg

µµ′gνν′ 1

3!
γµ′ν′ε

ρσλγρσλ = −1

2
εµνρMµνγρ , (3.8)
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to simplify κ-symmetry equation

ΓκΨ =
iγx0x1x2√

Det(g + M)
(σ3iσ2

εµνρ

3
γµνρ + iσ2

εµνρ

2!
Mµνγρ)Ψ = Ψ . (3.9)

The expression in parenthesis can be split into two linearly independent parts, linear

and cubic into gamma-matrixes ΓA, A = 0, .., 9. Note, that this is not the same as

splitting (3.9) into terms with and without Mµν . Using the identity

Γ[ABC]ψ = Ω̄ABCΓ135ψ − i (JABΓC + JCAΓB + JBCΓA) ψ , (3.10)

we express κ-symmetry operator in the form

ΓκΨ =
iγx0x1x2√

Det(g + M)

εµνρ

2


 0 iJµνΓ7 + Mµν

iJµνΓ7 −Mµν 0


 γρΨ +

+
iγx0x1x2√

Det(g + M)


 0 Pε[Ω]Γ+ + Pε[Ω̄]Γ−

Pε[Ω]Γ+ + Pε[Ω̄]Γ− 0


 Γ135Ψ = Ψ .

The chiral projectors Γ7,± are defined in (2.112) and we also introduce concise no-

tation for the contraction

Pε[Ω] ≡ εµνλ

3!
P [Ω]µνλ . (3.11)

Since ΓAψ are linearly independent over R and can not be expressed through

ψ, ψ∗, Γ135ψ, Γ135ψ
∗ and ΓAψ∗ we have

a− b∗

2i

1

2
εµνρ (−iJµν + Mµν) γρψ = 0 , (3.12)

a + b∗

2

1

2
εµνρ (+iJµν + Mµν) γρψ = 0 .

Now, since a± ib 6= 0 we have P [J ]± iM = 0 or

P [J ]µν = Mµν = 0 . (3.13)

This is the first condition of κ-symmetry: the magnetic field should vanish and the

3-cycle Σ is a special Lagrangian submanifold.
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Now the κ-symmetry equation simplifies as follows

ΓκΨ =
iγx0x1x2√

Detg


 0 Pε[Ω]Γ+ + Pε[Ω̄]Γ−

Pε[Ω]Γ+ + Pε[Ω̄]Γ− 0


 Γ123Ψ = Ψ . (3.14)

Both chiral components of Ψ lead to the same equation

Pε[Ω̄]√
Detg

iγx0x1x2Γ135ψ = iψ∗ . (3.15)

We have also used here that the coefficients a and b are real and pure imaginary

respectively. This equation leads to the following constraints

|Pε[Ω]| =
√

Detg , (3.16)

γx0x1x2Γ123ψ = eiφψ∗ , (3.17)

with phase φ being related to the argument of Pε[Ω]. The latter constraint (3.17)

should be understood in the following way: it is an equation on ζ−, a four-dimensional

part of the spinor ψ, which specifies SUSY generator in gauge theory. This equation

can be solve for any φ preserving the half of unbroken SUSY. Since ζ− is constant

so should be φ i.e for the D5 to be BPS the argument of pull-backed holomorphic

form Pε[Ω] should be constant along the 3-cycle Σ.

Now we are ready to summarize the BPS for D5 brane (compare with BPS con-

dition for Euclidean D2 wrapping 3-cycle in IIA theory [52]). The magnetic field

and pull-back of pseudo-Kähler form should vanish (special Lagrangian condition

3.13). Induced volume should be equal to the modulus of the pulled-back holomor-

phic form (3.16). The pull-back of holomorphic form should have constant phase on

Σ (3.17). It turns out that these constraints can be formulated in an elegant form

of calibration condition which is discussed in the next subsection.

Calibration condition

We would like to formulate calibration condition which would coincide with kappa-

symmetry constraints upon saturation.
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First, we start with inequality

√
Det(g + M) ≥

√
Detg , (3.18)

and notice that it is saturated if and only if Mµν = 0. This is because

Det(g + M) = Detg + gµνM
µM ν ,

Mµ =
1

2
εµνρMνρ , (3.19)

and induced metric gµν is positively defined.

Second, we would like to prove that

√
Detg ≥

∣∣∣∣
εµνλ

3!
P [Ω]µνλ

∣∣∣∣ , (3.20)

and saturation requires Jµν = 0. It is convenient to work with complex veilbeins

GI = G2I−1 + iGI , I = 1, 2, 3, which diagonalize metric, Ω, and J (2.106,2.107)

Ω = G1 ∧G2 ∧G3 , (3.21)

J =
i

2

∑
I

GI ∧GI . (3.22)

We can use the freedom of choosing special coordinate system ϕI(σµ) on the part

of D5 world-volume wrapping Σ such that the induced metric

gµν =
∑

I

∂(µϕ
I∂ν)ϕ

I , (3.23)

is diagonal gµν = δµν in a given point. It is convenient to think about ∂µϕ
I as

complex vector in C3. Let us introduce three vectors XI , Y I , ZI as follows

∂1ϕ
I = XI , ∂2ϕ

I = Y I , ∂3ϕ
I = ZI . (3.24)

In these terms the pullback of Ω is given by the determinant

Pε[Ω] =
εµνρ

3!
P [Ω]µνρ = DetΩ̂ , (3.25)

Ω̂ =




X1 Y 1 Z1

X2 Y 2 Z2

X3 Y 3 Z3


 , (3.26)
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and the condition gµν = δµν is

|X|2 = |Y |2 = |Z|2 = 1 , (3.27)

<(Y +X) = <(Z+Y ) = <(X+Z) = 0 . (3.28)

Now we can use SU(3) which acts on index I and leaves metric, J , and Ω

invariant and bring XI to the form |X1| = 1, X2 = X3 = 0. Then the “unbroken”

SU(2) which preserves XI can be used to cast Y I in the form |Y 1|2+|Y 2|2 = 1 , Y 3 =

0. This will simplify the form of DetΩ̂ = X1Y 2Z3 and

|Pε[Ω]| =
∣∣X1Y 2Z3

∣∣ ≤ 1 =
√

Detg . (3.29)

The inequality (3.20) is proven. The saturation condition |Y 2| = |Z3| = 1 requires

Y 1 = Z1 = Z2 = 0. This condition can be written as

=(Y +X) = =(Z+Y ) = =(X+Z) = 0 . (3.30)

Together with (3.28) the equation (3.30) in covariant notations is nothing else but

the special Lagrangian condition P [J ]µν = 0.

At the last step we need to accommodate the constancy of phase φ via a satu-

ration of inequality. This is easy to do by taking integral of Ω over Σ

∫

Σ

|Ω| ≥
∣∣∣∣
∫

Σ

Ω

∣∣∣∣ . (3.31)

The same result can be archived by multiplying Ω in (3.31) by any real-valued func-

tion. By choosing this function to be e3A−φ we make right-hand-side independent

on Σ as it depends on its cohomology class only (see (2.132)).

Eventually we have that the tension of D5 wrapped over Σ

TD5 =

∫

Σ

e3A−φDet(g + M) ≥
∣∣∣∣
∫

Σ

Ω̃

∣∣∣∣ (3.32)

is calibrated by the closed holomorphic form (here we also neglected overall coeffi-

cient in front of DBI action). Hence it does not depend on embedding cycle Σ, but
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only on its cohomology class. This is exactly what one would expect for the tension

of BPS object. Later we discuss a similar result for SUSY D7 wrapping 4-cycle Σ4

in M in section (4.2).

Tension of D5 wrapping S3 at the tip

The calibration condition (3.32) derived in above suggests that only the smallest 3-

cycle potentially gives rise to the BPS embedding. In the case of deformed conifold

geometry the smallest nontrivial 3-cycle is the S3 at the tip. Now we are going to

show that the calibration condition is saturated by this choice for all values of U . It

will also imply that the tension is constant along the branch as the form Ω̃ in (3.32)

is U -independent.

Since the NS-NS field B2 (2.85) produces no flux through any 3-cycle
∫

Σ
H3 = 0

one can always choose induced gauge field to vanish M = P [B] + dA1. In the case

of S3 at the tip this is even easier to do since B2 = 0 at t = 0 and A1 vanishes as

well.

Now, the tension of D5 is given by e3A−φ(t = 0) multiplied by a geometrical size

of S3. Expanding metric (3.3) near the tip

dS2
M = v−1ex

∣∣
t=0

(
g2
5 + (e1 + ε1)

2 + (e2 + ε2)
2
)

+O(t2) (3.33)

we recover S3 with radius R = 2 v−1/2ex/2
∣∣
t=0

(compare with (2.78)). The corre-

sponding volume Vol(S3) = 2π2R3 and the tension

TD5 = 8 v−3/2e3A−φ+3x/2
∣∣
t=0

2π2 . (3.34)

To integrate Ω̃ over S3 (2.75) we need to fix two of five angular coordinates. A

convenient choice θ2 = φ2 = 0 reduces Ω̃ to

Ω̃ = v−1/2e3A−φ+3/2x 1

sinh(t)

∣∣∣∣
t=0

dψ ∧ dθ1 ∧ sin θ1dφ1 , (3.35)

and the integral
∫

S3

Ω̃ = v−3/2e3A−φ+3x/2

∣∣∣∣
t=0

4π × 2× 2π = TD5 , (3.36)
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because v
sinh(t)

∣∣∣
t=0

= 1. Now we substitute expression for φ (2.135) and expand the

result near t = 0

TD5 ∝ 6−3/216π2 . (3.37)

The answer is U -independent as it already follows from (3.36).
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3.2 Baryonic condensate and Euclidean D5-brane

In this section we consider Euclidean D5-brane dual to the baryon operator in gauge

theory and calculate the baryonic condensates. This section is based on paper [53],

written in collaboration with M. Benna and I. R. Klebanov.

3.2.1 Euclidean D5-branes and baryon operators

Baryonic operator and gauge/string duality

In section (2.3.2) we have reviewed the BGMPZ family of solutions and discuss its

duality to the baryonic branch of the gauge theory. This conjecture was supported

by consideration of the BPS domain wall in section (3.1.2). In this section we would

like to elaborate on the duality and establish the relation between the moduli in field

theory, ζ, (2.59) and parameter of BGMPZ solutions U from the section (2.3.2). One

can use U(1)baryon to set the phase of ζ to zero, and from now on we assume ζ = |ζ|
is real. Then the Z2 symmetry I can be used to identify the “origin” of the branch,

the KS solution, on both sides of the duality. As follows from (2.60,2.128) the KS

solution corresponds to ζ = 1 ⇔ U = 0. The semiclassical consideration of operator

U (2.129) suggests the naive relation [14]

U ∼ log |ζ| ∼ k(k + 1)M(|C|2 − |C|−2) ∼ k(k + 1)M(|ζ| 2
k(k+1)M − |ζ| −2

k(k+1)M ) .(3.38)

This relation is based on classical form of Ai, Bj (2.54) and does not include quantum

corrections. To find quantum analog of (3.38) we consider a baryon vertex dual to

the baryon operators A,B and calculate expectation value ζ on gravity side.

Unlike the di-baryons of conformal SU(N) × SU(N) [9, 54] the baryons of in

the cascading N ∼ kM theory are singlets under SU(2) × SU(2). Therefore, the

natural candidate for the string theory dual of baryon operators (2.56) is the D5-

brane wrapping the base of the conifold at large radius r [29].
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The calculation of expectation value 〈A〉 may be done in the following way.

First, we calculate two-point correlation function 〈A(x1)A(x2)〉 and then factorize

correlator by separating the points |x1 − x2| → ∞. In the semi-classical approach

to the AdS/CFT correspondence the two-point function is given by the Euclidean

D5 world-volume stretching between base of the conifold at large r at x1 and x2.

If x1 and x2 are sufficiently separated from each other the D5-brane in the middle

tends to the region of small size which is located at small radius r. After separating

x1 and x2 by infinite distance the factorization occurs 〈A(x1)A(x2)〉 ∼ 〈A〉2 and

we expect the solution to consist of two pieces, each interpolating between the

base of the cone at large radius and smoothly wrapping the conifold at the tip.

Therefore the expectation value of the baryon operator can be measured by an

Euclidean D5-brane with world volume wrapping six-dimensional conifold M and

which is point-like in Minkowski space [55]. This object has a single T 1,1 boundary

at large r, corresponding to the insertion of just one baryon operator. The non-

zero expectation value of baryon operator does not break supersymmetry. Hence

the D5-brane in question also should be SUSY and satisfy appropriate κ-symmetry

condition. This requires non-trivial induced gauge field A1 on the D5-brane i.e. the

D5 will have D3-branes dissolved in it [29].

The geometry of embedding is fixed as the Euclidean D5 completely covers the

deformed conifold M. Therefore, the only uncertainty is related to the induced

gauge field A1. Since the baryon vertex has to be SU(2) × SU(2) invariant, so

should be A1. This leaves us with a very restrictive ansatz

A1 = ζ(t)g5 , (3.39)

with only one unknown function ζ(t). We will find two solutions ζ = ζA,B with

appropriate behavior at infinity, which correspond to the two baryon operators A,B.

The Chern-Simons term is pure imaginary after turning into Euclidean space, and

the corresponding equation of motion should be satisfied independently of the DBI
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part. The ansatz (3.39) extremises and actually vanishes the Chern-Simons term

for any ζ(t). Therefore CS term is not important for our consideration and we

drop it from our analysis from now on. In fact, it can be shown that the CS term

describes the coupling of baryon vertex to the Goldstone boson of spontaneously

broken U(1)baryon. In this way it is responsible for the U(1)baryon charge of the

baryon vertex. The anti-baryons A,B are given by inverting orientation of the D5-

brane. This changes the sign of CS term and inverses the charge under U(1)baryon

[53].

According to the AdS/CFT correspondence the expectation value of an operator

O is given by the coefficient ΦO in the expansion of dual field O near the boundary

O(r) = φO r∆O−4 + ΦO r−∆O . (3.40)

The source term φO is the coefficient of leading asymptotic which diverges according

to the dimension of operator ∆O. To calculate expectation value ΦO one needs to

subtract the divergence. In the cascading theory, which is near-AdS in the UV, the

same formulae hold modulo powers of ln r [56, 57]. The baryon vertex is a brane

and the corresponding field O at the semi-classical level is given by the classical DBI

action SD5(r) of the D5 ending at radius r

OA(r) ∼ e−SD5[ζA,r] . (3.41)

We will find action SD5(r) being divergent at large r providing the information about

dimension ∆A. After subtracting the divergent part we will be able to calculate 〈A〉
as a function of U .

3.2.2 Bogomolny equation for Euclidean D5-Brane

Now we would like to formulate the κ-symmetry condition for the Euclidean D5-

brane. The original κ-symmetry projector (2.139) was derived for the Lorentzian

brane in (9,1) signature spacetime. Therefore, it is not immediately clear how to
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apply it to the Euclidean objects like D5 in question. The naive prescription is to

Wick-rotate the κ-symmetry projector by introducing factor −i in (2.139) such that

Γκ is hermitian and Γ2
κ = 1 holds.

The κ-symmetry condition for Euclidean D5-brane is then given by

(
ε1

ε2

)
= Γκ

(
ε1

ε2

)
∼ [−( /F + /F3) + (1 + /F2) σ3

]
σ2 Γ123456

(
ε1

ε2

)
. (3.42)

The analysis of this equation can be simplified by noting that Γ1..6ψ
± = ∓iψ± and

that the spinors ψ± are in fact eigenvectors of /Fn

/Fψ± = ±iψ± (F12 + F34 + F56) , (3.43)

/F2ψ± = −ψ± (F12F34 + F14F23 + F12F56 + F34F56) , (3.44)

/F3ψ± = ∓iψ± (F12F34F56 + F14F23F56) , (3.45)

where the indices refer to the basis one-forms (2.105). Using these expressions and

the ansatz (3.39) for the gauge field, the two terms in (3.42) can be written in a

simple form

[
1 + /F2

]
ψ± =

[
a + ve−xbξ′

]
ψ± ,

[
/F + /F3

]
ψ± = ±i

[−b + ve−xaξ′
]
ψ± , (3.46)

with

a(ξ, t) ≡ e−2x[e2x + h2
2 sinh2(t)− (ξ + χ)2] ,

b(ξ, t) ≡ 2e−x−g sinh(t)[a(ξ + χ)− h2(1 + a cosh(t))] . (3.47)

Using the expression (2.141) for Killing spinor we find

ξ′ =
exb

va
. (3.48)

The calculation above can be done in an elegant way without extensive use of

gamma-algebra. It is just enough to notice that the equations (3.43-3.45) can be
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used to rewrite κ-symmetry condition (3.42) in the geometrical terms

1

2!
J ∧ J ∧ F − 1

3!
F ∧ F ∧ F = g

(
1

3!
J ∧ J ∧ J − 1

2!
J ∧ F ∧ F

)
,

F2,0 = 0 . (3.49)

The dependence on Killing spinor here is accommodated through the fundamental

form J (2.107) and function g which can be expressed through a, b.

Now, the gauge field F = B2 + dA1 from the ansatz (3.39)

F =
ie−x

2 sinh(t)
× (3.50)

[
e−g

[
ξ̃(cosh(t) + 2a + a2 cosh(t)) + h2 sinh2(t)(1− a2)

]
(G1 + iG2) ∧ (G1 − iG2)

+ eg
[
ξ̃ cosh(t)− h2 sinh2(t)

]
(G3 + iG4) ∧ (G3 − iG4)

+ ξ′v sinh(t)(G5 + iG6) ∧ (G5 − iG6) +
[
ξ̃(1 + a cosh(t))− h2a sinh2(t)

]

(
(G1 + iG2) ∧ (G3 − iG4) + (G3 + iG4) ∧ (G1 − iG2)

)]
,

is obviously of (1, 1) type and second condition of (3.49) is satisfied. The relations

(3.46) admit geometrical formulation

1

3!
J ∧ J ∧ J − 1

2!
J ∧ F ∧ F = (a + ve−xb ξ′) vol6 ,

1

2!
J ∧ J ∧ F − 1

3!
F ∧ F ∧ F = (−b + ve−xa ξ′) vol6 , (3.51)

1

3!
J ∧ J ∧ J ≡ vol6 ,

and together with (3.49) this immediately leads to the equation for ξ′

ξ′ =
ex(ga + b)

v(a− gb)
. (3.52)

For the Euclidean D5-brane g = 0 and we return to (3.48).

κ-symmetry and equation of motion

The κ-symmetry equation (3.52) has meaning of Bogomolny equation i.e. it should

solve the equation of motion coming from DBI action (we have dropped trivial angle
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dependence)

SDBI =

∫

M
e−φ

√
Det (g + F) , (3.53)

Det (g + F) = v−2e6x(1 + ξ′2v2e−2x)(a2 + b2) . (3.54)

The equation of motion can be simplified by use of (3.52)

δ

δξ

[
e−φ

√
det(G + F + B)

]
= 0 =

2e−φe2x
√

1 + g2

v(a− gb)

[−(ξ + χ)e−xa + e−ga sinh(t)b
]− d

dt

[
e−φe2x(ga + b)√

1 + g2

]
.(3.55)

One can use (3.52) once again after differentiating last term in (3.55). Then the

equation of motion reduces to some third-order polynomial in ξ which should vanish.

Hence each of four coefficients in front of 1, .., ξ3 should be zero. This does not

happen for g = 0 and we have to conclude that the naive prescription for the

“Euclidean” κ-symmetry does not work. In fact it can be shown that the equation

(3.52) with g = 0 solves the equation of motion for D7-brane with DBI action

modified by an extra e−φ multiplier. It will be interesting to better understand this

relation.

Nevertheless there is another candidate for κ-symmetry condition for the Euclid-

ean D5. It is the conventional κ-symmetry condition for Lorentzian D9-brane cov-

ering both Minkowski space and conifold M1. Extra four dimensions in Minkowski

space add Γx0..x3 to (3.42). This does not affect the form of (3.49) but changes g.

The new g is given by

g = g5 = i
a2 + b2

2ab
=

eφ

√
1− e2φ

. (3.56)

The new g solves equation of motion (3.55) and confirms that (3.52) with (3.56) is

the Bogomolny equation for the Euclidean D5-brane. We proceed with the analysis

of equation (3.52) with g = g5 in the next section.

1Author is grateful to L. Martucci for suggesting this.
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3.2.3 Calculation of baryonic condensates

Euclidean D5-Brane along Baryonic Branch

In this subsection we are calculating the dependence of the baryon expectation value

using supergravity solutions. All supergravity backgrounds dual to the baryonic

branch have the same asymptotic [14] and we will see that all divergent terms

(cubic, quadratic and linear in t) in the asymptotic expansion of the action are U-

independent. This implies that the scaling dimension of the baryon operator does

not depend on U , in agreement with the field theory expectation. However, the

finite term in the asymptotic expansion of the brane action does depend on U . This

provides a map from the one-parameter family of supergravity solutions labelled

by U to the family of field theory vacua with labelled by baryon expectation value

ζ ∼ 〈A〉.

Solving for the Gauge Field and Integrating the Action

We proceed with the expression for ξ′ (3.52) and g (3.56)

ξ′ =
ex(ga + b)

v(a− gb)
, g =

eφ

√
1− e2φ

. (3.57)

This equation admits integrated form

d

dt

[
− 1

3
ξ3 +

(
ah2 sinh2(t)

1 + a cosh(t)
− χ

)
ξ2 +

(
e2x − h2

2 sinh2(t)− χ2 +
2ah2 sinh2(t)

1 + a cosh(t)
χ

)
ξ

]

= − h2 sinh(t)eg

v(1 + a cosh(t))
[e2x + h2

2 sinh2(t)− χ2] +
2e2x sinh(t)

veg
[aχ− h2(1 + a cosh(t))] . (3.58)
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For notational convenience we define

ξ̃ ≡ ξ + χ , (3.59)

A(t) ≡ ah2 sinh2(t)

1 + a cosh(t)
, (3.60)

B(t) ≡ e2x − h2
2 sinh2(t) , (3.61)

ρ(t) ≡
∫ t

0

[
h2 sinh(t)eg

v(1 + a cosh(t))
[e2x + h2

2 sinh2(t)]

+
2e2xh2 sinh(t)(1 + a cosh(t))

veg
− [e2x − h2

2 sinh2(t)]χ′
]
dt , (3.62)

which allows us to write (3.58) more compactly

d

dt

[
− 1

3
ξ̃3 + A(t)ξ̃2 + B(t)ξ̃ + ρ(t)

]
= 0 . (3.63)

Thus the solutions for the shifted field ξ̃ are given by the roots of the third order

polynomial

−1

3
ξ̃3 + A(t)ξ̃2 + B(t)ξ̃ + ρ(t) = C , (3.64)

where C is the integration constant.2 To fix it, we consider the small t expansion,

which is valid for any U

A ∼ t +O(t3) , (3.65)

B ∼ t2 +O(t4) , (3.66)

ρ ∼ t3 +O(t4) . (3.67)

Note that at t = 0 all coefficients in (3.64) vanish, except the first one; therefore,

the integration constant C has to be zero for this cubic to admit more than one real

solution. Then we find that ξ̃ = 0 at t = 0 for any solution on the baryonic branch.

Let us examine the cubic equation (3.64) more closely in the KS limit U → 0. We

see that a → − 1
cosh(t)

and therefore (1+ a cosh(t)) vanishes. For small U [30, 14, 13]

(1 + a cosh(t)) = 2−5/3UZ(t) +O(U2) , (3.68)

Z(t) ≡ (t− tanh(t))

(sinh(t) cosh(t)− 1)1/3
. (3.69)

2This equation is quite general; it does not assume η = 1 that characterize the baryonic branch
as discussed in section (2.3.2).



3.2. Baryonic condensate and Euclidean D5-brane 64

In this case A and the first term in ρ diverge as U−1. All other terms can be dropped

and we have instead of (3.63)

ξ̃2ah2 sinh2(t)

Z(t)
+

∫ t

0

dt
h2 sinh(t)eg

vZ(t)
[e2x + h2

2 sinh(t)2] = 0 , (3.70)

or infinite ξ. After substituting the KS values for a, v, h2, x we find

ξ2 = (sinh(t) cosh(t)− t)−1/3J(t) , (3.71)

where

J(t) =

∫ t

0

(
sinh2(x) h(x)

24
+

sinh2(x)(x coth(x)− 1)2

6 (sinh(x) cosh(x)− x)2/3

)
dx . (3.72)

While it would be desirable to obtain a closed form expression for the integral

ρ(t) in order to evaluate ξ explicitly, this appears to be impossible, since even in the

KS case we cannot perform the corresponding integral J(t).

Evaluating the DBI Lagrangian on-shell using (3.57) we find

e−φ
√

det(G + F) =
e−φe3x

√
1 + g2 (a2 + b2)

v|a− gb| , (3.73)

where we have taken the absolute value since the sign of a − gb will turn out to

depend on which root of equation (3.64) we pick.

For the baryonic branch backgrounds we can show that the action is a total

derivative. First note that the DBI Lagrangian (3.73) can be rewritten in the form

e−φ
√

det(G + F) =
e−φe3x

v
√

1 + g2

(ga + b)2 + (a− gb)2

|a− gb|
=

∣∣∣∣
e4x(1 + a cosh(t))

vh2 sinh(t)eg
[ve−xξ′(ga + b) + (a− gb)]

∣∣∣∣ , (3.74)

where the right hand side is now cubic in ξ (and its derivative) much like the

differential equation (3.57). In fact, substituting for a, b and g = g5 this equation

can be integrated in the same manner, which results in the action

S =
∣∣∣− 1

3
ξ̃3 + C(t)ξ̃2 + D(t)ξ̃ + σ(t)

∣∣∣ , (3.75)
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with C,D, σ defined as

C = −e2xa (1 + a cosh(t))

h2e2g
, (3.76)

D = [e2x + h2
2 sinh2(t) + 2e2x(1 + a cosh(t))2e−2g] , (3.77)

σ = −
∫ t

0

[
e2x(1 + a cosh(t))

vh2 sinh(t)eg
[e2x − h2

2 sinh2(t)] + (3.78)

[e2x + h2
2 sinh2(t) + 2e2x(1 + a cosh(t))2e−2g]χ′

]
dt . (3.79)

Again the ξ-independent term is an integral, that we denoted by σ(t). Thus we

have a fairly explicit expression for the action involving two integrals: ρ(t), which

appears in the equation for ξ̃, and σ(t).

Although the leading UV asymptotic of ξ̃ and C, D, σ may depend on U the

t-dependence is universal. Therefore the rate of UV divergence of action (3.75) is

the same for any solution along the branch. The two solutions with asymptotic of

(3.71) correspond to the baryons A and B. Although the action diverges, the diver-

gence log3(r) ∼ t3 is logarithmical and can be interpreted in terms of holographic

renormalization group [53]. We will return to this point later in the next subsection.

The third solution of (3.63), which is divergent in the KS case, produces a badly

divergent action and is therefore unacceptable. Restoring the −ξ̃3/3 term in (3.70)

we see that in the GHK region U → 0 the third solution is simply

ξ = −22/33

U
(cosh(t) sinh(t)− t)1/3 +O(U) . (3.80)

The value of the Lagrangian in this case is

√
det(G + F) =

36

U3
sinh2(t) +O(U−2) . (3.81)

This expression can be used to extract the leading UV asymptotics of the Lagrangian

for any U as the UV behavior is universal for all U :

√
det(G + F) → 9

U3
e2t . (3.82)
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Since the action for the third solution diverges exponentially at large t it does not

seem possible to interpret this solution as the dual of an operator in the same sense

as we do for the other two solutions.

Baryonic condensates

We shall now study the D5-brane action (3.75) in more detail. First we develop

an asymptotic expansion of the action (3.75) as a function of the cut-off. This

expansion is useful because the divergent terms give the scaling dimension of the

baryon operator, while the finite term encodes its expectation value.3 Then we

present a perturbative treatment of small U region followed by a numerical analysis

of the whole baryonic branch. The main result of this section will be an expression

for the expectation value ζ as a function of U .

To calculate the baryonic condensates we need asymptotic behavior of A, B, ρ

and C,D for large t. Notice that since for any U the solution approaches the KS

solution at large t, the terms divergent at U = 0 are UV divergent as well:

A → e2t/3

U
+O(e−2t/3) , (3.83)

B → O(t2) , (3.84)

ρ → −e2t/3

U

(
1

4
t2 − 7

8
t +

47

32

)
+O(1) , (3.85)

C → O(e−2t/3) , (3.86)

D →
(

1

4
t2 − t

8
+

5

32

)
+O(e−4t/3) . (3.87)

From the expansion for A,B, ρ we find that at large t the gauge field ξ̃ grows linearly

with t and approaches the KS value with exponential precision

ξ̃(t, U) → ±
(

1

4
t2 − 7

8
t +

47

32

)1/2

+O(e−2t/3) . (3.88)

It is crucial that the dependence on U in (3.88) is exponentially suppressed.

3A systematic procedure for isolating the finite terms is holographic renormalization [58, 59].
Here we employ a naive approach and leaving a rigorous justification for the future work.
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Since C is exponentially small and the leading term in D is U -independent we

can explicitly express the action (3.75) in terms of σ:

S±(U, t) = ∆(t)± σ(U, t) +O(e−2t/3) , (3.89)

where ∆ is given by

∆(t) =
1

6
(t2 + t− 2)

(
1

4
t2 − 7

8
t +

47

32

)1/2

, (3.90)

and encodes the UV divergent part of the action

∣∣∣∣−
1

3
ξ̃3 + D(t)ξ̃

∣∣∣∣ = ∆(t) +O(e−2t/3) . (3.91)

The power divergence of action (3.90) has clear interpretation in terms of holographic

renormalization group. The dimensions of operators ∆A,B(r) are related to the

divergent action S(t) in the UV

∆A,B(r) =
dS±

d log r
, (3.92)

with r related to t in (2.65). After restoring α′ and gsM , and taking into account

the prefactors, the action S± can be rewritten as

S± =
9g2

sM
3

16π2
log3(r) +O(log2(r)) . (3.93)

After differentiation in (3.92) and matching radius r to the k-th step of Seiberg

duality r(k) = r0exp
(

2πk
3gsM

)
we recover the answer

∆A,B =
3

4
Mk(k + 1) , (3.94)

which also follows from a naive field-theory analysis [53]. This confirms that our

construction of baryon vertex indeed describes the baryon operators.

Now we proceed with (3.89) and argue that the two signs stand for the two

baryons A and B. Actually we will show that the baryonic branch constraint,

〈A〉〈B〉 = const, follows from this interpretation. As was mentioned in section
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(2.3.2), the I-symmetry which exchanges the A and B baryons is equivalent to

the changing of sign U → −U . Our explicit expression (3.89) confirms that an

exponential precision

S+(U, t) = S−(−U, t) , (3.95)

S−(U, t) = S+(−U, t) , (3.96)

since σ(U, t) is antisymmetric in U according to the arguments presented around

(2.127). In order to find the expectation value of the baryons we evaluate the action

(3.75) on these solutions and remove the divergence by subtracting the KS value.

The expectation values hence are given by exp[− limt→∞ Sf (ξ1,2)], where Sf denotes

the finite part of the action. It is simplest to work with the product (normalized to

the KS value) and ratio of the expectation values. The former is given by

〈A〉〈B〉
〈A〉KS〈B〉KS

= lim
t→∞

exp [S+(U, t) + S−(U, t)− 2S(0, t)] , (3.97)

where we have used the fact that the two solutions coincide in the KS case because

σ = 0. It follows from (3.97) that

〈A〉〈B〉 = 〈A〉KS〈B〉KS , (3.98)

which corresponds to the constraint AB = −Λ4M
2M in the gauge theory. The ratio of

the baryon condensates is given by

〈A〉
〈B〉 = lim

t→∞
exp [S+(U, t)− S−(U, t)] = lim

t→∞
e2σ , (3.99)

or

log〈A〉 ' lim
t→∞

σ(t) . (3.100)

Unfortunately σ can not be calculated analytically. However, this integral can

be evaluated numerically. In the small U region of GHK [30] the answer is linear in

U

lim
t→∞

σ(t) ' 3.3773U +O(U3) , (3.101)
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Figure 3.1: Plot of numerical results for the O(t0) term in the asymptotic expansion
of the action versus U . The slope at U = 0 matches the value calculated from
(3.101). The baryon expectation value 〈A〉 ∼ 〈B〉−1 in units of Λ2M

2M is given by the
exponential of this function.

The numerical result for the rest of the baryonic branch is more complicated . We

present it in the form of the plot shown in Figure 1. Since 〈A〉 ∼ ζ this plot provides

a map from the SUGRA modulus U to the field theory modulus ζ.



Chapter 4

Nonperturbative superpotential in

the D3-D7 system

This chapter is devoted to the calculation of nonperturbative superpotential on a D3

brane due to gluino condensate on a stack of D7-branes. The main results, presented

in this chapter were initially obtained in the work [68], written in collaboration with

D. Baumann, I. R. Klebanov, J. Maldacena, L. McAllister, and A. Murugan.

4.1 Warped throats and moduli stabilization

Warped throat compactifications in String Theory

The warped throat compactifications provide an appealing mechanism to introduce

the techniques of gauge/gravity duality into the scenario of string compactifications.

The idea is to consider a compact Calabi-Yau manifold with some conic singularity

and internal fluxes. Then, in the vicinity of the singularity the background will

not be far from the infinite throat solutions discussed in Chapter 2 and 3. At high

energies, however, the gauge theory on the stack of branes will feel the bulk of

the Calabi-Yau. This corresponds to the coupling of the low-energy effective field

theory to four-dimensional gravity modes. Such a warped throat scenario provides

a convenient mechanism of splitting the field theory and gravity scales and resolving

70
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the hierarchy problem.

There is evidence that singularities like (1.3) generally appear when the moduli

of the Calabi-Yau are varied [16]. Therefore, the field theory on the D3-brane placed

at the singularity can be a natural prediction of string theory.

Another strong advantage of warped throat compactifications is that the dynam-

ics of string theory on the throat is controllable. Unlike the metric in the bulk of the

Calabi-Yau the metric in the throat is known explicitly. Moreover, for sufficiently

large flux the curvature is small everywhere on the throat, thus providing reliable

supergravity approximation.

Nonperturbative volume stabilization

The key issue for the compactification scenarios is to assure that all massless moduli

are fixed dynamically . For that reason one needs the non-trivial fluxes to generate

a moduli-fixing potential.

All moduli may be divided into three major groups: the Kähler moduli ρ, re-

sponsible for the “sizes” of the Calabi-Yau; the complex moduli χ, responsible for

the complex structure, and the dilaton-axion modulus.

The Gukov-Vafa-Witten flux induced superpotential [60]

Wflux(χ?) =

∫
G3 ∧ Ω̃ ≡ W0 , (4.1)

stabilizes the complex structure and the dilaton-axion. Nevertheless the Kähler

moduli are not fixed in this way. This problem can be solved by embedding D3-

D7-branes into an orientifold of the IIB theory. The gauge theory on D7 develops

nonperturbative superpotential through gluino condensation. It is dependent on

Kähler moduli and hence can lead to their stabilization [61].

For simplicity let us consider a model with one Kähler modulus ρ. Then the

nonperturbative superpotential is expected to be of the form [61]

Wnp(ρ) = A(χ)e−aρ . (4.2)
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The pre-exponent factor A(χ) is a holomorphic function of the complex structure

moduli χ ≡ {χ1, . . . , χh2,1}. Later we will see that it also depends on the details

of the D3-D7 system such as location of the D3-brane. The factor A arises from

the one-loop correction to the nonperturbative superpotential. It is a threshold

correction to the gauge coupling on the D7-branes. The a is such that aρ is volume

of the four-cycle wrapped by D7-brane.

KKLT scenario

Now we are going to discuss a simple scenario of Kähler moduli stabilization [61]

in some detail. To simplify our considerations we either assume that the D3 brane

is fixed or consider the system without mobile D3 branes. In this case the full

superpotential W is the sum of the constant flux term W0 at fixed complex structure

χ? and the nonperturbative term Wnp

W = W0 + Ae−aρ . (4.3)

The Kähler modulus ρ is fixed dynamically through the minimization of F-term

potential VF

VF = eκ2
4K

[Kρρ̄DρWDρW − 3κ2
4|W |2] , (4.4)

where the Kähler potential K is

κ2
4K = −3 log (ρ + ρ̄) . (4.5)

The minimum of the potential (4.4) is determined through the equation [61]

∂VF

∂ρ

∣∣∣∣
ρ∗

= 0 ⇔ |W0|
A

eaρF =
2

3
aρF + 1 , (4.6)

and the value of the potential at the minimum is negative

VKKLT = −2
e−2aρF

aρF

. (4.7)
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To match positive vacuum energy observations, the KKLT potential (4.7) should be

uplifted. One particular way to do that is to place an anti-D3 at the tip of the cone

[18], although it can be done in a variety of ways.

Mobile D3 brane

In the discussion above the D3 brane was assumed to be fixed. Nevertheless the

location of the D3 X is not fixed and actually enters the effective potential of the

theory on the D7. In fact the mobile D3 is not a difficulty but a big advantage of

this setup. Typically after adding the mobile D3-brane the Kähler moduli remain

stabilized. At the same time, the location of D3, X, is not massless yet the mass

is generally much smaller than the Planck scale. Therefore the location of the D3

is a promising candidate for the inflaton field [18]. We elaborate on this scenario in

chapter 5. In this chapter we merely focus on the nonperturbative superpotential

(4.2) and discuss how it depends of the D3-brane location X. The answer we yet

have to derive can be written in the form A(X). We find A(X) explicitly in this

chapter.

The model

Our model consists of N7 D7 branes wrapping a cycle Σ4 in the compact Calabi-Yau

and a mobile D3-brane. The D7-branes are embedded supersymmetrically and their

location as well as the holomorphic moduli are fixed due to flux induced potential.

The Kähler potential is fixed dynamically according to KKLT scenario as outlined

above. To make the dynamics controllable and to work at energies well below the

Planck scale we assume that the D3 is located in the warped throat, which is a part

of the Calabi-Yau. The warped throat in our consideration will be approximated

by a warped deformed, warped singular conifold or any other known non-compact

conic Calabi-Yau. This assures that the Kähler potential k(X, X̄) is known. The

probe D3 will move along the conifold toward the tip, i.e. the low-energy region.
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This goes along with the interpretation of its position X as the inflaton field.

To be able to calculate A(X) we assume the cycle Σ4 significantly stretches inside

the throat. The D3 backreacts on the D7 via a small deformation of the geometry.

This deformation rapidly decreases with the distance. Therefore the D7 placed in

the bulk would not feel the D3 and we would return to the original KKLT proposal.

The same argument suggests that if the throat is long enough the X dependent

part of Wnp will come solely from the throat region. That is why the problem of

calculating A(X) admits an explicit solution. To this end, we need to consider an

infinite throat solution like those from chapter 2 and calculate A(X) in this case.

This answer is an exact answer for the non-compact scenario1. The embedding of the

D7 should be SUSY such that the D7 does not experience any force and is immobile

in the infinite-throat approximation. This implies that the associated four-cycle Σ4

is holomorphic. Other restrictions on Σ4 will be discussed in the next section.

4.2 Nonperturbative superpotential and Green’s

function method

Warped volumes and the superpotential

The nonperturbative superpotential Wnp discussed in the previous section (4.1) de-

pends exponentially on the warped volume of the associated four-cycle Σ4. It governs

the gauge coupling of the gauge theory on D7-branes. To see this, consider a warped

product of Minkowski space with the throat M

ds2 = h−1/2(Y )ηabdxadxb + h1/2(Y )gIJdY IdY J . (4.8)

Here Y I and gIJ are six coordinates and the unwarped metric on M.

1There is a subtlety related to holomorphicity of A(X) in the non-compact case. It is briefly
discussed below in section (4.2.1). More details can be found in [68].
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The Yang-Mills coupling g7 of the 7 + 1 dimensional gauge theory living on a

stack of D7-branes is given by

g2
7 ≡ 2(2π)5gs(α

′)2 . (4.9)

The full D7-brane action (2.136) is

S =
1

g2
7

∫

R3,1×Σ4

d4x d4ξe−φ
√
−Det(Gind + F) +

1

g2
7

∫

R3,1×Σ4

eF ∧ C . (4.10)

The magnetic field F is a sum of the pull-back of NS-NS form P [B2]µν on Σ4 and

the induced gauge field dA1 along Σ4, Fµν and along Minkowski space Fab. The

induced metric Gind consists of two parts: the metric h−1/2ηab along R3,1 and the

induced metric h−1/2gind
µν on Σ4.

In the absence of the magnetic field along Σ4, Fµν = P [B2]µν+Fµν = 0, the action

can be significantly simplified. The Cherns-Simons term vanishes and the DBI term

can be decomposed into two corresponding to Σ4 and to Minkowski space. The

latter

∫

R3,1

d4x
√

h−1/2ηab + Fab , (4.11)

can be expanded in powers of Fab leading to the following effective action for the

gauge fields on D7-branes

SY M =
1

2g2
7

∫

Σ4

d4ξ
√

gind h(Y ) ·
∫

R3,1

d4xTr F 2 . (4.12)

The key point here is the appearance of a single power of h(Y ) [62]. Defining the

warped volume of Σ4,

V w
Σ4
≡

∫

Σ4

d4ξ
√

gind h(Y ) (4.13)

and recalling the D3-brane tension

T3 ≡ 1

(2π)3gs(α′)2
, (4.14)
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we read off the gauge coupling of the four-dimensional theory from (4.12):

1

g2
=

V w
Σ4

g2
7

=
T3V

w
Σ4

8π2
. (4.15)

In N = 1 super-YM theory, the Wilsonian gauge coupling is the real part of a

holomorphic function which receives one-loop corrections, but no higher perturbative

corrections [63, 64, 65]. The modulus of the gaugino condensate superpotential in

SU(ND7) super-YM with ultraviolet cutoff ΛUV is given by

|Wnp| = 16π2Λ3
UV exp

(
− 1

ND7

8π2

g2

)
∝ exp

(
−T3V

w
Σ4

ND7

)
. (4.16)

The mobile D3-brane adds a flavor to the SU(ND7) gauge theory, whose mass m

is a holomorphic function of the D3-brane coordinates. In particular, the mass

vanishes when the D3-brane coincides with the D7-brane. In such a gauge theory,

the superpotential is proportional to m1/ND7 [66]. Our explicit closed-string channel

calculations will confirm this form of the superpotential.

Corrections to the Warped Volumes of Four-Cycles

The displacement of a D3-brane in M creates a slight distortion of the warp factor

δh(Y ) which now becomes dependent on the location of the D3-brane X

h(Y ) → h(Y ) + δh(X; Y ) . (4.17)

At leading order the metric and other fields remain unchanged [62]. The correction

to the warp factor affects the warped volumes of the four-cycle

δV w
Σ4
≡

∫

Σ4

d4ξ
√

gind(ξ) δh(X; Y (ξ)) . (4.18)

By computing this change in volume we will extract the dependence of the super-

potential on X. In the non-compact throat approximation, we will calculate δV w
Σ4

explicitly, and find that it is the real part of a holomorphic function ζ(X). Its imag-

inary part can be determined by the integral of the Ramond-Ramond four-form
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perturbation δC4 over Σ4 although we are not doing this calculation here. In the

conical examples considered in this thesis the holomorphic function ζ(X) can be

deduced from its real part (4.18).

In the compact case, δV w
Σ4

is no longer the real part of any holomorphic function.

Instead it acquires a non-holomorphic piece, which can be combined with the gauge-

invariant Kähler modulus such that the full answer is the real part of holomorphic

function. This observation solves the ‘rho-problem’ of [67] and confirms that the

X-dependence of the superpotential (4.16) in the compact case coincides with the

non-compact result, provided that the D3 is located far from the compactification

region [68].

The nonperturbative superpotential (4.16) generated by the gaugino condensa-

tion can be rewritten in the following form [61, 18]

Wnp = A(X)e−aρ = A0 exp
(
−T3 ζ(X)

ND7

)
e−aρ . (4.19)

The unknown constant A0 depends on the values at which the complex structure

moduli are stabilized, but is independent of the D3-brane position. The Kähler

modulus ρ depends on the unwarped volume of Σ4 and is fixed dynamically.

Effects of induced magnetic field

Our result (4.19) for the X-dependent part of the superpotential (4.16) is based on

the assumption that the magnetic field Fµν along Σ4 vanishes in (4.10). Now we

will show that this result is actually correct for the supersymmetric D7-brane even

if Fµν 6= 0 [69]. For that reason we need to restore Fµν in (4.12)

Det
(
h1/2gind

µν + Fµν

)
=

(
h
√

gind − PfF
)2

+ h(P [J̃ ] ∧ F)2
1234 , (4.20)

and in the CS term

∫

R3,1×Σ4

eF ∧ C =
1

2

∫

Σ4

h−1(Y )F ∧ F
∫

×R3,1

d4x . (4.21)
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Here J̃ ≡ h−1J is the Kähler form (2.107), and the Pfaffian PfF of a two-form F
on Σ4 is defined as follows

PfF =
1

2
(F ∧ F)1234 =

1

4!2
εµνρσ (F ∧ F)µνρσ . (4.22)

In the expression above (4.20) we have used the fact that the D7-brane is super-

symmetric. This condition is necessary to cancel the forces on the D7 and to fix it

inside the throat. Namely, we have used that F2,0 = 0 and F is of type (1, 1). In

addition to the constraint that Σ4 is holomorphic, κ-symmetry also requires

h
1
2 P [J̃ ] ∧ F =

1

2
tanh θ

(
P [J̃ ∧ J̃ ]−F ∧ F

)
, (4.23)

where the angle θ is related to the geometry of the background and in the case of

the baryonic branch solutions is given by cos θ = eφ. It is zero in the case of warped

Calabi-Yau, like KS solution. Adding the DBI and CS pieces together we notice

that the terms with magnetic field cancel each other from the D7 tension

SD7 =
1

g7

∫

Σ4

P [J̃ ∧ J̃ ]

∫

R3,1

d4x + SY M , (4.24)

and that the effective action for the gauge field is modified by F

SY M =
1

2g2
7

∫

Σ4

d4ξ
(√

gind h(Y )− PfF
)
·
∫

R3,1

d4x Tr F 2 . (4.25)

Since J̃ is closed the tension (4.24) is independent of Σ4 and depends only on its

cohomology class. A similar result was found for a D5 brane wrapping S3 at the tip

of the cone in section (3.1.2).

Since the location of the D3-brane enters (4.25) only through δh the extra term

PfF does not cause any difference between (4.25) and (4.12) at the level of the

correction (4.18). Therefore the X-dependent part ζ(X) of the superpotential (4.19)

remains the same with and without a magnetic field along Σ4 [69].
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4.2.1 Method of calculating the backreaction

The Green’s function method

A D3-brane located at some position X in a six-dimensional space with coordinates

Y acts as a point source for a perturbation δh of the geometry:

−∇2
Y δh(X; Y ) = C

[
δ(6)(X − Y )√

g(Y )
− ρbg(Y )

]
. (4.26)

That is, the perturbation δh is a Green’s function for the Laplace problem on the

background of interest. Here C ≡ 2κ2
10T3 = (2π)4gs(α

′)2 ensures the correct normal-

ization of a single D3-brane source term relative to the four-dimensional Einstein-

Hilbert action. A consistent flux compactification contains a background charge

density ρbg(Y ) which satisfies
∫

d6Y
√

g ρbg(Y ) = 1 (4.27)

to account for the Gauss’s law constraint on the compact space [15].

To solve (4.26), we first solve

−∇2
Y ′Φ(Y ; Y ′) = −∇2

Y Φ(Y ; Y ′) =
δ(6)(Y − Y ′)√

g
− 1

V6

, (4.28)

where V6 ≡
∫

d6Y
√

g. The solution to (4.26) is then

δh(X; Y ) = C
[
Φ(X; Y )−

∫
d6Y ′√g Φ(Y ; Y ′)ρbg(Y

′)
]
. (4.29)

In the non-compact case V6 is infinite and Φ is proportional to the Green’s function

G. The last term in (4.29) is X-independent and can be dropped in the calculation

of ζ(X). In the general case

−∇2
Xδh(X; Y ) = C

[
δ(6)(X − Y )√

g(X)
− 1

V6

]
, (4.30)

and this expression is independent of the background charge ρbg. Again in the

non-compact case the last term vanishes and we have

δh(X; Y ) = CG(X, Y ) . (4.31)
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To compute A(X) from (4.19), we simply solve for the Green’s function G(X, Y )

obeying (4.30) with zero 1
V6

and then integrate δh over the four-cycle of interest,

according to (4.18).

Green’s function on conic geometries

The D3-branes that we consider in this paper are point sources in the six-dimensional

internal space. The backreaction they induce on the background geometry can

therefore be related to the Green’s functions for the Laplace problem on conical

geometries R+ × X (see section (4.2.1))

−∇2
XG(X; X ′) =

δ(6)(X −X ′)√
g(X)

. (4.32)

In the following we present explicit results for the Green’s function on the singular

conifold. In the large r-limit, far from the tip, the Green’s functions for the resolved

and deformed conifold reduce to those of the singular conifold.

In the singular conifold geometry dr2 + r2ds2
T 1,1 , the defining equation (4.32) for

the Green’s function becomes

1

r5

∂

∂r

(
r5 ∂

∂r
G

)
+

1

r2
∇2

ΨG = − 1

r5
δ(r − r′)δX(Ψ−Ψ′) , (4.33)

where ∇2
Ψ and δX(Ψ − Ψ′) are the Laplacian and the normalized delta function on

X, respectively. Ψ stands collectively for the five angular coordinates of the base

and X ≡ (r, Ψ). An explicit solution for the Green’s function is obtained by a series

expansion of the form

G(X; X ′) =
∑

L

Y ∗
L (Ψ′)YL(Ψ)HL(r; r′) . (4.34)

The YL’s are eigenfunctions of the angular Laplacian,

∇2
ΨYL(Ψ) = −ΛLYL(Ψ) , (4.35)
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where the multi-index L represents the set of discrete quantum numbers related to

the symmetries of the base of the cone. The angular eigenproblem is worked out in

detail in section (4.3). If the angular wavefunctions are normalized as
∫

d5Ψ
√

gX Y ∗
L (Ψ)YL′(Ψ) = δLL′ , (4.36)

then

∑
L

Y ∗
L (Ψ′)YL(Ψ) = δT 1,1(Ψ−Ψ′) , (4.37)

and equation (4.33) reduces to the radial equation

1

r5

∂

∂r

(
r5 ∂

∂r
HL

)
− ΛL

r2
HL = − 1

r5
δ(r − r′) , (4.38)

whose solution away from r = r′ is

HL(r; r′) = A±(r′)rc±L , c±L ≡ −2±
√

ΛL + 4 . (4.39)

The constants A± are uniquely determined by integrating equation (4.38) across

r = r′. The Green’s function on the singular conifold is

G(X; X ′) =
∑

L

1

2
√

ΛL + 4
× Y ∗

L (Ψ′)YL(Ψ)×





1
r′4

(
r
r′

)c+L
r ≤ r′ ,

1
r4

(
r′
r

)c+L
r ≥ r′ ,

(4.40)

where the angular eigenfunctions YL(Ψ) are given explicitly in section (4.3).

Gauge theory interpretation of Green’s function method

The calculation of the correction to the superpotential (4.18) on conic geometries

with δh given by (4.31) and Green’s function given by (4.40) has a simple inter-

pretation in terms of gauge theory. Having in mind the conformal “conifold” field

theory of section (2.1.1) dual to supergravity on singular conifold we can interpret

the 1
r

expansion of δh

δh =
27πgs(α

′)2

4r4

[
1 +

∑
i

cifi(θ1, θ2, φ1, φ2, ψ)

r∆i

]
, (4.41)
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via the AdS/CFT correspondence. Each term in (4.41) corresponds to a gauge-

invariant operator Oi in the gauge theory with dimension ∆i and ci is proportional

to the expectation values 〈Oi〉 determined by the position of the D3-brane [38]. The

angle-dependent part fi(θ1, θ2, φ1, φ2, ψ) is a wave-function of the Laplacian on T 1,1

and can be rewritten through wi of (2.23-2.26) which makes an explicit connection

with a gauge-theory operator via (2.2).

There is a set of chiral operators Tr[Ai1Bj1Ai2Bj2 . . . AikBjk
] symmetric in both

i and j indexes. They have integer R-charge k and dimension ∆chiral
i = 3k/2 and

transform as (k/2, k/2) under SU(2) × SU(2). These operators correspond to the

spherical harmonics on T 1,1, which transforms as (k/2, k/2) under SU(2)× SU(2).

All these terms will have non-zero ci i.e. they will contribute to ζ(X) after integra-

tion over Σ4 in (4.31).

All other terms in (4.41), which will be refereed as “non-chiral” give no con-

tribution after integration in (4.31). These two sets of “chiral” and “non-chiral”

harmonics will be considered separately in the next section.

4.3 Computation of backreaction on the conifold

Eigenfunctions of the Laplacian on T 1,1

In this section we complete the calculation of the Green’s function on the singular

conifold (4.40) by constructing the eigenfunctions of the Laplacian on T 1,1

∇2
ΨYL =

1√
g
∂m(gmn√g∂nYL) = (6∇2

1 + 6∇2
2 + 9∇2

R)YL (4.42)

= −ΛLYL ,

where

∇2
i YL ≡ 1

sin θi

∂θi
(sin θi∂θi

YL) +
( 1

sin θi

∂φi
− cot θi∂ψ

)2

YL , (4.43)

∇2
RYL ≡ ∂2

ψYL . (4.44)
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The solution to equation (4.42) is obtained through separation of variables

YL(Ψ) = Jl1,m1,R(θ1)Jl2,m2,R(θ2)e
im1φ1+im2φ2e

i
2
Rψ , (4.45)

where

1

sin θi

∂θi
(sin θi∂θi

Jli,mi,R(θi))−
( mi

sin θi

− R

2
cot θi

)2

Jli,mi,R(θi) = −Λli,RJli,mi,R(θi) .

(4.46)

The eigenvalues are Λli,R ≡ li(li + 1)− R2

4
. Explicit solutions for equation (4.46) are

given in terms of hypergeometric functions 2F1(a, b, c; x)

JΥ
li,mi,R

(θi) = NΥ
L (sin θi)

mi

(
cot

θi

2

)R/2

×

2F1

(
−li + mi, 1 + li + mi, 1 + mi − R

2
; sin2 θi

2

)
, (4.47)

JΩ
li,mi,R

(θi) = NΩ
L (sin θi)

R/2
(
cot

θi

2

)mi ×

2F1

(
−li +

R

2
, 1 + li +

R

2
, 1−mi +

R

2
; sin2 θi

2

)
, (4.48)

where NΥ
L and NΩ

L are determined by the normalization condition (4.36). If mi ≥
R/2, solution Υ is non-singular. If mi ≤ R/2, solution Ω is non-singular. The full

wavefunction corresponds to the spectrum

ΛL = 6
(
l1(l1 + 1) + l2(l2 + 1)− R2

8

)
. (4.49)

The eigenfunctions transform under SU(2)1 × SU(2)2 as the spin (l1, l2) represen-

tation and under the U(1)R with charge R. The multi-index L has the data:

L ≡ (l1, l2), (m1,m2), R .

The following restrictions on the quantum numbers correspond to the existence of

single-valued regular solutions:

• l1 and l2 are both integers or both half-integers.

• m1 ∈ {−l1, · · · , l1} and m2 ∈ {−l2, · · · , l2} .
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• R ∈ Z with R
2
∈ {−l1, · · · , l1} and R

2
∈ {−l2, · · · , l2}.

As discussed in section (4.2.1), chiral operators in the dual gauge theory corre-

spond to l1 = R
2

= l2.

Supersymmetric four-cycles in the conifold

The κ-symmetry specifies the set of conditions for the D7-brane to be supersym-

metric. In the absence of NS-NS field, as in the case of the singular conifold of

section (2.1.1) the induced gauge field A1 can be set to zero. The only constraint

left implies that the D7 has to be embedded along a holomorphic four-cycle Σ4. For

the set of holomorphic cycles

f(wi) ≡
4∏

i=1

wpi

i − µP = 0 . (4.50)

the κ-symmetry condition was checked explicitly [70]. Here pi ∈ Z, P ≡ ∑4
i=1 pi, and

µ ∈ C are constants defining the embedding of the D7-branes. In real coordinates

φi, θi, ψ, r of section (2.1.1) the embedding condition (4.50) becomes

ψ(φ1, φ2) = n1φ1 + n2φ2 + ψs , (4.51)

r(θ1, θ2) = rmin

[
x1+n1(1− x)1−n1y1+n2(1− y)1−n2

]−1/6
, (4.52)

where

r
3/2
min ≡ |µ| , (4.53)

1

2
ψs ≡ arg(µ) +

2πs

P
, s ∈ {0, 1, . . . , P − 1} . (4.54)

Here we choose φ1, φ2, θ1, θ2 to be the coordinates on the four-cycle. It is convenient

to define new coordinates x, y

x ≡ sin2 θ1

2
, y ≡ sin2 θ2

2
(4.55)

and the rational winding numbers

n1 ≡ p1 − p2 − p3 + p4

P
, n2 ≡ p1 − p2 + p3 − p4

P
. (4.56)
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To compute the integral over the four-cycle we will need the induced volume form

on the wrapped D7-brane. By substituting the embedding equations (4.51,4.52) into

the metric of singular conifold (2.34,2.35) we obtain

dθ1dθ2dφ1dφ2

√
gind =

VT 1,1

16π3
r4 G(x, y) dxdydφ1dφ2 , (4.57)

where

G(x, y) ≡ (1 + n1)
2

2

1

x(1− x)
− 2n1

1

1− x

+
(1 + n2)

2

2

1

y(1− y)
− 2n2

1

1− y
− 1 . (4.58)

The volume of T 1,1 defined in (4.57) is

VT 1,1 ≡
∫

d5Ψ
√

gT 1,1 =
16π3

27
, (4.59)

with Ψ standing for all five angular coordinates on T 1,1.

Embedding, induced metric and a selection rule

Equation (4.51) and the form of the angular eigenfunctions of the Green’s function

(see section (4.3)) imply that the correction to the warped volume

δV w
Σ4

= Re(ζ(X ′)) =

∫

Σ4

d4X
√

gind(X) δh(X; X ′) , (4.60)

is proportional to

e
i
2
Rψs

(2π)2

∫ 2π

0

dφ1 ei(m1+R
2

n1)φ1

∫ 2π

0

dφ2 ei(m2+R
2

n2)φ2 = e
i
2
Rψsδm1,−R

2
n1
· δm2,−R

2
n2

.(4.61)

We may therefore restrict the computation to values of the R-charge that satisfy

m1 = −R

2
n1 , m2 = −R

2
n2 . (4.62)

The winding numbers ni (4.56) are rational numbers of the form

ni ≡ ñi

q
, ñi ∈ Z , (4.63)
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where ñi and q do not have a common divisor. Therefore the requirement that

the magnetic quantum numbers mi be integer or half-integer leads to the following

selection rule for the R-charge

R = q · k , k ∈ Z . (4.64)

Green’s function and reduced angular eigenfunctions

The Green’s function on the conifold from section (4.2.1) is

G(X; X ′) =
∑

L

Y ∗
L (Ψ′)YL(Ψ)HL(r; r′) , (4.65)

where it is important that the angular eigenfunctions from section (4.3) are normal-

ized correctly on T 1,1

∫
d5Ψ

√
gT 1,1|YL|2 = 1 , (4.66)

or

VT 1,1

∫ 1

0

dx [Jl1,m1,R(x)]2
∫ 1

0

dy [Jl2,m2,R(y)]2 = 1 . (4.67)

The coordinates x and y are defined in (4.55). Next, we show that the hypergeo-

metric angular eigenfunctions reduce to Jacobi polynomials if we define

l1 ≡ R

2
+ L1 , l2 ≡ R

2
+ L2 , L1, L2 ∈ Z . (4.68)

This parameterization is convenient because chiral terms are easily identified by

L1 = 0 = L2. Non-chiral terms correspond to non-zero L1 and/or L2. Without loss

of generality we define chiral terms to have R > 0 and anti-chiral terms to have

R < 0. With these restrictions the angular eigenfunctions of section (4.3) simplify

to

JR
2

+L1,−R
2

n1,R(x) = x
R
4

(1+n1)(1− x)
R
4

(1−n1) PL1,R,n1(x) , (4.69)

JR
2

+L2,−R
2

n2,R(y) = y
R
4

(1+n2)(1− y)
R
4

(1−n2) PL2,R,n2(y) , (4.70)
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where

PL1,R,n1(x) ≡ NL1,R,n1P
R
2

(1+n1), R
2

(1−n1)

L1
(1− 2x) , (4.71)

PL2,R,n2(y) ≡ NL2,R,n2P
R
2

(1+n2), R
2

(1−n2)

L2
(1− 2y) . (4.72)

The Pα,β
N are Jacobi polynomials and the normalization constants NL1,R,n1 and

NL2,R,n2 can be determined from (4.67).

Main integral

Assembling the ingredients of the previous subsections (induced metric, embedding

constraint, Green’s function) we find that (4.60) may be expressed as

T3 δV w
Σ4

= (2π)3

∫ 1

0

dxdy
√

gind(x, y)
∑

L,ψs

Y ∗
L (x′, y′)YL(x, y)HL(r; r′)

=
VT 1,1

2

∑

L,ψs

Y ∗
L (r′)c+L × e

i
2
Rψ′sr

−c+L
min ×

In
K(Q+

L)√
ΛL + 4

, (4.73)

where

In
K(Q+

L) ≡
∫ 1

0

dxdy G(x, y)

(
r(x, y)

rmin

)−6Q+
L

PL1,R,n1(x)PL2,R,n2(y) . (4.74)

Here K ≡ (L1, L2, R), n ≡ (n1, n2) and

Q±
L ≡

c±L
6

+
R

4
, c±L ≡ −2±

√
ΛL + 4 . (4.75)

The sum in equation (4.73) is restricted by the selection rules (4.62) and (4.64).

Equation (4.74) is the main result of this section. In the following we will show that

the integral vanishes for all non-chiral terms and reduces to a simple expression for

(anti)chiral terms.
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4.3.1 Non-chiral contributions

In this section we prove that

In
K(Q) ≡

∫ 1

0

dxdy PL1,R,n1(x)PL2,R,n2(y)×

×xQ(1+n1)(1− x)Q(1−n1)yQ(1+n2)(1− y)Q(1−n2) ×
×

[(1 + n1)
2

2

1

x(1− x)
− 2n1

1

1− x

+
(1 + n2)

2

2

1

y(1− y)
− 2n2

1

1− y
− 1

]
(4.76)

vanishes for Q → Q+
L iff L1 6= 0 or L2 6= 0. This proves that non-chiral terms do

not contribute to the perturbation δV w
Σ4

to the warped four-cycle volume.

The Jacobi polynomial Pα,β
N (x) satisfies the following differential equation

−N(N + α + β + 1)Pα,β
N (1− 2x) =

= x−α(1− x)−β d

dx

(
x1+α(1− x)1+β d

dx
Pα,β

N (1− 2x)

)
. (4.77)

Multiplying both sides by xqα(1− x)qβ and integrating over x gives

−N(N + α + β + 1)

∫ 1

0

dxP α,β
N (1− 2x)xqα(1− x)qβ =

=

∫ 1

0

dxP α,β
N (1− 2x)xqα(1− x)qβ × (4.78)

×
[
(qα + qβ + 1)(α + β − qα − qβ) +

qα(α− qα)− qβ(β − qβ)

(1− x)
+

qα(qα − α)

x(1− x)

]
,

where we have used integration by parts. In the case of interest, (4.76), we make

the following identifications: N ≡ L1, α ≡ R
2
(1 + n1), β ≡ R

2
(1 − n1), qα ≡

Q(1 + n1), qβ ≡ Q(1− n1). This gives

∫ 1

0

dxP
R
2

(1+n1), R
2

(1−n1)

L1
(1− 2x) xQ(1+n1)(1− x)Q(1−n1) ×

(
(1 + n1)

2

2x(1− x)
− 2n1

(1− x)

)
=

= XL1,R,Q

∫ 1

0

dx P
R
2

(1+n1), R
2

(1−n1)

L1
(1− 2x) xQ(1+n1)(1− x)Q(1−n1) , (4.79)
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where

XL1,R,Q ≡ (2Q + 4Q2 − L2
1 − L1R−R− 2L1 − 2RQ)

Q(2Q−R)
.

The corresponding identity for the y-integral follows from the above expression and

the replacements L1 → L2 and n1 → n2. We then notice that the integral (4.76) is

In
K(Q) = (XL1,R,Q + YL2,R,Q − 1)× ΛL1,R,n1,Q ΛL2,R,n2,Q

=
6(Q−Q+

L)(Q−Q−
L)

Q(2Q−R)
× ΛL1,R,n1,Q ΛL2,R,n2,Q , (4.80)

where

ΛL1,R,n1,Q ≡
∫ 1

0

dxPL1,R,n1(x) xQ(1+n1)(1− x)Q(1−n1) , (4.81)

ΛL2,R,n2,Q ≡
∫ 1

0

dy PL2,R,n2(y) yQ(1+n2)(1− y)Q(1−n2) . (4.82)

Since In
K(Q) ∝ (Q − Q+

L) it just remain to observe that the integrals (4.81) and

(4.82) are finite to conclude that

lim
Q→Q+

L

In
K = 0 iff Q+

L 6=
R

2
. (4.83)

This proves that non-chiral terms do not contribute corrections to the warped volume

of any holomorphic four-cycle of the form (4.50).

4.3.2 Chiral contributions

Finally, let us consider the special case Q+
L = R

2
which corresponds to chiral operators

(L1 = L2 = 0) in the dual gauge theory. In this case,

Ichiral
R ≡ lim

Q→R
2

In
K =

3R + 4

2

1

R
× Λ0,R,n1, R

2
× Λ0,R,n2, R

2
, (4.84)

where

Λ0,R,n1, R
2
≡

∫ 1

0

dxP0,R,n1(x) x
R
2

(1+n1)(1− x)
R
2

(1−n1) , (4.85)

Λ0,R,n2, R
2
≡

∫ 1

0

dy P0,R,n2(y) y
R
2

(1+n2)(1− y)
R
2

(1−n2) . (4.86)
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Notice that P0,R,ni
= N0,R,ni

= (N0,R,ni
)−1(P0,R,ni

)2. Hence,

Λ0,R,n1, R
2
≡ (N0,R,n1)

−1

∫ 1

0

dx
(
P0,R,n1(x)

[
x(1+n1)(1− x)(1−n1)

]R/4
)2

Λ0,R,n2, R
2
≡ (N0,R,n2)

−1

∫ 1

0

dy
(
P0,R,n2(y)

[
y(1+n2)(1− y)(1−n2)

]R/4
)2

and

Λ0,R,n1, R
2
× Λ0,R,n2, R

2
=

1

VT 1,1N0,R,n1N0,R,n2

(4.87)

by the normalization condition (4.67) on the angular wave function. Therefore, we

get the simple result

Ichiral
R√

Λchiral
R + 4

=
1

VT 1,1N0,R,n1N0,R,n2

× 1

R
. (4.88)

We substitute this into equation (4.73) and get

T3 (δV w
Σ4

)chiral =
1

2

∑
s

∑

R=q·k

1

R
×

(∏
i

(w̄′
i)

pi

)R/P

× 1

µ̄R
× ei R

P
2πs , (4.89)

where we used

(r′)3R/2 Y ∗
R(Ψ′)

N0,R,n1N0,R,n2

=
(∏

i

(w̄′
i)

pi

)R/P

(4.90)

and

eiarg(µ)Rr
−3R/2
min =

1

µ̄R
. (4.91)

The sum over s in (4.89) counts the P different roots of equation (4.50):

P−1∑
s=0

e
q·k
P

2πs = P δ q·k
P

,j , j ∈ Z . (4.92)

Dropping primes, we therefore arrive at the following sum

T3 (δV w
Σ4

)chiral =
1

2

∞∑
j=1

1

j
×

(∏
i

w̄pi

i

)j

× 1

µ̄P ·j , (4.93)
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which gives

T3 (δV w
Σ4

)chiral = −1

2
log

[
1−

∏
i w̄

pi

i

µ̄P

]
. (4.94)

For the anti-chiral terms (R < 0) an equivalent computation gives the complex

conjugate of this result.

The R = 0 term formally gives a divergent contribution that needs to be regular-

ized by introducing a UV cutoff at the end of the throat. Alternatively, as discussed

in section (4.2.1), this term does not appear if we define δh as the solution of (4.26)

with
√

g ρbg(Y ) = δ(6)(Y − X0). This choice amounts to evaluating the change in

the warp factor, δh, created by moving the D3-brane from some reference point X0

to X. We may choose the reference point X0 to be at the tip of the cone, r = 0,

and thereby remove the divergent zero mode.

Result for singular conifold

The total change in the warped volume of the four-cycle is therefore

δV w
Σ4

= (δV w
Σ4

)chiral + (δV w
Σ4

)anti−chiral (4.95)

and

T3 Re(ζ) = T3 δV w
Σ4

= −Re
(
log

[
µP −∏

i w
pi

i

µP

])
. (4.96)

Finally, the prefactor of the nonperturbative superpotential is

A(wi) = A0 e−T3ζ/n = A0

(µP −∏
i w

pi

i

µP

)1/N7

. (4.97)

The simple form of the result is not unexpected. It resembles a similar result for

Euclidean D3 brane, obtained in F-theory [71].
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4.4 Computation of backreaction on the Y p,q cones

4.4.1 Setup

Metric and Coordinates on Y p,q

Cones over Y p,q manifolds have the metric

ds2 = dr2 + r2ds2
Y p,q , (4.98)

where the Sasaki-Einstein metric on the Y p,q base is given by [73, 72]

ds2
Y p,q =

1− y

6
(dθ2 + sin2 θ dφ2) +

1

v(y)w(y)
dy2 +

v(y)

9
(dψ + cos θ dφ)2

+w(y)
[
dα + f(y) (dψ + cos θ dφ)

]2
. (4.99)

The following functions have been defined:

v(y) ≡ b− 3y2 + 2y3

b− y2
, w(y) ≡ 2(b− y2)

1− y
, f(y) ≡ b− 2y + y2

6(b− y2)
, (4.100)

with

b =
1

2
− p2 − 3q2

4p3

√
4p2 − 3q2 . (4.101)

The parameters p and q are two coprime positive integers. The zeros of v(y) are

y1,2 ≡ 1

4p

(
2p ∓ 3q −

√
4p2 − 3q2

)
, y3 ≡ 3

2
− (y1 + y2) . (4.102)

It is also convenient to introduce

x =
y − y1

y2 − y1

. (4.103)

The angular coordinates θ, φ, ψ, x, and α span the ranges:

0 ≤ θ ≤ π , 0 < φ ≤ 2π , 0 < ψ ≤ 2π ,

0 ≤ x ≤ 1 , 0 < α ≤ 2π` , (4.104)

where ` ≡ − q
4p2y1y2

.
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Green’s function

The Green’s function on the Y p,q cone is

G(X; X ′) =
∑

L

1

4(λ + 1)
× Y ∗

L (Ψ′)YL(Ψ)×





1
r′4

(
r
r′

)2λ

r ≤ r′ ,

1
r4

(
r′
r

)2λ

r ≥ r′ .
(4.105)

Here L is again a complete set of quantum numbers and Ψ represents the set of

angular coordinates (θ, φ, ψ, x, α). The eigenvalue of the angular Laplacian is ΛL ≡
4λ(λ+2). The spectrum of the scalar Laplacian on Y p,q, as well as the eigenfunctions

YL(Ψ), were calculated in [74, 75]. We do not review this treatment here, but simply

present an explicit form of YL(Ψ)

YL(Ψ) = NL ei(mφ+nψψ+nα
`

α)Jl,m,2nψ
(θ)Rnα,nψ ,l,λ(x) , (4.106)

where

Rnα,nψ ,l,λ(x) = xα1(1− x)α2(a− x)α3h(x) , a ≡ y1 − y3

y1 − y2

. (4.107)

The parameters αi depend on nψ, nα (see [75]), and the function h(x) satisfies the

following differential equation
[

d2

dx2
+

(
γ

x
+

δ

x− 1
+

ε

x− a

)
d

dx
+

αβx− k

x(1− x)(a− x)

]
h(x) = 0 . (4.108)

The parameters α, β, γ, δ, ε, k depend on p, q and on the quantum numbers of the

Y p,q base. Explicit expressions may be found in [75].

Finally, we introduce the normalization condition that fixes NL in (4.106). If we

define z ≡ sin2 θ
2

then the normalization condition
∫

d5Ψ
√

gY p,q |YL|2 = 1 (4.109)

becomes

N2
L

∫ 1

0

dz dx
√

g(x, z) J2R2 =
1

(2π)3`
, (4.110)

where

√
g(x, z) =

√
g(x) =

q(2p + 3q +
√

4p2 − 3q2 − 6qx)

24p2
. (4.111)
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Embedding, induced metric and a selection rule

The holomorphic embedding of four-cycles in Y p,q cones is described by the algebraic

equation [76]

3∏
i=1

wpi

i = µ2p3 , (4.112)

where

w1 ≡ tan
θ

2
e−iφ , (4.113)

w2 ≡ 1

2
sin θ x

1
2y1 (1− x)

1
2y2 (a− x)

1
2y3 ei(ψ+6α) , (4.114)

w3 ≡ 1

2
r3 sin θ [x(1− x)(a− x)]1/2eiψ . (4.115)

This results in the following embedding equations in terms of the real coordinates

ψ =
1

1 + n2

(n1φ− 6n2α)− ψs , (4.116)

r = rmin

[
z1+n1+n2(1− z)1−n1+n2

]−1/6 [
x2e1(1− x)2e2(a− x)2e3

]−1/6

≡ rminrzrx , (4.117)

where

ψs ≡ arg(µ) +
2πs

p2 + p3

, s ∈ {0, 1, . . . , (p2 + p3)− 1} (4.118)

r
3/2
min ≡ |µ| , (4.119)

and

ei ≡ 1

2

(
1 +

n2

yi

)
, (4.120)

n1 ≡ p1

p3

, (4.121)

n2 ≡ p2

p3

. (4.122)

Integration over φ and α together with the embedding equation (4.116) dictates

the following selection rules for the quantum numbers of the angular eigenfunctions
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(4.106),

m = −n1

2
QR , nα = 3`n2QR , nψ =

1 + n2

2
QR , (4.123)

where QR is the R-charge defined as QR ≡ 2nψ − 1
3`

nα. In this case αi = ei
QR

2
.

Finally, we need the determinant of the induced metric on the four-cycle

dθdx
√

gind =
r4

z(1− z)x(1− x)(a− x)
G(x, z) dzdx . (4.124)

The function G is too involved to be written out explicitly here, but is available

upon request. It is a polynomial of order 3 in x and of order 2 in z.

Main integral

The main integral (the analog of (4.74)) is therefore given by

IL =

∫
dxdz G(x, z) N2

L

z(1− z)x(1− x)(a− x)

(
r

rmin

)−6Q+
L

P a,b
A=l−nψ

(1− 2z)hL(x) , (4.125)

with a ≡ (1 + n1 + n2)
QR

2
, b ≡ (1 − n1 + n2)

QR

2
and 6Q+

L ≡ 2λ + 3
2
QR. We will

calculate this integral for a general 6Q+
L = 2w+ 3

2
QR and then take the limit w → λ.

First we compute the integral over z in complete analogy to the singular conifold

case of section (4.3). The Jacobi polynomial satisfies

r3QR
z

d

dz

(
r−3QR
z z(1− z)

d

dz
P a,b

A (1− 2z)
)

+ A(A + 1 + a + b)P a,b
A (1− 2z) = 0 .(4.126)

Let us multiply this equation by r
−(2w+ 3

2
QR)

z and integrate over z. It can be shown

that there is a third order polynomial G(x) which is implicitly defined by the fol-

lowing relation

G(x, z)

z(1− z)
−G(x) =

G(x, z = 0)

(1 + n1 + n2)2
(

w2

92 − Q2
R

16

) ×

×
[
r
2w+ 3

2
Qr

z
d

dz

(
z(1− z)r−3QR

z

d

dz

(
r

3
2
QR−2w

z

))
+ A(A + 1 + a + b)

]
.(4.127)
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The right-hand side vanishes after multiplying by r
−6Q+

L
z P a,b

A (1−2z) and integrating,

and we get

IL =

∫
dxG(x) N2

L

x(1− x)(a− x)
r
−6Q+

L
x hL(x)

∫
dz r

−6Q+
L

z P a,b
A (1− 2z) . (4.128)

4.4.2 Non-chiral contributions

To evaluate (4.128) we make use of the differential equation (4.108). We multiply

(4.108) by r
−2w− 3

2
QR

x and integrate over x. There exists a first order polynomial

M
√

g(x) such that

G(x)

x(1− x)(a− x)
−M

√
g(x) =

=
144G(x = 0)

(1− n2)(3QR + 4λ)(18QRn2 + 8λn2 − 9QR − 4λ− 24)
×

[
(αβx− k)−

−r
2w+ 3

2
QR

x
d

dx

(
r
−2w− 3

2
QR

x (γ(1− x)(a− x) + δx(x− a) + εx(x− 1))
)

+r
2w+ 3

2
QR

x
d2

dx2

(
x(1− x)(a− x)r

−2w− 3
2
QR

x

)]
, (4.129)

where we defined

M ≡ 48(λ− w)(λ + w + 2)

(1 + n2)(16w2 − 9Q2
R)

. (4.130)

After multiplying by r
−6Q+

L
x h(x) and integrating over x, the right-hand side vanishes

and we have

IL = MN2
L

∫
dxdz

√
g(x, z)

(
r

rmin

)−6Q+
L

P a,b
A (1− 2z)h(x) (4.131)

= MNL

∫
dzdx

√
g

(
r

rmin

)−2λ

JR . (4.132)

Since limw→λ M = 0, this immediately implies that limw→λ IL = 0 ‘on-shell’, i.e. for

all operators except for the chiral ones. Just as for the singular conifold case, we

have therefore proven that non-chiral terms do not contribute to the perturbation

to the warped four-cycle volume.
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4.4.3 Chiral contributions

For the chiral operators one finds

λ =
3

4
QR (4.133)

and both the numerator and the denominator of M (4.130) vanish. Chiral operators

also require A = l−nψ to be equal to zero. Taking the chiral limit we therefore find

IL =
(3QR + 4)

(1 + n2)QR

N2
L

∫
dx q(2p + 3q +

√
4p2 − 3q2 − 6qx)

24p2

(
r

rmin

)−3QR

(4.134)

=
(3QR + 4)

(1 + n2)QR

1

(2π)3`
, (4.135)

since A = 0 implies P a,b
A (1− 2z) = 1 and h(x) = 1. The integral in (4.134) reduces

to the normalization condition (4.110). Finally, we use the identity for chiral wave-

functions r
3
2
QRYL(Ψ) = (wn1

1 wn2
2 w3)

QR
2 and the relation between T3(δV

w
Σ4

)chiral and

IL (an analog of (4.73)). Note that the (2π)3 in (4.73) should be changed to (2π)3`

as α runs from 0 to 2π`. We hence arrive at the analog of (4.89)

T3(δV
w
Σ4

)chiral =
1

2

∑
QR,s

2

(1 + n2)QR

(w̄n1
1 w̄n2

2 w̄3)
QR
2 ei

(1+n2)
2

QRψs , (4.136)

where we recall that ψs = 2πs
p2+p3

. The summation over s effectively picks out

nψ = (1+n2)
2

QR to be of the form (p2 + p3)s
′ with natural s′, or QR = 2p3s

′. After

summation over s′ we have

T3(δV
w
Σ4

)chiral = −1

2
log

[
µ̄2p3 −∏

i w̄
pi

i

µ̄2p3

]
. (4.137)

A similar calculation for the anti-chiral contributions gives the complex conjugate

of (4.137).

Result for the cones over Y p,q

The final result for the perturbation of the warped volume of four-cycles in cones

over Y p,q manifolds is then

T3 δV w
Σ4

= −Re
(
log

[
µ2p3 −∏

i w
pi

i

µ2p3

])
, (4.138)
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so that

A(wi) = A0

(µ2p3 −∏
i w

pi

i

µ2p3

)1/N7

. (4.139)



Chapter 5

Applications to cosmology

In this chapter we study a particular string theoretical model of inflation based on

a D3-brane moving along the warped throat in the presence of a stack of D7-branes.

Our analysis exploits the nonperturbative superpotential derived in chapter 4 and

follows papers [77, 69], written in collaboration with D. Baumann, I. R. Klebanov,

L. McAllister, and P. Steinhardt.

5.1 Model of D-brane inflation

Inflation and string theory

In this chapter we discuss a particular model of stringy inflation based on the dy-

namics of a mobile D3-brane. Our interest in this topic is due to the growing role of

cosmology and physics of the early Universe in contemporary high energy physics.

Observational cosmology provides us with a whole new set of experimental observa-

tions related to the physics of the early Universe. This data can serve as a restrictive

test of any proposed fundamental theory or model. Recent studies of the CMB spec-

tra have solidified inflation as a successful scenario of the early Universe [78]. More

precise observations have sharpened the set of allowed parameters excluding many

inflation models. This is why we need string theoretic models of inflation capable

of matching the experimental data.

99
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One of the main problems in building such a model is that stringy models of the

early Universe are often implicit. They are formulated in the effective field theory

and do not bear any predictive power. Our objective is to consider a model of

inflation originating in string theory with as much rigor as possible at the moment.

A model: mobile D3 on the throat

Our model is a development of the setup proposed in [18]. We consider a warped

throat compactification based on the KS solution of section (2.2). The moduli of

the compactficication are fixed by the flux-induced superpotential, and the Kähler

modulus is fixed because of the nonperturbative gluino condensation due to the stack

of n D7-branes. This is essentially the same setup we discussed in section (4.1). The

mobile D3 located in the throat is moving toward the tip causing inflation and the

location of D3 plays the role of the inflaton field(s). Our aim is to calculate the

effective potential for the D3 and check if it is suitable for supporting inflation.

As was discussed in chapter 4, the full potential must have at least two terms.

The first is the F-term (4.4)

VF = eκ2K
[
DΣWKΣΩDΩW − 3κ2WW

]
, κ2 = M−2

P ≡ 8πG , (5.1)

with the superpotential

W = W0 + A(zα)e−aρ , a =
2π

n
, (5.2)

given by (4.3) and (4.19). Here we introduced three complex coordinates zα to

parameterize the throat. The F-term potential (5.1) includes an inverse metric KΣΩ

on the moduli space (ρ, zα). It is obtained from the Kähler potential [79]

κ2K(ρ, ρ, zα, zα) = −3 log[ρ + ρ̄− γk(zα, zα)] ≡ −3 log U , (5.3)

with the constant γ ≡ σ0

3
T3

M2
P

being related to the stabilized vacuum value of the

Kähler modulus with the D3-brane sitting at the tip [69] 2σ0 ≡ ρ∗(0) + ρ̄∗(0).



5.1. Model of D-brane inflation 101

The Kähler potential on the throat k(zα, z̄α) was discussed in case of the conifold

geometry in chapter 2.

As follows from a simple analysis [61] outlined in section (4.1) the vacuum value

of VF is negative. To obtain positive or zero cosmological constant this potential

must be uplifted. We follow [18] and consider an anti-D3 brane placed at the tip

of the conifold producing the potential due to the Coulomb interaction with the

D3-brane [18]

VD(ρ, r) =
D(r)

U2(ρ, r)
, D(r) ≡ D

[
1− 3D

16π2

1

(T3r2)2

]
≈ D . (5.4)

Far away from the tip, the correction 1/r4 in D(r) is small and in many cases D(r)

can be approximated by a constant D.

We are focused on energies much lower than the Planck scale but well above the

scale of physics at the bottom of the throat estimated to be 1013−14GeV[18]. This

means that the D3 is located sufficiently far from the bulk of Calabi-Yau and at the

same time not very close to the tip of the throat. This choice is dictated by both

the experimental data suggesting inflation below the Planck scale and our desire

to construct a controllable model. As was outlined in section (4.1) we also assume

that the D7 embedding preserves SUSY and that the D7 stretches sufficiently far

inside the throat. The first requirement is reminiscent of the condition that the D7

is fixed. The latter assures that the nonperturbative potential is not very small and

capable of Kähler moduli stabilization. We also assume that the D7 does not fall

to the tip which may be the case after throat is compactified. Similarly we neglect

possible interaction between the anti-D3 and the D7 assuming it is small enough

because of their large separation. This is a subtle point as the anti-D3 breaks SUSY

and may therefore influence the D7. These questions definitely merit further study

which we leave for the future.

Since we are working at energies much larger than the field theory scale, neither

the D3 nor the D7 feels the deformation of the cone ε (2.61). Therefore in our
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calculations below we assume the geometry is that of the KT solution from section

(2.2.2) [33] i.e. the throat is a warped singular conifold.

5.2 D3-brane potential in presence of D7 and anti-

D3 branes

5.2.1 Calculation of the potential

F-term potential in homogenous coordinates

Our first task is to calculate the potential (5.1) explicitly. For that reason it is

convenient to write the F-term potential (5.1) in terms of the four homogeneous

coordinates zi of the embedding space C4 which makes the action of SO(4) symmetry

transparent. For that reason we define a new metric K̂AB which depends on zi in

such a way that for any function W (zi) the following identity is satisfied

DAW K̂ABDBW ≡ DΣWKΣΩDΩW , (5.5)

where {ZA} ≡ {ρ, zi; i = 1, 2, 3, 4} and {ZΣ} ≡ {ρ, zα; α = 1, 2, 3}. In this equation

the conifold constraint, z2
4 = z2

4(zα) = −∑3
α=1 z2

α, is substituted after differentiation

on the left-hand side and before differentiation on the right-hand side. The metric

K̂AB(zi) defined through (5.5) is not unique and the choice of one over another is

a matter of convenience. We construct K̂AB with the help of the auxiliary matrix

JA
Σ

K̂AB = JA
ΣKΣΩ JB

Ω
, (5.6)

where JA
Σ is defined as follows

DΣW =
∂ZA

∂ZΣ
DAW ≡ JA

Σ DAW , JA
Σ =




1 0

0 δiα

0 −zα√
−P3

γ=1 z2
γ


 . (5.7)
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This gives K̂AB as a function of zα. To find it as a function of zi guess a K̂AB(zi)

such that it reduces to K̂AB(zα) after substituting the conifold constraint. This step

and hence K̂AB(zi) is not unique. Nevertheless finding an SO(4)–invariant K̂AB(zi)

is not difficult, e.g. replacing
(
−∑3

γ=1 z2
γ

)1/2

by z4 everywhere in K̂AB(zα) and JA
Σ

we find

K̂AB =
κ2U

3


 U + γklk̂

lmkm klk̂
l

k̂imkm
1
γ
k̂i


 , (5.8)

where

ki =
zi

r
, (5.9)

and

k̂i = J i
α kαβ J 

β
= r

[
δi +

1

2

zizj

r3
− zizj

r3

]
. (5.10)

Notice that k̂i is not the inverse of ki = 1
r

[
δi̄− 1

3

zizj

r3

]
, which is ki = r

[
δi + 1

2

zizj

r3

]
.

From (5.9) and (5.10) one then finds

klk̂
l̄ =

3

2
zj , klk̂

lmkm =
3

2
r2 = r̂2 = k , (5.11)

and hence,

K̂AB =
κ2U

3


 ρ + ρ 3

2
zj

3
2
zi

r
γ

[
δi + 1

2

zizj

r3 − zizj

r3

]

 . (5.12)

Using the above results we arrive at the F-term potential

VF =
κ2

3U2

[
(ρ + ρ)|W,ρ|2 − 3(WW,ρ + c.c.) +

3

2
(W,ρz

iW,i + c.c.) +
1

γ
k̂iW,iW,j

]
(5.13)

The result (5.13) is essential for the our analysis. It can be rewritten in terms of

the wi-coordinates is

VF =
κ2

3U2

[
(ρ + ρ)|W,ρ|2 − 3(WW,ρ + c.c.) +

3

2
(W,ρw

iW,i + c.c.) +
1

γ
k̂i

wW,iW,j

]
(5.14)
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where

k̂i
w = r

[
δi +

1

2

wiwj

r3
− ci′

i cj′
j wi′wj′

r3

]
. (5.15)

The matrix ci′
j has only four non-zero elements c1

2 = c2
1 = 1 and c3

4 = c4
3 = −1.

The last two terms in the parentheses in (5.13) and (5.14) vanish if A, and hence

W , is coordinate independent ∂zi
A = 0. In this sense the last two terms are the

correction ∆VF to the KKLT result (4.4). Let us also make a remark that the first

two terms coincide with the KKLT potential only if ∂zi
A = 0.

Integrating out the imaginary part of ρ

The imaginary part of ρ

ρ = σ + iτ , (5.16)

can be integrated explicitly for any superpotential (4.3)

W = W0 + A(zi)e
−aρ . (5.17)

Indeed ρ will combine into ρ + ρ̄ = 2σ everywhere in (5.13,5.14) except the term

−3(W̄W,ρ + c.c.) = 6a|A|2e−2σ + 6ae−2σRe(W0Āe−iaτ ) . (5.18)

The second term, the only one with τ dependence, can be easily minimized with

respect to τ

−6a|W0||A|e−2aσ . (5.19)

From now on we assume that the imaginary part of ρ is integrated out in all ex-

pressions for VF . The real part, σ, is more difficult to integrate out. There is no

analytical expression for σ(zi, r) and minimization with respect to σ should be done

numerically. Some times it is also convenient to find an approximate expression for

σ(r) along a radial trajectory in expanding in r and 1
aσF

, where σF is the KKLT

stabilized value with A = A(z = 0) [69].



5.2. D3-brane potential in presence of D7 and anti-D3 branes 105

Uplifting the potential

The full potential governing the motion of the D3-brane is the F-term (5.1) and

the Coulomb interaction between the D3 and anti-D3-brane (5.4) V = VD + VF .

The relative magnitude of these terms is a parameter of the model which may be

fine-tuned. It is convenient to introduce the variable

s ≡ VD(0, σF )

|VF (0, σF )| , (5.20)

which is a ratio of the D-term and the F-term before uplifting. A non-zero vacuum

value of the potential requires 1 < s . O(3). Since the minimum with respect to σ

changes after nontrivial VD is introduced we need once again solve the equation

∂V

∂σ

∣∣∣∣
σ0

= 0 . (5.21)

Expanding in the small parameter 1
aσF

we find the new minimum for D3 sitting at

the tip r = 0

σ0 = σF +
s

a2σF

+O
(

1

a2σ2
F

)
. (5.22)

The difference is indeed quite small as aσF is of order 10.

5.2.2 Choosing a trajectory

Our next step is to consider the two simplest supersymmetric embeddings of D7 due

to Kuperstein [80] and Ouyang [81] and choose the one most suitable for creating

flat inflaton potential. Our choice above is not only a matter of simplicity. The

embeddings in question are linear in the homogenous coordinates. It can be shown

that higher degree embeddings, like the ACR embeddings of [70], lead to a higher

power of the leading term in the Taylor expansion in the inflaton of the effecive

F-term potential [69]. Therefore the embedding of lowest degree is the most natural

candidate to cancel the unwanted mass term from VD.
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Our logic below is the following. For each embedding we first investigate the set of

extremal radial trajectories i.e. the trajectories along the radius with fixed position

on T 1,1. We require that the potential is extremal under angular perturbations.

This property does not guarantee that the motion is stable under a perturbation

of the angular coordinates. After identifying the set of extremal radial trajectories

for Kuperstein and Ouyang embeddings we study the stability of motion along

these trajectories. As a result we identify the particular trajectory z1 = − r3/2√
2

for

Kuperstein embedding as the most promising scenario. It is studied in detail in the

next section.

Kuperstein embedding

We start our consideration with an embedding z1 = µ suggested by Kuperstein in

[80]. In this case the superpotential (5.2) is given by (4.97)

W = W0 + A0

(
1− z1

µ

)1/n

. (5.23)

From this it follows that the potential V = VF + VD depends on ρ, r and z1 in

the combinations z1 + z̄1 and |z1|2. For the potential to be extremal under the

perturbation of angular variables Ψi for all radii r, the variations

∂|z1|2
∂Ψi

=
∂(z1 + z1)

∂Ψi

= 0 (5.24)

should vanish. We examine (5.24) by introducing local coordinates in the vicinity

of a fiducial point z0 ≡ (z′1, z
′
2, z

′
3, z

′
4). The coordinates around this point are given

by the five generators of SO(4) acting nontrivially on z0

z(r, Ψi) = exp(T) z0 . (5.25)

The Kuperstein embedding, z1 = µ, breaks the global SO(4) symmetry of the

conifold down to SO(3), and the D3-brane potential preserves this SO(3) symmetry.

We will find that the actual trajectory breaks this SO(3) down to SO(2), which we
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take to act on z3 and z4. The coordinates that make this SO(2) stability group

manifest are given by

T ≡




0 α2 α3 α4

−α2 0 β3 β4

−α3 −β3 0 0

−α4 −β4 0 0




, (5.26)

where Ψi ≡ {αi, βi} ∈ R are the local coordinates of the base of the cone. We aim

to find z0 such that the potential V (z1 + z1, |z1|2) is extremal along z0. We here find

trajectories along which the linear variation of z1 + z1 and |z1|2 vanishes. First, we

observe from (5.25) and (5.26) that for arbitrary z0 we have

δz1 =
4∑

i=2

αiz
′
i , αi ∈ R . (5.27)

and, hence,

δ|z1|2 =
4∑

i=2

αi(z
′
iz̄
′
1 + z′1z̄

′
i) ≡ 0 . (5.28)

To satisfy (5.28) for all αi one requires

z′i = iρiz
′
1 , ρi ∈ R . (5.29)

We may use SO(3) to set ρ3 = ρ4 = 0, while keeping ρ2 finite. The conifold

constraint, z2
1 + z2

2 = 0, then implies ρ2 = ±1, while the requirement

δ(z′1 + z̄′1) = a2(z
′
2 + z̄′2) = 0 , (5.30)

makes z′2 purely imaginary and z′1 real. This proves that the following are the

extremal trajectories of the brane potential for the Kuperstein potential

z′1 = ± 1√
2
r3/2 , z′2 = ±iz′1 . (5.31)
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Ouyang embedding

For the Ouyang embedding, w1 = µ, the superpotential (5.2) is

W = W0 + A0

(
1− w1

µ

)1/n

, (5.32)

and the brane potential depends on w1 +w1, |w1|2 and |w2|2. The latter comes from

k̂11̄
w of (5.15). To find extremal trajectories of the potential we therefore require

∂|w1|2
∂Ψi

=
∂|w2|2
∂Ψi

=
∂(w1 + w1)

∂Ψi

= 0 . (5.33)

We introduce local coordinates by applying generators of SU(2) to the generic point

W0

W = eiT1W0e
−iT2 , W0 ≡


 w′

3 w′
2

w′
1 w′

4


 , (5.34)

where

Ti ≡

 αi βi + iγi

βi − iγi −αi


 . (5.35)

This implies

δw1 = −i(α1 + α2)w
′
1 + (−β1 + iγ1)w

′
3 + (β2 − iγ2)w

′
4 + · · · (5.36)

and δ(w1 + w̄1) = 0 gives w′
1 ∈ R, w′

3 = w′
4 = 0. We find that δ|w1|2 = 0 and

δ|w2|2 = 0 if w′
2 ∈ R. The conifold constraint w′

1w
′
2 = 0 then restricts the solution

to the following two options:

w′
1 = 0 , |w′

2| = r3/2 , ⇔ θ1 = θ2 = 0 , (5.37)

or

w′
1 = ±r3/2 , w′

2 = 0 , ⇔ θ1 = θ2 = π . (5.38)
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For the trajectory w′
1 = 0, |w2|2 = r3 the contribution of all terms with the

derivatives of A vanish. Therefore the effective potential along such a trajectory is

that of KKLT. It is called a delta-flat potential [77, 69]. The inflation along this

trajectory is impossible, as it was in the KKLMMT case [18]. This result for the

trajectory in question was first obtained in [82].

For the trajectories w′
1 = ±r3/2 the correction to the KKLT potential ∆VF does

not vanish. In fact, the effective potential along these trajectories is identical to

the potential for the Kuperstein case (5.31). To see that one need to express the

potential in both cases through the radius r and σ, V = V (r, σ), and the coefficient

c ≡ 1

4πγr2
µ

. (5.39)

The relation between rµ and µ depends on the embedding. We define rµ as the value

of radius r = rµ when the D3 moving along the extremal trajectory (with appropriate

sign) hits the D7. For the Kuperstein embedding this implies the definition r3
µ = 2µ2

when for Ouyang embedding r3
µ = µ2. This definition of rµ is not only natural from

geometrical point of view. In fact this definition is suggested by a normalization

of the kinetic term of the inflaton field [69]. Therefore the profile of the potentials

coincide if expressed in physical units. This is already enough to conclude that the

Ouyang embedding has no advantage over the Kuperstein one. In fact the Ouyang

embedding has a disadvantage because the motion along the w′
1 = ±r3/2 trajectory

is unstable for small r.

Stability for small r

To investigate the stability of the trajectories (5.31) and (5.38) it is convenient to

write the “correction” to the KKLT potential explicitly for both cases. For the

Kuperstein embedding

∆VF =
κ2

3U2

[
3

2
(W,ρz1W,z1 + c.c.) +

1

γ
k̂11̄W,z1W,z1

]
, (5.40)
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where

k̂11̄ = r
(
1− 1

2

|z1|2
r3

)
, (5.41)

and for the Ouyang embedding

∆VF =
κ2

3U2

[
3

2
(W,ρw1W,w1 + c.c.) +

1

γ
k̂11̄

w W,w1W,w1

]
, (5.42)

with

k̂11
w = r

(
1 +

|w1|2
2r3

− |w2|2
r3

)
. (5.43)

In both cases, stability near the tip r → 0 is controlled by the term with k̂11̄ (k̂11̄
w ).

To see that we consider the Kuperstein embedding. The term with k̂11̄ contains r−3,

and its contribution to the second derivative of the potential with respect to an

angular variable Ψi,
∂2V
∂Ψ2

i
, grows as r. All other terms grow at least as r3/2 (this

follows from ∂
∂Ψ

= ∂zi

∂Ψ
∂
∂zi

+ c.c. and ∂zi

∂Ψ
∼ r3/2). A parallel consideration confirms

that k̂11̄
w is responsible for the leading contribution to the stability analysis in the

case of the Ouyang embedding as well.

Now, the trajectories z1 = ± r3/2√
2

maximize |z1|2 for a given r, and any variation

of angles may only increase k11̄ = r
(
1− |z1|2

2r3

)
. Hence the trajectories in question

are stable at small r under fluctuations of any angles that affect |z1|2. So far, this

analysis does not include the phase of z1, which of course leaves |z1|2 invariant. The

leading correction to the potential from fluctuations of this phase comes not through

k11̄ but through terms in V proportional to z1 + z1. These terms change sign when

z1 does; thus, one of the signs in z1 = ± r3/2√
2

corresponds to the stable trajectory,

while the other sign corresponds to an unstable trajectory. It can be shown that if

the shift of stabilized value of σ (5.22) is taken into account, the potential is stable

for negative z1 = −r3/2/
√

2 [69].

The analysis for the Ouyang embedding is very similar. The delta-flat trajectory

|w2|2 = r3 (θ1 = θ2 = 0) maximizes the ratio |w2|2
r3 . Thus, any angular fluctuation can
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only decrease the ratio |w2|2
r3 , without affecting |w1|2

r3 to second order. This is easily

checked with the help of the angular coordinates θi (2.23). On the other hand, the

trajectory w1 = ±r3/2 (θ1 = θ2 = π) maximizes |w1|2
r3 , and angular fluctuations away

from this trajectory decrease the ratio |w1|2
r3 , without affecting |w2|2

r3 to second order.

As a result, k̂11̄
w = r

(
1 + |w1|2

2r3 − |w2|2
r3

)
cannot decrease in the case of the delta-flat

trajectory |w2|2 = r3, but necessarily has a negative mode along the non-delta-flat

trajectory w1 = ±r3/2. Hence, the non-delta-flat trajectory is unstable for small r.

No further consideration is needed to show that the delta-flat trajectory |w2|2 = r3

is stable. Since angular fluctuations around w1 = 0 cannot affect the term involving

w1 + w1, the leading contribution always comes from k̂11̄
w .

We have therefore demonstrated that near the tip, the trajectory z1 = − r3/2√
2

is stable for the Kuperstein embedding, whereas the trajectory w1 = ±r3/2 in the

Ouyang embedding is unstable. We investigate the possibility of inflation in the

case of Kuperstein embedding in the next section.

5.2.3 Effective potential for Kuperstein embedding

Effective potential

In this section we analyze the potential for the D3-brane in presence of n D7-branes

wrapping the cycle z1 − µ = 0. In the previous section we identified the extremal

(and in fact stable) under angular fluctuations radial trajectory z1 = −r3/2/
√

2.

The effective potential along this trajectory expressed through the canonically nor-

malized inflaton field φ ∝ r is

V(φ) =
κ2a|A0|2

3

e−2aσ

U2(φ)
g(φ)2/n

[
2aσ + 6− 6eaσ |W0|

|A0|
1

g(φ)1/n

+
3c

n

φ

φµ

1

g(φ)2
− 3

n

1

g(φ)

φ3/2

φ
3/2
µ

]
+

D(φ)

U2(φ)
. (5.44)

Here we have introduced notations to make (5.44) concise. Thus φµ is the remi-

niscent of the minimal radial coordinate of D7 φ2
µ ∝ (2µ2)2/3 and g is A(z)/A(0),
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g(φ) ≡ 1 +
(

φ
φµ

)3/2
.

The normalization procedure for the inflaton φ = T ∝ r should be clarified. The

Kähler modulus σ changes insignificantly when r does. Although this change should

be taken into account when one calculates the effective potential, it is negligible in

the kinetic term. Therefore the normalization of the inflaton field φ comes from the

kinetic term of r only. The latter follows from the Kähler potential (5.3). Calculating

the kinetic term at the tip where σ = σ0 (5.22) and requiring that it is equal to

φ̇2/M2
Planck, we find that

γk(zα, z̄α)r−2 =
3

2
γ =

σ0

3
. (5.45)

This leads to the U(φ) from (5.44)

U = 2σ − σ0

3
φ2/M2

Planck . (5.46)

The effective potential (5.44) depends on two variables φ ∝ r and σ. The massive

Kähler modulus σ should be integrated out by minimizing the potential for a given φ

∂V

∂σ

∣∣∣∣
σ=σ∗(φ)

= 0 . (5.47)

We have mentioned before that σ∗(φ) can not be found in analytical form. Never-

theless one can find it by doing a Taylor expansion in φ if the D3 is close enough to

the tip.

Inflation at small φ ?

The Taylor expansion of σ∗(φ) is helpful for analyzing the possibility of inflation at

small φ. Let us clarify here that small φ stands for the radius r much smaller than

the minimal radial coordinate of the D7 r ¿ rµ, but much bigger than ε2/3. In our

setup the typical value of MD7 specified by rµ is of order MPlanck = 1019GeV and

the field theory scale ε2/3 is usually taken to be 1012−13GeV.
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A straightforward calculation gives at leading order

σ∗(φ) = σ0 +
1

2π

(
φ

φµ

)3/2

. (5.48)

It is remarkable that the leading term scales as φ3/2 (the term with φ2 has a very

small coefficient and thus is negligible). This implies that the correction from (5.44)

to the KKLT potential uplifted by the D-term caused by the coordinate dependence

of A(zα) does not include a quadratic term φ2. Therefore the coefficient in front of

φ2 is the same as in the KKLMMT case [18]

V (φ)

V (0)
= 1 +

1

3
φ2/M2

Planck + v(φ) . (5.49)

This makes inflation for small φ impossible. The correction v(φ) is a polynomial

in φ1/2 but does not have a φ2 term. Therefore it can not cancel 1
3
φ2/M2

Planck even

with an infinite amount of fine-tuning.

This is an interesting result as we have shown that at least in certain cases

the flat potential for a given range of the field cannot be achieved for any set of

parameters.

Inflation near inflection point

To investigate the potential away from the tip one needs to integrate σ∗(φ) numer-

ically. For various parameters the profile of the potential drastically changes from

monotonic to a potential with a local minimum and maximum. It is possible to

fine-tune the parameters such that the potential has an inflection point. Here we

give an example of such a set of parameters

n = 8 , φµ =
1

4
, A0 = 1 ,

D = 1.2× 10−8 ⇔ aσF ≈ 10.1 . (5.50)

The sketch of the corresponding potential can be found on the next page, in Fig.

5.1.
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Figure 5.1: Potential with an inflection point V (φ).

The potential with an inflection point is a promising setup for inflation. If the

ratio V ′/V calculated at the inflection point is sufficiently small the inflation can

cause a large number of e-folds of expansion. The weakness of this scenario is that

the cosmological predictions of such a model are highly sensitive to the change of

parameters and initial conditions [77, 69].



Chapter 6

Discussion

This thesis has been focused on models of gauge/gravity duality and their applica-

tions to cosmology. We have studied the cascading SU((k+1)M)×SU(kM) theory

on the baryonic branch of moduli space and the corresponding family of supergrav-

ity backgrounds. Besides the KS solution corresponding to a particular locus of the

branch, all backgrounds in question are based on generalized Calabi-Yau manifolds.

This is one of the few known examples where such manifolds are constructed explic-

itly. The metric, fluxes and dilaton are unambiguously determined in terms of two

functions a, v(t) which satisfy the first order system

ȧ = ȧ(a, v, t) , v̇ = v̇(a, v, t) , (6.1)

and have certain behavior at the boundary t →∞. It is worth mentioning that this

system does not admit a known analytical solution except for the special cases of the

KS and MN solutions. For the KS and MN solutions the system (6.1) can be derived

from an effective superpotential [25]. The attempts to find such a superpotential for

the rest of the baryonic branch have not been successful so far.

One of our main goals was to verify and develop the duality between the family

of supergravity solutions above and the corresponding field theory. For that reason

we have studied various D-branes dual to the objects in field theory. Although we

did not find analytic solutions to the system (6.1), we found that the supergravity
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analysis confirms the exact relations previously derived in field theory. Thus the

unbroken SUSY in field theory guarantees that the domain wall separating two

isomorphic branches of moduli space is BPS and its tension is moduli-independent.

Our consideration of a dual object, a D5-brane wrapping the minimal three-cycle

Σ on the conifold, confirms this result. We did not need to know the background

functions a, v explicitly to show that the tension TD5 is the same for all solutions

along the branch. Instead we have used the calibration condition

TD5 ≥
∫

Σ

Ω̃ , (6.2)

where Ω̃ is the closed holomorphic three-form. All the solutions along the branch

share the same complex structure but have different metric and fluxes. This is

enough to conclude that Ω̃ is the same for all solutions on the branch, and so is the

tension of the BPS D5-branes, saturating the inequality (6.2).

Another interesting example where we were able to confirm an exact gauge theory

relation is the baryonic branch constraint

〈AB〉 = const . (6.3)

In field theory this relation originates from the quantum constraint AB = −Λ4M
2M ,

which defines the baryonic branch of moduli space. To reproduce this relation on

gravity side we have to measure the baryonic condensate. To this end we constructed

the object dual to the baryonic operator, a D5 wrapping the base of the conifold

at large radius. Then the condensate is given by the value of the DBI action of

the Euclidean D5 covering the whole conifold. To preserve supersymmetry, the D5

should be accompanied by D3-branes dissolved in it. This is equivalent to the gauge

field induced on the D5’s world-volume. The equation for the gauge field cannot be

solved analytically, but can be presented in a form resembling (6.1)

ξ̇ = ξ̇(ξ, a, v, t) . (6.4)



117

This equation admits serval solutions corresponding to different baryon operators

A,B. The field theory in question has a Z2 symmetry I which exchanges the

baryons. This symmetry acts nontrivially on the equations (6.1) and (6.4). It

turns out that the DBI action SD5[ξ] calculated on the world-volume stretching

to the cut-off radius t can be split into two parts with an exponential precision

SD5 = ∆(t) + σ + O(e−2t/3). The first part ∆ is common to both solutions and

diverges. It corresponds to the dimension of the operator and is irrelevant for the

calculation of the condensate. The finite part σ, responsible for the condensate,

changes its sign under the action of I. Therefore the renormalized value of the

action SR
D5 = ±σ(U) differs by a sign for the baryons A,B. Since the expectation

value of the baryon operator is proportional to e−SR
D5 we immediately find that the

relation (6.3) holds exactly along the branch. This construction also provides a

connection between the parameter in field theory, 〈A〉, and the one on the gravity

side U .

There is another “exact” quantity related to the baryon operator. It is the

charge of a baryon operator under U(1)baryon. Obviously it should be constant

along the branch. On the gravity side the charge of the baryon operator is given by

the coupling of the D5-brane to the Goldstone boson of the spontaneously broken

U(1)baryon. This coupling comes from the Chern-Simons term and can be easily

calculated, provided the wave-function for the axion is known. Then, according to

the logic above, the value of the coupling should be constant along the branch. At

the moment the axion wave-function is known only at the KS point (U = 0). It will

be very interesting to construct the wave function of the axion for all values of U

and verify that it couples to the D5-brane with a U -independent coefficient. This is

an interesting problem for the future.

Besides being important for the gauge/gravity duality, the warped throat solu-

tions can be successfully applied towards stringy cosmological models. Among the

desirable features of these models is that they are calculable because of controllable
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dynamics in the throat. As an illustration of this idea, we have explicitly calcu-

lated the effect on a D3-brane of the nonperturbative superpotential due to gluino

condensation on a stack of D7-branes. Although the calculation is quite lengthy

the answer is very simple. The latter probably can be anticipated because of its

holomorphic structure. All the terms potentially contributing to the answer can be

labelled by the corresponding operators in field theory. It turns out that the terms

corresponding to the non-chiral operators vanish and only the “chiral” terms con-

tribute. Besides a general understanding that this has to be related to the unbroken

SUSY of the D3-D7, the cancellation of the non-chiral terms was proved by direct

calculation. The calculation presented in this thesis deals with the conic geometries

over T 1,1 and Y p,q and may be generalized to any conic geometry. Nevertheless it

is not clear if this result can be extended to more complicated backgrounds. Per-

haps a clear argument why the non-chiral terms should not contribute can also shed

some light on the derivation of the non-perturbative superpotential for non-conic

backgrounds.

The superpotential discussed in the paragraph above is an essential ingredient of

many stringy models of inflation with the location of the D3 playing the role of the

inflaton. The superpotential governs the dynamics of the probe D3 when it moves

along the throat. The resulting effective potential on the six-dimensional conifold

has a complicated shape and admits many different scenarios of D3 motion. We

have analyzed the simplest scenario of a radial descent toward the tip and found

that the effective potential is generically too steep to support inflation. Although

there is freedom in specifying the parameters of the model and the character of the

motion, we found that, although it is possible to find inflation in this scenario, it is

very difficult to achieve.

Our result is based on some assumptions which are not rigorously justified. One

of them is the belief that the flux-induced and nonperturbative dynamics will fix

the lowest point of D7, µ, somewhere is the middle of the throat. However it could
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be that the D7 will either “fall” down to the tip µ → 0 or be “pulled” to the bulk

of Calabi-Yau µ ∼ MPlanck. In both cases the character of the dynamics will be

drastically changed and would have to be studied independently. We hope that

these and other related questions will be addressed in the near future.
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