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Abstract

This thesis is devoted to a study of certain examples of gauge/string duality related
to warped throat backgrounds in string theory. Namely, we consider a family of
IIB SUGRA solutions dual to a moduli space of certain cascading N' = 1 gauge
theory. This theory exhibits rich low-energy behavior, including chiral symmetry
breaking and confinement. The first part of this thesis is focused on the gravity dual
description of these phenomena. In particular, we discuss string theory description
of the continuous gauge theory moduli space, evaluate the tension of BPS domain
wall, and calculate baryonic condensates. The second part of the thesis is devoted
to the embedding of the warped throat backgrounds into flux compactifications.
To this end we calculate the nonperturbative superpotential of the D3-D7 system
on warped conic geometries. This superpotential plays an important role in fixing
Kahler moduli and is an important ingredient in constructing consistent compact-
ification scenarios. In the last part of the thesis we apply this superpotential to a
particular cosmological inflation scenario based on the dynamics of a D3-brane mov-
ing along the throat. We conclude that the realization of stringy inflation within
this scenario is possible only around an inflection point of the potential and requires

a fine tuning of the parameters.
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Chapter 1

Introduction

String theory was originally proposed in the late 60’s as a theory of strong interac-
tions. However, some problems with these applications and the discovery of QCD,
led a change of its purpose in 1974. In these new applications the string tension
was scaled up by 38 orders of magnitude, and string theory became a leading candi-
date for quantum gravity and the unified theory of all other interaction. Its role was
solidified in the mid-80’s when new models and constraints on string theory were un-
derstood. Since string theory is formulated in ten dimensions, the main goal was to
compactify extra dimensions into a suitable manifold M, leaving four non-compact
dimensions describing the observable Universe. Although significant progress was
made in understanding various aspects of string theory compactifications, the goal
of finding the unified theory still seems too ambitious to be achieved in the near
future.

In an unexpected twist, about a decade ago the AdS/CFT correspondence [1, 2, 3]
returned string theory to its role in studying the strong coupling dynamics of gauge
theories. The idea behind the AdS/CFT correspondence is to consider the stack
of N D3-branes placed in the flat ten-dimensional space [4, 5]. For very large N,
D3-branes produce back reaction on the metric

dsty = h2da? + B2 (dr? + dsd,)

R4
h(r)=1+—, R'=d4rg,a”N , (1.1)
r
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and induce the R-R flux Cy = da® A .. Adz3h~!. The dynamics of the effective field
theory on the branes can be described by String Theory in the curved space (1.1).
The effective field theory on the branes is still coupled to gravity at this point. The
crucial step is to consider the low-energy limit which decouples the field theory from

gravity. On the string theory side this is equivalent to taking a formal limit » — 0

1]
h(r) — — . (1.2)

The resulting geometry is a product of AdSs and S°. The field theory on the
branes is NV = 4 SYM, which can be identified by counting supersymmetries of the
background. The conformal symmetry of the theory SO(4,2) is realized through the
geometrical symmetries of AdS5. Because of N = 4 supersymmetry this background
is believed to be the solution to string theory at the quantum level. This setup
leads to the original AdS/CFT conjecture that the AV =4 SYM in the planar limit
N — oo and fixed t’ Hooft coupling A = g%,,N is dual to the IIB String Theory on
AdS5 x 8% of radius R* = 4ma/? ).

The duality in question is weak-strong, i.e. the perturbative phase of one theory
matches the nonperturbative phase of the other. One the one hand when A is small,
the Feynman diagram expansion in field theory is convergent and hence the dynamics
is controllable. At the same time the radius of geometry (1.1) is small and all higher
corrections in o are important making dual string theory non-perturbative. On
the other hand when A — oo, we do not have any suitable technique to deal with
field theory, but the curvature of the dual background is small everywhere and
string theory can be successfully approximated by supergravity in the semi-classical
regime. The latter correspondence can be extended to the non-conformal theories
and constitutes the gauge/gravity duality.

The AdS/CFT correspondence was studied extensively over the last ten years.



Perhaps one of the most important achievements in this area is the recently devel-
oped technique of calculating anomalous dimensions of gauge-invariant operators
with the help of auxiliary spin chains (see [6] for an overview of the method). The
newly discovered spin-chains [7] are believed to provide a smooth extrapolation of
the theory between the weak and strong coupling regimes [8]. This is one of the few
known examples of a theoretical approach which can successfully interpolate to the
strong coupling regime.

The dynamics of N' = 4 SYM is drastically different from the one of confining
gauge theory, like QCD, because of conformal and super symmetries. In order
to generalize gauge/string duality to a more “realistic” field theory, one needs to
construct an example with few or no supersymmetries.

To this end one can consider D3-branes at conical singularity called the conifold

d =0, (1.3)

rather than putting them into the flat space. The resulting theory is a certain
superconformal N' = 1 gauge theory with SU(N) x SU(N) gauge group [9]. It is

discussed in detail in section (2.1.1). The resulting geometry

dsiy = h™2da® + Y2 (dr® + dsh )

R* 4 27
h(r)zl—i—ﬁ, R :47?981—60/]\7,
Cy=da® A ANdaPh™t | (1.4)

is similar to (1.1) with five-sphere S° replaced by the Sasaki-Einstein manifold
T4 The resulting six-cone over TH! is a toric Calabi-Yau with Ricci-flat met-
ric dsj = dr? + ds7.,. This example was generalized to the case of D3-branes
probing arbitrary toric Calabi-Yau singularity. The dual quiver field theory, i.e. the
symmetries, field content, corresponding charges and superpotential of field theory

can be unambiguously determined from the geometrical data [10].



The field theories resulting from toric Calabi-Yau singularities are superconfor-
mal. It is desirable to get rid of conformal symmetries to extend gauge/string duality
to the theories with confinement. It was done, for example, in the case of field the-
ory on conifold singularity introduced above. The gauge group SU(N) x SU(N)
can be extended by adding M extra colors SU(N + M) x SU(N). This breaks
conformal symmetry and the theory becomes confining in the IR. It exhibits a cas-
cade of Seiberg dualities [11] which can be described by introducing an effective
scale-dependent number of colors N. On the gravity side, the running of N, is ac-
commodated by the radius dependence of warp-factor h(r). In the case of N = kM
for integer k the theory is confining in the IR. Because of dimensional transmutation
the dual geometry (1.3) is modified near the tip 7 — 0 by a dimensionful parameter

3

sz =g, (1.5)

This changes the topology at the tip » = 0 and leads to the smooth supergravity
solution [12]. The metric of the singular conifold (dr? + rds3,,) from (1.4) is
transformed into a Ricci-flat metric ds3, on the deformed conifold (1.5). In the
planar limit M — oo and for large g,M, the curvature is small everywhere and
higher o corrections are negligible. Therefore the string theory can be truncated to
supergravity and the SU((k+1)M) x SU (kM) theory can be successfully described
via gauge/gravity duality.

The cascading SU((k+ 1)M) x SU (kM) has rich IR dynamics resembling many
features of non-SUSY gauge theory. Nevertheless it is different in many aspects
from QCD, in particular because of a different gauge group. Therefore it is highly
desirable to develop our understanding of gauge/gravity duality and to construct a
gravity dual to the pure SU(M) N =1 SYM - a closest supersymmetric cousin of
the non-SUSY gauge theory. This would provide the description to the phenomenon
of confinement in SU(N) YM which is a crucial step toward understanding QCD.



Unfortunately this goal cannot be achieved at the present level of understanding.
This is because pure SU(N) N = 1 SUSY gauge theory may correspond to the highly
curved background. Indeed SU(M) theory can be achieved by taking gsM — 0
limit and sending the scale of the last step of the cascade SU(2M) x SU(M) to
infinity. This is opposite to the limit ggM — oo which makes the curvature small.
Therefore all stringy corrections in o' are important for small ggM. One cannot
rely on gauge/gravity duality and has to incorporate an infinite tower of stringy
corrections. This task is very difficult and can not be done with available techniques.
Therefore even if the dual background would be somehow constructed it still may
be of not practical use. We therefore return to the cascading theory with large gsM.
The confining SU((k+1)M) x SU (kM) theory has a non-trivial continuous space
of supersymmetric vacua known as baryonic branch. Although continuous moduli
space are typical for N/ = 1 theories with unbroken SUSY, this example is special
because its gravity dual is known. On the gravity side the moduli space corresponds
to the continuous family of supergravity backgrounds, sharing the same behavior in
the UV region. This family was recently constructed [13] using the newly developed
SU(3) structure method. Although each particular solution on the branch is an
ordinary example of gauge/gravity duality, the continuous family of solutions poses
some new interesting questions. For a given supergravity solution free parameters
like the asymptotic value of dilaton can be arbitrarily changed without violating the
duality. For a family of solutions this change should be “uniform” to preserve the
same UV universality class of gauge theory. In other words, the requirement that
the family of gravity solutions describes the same microscopic theory in different IR
phases specifies the boundary condition at r — oco. The leading asymptotic of all
solutions from the family should share the same behavior in the UV region|[14].
The gauge/gravity duality we have discussed so far is a powerful String Theory
method to study gauge theory dynamics. It was noted in the beginning that in order

to decouple the filed theory from the gravity, string theory should be considered on



an infinite warped throat like h'/?(dr? + ds2?) of (1.4). An intriguing idea is to
apply the results of gauge/gravity duality toward compactifications of string theory.
This can be done by considering a special compactification manifold M (usually of
Calabi-Yau type) with a region resembling the throat geometry [15]. One can start
with a compact Calabi-Yau with singularity, similar to the conifold singularity (1.3).
Then the D3 brane placed near the singular locus will be described by field theory
from above. The separation of scales between gauge theory and gravity (Planck
scale) is related to the “length” of the throat stretching from the bulk of Calabi-
Yau. This scenario has several advantages. First, it admits an elegant solution to the
hierarchy problem through the geometrical parameters of the manifold M. There is
some evidence that singularities like (1.3) are typical features of a generic compact
Calabi-Yau [16]. Therefore this scenario may be natural from the stringy landscape
point of view [17]. Finally, the physics below the Planck scale is governed by the
dynamics in the throat. Since the geometry in the throat is usually known explicitly
and in general is much simpler than that in the bulk of Calabi-Yau one can effectively
use theoretical tools of gauge/string duality to study the low energy dynamics in
very detail. In other words, the warped throat scenarios have an advantage of being
controllable and have predicting power unlike many other compactification scenarios
of String Theory.

It is convenient to divide the low-energy phenomena into two groups — originating
in the throat and in the bulk. The former are controllable, while the latter can be
analyzed only with some uncertainty. Even if the underlying mechanism is clear,
few explicit predictions can be made about the phenomena from the second class.
Again, this is because the detailed information about the geometry and fluxes in
the bulk are usually not known.

To construct a realistic compactification of String Theory one has to avoid un-
naturally light modes — the moduli of the background. Fixing these moduli is a

crucial step in model building [18]. There are a few typical scenarios which allow



all moduli to be fixed dynamically. The one we are focused on in this work is an
orientifold of type IIB theory with D3 and D7-branes. As will be discussed in more
detail in chapter 4, all the moduli are fixed in this setup dynamically with help
of flux and nonperturbative superpotentials. Although the main features of this
mechanism are already well-understood, they originate in the bulk and the detailed
prediction of fixed moduli values are not possible.

Large scale isotropy of our Universe together with the recent studies of the
Cosmic Microwave Background have solidified inflation as a successful scenario of
the early Universe. Precise measurements of the CMB anisotropy provide a very re-
strictive check of theoretical models. To match cosmological predictions, the stringy
models of the early Universe require carefully designed fine tuning of the parameters.
The ambiguity in values of fixed moduli and an excessively large number of stringy
flux compactifications favor the ad-hoc logic that the compactification with neces-
sary values of parameters always exists. This logic is usually applied to the various
models of stringy inflation as the flat inflational potential is difficult to achieve. The
main theoretical problem is then to show that a given model can sustain inflation
at least for a certain choice of parameters.

One of the most popular scenarios of stringy inflation is based on the dynamics
of D3 moving along the throat down to the tip [18]. The effective mass of D3 is
expected to be much lighter than the Planck scale and that is why the location of D3
is a promising candidate for inflaton field. In a general model proposed and studied
in [18], in addition to the force coming from the nonperturbative superpotential due
to gluino condensation on D7, the D3 is also a subject to force from anti-D3 located
at the tip. The latter is required to uplift the potential to a positive value to match
observations of the cosmological constant. The potential generated by anti-D3 at
the tip is not flat enough by itself to support inflation. A crucial question is whether
the contribution of nonperturbative superpotential can flatten it enough at least for

some choice of parameters. We provide evidence for this using a specific embedding
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of D7-branes.

1.1 Outline

This thesis is devoted to certain examples of gauge/gravity duality and their appli-
cations to cosmology along the lines outlined in the introduction. Our main example
is the theory on conifold singularity (1.3). As was discussed above, the theory with
M extra colors SU((k + 1)M) x SU(kM) has continuous moduli space (baryonic
branch), which corresponds to the family of gravity backgrounds. We review the
gauge/gravity duality for this theory in chapter 2.

We start with a review of the conformal SU(N) x SU(N) theory on conical sin-
gularity in section (2.1.1) and proceed with the detailed discussion of dual geometry
(1.4) in section (2.1.2). Section (2.2.1) generalizes our consideration to the field the-
ory with M extra colors. The dual geometry of deformed conifold (1.5) is discussed
in detail in section (2.2.2).

Section (2.3) is devoted to the family of supergravity backgrounds, BGMPZ solu-
tions of [13], dual to the gauge theory on baryonic branch. We review the geometrical
properties of the solutions and present explicit formulae for the metric and fluxes
whenever possible. We also discuss proper choice of boundary conditions reflecting
the UV universality of gauge theory. The section concludes with a discussion of the
r-symmetry condition for a D-brane placed on the conifold at an arbitrary point on
the branch.

The main focus of chapter 3 is the gauge/gravity duality along the branch.
Section 3.1 is devoted to the BPS domain wall which separates isomorphic vacua with
different values of gluino condensate. Gauge theory analysis suggests the tension of
such an object to be moduli independent. We study D5-brane which is gravity dual
to the domain wall in question and confirm this result by use of k-symmetry and

geometry of BGMPZ solutions.
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We proceed with another example of gauge/gravity duality, the string theory
description of baryon operators, in section 3.2. The baryon operator is dual to a
D5-brane wrapping the base of the conifold. This can be used to measure baryonic
condensate on the gravity side. It is given by the DBI action of the Euclidean
D5-brane covering entire six-dimensional internal space. Using this prescription we
found the relation between the parameter along baryonic branch in gauge theory,
(A), and the corresponding parameter on the gravity side. We have also reproduced

the quantum constraint [19] along the branch
(AB) = const . (1.6)

The two examples of chapter 3 confirm that the family of BGMPZ solutions
provides a correct description of SU((k+1)M) x SU (kM) gauge theory on baryonic
branch on moduli space.

Chapter 4 develops the ideas of warped throat compactification presented in the
introduction. Namely, we calculate nonperturbative contributions to the superpo-
tential of D3-D7 system placed on the throat, which is assumed to be a part of
a compact Calabi-Yau manifold. The nonperturbative superpotential in question
governs the dynamics of mobile D3 as it depends on the D3’s location on conifold
Za, @ = 1,2,3. For the case of N7 D7-branes wrapping a four-cycle ¥4 in conifold

(1.3), defined by f(z,) = 0, the non-trivial part of superpotential turns out to be
Wy o f(2)V (1.7)

This result was a missing ingredient in understanding the dynamics of the D3-D7
system. It allows a detailed study of D3 rolling down to the tip.

Chapter 5 is devoted to a string inflation model based on this setup. The location
of D3 plays the role of an inflaton. The inflation occurs when the potential for
moving D3 is sufficiently flat. Our analysis reveals that in general the potential is

too steep to support inflation near the tip. Nevertheless with appropriate fine tuning
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of parameters, the potential has an inflection point where inflation can occur. The
cosmological predictions of such model are highly sensitive to initial conditions and
the model itself requires unexpectedly large amount of fine-tuning to support enough
e-fold of expansion. Our findings clarify the status of such models and propose new
directions of study.

Chapter 6 concludes the thesis with a discussion of the results.



Chapter 2

The warped deformed conifold and

the dual gauge theory

2.1 D-branes at conical singularities and confor-
mal gauge theories

The simplest example of gauge/string duality refers to the stack of D3-branes on a
smooth manifold. In the planar limit g%, N - fixed, N — oo the D-brane dynamics
reduces to the superconformal N = 4 gauge theory on the world-volume. The same
physical system can be described via string theory on AdSs x S®. The observation
that gauge theory in planar limit can be described via string theory on special AdSs
background constitutes the main idea of AdS/CFT correspondence [1, 2, 3].
Similarly, Klebanov and Witten [9] suggested that N D-branes at the singularity

z; = 0 of the conifold
4

sz =0, (2.1)

will result in “conifold” field theory — certain N' = 1 superconformal field theory
dual to the string theory on AdSs x X, where X was identified as Einstein manifold
T11. The introduction to the “conifold” field theory below is followed by a detailed

discussion of the dual geometry.

11



2.1. D-branes at conical singularities and conformal gauge theories 12

2.1.1 The “conifold” field theory

D-branes on conifold singularity

We start with identifying the field content of the effective theory on the stack of N
D3-branes placed on the conical singularity (2.1). Following Klebanov and Witten
[9] we start with only one brane placed on the cone. Its moduli space is described
by (2.1), which can be “solved” in terms of 4 independent complex numbers A;, B;,

with 4,7 = 1,2 subject to “gauge symmetry” A; — AA;, B; — A\"'B;

The complex matrix W;; is related to z; via (2.14). The SO(4) symmetry of the
geometry (2.1) is a group of global symmetries of the gauge theory. This suggests
the SU(2) x SU(2) doublets A;, B; are chiral superfields and the constraint (2.1)
detW = 0 should follow from dynamics.

In the case of N D3-branes the abelian gauge group becomes SU(N) x SU(N)
with A; and B; in the (N, N) and (N, N) representation correspondingly [9]. The
U(1) factors of U(NN) x U(N) decouple when theory flows in the IR to a line of fixed
points.

In addition to the SU(2) x SU(2) symmetry there is anomaly-free U(1)r R-
symmetry which shifts arguments of A;, B;. It acts on geometry (2.1) by shifting
arguments of z;. Both A; and B; has 1/2 charge under U(1) and the most general
superpotential respecting SU(2) x SU(2) x U(1)g is [9]

WO = %EiiIEjj,Tr(AiBin/Bj/) . (23)

There is another anomaly-free abelian symmetry U(1)paryon Which shifts A;, B;

is opposite directions

Ai — Aiew Bj — Bj@iiw . (24)

Y
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At the classical level the superpotential (2.3) describes symmetric product of N
points on the conifold (2.1). This can be seen by considering diagonal A; and B;.

Klebanov and Witten argued that the theory in question flows to the supercon-
formal point in the IR. They conjectured that the resulting planar CFT is dual to
the string theory on AdSs x TH1.

String theory on AdS; x T!

The solution of string theory on AdS x T*! is specified by the warp factor Hyy,

dsty = lellﬁézdxg,l + H11</v21/(d7"2 + r?dstan)

Cy=da’ A ...dz®Hpyy
L4

VR
T4

Hyw = L* = 4mg,N(d)? . (2.5)

This background is different from AdS x S® of [1, 2, 3] by the substitution of ds3.,
instead of dsfg5. The dual field theory was identified in the previous subsection
through the analysis of global symmetries. Here we follow [20] to give a supporting
argument which goes beyond simple symmetry analysis. Let us consider a Zs orbifold
of N = 4 SYM which breaks supersymmetry to AN/ = 2. The orbifold group acts
by changing sign of 4 directions in RS O S® i.e. 4 chiral real fields ®; of gauge
theory. These fields will be denoted as A;, B;, while the invariant fields are ® and
®. The orbifold breaks the gauge group U(2N) to U(N) x U(N) and the cubic

superpotential of A" = 2 in new notations is
gTI'q)(AlBl —+ AQBQ) + gTI'é(BlAl + BQAQ) . (26)
If we perturb the theory by a Z, odd operator

%Tr(CIJZ — $?) (2.7)

the V' = 2 supersymmetry will be broken down to N = 1, and conformal symmetry

will be broken by m?2. The field theory will flow to the IR fixed point. By integrating
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out massive fields ®, ® we recover the superpotential (2.3)

e

%Tr (A1 B1AyBy — B1A1 B Ay) . (2.8)
Therefore we conclude that this theory flows to the “conifold” CF'T discussed above.
It can be shown that the dual geometry of T emerges from S°/Z, via blowing-up
of orbifold singularity of S°/Z,. It can be shown that this mechanism is dual to the
RG flow in gauge theory [9]. The detailed discussion of blow-up is quite lengthy and
we substitute it by another observation confirming 7! as dual geometry for field
theory with superpotential (2.3). We compare the evolution of central charge along
RG flow in both gauge theory and string theory on AdS5 x X. In the conformal
case the matrix of fermion R-charges is traceless TrR = 0 and the central charge ¢

21, 22]

9
c= ﬁTrR3 : (2.9)

is given in terms of dual geometry [23]

mN?

= VollX) (2.10)

The Einstein manifold X is normalized such that R;; = 4g;; i.e. in our case it is
either S® of unit radius or T"! with metric (2.35). The matrix R is diagonal in both
cases. In the case of Z; orbifold of N' = 4 there are 3 pairs of chiral N x N superfields
A;, Bj, and (@,@), each has R-charge 2/3. Hence the fermion components have
charge —1/3. The fourth pair of fermions x1, x2 from vector multiplets have charge

1 and therefore N"?TrR = 6(—1/3) + 2 = 0. The central charge

c 9 1
N2 3 (6(—1/27)+2) = 3 (2.11)

in coincidence with Vol(S%/Zy) = 73/2. In the case of “conifold” filed theory the

fields @, ® are integrated out and the R-charge of remaining fields A;, B;is 1/2 as

follows from the quartic form of superpotential. The R-charge of vector multiplet
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remaines the same. Then N7?TrR = (4(—1/2) +2) = 0 and

c 9 27

= W18+ =

2.12
N2 32 ( )

This confirms the choice of 75! as of dual geometry since Vol(Th!) = 162° The

latter follows from (2.35) and can be easily verified.

2.1.2 Geometry of singular conifold

This subsection is devoted to the geometry of singular conifold — a cone over 71,
We start with introducing the notation in the next subsection and then proceed

with a derivation of Ricci-flat metric on singular conifold.

Geometry of Singular Conifold

The singular conifold Cy is a complex 3-dimensional subspace in C* defined by the

equation [24]

» =0, (2.13)

where {z;1 = 1,2,3,4} are complex coordinates in C*. The conifold constraint

(2.13) may be formulated with help of complex matrix W

1 23 +124 21 — 129

detW =0, (200 +iz41) = (2.14)

W_\F

\/§ zZ1 + iZg —2z3 + 7;,2’4

where {0,;a = 1,2,3} are Pauli matrices satisfying 0,03 = 0,31 + i€43,0,. The

radial coordinate of the conifold, 7, is defined by [24]

9 3/2
= (g) =Te(WW') = Z i (2.15)

Equation (2.13) defines complex structure on the conifold. The metric can be spec-

ified through Kéhler potential k(z;,%;). To preserve SO(4) symmetry of (2.13) we
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focus on the potential of the form k(r®). In this case the metric g,5 = 0a03k is
given by

ds® = 0,05k du®du®
= k' Te(WTdW)|? + k' Te(dWdWT) | (2.16)

where prime stands for derivative with respect to r* and {u,} are some complex
coordinates on the conifold, say u, = 2z,. These variables may not be independent
coordinates. If u® satisfy some constraint f(u®) = 0, one just needs to impose a
constraint du®d, f = 0 on differentials du® in (2.16).

Singular conifold is a Calabi-Yau manifold and admits Ricci-flat metric. Any

Kahler potential

1 c 1/3
K = (73 + T—g) , (2.17)

leads to a Ricci-flat metric through (2.16) [24, 25]. In the special case ¢ = 0 the
metric (2.16) has the form of conic geometry ds? ~ dr?+r2dsZ, ., where the base T"!
is r-independent. Compact space T! will be discussed in more detail later in this
section. At this point it is convenient to introduce unconstrained real coordinates
on conifold. To keep the description explicitly SU(2) x SU(2) invariant we start
with introducing angles 6, ¢, 1 on SU(2)

a b
L(0,¢,¢) = €su2) (2.18)
=b* a”
b H0) g ! o iw0) g !
a=e:? cos 5 b=e 2 sin o, (2.19)

and express matrix W through a pair Li(01, ¢1,11), La(02, 2, 1)

(L1, Ly) € SU(2) x SU(2) , (2.20)
W =1IL,ZL] , (2.21)

0 r3/2
7z = . (2.22)

0 O
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Obviously, equation detWW = 0 is invariant under W — U, WU,", where (U, Us) €
SU(2)x SU(2). To complete the construction we need to get rid of one extra angular
variable as the total number of real coordinates on conifold is six. Explicit check
confirms that W depends on ¢; and 15 only through the combination ¢ = 1 4+, €
[0..47]. We choose 1 to be a new independent coordinate in addition to 6;, ¢; and
r.

The coordinates z; can be expressed through angular variables 6;, ¢;, ¢ and r as

follows
12 ' 3/205(6—01-62) i O iy 2
wy =273 (—z —izg) = rY/fe2 W% gin 5 sin o, (2.23)
Wy =27V gy —izg) = P 2eaWThieR) g % cos% : (2.24)
~1/2 - 3/205(b401-62) gog DL i 22
wy =27 z3Fizg) = r/7e2 VT cos 5 s, (2.25)
; 0 0
wy =272z —izg) = rleaWmrte)giy 51 Cos 52 : (2.26)

Here we also introduce another set of coordinates on C*, w;, which is a subject to

constraint
W1Wy — W3Wy = 0. (227)

Before we return to the discussion of the metric, let us define a complete (together

with dr) set of one-forms €} via

ief =Tr (LfdLio®) , I=1,2, a=1,23, (2.28)
€7 = sin sin0;deg; + cosrdf; |
e% = cos Yy sin @rdoy — sinyrd;

€} = dipr + cosOrdgr . (2.29)

Each one-form €¢ is obviously invariant under SU(2) x SU(2). Therefore the form

gs = € + €5 = dip + cos 0ydgy + cos Oydes | (2.30)
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is also invariant. We will discuss how to construct a general SU(2) x SU(2) invariant
(0,2) tensor later in the section (2.2.2). It is sufficient for now that any combination
of €}, €2, g5 is invariant by construction.

Now we are ready to return back to the metric (2.16). The Ké&hler potential
24, 25]

4

2/3
3
k(2i,7) = 5 (Z |Zi|2> = 27"2 =72, (2.31)

i=1
leades to the Ricci-flat conic geometry. Using the explicit form of w; (2.23-2.26) we
find

Or r3
Te(dWdW') =) [duwil* = —-dr* + — [g5 + (1) + (D) + () + ()] .(2:32)

4
and
2
Te(WHdW) = Y widw; = = (3dr + irgs) - (2.33)
Z_ 2
Eventually we find metric on conifold to be
ds* = di* + P*dsi.. (2.34)
with
1 = 2 1<
dshir = (v + ; cos brds) + o ;(d@- +sin? 0,dg?) . (2.35)

The metric above defines Einstein space T%!. The real coordinates have the range
{r € [0,00],6; € [0,7],¢; € [0,27],¢ € [0,4x]}. To find the symmetries of T
we fix radius 73 = 37, |z|? and describe points on TU!' through pair (Ly, Ly) €
SU(2) x SU(2) via r=3/2L, ZL. As we already mentioned before, W depends on 1);
only through t; + 1. This means that the map r=3/2W : SU(2) x SU(2) — T*! is
degenerate. It maps an orbit of U(1) which shifts ¢; and 1 in opposite directions
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into the same point on TH': (Ly, Ly) ~ (L U, LyU™Y)

LlZL§r = (LIU)Z(LQU’1)+ , (2.36)
et 0

U= | evq). (2.37)
0 e ¥

Therefore T4 can be defined as

SU(2) x SU(2)

Tl,l —
U(1)

(2.38)

We conclude this section by noting that besides being invariant under SU(2) x
SU(2), T*! has additional symmetry U(1)g, which acts by shifting 1,

(L1, L2) = (L1Ur, L2UR) . (2.39)

The matrix Ug given by (2.37). This follows either from (2.35) or, in the case of
more general Kahler potential, from the invariance of (2.13) as well as (2.32,2.33)
under (2.39). This symmetry is dual to U(1) R-symmetry in gauge theory and plays

an important role in establishing gauge/string duality as we have seen above.

2.2 Cascading gauge theory and deformed coni-

fold

This section is devoted to the confining SU(N + M) x SU(N) gauge theory and its
dual description in terms of IIB SUGRA. Firstly we review the properties of field
theory including classical and quantum moduli space in section (2.2.1) and then

proceed with a detailed discussion of dual geometry in section (2.2.2).

2.2.1 Cascading gauge theory

We start with SU(N) x SU(N) “conifold” gauge theory of section (2.1.1) and add
M colors to one of the gauge groups SU(N + M) x SU(N). The field content and
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superpotential (2.3) remain the same. Extra M colors break conformal invariance

and the combination of couplings

S M los(A/ (140 (/NY?)) 2.40)

runs with the scale, although the combination
2 2

89% 891% (2.41)
remains scale invariant [12]. Equation (2.40) suggests that the coupling g, of SU(N+
M) diverges as the theory flows from UV into IR. At this point the old microscopic
description is not valid anymore and one has to switch to a Seiberg-dual description
of the theory [12, 11]. The gauge group SU(N+ M) has 2N flavors and thus becomes
SU(2N — (N + M)) = SU(N — M) in the Seiberg-dual description. In addition to

the existing superpotential (2.3)
)\ i’ 4’
WD = 56 € Tr./\/lij./\/li/j/ y (2.42)

rewritten through the meson matrix M;; = A;B;, the dual theory acquires extra

term
W =W, + ,uTr/\/l,-jA;B;- . (2.43)

Here A}, B} are the bi-fundamental fields in SU(N — M) x SU(N) theory. The
meson field M;; is massive an can be integrated out leaving superpotential (2.3)

with renormalized coupling constant N’

A, VY
W = 56” e’ TI'(AiIBjAZ’/Bj/) . (244)
Therefore the dual theory has SU(N — M) x SU(N) gauge group and the superpo-
tential (2.3) with the new coupling constant \'. This is essentially the same gauge
theory with the number of colors N shifted by M. The behavior when effective
number of colors N runs with the scale is called duality cascade (see [26] for a

review).
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The last step of the cascade depends on p = N mod M. In this thesis we focus
on N = kM, when the last step is described by SU(2M) x SU(M) — SU(M).
The gauge theory is confining in this case and its gravity dual has small curvature
everywhere. Hence SUGRA approximation is consistent. Otherwise, if p # 0 the
confinement doe not occur. If p is large enough to produce back reaction captured
by dual geometry i.e. p/M = const in the planar limit M — oo the absence of
confinement will be reflected by the IR behavior of the warp factor H(0) — oo.

Adding fractional D5 branes

The extra M colors introduced above have simple meaning in terms of dual geometry.
These are M fractional D5 branes wrapping non-compact 2-cycle of singular conifold
[27]. The fractional D5-branes create M units of flux through the 3-cycle and the

effective number of colors N is given by an integral over base of the cone

1 1
—_— Fs=M —_— Fs=N. 2.45
471'20/ Lg 3 ’ (47‘(’20/)2 /Tl,l > ( )

Unlike the three-form, dF5 = 0, five-form is not closed dF5 = H3 A F3 and its integral
over the base of the cone le,l F5 depends on radius r of the conifold. According
to the general gauge/gravity duality, radius r is associated with the energy scale of
gauge theory pu. Therefore the dependence of effective number of colors N on radius
is a gravity dual of cascade behavior in gauge theory. In fact this can be confirmed
by comparing the logarithmic running of coupling constants (2.40) obtained from
gauge theory with the result of calculation in IIB SUGRA [12].

Non-vanishing flux through S leads to a singular energy density if S® shrinks
near the tip. Klebanov and Strassler suggested that the S® at the tip should be
blown-up to a finite size to avoid singularity. They proposed the topology of de-
formed conifold C.

2 8
d = 2.46
ZZ 2 ? ( )
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as the candidate for the gravity-dual of SU(N + M) x SU(M) gauge theory. This
choice does not affect UV dynamics as the deformed conifold resembles the singular
one for large radius i.e. for large energy scale. But the non-trivial deformation € # 0
prevents S® from shrinking at the tip and keeps solution smooth everywhere.
There are a number of ways to justify the geometry (2.46). The most straight-
forward way is to see how it emerges directly from field-theory analysis. Following
Klebanov and Strassler we consider a theory with an extra color SU((k + 1)M +
1) x SU(kM +1). The idea is that the additional degrees of freedom corresponding
to extra color will “probe” the geometry of moduli space. The theory at the bot-
tom of the cascade has gauge group SU(M + 1) and fields A;, B; in M + LM+1
representation correspondingly. The gauge-invariant meson matrix M,; = A;B; en-
ters classical superpotential Wy = ADetM,; and leads to the classical moduli space
Det M = 0 i.e. to the singular conifold Cy. In the far IR this theory develops non-
perturbative Affleck-Dine-Seiberg superpotential [28] which is responsible for chiral

symmetry breaking

OABM+17 7T
W = ADetM + (M — 1) { Dotlv } : (2.47)
The supersymmetric vacua are given by
OABM+1 T 27

Notice that the geometry of (2.48) coincides with (2.46).

The R-symmetry is broken by (2.48) to Z; and there are M distinct solutions
related to each other by Zy, C U(1)g. These M branches of moduli space are
characterized by M different values of gluino condensate (A\)M ~ A3M . Eventually

we find M copies of deformed conifold
oM, C. (2.49)

labelled by the phase of gluino condensate e to be the moduli space of the probe.
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In the following we will recover the same result for moduli space without introducing

probe branes.

Classical flat directions

We start with classical flat directions of SU(N+M)x SU(N) theory. At the classical

level, we have the F and D-flatness conditions. The latter is

> AAL =3 BB = ¥y
> ATA =30, BBl = 5w (2.50)

where Iy and Iy are N X N and (M + N) x (M + N) unit matrices. Real

constant

U="Tr (Z AAT=N Bj.Bj> , (2.51)
( J

parameterizes the family of solutions and plays the role of flat parameter. In the
quantum theory, U is an operator (2.129), whose expectation value labels different
ground states.

The solutions of these equations for the case of interest N = kM can be divided

into two groups — mesonic and baryonic.

Mesonic flat direction

The mesonic flat directions correspond to the non-zero meson matrix M,;; = A;B;.

In the general case it can be diagonalized and the solution has the form

1
Ail
2
Ai?

N
AaN
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1
2

N

Va 35 AL =32 1Bj.)P =0 : (2.52)

a

This solution breaks gauge symmetry to SU(M) x U(1)V~! and the moduli space
is characterized by N sets of coordinates My, = Af B}, with Dety;(M?) = 0 up
to permutations over the index a. This is a symmetric product of N copies of the
(singular) conifold Cy [14]

Symn(Co) (2.53)

which resembles conformal field theory with M = 0.

Baryonic flat directions

The baryonic flat direction of confining SU(N + M) x SU(N) theory with N = kM
is given by [14]

vVE 0 0 .00

0 E—1 0 0 0
Aoy = C 0 0 E—2 . 0 0 |1y,

0 0 0 10

01 0 0 0

00 V2 0 0
A = C1 00 0 V3 0 | ®1y,
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Bd:l = 0 )

Ba—s = 0. (2.54)

The arbitrary complex number C' is related to the modulus U of (2.51) viald = k(k+
1)M|C|?. Non-zero C' breaks U(1)puryon Which gives the name to the flat direction.
There is gauge and SU(2) x SU(2) invariant baryonic operator A ~ (A; Ay )kr+DM/2,
with appropriate contraction of indexes [29], which has non-zero expectation value
along the branch (A) ~ C*k+DM Tt is equivalent to the combination of real para-
meter I and the charge under U(1)paryon-

There is another classical baryonic branch isomorphic with (2.52) under the Z
symmetry Z exchanging A «—— B, accompanied by complex conjugation. In this
case U = —k(k + 1)M|C|? and expectation of baryon B ~ (B;By)Fk+1M/2 (also
called anti-baryon) serves as the module.

Each of these branches has one complex dimension and is parameterized by
CHE+DM — They touch each other at the origin, C' = 0. On quantum level these

branches merge into a single smooth branch as will be discussed below.

Quantum moduli space and gluino condensate

Both mesonic and baryonic branches discussed above preserve SU (M) gauge symme-
try on classical level. In case of mesonic branch this SU(M) is a part of SU(N+ M),
and in the case of baryonic branch SU(M) C SU(M ), x SU(M )y where SU(M); C
SU(M)*t c SU((k + 1)M) and SU(M)y C SU(M)* c SU(kM). The unbroken
SU(M) is confining and this leads to the well-known gluino condensation phenom-

enon. Namely, the classical moduli space C is multiplied into a sum of isomorphic

branches parameterized by the value of gluino condensate (A\) ~ A3e i

DM Cym - (2.55)

The gluino condensate breaks non-anomalous subgroup Zsy C U(1)g down to Z,.

The discussion above is somewhat schematic because classical moduli space C is
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different from its quantum analog C,,. In fact the mesonic branch Symy(Cy) is
changed by ®F_ Symx_1a(Ce,) on quantum level [14]. We proceed with a detailed
discussion of the quantum moduli space Cy,, for the bottom of the cascade k = 1
below.

Bottom of the cascade SU(2M) x SU(M)

The SU(2M) x SU(M) theory at the bottom of the cascade has baryons [12, 29, 30]

A = €aanan (A1)T (A1)5? (A5 (A2 (A2)y ™ (An)§7Y,

B = 6041052...@21\/1(‘81)2” (Bl)iz e (Bl)%vf (BQ)CIXM+1 (BQ)iM+2 ce (Bl)gsz. (256)
and mesons /\/l’;ja = (A4,)%(B;)5. The baryons are singlets under gauge groups and

global symmetry SU(2) x SU(2) while the mesons are charged under SU(2) x SU(2)
and SU(M). It follows from the definitions above that the fields M, A and B are
not independent: on classical level Det;;,, M — AB = 0. At the quantum level, this

constraint is modified by nonperturbative quantum corrections [19]
Det;jupM — AB = A3} (2.57)
which follows from the effective superpotential [19]
Wers = Wo + L (DetyjaM — AB — A3Yp) (2.58)

The field L is a Lagrange multiplier and has no kinetic term i.e. it is infinitely
massive. The superpotential (2.58) is applicable only at zero energy, not a low
energy. It describes moduli space but not the low-energy dynamics. It includes
massive fields like L and one massive component of M, A or B which are not
associated with any massive particles in the spectrum. Instead, they should be
interpreted as auxiliary fields in the low energy theory.

The theory with superpotentail (2.58) is IR free and its moduli space can be easily
analyzed. There are two branches at the quantum level — mesonic and baryonic,

which are related to the classical ones.
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The mesonic branch is characterized by A = B = 0 and M constrained by
Det;japM = A%%. Together with D-term constraint this leads to the moduli space
®MSyms(C.) with the deformation parameter of conifold & ~ A3,

The baryonic branch has M = 0 and AB = A3}f. The two classical branches
with AB = 0 are combined into a single smooth one complex dimensional branch

parameterized by the parameter (
A=iAy¢
B=—iA33¢h. (2.59)

The symmetry Z exchanges A <+ BT and inverts (:

IZ:¢(— S . (2.60)
c*
The low energy theory includes SU(M) gauge sector which enhances the moduli
space into M distinct but isomorphic branches via gluino condensation.
We have already stated that the expectation values of the mesons are interpreted

as D3-branes in the bulk of the deformed conifold M = C..

2.2.2 Geometry of deformed conifold

The deformed conifold C. is defined similarly to the singular conifold Cy of (2.13) by

imposing an equation in C*

2

2 8
E = __ 2.61
Z’L 2 ( )

This constraint can be rewritten with help of complex matrix W similarly to (2.14)
2

detWV = —% , (2.62)
where
W = L1 Z4L{ , (2.63)
e 0 6t/2
A . (2.64)
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New radial variable ¢ € [0..00) can be matached with r at large ¢t (UV) region
r3 = e?cosh(t) — e%e'/2 . (2.65)

Although Z, is different from Z of (2.22), analog of equation (2.36) is satisfied
UZ Ut = Z; and W depends on 1); only through v» = 1); +,. Nevertheless the
metric is not invariant under U(1)g : Zg — UrZ4Uj, and the group of symmetries
reduces to SU(2) x SU(2). The explicit expressions for z;(6;, ¢;, ¢, ) can be obtained
from (2.14) and (2.63). These formulae are quite bulky and we will not write them
here. Instead we calculate Tr(dW™dW) and Tr(W+dW) which are the building
blocks of Kéhler metric (2.16). These expressions are obviously SU(2) x SU(2)
invariant, although it may be tricky to see that once they are written through 6;, ¢;
and 1. One way to prove invariance is to express everything in terms of € and
check that v; enter only through ¢ = 1)1 + 15 in the resulting expression. Here we

use slightly different approach and following [25] we introduce new set of one-forms*

€1 = d91 , €9 = —sin Qldgbl s

€a = €ly,—y » =12, (2.66)

Next, we would like to show that the combination eje; + eses is invariant under
SU(2) x SU(2)?. To make the logic transparent we label the SU(2)’s as follows
SU(2); x SU(2), and notice that forms eq, ey are invariant under SU(2),. This is
because e, e are one-forms on SU(2); and thus not affected by SU(2),. The forms
€1, €2 are also invariant under SU(2), as follows from (2.28). Therefore the whole
expression ej€; + eg€y is invariant under SU(2),.

To show that ej€; + eg€q is also invariant under SU(2); we introduce yet another

set of one-forms

él = d@g s éQ = —sin Qngbg s

ba=Sly_y » a=12. (2.67)

1This is equivalent to fixing the “gauge” 11 = 0,9 = 1.
2 Alternatively one can check that Y o €7€5 depends on 1; only through .
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which is different from (2.66) only by interchange of index 1 «» 2. Therefore é;é; +

€9és is invariant under SU(2);. A straightforward check shows that
€1€1 + €9€y — élgl + égég 3 (268)

which completes the proof. Expression above is invariant under SU(2); and under
SU(2), and therefore it is SU(2) x SU(2) invariant.

Now we are ready to proceed with Kéahler metric (2.16)

Te(dW W) =) |dz|’ :—cosh<)[g§+(e%>2+(e%)2+(e§)2+<e%)2]+

Tr(WHdW) = Z Zidz = — smh( )(dt +igs5) . (2.70)

Notice that (2.69) is not invariant under Ug as was mentioned before.

Again we focus on Kéhler potential of the form k = k(t) to preserve explicit
SO(4) invariance. Similarly to the singular conifold, the deformed conifold is Calabi-
Yau and admits Ricci-flat metric. The corresponding one-dimensional family of
Kahler potentials is

Ak k(t) = L §54 [cosh(t) sinh(t) — t] + ¢ v (2.71)
e2dcosh(t) ~ e2cosh(t) \ 2 ' '
The Kéhler potential (2.17) can be recovered by taking e — 0 while keeping € cosh(t)
fixed.

A particular choice of ¢ = 0 leads to the metric on deformed conifold, used in

Klebanov-Strassler solution

VK@) T . t t 1
dsh, = — {smh2 (5) (97 + 3) + cosh? (5) (95 +93) + 3K ()3 (dt* + gg)} )
(2.72)

with
(sinh(t) cosh(t) — )"/
sinh(t)

K(t) (2.73)
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To make a connection with original paper by Klebanov and Strassler [12] we have
used the set of one-forms g; which makes metric diagonal. They are related to the

forms e;, €; as follows

g1 \/§ ) g2 \/§ )
g3 \/5 y 94 \/5

Deformed conifold at the tip

(2.74)

The metric (2.72) is not singular and smooth everywhere unlike (2.34) which has

conical singularity at the tip r = 0. To investigate the behavior of (2.72) at the tip

2

we take ¢t = 0 and rewrite deformed conifold constraint detW = —% as
2
XPHvp=5, (275)

where X and Y are
; , 0 0 , 0 0
X = S e30rtan) (/2 o5 7L oo 2 pmi/2 iy i 72 ,
2 2 2 2 2
i , 0 0 , 0 0
Y = S eb@rme) (/2005 D 72 omwl2gin eos 22 (2.76)
V2 272 2

Two complex numbers X, Y (0;, ¢;,) parametrize the 3-sphere through the con-
straint (2.75). The metric of confiold reduces to the metric of Euclidean S? as well.

To see that we write the metric on a S® of unit radius

2 1
dsts = §(|dX|2 +1dY)?) = 1 (95 + 295 +243) (2.77)

and compare it with small ¢ expansion of ds}, [31]

2e\ /3 1 1 /2e0\ Y3
ds?, ~ (?> 1 (95 + 293 + 297) + 3 (7) (gi+g3) + 0O . (2.78)

We find that near the tip the deformed conifold degenerates into Euclidean 3-sphere

1/6
of finite radius (%) .
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Holomorphic (0,3) and Kéahler forms on deformed conifold

To make the description of geometry complete we would like to present here the

expressions for the closed holomorphic 3-form Qg and Kahler form Jxg
2
96
+isinh(t)(e; A €1 + €3 A €a) + cosh(t)(er Aex + €1 Aea)] (2.79)

Qrs = —(dt +igs) A[(ex Aea + e Aea) +

Jis = [xs(e1 Aex— e Aea) +dfrs A gs
4/3
frs = ET(cosh(t) sinh(t) — t)1/3 . (2.80)

Klebanov-Strassler solution

The geometry of Klebanov-Strassler (KS) [12] solution is a warped product of de-
formed conifold (2.72) and flat Minkowski space

ds® = Hys(t)"?da}, + Hys(t)'/?dsh, . (2.81)
with warp factor Hg(t)
His(t) = (9.Ma')?2e*1(t)
© xcoth(z)—1 . 13
I(t) = dtx——————(sinh(z) cosh(z) — z)"/” . (2.82)
¢ sinh*(x)
This integral cannot be performed analytically. Therefore we present here some

numerical results about I(¢) near t = 0 and at ¢ — oo. In the small ¢ region I(t)

approaches constant value
I(t) = 0.5699 — 27233722 L O(t*) . (2.83)
In the UV region I(t) can be approximated by
I(t) = 27833 (4t — 1)e /3 — 27/3573 (25¢% — 85t + 12) e 1% + O(e719/3) .(2.84)

The fact that Hgg is finite at ¢ = 0 indicates that the dual gauge theory is in the

confining phase.
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KS solution has nontrivial NS-NS 3-form H = dBs,

Mo tcoth(t) — 1 t t
By = gsMo t coth(t) {sinh2 (—) g' A g* + cosh? (§> 9> A 94} ; (2.85)

2 sinh(t) 2
and the R-R fluxes, which can be compactly written as
Mo/ sinh(t) — ¢
By = ANPANG +d | ————(" NP+ P NG 2.86
3 5 {g GG+ S (9 Ng"+g Ng)| ., (2.86)
Fy = dCy+ By AFs= (1+%)(By A Fy) . (2.87)

It is also useful to to write down corresponding R-R potentials:

Mo 1
Cy = 2a [%( 1/\g2+g?’/\g4)—§c0s6100s92d¢)1/\d¢2
t 1A 3, 2, 4
_ 2.
2Smh(t)(g NG+ > Ngh)] (2.88)
1

Cy = ————da® Ndat Ada® A da? . 2.89
C T G Hes) (2:89)

The R-R 2-form is not well-defined as it does not preserve ¥» — 1 + 47 symmetry.
This reflects the fact that F3 contains non-exact piece gz A g4 A g5 responsible for the
flux through S®. Explicit ¢ dependence in (2.88) corresponds to the gravity dual
mechanism of chiral-symmetry breaking [32].

The complex form G353 = Hjz + igsF3 is imaginary self dual x¢Gs = 1G5 with
respect to the six-dimensional metric (2.72). This implies constant dilaton ¢ = 0.

The forms (2.85,2.86) are invariant under SU(2) x SU(2). Although this is not
obvious from the expressions above this can be easily established. One way is to
represent By and G = Hj + igsF5 through z; and dz; [31]. Another approach is to
use e;, €; basis instead of g;. This method will be employed in the next section where
we discuss SU(2) x SU(2) invariant ansatz for metric and fluxes.

There is an additional Z, symmetry of KS solution, Z, which exchanges (61, ¢1)
with (6, ¢2) accompanied by the action of —I of SL(2, Z) which changes sign of Hj
and F3. This symmetry plays an important role in identifying KS solution with Zs
invariant point on moduli space of gauge theory in section (3.2.1).

From here on we set the deformation parameter € to unity for notational sim-

plicity, and also choose Mo’ =2 and g, = 1, unless they are written explicitly.
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Klebanov-Tseytlin limit of the Klebanov-Strassler solution

The Klebanov-Tseytlin (KT) solution [33] is dual to the SU(N + M) x SU(N)
theory with N not necessarily proportional to M. In that sense it is more general
than KS. In fact, the KT solution is singular at IR and thus provides a reliable
description for gauge theory only in UV. Therefore, the KT can be understood as
an intermediate step between the conformal KW solution dual to SU(N) x SU(N)
theory and singularity-free KS with N ~ M. KT solution was constructed before
KS and it is simpler than KS because it captures physics only in UV region. That
is why we present K'T' as a certain simplifying limit of KS solution unlike traditional
approach when KT precedes KS.

The KT solution is a UV limit of KS and hence can be obtained from KS by
taking the limit ¢ — oo. It is convenient to use radial variable r which is (2.65)

which is
rd = %et . (2.90)
Then the metric (2.81) reduces to
dsty = Hyoy “dady + Hi7 (dr? + r2ds?) (2.91)

with warp factor Hgr(r) [33]

277 (o)? (2mgs N + 3(gsM)? log(r /o) + 3(gsM)?/4)

mrd

Hyrp = . (2.92)

Instead of size of deformation € we have “minimal radius” ry where the naked

singularity occurs. Warp factor Hgxr also contains N in addition to M as was

discussed above. It is clear that only a combination of N and ry is meaningful.
The R-R fluxes and B, field are also simplified in KT limit. Since the manifold

M is simply a cone over TH! = §2 x S3 the fluxes can be represented through the
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volume forms of the 2 and 3-cycles

1
w2:§(61A€2+€1A62) s w3:g5/\w2 s (293)
/ wy = 41 / w3 = 87° (2.94)
52 53
wy A ws = 54Vol(T™!) . (2.95)
Namely [33]
3/ gs M 3/ gs M

By = a9 log(r/ro)ws , Hsz = LI dr A wy (2.96)

Mo/ "2 1,1
F3 = 5 W s Fs =2Tm(a’) Negpp(r)Vol(TH) (2.97)

3

Ny =N+ %QSMQ log(r /1) . (2.98)

The effective number of colors N.¢; runs with energy scale r according to the
cascade behavior [20].

As we will see in the next section, the BGMPZ solutions dual to the gauge theory
on baryonic branch share the same behavior in the UV region. Therefore the formu-
lae above provide a simple description for the geometry far away from the tip, not
only for KS but for the whole BGMPZ family. Many applications of gauge/gravity
duality are not sensitive to the IR physics. In this case, KT solution is preferable
as it simplifies the calculation. Thus in chapter 4 we calculate superpotential on
the D3-brane placed in the throat together with D7, assuming that neither brane is
close to the tip. This calculation is quite lengthy and usage of KT geometry rather
than KS or BGMPZ is a valuable advantage.

2.3 BGMPZ family of solutions and baryonic branch
of the gauge theory

In this section we are going to review the BGMPZ family of solutions [13]. These
solutions preserve N/ = 1 SUSY and global SU(2) x SU(2) symmetry. They were
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found with the help of the PT ansatz [25] and SU(3) structure method [34, 35]. We
proceed by reviewing the PT ansatz in the next section and later we briefly explain
the main idea of the SU(3) structure method. We refer the reader interested in

more details to the original papers.

2.3.1 The PT ansatz and method of SU(3) structure
Papadopoulos-Tseytlin ansatz

In section (2.2.2) we discussed how to show that the symmetric tensor on conifold
€1€1 + €969 (299)

is SU(2) x SU(2) invariant. The main idea was to represent (2.99) through a dual
basis (2.67)

€1€1 + €269 = élgl + éggg . (2100)
Besides (2.99) we also have invariant combinations

el +es=¢e+é, (2.101)

Etea=¢é+és, (2.102)
as well as dt and g5. The PT ansatz for ten-dimensional metric

6
ds® = eQAd:U;l +ds3, = eZAdx;l + Z G? | (2.103)

i=1
is a warped product of flat Minkowski space and a conifold M, where the warped

metric on conifold dS’fw is a combination of the invariant pieces above
6
IS = > G = o a4 gt +
i=1
+e"79 [(e* + a®)(ef + €3) + (6] + €5) — 2a(erer + e262)] . (2.104)

The Z, symmetry which exchange (0, ¢1) with (s, ¢2) is broken unless €% +a? = 1.
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The choice of vielbeins G; is not unique. Our choice below is dictated by a

requirement that three complex forms G; = (Ga;_1 + 1Gar)

cosh(t) +a

g
G = ela+9)/2 Q. = a+9)/2 _ Y w92 _
= A 2= @) 2t G ¢ (e ae)
9 cosh(t) +a
Go= o@9/2 (¢ _ G, =S atee, MY T @gy2
3=e (ep — aey) , 4 Snh(D) e €9 Snh(D) e (€3 — aey)
G5 = ex/z ’U_1/2dt y G6 = em/2 ’U_1/2g5 s (2105)

are holomorphic, i.e. the eigenvectors of the complex structure. While in the KS case
there was a single warp factor h(t), now we find five functions A(t), z(t), g(t), a(t), v(t).

In terms of these one-forms the warped “holomorphic” (3,0) form is
Q= (G +1iG2) N (Gs +1iGy) N (G5 +iGg) (2.106)

and the warped fundamental (1, 1) form is

J = = [(G1+1iG2) AN (G1—iGa) + (G3+iGy) N (G3 —iGy) + (G5 +1iGg) A (G5 —iGy)
(2.107)

If manifold M is a Calabi-Yau with Ricci-flat metric as it is in the KS case, 2 and J

N =

are closed holomorphic and Kéhler forms multiplied by the warp factors H*/? and H
respectively. This result can be generalized to the non Ricci flat metric, provided the
background preserves N’ =1 SUSY. In the IIB theory the SU(3) structure manifold
M is complex, the pseudo-Kihler form e*4=?J is not necessarily closed, but the
3-form is closed d(e347?Q) = 0. In the case of ITA theory the SU(3) structure

manifold is Kéhler i.e. €247%J is closed, but e3479Q is not (see, for example, [35]).
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To write down PT ansatz for R-R and NS-NS forms we need to find antisym-
metric analog of (2.99). Here we list such combinations together with their repre-

sentations via dual basis®

61/\€1+€2/\62:€1/\é1+€2Aé2,
61/\62—62/\61:—é1/\€2+é2/\€1,

61/\62:—€1/\€2 y 61A€2:—é1/\é2 . (2108)

The PT ansatz contains 4 functions hq, he, x, b(t) in the flux sector and one constant

P=- (MTO‘/), which is P = —1/2 in our notations

B2 = hl(El/\€2+€1/\€2)+X(€1/\62—61/\62)+h2(€1/\62—€2/\61),
J— Pg5/\[61/\€2+61/\62—1)(61/\62—62/\61)}+Pdt/\[b/(ﬁl/\€1+€2/\62)],

F5 = f5—|—*1of5, fg,:2P(h1+bh2)€1/\€2/\61/\62/\g5. (2109)

The R-R 3-form Fj has the same non-vanishing flux through S® as in KS case (2.86).
The exact part of Fj is parameterized by b(T') which turns out to be the same as in
the KS case.

The R-R scalar vanishes C' = 0, but the dilaton ¢(¢) may depend on radial
coordinate t, as the background is not imaginary self dual. This completes our
discussion of the PT ansatz and we proceed with a brief discussion of the method

of SU(3) structure.

Method of SU(3) structure

The method of SU(3) structure is an approach to classify classical supersymmetric
solutions of supergravity. To be supersymmetric the background must be invariant

under algebra of supersymmetry transformations. In the case of classical bosonic

3 Again, invariance of (2.108) can be demonstrated by expressing them through €% and checking
that 1); appears only through the combination 1 = 1 + 1)s.
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background the only non-trivial transformations are those of fermion fields [36] (here

we assumed R-R scalar is zero)

i i
O\ = §8A¢FA\II* - ﬂ(G3)AlAQAsrAlAZAS\If =0

51/JA:DA\I’ + @(F5)A1~~A5 4 ASFA\I/ +
1

+%(F3)A1A2A3 (T Mdeds — gt T4 ) g = (2.110)

Here the Killing spinor ¥ is a parameter of supersymmetry transformation and ¥*
denotes its charge conjugate BY*. We do not write charge conjugation matrix B
explicitly assuming Majorana representation of gamma-algebra with B = 1.

For the background based on warped product of flat Minkowski space and six-

dimensional manifold M it is useful to represent ¥ via four and six-dimensional
parts (~,n~

U=a¢ @n +bCT®@n",

nt=m), =) (2.111)

In the IIB case the spinors (~,n~ have definite chirality in four and six dimensions

1
I''=T16,I'y = 5(1 +1I'7),

v=¢®n , I'p=ip, (2.112)

such that WU is ten-dimensional chiral spinor I';, ,,1.6¥ = —V. Any chiral spinor 1~

in six dimensions is a pure spinor i.e. it is annihilated by half of gamma-algebra
(I, —ily)yp = (T3 —ily)yy = (I's —ilg) =0, (2.113)

with appropriated choice of I'y, .., I's. Therefore there is SU(3) which acts on com-
plexified tangent space leaving 1~ invariant. In that sense pure six-dimensional
spinor 1~ specifies SU(3) structure on manifold M. The idea of the SU(3) struc-

ture method is to decompose equations (2.110) into the representations of SU(3).
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This is an elegant way of dealing with tensor equations. The same result can be
achieved by multiplying (2.110) by all possible combination of gamma matrixes and
)T

(n~)" or (n7)". The unknown Killing spinor ¥ will disappear and the resulting

equations can be rewritten through “holomorphic” (3,0)-form

Qapc =" Tapct) (2.114)

and pseudo-Kahler (1,1) form

Jap = iy Tapth . (2.115)

If Q and J are specified through an ansatz like (2.106,2.107) the equations (2.110)
provide a set of first order differential equations on the ansatz functions and a,b
from (2.111). If the choice of the ansatz for forms and vielbeins was correct the re-
sulting system of coupled differential equations can be solved and hence the classical
supergravity solution can be found.

The agenda above was fulfilled for the choice of veilbeins (2.105) and PT-ansatz
for the forms (2.109) in [13] by Butti, Grana, Minasian, Petrini, and Zaffaroni. They
assumed that a is real when b is pure imaginary and succeeded in solving resulting
set of differential equations. This step involves a lot of technicalities and is quite
complicated. Therefore we will not discuss it here. In the next subsection we present

the result of their calculation and discuss the family of classical solutions they found.

2.3.2 The BGMPZ family of solutions and boundary condi-

tions

The family of solutions found in [13] also known as BGMPZ family of solutions is

formulated through a system of coupled first order differential equations for functions
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a(t) and v(t)

vV—1—a?—2a cosht (1 +acosht) asinht (t+ a sinht)
B v sinh ¢ ~ tcosht —sinht
B —3a sinht
" V/—1—a%—2a cosht
+v [—cﬂcosh?’iH—2atcotht+acosh2t(2—4tcotht)—f-coshzf(l—k2a2

/
a =

/
(Y

— (24 @®) tcotht) + / [(1+ a®*+ 2acosht) (tcosht —sinht)] . (2.116)

sinh ¢
This equations are highly non-lineal and its analytical solutions is known only in the
KS and MN [37] cases. The system above has two-dimensional family of solutions.
Nevertheless only one-dimensional subfamily is of interest as other solutions are
singular at t = 0 [13]. Small ¢ expansion of (2.116) suggests that regular solution
has asymptotic a — —1 and v — 0 and can be found near ¢ = 0 by Taylor expansion

[13]

AW 4
=—1+(=+= ]+ 0(
a +(2+3) +O(t%)

v=t+ (—2+—y2) B+ 0°) . (2.117)

The integration constant y € (—1..1) parameterizes subfamily of regular solutions.

The solutions (2.117) share leading asymptotic in UV

a=—2e"t4U(t—1)e 40> ™3,
3 9
v=3 + 1_6U2(6 — At +tHe P L 0> (2.118)

where the integration constant U(y) € (—o0..00) specifies the behavior at t — oo
and can be determined through y. It is more convenient to use U rather than
y to parameterize the family because the behavior in UV region admits simple
interpretation via gauge/gravity duality [14].

Some functions are unambiguously determined in terms of a,v and ¢ or even

known explicitly for the whole BGMPZ family
t
- ~sinh(¢)
e* = —1 — a* — 2acosh(t) . (2.119)
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The next step after a,v(t) are known is to integrate the equation for dilaton

,_(C-b)(aC-1)
¢ = T (2.120)
C = —cosh(t), S = —sinh(?) .

This equation is obviously invariant under the shift of dilaton ¢ — ¢ + cosnt. For
the given solution this in nothing else as rescaling of coupling constant g, and is
perfectly permissible. In the case of family of solutions we need to be more careful.
For the solutions to describe different IR vacua of the same gauge theory these
solutions should lie in the same UV universality class and share the same coupling
constant. Therefore to describe gravity dual of baryonic branch we require the UV
asymptotic value of dilaton to be U-independent [14]. It is convenient to choose it

to be zero
VYU tlim o(t) — 0. (2.121)

In this case the UV expansion for dilaton is

¢ = —%UQ(AM — Ve 3 L O(Ue 83y | (2.122)

It turn out that the (2.120) can be integrated. This is done in later section (2.3.2).
Once ¢ is determined all other functions can be expressed through a,v, ¢ and
t. The additional integration constant n [13] appears in the process of integra-

tion. Its meaning can be understand by considering equation for warp factor

A" = A'(a,v,¢,t,n), which can be integrated [14]
et = (e’zd) — nQ) e o (2.123)

To decouple gravity and make possible interpretation of supergravity solution as
of dual to a gauge theory, the warp factor (2.123) should approach zero in UV

and therefore = e=?(*=>) = 1 . Further for the solutions to lie in the same UV
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universality class we reuqire the (sub)leading asymptotic to be universal i.e. U-
independent. This is archived through a particular choice of integration constant

Ao

3
M= UTH(E 1) = gyt = et O (2.124)

This expression means that the warp factor e=#4 is U-independent at infinity and
can be substituted by Hgg in certain UV calculations.
All other functions x, hq, ha, x can be expressed determined a, v and ¢ through

the relations

bC' — 1)?
= wéﬁ%(l —ne*) hi=—hy C",
2¢ _
X = alb — C)(aC — 1)e2@=9 | hy = %g” . (2.125)

Here we assume boundary conditions (2.121) and (2.124). The solutions with these
specific boundary conditions are dual to SU((k + 1)M) x SU(kM) theory on the
baryonic branch of moduli space [13, 14]. Therefore from now on we will denote
this family as baryonic branch, although one need to have in mind that this is not
an accurate definition. The baryonic branch itself is a part of gauge theory moduli
space when the solutions in question is gravity dual description to it.

The KS solution corresponds to

1
rs = ~cosh(t)
_ 3cosh(?) sinh(t) — ¢

Vks = (2.126)

2 sinh(#)2 ’
and hence y = U = 0.

The Z, symmetry Z exchanges 61, ¢; and 65, o and hence exchanges e™9 and

e + e 9a? in the metric (2.104). It can be defined through the action on PT ansatz

a

a— ———
1 + 2a cosh(t)

(2.127)



2.3. BGMPZ family of solutions and baryonic branch of the gauge theory 43

with ¢,v and other fields except g stay invariant. Actually it is easy to show that
ae™9 also stays invariant while (1+ a cosh(t))e 9 changes sign. Large ¢ expansion of

(2.127) gives that Z changes sign of U
7:U—--U, (2.128)

i.e. non-zero U leads to Z breaking. This helps to clarify the gauge theory inter-
pretation of U as a dual parameter to the expectation value of the Z, breaking

operator

U="Tr (Z AAL =) BgBd) . (2.129)

Indeed the Z, breaking occurs through a difference in the radii of two S? formed by
0;, ¢;. In the UV limit it is

e" 9 (¥ +a® — 1) = Uts2e™2/3 4 . (2.130)

This is in agreement with (2.129) having dimension 2 [14, 38]. Consequently we
identify

Uorr ~ U . (2.131)

Closed holomorphic 3-form and expression for dilaton

The method of SU(3) structure guarantees that the six-dimensional manifold of
compactification is a complex manifold [35]. In the case of baryonic branch the
solutions share the same complex structure on deformed conifold, inherited from C*
via (2.61). Actually this complex structure on deformed conifold is unique for fixed
value of €. For a compact Calabi-Yau 3-fold the space of (2,1) cohomologies H*!
can be identified with a tangent space in the space of complex structures. H*! is not
empty in our case: the non-vanishing RR flux through non-shrinking S? is exactly of

(2,1) type [13]. But because of non-compact geometry of conifold the corresponding
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deformation of complex structure is trivial and equivalent to an infinitesimal change
of coordinate system.

The metric (2.72) is Ricci-flat and corresponding closed holomorphic 3-form Qg
which satisfies Detgrg = éQKS A 51{5 was given in (2.79). For all other BGMPZ
solutions there also should be a closed holomorphic form 2 since these solutions
are equivalent as complex manifolds. Thus we conclude that  is equal to Qxg
multiplied by some constant. Notice that such € does not necessarily satisfy Detg =
%Q A 5, where gr; is the unwarped metric on the deformed conifold. From another
side equation (2.106) defines holomorphic form which satisfies DetG = £Q A Q, but
it is not closed. It is clear that €2 is proportional to although the non-holomorphic
proportionality function can not be fixed by holomorphic properties of geometry.
The method of SU(3) structure explicitly predicts this function and guarantees
that

Q=30 (2.132)

is closed dQ2 = 0 [35]. This equation, together with (2.106) leads to the following
expression for () in the BGMPZ case

0= e3A_¢+3x/2v_1/2(dt +1igs) A (_sinlm(el Nes+ €1 Aeg) +
h(t
+er Ner+exNeg) — i%(el A€+ €1 A 62)) : (2.133)

A straightforward check confirms that  is closed if
ePATOT32/2=1/2  sinh(t) (2.134)

The proportionality coefficient is obviously not fixed by dQ = 0 and is reflected in
(2.132) as an ambiguity in definition of ¢ and A. Nevertheless since A is known
through a,v and ¢ (2.123) up to an additive constant equation (2.134) can be used
to find ¢ [39]

10 64v(a cosh(t) + 1)3 sinh(¢)®
© = 3U3(—1 — a? — 2a cosh(t))3/2(t cosh(t) — sinh(t))3

etV (2.135)



2.3. BGMPZ family of solutions and baryonic branch of the gauge theory 45

This expression does not depend on n or choice of boundary condition for A and can
be checked by differentiating and substituting it into equation for ¢' (2.120). The
boundary condition for dilaton at ¢ — oo is specified by ¢y .

From now on we put ¢y = 0 according to the discussion in the previous section.
This choice immediately implies that Q = Qxg for all solutions on the baryonic
branch i.e. the proportionality coefficient from (2.134) is U-independent. To show
that one can take ¢ to infinity and notice that €2 has to have U-independent leading
asymptotic to satisfy DetG' = Q A 2. Since the leading asymptotics of A and ¢
are also U-independent Q should be U-independent for large t as well. It means

Q(U) = Qs for large t and hence everywhere.

2.3.3 D-Branes on the conifold and kappa-symmetry

A Dirichlet brane with p spatially extended dimensions is described by the sum
of Dirac-Born-Infeld and Chern-Simons action. The former is a generalization of

“geometrical” Nambu action when the latter describes the interaction of D-brane

with the R-R fields [40, 41, 42]

S:SDBI+SCSZ—/

droe™? —det(g—i—f)—i—/ef/\C. (2.136)
>

b
The worldvolume of the brane X has induced metric g and the brane tension 7, is
set to unity. There is induced gauge filed A; on ¥ which enters the action through
the combination F = F, + P[B,] with F, = dA;. Finally C = ", C; is the formal
sum of the R-R potentials.

If D-brane is supersymmetric the action (2.136) is invariant under x-symmetry

on-shell [43, 44, 45]. Kappa-symemtry provides first-order Bogomolny-type equation
Fe=c¢€, (2.137)

which is easier to deal than equations of motion. Here spinor € is a generator of the

supersymmetry transformation and I, is specified below.
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Any e satisfying (2.137) guarantees world-volume supersymmetry in the probe
aproximation. If further e coincides with the generator of supersymmetry in the
bulk ¥ the supersymmetry of the brane is compatible with that one of background.

In type IIB theory the ten-dimensional spinor € is a pair of Majoran-Weyl spinors

~ e+ €2,
€ = (e —€")/2i . (2.138)

For the (9, 1) signature the k-symmetry operator I, is

— det p—3 .
Z )" F Ty @ (03)" 7 oy,

Iy =
V—det(g+F) 4

1
T = [1-oppt1
(p+1) (p+ 1)| N P detg 7#1..#1)-"-1 )
1 V1o Von o
Fr= 2nn|7u1-..uznfa1az o Fornro2,97 7 g (2.139)

where Pauli matrixes o, act on the doublet (2.138). The Greeks are the indexes
for the worldvolume coordinates and I, are the “pull-back” of gamma-algebra from
ten dimensions. We use zg ... x3 for the directions in Minkowski space and indexes
1,2...6 for the veilbeins (2.105) along M.
For the BGMPZ family, including KS solution the Killing spinor ¥ is given by
(2.111) with [13, 14]
e/ (1 + e?)3/8 e?/4(1 — e®)3/8

= ey b= Tro (2.140)

(this expression for b is for U > 0; b changes sign when U does). The corresponding

Majorana-Weyl spinors used in the k-symmetry equation (2.137) are
e =5 ((a+b)¢ @n + (@ +b)¢" @) ,

€ =

§>|>—t[\3|+—~

((a=b )¢ @n — (@ =b) T @n") . (2.141)



Chapter 3

Gravity-dual description of
low-energy dynamics: probe

branes in the throat

3.1 BPS domain wall and D5 brane

3.1.1 Domain wall in gauge theory and supergravity
BPS domain wall in the gauge theory

In this section we examine BPS domain walls separating different vacua in field
theory. Namely we consider two isomorphic copies of baryonic branch, different by
the value of gluino condensate [ (2.55) but identical otherwise. These branches are
transformed one into each other by the action of Zy; C Zyyy C U(1)g [46, 47, 48].
It is easy to see that the tension of this domain wall should be moduli indepen-
dent. Indeed the tension of the domain wall separating two supersymmetric vacua
characterized by the parameters [, !’ and the parameters U and U’ along the branch.
It is given by the difference of superpotentials 7' = |W;(U) — W (U’)|. Since the
branch is flat, W;(U) does not depend on U . Therefore tension is independent on

both U and U’ and depends only on the quantum numbers [, 1’.

47
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In the case of baryonic branch Wy(U) = MA3(M, ke and [14]

2mil 2mil’

T~ M )A(M, k)3 (5 — ) (3.1)
For large M this becomes
AIAML@%;ﬁ_m%%ﬂe2wMMLM%LJN. (3.2)

Standard large M counting has A(M, k)3 ~ M [46], and the tension of the domain
wall is of order M. Therefore, in the ‘t Hooft limit, this scales as a D-brane tension
[46]. Indeed, in the string theory dual of our gauge theory these domain walls are
the D5-branes wrapping the S* at the bottom of the deformed conifold I — I times
[12, 37, 49].

Domain wall and dual geometry

We have identified D5-brane wrapping S® at the tip of the conifold as the BPS
domain wall separating two vacua with different value of gluino condensate . Later
in this section we will show that the tension of this brane is independent on the
baryonic branch modulus U, in agreement with the field theory consideration above.
Therefore, in order to calculate the tension of the wrapped D5-brane, we will work
at the Z, symmetric locus on the baryonic branch, | A| = |B|, described by the KS
solution [12]. Recall that the KS metric is

ds?y = Hyd*(t)da® + H)o()dsM (3.3)

where ds! is the Calabi-Yau metric on the deformed conifold C. (2.72). At the
tip ¢ = 0 one finds a 3-sphere of radius £%/3(2/3)'/6 (2.78). Hence, its volume is
2712¢%,/2/3 and the tension of the domain wall is

573
2

Note that powers of Hg(0) cancel in this calculation, since the D5-brane has three

directions within IR*' and three within the deformed conifold.
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To match the string and field theory parameters, we set (3.4) equal to the field
theory result,

82

AM, k) ~ Mo (3.5)

Since both & and g,M are held fixed in the ‘t Hooft limit, we see that A(M, k)? is
of order M [46].Thus, the IR scale kept fixed in the large M limit is

AM, k) = M~Y3AN(M, k) , (3.6)

and we find
2

(;ﬁ ~ g MA(M, k)? . (3.7)

3.1.2 Domain wall along the baryonic branch

In this subsection we follow [39] to show that the D5 brane wrapping minimal S®
at the tip of the conifold is BPS saturated and its tension is constant along the
baryonic branch. First, we reformulate the kappa-symmetry equation in the form
of calibration condition [50, 51]. Then we demonstrate that the D5 brane saturates
the calibration condition and hence it is BPS. The U-independence of the tension

will follow from the fact that calibration form is independent on the moduli.

Kappa-Symmetry

We start with a general kappa-symmetry equation (2.137) applied to the case of D5
brane stretched along three directions in Minkowski space and wrapping a 3-cycle
3} on the conifold M. We reserve the Greek indices for the directions along > while
the directions in Minkowski space will be denoted as g, x1,z2. The pull-back of
the NS-NS form B, and the induced gauge field Fy = dA; are not extended into
Minskowski directions, M, = P[Bs], + (F2),,. Consequently we can use gamma-

algebra identity

1

! VV/ 1 o 1 v
EM;U/QMM g QV/L/V’EKJ )\’ch)\ = _§€N pM;u/Yp 9 (38)
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to simplify k-symmetry equation

Yooz ehwp ehwp
r.v= Rt —M

——12_(03i09——"Y,p + 10
Det(g+M)<3 273 Tuwe THT2 g M

The expression in parenthesis can be split into two linearly independent parts, linear

and cubic into gamma-matrixes I'y, A = 0,..,9. Note, that this is not the same as

splitting (3.9) into terms with and without M,,. Using the identity

Liapcyt = Qapclisst — i (Japlc + Joals + Jpcla) ¢ (3.10)

we express k-symmetry operator in the form

FH\I’ _ Z"}/woxlz2 elvp 0 Z.JW,F7 + MHV fyqu n
Det(g+M) 2\ i, 7 — M, 0
; 0 PO, + PO
+ YYzozi2o ) [ ] + [ ] F135\If — U
Det(g+M) \ P[QT, + P[Q)T_ 0

The chiral projectors I'; 4 are defined in (2.112) and we also introduce concise no-
tation for the contraction

Pl = %P[Q]W | (3.11)

Since ['4¢ are linearly independent over R and can not be expressed through

P, ", T35, T'izs* and I'4Y* we have
a—>b"1

2 QEWP (_'qu + M;W) Y =0, (3.12)
1
a+b*1 .

5 56‘” P(4idy + M)y, =0 .

Now, since a £ ib # 0 we have P[J] £iM =0 or
P[] = M, = 0. (3.13)

This is the first condition of k-symmetry: the magnetic field should vanish and the

3-cycle X is a special Lagrangian submanifold.
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Now the k-symmetry equation simplifies as follows

: 0 PIQT, + PQT_
[0 = Jzzies i T+ P 1oy = U . (3.14)
VvDetg \ PQIT, + PQIT'_ 0

Both chiral components of ¥ lead to the same equation
P[0
v/ Detg

We have also used here that the coefficients a and b are real and pure imaginary

Yaowras 1359 = 10" (3.15)

respectively. This equation leads to the following constraints

|P[Q]] = /Detg , (3.16)
f)/xozlmgFlQSl/} - €i¢¢* 9 (317>

with phase ¢ being related to the argument of P.[(2]. The latter constraint (3.17)
should be understood in the following way: it is an equation on (~, a four-dimensional
part of the spinor 1, which specifies SUSY generator in gauge theory. This equation
can be solve for any ¢ preserving the half of unbroken SUSY. Since (™ is constant
so should be ¢ i.e for the D5 to be BPS the argument of pull-backed holomorphic
form P,[(2] should be constant along the 3-cycle X.

Now we are ready to summarize the BPS for D5 brane (compare with BPS con-
dition for Euclidean D2 wrapping 3-cycle in ITA theory [52]). The magnetic field
and pull-back of pseudo-Kéhler form should vanish (special Lagrangian condition
3.13). Induced volume should be equal to the modulus of the pulled-back holomor-
phic form (3.16). The pull-back of holomorphic form should have constant phase on
¥ (3.17). It turns out that these constraints can be formulated in an elegant form

of calibration condition which is discussed in the next subsection.

Calibration condition

We would like to formulate calibration condition which would coincide with kappa-

symmetry constraints upon saturation.
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First, we start with inequality

v/Det(g + M) > \/Detg , (3.18)
and notice that it is saturated if and only if M,, = 0. This is because

Det(g + M) = Detg + ¢, M*M" |
1

M* = 56"””]\/[1,,, , (3.19)
and induced metric g, is positively defined.
Second, we would like to prove that
EHVA
/Detg > i PQ)ua| (3.20)

and saturation requires J,, = 0. It is convenient to work with complex veilbeins

Gy = Gor_1 +1iGy, I = 1,2, 3, which diagonalize metric, 2, and J (2.106,2.107)
Q = Gl VAN GQ AN Gg 5 (321)

i _
Jzﬁz;@m@[. (3.22)

We can use the freedom of choosing special coordinate system (! (o#) on the part

of D5 world-volume wrapping ¥ such that the induced metric
G =Y 0" 07", (3.23)
I

is diagonal g¢,, = d,, in a given point. It is convenient to think about d,¢’ as

complex vector in C3. Let us introduce three vectors X!, Y’ Z as follows
ol = X1 ! =Y, O30 =2, (3.24)

In these terms the pullback of €2 is given by the determinant

chvp .
Pe[Q] = ?P[Q]W,p = Det{2 s (325)
Xt vyt 7t
Q= x2 y2 22 |, (3.26)

X3 v 73
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and the condition g, = 0, is

XP=YP=|2F=1, (3.27)
RY+X) = R(ZTY) =R(XTZ) =0, (3.28)

Now we can use SU(3) which acts on index I and leaves metric, J, and §2
invariant and bring X! to the form |X!| =1, X? = X3 = 0. Then the “unbroken”
SU(2) which preserves X’ can be used to cast Y7 in the form |[Y?+|YV?? = 1,Y? =
0. This will simplify the form of DetQ) = X'Y2Z3 and

|P[Q]| = |X'Y?Z% <1 =+/Detyg . (3.29)
The inequality (3.20) is proven. The saturation condition |Y?| = |Z3| = 1 requires

Y! = 7' = 72 = 0. This condition can be written as
%(Y+X) = %(Z*Y) = %(X+Z) =0. (3.30)

Together with (3.28) the equation (3.30) in covariant notations is nothing else but
the special Lagrangian condition P[J],, = 0.
At the last step we need to accommodate the constancy of phase ¢ via a satu-

ration of inequality. This is easy to do by taking integral of  over ¥

/EIQ|Z /EQ‘ : (3.31)

The same result can be archived by multiplying €2 in (3.31) by any real-valued func-

tion. By choosing this function to be e34~¢ we make right-hand-side independent
on ¥ as it depends on its cohomology class only (see (2.132)).
Eventually we have that the tension of D5 wrapped over X

/Z Q’ (3.32)

is calibrated by the closed holomorphic form (here we also neglected overall coeffi-

Tps = / e*~Det(g + M) >
%

cient in front of DBI action). Hence it does not depend on embedding cycle 3, but
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only on its cohomology class. This is exactly what one would expect for the tension
of BPS object. Later we discuss a similar result for SUSY D7 wrapping 4-cycle ¥4
in M in section (4.2).

Tension of D5 wrapping S® at the tip

The calibration condition (3.32) derived in above suggests that only the smallest 3-
cycle potentially gives rise to the BPS embedding. In the case of deformed conifold
geometry the smallest nontrivial 3-cycle is the S* at the tip. Now we are going to
show that the calibration condition is saturated by this choice for all values of U. It
will also imply that the tension is constant along the branch as the form € in (3.32)
is U-independent.

Since the NS-NS field B, (2.85) produces no flux through any 3-cycle [, Hz =0
one can always choose induced gauge field to vanish M = P[B] + dA;. In the case
of S? at the tip this is even easier to do since By = 0 at t = 0 and A; vanishes as
well.

Now, the tension of D5 is given by e*4=¢(¢ = 0) multiplied by a geometrical size

of S3. Expanding metric (3.3) near the tip

Sy = v7'e"|,_ (g5 + (er + &) + (e2 + €2)*) + O(t) (3.33)

=0
we recover 5% with radius R = 2 0*1/26$/2‘t:0 (compare with (2.78)). The corre-

sponding volume Vol(S?) = 27 R? and the tension
Tps =8 v 22301352 _ ox® (3.34)
To integrate Q over S® (2.75) we need to fix two of five angular coordinates. A

convenient choice , = ¢ = 0 reduces Q to

Q = v 1/2e3A70+3/2 dip A dby A sin6,do, (3.35)

t=0

sinh(t)
and the integral

/ Q= 0v32PA0H22) Up 2% 2m =Tps | (3.36)
53

t=0
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because Fﬁ(t) = 1. Now we substitute expression for ¢ (2.135) and expand the
t=0

result near t =0
Tps ox 67321672 . (3.37)

The answer is U-independent as it already follows from (3.36).



3.2. Baryonic condensate and Euclidean D5-brane 56

3.2 Baryonic condensate and Euclidean D5-brane

In this section we consider Euclidean D5-brane dual to the baryon operator in gauge
theory and calculate the baryonic condensates. This section is based on paper [53],

written in collaboration with M. Benna and I. R. Klebanov.

3.2.1 Euclidean D5-branes and baryon operators
Baryonic operator and gauge/string duality

In section (2.3.2) we have reviewed the BGMPZ family of solutions and discuss its
duality to the baryonic branch of the gauge theory. This conjecture was supported
by consideration of the BPS domain wall in section (3.1.2). In this section we would
like to elaborate on the duality and establish the relation between the moduli in field
theory, ¢, (2.59) and parameter of BGMPZ solutions U from the section (2.3.2). One
can use U(1)paryon to set the phase of ¢ to zero, and from now on we assume ¢ = |(|
is real. Then the Zy symmetry Z can be used to identify the “origin” of the branch,
the KS solution, on both sides of the duality. As follows from (2.60,2.128) the KS
solution corresponds to ( =1 < U = 0. The semiclassical consideration of operator

U (2.129) suggests the naive relation [14]
U ~log|¢| ~ k(k+1)M(ICP* = |C|72) ~ k(k + 1) M (|¢|Fm07 — |¢|Fwrw) (3.38)

This relation is based on classical form of A;, B; (2.54) and does not include quantum
corrections. To find quantum analog of (3.38) we consider a baryon vertex dual to
the baryon operators A, B and calculate expectation value ¢ on gravity side.

Unlike the di-baryons of conformal SU(N) x SU(N) [9, 54] the baryons of in
the cascading N ~ kM theory are singlets under SU(2) x SU(2). Therefore, the
natural candidate for the string theory dual of baryon operators (2.56) is the D5-
brane wrapping the base of the conifold at large radius r [29].
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The calculation of expectation value (A) may be done in the following way.
First, we calculate two-point correlation function (A(x1).A(z2)) and then factorize
correlator by separating the points |x; — 29| — oo. In the semi-classical approach
to the AdS/CFT correspondence the two-point function is given by the Euclidean
D5 world-volume stretching between base of the conifold at large r at x; and xs.
If 1 and x5 are sufficiently separated from each other the D5-brane in the middle
tends to the region of small size which is located at small radius r. After separating
r; and zy by infinite distance the factorization occurs (A(z1)A(z2)) ~ (A)? and
we expect the solution to consist of two pieces, each interpolating between the
base of the cone at large radius and smoothly wrapping the conifold at the tip.
Therefore the expectation value of the baryon operator can be measured by an
Euclidean D5-brane with world volume wrapping six-dimensional conifold M and
which is point-like in Minkowski space [55]. This object has a single 7% boundary
at large r, corresponding to the insertion of just one baryon operator. The non-
zero expectation value of baryon operator does not break supersymmetry. Hence
the D5-brane in question also should be SUSY and satisfy appropriate sk-symmetry
condition. This requires non-trivial induced gauge field A; on the D5-brane i.e. the
D5 will have D3-branes dissolved in it [29].

The geometry of embedding is fixed as the Euclidean D5 completely covers the
deformed conifold M. Therefore, the only uncertainty is related to the induced
gauge field A;. Since the baryon vertex has to be SU(2) x SU(2) invariant, so

should be A;. This leaves us with a very restrictive ansatz

Ay =((t)gs (3.39)

with only one unknown function ((¢). We will find two solutions { = (45 with
appropriate behavior at infinity, which correspond to the two baryon operators A, .
The Chern-Simons term is pure imaginary after turning into Euclidean space, and

the corresponding equation of motion should be satisfied independently of the DBI
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part. The ansatz (3.39) extremises and actually vanishes the Chern-Simons term
for any ((t). Therefore CS term is not important for our consideration and we
drop it from our analysis from now on. In fact, it can be shown that the CS term
describes the coupling of baryon vertex to the Goldstone boson of spontaneously
broken U(1)pgryon- In this way it is responsible for the U(1)pgryon charge of the
baryon vertex. The anti-baryons A, B are given by inverting orientation of the D5-
brane. This changes the sign of CS term and inverses the charge under U(1)paryon
[53].

According to the AdS/CFT correspondence the expectation value of an operator

O is given by the coefficient ®¢ in the expansion of dual field O near the boundary
O(r) = por2o™ + dpr 2o . (3.40)

The source term ¢ is the coefficient of leading asymptotic which diverges according
to the dimension of operator Ap. To calculate expectation value ®» one needs to
subtract the divergence. In the cascading theory, which is near-AdS in the UV, the
same formulae hold modulo powers of Inr [56, 57]. The baryon vertex is a brane
and the corresponding field O at the semi-classical level is given by the classical DBI

action Sps(r) of the D5 ending at radius r
O4(r) ~ e~ Spslar] (3.41)

We will find action Sps(r) being divergent at large r providing the information about
dimension A 4. After subtracting the divergent part we will be able to calculate (.A)

as a function of U.

3.2.2 Bogomolny equation for Euclidean D5-Brane

Now we would like to formulate the x-symmetry condition for the Euclidean D5-
brane. The original k-symmetry projector (2.139) was derived for the Lorentzian

brane in (9,1) signature spacetime. Therefore, it is not immediately clear how to
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apply it to the Euclidean objects like D5 in question. The naive prescription is to
Wick-rotate the k-symmetry projector by introducing factor —i in (2.139) such that
', is hermitian and I'? = 1 holds.
The x-symmetry condition for Euclidean D5-brane is then given by
(Z) =T, (2) ~ [(F + F) + (1 + F?) 03] 02 T 123456 (2) . (3.42)
The analysis of this equation can be simplified by noting that I'; gi)* = Fib* and

that the spinors 1* are in fact eigenvectors of JF"

For = 2i* (Fio+ Fau+ Fog) | (3.43)
]ﬂwi = —wi (f12f34 + FraFoz + FioFse + f34f56) ) (3'44>
jtgwi = :FZ'Qﬂi (f12F34F56 + f14f23«/f56) ) (345)

where the indices refer to the basis one-forms (2.105). Using these expressions and
the ansatz (3.39) for the gauge field, the two terms in (3.42) can be written in a

simple form

1+ F]v* = [a+ve™b¢]v™,
[(F+Fly* = Li[-b+ve " al] ™, (3.46)

with

a(é,t) = e ¥[e* + hysinh®(t) — (€ +x)7] ,

b(&,t) = 2e " Isinh(t)[a(€ + x) — ha(1 + acosh(t))] . (3.47)

Using the expression (2.141) for Killing spinor we find

e*b
=, 3.48
g= (3.48)

The calculation above can be done in an elegant way without extensive use of

gamma-algebra. It is just enough to notice that the equations (3.43-3.45) can be
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used to rewrite k-symmetry condition (3.42) in the geometrical terms

1 1 1 1
EJAJAF—ngFAf:g(QJAJAJ—EJAFAF>,
FX=0.  (3.49)

The dependence on Killing spinor here is accommodated through the fundamental
form J (2.107) and function g which can be expressed through a, b.
Now, the gauge field F = By + dA; from the ansatz (3.39)
e
Fo= 2sinh(t) % (3:50)
[eg [é(cosh(t) + 2a + a? cosh(t)) + hy sinh?(¢)(1 — aQ)} (G1 + iGa) A (G — iGa)

+ ef [gcosh(t) — hy sinh2(t)} (G3 +1iGy) N (G3 —iGy)
+ &vsinh(t)(Gs + iGe) A (G5 — iGg) + [é(l + acosh(t)) — haa sinh2(t)]

((Gl + ng) A (Gg — ’LG4) + (Gg + ZG4> N (Gl - ZGQ)):| )

is obviously of (1,1) type and second condition of (3.49) is satisfied. The relations
(3.46) admit geometrical formulation
1
3!
%JAJNF—%fAfo7: (—=b+ve *a&’)volg , (3.51)

1
JAJAJ—EJAFAf': (a4 ve b &) volg ,

1
gJ/\J/\J = VOlﬁ,

and together with (3.49) this immediately leads to the equation for &’

¢ = e*(ga+b)
~ v(a—gb)

For the Euclidean D5-brane g = 0 and we return to (3.48).

(3.52)

r-symmetry and equation of motion

The k-symmetry equation (3.52) has meaning of Bogomolny equation i.e. it should

solve the equation of motion coming from DBI action (we have dropped trivial angle
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dependence)

SDBI :/ €7¢\/Det (g—i—]:) y (353)
M

Det (g + F) = v 2% (1 + v ") (a® + b?) . (3.54)

The equation of motion can be simplified by use of (3.52)

% [e‘¢\/det(G + F+ B)] =0=

2e %e?*\/1 + g2

o(a = gb) [— (& + x)e "a+ e Yasinh(t)b]

o d [ed’eh(ga—{— b)
dt v1+g?

One can use (3.52) once again after differentiating last term in (3.55). Then the

}(3-55)

equation of motion reduces to some third-order polynomial in £ which should vanish.
Hence each of four coefficients in front of 1,..,¢3 should be zero. This does not
happen for g = 0 and we have to conclude that the naive prescription for the
“Fuclidean” k-symmetry does not work. In fact it can be shown that the equation
(3.52) with g = 0 solves the equation of motion for D7-brane with DBI action
modified by an extra e~? multiplier. It will be interesting to better understand this
relation.

Nevertheless there is another candidate for k-symmetry condition for the Euclid-
ean D5. It is the conventional x-symmetry condition for Lorentzian D9-brane cov-
ering both Minkowski space and conifold M!. Extra four dimensions in Minkowski
space add T'z, ., to (3.42). This does not affect the form of (3.49) but changes g.

The new g is given by

a?+b? e?
9=85 =iy = (3.56)

The new g solves equation of motion (3.55) and confirms that (3.52) with (3.56) is

the Bogomolny equation for the Euclidean D5-brane. We proceed with the analysis

of equation (3.52) with g = g5 in the next section.

L Author is grateful to L. Martucci for suggesting this.
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3.2.3 Calculation of baryonic condensates
Euclidean D5-Brane along Baryonic Branch

In this subsection we are calculating the dependence of the baryon expectation value
using supergravity solutions. All supergravity backgrounds dual to the baryonic
branch have the same asymptotic [14] and we will see that all divergent terms
(cubic, quadratic and linear in ¢) in the asymptotic expansion of the action are U-
independent. This implies that the scaling dimension of the baryon operator does
not depend on U, in agreement with the field theory expectation. However, the
finite term in the asymptotic expansion of the brane action does depend on U. This
provides a map from the one-parameter family of supergravity solutions labelled

by U to the family of field theory vacua with labelled by baryon expectation value
¢~ (A).

Solving for the Gauge Field and Integrating the Action

We proceed with the expression for & (3.52) and g (3.56)

,  €(ga+b) e?
_ ’ e 3.57
v(a — gb) g V1 — 26 ( )

This equation admits integrated form

1 + acosh(t)
hysinh(t)e? 9 . 19 9
=— * | b2 sinh?(t) —
v(1 4 acosh(t)) (€7 4 by sinh™(1) = X7 +

1 + a cosh(t)
2¢%* sinh(t)
ved

lax — ha(1 4+ acosh(t))] .

. 19 i h2
i[_ %gs N (M _ x) &4 (e% — h2sinh’(t) — \* + Mx) 6]

(3.58)
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For notational convenience we define

£ = £+x, (3.59)
_ ahysinh®(t)

A = 1+ acosh(t) ’ (360)

e*” — h2sinh?(t) , (3.61)

&
—~
~+
~—  ~—

" hgsinh(t)e? ., .
- /0 [U(l —{—acosh(t))[6 iy st (¢)]

N 2¢* hy sinh(t)(1 + a cosh(t))
ved

— [e** — h3 sinh%t)]x’} dt , (3.62)

which allows us to write (3.58) more compactly

Sl 38 + 2@+ BOE+ o) =0 (3.63)

Thus the solutions for the shifted field é are given by the roots of the third order
polynomial

—%?+m@%ﬁ+%@£+mwzcm (3.64)
where C' is the integration constant.? To fix it, we consider the small ¢ expansion,

which is valid for any U

A ~ t+0), (3.65)
B ~ 2+01Y, (3.66)
p ~ t+0Oh. (3.67)

Note that at ¢ = 0 all coefficients in (3.64) vanish, except the first one; therefore,
the integration constant C' has to be zero for this cubic to admit more than one real
solution. Then we find that € = 0 at ¢ = 0 for any solution on the baryonic branch.

Let us examine the cubic equation (3.64) more closely in the KS limit U — 0. We

see that a — and therefore (1+ a cosh(t)) vanishes. For small U [30, 14, 13]

1
cosh(t)
(14 acosh(t)) =27°2UZ(t) + OU?) (3.68)

(t — tanh(t))
Z(1) = Gh() cosh(t) = 1)1

(3.69)

2This equation is quite general; it does not assume 1 = 1 that characterize the baryonic branch
as discussed in section (2.3.2).
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In this case 2 and the first term in p diverge as U~!. All other terms can be dropped
and we have instead of (3.63)

~, ahy sinh? () /t p hy sinh(t)e?
0

Z(1) oZ() ¢ T hasinh(®)] =0, (3.70)

or infinite &. After substituting the KS values for a, v, ho, x we find

€2 = (sinh(t) cosh(t) — t) "3 J(t) , (3.71)
where
b (sinh?(x) h(x)  sinh®(z)(x coth(x) — 1)?
) = /0 < 24 N 6 (sinh(z) cosh(z) — x)2/3> de. (372)

While it would be desirable to obtain a closed form expression for the integral
p(t) in order to evaluate £ explicitly, this appears to be impossible, since even in the
KS case we cannot perform the corresponding integral J(t).

Evaluating the DBI Lagrangian on-shell using (3.57) we find

—¢ 3z 1 2 (2 2
e\ /det(G + F) = = QS}QT*E), (3.73)

where we have taken the absolute value since the sign of a — gb will turn out to
depend on which root of equation (3.64) we pick.

For the baryonic branch backgrounds we can show that the action is a total
derivative. First note that the DBI Lagrangian (3.73) can be rewritten in the form

37 (ga+b)%+ (a — gb)?
e ?/det(G+ F) = ¢
VIHGHR) = S5 @ Ja-ab

e (1 + a cosh(t))
vhg sinh(t)ed

[ve "¢ (ga+b) + (a —gb)]| , (3.74)

where the right hand side is now cubic in ¢ (and its derivative) much like the
differential equation (3.57). In fact, substituting for a, b and g = g5 this equation

can be integrated in the same manner, which results in the action

S=|- %53 +CEE+D()E+0(t)| , (3.75)
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with €, %, o defined as

e**a (1 + acosh(t))

- 3.76
¢ h2€2g ) ( )
D = [e* + hysinh®(t) + 2¢*(1 + acosh(t))?e™] , (3.77)

" Te?(1 +acosh(t)), o, o
" _/0 { vhy sinh(t)ed [e*" — hasinh™()] + (3.78)

[€*® + h2sinh?(t) 4+ 2e**(1 4 acosh(t))?e 9]\ |dt . (3.79)

Again the ¢-independent term is an integral, that we denoted by o(¢). Thus we
have a fairly explicit expression for the action involving two integrals: p(t), which
appears in the equation for £, and o(t).

Although the leading UV asymptotic of £ and €,9,0 may depend on U the
t-dependence is universal. Therefore the rate of UV divergence of action (3.75) is
the same for any solution along the branch. The two solutions with asymptotic of
(3.71) correspond to the baryons A and B. Although the action diverges, the diver-
gence log®(r) ~ t3 is logarithmical and can be interpreted in terms of holographic
renormalization group [53]. We will return to this point later in the next subsection.

The third solution of (3.63), which is divergent in the KS case, produces a badly
divergent action and is therefore unacceptable. Restoring the —&*/3 term in (3.70)

we see that in the GHK region U — 0 the third solution is simply

¢ —22(/]3 3 (cosh(t) sinh() — )3 + OU) . (3.80)

The value of the Lagrangian in this case is

det(G+ F) = % sinh?®(t) + O(U?) . (3.81)

This expression can be used to extract the leading UV asymptotics of the Lagrangian

for any U as the UV behavior is universal for all U:

Vdet(G+ F) — %e% . (3.82)
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Since the action for the third solution diverges exponentially at large ¢ it does not
seem possible to interpret this solution as the dual of an operator in the same sense

as we do for the other two solutions.

Baryonic condensates

We shall now study the D5-brane action (3.75) in more detail. First we develop
an asymptotic expansion of the action (3.75) as a function of the cut-off. This
expansion is useful because the divergent terms give the scaling dimension of the
baryon operator, while the finite term encodes its expectation value.* Then we
present a perturbative treatment of small U region followed by a numerical analysis
of the whole baryonic branch. The main result of this section will be an expression
for the expectation value ( as a function of U.

To calculate the baryonic condensates we need asymptotic behavior of 2,8, p
and €, for large t. Notice that since for any U the solution approaches the KS

solution at large ¢, the terms divergent at U = 0 are UV divergent as well:

e2t/3

Ao+ O(e”2/3) | (3.83)
B — Ot?) (3.84)
P (e T, 4T, 0(1) (3.85)

— — -1"— = — .

P U \4 T8 32 ’

¢ — O(e7 23 | (3.86)
Y (R I O(e~1/3) (3.87)

4 8 32 ‘ '

From the expansion for 2, B, p we find that at large ¢ the gauge field £ grows linearly

with ¢ and approaches the KS value with exponential precision

B 1 4 1/2
Et,U) — + (Zt2 - gt + 3—;) + O(e”2/3) . (3.88)

It is crucial that the dependence on U in (3.88) is exponentially suppressed.

3A systematic procedure for isolating the finite terms is holographic renormalization [58, 59].
Here we employ a naive approach and leaving a rigorous justification for the future work.
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Since € is exponentially small and the leading term in ® is U-independent we

can explicitly express the action (3.75) in terms of o:
Sy(U,t) = A(t) £ o(U, t) + O(e 2/3) | (3.89)

where A is given by

1 1, 7, 471\"?
At) = 6(752 +t—2) (ZtQ — gt + 3—2) , (3.90)
and encodes the UV divergent part of the action
1~ .
‘—553 + @(t)ﬁ‘ = A(t)+O(e72/3) . (3.91)

The power divergence of action (3.90) has clear interpretation in terms of holographic
renormalization group. The dimensions of operators A4 g(r) are related to the

divergent action S(t) in the UV

~dSy
~ dlogr

A_Aﬁ(’l“) y (392)

with r related to t in (2.65). After restoring o’ and g;M, and taking into account

the prefactors, the action Si can be rewritten as

9g2 M3
S, = 2Is
7 16n2

log®(r) + O(log?(r)) . (3.93)

After differentiation in (3.92) and matching radius r to the k-th step of Seiberg

duality (k) = roexp (i}’;ﬁ) we recover the answer

3
Aap = Mk(k+1), (3.94)

which also follows from a naive field-theory analysis [53]. This confirms that our
construction of baryon vertex indeed describes the baryon operators.

Now we proceed with (3.89) and argue that the two signs stand for the two
baryons A and B. Actually we will show that the baryonic branch constraint,

(AY(B) = const, follows from this interpretation. As was mentioned in section
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(2.3.2), the Z-symmetry which exchanges the A and B baryons is equivalent to
the changing of sign U — —U. Our explicit expression (3.89) confirms that an

exponential precision

S (Ut) = S_(~Ut), (3.95)
S(Ut) = S.(~Ut), (3.96)

since o(U,t) is antisymmetric in U according to the arguments presented around
(2.127). In order to find the expectation value of the baryons we evaluate the action
(3.75) on these solutions and remove the divergence by subtracting the KS value.
The expectation values hence are given by exp[— lim;_,o, S7(&1,2)], where S denotes
the finite part of the action. It is simplest to work with the product (normalized to

the KS value) and ratio of the expectation values. The former is given by

% = lim exp [S,. (U, 1) + 5-(U, 1) = 25(0,¢)] (3.97)

where we have used the fact that the two solutions coincide in the KS case because

o = 0. It follows from (3.97) that
(ANB) = (A)ks(B)ks (3.98)

which corresponds to the constraint AB = —A3} in the gauge theory. The ratio of

the baryon condensates is given by

(A . e 20
B tll)rglo exp [S+(U,t) — S_(U,t)] = tlirgloe , (3.99)
log(A) ~ tlirglo a(t) . (3.100)

Unfortunately o can not be calculated analytically. However, this integral can
be evaluated numerically. In the small U region of GHK [30] the answer is linear in

U

lim o(t) ~ 3.3773U + O(U?) , (3.101)

t—o00
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Figure 3.1: Plot of numerical results for the O(t°) term in the asymptotic expansion

of the action versus U. The slope at U = 0 matches the value calculated from
(3.101). The baryon expectation value (A) ~ (B)~! in units of A2}/ is given by the
exponential of this function.

The numerical result for the rest of the baryonic branch is more complicated . We
present it in the form of the plot shown in Figure 1. Since (A) ~ ( this plot provides
a map from the SUGRA modulus U to the field theory modulus (.



Chapter 4

Nonperturbative superpotential in

the D3-D7 system

This chapter is devoted to the calculation of nonperturbative superpotential on a D3
brane due to gluino condensate on a stack of D7-branes. The main results, presented
in this chapter were initially obtained in the work [68], written in collaboration with

D. Baumann, I. R. Klebanov, J. Maldacena, L. McAllister, and A. Murugan.

4.1 Warped throats and moduli stabilization

Warped throat compactifications in String Theory

The warped throat compactifications provide an appealing mechanism to introduce
the techniques of gauge/gravity duality into the scenario of string compactifications.
The idea is to consider a compact Calabi-Yau manifold with some conic singularity
and internal fluxes. Then, in the vicinity of the singularity the background will
not be far from the infinite throat solutions discussed in Chapter 2 and 3. At high
energies, however, the gauge theory on the stack of branes will feel the bulk of
the Calabi-Yau. This corresponds to the coupling of the low-energy effective field
theory to four-dimensional gravity modes. Such a warped throat scenario provides

a convenient mechanism of splitting the field theory and gravity scales and resolving

70
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the hierarchy problem.

There is evidence that singularities like (1.3) generally appear when the moduli
of the Calabi-Yau are varied [16]. Therefore, the field theory on the D3-brane placed
at the singularity can be a natural prediction of string theory.

Another strong advantage of warped throat compactifications is that the dynam-
ics of string theory on the throat is controllable. Unlike the metric in the bulk of the
Calabi-Yau the metric in the throat is known explicitly. Moreover, for sufficiently
large flux the curvature is small everywhere on the throat, thus providing reliable

supergravity approximation.

Nonperturbative volume stabilization

The key issue for the compactification scenarios is to assure that all massless moduli
are fixed dynamically . For that reason one needs the non-trivial fluxes to generate
a moduli-fixing potential.

All moduli may be divided into three major groups: the Kéhler moduli p, re-
sponsible for the “sizes” of the Calabi-Yau; the complex moduli x, responsible for
the complex structure, and the dilaton-axion modulus.

The Gukov-Vafa-Witten flux induced superpotential [60]

Wiux () = /G3 AQ =W, , (4.1)

stabilizes the complex structure and the dilaton-axion. Nevertheless the Kahler
moduli are not fixed in this way. This problem can be solved by embedding D3-
D7-branes into an orientifold of the IIB theory. The gauge theory on D7 develops
nonperturbative superpotential through gluino condensation. It is dependent on
Kéhler moduli and hence can lead to their stabilization [61].

For simplicity let us consider a model with one Kéahler modulus p. Then the

nonperturbative superpotential is expected to be of the form [61]

Wap(p) = A(x)e™ ™. (4.2)



4.1. Warped throats and moduli stabilization 72

The pre-exponent factor A() is a holomorphic function of the complex structure
moduli x = {x1,...,xn21}. Later we will see that it also depends on the details
of the D3-D7 system such as location of the D3-brane. The factor A arises from
the one-loop correction to the nonperturbative superpotential. It is a threshold
correction to the gauge coupling on the D7-branes. The a is such that ap is volume

of the four-cycle wrapped by D7-brane.

KKLT scenario

Now we are going to discuss a simple scenario of Kéahler moduli stabilization [61]
in some detail. To simplify our considerations we either assume that the D3 brane
is fixed or consider the system without mobile D3 branes. In this case the full
superpotential W is the sum of the constant flux term W at fixed complex structure

X» and the nonperturbative term Wy,
W =Wy + Ae™ . (4.3)

The Kéhler modulus p is fixed dynamically through the minimization of F-term

potential Vg
Vi = 5K [KPPD,WD,W — 3:2|W 7] , (4.4)
where the Kahler potential K is
KAK = —3log (p+p) . (4.5)
The minimum of the potential (4.4) is determined through the equation [61]
aalpF ; =0 & @e“w = gapp +1, (4.6)

and the value of the potential at the minimum is negative

6720‘pF

Vkkrr = —2 (4.7)

apg
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To match positive vacuum energy observations, the KKLT potential (4.7) should be
uplifted. One particular way to do that is to place an anti-D3 at the tip of the cone

[18], although it can be done in a variety of ways.

Mobile D3 brane

In the discussion above the D3 brane was assumed to be fixed. Nevertheless the
location of the D3 X is not fixed and actually enters the effective potential of the
theory on the D7. In fact the mobile D3 is not a difficulty but a big advantage of
this setup. Typically after adding the mobile D3-brane the Kahler moduli remain
stabilized. At the same time, the location of D3, X, is not massless yet the mass
is generally much smaller than the Planck scale. Therefore the location of the D3
is a promising candidate for the inflaton field [18]. We elaborate on this scenario in
chapter 5. In this chapter we merely focus on the nonperturbative superpotential
(4.2) and discuss how it depends of the D3-brane location X. The answer we yet
have to derive can be written in the form A(X). We find A(X) explicitly in this

chapter.

The model

Our model consists of N; D7 branes wrapping a cycle >4 in the compact Calabi-Yau
and a mobile D3-brane. The D7-branes are embedded supersymmetrically and their
location as well as the holomorphic moduli are fixed due to flux induced potential.
The Kahler potential is fixed dynamically according to KKLT scenario as outlined
above. To make the dynamics controllable and to work at energies well below the
Planck scale we assume that the D3 is located in the warped throat, which is a part
of the Calabi-Yau. The warped throat in our consideration will be approximated
by a warped deformed, warped singular conifold or any other known non-compact
conic Calabi-Yau. This assures that the Kihler potential k(X, X) is known. The

probe D3 will move along the conifold toward the tip, i.e. the low-energy region.
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This goes along with the interpretation of its position X as the inflaton field.

To be able to calculate A(X) we assume the cycle ¥4 significantly stretches inside
the throat. The D3 backreacts on the D7 via a small deformation of the geometry.
This deformation rapidly decreases with the distance. Therefore the D7 placed in
the bulk would not feel the D3 and we would return to the original KKLT proposal.
The same argument suggests that if the throat is long enough the X dependent
part of W, will come solely from the throat region. That is why the problem of
calculating A(X) admits an explicit solution. To this end, we need to consider an
infinite throat solution like those from chapter 2 and calculate A(X) in this case.
This answer is an exact answer for the non-compact scenario!. The embedding of the
D7 should be SUSY such that the D7 does not experience any force and is immobile
in the infinite-throat approximation. This implies that the associated four-cycle >4

is holomorphic. Other restrictions on >4 will be discussed in the next section.

4.2 Nonperturbative superpotential and Green’s
function method

Warped volumes and the superpotential

The nonperturbative superpotential W, discussed in the previous section (4.1) de-
pends exponentially on the warped volume of the associated four-cycle 4. It governs
the gauge coupling of the gauge theory on D7-branes. To see this, consider a warped

product of Minkowski space with the throat M
ds? = hV2(Y ) nada®da® + B2 (Y ) grdY'dy ™ . (4.8)

Here Y and g;; are six coordinates and the unwarped metric on M.

!There is a subtlety related to holomorphicity of A(X) in the non-compact case. It is briefly
discussed below in section (4.2.1). More details can be found in [68].
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The Yang-Mills coupling g; of the 7 + 1 dimensional gauge theory living on a
stack of D7-branes is given by

g2 = 2(2m)°gs(a/)?. (4.9)

The full D7-brane action (2.136) is

: 1
2 d*z d*¢e=?\/—Det(Gind + F) + e / eF NC . (4.10)
7R371><E4 7R371XE4

The magnetic field F is a sum of the pull-back of NS-NS form P[Bs],, on ¥, and
the induced gauge field dA; along ¥4, F,, and along Minkowski space Fg;. The

1/2

induced metric G™? consists of two parts: the metric h='/2n,, along R*! and the

ind

v on 24.

induced metric h=/2¢

In the absence of the magnetic field along 34, F,, = P[Bs],,+F,, = 0, the action
can be significantly simplified. The Cherns-Simons term vanishes and the DBI term
can be decomposed into two corresponding to >4 and to Minkowski space. The

latter

/ d45(3 \/h_l/QT]ab + Fab , (411)

R3.1
can be expanded in powers of Fy;, leading to the following effective action for the
gauge fields on D7-branes
1 .
Sym =~ [ d*¢\/gmih(Y) - / d*zTr F2. (4.12)

2
297 I
R3:1

The key point here is the appearance of a single power of h(Y') [62]. Defining the

warped volume of Y,

VE4E/2 d*¢/gind h(Y) (4.13)

and recalling the D3-brane tension

1

5= g

(4.14)
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we read off the gauge coupling of the four-dimensional theory from (4.12):

| VA 1 VA
— =—=t= - (4.15)
9 97 8m

In N = 1 super-YM theory, the Wilsonian gauge coupling is the real part of a
holomorphic function which receives one-loop corrections, but no higher perturbative

corrections [63, 64, 65]. The modulus of the gaugino condensate superpotential in

SU(Npr7) super-YM with ultraviolet cutoff Ayy is given by

1 8x?
[Whp| = 1672 A3y, exp(——i) x exp(—

T;),fo1
Npr g¢* ) '

4.16
N, (4.16)

The mobile D3-brane adds a flavor to the SU(Np;) gauge theory, whose mass m
is a holomorphic function of the D3-brane coordinates. In particular, the mass
vanishes when the D3-brane coincides with the D7-brane. In such a gauge theory,
the superpotential is proportional to m!/Np7 [66]. Our explicit closed-string channel

calculations will confirm this form of the superpotential.

Corrections to the Warped Volumes of Four-Cycles

The displacement of a D3-brane in M creates a slight distortion of the warp factor

Oh(Y') which now becomes dependent on the location of the D3-brane X
h(Y) — h(Y) 4+ 6h(X;Y) . (4.17)

At leading order the metric and other fields remain unchanged [62]. The correction

to the warp factor affects the warped volumes of the four-cycle

SV = / A4/ (€) 6h(X Y (6)) (4.18)

By computing this change in volume we will extract the dependence of the super-
potential on X. In the non-compact throat approximation, we will calculate JVi¥,
explicitly, and find that it is the real part of a holomorphic function {(X). Its imag-

inary part can be determined by the integral of the Ramond-Ramond four-form
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perturbation 0Cy over Y4 although we are not doing this calculation here. In the
conical examples considered in this thesis the holomorphic function ((X) can be
deduced from its real part (4.18).

In the compact case, 0V5 is no longer the real part of any holomorphic function.
Instead it acquires a non-holomorphic piece, which can be combined with the gauge-
invariant Kahler modulus such that the full answer is the real part of holomorphic
function. This observation solves the ‘rho-problem’ of [67] and confirms that the
X-dependence of the superpotential (4.16) in the compact case coincides with the
non-compact result, provided that the D3 is located far from the compactification
region [68].

The nonperturbative superpotential (4.16) generated by the gaugino condensa-
tion can be rewritten in the following form [61, 18]

T3 C(X))e—ap.

Wop = A(X)e™ = Ay exp(—N—D7

(4.19)

The unknown constant Ay depends on the values at which the complex structure
moduli are stabilized, but is independent of the D3-brane position. The Kahler

modulus p depends on the unwarped volume of >, and is fixed dynamically.

Effects of induced magnetic field

Our result (4.19) for the X-dependent part of the superpotential (4.16) is based on
the assumption that the magnetic field F,, along ¥, vanishes in (4.10). Now we
will show that this result is actually correct for the supersymmetric D7-brane even

if ,, # 0 [69]. For that reason we need to restore F,, in (4.12)

' 2 -
Det (hl/zgmd +F) = <h [gind Pf]:) + h(P[J] A F)2pss (4.20)

nv

and in the CS term

—
Q]

'ﬂ
>
Q
I

|

;/h‘l(Y)fAf / d*z . (4.21)

R3:1x¥y pI xR3:1
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Here J = h™'J is the Kahler form (2.107), and the Pfaffian PfF of a two-form F
on Y, is defined as follows

1 1
PIF = 0 (FAF) gy = 356" (FAF)

4.22
412 ( )

prpo

In the expression above (4.20) we have used the fact that the D7-brane is super-
symmetric. This condition is necessary to cancel the forces on the D7 and to fix it
inside the throat. Namely, we have used that F2° = 0 and F is of type (1,1). In

addition to the constraint that >, is holomorphic, xk-symmetry also requires
1 ~ 1 ~ o~
hEPLI)AF = 5 tanh (P[J/\ J] —f/\f) , (4.23)

where the angle 6 is related to the geometry of the background and in the case of
the baryonic branch solutions is given by cos @ = e?. It is zero in the case of warped
Calabi-Yau, like KS solution. Adding the DBI and CS pieces together we notice

that the terms with magnetic field cancel each other from the D7 tension

1 ~ ~
Spr = — P[J/\J] /d4$+SYM , (424)
g7 4 R3.1

and that the effective action for the gauge field is modified by F
1 .
Syn = — | di (x/gmdh(Y) - Pf]—") : / diz Tv F2. (4.25)

2 7 JXy
R3.1

Since J is closed the tension (4.24) is independent of ¥4 and depends only on its
cohomology class. A similar result was found for a D5 brane wrapping S° at the tip
of the cone in section (3.1.2).

Since the location of the D3-brane enters (4.25) only through dh the extra term
PfF does not cause any difference between (4.25) and (4.12) at the level of the
correction (4.18). Therefore the X-dependent part (X)) of the superpotential (4.19)

remains the same with and without a magnetic field along ¥, [69].
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4.2.1 Method of calculating the backreaction
The Green’s function method

A D3-brane located at some position X in a six-dimensional space with coordinates

Y acts as a point source for a perturbation dh of the geometry:

§O(X —Y)
9(Y)

That is, the perturbation dh is a Green’s function for the Laplace problem on the

~Vioh(X;Y)=C — (V)| - (4.26)

background of interest. Here C = 2x%,T3 = (27)%gs(a’)? ensures the correct normal-
ization of a single D3-brane source term relative to the four-dimensional Einstein-
Hilbert action. A consistent flux compactification contains a background charge

density pyy(Y) which satisfies

[avvap =1 (4.27)

to account for the Gauss’s law constraint on the compact space [15].
To solve (4.26), we first solve
SO —-Y) 1

—V3,0(V:V)=-V2O(YY') = -, 4.28
y@(Y;Y) y (Y3 Y7) 7 7 (4.28)

where Vg = [d°Y',/g. The solution to (4.26) is then
Sh(X;Y) =C [(I)(X;Y) - /dGY’\/E(I)(Y;Y’)pbg(Y’)] . (4.29)

In the non-compact case Vj is infinite and ® is proportional to the Green’s function
G. The last term in (4.29) is X-independent and can be dropped in the calculation
of ((X). In the general case

SOX-Y) 1

= V| (4.30)

~VESh(X;Y)=C [

and this expression is independent of the background charge p,. Again in the

non-compact case the last term vanishes and we have

Sh(X;Y) =CG(X,Y) . (4.31)
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To compute A(X) from (4.19), we simply solve for the Green’s function G(X,Y)

obeying (4.30) with zero VLG and then integrate d0h over the four-cycle of interest,

according to (4.18).

Green’s function on conic geometries

The D3-branes that we consider in this paper are point sources in the six-dimensional

internal space. The backreaction they induce on the background geometry can

therefore be related to the Green’s functions for the Laplace problem on conical

geometries RT x X (see section (4.2.1))

§O(X — X"
9(X)

In the following we present explicit results for the Green’s function on the singular

~V2G(X: X') = (4.32)

conifold. In the large r-limit, far from the tip, the Green’s functions for the resolved
and deformed conifold reduce to those of the singular conifold.
In the singular conifold geometry dr? + r2dsz., ,, the defining equation (4.32) for

the Green’s function becomes

10,.0 1, 1 , ,

where V% and dx(¥ — ¥’) are the Laplacian and the normalized delta function on
X, respectively. W stands collectively for the five angular coordinates of the base
and X = (r, ¥). An explicit solution for the Green’s function is obtained by a series
expansion of the form
G(X; X') = Y7 (U)YL(W)HL(r; 7). (4.34)
L

The Y;’s are eigenfunctions of the angular Laplacian,

VaYL(¥) = —AL Y (P), (4.35)
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where the multi-index L represents the set of discrete quantum numbers related to
the symmetries of the base of the cone. The angular eigenproblem is worked out in

detail in section (4.3). If the angular wavefunctions are normalized as

[ v Va0 () = o, (4.36)
then
SOV WYL (W) = by (8 — W), (4.37)
L
and equation (4.33) reduces to the radial equation
%% (1“5%]‘&) - %HL = —%5(7" —1'), (4.38)
whose solution away from r =7’ is
Hi(rr') = Ac(r)rs . ct=—24/A, +4. (4.39)

The constants AL are uniquely determined by integrating equation (4.38) across

r =1r’. The Green’s function on the singular conifold is

+

1 T L /

G0 =Y vz ) LT TSy
’ I 2VAL +4 " " L(L’)CZ r >
7‘4 r - ’

where the angular eigenfunctions Y7, (V) are given explicitly in section (4.3).

Gauge theory interpretation of Green’s function method

The calculation of the correction to the superpotential (4.18) on conic geometries
with dh given by (4.31) and Green’s function given by (4.40) has a simple inter-
pretation in terms of gauge theory. Having in mind the conformal “conifold” field
theory of section (2.1.1) dual to supergravity on singular conifold we can interpret

the % expansion of dh

5B — 27mgs(’)? L+ Z cifi(b1, 02, 1, pa, 1)

4rd rAi ’

(4.41)

i
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via the AdS/CFT correspondence. Each term in (4.41) corresponds to a gauge-
invariant operator O; in the gauge theory with dimension A; and ¢; is proportional
to the expectation values (O;) determined by the position of the D3-brane [38]. The
angle-dependent part f;(6y, 02, ¢1, ¢2,7) is a wave-function of the Laplacian on 7!
and can be rewritten through w; of (2.23-2.26) which makes an explicit connection
with a gauge-theory operator via (2.2).

There is a set of chiral operators Tr[A;, Bj, Ai, Bj, - . . A;, B;,] symmetric in both
i and j indexes. They have integer R-charge k and dimension A%l = 3k /2 and
transform as (k/2,k/2) under SU(2) x SU(2). These operators correspond to the
spherical harmonics on 7!, which transforms as (k/2, k/2) under SU(2) x SU(2).
All these terms will have non-zero ¢; i.e. they will contribute to {(X) after integra-
tion over ¥, in (4.31).

All other terms in (4.41), which will be refereed as “non-chiral” give no con-
tribution after integration in (4.31). These two sets of “chiral” and “non-chiral”

harmonics will be considered separately in the next section.

4.3 Computation of backreaction on the conifold

Eigenfunctions of the Laplacian on 7!

In this section we complete the calculation of the Green’s function on the singular

conifold (4.40) by constructing the eigenfunctions of the Laplacian on Th?

1
ViY, = ﬁam(gm"\/gann):(6V§+6V§+9V§)YL (4.42)
- _ALYL7
where
VY, = 0y (sin 60 vi) + (o0 —cot@-@)zY (4.43)
it = sin 0, 0:\SIViC%; L1 sin 0, ¢ o) SLo ’

VaY, = 05Y1. (4.44)
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The solution to equation (4.42) is obtained through separation of variables
Y (U) = Jiy g 2 (01) Jig g, (B) ™91 F 2023 R0 (4.45)

where

m; R 2
— & cot 92') Jimir(0:) = =i, It i m(0:) -

sinf; 2
(4.46)

0300, 1, mi.(605)) — (
51110 89 (Sln (99 Jl i ( ))
The eigenvalues are A, p = [;(; + 1) — %2. Explicit solutions for equation (4.46) are

given in terms of hypergeometric functions 5 Fi(a, b, ¢; x)
. R/2
iy m r(0i) = NJ (sin ;)™ (COt —) X

2’ 2

(

R 0,
2F1( li+mi, 1+ 1; +mi, 1 +m; — —;sin —), (4.47)
Jl?,mi7R(9i) = NP (s1n9)R/2<cot2> X

R R R . ,0
4+ = 11— m — .
2F1( lz+2,1+ll+2, mz+2 sin? 2), (4.48)

where NI and N are determined by the normalization condition (4.36). If m; >
R/2, solution T is non-singular. If m; < R/2, solution 2 is non-singular. The full

wavefunction corresponds to the spectrum

AL = 6([1(11 S 1) 4+ lo(l 1) — %) . (4.49)

The eigenfunctions transform under SU(2); x SU(2), as the spin (Iy,[2) represen-

tation and under the U(1)g with charge R. The multi-index L has the data:
L= (ll, lg), (ml, mz), R.

The following restrictions on the quantum numbers correspond to the existence of

single-valued regular solutions:
e [, and [y are both integers or both half-integers.

o mle{—ll,‘-~ ,ll} andeE{—l2,~- ,lg}.
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® REZWIth%G{—ll, ,ll} and g G{—lg,"' ,lg}.

As discussed in section (4.2.1), chiral operators in the dual gauge theory corre-

spond to l; = % = Is.

Supersymmetric four-cycles in the conifold

The k-symmetry specifies the set of conditions for the D7-brane to be supersym-
metric. In the absence of NS-NS field, as in the case of the singular conifold of
section (2.1.1) the induced gauge field A; can be set to zero. The only constraint
left implies that the D7 has to be embedded along a holomorphic four-cycle ¥,. For

the set of holomorphic cycles

4

flwy) = wa" —uf =0. (4.50)

i=1
the k-symmetry condition was checked explicitly [70]. Here p; € Z, P = Zle pi, and
1 € C are constants defining the embedding of the D7-branes. In real coordinates

¢i, 0,1, 1 of section (2.1.1) the embedding condition (4.50) becomes

V(d1,02) = n1d1 +nady + b, (4.51)
r(01,602) = T (2T (1 —2) Ty (1 - y)l_”ﬂ_l/6 , (4.52)
where
rile = lul, (4.53)
1 2
S = arg(,u)—i—%s, se{0,1,...,P—1}. (4.54)

Here we choose ¢1, ¢o, 01, 05 to be the coordinates on the four-cycle. It is convenient

to define new coordinates x,y

6
r = sin’ 51 , Yy =sin°— (4.55)

and the rational winding numbers

_P1—p2—p3+Dps _P1—DP2+DpP3—Dpa
ny = P , MNo = P .

(4.56)



4.3. Computation of backreaction on the conifold 85

To compute the integral over the four-cycle we will need the induced volume form
on the wrapped D7-brane. By substituting the embedding equations (4.51,4.52) into
the metric of singular conifold (2.34,2.35) we obtain

df;df,dodos \/W = W r*G(z,y) dedydep,des , (4.57)
where
G(z,y) = a +2n1)2 G 1_ Pl 217 i
(Lzmyyuiy)—%ml_y—l. (4.58)
The volume of TH! defined in (4.57) is
%mE/&Wmngi, (4.59)

with ¥ standing for all five angular coordinates on 71,

Embedding, induced metric and a selection rule

Equation (4.51) and the form of the angular eigenfunctions of the Green’s function

(see section (4.3)) imply that the correction to the warped volume

SV = Re(C(X")) = /2 44X /g (X h(X: X'), (4.60)

is proportional to

e%R’/’S 27 A " 27 } " .
(2r)? / dgy e/tmtzm)o / depy it 2n2)d2 — o3 BYs 5 R -0
0 0

(271’)2 mi,—35ni1 mz,—gnz (

4.61)

We may therefore restrict the computation to values of the R-charge that satisfy

R R
my = —Enl , Mo = —ETLQ . (462)

The winding numbers n; (4.56) are rational numbers of the form

M ohez, (4.63)

_n;
n, = —
q
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where n; and ¢ do not have a common divisor. Therefore the requirement that
the magnetic quantum numbers m,; be integer or half-integer leads to the following

selection rule for the R-charge

R=q k, keZ. (4.64)

Green’s function and reduced angular eigenfunctions

The Green’s function on the conifold from section (4.2.1) is
G(X;X') = Y7 (W)Y (0)H(r; '), (4.65)
L

where it is important that the angular eigenfunctions from section (4.3) are normal-

ized correctly on T

/d%./—ng,l\YLF =1, (4.66)

or

1 1
Vria / dz [‘]ll,mhR(x)P/ dy [JZQ,mz,R(y)]Z =1. (467)
0 0

The coordinates x and y are defined in (4.55). Next, we show that the hypergeo-

metric angular eigenfunctions reduce to Jacobi polynomials if we define
R R
llE§+L17 Z2E§+L2’ Ll,LQEZ. (468)

This parameterization is convenient because chiral terms are easily identified by
L1 =0 = L. Non-chiral terms correspond to non-zero L; and/or Ly. Without loss
of generality we define chiral terms to have R > 0 and anti-chiral terms to have
R < 0. With these restrictions the angular eigenfunctions of section (4.3) simplify

to

=3

() (1 — )i ) Py (), (4.69)

R
1

J§+L17—§TL1,R($) = x

Lid —Nn
J§+L27_§RQ,R(y> = Y (1+n2)(1 - y) i(imm) PLz,R,m (y) ) (470)
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where

E(14m),E(1-n
PL1,R,TL1 (x) = NLLR,TLlPLzl( thl 1)(

R 14+n 7E 1—n
P, rn,(y) = NL27R,TL2PL22( 2), %( 2)(

1—2z), (4.71)

1-2y). (4.72)

The Pﬁ’ﬂ are Jacobi polynomials and the normalization constants Ni, r,, and
Nr, rn, can be determined from (4.67).
Main integral

Assembling the ingredients of the previous subsections (induced metric, embedding

constraint, Green’s function) we find that (4.60) may be expressed as

1
1,6V, = (20 [ dedy/gieng) YV Yale ) Halrin
0

Lﬂ/’s
Viria + iRy —cf I (Q+)
= Y (') x eafsp oL KATLZ 4.73
2 I%: L ( ) min \/mu ( )

where

1 —6Q7
QD) = [ dudyGlay) (M) Par s () Prarony) . (4.74)

0 Tmin

Here K = (Ly, Lo, R), n = (ny,n2) and

| =

+
Ot %+ . t=—2+ /A, +4. (4.75)
The sum in equation (4.73) is restricted by the selection rules (4.62) and (4.64).
Equation (4.74) is the main result of this section. In the following we will show that
the integral vanishes for all non-chiral terms and reduces to a simple expression for

(anti)chiral terms.
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4.3.1 Non-chiral contributions

In this section we prove that

1
Q) = [ dody Pry () Praon() %
0
XxQ(H"l)(l _ I)Q(l—N1)yQ(1+N2)(1 _ y)Q(l—m) %

1 2
X|:( —|—TL1) 1 _2n1 1
2 z(l—x) 1—x
(1+n2)? 1 1
—2 —1 4.
T y1-y) 1oy ] (4.76)

vanishes for Q@ — Q7 iff Ly # 0 or Ly # 0. This proves that non-chiral terms do

not contribute to the perturbation 6V to the warped four-cycle volume.

The Jacobi polynomial Pﬁ,’ﬁ (x) satisfies the following differential equation

—N(N+a+p+1)Py°(1—2zx) =

o 5d
=z “(1—-2) ﬁ%

VR

d

o1 — )P — Pl — 2x)> . (4T
dx

Multiplying both sides by x% (1 — )% and integrating over x gives

1
—N(N+a+03+ 1)/ dz PO (1 — 2z)2% (1 — )% =
0

. [(qa + 45 T 1)(0( + 6 —qa — QB) + qa(a - qu : .z?(ﬂ - qﬁ) + q;iza—_xo;> )

where we have used integration by parts. In the case of interest, (4.76), we make
the following identifications: N = Li, a = g(l +mny), B = }53(1 —n1), (o =
Q(1+n1), gs = Q(1 —ny). This gives

' 2
/ dz Péuﬂll)%u*m)(l — 2x) a:Q(1+n1)(1 _ w)Q(l—nl) v (1+mnq) _ 2n, _
0 2:13(1 — .CE) (1 — gj)

1 B(1en) E(1—n
= X1, ro / dp P20 (g gy g QU (1 gyQU-m) (4.79)
0
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where

v, (2044~ L}~ LiR — R — 2L, — 2RQ)
e QRQ — )

The corresponding identity for the y-integral follows from the above expression and

the replacements L; — Lo and n; — ny. We then notice that the integral (4.76) is

IR(Q) = (Xi,rQ + Yioro — 1) X ALy Ry ALy Rins@
6(Q —Q1)(Q—Qr)

= Q(2Q — R) X ALy R, @ Moo Rns.@ » (4.80)
where
1
ALlvanlyQ = / dI‘ PL1,R,n1 (27) JTQ(H_nl)(]. — $)Q(1—n1) s (481)
0
1
ALy rnsg = / dy Pry g, (y) y@U ) (1 — y)@m2), (4.82)
0

Since IX(Q) x (@ — QF) it just remain to observe that the integrals (4.81) and
(4.82) are finite to conclude that
: n : . R
lim Iz =0 iff Q] #—. (4.83)
Q—Q; 2
This proves that non-chiral terms do not contribute corrections to the warped volume

of any holomorphic four-cycle of the form (4.50).

4.3.2 Chiral contributions

Finally, let us consider the special case Q] = % which corresponds to chiral operators

(L1 = Ly = 0) in the dual gauge theory. In this case,

I = Jim T = s X Rt X Aot (4.84)
where

Agpm s = /O e Po.gny (z) 22T (1 — )20 (4.85)

Nopn, s = /01 dy P rms (y) y2 72 (1= ) 20772 (4.86)
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Notice that PO,R,ni = NO,R,ni = (NO,R,ni)_1<PO,R,ni>2' Hence,

1 2
o ni —nq R4
Ao,R,n1,§ = (No.rn,) 1/ dz (PO,R,nl(I') [$(1+ (1 - 2) )} />
0
1
- n _no)] /4 2
AO,R,n2,§ = (Norn.) 1/ dy (PO,R,ng(y) [y(1+ 2)(1 — o) 2)] )
0

and

1
R X R =
No Ry, B X Do Ry B
b2 22 VraNo rny No,Rons

(4.87)

by the normalization condition (4.67) on the angular wave function. Therefore, we

get the simple result

]chlral 1 1
X —. (4.88)

Ach1ral +4 VTl,l N07R7n1 NO,R,nQ R

We substitute this into equation (4.73) and get

R/P 1 )
(6‘/24 chiral = Z Z - X (H U_);)pl) X —7 X 61%27”, (489)

R
quk p

where we used

()2 Yi(V) :<H(w<)pi>R/P (4.90)

NO,R,m NO,R,nz

and

: _ 1
e’arg(”)erf’fﬂ — - (4.91)
i

The sum over s in (4.89) counts the P different roots of equation (4.50):

eP?™ =Pl ., jETL. (4.92)

Dropping primes, we therefore arrive at the following sum

Ty (V) et = Z - x (H wpl> x ,—P] (4.93)
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which gives

1 T
T3 (5V§3€1>chiral = _5 log |:1 - H’;pl } : (4'94>

For the anti-chiral terms (R < 0) an equivalent computation gives the complex
conjugate of this result.

The R = 0 term formally gives a divergent contribution that needs to be regular-
ized by introducing a UV cutoff at the end of the throat. Alternatively, as discussed
in section (4.2.1), this term does not appear if we define 0h as the solution of (4.26)
with /g peg(Y) = (Y — X;). This choice amounts to evaluating the change in
the warp factor, dh, created by moving the D3-brane from some reference point X
to X. We may choose the reference point X, to be at the tip of the cone, r = 0,

and thereby remove the divergent zero mode.

Result for singular conifold

The total change in the warped volume of the four-cycle is therefore
6Vss, = (0V) )ehiral + (OV5))anti—chiral (4.95)
and
TyRe(C) = T30V = —Re (1og {ﬂp—u—{}w}”}) . (4.96)
Finally, the prefactor of the nonperturbative superpotential is

P _TT. wPiN 1/N7
=y (TR .

The simple form of the result is not unexpected. It resembles a similar result for

Euclidean D3 brane, obtained in F-theory [71].
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4.4 Computation of backreaction on the Y7 cones

4.4.1 Setup
Metric and Coordinates on Y?4

Cones over YP? manifolds have the metric
ds? = dr? +r’ds},., , (4.98)

where the Sasaki-Einstein metric on the Y7 base is given by [73, 72]

1—y . 1 v(y)
ds?p, = —=(d6*+sin®0de?) + dy? + dip + cos 0 dg)?
” i e o )
+w(y) [da + f(y) (dy + cos§ dg) ]2 . (4.99)
The following functions have been defined:
b— 3y? + 293 2(b — y?) b— 2y + 1>
v(y) b wly) = —— t f(y) 60—y (4.100)
with
1 2 2
b= - % VAp? — 342 (4.101)

The parameters p and ¢ are two coprime positive integers. The zeros of v(y) are

1 3
Yo = — (219 F 3¢ — /4p? —3612)7 ys == — (Y1 +12) . (4.102)

4p 2
It is also convenient to introduce

Yy—4

T = : (4.103)
Y2 — Y1
The angular coordinates 0, ¢, ¥, x, and « span the ranges:
0<0<7m, O0<op<2mr, O0<o <27,
0<zx<1l, 0<a<2nl, (4.104)

q
4p?y1y2”

where ¢ = —
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Green’s function

The Green’s function on the Y?? cone is

2\
v 1 AT 7”%(%) r<r,
G(X;: X') = EL: e Y (UYL (W) x %<T_/)2A L (4.105)

Here L is again a complete set of quantum numbers and ¥ represents the set of
angular coordinates (0, ¢, 1, x, «). The eigenvalue of the angular Laplacian is A, =
AXN(A+2). The spectrum of the scalar Laplacian on Y79, as well as the eigenfunctions
Y1(V), were calculated in [74, 75]. We do not review this treatment here, but simply

present an explicit form of Y7 (V)
YL(\I/) = NL ei(m¢+nww+”7aa) Jl,m,2n¢ (0>R"m”wvlv)‘<x> R (4106)

where
Y1 — Y3
Y1 — Y2 '

The parameters «; depend on ny, n, (see [75]), and the function h(x) satisfies the

Rna,nw,l,k(x) =21 —2)(a—2)®h(z), a= (4.107)

following differential equation
d? ol ) € d aBr —k
— — — h(x) =0. 4.108
{dm2+<x+x—1+x—a)dx+x(1—9c)(a—x) (z) ( )

The parameters «, 3, 7, 9, €, k depend on p, ¢ and on the quantum numbers of the

YP4 base. Explicit expressions may be found in [75].
Finally, we introduce the normalization condition that fixes Ny, in (4.106). If we

define z = sin? g then the normalization condition

/ AU\ /gyra| Y ? =1 (4.109)

becomes

1
1
Nf/ dzdz /g(x,2) J°R? = @n)i0 (4.110)
0 )3l

where

Vol 7) = gl = TCPESENVAE IS0 gy

D
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Embedding, induced metric and a selection rule

The holomorphic embedding of four-cycles in Y7 cones is described by the algebraic

equation [76]

wai — M2p3 7 (4.112)
i=1
where
0 i
wy = tanﬁe : (4.113)
1 1 1 1
wy = LsindaTi(l - )% (a - 2) ), (1114)
1 .
w3y = 57“3 sinf [2(1 — z)(a — x)]*/2%e . (4.115)

This results in the following embedding equations in terms of the real coordinates

1
— — — s, 4.116
(0 T (n1¢ — bnoar) — 1 ( )
r — rmin |:Z1+n1+n2(1 _ Z)l—n1+n2:|71/6 |:x261(1 _ 517)262 (a _ $)263:|71/6
= Tmin"2"z, (4117)
where
21s
vy = arg(p) + , s€{0,1,...,(p2+p3)—1} (4.118)
P2+ D3
e = lul, (4.119)
and

1
e = - (1 + @) , (4.120)

2 Yi

n = 2 (4.121)
Y25

n, = 2 (4.122)
Y22

Integration over ¢ and « together with the embedding equation (4.116) dictates

the following selection rules for the quantum numbers of the angular eigenfunctions
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(4.106),

1+n2

m=—"Qn, na=3MmQr. ny= Q. (4.123)

where Qg is the R-charge defined as Qr = 2ny — na In this case a; = e;~<f Qe

Finally, we need the determinant of the induced metric on the four-cycle
4

dfdx /g = - Z)x(lr— po TP G(z,z)dzdx. (4.124)

The function G is too involved to be written out explicitly here, but is available
upon request. It is a polynomial of order 3 in x and of order 2 in z.
Main integral

The main integral (the analog of (4.74)) is therefore given by

2 -6Q7
I = / ( dzdzG(x, z) N} (r) Py, (1= 22)hy(x),  (4.125)

2(1—2)z(1l —z)(a — ) \ min

with a = (1 +ny + ng)%, b= (1—n+ ng)% and 6Q7 = 2\ + 2Qg. We will
calculate this integral for a general 6Q7 = 2w+ 5@ r and then take the limit w — A.
First we compute the integral over z in complete analogy to the singular conifold
case of section (4.3). The Jacobi polynomial satisfies
r;ijRdilz <7“Z_3QRZ(1 — z)%Pj’b(l — 22)> + A(A+1+a+Db)Py"(1 —22) = ((4.126)

3
(2v2@7) and integrate over z. It can be shown

Let us multiply this equation by 7,
that there is a third order polynomial G(z) which is implicitly defined by the fol-
lowing relation

Qix,z) _Gl) = g(x, 2—03 —

A1=2) (1 +m+mo)? (55 - §2)

w—+35 Yr d _ d Y —2zW
x [ri +2Q - (z(l — 2o (ngQR ? )) CAA+ 1 +atb)|(4.127)
V4 z
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_cOT
The right-hand side vanishes after multiplying by 7. 0@ Pj’b(l —22) and integrating,

and we get

deG(z) N3 _¢oF / —6Q7 pab
I, = c F : PPyl —2z2) . 4.12
. /x(l_x)(a_@r ho(e) [ ders®Pst—0z) . (4128)

4.4.2 Non-chiral contributions

To evaluate (4.128) we make use of the differential equation (4.108). We multiply
o2

(4.108) by r, W 7298

M/ g(z) such that

@) o
z(l —2x)(a—2) My g(@)

and integrate over x. There exists a first order polynomial

_ 144G(z = 0) y [(aﬁx — k) —
(1 — 1) (3Qr + 4N) (18Qrn2 + 8Any — 9Qk — 4\ — 24)
e (G )0+ el ) + exle - 1)
L2t ien dd_; (rc(l _ 2)(a— x)rgzwf%QRﬂ 7 (4.129)
where we defined
1= BA-wA+wt2) (4.130)

T (1 +n9)(16w? —9Q%)

+
After multiplying by r, 0@r h(z) and integrating over x, the right-hand side vanishes

and we have

I, = MN? / dadz \/g(z, 2) ( 4 )_662I Pi(1—22)h(z)  (4.131)

min

= MN, / dzd:z:\@( 4 )_% JR. (4.132)

min
Since lim,, ., M = 0, this immediately implies that lim,, ., I, = 0 ‘on-shell’, i.e. for
all operators except for the chiral ones. Just as for the singular conifold case, we
have therefore proven that non-chiral terms do not contribute to the perturbation

to the warped four-cycle volume.
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4.4.3 Chiral contributions
For the chiral operators one finds
3
A= 70r (4.133)

and both the numerator and the denominator of M (4.130) vanish. Chiral operators

also require A = [ —ny, to be equal to zero. Taking the chiral limit we therefore find

 (3Qr+4) dz q(2p + 3q + \/4p® — 3¢ — 6qz) [ r —3QR

e mf\ff / 242 ( ) (4.134)
. (BQr+4) 1

~ (1 +n9)Qr (2m)3¢ (4.135)

since A = 0 implies P3"(1 — 2z) = 1 and h(z) = 1. The integral in (4.134) reduces

T'min

to the normalization condition (4.110). Finally, we use the identity for chiral wave-
‘ Q

functions r%QRYL(\D) = (w?lw;”wg)TR and the relation between T3(0ViY )ehiral and

I1, (an analog of (4.73)). Note that the (27)3 in (4.73) should be changed to (27)3¢

as a runs from 0 to 27¢. We hence arrive at the analog of (4.89)

1 2 QR . (1+ny)
T30V ehival = =y ——————— (0 wh?ws) 2 ' 2 OrYs 4.136
3( 24)h1 22(1—1-%2)@3(1 5 W3) ( )
QR?S
where we recall that ¥, = pf%;. The summation over s effectively picks out

Ny = @QR to be of the form (py + p3)s’ with natural s, or Qr = 2p3s’. After

summation over s’ we have

w 1 ﬂ2p3 - Hz U_Jfl
T5(0Vs )chiral = —3 log {T : (4.137)

A similar calculation for the anti-chiral contributions gives the complex conjugate

of (4.137).

Result for the cones over YP¢

The final result for the perturbation of the warped volume of four-cycles in cones

over YP79 manifolds is then

2p3 ) Di
Ty 6V = —Re <log {ﬂb : (4.138)

2
pJPS
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so that

2
,up3

(7P — [[ v} ) 1/N7

98

(4.139)



Chapter 5

Applications to cosmology

In this chapter we study a particular string theoretical model of inflation based on
a D3-brane moving along the warped throat in the presence of a stack of D7-branes.
Our analysis exploits the nonperturbative superpotential derived in chapter 4 and
follows papers [77, 69], written in collaboration with D. Baumann, I. R. Klebanov,

L. McAllister, and P. Steinhardt.

5.1 Model of D-brane inflation

Inflation and string theory

In this chapter we discuss a particular model of stringy inflation based on the dy-
namics of a mobile D3-brane. Our interest in this topic is due to the growing role of
cosmology and physics of the early Universe in contemporary high energy physics.
Observational cosmology provides us with a whole new set of experimental observa-
tions related to the physics of the early Universe. This data can serve as a restrictive
test of any proposed fundamental theory or model. Recent studies of the CMB spec-
tra have solidified inflation as a successful scenario of the early Universe [78]. More
precise observations have sharpened the set of allowed parameters excluding many
inflation models. This is why we need string theoretic models of inflation capable

of matching the experimental data.
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One of the main problems in building such a model is that stringy models of the
early Universe are often implicit. They are formulated in the effective field theory
and do not bear any predictive power. Our objective is to consider a model of

inflation originating in string theory with as much rigor as possible at the moment.

A model: mobile D3 on the throat

Our model is a development of the setup proposed in [18]. We consider a warped
throat compactification based on the KS solution of section (2.2). The moduli of
the compactficication are fixed by the flux-induced superpotential, and the Kahler
modulus is fixed because of the nonperturbative gluino condensation due to the stack
of n D7-branes. This is essentially the same setup we discussed in section (4.1). The
mobile D3 located in the throat is moving toward the tip causing inflation and the
location of D3 plays the role of the inflaton field(s). Our aim is to calculate the
effective potential for the D3 and check if it is suitable for supporting inflation.

As was discussed in chapter 4, the full potential must have at least two terms.

The first is the F-term (4.4)
Ve = 'K [ DeWKEDoW — 3H2WW] . k2= M3 =s8nG, (5.1)
with the superpotential
W =Wy+ A(za)e *, a=—, (5.2)

given by (4.3) and (4.19). Here we introduced three complex coordinates z, to
parameterize the throat. The F-term potential (5.1) includes an inverse metric K30

on the moduli space (p, z,). It is obtained from the Kéhler potential [79]

KK (P, P, 205 Za) = —31oglp + p — 7k(2a, Za)] = —3log U, (5.3)
with the constant v = %% being related to the stabilized vacuum value of the
P

Kéhler modulus with the D3-brane sitting at the tip [69] 200 = p.(0) + p*(0).
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The Kéahler potential on the throat k(z, Z,) was discussed in case of the conifold
geometry in chapter 2.

As follows from a simple analysis [61] outlined in section (4.1) the vacuum value
of Vr is negative. To obtain positive or zero cosmological constant this potential
must be uplifted. We follow [18] and consider an anti-D3 brane placed at the tip
of the conifold producing the potential due to the Coulomb interaction with the
D3-brane [18]

D(r)

Vp(p,r) = (7))

D(r) =D {1 _ fa—l;ﬁ} ~D. (5.4)

Far away from the tip, the correction 1/r* in D(r) is small and in many cases D(r)
can be approximated by a constant D.

We are focused on energies much lower than the Planck scale but well above the
scale of physics at the bottom of the throat estimated to be 103711GeV[18]. This
means that the D3 is located sufficiently far from the bulk of Calabi-Yau and at the
same time not very close to the tip of the throat. This choice is dictated by both
the experimental data suggesting inflation below the Planck scale and our desire
to construct a controllable model. As was outlined in section (4.1) we also assume
that the D7 embedding preserves SUSY and that the D7 stretches sufficiently far
inside the throat. The first requirement is reminiscent of the condition that the D7
is fixed. The latter assures that the nonperturbative potential is not very small and
capable of Kédhler moduli stabilization. We also assume that the D7 does not fall
to the tip which may be the case after throat is compactified. Similarly we neglect
possible interaction between the anti-D3 and the D7 assuming it is small enough
because of their large separation. This is a subtle point as the anti-D3 breaks SUSY
and may therefore influence the D7. These questions definitely merit further study
which we leave for the future.

Since we are working at energies much larger than the field theory scale, neither

the D3 nor the D7 feels the deformation of the cone € (2.61). Therefore in our
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calculations below we assume the geometry is that of the KT solution from section

(2.2.2) [33] i.e. the throat is a warped singular conifold.

5.2 D3-brane potential in presence of D7 and anti-

D3 branes

5.2.1 Calculation of the potential
F-term potential in homogenous coordinates

Our first task is to calculate the potential (5.1) explicitly. For that reason it is
convenient to write the F-term potential (5.1) in terms of the four homogeneous
coordinates z; of the embedding space C* which makes the action of SO(4) symmetry
transparent. For that reason we define a new metric KAB which depends on z; in

such a way that for any function W (z;) the following identity is satisfied
DAWKAPDgW = DsWK™ DWW | (5.5)

where {Z4} = {p, z;;i = 1,2,3,4} and {Z%} = {p, zo; & = 1,2,3}. In this equation

the conifold constraint, 27 = 23(z,) = — S.._, 22, is substituted after differentiation
on the left-hand side and before differentiation on the right-hand side. The metric
KAB(z;) defined through (5.5) is not unique and the choice of one over another is

a matter of convenience. We construct KAZ with the help of the auxiliary matrix

JA
KAB = JA, K™ P (5.6)

where J4y, is defined as follows

1
074 o4 4
DZW:ﬁDAW:J EDAW, J » = 0 61'& . (57)
0 =
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This gives ICAB as a function of Zo. To find it as a function of z; guess a l@@(zi)
such that it reduces to IGAE(ZQ) after substituting the conifold constraint. This step
and hence KAB(z;) is not unique. Nevertheless finding an SO(4)—invariant K45 (z;)
is not difficult, e.g. replacing (— $o? z2> v by z4 everywhere in IQAE(ZQ) and J4,

y=1"
we find

w20 [ U + vk ™k \ ke kb

KAB = , 5.8
3 /%imkm ‘ 1 (5-8)
¥
where
Zi
k==, 5.9
- (5.9)
and
~ N - 1zizi  Zz;
o T aB 17 _ 2 v
kY =J k Jﬁ—r{é +2r3 r3} (5.10)

Notice that k7 is not the inverse of k=1 [527— lzzz]} which is k7 = r [(5” +3 z;?] .
From (5.9) and (5.10) one then finds

~ 33— P 3
kil = 57 ki ke = §7~2 =M=k, (5.11)
and hence,
— 3—
CAB _ KU [ p+P 2% (5.12)
P\ e
Using the above results we arrive at the F-term potential
? — 2 ST 7a 3 e
Vi = ETiE] (p+ )W, |° =3(WW, +c.c.) + §(W ZW;+cc)+ ;k W,W;|(5.13)

The result (5.13) is essential for the our analysis. It can be rewritten in terms of

the w;-coordinates is
2

Ve = ——
F= 302

_ 3 1o
[<p F DW= 3VW, + ) + S (Ww'W, + ce) + ;kzzw,iw,j} (5.14)
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where
Y
. _ lwaw: cdcwpwy
ij _ i, g g J
B = |67 4 220 3 . (5.15)
2 r r
. i/
The matrix ¢j has only four non-zero elements ¢; = ¢} = 1 and ¢} = ¢§ = —1.

The last two terms in the parentheses in (5.13) and (5.14) vanish if A, and hence
W, is coordinate independent 0,,A = 0. In this sense the last two terms are the
correction AV to the KKLT result (4.4). Let us also make a remark that the first
two terms coincide with the KKLT potential only if 0,,A4 = 0.

Integrating out the imaginary part of p
The imaginary part of p
p=o0+ir, (5.16)
can be integrated explicitly for any superpotential (4.3)
W =Wy + A(z;)e . (5.17)
Indeed p will combine into p + p = 20 everywhere in (5.13,5.14) except the term

—3(WW,, + c.c.) = 6a|Al’e > + 6ae > Re(WyAe ™) . (5.18)

The second term, the only one with 7 dependence, can be easily minimized with

respect to 7
—6a|Wo||Ale 2% . (5.19)

From now on we assume that the imaginary part of p is integrated out in all ex-
pressions for Vp. The real part, o, is more difficult to integrate out. There is no
analytical expression for o(z;, ) and minimization with respect to o should be done
numerically. Some times it is also convenient to find an approximate expression for
o(r) along a radial trajectory in expanding in r and ﬁ, where o is the KKLT

stabilized value with A = A(z = 0) [69].
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Uplifting the potential

The full potential governing the motion of the D3-brane is the F-term (5.1) and
the Coulomb interaction between the D3 and anti-D3-brane (5.4) V' = Vp + V.
The relative magnitude of these terms is a parameter of the model which may be
fine-tuned. It is convenient to introduce the variable

_ VD((); O-F)

s = AR (5.20)

which is a ratio of the D-term and the F-term before uplifting. A non-zero vacuum
value of the potential requires 1 < s < O(3). Since the minimum with respect to o

changes after nontrivial Vp is introduced we need once again solve the equation

ov

| =0 (5.21)

g0

Expanding in the small parameter # we find the new minimum for D3 sitting at

the tip r =10

|
0o = 0p + — +O< ) (5.22)

a’op a’o?

The difference is indeed quite small as aop is of order 10.

5.2.2 Choosing a trajectory

Our next step is to consider the two simplest supersymmetric embeddings of D7 due
to Kuperstein [80] and Ouyang [81] and choose the one most suitable for creating
flat inflaton potential. Our choice above is not only a matter of simplicity. The
embeddings in question are linear in the homogenous coordinates. It can be shown
that higher degree embeddings, like the ACR embeddings of [70], lead to a higher
power of the leading term in the Taylor expansion in the inflaton of the effecive
F-term potential [69]. Therefore the embedding of lowest degree is the most natural

candidate to cancel the unwanted mass term from Vp.
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Our logic below is the following. For each embedding we first investigate the set of
extremal radial trajectories i.e. the trajectories along the radius with fixed position
on TH1. We require that the potential is extremal under angular perturbations.
This property does not guarantee that the motion is stable under a perturbation
of the angular coordinates. After identifying the set of extremal radial trajectories
for Kuperstein and Ouyang embeddings we study the stability of motion along

r3/2

these trajectories. As a result we identify the particular trajectory z; = — 7 for

Kuperstein embedding as the most promising scenario. It is studied in detail in the

next section.

Kuperstein embedding

We start our consideration with an embedding z; = p suggested by Kuperstein in

[80]. In this case the superpotential (5.2) is given by (4.97)
. 1/n
W =Wy + Ao (1 — —1) . (5.23)
i

From this it follows that the potential V' = Vi 4+ Vp depends on p,r and z; in
the combinations z; + z; and |z;|?. For the potential to be extremal under the

perturbation of angular variables ¥; for all radii r, the variations

8|z1|2 . 8(2'1 —f-Z_l) .
50, = a0~ (5.24)

should vanish. We examine (5.24) by introducing local coordinates in the vicinity
of a fiducial point zg = (21, 25, 24, 2;). The coordinates around this point are given

by the five generators of SO(4) acting nontrivially on zg
z(r, U;) = exp(T) 2. (5.25)

The Kuperstein embedding, z; = pu, breaks the global SO(4) symmetry of the
conifold down to SO(3), and the D3-brane potential preserves this SO(3) symmetry.
We will find that the actual trajectory breaks this SO(3) down to SO(2), which we
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take to act on zz and z4. The coordinates that make this SO(2) stability group

manifest are given by

0 g | (g
—ay 0 [ B3 B4
—az —f33] 0 0
—ays —B| 0 O

_|
Il

(5.26)

where U; = {«;, 5;} € R are the local coordinates of the base of the cone. We aim
to find z, such that the potential V(21 421, |21|?) is extremal along zy. We here find
trajectories along which the linear variation of z; + z; and |2;|? vanishes. First, we

observe from (5.25) and (5.26) that for arbitrary z, we have

4
0z = Z ;2 a; ER. (5.27)
i=2
and, hence,
4
Sl = au(2z + 247) = 0. (5.28)
i=2

To satisfy (5.28) for all a; one requires
2l =ip;zy, pi € R. (5.29)

We may use SO(3) to set p3 = py = 0, while keeping po finite. The conifold

constraint, z? + z2 = 0, then implies p, = +1, while the requirement
§(z1+21) = as(25+ 25) =0, (5.30)

makes 2z, purely imaginary and 2] real. This proves that the following are the

extremal trajectories of the brane potential for the Kuperstein potential

!/

3/2
21

1 / -/
= j:ﬁr : 2y = Fiz] . (5.31)
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Ouyang embedding

For the Ouyang embedding, w; = p, the superpotential (5.2) is
w 1/n
W =W, + A (1 — —1) : (5.32)
i
and the brane potential depends on w; 4+, |w:|* and |w,|*. The latter comes from

kL of (5.15). To find extremal trajectories of the potential we therefore require

8|w1|2 . 6|w2|2 o 8(w1 —|—w_1) .
v, ov, av, =0. (5.33)

We introduce local coordinates by applying generators of SU(2) to the generic point
Wo

. . wh w
W=ecMWee 2, Wy=| ° * |, (5.34)
wy wy
where
Q; i+ 1y
T, i) (5.35)
Bi — iy —Qy

This implies

dwy = —i(ay + ag)wy + (=41 +in)wz + (B — iy2)w) + - - - (5.36)

and 0(w; + wy) = 0 gives w} € R, wy = w) = 0. We find that §|w;|* = 0 and

Slwy|* = 0 if w) € R. The conifold constraint wjw), = 0 then restricts the solution
to the following two options:

w; =0, jwh| = r3/%, & 0y =0,=0, (5.37)

or

61 = 92 = T. (538)



5.2. D3-brane potential in presence of D7 and anti-D3 branes 109

For the trajectory w} = 0, |wy|*> = r® the contribution of all terms with the
derivatives of A vanish. Therefore the effective potential along such a trajectory is
that of KKLT. It is called a delta-flat potential [77, 69]. The inflation along this
trajectory is impossible, as it was in the KKLMMT case [18]. This result for the
trajectory in question was first obtained in [82].

For the trajectories w| = £r%? the correction to the KKLT potential AV does
not vanish. In fact, the effective potential along these trajectories is identical to
the potential for the Kuperstein case (5.31). To see that one need to express the

potential in both cases through the radius r and o, V' = V(r, o), and the coefficient

1

- dmyrs

(5.39)

C

The relation between r, and p depends on the embedding. We define r,, as the value
of radius r = r, when the D3 moving along the extremal trajectory (with appropriate
sign) hits the D7. For the Kuperstein embedding this implies the definition r} = 24>
when for Ouyang embedding 3 = p®. This definition of ,, is not only natural from
geometrical point of view. In fact this definition is suggested by a normalization
of the kinetic term of the inflaton field [69]. Therefore the profile of the potentials
coincide if expressed in physical units. This is already enough to conclude that the
Ouyang embedding has no advantage over the Kuperstein one. In fact the Ouyang
embedding has a disadvantage because the motion along the w! = 4732 trajectory

is unstable for small r.

Stability for small r

To investigate the stability of the trajectories (5.31) and (5.38) it is convenient to
write the “correction” to the KKLT potential explicitly for both cases. For the
Kuperstein embedding

52

3 (PSTS—
AVF — W é(VV,pzlwzl + C.C.) + ;k].lWZlV[/,Zl 9 (540)
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where

11 = r(l - 1@) , (5.41)

2 3

and for the Ouyang embedding

213 1.5
AVp = ;UQ (prlwwl +ce)+ kq}vlwlem] , (5.42)
v
with
21T |w1\2 !w2\2
kT = <1+ e ) (5.43)

In both cases, stability near the tip r — 0 is controlled by the term with &'! (kL1).

To see that we consider the Kuperstein embedding. The term with k' contains r3,

and its contribution to the second derivative of the potential with respect to an

angular variable W, grows as r. All other terms grow at least as r*?2 (this

I3l 3\1,27

follows from & = 229

55 = pes; +ccoand %1 ~ r3/2). A parallel consideration confirms

that l%}vi is responsible for the leading contribution to the stability analysis in the

case of the Ouyang embedding as well.

Now, the trajectories z; = £2 f maximize |z;|? for a given r, and any variation
. 2 . . . .
of angles may only increase k' = r < ‘21{!3 ) Hence the trajectories in question

are stable at small r under fluctuations of any angles that affect |z;]?. So far, this
analysis does not include the phase of z;, which of course leaves |2 | invariant. The
leading correction to the potential from fluctuations of this phase comes not through
k' but through terms in V' proportional to z; + Z7. These terms change sign when
z1 does; thus, one of the signs in z; = i% corresponds to the stable trajectory,
while the other sign corresponds to an unstable trajectory. It can be shown that if
the shift of stabilized value of o (5.22) is taken into account, the potential is stable
for negative z; = —r3/2/y/2 [69].

The analysis for the Ouyang embedding is very similar. The delta-flat trajectory

lws|? =13 (0, = 6 = 0) maximizes the ratio I 2 Thus, any angular fluctuation can
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lwa|?

only decrease the ratio —3-, without affecting %‘2

to second order. This is easily

checked with the help of the angular coordinates 6; (2.23). On the other hand, the

trajectory wy = £r%2 (; = 6, = 7) maximizes |w1‘2 , and angular fluctuations away
from this trajectory decrease the ratio | ‘ |w2| to second order.
As a result, kLl = r (1 + “2”;3') h‘;%f) cannot decrease in the case of the delta-flat

trajectory |ws|? = 73, but necessarily has a negative mode along the non-delta-flat

trajectory wy = £r3/2. Hence, the non-delta-flat trajectory is unstable for small 7.

No further consideration is needed to show that the delta-flat trajectory |ws|* = r?

is stable. Since angular fluctuations around w; = 0 cannot affect the term involving

wy + Wy, the leading contribution always comes from l%},}

r3/2
V2
is stable for the Kuperstein embedding, whereas the trajectory w; = 43?2 in the

We have therefore demonstrated that near the tip, the trajectory z; =

Ouyang embedding is unstable. We investigate the possibility of inflation in the

case of Kuperstein embedding in the next section.

5.2.3 Effective potential for Kuperstein embedding
Effective potential

In this section we analyze the potential for the D3-brane in presence of n D7-branes
wrapping the cycle z; — = 0. In the previous section we identified the extremal
(and in fact stable) under angular fluctuations radial trajectory z; = —r3?2/y/2.
The effective potential along this trajectory expressed through the canonically nor-

malized inflaton field ¢ o r is

2 A 2 _—2ac0
V(o) " a|3 o 52(¢>9(¢)2/" 2a0 + 6 — 6e% |‘Ij[4/(§)||g( 1)
3co 1 3 1 ¢ D(9)
0 0.9 ng(9) 372 T 20) (5.44)

Here we have introduced notations to make (5.44) concise. Thus ¢, is the remi-

niscent of the minimal radial coordinate of D7 ¢2 o (242)** and g is A(z)/A(0),
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g(¢) =1+ (2)"".

The normalization procedure for the inflaton ¢ = T" o< r should be clarified. The
Kahler modulus ¢ changes insignificantly when r does. Although this change should
be taken into account when one calculates the effective potential, it is negligible in
the kinetic term. Therefore the normalization of the inflaton field ¢ comes from the
kinetic term of r only. The latter follows from the K&hler potential (5.3). Calculating

the kinetic term at the tip where o = 0y (5.22) and requiring that it is equal to
éz/Ml%lanck, we find that

2 3 o
k(20, Za)T 2=y = — . 4
k(20 Za)r™" = 57 = 5 (5.45)
This leads to the U(¢) from (5.44)
90 12 /7 r2

The effective potential (5.44) depends on two variables ¢ o r and 0. The massive

Kéhler modulus ¢ should be integrated out by minimizing the potential for a given ¢

ov

o 0. (5.47)

o=0.(9)
We have mentioned before that o,(¢) can not be found in analytical form. Never-

theless one can find it by doing a Taylor expansion in ¢ if the D3 is close enough to

the tip.

Inflation at small ¢ ?

The Taylor expansion of o.(¢) is helpful for analyzing the possibility of inflation at
small ¢. Let us clarify here that small ¢ stands for the radius » much smaller than
the minimal radial coordinate of the D7 r < r,, but much bigger than £2/3 In our
setup the typical value of Mp7 specified by 7, is of order Mpjgner = 10GeV and
the field theory scale €%/? is usually taken to be 1027 13GeV.
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A straightforward calculation gives at leading order

B 1 é 3/2
0.(9) = o0+ 5 (¢—u> : (5.48)

It is remarkable that the leading term scales as ¢*? (the term with ¢* has a very
small coefficient and thus is negligible). This implies that the correction from (5.44)
to the KKLT potential uplifted by the D-term caused by the coordinate dependence
of A(z,) does not include a quadratic term ¢?. Therefore the coefficient in front of

¢? is the same as in the KKLMMT case [18]

Tt = 1% 58 M+ 0(6) (5.49

This makes inflation for small ¢ impossible. The correction v(¢) is a polynomial
in ¢'/2 but does not have a ¢* term. Therefore it can not cancel $¢?/M%,, . even
with an infinite amount of fine-tuning.

This is an interesting result as we have shown that at least in certain cases
the flat potential for a given range of the field cannot be achieved for any set of

parameters.

Inflation near inflection point

To investigate the potential away from the tip one needs to integrate o.(¢) numer-
ically. For various parameters the profile of the potential drastically changes from
monotonic to a potential with a local minimum and maximum. It is possible to
fine-tune the parameters such that the potential has an inflection point. Here we

give an example of such a set of parameters

1
n ) Qbu 4 ) 0 )
D=12x10"% < aop ~ 10.1 . (5.50)

The sketch of the corresponding potential can be found on the next page, in Fig.

5.1.



5.2. D3-brane potential in presence of D7 and anti-D3 branes 114
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Figure 5.1: Potential with an inflection point V().

The potential with an inflection point is a promising setup for inflation. If the
ratio V//V calculated at the inflection point is sufficiently small the inflation can
cause a large number of e-folds of expansion. The weakness of this scenario is that
the cosmological predictions of such a model are highly sensitive to the change of

parameters and initial conditions [77, 69].



Chapter 6

Discussion

This thesis has been focused on models of gauge/gravity duality and their applica-
tions to cosmology. We have studied the cascading SU((k+1)M) x SU (kM) theory
on the baryonic branch of moduli space and the corresponding family of supergrav-
ity backgrounds. Besides the KS solution corresponding to a particular locus of the
branch, all backgrounds in question are based on generalized Calabi-Yau manifolds.
This is one of the few known examples where such manifolds are constructed explic-
itly. The metric, fluxes and dilaton are unambiguously determined in terms of two

functions a, v(t) which satisfy the first order system
a=ala,v,t), v="1v(a,v,t), (6.1)

and have certain behavior at the boundary ¢ — oo. It is worth mentioning that this
system does not admit a known analytical solution except for the special cases of the
KS and MN solutions. For the KS and MN solutions the system (6.1) can be derived
from an effective superpotential [25]. The attempts to find such a superpotential for
the rest of the baryonic branch have not been successful so far.

One of our main goals was to verify and develop the duality between the family
of supergravity solutions above and the corresponding field theory. For that reason
we have studied various D-branes dual to the objects in field theory. Although we
did not find analytic solutions to the system (6.1), we found that the supergravity
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analysis confirms the exact relations previously derived in field theory. Thus the
unbroken SUSY in field theory guarantees that the domain wall separating two
isomorphic branches of moduli space is BPS and its tension is moduli-independent.
Our consideration of a dual object, a D5-brane wrapping the minimal three-cycle
3} on the conifold, confirms this result. We did not need to know the background
functions a, v explicitly to show that the tension Tps is the same for all solutions

along the branch. Instead we have used the calibration condition

Ips > / Q, (6.2)
b
where € is the closed holomorphic three-form. All the solutions along the branch
share the same complex structure but have different metric and fluxes. This is
enough to conclude that  is the same for all solutions on the branch, and so is the
tension of the BPS D5-branes, saturating the inequality (6.2).
Another interesting example where we were able to confirm an exact gauge theory

relation is the baryonic branch constraint
(AB) = const . (6.3)

In field theory this relation originates from the quantum constraint AB = —A3}
which defines the baryonic branch of moduli space. To reproduce this relation on
gravity side we have to measure the baryonic condensate. To this end we constructed
the object dual to the baryonic operator, a D5 wrapping the base of the conifold
at large radius. Then the condensate is given by the value of the DBI action of
the Euclidean D5 covering the whole conifold. To preserve supersymmetry, the D5
should be accompanied by D3-branes dissolved in it. This is equivalent to the gauge
field induced on the D5’s world-volume. The equation for the gauge field cannot be

solved analytically, but can be presented in a form resembling (6.1)

E=¢(& a,v,t) . (6.4)



117

This equation admits serval solutions corresponding to different baryon operators
A,B. The field theory in question has a Z; symmetry Z which exchanges the
baryons. This symmetry acts nontrivially on the equations (6.1) and (6.4). It
turns out that the DBI action Sps[¢] calculated on the world-volume stretching
to the cut-off radius ¢ can be split into two parts with an exponential precision
Sps = A(t) + o + O(e~2/%). The first part A is common to both solutions and
diverges. It corresponds to the dimension of the operator and is irrelevant for the
calculation of the condensate. The finite part o, responsible for the condensate,
changes its sign under the action of Z. Therefore the renormalized value of the
action SE. = +0(U) differs by a sign for the baryons A, B. Since the expectation

S$Bs we immediately find that the

value of the baryon operator is proportional to e~
relation (6.3) holds exactly along the branch. This construction also provides a
connection between the parameter in field theory, (A), and the one on the gravity
side U.

There is another “exact” quantity related to the baryon operator. It is the
charge of a baryon operator under U(1)pgryon. Obviously it should be constant
along the branch. On the gravity side the charge of the baryon operator is given by
the coupling of the D5-brane to the Goldstone boson of the spontaneously broken
U(1)paryon- This coupling comes from the Chern-Simons term and can be easily
calculated, provided the wave-function for the axion is known. Then, according to
the logic above, the value of the coupling should be constant along the branch. At
the moment the axion wave-function is known only at the KS point (U = 0). It will
be very interesting to construct the wave function of the axion for all values of U
and verify that it couples to the D5-brane with a U-independent coefficient. This is
an interesting problem for the future.

Besides being important for the gauge/gravity duality, the warped throat solu-
tions can be successfully applied towards stringy cosmological models. Among the

desirable features of these models is that they are calculable because of controllable
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dynamics in the throat. As an illustration of this idea, we have explicitly calcu-
lated the effect on a D3-brane of the nonperturbative superpotential due to gluino
condensation on a stack of D7-branes. Although the calculation is quite lengthy
the answer is very simple. The latter probably can be anticipated because of its
holomorphic structure. All the terms potentially contributing to the answer can be
labelled by the corresponding operators in field theory. It turns out that the terms
corresponding to the non-chiral operators vanish and only the “chiral” terms con-
tribute. Besides a general understanding that this has to be related to the unbroken
SUSY of the D3-D7, the cancellation of the non-chiral terms was proved by direct
calculation. The calculation presented in this thesis deals with the conic geometries
over TH! and YP? and may be generalized to any conic geometry. Nevertheless it
is not clear if this result can be extended to more complicated backgrounds. Per-
haps a clear argument why the non-chiral terms should not contribute can also shed
some light on the derivation of the non-perturbative superpotential for non-conic
backgrounds.

The superpotential discussed in the paragraph above is an essential ingredient of
many stringy models of inflation with the location of the D3 playing the role of the
inflaton. The superpotential governs the dynamics of the probe D3 when it moves
along the throat. The resulting effective potential on the six-dimensional conifold
has a complicated shape and admits many different scenarios of D3 motion. We
have analyzed the simplest scenario of a radial descent toward the tip and found
that the effective potential is generically too steep to support inflation. Although
there is freedom in specifying the parameters of the model and the character of the
motion, we found that, although it is possible to find inflation in this scenario, it is
very difficult to achieve.

Our result is based on some assumptions which are not rigorously justified. One
of them is the belief that the flux-induced and nonperturbative dynamics will fix

the lowest point of D7, u, somewhere is the middle of the throat. However it could
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be that the D7 will either “fall” down to the tip u — 0 or be “pulled” to the bulk
of Calabi-Yau pu ~ Mpjaner- In both cases the character of the dynamics will be
drastically changed and would have to be studied independently. We hope that

these and other related questions will be addressed in the near future.
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