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4 1 INTRODUCTION

1 Introduction

The Higgs boson plays a central role in the Standard Model as it endows particles with mass. Searches
for the Higgs boson at CDF have concentrated on channels using combinations of leptons, jets and
missing-Et. These channels have small background but also small Higgs signal yields. An alternative
approach is to use the all jet final state which has the largest signal yield but has the challenge of
modelling and suppressing a large QCD multijet background.

We search for a Higgs boson decaying to two bottom-quark jets (bb̄) accompanied by two additional
quark jets (qq′) for Higgs masses 100 ≤ mH ≤ 150GeV/c2. The search is most sensitive to a Higgs
boson with mass < 135GeV/c2 where the Higgs boson decay to bb̄ is dominant [1]. The two production
channels studied in this search are the associated production and vector boson fusion (VBF). The
associated production, pp̄ → V H → qq′ + bb̄, where V is a W/Z vector boson which decays to a pair
of quarks. The VBF channel, pp̄ → qq′H → qq′ + bb̄, where incoming partons each radiate a V and
fuse to form a Higgs boson. Both production processes are illustrated in Fig. 1.

(a) Production and decay mode of the V H → bb̄qq
channel

(b) Higgs boson production via vector boson fu-
sion process.

Figure 1: Feynman diagrams for the two Higgs production channels studied in this ananlysis: Asso-
cated Vector Boson Production & Vector Boson Fusion.

This note describes the third iteration of the all-hadronic Higgs search using 9.45 fb−1of pp̄ collision
data at

√
s = 1.96TeV recorded by the CDF detector. Articles on the previous 2 fb−1and 4 fb−1search

can be found at [2] [3] and references therein.
The additions and improvements to the analysis are:

• all CDF Run II data is analyzed which doubles the analyzed dataset from 4 fb−1to 9.45 fb−1.

• the b-jet energy resolution is improved using a neural network which combines information from
the tracker, displaced vertex and calorimeter (Sec. 3).

• the QCD background prediction has been improved which allows more variables to be included
in the neural network discriminant (Sec. 5).

• the jet moments, 〈η〉 and 〈φ〉 are combined into a single jet-width measurement 〈R〉. The
jet-width from the calorimeter and now the tracker are included. The corrections to remove
kinematic and detector bias from the 〈R〉 measurement have been improved.

• a single unified signal region is used, rather than separate regions for V H and VBF, which
improves the acceptance for Higgs boson.

• the neural network (NN) is improved by training a dedicated NN for each production process
and then combining each network into a super-discrminant.
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Table 1: Definition of the different versions of TOP MULTI JETand VH MULTIJETand the
recorded integrated luminosity. The integrated luminosity for TOP MULTI JETv-12 is the period
before VH MULTIJETwas added to the CDF trigger table.

L1 L2 L2 Calorimeter L3 Integrated
Cluster Luminosity

algorithm [fb−1]
TOP MULTIJET v1-9 JET 20 L2 FOUR JET15 SUMET175 Pacman 4 Jet-15 2.364
TOP MULTIJET v-12 JET 20 L2 FOUR JET15 SUMET175 L2Cone 4 Jet-15 0.643
VH MULTIJET JET 20 L2 THREEJET20 SUMET130 L2Cone NULL 6.439

Table 2: The MC corrections for the multijet triggers. Any MC event passing the trigger is weighted
by the MC scale factor.

Trigger MC Scale Factor
TOP MULTIJET v-9 0.959 ± 0.034 (3.55%)
TOP MULTIJET v-12 1.024 ± 0.036 (3.55%)

VH MULTIJET 1.014 ± 0.036 (3.55%)

2 Data and Trigger

The data for this analysis were collected by two triggers: TOP MULTI JET and VH MULTIJET.
They are designed to select events with 4 high pT jets with large Sum-Et which are characteristic of an
all hadronic Higgs event. The first 3.0 fb−1of CDF data was collected by TOP MULTI JET trigger
and the remaining 6.4 fb−1 by VH MULTIJET. The definition of the triggers and the recorded
integrated luminosity are given in table 1.

The efficiency of the multijet triggers are senstive to the topology of the event which precludes
the use of standard techniques of measuring the trigger turn-on from data; one has to rely on Monte
Carlo (MC) simulation. A study of the multijet triggers was performed and a set of corrections were
derived to correct the MC as documented in CDF Note 9954 [4]. This trigger study was repeated
using a larger dataset and the latest version of StNtuple which includes the following changes:

• CDF Note 9954 includes a correction for L2 calorimeter cluster energy to compensate for a bug
in TrigSim. This correction is no longer required as StNtuple now applies these correction
on-the-fly.

• TOP MULTI JET v1-8 and TOP MULTI JET v-9 are no longer treated separately to sim-
plify the trigger analysis. The trigger conditions for TOP MULTI JET v-9 are applied to
TOP MULTI JET v1-8.

• the analysis event selection imposes a SumEt cut of 220GeV/c2 which is tighter than the
L1 JET10 and L1 JET20 cut. So no dedicated L1 correction is required.

• the systematic uncertainty is measured using JET 70 and QCD-MC Pt60 rather than JET 20
and QCD-MC Pt18 as more events pass the trigger study quality cuts and thus a better measure
of the systematic uncertainty.

The MC scale-factors used to weight MC events passing the trigger emulation are given in table 2.
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2.1 Event Selection

2.1.1 PreTag Selection

The following criteria was applied for events to be considered in this analysis:

• The event must be in the QCD with Silicon Good Run List V45

• The event must have fired the TOP MULTI JET or VH MULTI JET trigger. For MC, the
corrected trigger decision is used.

• The |Z| position of the highest PT class(≥12) vertex must be less than 60 cm.

• Event must have zero leptons (leptons are electrons and muons).

• The event’s MET (missing transverse energy) significance 3 must be less than 6.

• The event must have 4 or 5 jets, where a jet is defined as:

– 0.4 cone L7-corrected jet-Et > 15.0GeV

– 0.4 cone raw jet-Et > 10.0GeV

– Jet |η| < 2.4

• The jets passing the selection are ordered by descending b-jet corrected Et and any fifth jet is
no longer used.

• The scalar L7-Et sum of the four leading jets (SumEt) > 220GeV/c2

2.1.2 B-Tagged Event Selection

Two b-tagging algorithms are used in this analysis:

• Tight SecVtx (SecVtx)

• 1% JetProb ( JetProb)

If a jet is tagged by both b-tagging algorithms, SecVtx takes priority as it has a lower mistag rate.
The two b-tagging algorithms are paired to define two b-tagging categories:

• SS: Exactly two jets are SecVtx tagged

• SJ: Exactly one jet is SecVtx tagged and exactly one jet is JetProb tagged.

The events which satisfy either b-tag category are labelled as b1, b2, q1, q2 where b(q) are the tagged(untagged)

jets and E
b1/q1

T > E
b2/q2

T .

Events with exactly 1 SecVtx tagged jet are used for the QCD background prediction.

• events with exactly 1 SecVtx tagged jet is used to predict the QCD SS background

• events with exactly 1 SecVtx tagged jet and zero JetProb tagged jets are used to predict the
QCD SJ background

Further details on the QCD background prediction can be found in section 5.
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(c) Higgs Signal Region

Figure 2: mbb and mqq distributions for mH=120GeV/c2. These distributions are used to define the
Higgs signal region.

2.1.3 Signal Regions for the Analysis

The signal region is defined by the mass of the two b-tagged jet (mbb) and the two untagged jets
(mqq). The V H channel has two mass resonances from the H → bb̄ decay and V → qq′. The
VBF channel only shares the mbb resonance. But VBF has a distinct topology as the two untagged
jets are far apart in η which gives a broad mqq spectrum. So we define the Higgs signal region as
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75.0 < mbb < 175.0GeV/c2 and mqq > 50.0GeV/c2 (Fig. 2).

2.1.4 Backgrounds

The backgrounds considered in this analysis are:

• QCD Multi-jets : this is the dominant background as it consists of about 98% of the total
background

• Top quark pair production

• Single Top quark production

• W and heavy-flavor jets production (W+HF)

• Z plus jets production, where Z decays into bb̄ and cc̄ (Z+JET).

• Diboson production : WW , WZ, ZZ

The QCD multi-jet will be estimated from a data driven based technique. The non-QCD back-
grounds will be estimated from simulation.

2.2 Signal and background Monte-Carlo samples

The signal and background Monte-Carlo (MC) samples were generated using a combination of Pythia[5]
and Alpgen [6] (See table 3). The generated events were then passed through the CDF detector sim-
ulation and then scale factors for the trigger and b-tagging are applied to correct the MC.

• A scale factor is applied to account for the difference in b-tagging efficiency measured in data
and MC. The scale factor for a single tight SecVtx tag is 0.950 ± 0.050, and the scale factor
for a 1% JetProb tag is 0.690 ± 0.040 [7]. Therefore the effective scale factor for SS category is
0.902± 0.067, and the effective scale factor for SJ category is 0.655 ± 0.051.

• events which pass the trigger emulation are scaled by the trigger dependent scale factors given in
table 2. The triggers used by the MC are in the same proportion as the luminosity recorded by
each trigger. Thus the first 24.9% of each MC sample uses TOP MULTI JET v-9, , the next
6.8% uses TOP MULTI JET v-12 and the remainder of the sample uses VH MULTIJET.

All the background events were generated as fully-inclusive except the signal and the Z+jets
sample. The fully inclusive Z+jets cross-section is large and the majority of the events would not pass
the trigger. A filter was used to select events which were likely to pass the trigger and event selection.
The filter was devised at the generator level to select events with b/c partons, have 3 jets with ET >
5Gev and a Sum-ET > 60GeV. Further details on the filter can be found in section 13.1. The V H
signal samples were generated with Pythia where the Higgs was forced to decay to bb̄ and the W/Z
was forced to decay to hadrons.

The Higgs signals (associated production and VBF) are all generated with Pythia and the goodrun
listed used is up to period 17 (runlist p0-p8 p10-p12 p15-p17 2008-12-17.txt) which consists of low,
medium and high luminosity profiles. The tt̄ MC samples used in this analysis (ttop75, otop49) also
contain the low, medium and high luminosity profiles.

2.3 Expected Signal and Backgrounds

Tables 5 and 6 summarise the number of signal and background events expected in 9.45 fb−1 and
the final number of events used in the analysis. The non-QCD backgrounds are estimated from MC
and assuming the cross-sections given in table 4. The difference of data and the sum of non-QCD
backgrounds is assumed to QCD. The QCD multijet background makes up 98% of the total background
and is modeled from data which is documented in section 4.

3MET significance = MET/
√

Total Transverse Energy
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Table 3: Generators used for Non-QCD background samples
Channel Generator

tt̄ Pythia
Single Top - S channel Pythia
Single Top - T channel Pythia

WW Alpgen+Pythia
WZ Alpgen+Pythia
ZZ Alpgen+Pythia

W + bb̄ Alpgen+Pythia
W + cc̄ Alpgen+Pythia

Z → bb̄/cc̄ + jj Pythia

Table 4: The cross-sections for the non-QCD backgrounds and the sources used.
Process Cross-section Source

tt̄ 7.04 pb CDF Note 10606 [8]
Single Top S channel 1.05 pb CDF Note 10606 [8]
Single Top T channel 2.1 pb CDF Note 10606 [8]

WW 11.34pb CDF Note 10606 [8, 9]
WZ 3.47 pb CDF Note 10606 [8, 9]
ZZ 3.62 pb CDF Note 10606 [8, 9]

W + bb̄ 24.7 pb (Alpgen+Pyhtia LO x 1.4 K NLO)
W + cc̄ 40.64 pb (Alpgen+Pythia LO x 1.4 K NLO)

Z → bb̄/cc̄ + jj 700.26pb (Pythia LO x 1.4 K NLO)
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Table 5: Table of WH , ZH and V BF Signal sources. The last two columns on the right are the total
number of events which pass the trigger, event selection, have two b-tags and have been scaled by the
MC corrections.

σ /pb σ× BR /pb Number of V H/V BF Used in analysis
for qq̄bb̄ events in 9.45fb−1 SS SJ

WH 100 0.2811 0.1503 1419 17.8 6.4
WH 105 0.2387 0.1247 1178 16.7 6.1
WH 110 0.2037 0.1026 969 15.5 5.6
WH 115 0.1745 0.0832 786 14.3 5.2
WH 120 0.1501 0.0659 622 13.0 4.6
WH 125 0.1295 0.0506 478 10.9 3.8
WH 130 0.1120 0.0374 353 9.0 3.1
WH 135 0.0972 0.0266 251 7.0 2.5
WH 140 0.0846 0.0180 170 5.1 1.8
WH 145 0.0737 0.0115 109 3.5 1.2
WH 150 0.0644 0.0068 64 2.2 0.8

ZH 100 0.1627 0.0900 850 13.8 4.4
ZH 105 0.1395 0.0754 712 12.9 4.1
ZH 110 0.1202 0.0626 591 12.5 4.1
ZH 115 0.1039 0.0512 484 11.1 3.6
ZH 120 0.0902 0.0409 387 9.9 3.2
ZH 125 0.0785 0.0317 300 8.3 2.7
ZH 130 0.0685 0.0237 223 6.8 2.2
ZH 135 0.0600 0.0170 160 5.3 1.7
ZH 140 0.0527 0.0116 109 3.9 1.3
ZH 145 0.0463 0.0075 71 2.6 0.9
ZH 150 0.0408 0.0045 42 1.7 0.6

VBF 100 0.0973 0.0770 727 10.2 3.4
VBF 105 0.0898 0.0694 655 9.9 3.5
VBF 110 0.0828 0.0617 583 10.0 3.4
VBF 115 0.0765 0.0539 509 9.3 3.3
VBF 120 0.0707 0.0459 434 8.8 3.0
VBF 125 0.0653 0.0378 357 7.8 2.6
VBF 130 0.0605 0.0299 282 6.6 2.3
VBF 135 0.0560 0.0226 214 5.5 1.8
VBF 140 0.0519 0.0163 154 4.2 1.5
VBF 145 0.0480 0.0111 105 3.0 1.0
VBF 150 0.0445 0.0070 66 2.0 0.7



2.3 Expected Signal and Backgrounds 11

Table 6: Table of Backgrounds: The number of expected events for each background source after
passing the trigger requirements and are accepted by the event selection cuts for the signal region.
The estimations are calculated for integrated luminosity of 9.45 fb−1. The difference between Data
and non-QCD is assumed to be QCD.

Higgs Signal region
SS SJ

tt̄ 1032.2± 155.9 383.9± 56.8
Single Top S channel 110.5 ± 18.5 37.8 ± 6.2
Single Top T channel 44.0 ± 7.3 25.5 ± 4.2
W + bb̄ 77.0 ± 40.0 28.5 ± 14.8
W + cc̄ 8.3 ± 4.3 7.4 ± 3.6
Z(→ bb̄/cc̄) + Jets 872.6 ± 452.0 337.6± 174.5
ww 5.6 ± 0.8 5.6 ± 0.8
wz 19.7 ± 2.9 7.9 ± 1.1
zz 21.4 ± 3.1 7.9 ± 1.1
total non-QCD 2191.3± 480.3 842.1± 184.3

Data 87272 46818
QCD 85080.7 45975.9
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3 bjet energy Neural Network correction

The di-jet invariant mass has a straight correlation to jet energy measurament and to optimize the
di-jet mass we need to improve the resolution of jet energy measurament. These improvements will
help to improve other parts of the analysis, such as the QCD modeling and jet shaping; both depend
on the jet-ET . A Neural Network (NN) is trained to correct the measured b-jet energy to the b-parton
energy.

The tool used for the NN is the ROOT class TMultiLayerPerceptron. The choice of the variables to
train the NN carry information of the jet energy. Two different NN were trained using SecVtxTag and
JetProb events and two sets of variables was identified for them. We had 9 variables for SecVtxTag
events:

• the Jet Et after the Level 7 correction,

• the Jet Pt after Level 7 correction,

• the Jet Raw Et,

• the transverse mass of Level 7 correction4,

• the decay length of the jet in 2-dim and its uncertainty,

• the Pt of secondary vertex,

• the maximum Pt of the track inside the jet cone,

• the sum of all tracks inside the jet cone,

and 6 variables for JetProb events:

• the Jet Et after the Level 7 correction,

• the Jet Pt after Level 7 correction,

• the Jet Raw Et,

• the transverse mass of Level 7 correction,

• the decay length of the jet in 2-dim and its uncertainty.

The Jet-Tracks follows the criteria:

• Tracks inside the jet cone ∆R(track, jet) ≤ 0.4

• ♯COTHits > 5

• COTχ2/NDF < 2.0

• 1GeV < TrackPt < 100GeV

The NN was trained with b tagged jets matched to b-partons. The match criteria is defined as ∆R
between the b-jet and the b-parton is ≤ 0.4.

• Learning Method: Stochastic algorithm.

• Number of Training Cycles: 100.

4The jet transverse mass is define as Pt/P ∗ M .
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• Number of Hidden Layers: 18/12 for SecVtxTag/JetProb events.

The NN correction function is trained to estimate the ratio between the energy of b-parton and
the b-jet.

We started to train, for each sample (VBF, WH and ZH), a dedicated NN. After the training we
compared the resolution5 for each mass at Level 7 and after the NN correction, the results are in
figure 3.

To identify the best NN performance, we applied to each sample the others NN. We obtained the
best performance with the VBF NN, so we decided to use that one for the analysis (fig. 4).
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Figure 3: The resolution for each mass point at Level 7 correction (blue) and NN correction (red) for
a) VBF, b) WH and c) ZH samples with its own NN train. d) Overlap of resolution after the NN
correction.

Figure 5 shows how the ratio between the energy of b-parton and the b-jet varies with the NN
inputs before and after the jet energy correction.

Figure 6 is shows the comparision of mass distribution before and after NN correction; we have an
improvmet of value of Mbb, the mean value shift to ∼ 124 GeV/c2, the RMS value reduces by 5 − 6%
and the resolution increase by ∼ 12 − 13%.

5The resolution is define as the ratio between RMS and mean value.
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4 Jet Width

The untagged q-jets from QCD are a mixture of quark and gluon jets whereas the q jets from the
Higgs signal are quark jets. On average, gluon jets tend to be broader than quark jets. Thus the
width of a jet can be used to discriminate quarks from gluons and so improve the separation of the
QCD multijet background from the Higgs signal.

The 4fb−1 analysis used the precomputed values of 〈φ〉 and 〈η〉 [2, 3] which is a measure of the
jet-width along the φ and η axis. We have now combined these two measures into a single value and
we now include the jet-width measured by the tracker The definitions of the jet width measured by
the calorimeter (〈R〉CAL) and tracker (〈R〉TRK) are given in equation 1.

〈R〉CAL =

√

√

√

√

∑

towers

[

Etower
t

Ejet
t

(

∆R(tower, jet)
)2

]

(1a)

〈R〉TRK =

√

√

√

√

∑

tracks

[

P track
t

P jet
t

(

∆R(track, jet)
)2

]

(1b)

where
∆R(tower, jet) ≡

√

(tower η − jet η)2 + ∆φ(tower φ, jet φ)2 (2a)

∆R(track, jet) ≡
√

(track η − jet η)2 + ∆φ(track φ, jet φ)2 (2b)

and ∆φ(tower/track φ, jet φ) is smallest angular difference between tower/tack φ and jet φ. All
calorimeter towers inside the jet cone of ∆R < 0.4 are used in the 〈R〉CAL calculation. All tracks
within the jet cone of ∆R < 0.4 are selected for 〈R〉TRK where a track is defined as:

• 1GeV/c < Track PT < 1TeV/c

• Track χ2/NDF < 5.0

• Track z0 = track collection mean z0 ± 1 cm

In this section ET refers to L7 corrected ET .

4.1 Comparison of jet-widths between data and MC simulation

We expect quark-jets and gluon-jets to have different widths. However the width of the jet is also
affected by the jet-ET jet-η and the number of vertices (NVtx). We also expect the MC jet-width
will need to be calibrated to match the jet-width measured in data. As we only measure the jet-width
of untagged, light-flavored jets, we require a high purity sample of light flavored jets. In the 4fb−1

analysis [2, 3], we used the jets from a hadronic W decay from a sample of tt̄ in the leptons+jets decay
channel. The data sample to select the tt̄ events are from the high-Pt electron and muon datasets
(from p0 to p28), and the MC samples are generated with Pythia (tt0p75+ot0p49). The tt̄ candidates
are selected with these cuts :

• At least one class 12 (or better) vertex

• |z − vertex| < 60 cm

• 1 CEM electron (Et > 20 GeV), or 1 CMUP/CMX muon (Pt > 20 GeV)

• ≥ 4 jets (Et(L7) > 20 GeV, | η |< 2.0

• MET > 25 GeV, Ht > 250 GeV



18 4 JET WIDTH

(a) b1ET (b) b1ET t

(c) mbb (d) mqq

Figure 7: Comparison of the kinematic distributions of the selected tt̄ candidates in the data to the tt̄
events from simulation. The red dashed line for mqq indicate the region used to select W candidates.

• ≥ 1 tight SecVtx tagged b-jet

Similar cuts are used in CDF 9462 [10] which measured the fraction of tt̄ events with Njet=4,5 as
∼ 86%.

The plots in figure 7 shows the comparison of the kinematic distributions of the selected tt̄ candi-
dates in the data to the tt̄ events from simulation. One sees good agreement between the data and
MC which indicates that the fraction of real tt̄ events in the data is large. For the jet shape studies,
we select untagged jets which are in the W boson mass window defined as 50 < mqq < 110GeV/c2.

The plots comparing 〈R〉CAL and 〈R〉TRK distributions between data and MC for the tt̄ events are
shown in figure 8. Although the shapes between data and simulation are quite similar there is a small
difference. The data is 86% tt̄ and the remaining 14% is W+bb̄(∼ 4.2%) , W +cc̄(∼ 2.3%), Wc, mistag,
non-W , Z+jets, di-boson and single-top [10]. The inclusion of these additional backgrounds could
account for the observed difference in the jet-widths. In the 4 fb−1analysis [2], this test was carried
out and could not account for the observed difference between the data and simulation jet-widths.

As mentioned previously, the jet-width is also affected by the jet-ET , jet-η and NVtx. The variation
of the jet width is illustrated in figure 9. The calorimeter measured jet-width varies strongly with
jet-ET , jet-η and NVtx. The tracker measured jet-width shares a similar dependency on jet-ET but
has a weaker dependence on jet-η and NVtx.
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(a) 〈R〉CAL (b) 〈R〉TRK

Figure 8: Comparing the 〈R〉CAL and 〈R〉TRK distributions between data and simulation for selected
tt̄ events.

(a) 〈R〉CAL vs Jet-ET (b) 〈R〉CAL vs Jet-η (c) 〈R〉CAL vs NVtx

(d) 〈R〉TRK vs Jet-ET (e) 〈R〉TRK vs Jet-η (f) 〈R〉TRK vs NVtx

Figure 9: Profile histograms showing the variation of the 〈R〉CAL and 〈R〉TRK with jet-ET , jet-η and
NVtx

4.2 Parameterizing the jet-width dependence: removal of kinematic and
detector biases

The jet-width depends on jet-ET , jet-η and NVtx. In the 4 fb−1analysis, the dependence was found by
manually fitting functions of the jet-wdith against each dependence. We now train a neural network
(NN) to extract a function which describes the jet width dependence as a function of jet-ET , jet-η
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and NVtx. We train a separate NN for data, MC, 〈R〉CAL, 〈R〉TRF . Using the NN fit functions, we
can rescale the measured jet-width to a common reference point to remove the kinematic and detector
biases. The common reference point is the jet-width from data for jet-ET =50GeV/c2, jet-η=0 and
NVtx=1.

• 〈R〉CAL reference point (〈R〉Ref
CAL) = 0.154

• 〈R〉TRK reference point (〈R〉Ref
TRK) = 0.108

We also use the same reference point for MC as this ensures the same width is measured for data and

MC. The functions to rescale the measured jet-widths are shown in equation 3. 〈R〉Data/MC
CAL (〈R〉Data/MC

TRK )

is the measured data/MC calorimeter(tracker) jet width and 〈R〉Data/MC′

CAL (〈R〉Data/MC′

TRK ) is the data/MC
calorimeter(tracker) jet width rescaled to the common reference point.

〈R〉Data′
CAL = 〈R〉Data

CAL × 〈R〉Ref
CAL

fData
CAL (jet-ET , jet-η, NVtx)

(3a)

〈R〉MC′

CAL = 〈R〉MC
CAL × 〈R〉Ref

CAL

fMC
CAL(jet-ET , jet-η, NVtx)

(3b)

〈R〉Data′
TRK = 〈R〉Data

TRK × 〈R〉Ref
TRK

fData
TRK (jet-ET )

(3c)

〈R〉MC′

TRK = 〈R〉MC
CAL × 〈R〉Ref

TRK

fMC
TRK(jet-ET )

(3d)

The function f
Data/MC
CAL (jet-ET , jet-η, NVtx) is the NN data/MC jet width paramterization. The

calorimeter jet-width dependence on jet-η changes rapidly at the transition from the central to the
plug calorimeter (|η| > 1.0) (Fig. 9). It was found a single NN was not able to adquately fit for this
transition. Instead two NN were required to paramterize the calorimeter jet-width: a parameterization

for the central calorimeter f
Data/MC
CCAL and the plug calorimeter f

Data/MC
PCAL .

f
Data/MC
CAL (jet-ET , jet-η, NVtx) =

{

f
Data/MC
CCAL (jet-ET , jet-η, NVtx) |Jet-η| ≤ 1.0

f
Data/MC
PCAL (jet-ET , jet-η, NVtx) |Jet-η| > 1.0

(4)

fMC
TRK(jet-ET ) is the NN data/MC jet width paramerization and is only a function of jet-ET as the

tracker jet width only had a weak dependence on jet-η and NVtx. The rescaled jet-wdiths are shown
in Fig. 10 and shows all dependence on jet-ET , jet-η and NVtx have been removed. Any difference in
the jet-width can now be assumed to be due to the type of parton initiating the jet.

After applying the corrections, the tt̄ MC jet-width distribution agrees better with the tt̄ data.
This is quantified by the change in the χ2/NDF of the the MC and data jet-width distributions which
reduces from 10.16(2.23) to 1.96(1.29) for the calorimeter(tracker) jet width (Fig. 4.2).

4.3 Systematic uncertainty of jet width for MC

The systematic uncertainty is estimated by adding an offset to the corrected MC jet-width and re-
computing the χ2/NDF of the data and adjusted MC jet width distribution. A range of offsets are
examined and the χ2/NDF(tt̄-MC,tt̄-Data) curve is plotted in Fig. 4.3. The systematic uncertainty is
defined as the offset required to change the χ2/NDF by ±1.

• Calorimeter jet width uncertainty: ±0.004 (±2.6%)

• Tracker jet width uncertainty: ±0.006 (±5.5%)
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(a) 〈R〉′CAL vs Jet-ET (b) 〈R〉′CAL vs Jet-η (c) 〈R〉′CAL vs NVtx

(d) 〈R〉′TRK vs Jet-ET (e) 〈R〉′TRK vs Jet-η (f) 〈R〉′TRK vs NVtx

Figure 10: Profile histograms showing the variation of the 〈R〉CAL/〈R〉′TRK with jet-ET , jet-η and
NVtx. After applying the corrections, the jet-width is no longer dependent on jet-ET , jet-η and NVtx.

The studies performed on the jet widths have only examined tt̄ samples. The Higgs signal MC jet-
width are compared with the tt̄-MC to check both sample give the same jet width. Figure 4.3 show
profile histograms of the corrected jet width of untagged jets against jet-ET , jet-η and NVtx. We see
no difference between the tt̄ MC and the Higgs MC and thus no sample dependence on the jet-width
parameterization.
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(a) 〈R〉CAL : no corrections (b) 〈R〉TRK : no corrections

(c) 〈R〉′
CAL

: after corrections (d) 〈R〉′
TRK

: aftercorrections

Figure 11: Jet width distributions before/after corrections are applied. Before any corrections, the
χ2/NDF = 10.16(2.23) for the calorimeter(tracker) jet width. After the corrections are applied, the
χ2/NDF reduces to 1.96(1.29) for the calorimeter(tracker) jet width.Calorimeter Jet Width χ2 /NDF Calorimeter Jet Width offset

(a) χ2/NDF vs calorimeter jet width off-
set

Track Jet Width χ2 /NDF Tracker Jet Width offset
(b) χ2/NDF vs tracker jet width offset

Figure 12: A range of offsets are added to the corrected MC jet-width and the variation of χ2/NDF
is plotted. The offset required to change the χ2/NDF by ±1 is used to define the uncertainty. The
uncertainty is ±0.004(0.006) for the corrected calorimeter(tracker) jet-width.
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(a) 〈R〉′
CAL

vs Jet-ET (b) 〈R〉′
CAL

vs Jet-η (c) 〈R〉′
CAL

vs NVtx

(d) 〈R〉′
TRK

vs Jet-ET (e) 〈R〉′
TRK

vs Jet-η (f) 〈R〉′
TRK

vs NVtx

Figure 13: Comparison of tt̄ and Higgs signal jet-widths. There is no variation between the samples.
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(a) TRF Principal: The red-line corresponds to the 1-
tag distribution which is ≈100% background. The 2-
tag background is assumed to be a scaled version of the
1-tag (background) distribution (blue line). The TRF
is derived from the regions outside the signal peak.

(b) Mbb-Mqq plane to define the TAG (brown) and
CTRL (blue) regions.

Figure 14: The Tag-Rate function and the mbb-mqq plane

5 QCD Background Prediction: Tag-Rate-Function (TRF)

The critical component to this analysis is an accurate prediction of the QCD background as it is
the dominant background. In this analysis a data driven model was devised to predict the two-
tagged background from the background-rich one-tagged data. The assumption is the two-tagged
background distribution is a scaled replica of the one-tagged distribution (figure 14). The scale factor
which deduced from the one-tag data is a multi-dimentional function, called the Tag Rate Function
(TRF). The TRF is the probability of a jet being b-tagged in the event that already has one other jet
tagged as a b-jet. The probability is measured in a kinematic region that has very little contribution
from the Higgs signal, the TAG region. This is applied to the one tagged events in the signal region
to predict the double b-tagged QCD background. As a systematic, another TRF is derived from
the control (CTRL) region. This is also applied to the 1-Tag data in the signal region to give an
alternative background predicition. The difference of these two background predictions is applied as
a systemtic error.

The key issue of this method is to make sure that the technique can correctly predict the shapes
of the kinematic distributions of the double b-tagged QCD multi-jet events which will be used later
in the NN training to separate the Higgs signal from the QCD background. This TRF method does
not necessary predict the right normalization of the double b-tagged QCD background.

To measure the TRF, events having one or two tagged jets are considered. The events having
three or more jets tagged are rejected. For each event one tagged jet is taken as Tag jet, then loop
through the other three jets to probe for their tagging condition, they are taken as Probe jet in turn
6. If a Probe jet is taggable this event is logged in the denominator. If the Probe jet is also tagged
then the event is logged in the numerator. For the events having two tagged jets, each jet is taken as
Tag jet in turn. The assumption here is that if a jet can be tagged it must be taggable. This is true
for SecVtx b tagging. But it is not quite true for b tagging using jet probability. So we enforce this
condition in the TRF measuring.

The TRF is parameterised as a function of three parameters which are:

• ∆R of Tag-Probe jet pair

6Jet-Et > 15GeV, |η| < 2.4, Number of good SecVtx (JetProb) tracks ≥ 2 when considering if the jet is SecVtx
(JetProb) tagged
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• ET of the Probe jet

• pseudorapidity of the Probe jet (|η|)

TRF (∆ηbb, Et, |η|) =
Number of 2 − Tag events(∆ηbb, Et, |η|)

Number of events with ≥ 1 tight SecVtx tagged jet(∆ηbb, Et, |η|)
(5)

The TRFs are measured separately for SS and SJ double b-tagged categories. For the SJ category,
events with only one tight SecVtx tagged jets are considered in the measurement of the TRF(SJ).

The data used to derive the TRFs come from examining data outside the signal region (figure 14)
in the M(bb)-M(qq) plane. The signal region is defined by 75 < M(bb) < 175 GeV/c2 and M(qq) > 50
GeV/c2 mass window. Two regions outside the signal region are defined:

• CTRL region: an open-surrounding area around the signal region; 70 < M(bb) < 200 GeV/c2

and M(qq) > 45 GeV/c2, except the signal region.

• TAG region: an open-surrounding area around the CTRL region; 65 < M(bb) < 250 GeV/c2

and M(qq) > 40 GeV/c2, except the CTRL region and signal region.

The default TRF uses data from the TAG region. The CTRL region is used to derive systematic
errors (figure 14). In the TRF deriving the contribution of tt̄ and Z plus jets are subtracted.

The kinematic distributions of the predicted double b-tagged events in the signal region are com-
pared to the observed double b-tagged events for the SS category. These comparison plots are shown
in figure 15-20 from the SS events. The plots for SJ events are shown in 21-26.

Not all variable in the comparison shows consistency. One example is the cosθ(helicity) of the
higher energy b jet in the two b system. This variable shows some difference in between the Higgs
and QCD events. However it can’t be described by the TRF, see Figure 27, thus we can’t use this
variable in the analysis.

5.1 Tunning the Modeling of the Mass M(qq)

The TRF generated via this method does predict well the shapes of various kinematic variables
except a few. Some of the well described variables, such as jet shape related variables, are shown
in Fig. 15-27. A few variables are not well described but important to this analysis are M(bb) and
M(qq). Possible reasons for the miss matching are the following. The ratio of 2 b tagged over 1 b
tagged events is assumed to be flat. This assumption is true in large scale but not quite so in local
area in the M(bb), M(qq) phase space. The other reason is that while developping the TRF both 1 b
tagged and 2 b tagged events contribute to the denominator . While in predicting 2 b events in the
signal region only 1 b tagged events are used. This creates slightly inconsistency in the composition
of the denomenator. These are limitations of the method. We can only choose the variables that well
described to proceed with the analysis so we need to correct for M(qq) and hopefully the M(bb) shape
will follow.

To correct for M(qq), we measure the correction function by applying the TRF to the one tagged
events in the TAG region and measure the ratio of the predicted double b-tagged events to the observed
b-tagged events as a function of the mass M(qq). The correction function is then applied in the signal
region when we are predicting the double b-tagged events in the signal region. As a systematic check,
we also measured another correction function for M(qq) in the CONTROL region and apply the
correction function in predicting the 2 b-tagged events, in the signal region, while using the TRF
from the CONTROL region. The difference in the predictions between using the TRF’s (with their
corresponding correction function) mesured from the TAG region and from the CONTROL region is
part of the source of systematic uncertainty of the modeling.
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Figure 15: The kinematic distributions of the predicted double b-tagged events in the signal region
are compared to the observed double b-tagged events for the SS category. The left side plot shows
the invariant mass of the two b tagged jets system, M(bb). The middle plot shows the invariant mass
of the two not b tagged jets system, M(qq). The right side plot shows the cosθ3 The red hashed
histograms are the predicted double b-tagged events, and the black points are the observed double
b-tagged events.

Figure 16: The kinematic distributions of the predicted double b-tagged events in the signal region
are compared to the observed double b-tagged events for the SS category. Shown in left side is the
cosine of the helicity angle of the most energetic not b tagged jet. Shown in the right side is the chi
value comparing the M(bb) to the assumed Higgs mass at 120 GeV/c2 and the M(qq) to the Z or W
boson mass, depending on which difference is smaller. The red hashed histograms are the predicted
double b-tagged events, and the black points are the observed double b-tagged events.
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Figure 17: The kinematic distributions of the predicted double b-tagged events in the signal region
are compared to the observed double b-tagged events for the SS category. Left side plot is dRbb. Right
side plot is dRqq. The red hashed histograms are the predicted double b-tagged events, and the black
points are the observed double b-tagged events.

Figure 18: The kinematic distributions of the predicted double b-tagged events in the signal region
are compared to the observed double b-tagged events for the SS category. Left side plot is dηbb. Right
side plot is dηqq. The red hashed histograms are the predicted double b-tagged events, and the black
points are the observed double b-tagged events.

5.2 Influence of the Higgs Signal to the TRF

If a Higgs signal exists, it would contribute to the TRF. Although at the predicted Higgs cross-section,
the contribution of the Higgs signal to the TRF would be minimal.

To test the method, some Higgs events are injected into the regular data; from which we derive
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Figure 19: The kinematic distributions of the predicted double b-tagged events in the signal region
are compared to the observed double b-tagged events for the SS category. Left side plot is dφbb. Right
side plot is dφqq . The red hashed histograms are the predicted double b-tagged events, and the black
points are the observed double b-tagged events.

another TRF and compare the new one with the nominal TRF. Two cases were tried; one has 14
times more of the Standard Model Higgs of mass 125 GeV/c2, the T14 sample. Figure 28 shows the
M(bb) distribution of the nominal (upper left plot) samples and from the T14 samples (upper right
plot). The ratio of the two is shown in the bottom, which has a small rise in the mass region around
125 GeV/c2 as expected. The second samples has 100 times more of the Standard Model Higgs, the
T100 samples. Figure 29 shows the M(bb) from both nominal the T100 samples and the ratio of the
two has larger rising in the mass range of 125 GeV/c2 than the case of T14 as expected.

With added Higgs events new TRF’s are derived and used to predict the background in the signal
region. Comparing the prediction of the TRF from the T14 samples against the prediction using the
nominal TRF, we see no significant difference. For the variables that are b quark pair related there
are very tiny fluctuations. The most relavant example is M(bb), see Figure 30. For the histograms of
the variables that are light quark pair related no fluctuation is seen, one important example is M(qq),
see Figure 31. Similar situation is seen using the TRF from the T100 samples, see Figures 32, 33.

With added Higgs samples there is only tiny change in the TRF, which has no significant change
in the prediction. This shows that the TRF is reliable and stable in predicting the background in
reasonable range of Higgs cross section. Up to 100 times more the method is still sound.
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Figure 20: The distributions of jet width based on calorimeter tower and tracks for the predicted
double b-tagged events in the signal region are compared to the observed double b-tagged events for
the SS category. The red hashed histograms are the predicted double b-tagged events, and the black
points are the observed double b-tagged events.
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Figure 21: The kinematic distributions of the predicted double b-tagged events in the signal region
are compared to the observed double b-tagged events for the SJ category. The left side plot shows
the invariant mass of the two b tagged jets system, M(bb). The middle plot shows the invariant mass
of the two not b tagged jets system, M(qq). The right side plot shows the cosθ3 The red hashed
histograms are the predicted double b-tagged events, and the black points are the observed double
b-tagged events.

Figure 22: The kinematic distributions of the predicted double b-tagged events in the signal region
are compared to the observed double b-tagged events for the SJ category. Shown in left side is the
cosine of the helicity angle of the most energetic not b tagged jet. Shown in the right side is the chi
value comparing the M(bb) to the assumed Higgs mass at 120 GeV/c2 and the M(qq) to the Z or W
boson mass, depending on which difference is smaller. The red hashed histograms are the predicted
double b-tagged events, and the black points are the observed double b-tagged events.
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Figure 23: The kinematic distributions of the predicted double b-tagged events in the signal region
are compared to the observed double b-tagged events for the SJ category. Left side plot is dRbb. Right
side plot is dRqq. The red hashed histograms are the predicted double b-tagged events, and the black
points are the observed double b-tagged events.

Figure 24: The kinematic distributions of the predicted double b-tagged events in the signal region
are compared to the observed double b-tagged events for the SJ category. Left side plot is dηbb. Right
side plot is dηqq. The red hashed histograms are the predicted double b-tagged events, and the black
points are the observed double b-tagged events.
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Figure 25: The kinematic distributions of the predicted double b-tagged events in the signal region
are compared to the observed double b-tagged events for the SJ category. Left side plot is dφbb. Right
side plot is dφqq . The red hashed histograms are the predicted double b-tagged events, and the black
points are the observed double b-tagged events.
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Figure 26: The distributions of jet width based on calorimeter tower and tracks for the predicted
double b-tagged events in the signal region are compared to the observed double b-tagged events for
the SJ category. The red hashed histograms are the predicted double b-tagged events, and the black
points are the observed double b-tagged events.
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Figure 27: The distributions of cosθ (helicity) for the predicted double b-tagged events in the signal
region are compared to the observed double b-tagged events. Shown in the left side is for the SS
events; right side is for SJ events. The red hashed histograms are the predicted double b-tagged
events, and the black points are the observed double b-tagged events.
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Figure 28: The plot in the upper left side shows the M(bb) distribution from the regular samples. The
plot in the upper right side shows the same distribution from the T14 samples. A small rise is seen in
the region around M(bb) = 125 GeV/c2.
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Figure 29: The plot in the upper left side shows the M(bb) distribution from the regular samples.
The plot in the upper right side shows the same distribution from the T100 samples. The rise in the
region around M(bb) = 125 GeV/c2 is seen more apparent than the T14.
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Figure 30: The plot in the upper left side shows the predicted M(bb) distribution using the TRF from
the regular samples. The plot in the upper right side shows the predicted M(bb) distribution using
the TRF derived from the T14 samples. No apparent rising is seen.
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Figure 31: The plot in the upper left side shows the predicted M(qq) distribution using the TRF from
the regular samples. The plot in the upper right side shows the predicted M(qq) distribution using
the TRF derived from the T14 samples. No apparent rising is seen.
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Figure 32: The plot in the upper left side shows the predicted M(bb) distribution using the TRF from
the regular samples. The plot in the upper right side shows the predicted M(bb) distribution using
the TRF derived from the T100 samples. No apparent rising is seen.
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Figure 33: The plot in the upper left side shows the predicted M(qq) distribution using the TRF from
the regular samples. The plot in the upper right side shows the predicted M(qq) distribution using
the TRF derived from the T100 samples. No apparent rising is seen.
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6 Untagged Jets Neural Networks

In the association production of Higgs particle there are light quark pairs from Z, W decay or through
vector boson fusion, VBF. These light quark pairs have special features that can be used to help
discrimnate the QCD background thus help the search of Higgs particle. So we train special Neural
Networks to identify light quark pairs in the association production of Higgs particle event. Below we
describe the features of the light quark pairs and how the Neural Networks are trained.

The main variable is M(qq) which is the invariant mass of the two light quark jets, qq. Which is
of course the main signature of Z and W bosons. In case of VBF, the same distribution is much wider
and similar to qq from QCD.

The dR(qq) is defined as
√

dφ + dη of the qq which is strongly correlated to the opening angle of
the two jets. For ZH and WH the qq jets are constraint to the mass of Z and W thus they don’t go
wide open as the qq from QCD where they could go back to back. For VBF the qq jets are very wide
open in both φ and η phase space, especially in η, where the QCD light quark jets are not wide open
but the ones from VBF are mostly back to back.

The other two main variables used are dφ and dη, which are the differences of two φ angles and
two η’s of qq. For qq in the Z decay they form a cluster in the low dφ and zero dη region. The empty
hole is due to the two jets come too close to each other and are not reconstructed, this is shown in
the plot (a) of Figure 34. For W it is quite similar as Z. For QCD the qq jets have large opening in
the φ angle and close in η; this is shown in the plot (b) of Figure 34.

The qq in the case of VBF the qq are mostly back to back, having large opening in both φ and η;
this is shown in the plot (a) of Figure 35. Shown in the plot (b) of Figure 35 is the dφ vs. dη plot for
the top pairs. This has a lot of overlap with ZH and WH thus to reject top requires other variable,
such as Pt of the first four jets. However here we train NN’s to reject QCD only.

Other variables such as Ptq, the transverse momentum of one q jet in the qq system, also shows
difference for qq from ZH and WH. However the Ptq is highly correlated with the M(qq) so when
M(qq) is used this variable provides little additional informaiton.

For the training purpose we specifically pick events that have exactly two b tagged jets and two
untagged jets. The events of three or more b tagged jets are rejected purposely, which could happen
especially in case of ZH when both Z and H decay into b quark pairs. In such case it is not clear
which two jets are from Z and which two are from Higgs. This causes confusion in the Neural Network
training.

The Neural Networks, YC ZH and YC WH, for the ZH and WH respectively, are trained based
on M(qq), dR(qq), dη(qq), dφ(qq), ptq, pz(qq)/p(qq), pt(qq). While for VBF the Neural Network,
YC VBF, is trained based on M(qq), dR(qq), dη(qq), abs(dη(qq))/dR(qq), abs(dφ(qq))/dR(qq), ptq.

The performance of YC ZH (plot (a)) and YC WH (plot (b)) Neural Networks are shown in Figure
36. The performance of YC VBF is shown in Figure 37. These are used in the final NN’s for ZH, WH
and VBF higgs search individually.
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Figure 34: dφ vs. dη of the two light quark jets in the Higgs association production of ZH, which is
shown in the plot (a). In the plot (b) it is dφ vs. dη of the two light quark jets in the case of QCD.
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Figure 35: dφ vs dη of the two light quark jets in the Higgs association production via VBF is shown
in the plot (a). In the plot (b) it is the two light quark jets in the top pair events.
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Figure 36: The performance of YC ZH (shown in the plot (a)) and YC WH (shown in the plot (b).
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Figure 37: The performance of YC VBF.



41

7 Neural Network Training

For the Higgs analysis, a multivariate discriminant has the ability to combine the information from
several variables. This improves the ability to separate a Higgs signal from background events far
greater than a standard cuts analysis. The TMVA package [11] allows one to evaluate several multi-
variate classifiers. For this analysis, we considered an Artificial Neural Network 7.

A dedicated Neural Net was trained for each process, WH, ZH and VBF. Because the proceses WH
and ZH are similar we continue to identify them as VH, although the Neural Net was trained separately.
The output of this first Neural Net was used as the input of a second one (SuperDiscriminant - SD).
We used the output of the last Neural Net for the analysis.

After training with different variables and examining the signal efficiency/background rejection,
expected limit & overtraining results, the Neural Net performed best was selected as the classifier for
this analysis. The settings for the neural work were:

• Neuron Type : tanh

• Number of Training Cycles : 1000

• Number of Hidden Layers : 1 Hidden layer with N-inputs+1 nodes.

• 30,000/10,000 training & testing events are used for signal & background for MH100 (only VBF),
MH120 and MH140.

• 17,000/1,700 training & testing events are used for signal & background for MH100 WH.

• 22,000/1,900 training & testing events are used for signal & background for MH100 ZH.

• 30,000/10,000 training & testing events are used for signal & background for MH100, MH120
and MH140 in SuperDiscriminant.

As the background is dominated by QCD, the 1-Tag background, weighted by the TRF, is used
as the background sample for the NN. As we wish to keep the NN training, testing and final analysis
events separate, the samples were divided as follows:

• 10% of the 1-Tag background sample from Signal region used only for training & testing Neural
Net.

• The remaining 90% of the 1-Tag background sample from the Signal region was only used for
the analysis.

• A dedicated Higgs signal sample for NN training & testing

• A dedicated Higgs signal sample for the analysis which is statistically independent to the NN
training/testing samples.

• The two tagged events are only ever used in the analysis.

The Neural Net was trained at three target Higgs masses; 100GeV, 120Gev and 140GeV. These
three trained neural nets were used to search for a Higgs boson between 100GeV to 150GeV. For each
mass point, the closest trained neural net was used as follows:

• 100GeV Higgs used Neural Net trained on 100GeV Higgs sample

• 105, 110, 115, 120, 125, 130GeV Higgs used Neural Net trained on 120GeV Higgs sample

• 135, 140, 145, 150GeV Higgs used Neural Net trained on 140GeV Higgs sample

7We followed TMVAs recommendation of the Multi-layer Perceptron algorithm for the artificial neural network



42 7 NEURAL NETWORK TRAINING

For all Neural Nets the same window cut was applied:

Signal Window : 75 < M(bb̄) < 175GeV (6)

M(qq̄) > 50GeV

The selection of variables for the first neural net training must fulfil two criteria:

• the variable must give good background-signal separation.

• The variable must be well modelled by the Tag-Rate-Function (TRF).

A initial list of 68 variables was drawn and were judged by the two criteria. After this first pass,
the number of suitable variables reduced to 29. The next step was to examine which variables help the
Neural Net to separate the signal from background. An initial neural net trained with just Mbb, Mjj

(the Higgs & W/Z mass resonance), cos(θ3) and Chi (both defined later). Then an additional variable
was added from the reduced list until all 29 variables were added. At each stage, the signal efficiency
for different background rejection rates and the expected (statistics-only) limit was recorded.

7.1 VH Neural Net Training

For the VH neural net training, the samples used were:

• Signal : dedicated WH and ZH training samples

• Background: the 10% 1-Tag background

The list of training variables for the VH Neural Net is:

• Mass of the two b-tagged jets (M(bb))

• Mass of the two non b-tagged jets (M(qq))

• cosine of the leading-jet scattering angle in the 4-jet rest-frame (cos(θ3))

• Chi

• Jet Width Tower of leading non b-jet

• Jet Width Track of leading non b-jet

• Jet Width Tower of second leading non b-jet

• Jet Width Track of second leading non b-jet

• Aplanarity, Sphericity and Centrality

• ∆R of the two b-tagged jets

• ∆R of the two non b-tagged jets

• Difference between the two φ angles of the two b-tagged jets

• Difference between the two φ angles of the two non b-tagged jets

• Neural Network distribution for the identification of WH non b-jet

• Neural Network distribution for the identification of ZH non b-jet
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The definition for cos(θ3) can be found in [12]

The Chi variable is defined as:

Chi = Min(ChiW , ChiZ) (7)

ChiW/Z =
√

(MW/Z − Mqq)2 + (MH − Mbb)2 (8)

Figure 38 and 39 show the signal & background plots for the selected variables and the modelling
by the Tag-Rate-Function (TRF) are shown in figures 40-47 for SS category and figures 48- 55 for SJ
category.

The neural net is trained with the selected 17 variables with the settings given in section 7.
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Figure 38: The training variables used for the VH analysis. WH(MH120) is used as the signal.
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Figure 39: The training variables used for the VH analysis. WH(MH120) is used as the signal.
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Figure 40: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 41: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 42: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 43: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 44: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 45: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 46: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 47: The SS TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.

0 20 40 60 80 100 120 140 160 180 2000

500

1000

1500

2000

2500

mass_bb

0 20 40 60 80 100 120 140 160 180 2000.7

0.8

0.9

1

1.1

1.2

1.3

TRF/DATA

0 50 100 150 200 250 300 350 4000

1000

2000

3000

4000

5000

mass_qq

0 50 100 150 200 250 300 350 4000.7

0.8

0.9

1

1.1

1.2

1.3

TRF/DATA

200 300 400 500 600 700 8000

500

1000

1500

2000

2500

3000

3500

mass_4j

200 300 400 500 600 700 8000.7

0.8

0.9

1

1.1

1.2

1.3

TRF/DATA

Figure 48: The SJ TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 49: The SJ TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 50: The SJ TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 51: The SJ TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

500

1000

1500

2000

2500

3000

centr

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.7

0.8

0.9

1

1.1

1.2

1.3

TRF/DATA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

500

1000

1500

2000

2500

3000

3500

4000

deltaR_bb

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50.7

0.8

0.9

1

1.1

1.2

1.3

TRF/DATA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

500

1000

1500

2000

2500

3000

3500

deltaR_qq

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50.7

0.8

0.9

1

1.1

1.2

1.3

TRF/DATA

Figure 52: The SJ TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 53: The SJ TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 54: The SJ TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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Figure 55: The SJ TRF prediction of the training variables. The black histograms are the TRF
prediction, the black crosses are the data for the Higgs signal region and the grey bar are the total
uncertainty. As the TRF only predicts the shape, the histograms are normalised to unit area. Below
the histograms are the ratio plots of Prediciton/Data. Variables which are modelled by the TRF have
a flat ratio.
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7.2 VBF Neural Net Training

The VBF neural net is trained with the following samples:

• Signal : dedicated VBF training sample

• Background: the 10% 1-Tag background

Due to the different underlying physics process of the Vector Boson Fusion (VBF) compared to VH
channel, we expect a different set of variables will be optimal for the VBF channel. The same variable
selection procedure for VH was adopted for VBF. This resulted in 18 training variables for VBF:

• Mass of the two b-tagged jets (M(bb))

• Mass of the two non b-tagged jets (M(qq))

• Chi

• Jet Width Tower of leading non b-jet

• Jet Width Track of leading non b-jet

• Jet Width Tower of second leading non b-jet

• Jet Width Track of second leading non b-jet

• η of leading non b-jet

• η of second leading non b-jet

• Difference between the two η angles of the two b-tagged jets

• Invariant mass of four jets system

• Sum of momentum Z component of the four jets system

• Sphericity and Centrality

• ∆R of the two b-tagged jets

• ∆R of the two non b-tagged jets

• Difference between the two φ angles of the two b-tagged jets

• Neural Network distribution for the identification of VBF non b-jet

Fig. 56 57 show the signal and background plots for the selected variables and Figs.40-47 shows
the TRF modelling of the NN training variables for SS category and figures 48-55 for the SJ category
and Fig. 61(c) shows the overtraining check .

7.3 SuperDiscriminant Neural Net Training

For the SuperDiscriminant (SD) neural net training, the samples used were:

• Signal : WH, ZH and VBF NN training samples

• Background: the NN 10% 1-Tag background

The list of training variables is:

• Neural Net distribution for WH
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Figure 56: The training variables used for the VBF analysis. VBF(MH120) is used as the signal.

• Neural Net distribution for ZH

• Neural Net distribution for VBF

The figure 58 shows the signal & background plots for the selected variables and the figures 59
and 60 show the TRF modelling of NN training variables for MH120, analogous plots are obtained
for MH100 and MH140. Figure 61 shows the overtraining for the four neural nets.

For any multivariate analysis, one must ensure their classifier is not overtrained. Otherwise it
would lead to an overoptimistic performance of the classifier. A measure of the over-training is to
compare the Neural Net distribution using events used for training & events from an independent test
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Figure 57: The training variables used for the VBF analysis. VBF(MH120) is used as the signal.
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Figure 58: The training variables used for the SD analysis. MH120 training is used.

sample. The TMVA package provides such a test and reports the Kolmargorov-Smirnoff probabilties
for the signal & background. The values for various training are in table 7.
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Figure 59: The SS TRF prediction of the training variables for SuperDiscriminat. The black his-
tograms are the TRF prediction, the black crosses are the data for the Higgs signal region and the
grey bar are the total uncertainty. As the TRF only predicts the shape, the histograms are nor-
malised to unit area. Below the histograms are the ratio plots of Prediciton/Data. Variables which
are modelled by the TRF have a flat ratio.
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Figure 60: The SJ TRF prediction of the training variables for SuperDiscriminat. The black his-
tograms are the TRF prediction, the black crosses are the data for the Higgs signal region and the
grey bar are the total uncertainty. As the TRF only predicts the shape, the histograms are nor-
malised to unit area. Below the histograms are the ratio plots of Prediciton/Data. Variables which
are modelled by the TRF have a flat ratio.



58 7 NEURAL NETWORK TRAINING

MLP_BP response
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

dx / 
(1

/N
) 

dN

0

0.5

1

1.5

2

2.5

3

3.5 Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.752 (0.545)

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

TMVA overtraining check for classifier: MLP_BP

(a) Overtraining check for WH

MLP_BP response
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

dx / 
(1

/N
) 

dN

0

0.5

1

1.5

2

2.5 Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.123 (0.821)

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

TMVA overtraining check for classifier: MLP_BP

(b) Overtraining check for ZH

MLP_BP response
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

dx / 
(1

/N
) 

dN

0

0.5

1

1.5

2

2.5

3

3.5
Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.835 (0.0634)

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

TMVA overtraining check for classifier: MLP_BP

(c) Overtraining check for VBF
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Figure 61: Overtraining checks for WH, ZH, VBF & SD trained for MH120. All trained neural nets
give good Kolmorogov-Smirnoff probabilities which indicates no overtraining.

NN Train Signal (%) Background (%)
WH 75.2 54.5
ZH 12.3 82.1
VBF 83.5 6.3
SuperDiscriminant 45.9 96.7

Table 7: Kolmogorov-Smirnoff probabilities for signal and background for each Neural Network train-
ing for a MH120 signal

7.4 NN Templates

7.4.1 MH100 Neural Network

The NN trained with mH=100GeV/c2 is used to search for Higgs bosons of mass mH=100GeV/c2.
Figure 62 shows the NN output for the background and mH=100GeV/c2 Higgs signal.

7.4.2 MH120 Neural Network

The NN trained with mH=120GeV/c2 is used to search for Higgs bosons of mass mH=105GeV/c2 to
130GeV/c2. Figure 63 shows the NN output for the background and mH=120GeV/c2 Higgs signal.
The mH=105,110,115,125,130GeV/c2 Higgs uses the same background templates and just replaces
the Higgs signal (Fig. 64- 68).

7.4.3 MH140 Neural Network

The NN trained with mH=140GeV/c2is used to search for Higgs bosons of mass mH=135GeV/c2 to
150GeV/c2. Figure 69 shows the NN output for the background and mH=140GeV/c2 Higgs signal.
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Figure 62: Background and Higgs signal (mH=100GeV/c2) distributions for NN trained at
mH=100GeV/c2. For this low mass, the diboson background has a very signal like distribution.

The mH=135,145,150GeV/c2 Higgs uses the same background templates and just replaces the Higgs
signal (Fig. 70- 72).



60 7 NEURAL NETWORK TRAINING

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

2000

4000

6000

8000

10000

tmvatrainNN__mass_zone!=0_&&_isSTST==1_&&_FourFiveJ et==1___*_trigger_weight__*_SSTRF.tag__*_SSTRF.tag_ ReWt_mqq__*_ssCorrNNweight.tagCorr50-0.71.40x1f2972 00

Entries  2462669

Mean   0.3186

RMS    0.2401

Underflow       0

Overflow        0

Integral  8.511e+04

QCD

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10

20

30

40

50

tmvatrainNN__mass_zone!=0_&&_isSTST==1_&&_FourFiveJet==1__*_event_weight50-0.71.40x1f8185a0

Entries  112381

Mean   0.5482

RMS    0.2575

Underflow       0

Overflow        0

Integral    1032

tt

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10

20

30

40

50

60

tmvatrainNN__mass_zone!=0_&&_isSTST==1_&&_FourFiveJet==1__*_event_weight50-0.71.40x1f9413b0

Entries  953

Mean   0.4318

RMS    0.2388

Underflow       0

Overflow        0

Integral   872.6

Z+Jet

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

6

7

8

tmvatrainNN__ mass_zone!=0 _&&_isSTST==1 _&&_FourFiveJ et==1 __*_ev ent_weight50-0.71 .40 x1f86d ff0_SINGLETOP_ TOTAL

Entries  3782

Mean   0.5247

RMS    0.2723

Underflow       0

Overflow        0

Integral   154.5

Single-Top

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

tmv atra inNN__mass _zone!=0_&&_is STST= =1_&&_ FourFiveJ e t= =1__*_ even t_ we ight50-0.71.40x1 f9 18600 _DIBOSON_TO TAL

Entries  6877

Mean   0.5427

RMS    0.2536

Underflow       0

Overflow        0

Integral   46.78

Diboson

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

tmvatrainNN__ mass _zone!=0 _&&_isSTST== 1_&&_FourF iv eJ e t==1 __*_ even t_weigh t5 0-0.71 .40 x1 f8 6fd4 0_WHF_ TOTAL

Entries  1531

Mean   0.5468

RMS    0.2718

Underflow       0

Overflow        0

Integral   85.22

W+HF

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

tmvatrainNN__mass_zone!=0_&&_isSTST==1_&&_FourFiveJet==1__*_event_weight50-0.71.40x1f60ed60

Entries  22360

Mean   0.7395

RMS    0.2423

Underflow       0

Overflow        0

Integral   12.98

WH

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.2

0.4

0.6

0.8

1

tmvatrainNN__mass_zone!=0_&&_isSTST==1_&&_FourFiveJet==1__*_event_weight50-0.71.40x1f60dea0

Entries  29731

Mean   0.6824

RMS    0.2612

Underflow       0

Overflow        0

Integral   9.876

ZH

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tmvatrainNN__mass_zone!=0_&&_isSTST==1_&&_FourFiveJet==1__*_event_weight50-0.71.40x1f81b5f0

Entries  24464

Mean   0.6489

RMS    0.2412

Underflow       0

Overflow        0

Integral   8.837

VBF

Figure 63: Background and Higgs signal (mH=120GeV/c2) distributions for NN trained at
mH=120GeV/c2.
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Figure 64: NN distributions for mH=105GeV/c2 using the NN trained at mH=120GeV/c2
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Figure 65: NN distributions for mH=110GeV/c2 using the NN trained at mH=120GeV/c2
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Figure 66: NN distributions for mH=115GeV/c2 using the NN trained at mH=120GeV/c2
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Figure 67: NN distributions for mH=125GeV/c2 using the NN trained at mH=120GeV/c2
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Figure 68: NN distributions for mH=130GeV/c2 using the NN trained at mH=120GeV/c2
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Figure 69: Background and Higgs signal (mH=140GeV/c2) distributions for NN trained at
mH=140GeV/c2.



64 7 NEURAL NETWORK TRAINING

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

tmvatrainNN__mass_zone!=0_&&_isSTST==1_&&_FourFiveJet==1__*_event_weight50-0.71.40x125ce8e0

Entries  32996

Mean   0.7089

RMS    0.2438

Underflow       0

Overflow        0
Integral   6.898

WH

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

tmvatrainNN__mass_zone!=0_&&_isSTST==1_&&_FourFiveJet==1__*_event_weight50-0.71.40x127dac40

Entries  39642

Mean   0.6581

RMS    0.2571

Underflow       0

Overflow        0
Integral   5.314

ZH

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

tmvatrainNN__mass_zone!=0_&&_isSTST==1_&&_FourFiveJet==1__*_event_weight50-0.71.40x127d8840

Entries  30758

Mean   0.6763

RMS    0.2438

Underflow       0

Overflow        0
Integral   5.456

VBF

Figure 70: NN distributions for mH=135GeV/c2 using the NN trained at mH=140GeV/c2
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Figure 71: NN distributions for mH=145GeV/c2 using the NN trained at mH=140GeV/c2
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Figure 72: NN distributions for mH=150GeV/c2 using the NN trained at mH=140GeV/c2
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8 Neural Network Output Tuning

The Super Discriminant Neural Network output presents a disagreement between Data and TRF
prediction in the Higgs Signal Region (Fig. 73(b)). We also see a similar mismodelling for the VBF
Neural Network output (Fig. 73(a)).

(a) Neural Network Output for VBF (b) Neural Network Output for Su-
perDiscriminant

Figure 73: Neural Network Output for the four Neural Network Training. The black histograms are
the TRF prediction, the black crosses are the Data, the grey bar are the total uncercainties, the green
histograms are the VBF signal sample, the red histograms are the WH signal samples and the blue
histograms are the ZH signal samples. The TRF histograms is normalized to the DATA. Below the
histograms are the ratio plots of Prediction/Data.

We correct the VBF Neural Network Output (NN VBF) so to improve also the SD Neural Network
Output (NN SD). The idea is to apply a correction function measured in a No-Signal region to the
Signal Region.

The two No-Signal Region we cosidered are (Fig.74):

• Tag Region

• NJet6 Region

The Tag Region is define as:

• 4 or 5 jets

• 65GeV < Mbb < 70GeV, Mqq > 40GeV

• 70GeV < Mbb < 200GeV, 40GeV < Mqq < 45GeV

• 200GeV < Mbb < 250GeV, Mqq > 40GeV

and the NJet6 Region is define as:

• 6 jets
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• 70GeV < Mbb < 75GeV

• Mqq > 50GeV

Figure 74: Analysis region in Mbb Mqq plane.

In the 2 No-Signal Region is present the same mis-modelling we see in the Signal Region (Fig.
75), so we assume that they have the same source. The correction function is the fit of the ratio
between Data and TRF Prediction in a No-Signal Region and we use that fit values to reweight the
TRF events, assuming that the same correction works also in Signal Region, we apply it in the Signal
Region, if the NN VBF present an improvment we also should see an improvment in NN SD.

The function we used to fit the ratio between Data and TRF Prediction is a first order polynomial
(y=y(NN VBF)):

y = a0 + a1x (9)

We calculated the TRF correction function for all 3 mass point used for training: 100, 120 and
140GeV and for the 2 bjet categories: SS and SJ in the 2 No-Signal Region. To choose which correction
to use, we applied each correction function fit to the TRF predict events in the Control Region (CTRL)
and we measured the χ2/NDF and the Kolmogorov-Smirnov value (KS-value) (Tab. 8) of corrected
TRF prediction to Data. The function with best values is selected and we used the other one to
estimate the systematic uncertainty.

(a) KS-value and χ2/NDF in TAG Region

Samples KS-value χ2/NDF
100 STST 0.69226 0.857104
100 STJP 0.258203 1.24795
120 STST 0.302658 0.822528
120 STJP 0.102873 1.24716
140 STST 0.18663 1.38333
140 STJP 0.262354 1.87248

(b) KS-value and χ2/NDF in NJet6 Region

Samples KS-value χ2/NDF
100 STST 0.0472725 1.24937
100 STJP 0.0152989 1.78886
120 STST 0.994325 0.646125
120 STJP 0.00010446 2.10496
140 STST 0.0565532 1.38517
140 STJP 0.0477932 2.01858

Table 8: Kolmogorv-Smirnov and χ2/NDF values for TAG and NJet6 Region.

The CTRL Region is define as (Fig.74):

• 4 or 5 jets
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(a) NN VBF in Tag Region. (b) NN VBF in NJet6 Region. (c) NN VBF in Higgs Region.

Figure 75: VBF Neural Network Output for MH100-SS in a) Tag, b) NJet6 and c) Higgs Region show
the same mis-modelling.

• 70GeV < Mbb < 75GeV, Mqq > 45GeV

• 75GeV < Mbb < 175GeV, 45GeV < Mqq < 50GeV

• 175GeV < Mbb < 200GeV, Mqq > 45GeV

The figures 76, 80 and 84 show, for the mass point 100, 120 and 140 in SS category, the distribution
of VBF Neural Network Output in Tag, NJet6 and CTRL Region before the application of correction
Function; the figures 77, 81 and 85 show the distribution of VBF and SuperDiscriminat Neural
Network Output after the application of Correction Function. For MH100-SS and MH140-SS we
use the Tag Correction Function to correct the Neural Network Output and the NJet6 one for the
systematics uncertainties. For MH120-SS the NJet6 Correction function does give a better KS-value
and χ2/NDF value. However the difference between between using the NJet6 and TAG correction
function is minor. So it was decided to apply the TAG correction function for MH120-SS too and be
consistent with the other samples.

The figures 78, 82 and 86 show, for the mass point 100, 120 and 140 in SJ category, the distri-
bution of VBF Neural Network Output in Tag, NJet6 and CTRL Region before the application of
correction Function; the figures 79, 83 and 87 show the distribution of VBF and SuperDiscriminat
Neural Network Output after the application of Correction Function. For these samples we use the
Tag Correction Function to correct the Neural Network Output and the NJet6 one to evaluate the
systematics uncertainties.

The table 9 show a summary for each sample what correction is applyed and which one is used to
evaluate the systematic uncertainty.
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(a) NN VBF Correction function eval-
uated in Tag Region.

(b) NN VBF Correction function eval-
uated in NJet6 Region.

(c) NN VBF in CTRL Region with
overlap of Correction Function ob-
tained in Tag and NJet6 Region.

Figure 76: Neural Network Correction Function for MH100-SS evaluated in a) Tag, b) NJet6 and c)
overlap of these correction in CTRL Region where the red line is the fit obtained in NJet6 Region,
blue line is the fit in Tag Region and the black line is the fit in CTRL Region.

Sample Correction Systematics
100SS Tag NJet6
100SJ Tag NJet6
120SS Tag NJet6
120SJ Tag NJet6
140SS Tag NJet6
140SJ Tag NJet6

Table 9: Summary of NN Correction Function.
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(a) VBF Neural Network in CTRL Re-
gion.

(b) SuperDiscriminant Neural Net-
work in CTRL Region.

Figure 77: Distribution of Neural Network Output for MH100-SS in CTRL Region after the appli-
cation of Correction Function. a) VBF and b) SuperDiscriminant Neural Network Output. The red
histograms are the NN Output after the application of the Correction Function evaluated in NJet6
Region. The blue histograms are the NN Output after the application of the Correction Function
evaluated in Tag Region. The black histograms are the NN Output for Data.
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(a) NN VBF Correction function eval-
uated in Tag Region.

(b) NN VBF Correction function eval-
uated in NJet6 Region.

(c) NN VBF in CTRL Region with
overlap of Correction Function ob-
tained in Tag and NJet6 Region.

Figure 78: Neural Network Correction Function for MH100-SJ evaluated in a) Tag, b) NJet6 and c)
overlap of these correction in CTRL Region where the red line is the fit obtained in NJet6 Region,
blue line is the fit in Tag Region and the black line is the fit in CTRL Region.
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(a) VBF Neural Network in CTRL Re-
gion.

(b) SuperDiscriminant Neural Net-
work in CTRL Region.

Figure 79: Distribution of Neural Network Output for MH100-SJ in CTRL Region after the appli-
cation of Correction Function. a) VBF and b) SuperDiscriminant Neural Network Output. The red
histograms are the NN Output after the application of the Correction Function evaluated in NJet6
Region. The blue histograms are the NN Output after the application of the Correction Function
evaluated in Tag Region. The black histograms are the NN Output for Data.
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(a) NN VBF Correction function eval-
uated in Tag Region.

(b) NN VBF Correction function eval-
uated in NJet6 Region.

(c) NN VBF in CTRL Region with
overlap of Correction Function ob-
tained in Tag and NJet6 Region.

Figure 80: Neural Network Correction Function for MH120-SS evaluated in a) Tag, b) NJet6 and c)
overlap of these correction in CTRL Region where the red line is the fit obtained in NJet6 Region,
blue line is the fit in Tag Region and the black line is the fit in CTRL Region.
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(a) VBF Neural Network in CTRL Re-
gion.

(b) SuperDiscriminant Neural Net-
work in CTRL Region.

Figure 81: Distribution of Neural Network Output for MH120-SS in CTRL Region after the appli-
cation of Correction Function. a) VBF and b) SuperDiscriminant Neural Network Output. The red
histograms are the NN Output after the application of the Correction Function evaluated in NJet6
Region. The blue histograms are the NN Output after the application of the Correction Function
evaluated in Tag Region. The black histograms are the NN Output for Data.
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(a) NN VBF Correction function eval-
uated in Tag Region.

(b) NN VBF Correction function eval-
uated in NJet6 Region.

(c) NN VBF in CTRL Region with
overlap of Correction Function ob-
tained in Tag and NJet6 Region.

Figure 82: Neural Network Correction Function for MH120-SJ evaluated in a) Tag, b) NJet6 and c)
overlap of these correction in CTRL Region where the red line is the fit obtained in NJet6 Region,
blue line is the fit in Tag Region and the black line is the fit in CTRL Region.
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(a) VBF Neural Network in CTRL Re-
gion.

(b) SuperDiscriminant Neural Net-
work in CTRL Region.

Figure 83: Distribution of Neural Network Output for MH120-SJ in CTRL Region after the appli-
cation of Correction Function. a) VBF and b) SuperDiscriminant Neural Network Output. The red
histograms are the NN Output after the application of the Correction Function evaluated in NJet6
Region. The blue histograms are the NN Output after the application of the Correction Function
evaluated in Tag Region. The black histgrams are the NN Output for Data.
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(a) NN VBF Correction function eval-
uated in Tag Region.

(b) NN VBF Correction function eval-
uated in NJet6 Region.

(c) NN VBF in CTRL Region with
overlap of Correction Function ob-
tained in Tag and NJet6 Region.

Figure 84: Neural Network Correction Function for MH140-SS evaluated in a) Tag, b) NJet6 and c)
overlap of these correction in CTRL Region where the red line is the fit obtained in NJet6 Region,
blue line is the fit in Tag Region and the black line is the fit in CTRL Region.
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(a) VBF Neural Network in CTRL Re-
gion.

(b) SuperDiscriminant Neural Net-
work in CTRL Region.

Figure 85: Distribution of Neural Network Output for MH140-SS in CTRL Region after the appli-
cation of Correction Function. a) VBF and b) SuperDiscriminant Neural Network Output. The red
histograms are the NN Output after the application of the Correction Function evaluated in NJet6
Region. The blue histograms are the NN Output after the application of the Correction Function
evaluated in Tag Region. The black histograms are the NN Output for Data.
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(a) NN VBF Correction function eval-
uated in Tag Region.

(b) NN VBF Correction function eval-
uated in NJet6 Region.

(c) NN VBF in CTRL Region with
overlap of Correction Function ob-
tained in Tag and NJet6 Region.

Figure 86: Neural Network Correction Function for MH140-SJ evaluated in a) Tag, b) NJet6 and c)
overlap of these correction in CTRL Region where the red line is the fit obtained in NJet6 Region,
blue line is the fit in Tag Region and the black line is the fit in CTRL Region.
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(a) VBF Neural Network in CTRL Re-
gion.

(b) SuperDiscriminant Neural Net-
work in CTRL Region.

Figure 87: Distribution of Neural Network Output for MH140-SJ in CTRL Region after the appli-
cation of Correction Function. a) VBF and b) SuperDiscriminant Neural Network Output. The red
histograms are the NN Output after the application of the Correction Function evaluated in NJet6
Region. The blue histograms are the NN Output after the application of the Correction Function
evaluated in Tag Region. The black histograms are the NN Output for Data.
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9 Systematics Uncertainty

9.1 TRF Systematics

For the TRF predicited backgrounds, three sources of systematic error were considered:

• TRF Interpolation Uncertainty

• mqq tuning uncertainty

• VBF-NN tuning uncertainty

All three systematics were taken as shape systematics. Normalisation errors were not considered
as the background prediction will be floated to best fit the data.

9.1.1 TRF Interpolation Uncertainty

The nominal background predicition used the TRF derived from the Tag regions (Tag-TRF) which
is interpolated into the signal region. The systematic error for this interpolation is taken from the
background prediction using the Ctrl-TRF. The difference of these two background shapes is used
as the interpolation shape systematic. Figure 88 shows the Neural Net shapes using the nominal
TRF(Tag) and TRF(Ctrl).

9.1.2 mqq Tuning Uncertainties

In section 5.1 it was shown that the predicted mass mqq are tuned using correction functions measured
in the Tag region. To estimate the uncertainties due to these tuning corrections, we measured another
set of correction functions in the Ctrl region. The difference in the NN output due to the different sets
of correction functions are then taken as the effect of the uncertainties from these tuning corrections
(Fig. 89).

9.1.3 VBF-NN Tuning Uncertainties

Section 8 discussed the requirement for additional tuning of the VBF-NN output. A function measured
in the TAG region is used to correct the output of the VBF-NN. An alternative correction function
is measured in the SIXJET region and is used to give an alternative background prediction. The dif-
ference of the two background shapes defines the VBF-NN correction function systematic uncertainty
(Fig. 90).

9.1.4 Summary of all TRF systematic uncertainties

Figure 91 summarizes shows the effect of each TRF systematic and the total TRF systematic. Each
plot shows the error in number of events for each NN bin and each plot has the data-total background
superimposed. For most plots, the scatter of the data-total background is within the bounds defined
by the total TRF systematic uncertainty.

9.2 Signal Systematics

9.2.1 Jet Energy Scale

The Jet Energy Scale affects the Jet Et related quantities. The training variables which are affected
most are the mbb and mqq . The effect upon the Neural Net distribution is shown in figure 92. Although
the Jet Energy Scale systematics affects the mbb and mqq distribution, the Neural Net shape for the
Higgs signal is less affected. However tt̄ NN output is sensitive to the changes in the JES. The JES
uncertainty does affect the acceptance on account of the SumEt>220.0GeV event selection cut and
we apply a ±9% rate systematic error in addition to the shape errors.
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(c) SS MH140-NN
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(e) SJ MH120-NN
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(f) SJ MH140-NN

Figure 88: TRF Interpolation Uncertainty: The nominal TRF QCD prediction uses TRF measured
from the TAG region (black). Another TRF is measured in the CTRL region (red) and the difference
of the two shapes defines the TRF interpolation systematic.

The Higgs group are now recommending separate JES for quarks and gluons. For this Higgs
search, 98% of the background is multijet QCD which is modeled from data. Thus no JES is required
However the signal could potentially have gluon jets in the jet selected for the analysis. Figure 93
show the the Higgs-NN output using the nominal JES (black) and gluon-JES applied to gluons (red).
We find no change in the shape or acceptance. So we will not apply any specific gluon-JES for this
analysis.
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(f) SJ MH140-NN

Figure 89: mqq tuning uncertainty: The nominal TRF (QCD) prediction uses a tuning function for
mqq measured in the TAG region (black). A measure of the systematic uncertainty is to use an
alternative mqq correction function measured in the CTRL region (red). The difference of the two
background shapes defines the systematic uncertainty for the mqq tuning uncertainty.

9.2.2 ISR/FSR Systematics

The ISR/FSR systematics for the Higgs signal was measured using the prescription defined in May 27
2005 Joint Physics Meeting [13]. The effect of the systematic upon the neural network shape for the
Higgs signal is shown in Figure 94. This is included as a shape systematic in the limit calculation. The
VBF sample only shows shape changes from reduction of ISR/FSR as no MC sample was available
for increased ISR/FSR. For the limit calculation we assume the shape change for VBF is symmetric.
In addition to the shape systematic, the change in ISR/FSR affects the acceptance. There is a ±3%
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Figure 90: VBF-NN correction function uncertainty: The nominal TRF (QCD) prediction uses a VBF-
NN correction function, measured in the TAG region, to correct the VBF-NN output (black). Another
VBF-NN correction function is measured in the SIXJET region to give an alternative background
prediction (red). The difference of the two TRF shapes defines the VBF-NN correction function
uncertainty.

rate systematic. for VH and VBF Higgs signal.

9.2.3 Jet width uncertainty

The jet width uncertainty affects the shape of the NN output and evaluated in a similar fashion
as the JES uncertainty. The calorimeter(tracker) jet width are adjusted by ±0.004(0.006) (±1σ).
We assume the calorimeter and tracker jet width uncertainty are uncorrelated and are evaluated
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Figure 91: Summary of all TRF systematic uncertainties: Each plot shows the bin-by-bin uncertainty
of each TRF systematic component, the total TRF systematic and the data-total background. For
most NN, the scatter of the data-total background is contained within the bounds defined by the total
TRF systematic uncertainty.

separately. Figure 95 and 96 shows the change in NN shape from a ±1σ change of jet width. The NN
is sensitive to changes to the jet width with the calorimeter measured jet width being more sensitive.

9.3 Summary of all Systematic

Table 10 summarises all the rate uncertainties & shape systematics which are applied to calculate the
limit.
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Figure 92: Jet Energy Scale Systematic: The variation of the NN output for ±1σ variation of the
Jet Energy Scale. The black histograms use the nominal JES and the red(blue) histograms use JES
shifted by +(-)1σ. The histograms are normalized to unit area to show the variation in shape. The
ratio plots are show the ratio of shifted JES / Nominal JES.
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(c) VBF(mH=120GeV/c2)

Figure 93: Effect of Gluon-JES: The Higgs-NN output for WH , ZH and VBF are shown using the
default CDF JES (black) and a gluon specific JES (Red). We see no change after applying the
gluon-JES.
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Figure 94: Variation of ISR/FSR: The variation of the SS SD-NN from ±1σ changes in the ISR/FSR.
The black histogram is the nominal ISR/FSR scale and the red(blue) are changes in +(-)1σ changes
of ISR/FSR. The VBF plot only has change in reduction of ISR/FSR as no MC sample for increased
ISR/FSR is available.



9.3 Summary of all Systematic 87

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

N
or

m
al

is
ed

 to
 u

ni
t a

re
a 

[A
rb

 U
ni

ts
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 WH120

σ +1
’

CAL<R>

σ -1
’

CAL<R>

NN

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
ha

pe
 R

at
io

0.7

0.8

0.9

1

1.1

1.2

1.3

[D
en

om
in

at
or

:W
H

12
0]

(a) WH(mH=120 GeV/c2) SS
Calorimeter Jet Width Uncertainty

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

N
or

m
al

is
ed

 to
 u

ni
t a

re
a 

[A
rb

 U
ni

ts
]

0

0.05

0.1

0.15

0.2

0.25

0.3

ZH120

σ +1
’

CAL<R>

σ -1
’

CAL<R>

NN

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
ha

pe
 R

at
io

0.7

0.8

0.9

1

1.1

1.2

1.3

[D
en

om
in

at
or

:Z
H

12
0]

(b) ZH(mH=120GeV/c2) SS
Calorimeter Jet Width Uncertainty

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

N
or

m
al

is
ed

 to
 u

ni
t a

re
a 

[A
rb

 U
ni

ts
]

0

0.05

0.1

0.15

0.2

0.25
VBF120

σ +1
’

CAL<R>

σ -1
’

CAL<R>

NN

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
ha

pe
 R

at
io

0.7

0.8

0.9

1

1.1

1.2

1.3

[D
en

om
in

at
or

:V
B

F
12

0]

(c) VBF(mH=120GeV/c2) SS
Calorimeter Jet Width Uncertainty

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

N
or

m
al

is
ed

 to
 u

ni
t a

re
a 

[A
rb

 U
ni

ts
]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 tt

σ +1
’

CAL<R>

σ -1
’

CAL<R>

NN

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
ha

pe
 R

at
io

0.7

0.8

0.9

1

1.1

1.2

1.3

[D
en

om
in

at
or

:t#
ba

r{
t}

]

(d) tt̄ SS Calorimeter Jet Width Un-
certainty

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

N
or

m
al

is
ed

 to
 u

ni
t a

re
a 

[A
rb

 U
ni

ts
]

0

0.05

0.1

0.15

0.2

Z+Jet

σ +1
’

CAL<R>

σ -1
’

CAL<R>

NN

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

S
ha

pe
 R

at
io

0.7

0.8

0.9

1

1.1

1.2

1.3

[D
en

om
in

at
or

:Z
+J

et
]

(e) Z+Jet Calorimeter Jet Width Un-
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Figure 95: Jet width uncertainty: Changes in the SS SD-NN shape from changes in the calorimeter
jet width by ±1σ. The black histograms are the nominal jet width and the red(blue) are changes by
+(-)1σ. The histograms are normalized to unit area to show variation in shape. The ratio plots show
shifted Jet Width / nominal jet width.
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Figure 96: Jet width uncertainty: Changes in the SS SD-NN shape from changes in the tracker jet
width by ±1σ. The black histograms are the nominal jet width and the red(blue) are changes by
+(-)1σ. The histograms are normalized to unit area to show variation in shape. The ratio plots show
shifted Jet Width / nominal jet width.
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Table 10: Summary of all Systematic Uncertainties used to calculate the limit

TRF (QCD) Uncertainties
TRF Interpolation Shape
TRF mqq Tuning Shape
TRF VBF-NN tuning Shape

Higgs and Non-QCD Uncertainties
Luminosity ± 6% Rate
Trigger ± 3.55% Rate
SecVtx+SecVtx ± 7.1% Rate
SecVtx+JetProb ± 6.4% Rate
Jet Energy Correction ± 9% Rate

Shape
Jet Width Shape

Higgs and Non-QCD cross-section uncertainties
tt̄& single-top ± 7% Rate
Diboson (WW/WZ/ZZ) ± 6% Rate
W+HF & Z+Jets ± 50% Rate
WH/ZH ± 5% Rate
VBF ± 10% Rate

Higgs Uncertainties
PDF ± 2% Rate
ISR/FSR ± 3%

Shape
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Figure 97: Higgs-NN distribution for mH=100GeV/c2. The left plot are from the SS b-tag category
and the right plot is from the SJ b-tag category. All backgrounds are stacked and the superimposed
Higgs signal is scaled by x1000. As the QCD background is large, plots of the DATA-QCD are plotted
with stacked plot of non-QCD background and QCD systematic.

10 Unblinded Signal Region

Figures 97- 107 show the Higgs-NN output distributions. The backgrounds are stacked and the Higgs
signal is scaled by x1000. As the QCD multijet background is large, plots of DATA-QCD residual plots
are shown with the the non-QCD backgrounds stacked. The plots show the background prediction
is in good agreement with the data. Figures 108, 109 and 110 show ratio plots of the DATA/Total
Background. These histograms are made with 50 bins rather than 100 bins to reduce the statistical
scatter. The ratio plots confirm the background is in good agreement with the DATA.
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SS channel]-1CDF Run II Preliminary [9.45fb
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Figure 98: Higgs-NN distribution for mH=105GeV/c2. The left plot are from the SS b-tag category
and the right plot is from the SJ b-tag category. All backgrounds are stacked and the superimposed
Higgs signal is scaled by x1000. As the QCD background is large, plots of the DATA-QCD are plotted
with stacked plot of non-QCD background and QCD systematic.
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Figure 99: Higgs-NN distribution for mH=110GeV/c2. The left plot are from the SS b-tag category
and the right plot is from the SJ b-tag category. All backgrounds are stacked and the superimposed
Higgs signal is scaled by x1000. As the QCD background is large, plots of the DATA-QCD are plotted
with stacked plot of non-QCD background and QCD systematic.



92 10 UNBLINDED SIGNAL REGION

SS channel]-1CDF Run II Preliminary [9.45fb

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
ve

nt
s

0

2000

4000

6000

8000

10000

12000

QCD QCD Systematic WH ZH VBF
tt Z+Jet Diboson Single-Top W+HF

DATA

NN(SS,MH115)
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
AT

A
-Q

C
D

   
 

-100

0

100

200

300

400

(a) MH115-SS

SJ channel]-1CDF Run II Preliminary [9.45fb
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Figure 100: Higgs-NN distribution for mH=115GeV/c2. The left plot are from the SS b-tag category
and the right plot is from the SJ b-tag category. All backgrounds are stacked and the superimposed
Higgs signal is scaled by x1000. As the QCD background is large, plots of the DATA-QCD are plotted
with stacked plot of non-QCD background and QCD systematic.
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-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
ve

nt
s

0

1000

2000

3000

4000

5000

6000

7000 QCD QCD Systematic WH ZH VBF
tt Z+Jet Diboson Single-Top W+HF

DATA

NN(SJ,MH120)
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
AT

A
-Q

C
D

   
 

-200

-100

0

100

200

(b) MH120-SJ

Figure 101: Higgs-NN distribution for mH=120GeV/c2. The left plot are from the SS b-tag category
and the right plot is from the SJ b-tag category. All backgrounds are stacked and the superimposed
Higgs signal is scaled by x1000. As the QCD background is large, plots of the DATA-QCD are plotted
with stacked plot of non-QCD background and QCD systematic.
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Figure 102: Higgs-NN distribution for mH=125GeV/c2. The left plot are from the SS b-tag category
and the right plot is from the SJ b-tag category. All backgrounds are stacked and the superimposed
Higgs signal is scaled by x1000. As the QCD background is large, plots of the DATA-QCD are plotted
with stacked plot of non-QCD background and QCD systematic.
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SJ channel]-1CDF Run II Preliminary [9.45fb
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Figure 103: Higgs-NN distribution for mH=130GeV/c2. The left plot are from the SS b-tag category
and the right plot is from the SJ b-tag category. All backgrounds are stacked and the superimposed
Higgs signal is scaled by x1000. As the QCD background is large, plots of the DATA-QCD are plotted
with stacked plot of non-QCD background and QCD systematic.
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Figure 104: Higgs-NN distribution for mH=135GeV/c2. The left plot are from the SS b-tag category
and the right plot is from the SJ b-tag category. All backgrounds are stacked and the superimposed
Higgs signal is scaled by x1000. As the QCD background is large, plots of the DATA-QCD are plotted
with stacked plot of non-QCD background and QCD systematic.
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Figure 105: Higgs-NN distribution for mH=140GeV/c2. The left plot are from the SS b-tag category
and the right plot is from the SJ b-tag category. All backgrounds are stacked and the superimposed
Higgs signal is scaled by x1000. As the QCD background is large, plots of the DATA-QCD are plotted
with stacked plot of non-QCD background and QCD systematic.
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(a) MH145-SS
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Figure 106: Higgs-NN distribution for mH=140GeV/c2. The left plot are from the SS b-tag category
and the right plot is from the SJ b-tag category. All backgrounds are stacked and the superimposed
Higgs signal is scaled by x1000. As the QCD background is large, plots of the DATA-QCD are plotted
with stacked plot of non-QCD background and QCD systematic.
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Figure 107: Higgs-NN distribution for mH=140GeV/c2. The left plot are from the SS b-tag category
and the right plot is from the SJ b-tag category. All backgrounds are stacked and the superimposed
Higgs signal is scaled by x1000. As the QCD background is large, plots of the DATA-QCD are plotted
with stacked plot of non-QCD background and QCD systematic.
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(a) MH100-SS (b) MH100-SJ

Figure 108: Higgs-NN distribution for mH=100GeV/c2with a ratio plot of DATA/Total-Background
to compare the shape of the background prediction with the DATA. The average ratio is ∼ 1 which
confirms the background models the data well.

(a) MH120-SS (b) MH120-SJ

Figure 109: Higgs-NN distribution for mH=120GeV/c2with a ratio plot of DATA/Total-Background
to compare the shape of the background prediction with the DATA. The average ratio for SJ is ∼ 1
for which confirms the background models the data well. However the SS distribution shows a slight
over prediction of the background for NN>0.6 which results in a ratio . 1.0.
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(a) MH140-SS (b) MH140-SJ

Figure 110: Higgs-NN distribution for mH=140GeV/c2with a ratio plot of DATA/Total-Background
to compare the shape of the background prediction with the DATA. The average ratio is ∼ 1 which
confirms the background models the data well.
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11 Results

No indication of a Higgs signal is observed in the data and 95% confidence limits (CL) are quoted.
Table 11 has the limits from the combination of the SS and SJ channel plotted in figure 111. Tables 12
and 13 are limits for the SS and SJ channels, respectively with the limits plotted in figures 112 and 113.
All the limits in the tables are normalised to the expected Higgs signal cross-section. Pseudoexperiment
and observed posterior PDF distributions are available in section 13.2

Table 11: Summary of MCLimit for each Higgs mass from combining the SS and SJ channels

Higgs mass −2σ −1σ Median +1σ +2σ Observed
100 1.4 3.6 7.7 14.5 24.4 10.9
105 1.8 3.8 7.5 13.6 22.3 7.5
110 2.0 4.0 7.6 13.2 21.7 7.0
115 2.3 4.4 8.3 14.5 23.4 7.2
120 2.4 4.6 8.9 15.6 25.3 8.4
125 2.8 5.7 11.0 19.5 31.6 9.0
130 3.4 7.1 13.8 24.3 39.5 13.2
135 5.3 10.8 19.5 32.2 49.6 21.2
140 7.3 14.3 25.8 42.7 66.1 26.2
145 10.2 20.4 36.7 60.5 93.4 35.1
150 17.7 32.5 58.7 98.2 152.0 64.6
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Figure 111: Limits for combined SS & SJ channels: The expected & observed limits are plotted as a
function of the Higgs mass. The limits are normalised to the expected Higgs cross-section.
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Table 12: Summary of MCLimit for each Higgs mass from combining the SS channels

Higgs mass −2σ −1σ Median +1σ +2σ Observed
100 3.6 6.7 10.9 16.6 23.7 15.9
105 4.3 6.7 10.1 14.9 21.2 8.2
110 4.6 6.7 9.8 14.2 20.1 8.3
115 4.8 7.3 10.8 15.5 21.7 8.9
120 5.3 7.8 11.6 16.8 23.6 10.2
125 6.4 9.5 14.0 20.4 29.0 11.6
130 8.2 12.2 18.3 26.8 38.1 14.6
135 12.4 18.4 27.3 39.5 55.6 25.6
140 17.0 24.8 36.5 52.7 74.1 34.8
145 23.9 35.1 51.6 74.1 103.9 50.9
150 39.6 57.7 84.3 121.0 167.6 84.1
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Figure 112: Limits for the SS channel: The expected & observed limits are plotted as a function of
the Higgs mass. The limits are normalised to the expected Higgs cross-section.
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Table 13: Summary of MCLimit for each Higgs mass from combining the SJ channels

Higgs mass −2σ −1σ Median +1σ +2σ Observed
100 7.8 10.9 15.5 22.0 30.6 12.2
105 8.7 12.2 17.3 24.5 34.2 15.0
110 8.4 11.7 16.7 23.5 32.5 13.8
115 9.3 12.7 17.9 25.2 35.1 14.7
120 10.3 14.3 20.3 28.9 40.3 15.4
125 12.7 17.6 25.1 35.5 49.3 19.4
130 16.2 22.4 32.2 46.1 65.1 24.7
135 18.6 25.6 36.2 50.8 70.2 26.1
140 24.1 32.9 46.3 65.3 90.7 33.9
145 34.8 47.6 67.0 95.2 130.6 48.0
150 56.0 76.1 104.8 142.9 185.6 78.2
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Figure 113: Limits for the SJ channel: The expected & observed limits are plotted as a function of
the Higgs mass. The limits are normalised to the expected Higgs cross-section.



101

12 Conclusions

A search for the Higgs boson in the all hadronic mode was conducted using 9.45 fb−1of data. A Neural
Network was used to separate the background events from the signal. As the presence of a Higgs signal
was not observed, 95% confidence limits were calculated.

A number of improvements were included in this search which are:

• increase of analyzed data from 4 fb−1to 9.45 fb−1.

• improvements to the b-jet energy resolution

• new jet-width measurement

• improvements to QCD modeling (TRF).

• unification of VH and VBF signal regions

• more variables used in NN: result of improved TRF modeling

• improved NN training

• tuning of TRF NN output using information from control regions.
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13 Appendix

13.1 Z+jets Generator Level Filter

The large cross-section for Z+jets would produce an extremely large number of events; of which many
would be rejected by the trigger. A filter was devised to select events which were likely to pass the
trigger.

• At generator level, select events with ≥ 1 b or c parton.

• ≥ 3 jets with ET > 5GeV. The jets were defined by cone sizes of 0.4, 0.7 and 1.0.

• The Sum-ET for the 0.4, 0.7 and 1.0 jets are calculated. Accept the event if any of these sums
≥ 60GeV

13.2 Pseudoexperiment distributions and observed posterior PDF

The pseduoexperiment distributions used to extract the expected limits and the observed posterior
PDF used to measure the observed limit are in this appendix.

13.2.1 SS channel
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(b) MH100 - Observed
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Figure 114: Pseudoexperiment distributions and observed posterior PDF for the SS channel. The
expected limits are taken from the pseudoexperiment distribution and the posterior PDF is used to
measure the observed limit.



13.2 Pseudoexperiment distributions and observed posterior PDF 103

hBayesPx
Entries  5000
Mean    10.41
RMS      4.04

 / ndf 2χ  79.98 / 79
p0        23.11± 41.52 
p1        0.28±  2.29 
p2        0.332± 3.246 
p3        0.0248± 0.5212 

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

220

hBayesPx
Entries  5000
Mean    10.41
RMS      4.04

 / ndf 2χ  79.98 / 79
p0        23.11± 41.52 
p1        0.28±  2.29 
p2        0.332± 3.246 
p3        0.0248± 0.5212 

hBayesPx
Entries  5000
Mean    10.41
RMS      4.04

 / ndf 2χ  79.98 / 79
p0        23.11± 41.52 
p1        0.28±  2.29 
p2        0.332± 3.246 
p3        0.0248± 0.5212 

 : 4.558σ-2

 : 6.657σ-1

Median : 9.806

 : 14.207σ+1

 : 20.066σ+2

bayespx

(a) MH110 - Expected

Higgs Scale
0 20 40 60 80 100

0

0.0005

0.001

0.0015

0.002

0.0025

Observed Posterior PDF

Observed Limit: 8.3

(b) MH110 - Observed

hBayesPx
Entries  5000
Mean    11.41
RMS     4.344

 / ndf 2χ  91.78 / 79
p0        13.714± 6.752 
p1        0.870± 1.794 
p2        1.080± 4.034 
p3        0.0668± 0.5242 

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

180

200

220

240

hBayesPx
Entries  5000
Mean    11.41
RMS     4.344

 / ndf 2χ  91.78 / 79
p0        13.714± 6.752 
p1        0.870± 1.794 
p2        1.080± 4.034 
p3        0.0668± 0.5242 

hBayesPx
Entries  5000
Mean    11.41
RMS     4.344

 / ndf 2χ  91.78 / 79
p0        13.714± 6.752 
p1        0.870± 1.794 
p2        1.080± 4.034 
p3        0.0668± 0.5242 

 : 4.849σ-2

 : 7.278σ-1

Median : 10.769

 : 15.505σ+1

 : 21.683σ+2

bayespx

(c) MH115 - Expected

Higgs Scale
0 20 40 60 80 100

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

0.0024

Observed Posterior PDF

Observed Limit: 8.9

(d) MH115 - Observed

hBayesPx
Entries  5000
Mean    12.34
RMS     4.789

 / ndf 2χ  61.12 / 78
p0        12.04± 13.23 
p1        0.441± 2.316 
p2        0.487± 3.568 
p3        0.030± 0.458 

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

200

220

hBayesPx
Entries  5000
Mean    12.34
RMS     4.789

 / ndf 2χ  61.12 / 78
p0        12.04± 13.23 
p1        0.441± 2.316 
p2        0.487± 3.568 
p3        0.030± 0.458 

hBayesPx
Entries  5000
Mean    12.34
RMS     4.789

 / ndf 2χ  61.12 / 78
p0        12.04± 13.23 
p1        0.441± 2.316 
p2        0.487± 3.568 
p3        0.030± 0.458 

 : 5.263σ-2

 : 7.816σ-1

Median : 11.572

 : 16.755σ+1

 : 23.602σ+2

bayespx

(e) MH120 - Expected

Higgs Scale
0 20 40 60 80 100

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

Observed Posterior PDF

Observed Limit: 10.2

(f) MH120 - Observed

hBayesPx
Entries  5000
Mean    14.99
RMS     5.986

 / ndf 2χ  80.43 / 66
p0        20.45± 16.92 
p1        0.702± 3.211 
p2        0.616± 3.163 
p3        0.0325± 0.3544 

0 10 20 30 40 50 60
0

50

100

150

200

250

hBayesPx
Entries  5000
Mean    14.99
RMS     5.986

 / ndf 2χ  80.43 / 66
p0        20.45± 16.92 
p1        0.702± 3.211 
p2        0.616± 3.163 
p3        0.0325± 0.3544 

hBayesPx
Entries  5000
Mean    14.99
RMS     5.986

 / ndf 2χ  80.43 / 66
p0        20.45± 16.92 
p1        0.702± 3.211 
p2        0.616± 3.163 
p3        0.0325± 0.3544 

 : 6.427σ-2

 : 9.457σ-1

Median : 14.030

 : 20.445σ+1

 : 29.019σ+2

bayespx

(g) MH125 - Expected

Higgs Scale
0 20 40 60 80 100

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

Observed Posterior PDF

Observed Limit: 11.6

(h) MH125 - Observed

Figure 115: Pseudoexperiment distributions and observed posterior PDF for the SS channel. The
expected limits are taken from the pseudoexperiment distribution and the posterior PDF is used to
measure the observed limit.



104 13 APPENDIX

hBayesPx
Entries  5000
Mean    19.59
RMS     7.879

 / ndf 2χ  81.86 / 69
p0        11.698± 4.912 
p1        1.574± 3.797 
p2        1.03±  3.25 
p3        0.0395± 0.2703 

0 10 20 30 40 50 60 70
0

50

100

150

200

250

hBayesPx
Entries  5000
Mean    19.59
RMS     7.879

 / ndf 2χ  81.86 / 69
p0        11.698± 4.912 
p1        1.574± 3.797 
p2        1.03±  3.25 
p3        0.0395± 0.2703 

hBayesPx
Entries  5000
Mean    19.59
RMS     7.879

 / ndf 2χ  81.86 / 69
p0        11.698± 4.912 
p1        1.574± 3.797 
p2        1.03±  3.25 
p3        0.0395± 0.2703 

 : 8.178σ-2

 : 12.228σ-1

Median : 18.306

 : 26.798σ+1

 : 38.119σ+2

bayespx

(a) MH130 - Expected

Higgs Scale
0 20 40 60 80 100 120 140 160

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

Observed Posterior PDF

Observed Limit: 14.6

(b) MH130 - Observed

hBayesPx
Entries  5000
Mean    28.93
RMS      11.2

 / ndf 2χ  87.14 / 74
p0        0.0924± 0.5618 
p1        0.207± 5.395 
p2        0.058± 3.602 
p3        0.0027± 0.1954 

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

hBayesPx
Entries  5000
Mean    28.93
RMS      11.2

 / ndf 2χ  87.14 / 74
p0        0.0924± 0.5618 
p1        0.207± 5.395 
p2        0.058± 3.602 
p3        0.0027± 0.1954 

hBayesPx
Entries  5000
Mean    28.93
RMS      11.2

 / ndf 2χ  87.14 / 74
p0        0.0924± 0.5618 
p1        0.207± 5.395 
p2        0.058± 3.602 
p3        0.0027± 0.1954 

 : 12.396σ-2

 : 18.419σ-1

Median : 27.268

 : 39.460σ+1

 : 55.550σ+2

bayespx

(c) MH135 - Expected

Higgs Scale
0 20 40 60 80 100 120 140 160

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

Observed Posterior PDF

Observed Limit: 25.6

(d) MH135 - Observed

hBayesPx
Entries  5000
Mean    38.76
RMS      14.9

 / ndf 2χ   99.4 / 78
p0        0.066± 0.402 
p1        0.260± 8.248 
p2        0.053± 3.389 
p3        0.0020± 0.1439 

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200

220

hBayesPx
Entries  5000
Mean    38.76
RMS      14.9

 / ndf 2χ   99.4 / 78
p0        0.066± 0.402 
p1        0.260± 8.248 
p2        0.053± 3.389 
p3        0.0020± 0.1439 

hBayesPx
Entries  5000
Mean    38.76
RMS      14.9

 / ndf 2χ   99.4 / 78
p0        0.066± 0.402 
p1        0.260± 8.248 
p2        0.053± 3.389 
p3        0.0020± 0.1439 

 : 16.977σ-2

 : 24.815σ-1

Median : 36.473

 : 52.667σ+1

 : 74.143σ+2

bayespx

(e) MH140 - Expected

Higgs Scale
0 20 40 60 80 100 120 140 160

0

0.0002

0.0004

0.0006

0.0008

0.001

Observed Posterior PDF

Observed Limit: 34.8

(f) MH140 - Observed

hBayesPx
Entries  5000
Mean    54.93
RMS     21.11

 / ndf 2χ  90.76 / 77
p0        0.01283± 0.04898 
p1        0.36± 10.54 
p2        0.076± 3.708 
p3        0.0015± 0.1067 

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

200

220

240

hBayesPx
Entries  5000
Mean    54.93
RMS     21.11

 / ndf 2χ  90.76 / 77
p0        0.01283± 0.04898 
p1        0.36± 10.54 
p2        0.076± 3.708 
p3        0.0015± 0.1067 

hBayesPx
Entries  5000
Mean    54.93
RMS     21.11

 / ndf 2χ  90.76 / 77
p0        0.01283± 0.04898 
p1        0.36± 10.54 
p2        0.076± 3.708 
p3        0.0015± 0.1067 

 : 23.892σ-2

 : 35.147σ-1

Median : 51.585

 : 74.149σ+1

 : 103.856σ+2

bayespx

(g) MH145 - Expected

Higgs Scale
0 20 40 60 80 100 120 140 160 180 200

0

0.0002

0.0004

0.0006

0.0008

0.001

Observed Posterior PDF

Observed Limit: 50.9

(h) MH145 - Observed

Figure 116: Pseudoexperiment distributions and observed posterior PDF for the SS channel. The
expected limits are taken from the pseudoexperiment distribution and the posterior PDF is used to
measure the observed limit.
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Figure 117: Pseudoexperiment distributions and observed posterior PDF for the SS channel. The
expected limits are taken from the pseudoexperiment distribution and the posterior PDF is used to
measure the observed limit.
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13.2.2 SJ channel
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Figure 118: Pseudoexperiment distributions and observed posterior PDF for the SJ channel. The
expected limits are taken from the pseudoexperiment distribution and the posterior PDF is used to
measure the observed limit.
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Figure 119: Pseudoexperiment distributions and observed posterior PDF for the SJ channel. The
expected limits are taken from the pseudoexperiment distribution and the posterior PDF is used to
measure the observed limit.
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Figure 120: Pseudoexperiment distributions and observed posterior PDF for the SJ channel. The
expected limits are taken from the pseudoexperiment distribution and the posterior PDF is used to
measure the observed limit.
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13.2.3 SS+SJ channel
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Figure 121: Pseudoexperiment distributions and observed posterior PDF for the ALL channel. The
expected limits are taken from the pseudoexperiment distribution and the posterior PDF is used to
measure the observed limit.
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Figure 122: Pseudoexperiment distributions and observed posterior PDF for the ALL channel. The
expected limits are taken from the pseudoexperiment distribution and the posterior PDF is used to
measure the observed limit.
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Figure 123: Pseudoexperiment distributions and observed posterior PDF for the ALL channel. The
expected limits are taken from the pseudoexperiment distribution and the posterior PDF is used to
measure the observed limit.
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