
CDF/DOC/TRACKING/CDFR/6047Version 1.0 , July 24, 2002
Vxprim in Run IIHartmut Stadie, Wolfgang Wagner, Thomas M�ullerInstitut f�ur Experimentelle Kernphysik, Universit�at KarlsruheHans WenzelFermilab

AbstractDuring Run I Vxprim was used to �nd primary vertices with high resolution.We have ported the code to the Run II framework. In this note we brie
ydescribe the algorithm and explain the parameters used in the Vxprim AC++module. We give an example how to use the underlying vertex �tter directlyand introduce a derived class that allows to seed the primary vertex �nding witha physics object. We also investigate the performance concerning resolution ande�ciency of the algorithm using beam data and Monte Carlo events.1 IntroductionMany analyses like life time measurements and analyses needing a b-tag require agood knowledge of the primary vertex position for each event. In most cases in Run Ithe position of the beam line was used to estimate the primary vertex position in xand y if the z coordinate was known. This method proved to be su�cient for mostapplications in b-physics. Vxprim [1] was used to �nd the primary vertex with abetter precision than the beam width for events with a high multiplicity (e.g. t�t).To achieve this goal Vxprim �tted the primary vertex using reconstructed tracks. InRun 1 one method to �t the beam line on a run by run basis [2] used the primaryvertices found by Vxprim. In addition in Run II primary vertex reconstruction willbe an useful tool to distinguish di�erent interactions in a single bunch crossing.1

We have ported the Vxprim algorithm and the underlying vertexing functions [3]to C++. An AC++ module that calls the Vxprim algorithm is run in production.The results of this module are used to determine the beam line positions [4]. Thecode for the module resides in the VertexMods package [5]. The VertexFitter classthat houses the vertexing algorithms can be found in the VertexAlg package [6]. TheVxprim module stores the found primary vertices in a VertexColl object [7].2 The AlgorithmWe use the same algorithm as in Run I[1]. Subsection 2.2 describes the �tting functionvxgtpr. As described in subsection 3.1 this function can be used outside the Vxprimmodule by using the VertexFitter class directly.2.1 The Track Selection in the Vxprim ModuleThe Vxprim module reads in CdfTrack[8] objects and applies cuts on the tracks. TheVxprim module allows to cut on the transverse momentum of the tracks and on theirimpact parameter [9]. At least two stereo and two axial super layers with at least sixhits each have to be assigned to a COT track to accept this track. Up to now no cutsare performed on the hit content of silicon tracks.2.2 Finding the Primary VertexThe main task of the algorithm is to �nd the tracks that originate from the primaryvertex and remove all other tracks from the vertex �t. Using a wrong track in the�t results in getting a primary vertex position and covariance matrix that is notcompatible with the right vertex position. To remove the tracks that do not originatefrom the primary vertex the �tting procedure is iterative. It starts with �tting avertex with all tracks that passed the track selection cuts. Then it loops over all thetracks and subtracts one track a time from the �t and calculates the �2 of this trackwith respect to the �tted vertex. If the highest �2 value for any of the tracks exceedsa speci�ed value(maxtrackchi2) this track is removed from the track sample. Thenall remaining tracks are used to �t a vertex and this pruning procedure is repeated.If all tracks pass the �2 cut, the tracks go through the same procedure again doing avertex �t with steering of the track parameters this time. This pruning of the trackcollection stops if a speci�ed minimum number of tracks is left or all tracks pass the�2 cut. A last vertex �t is done with the remaining tracks to �nd the primary vertexposition.
2

2.3 The Vertex Selection in the Vxprim ModuleIn the Vxprim module the pruning is allowed to go down to minn - 1 tracks. If atleast minn tracks are used in the �nal �t, none of the tracks has a �2 with respect tothe vertex that is greater than maxtrackchi2. In this case a Vertex object with theresults of the �t is created and appended to the event record as part of a VertexColl.There is the possibility to rerun this algorithm using all the tracks that have beendropped in the pruning to search for additional primary vertices. All tracks with az0 parameter in a speci�ed window around the z coordinate of the previously foundvertex will be removed from the sample beforehand to reduce combinatorics.3 How to use Vxprim3.1 Using the VertexFitter Class directlyThe algorithm as described in subsection 2.2 is coded as a function named vxgtpr inthe VertexFitter class. This class belongs to the VertexAlg package [6]. The �ttingroutines can be used directly as described in [10] where the VertexFitter class isused to �t the decay vertex of J=	 candidates. The code in Figure 1 instantiates aVertexFitter object and passes a track view to the �tter. The return value of vxgtpris the number of tracks used in the �nal �t. The last step is to access the �t resultsfrom the VertexFitter object.VertexFitter fitter;//get the default tracksHandle<CdfTrackView> mytracks;CdfTrackView::defTracks(mytracks,"PROD");//pass a CdfTrackView to the fitterfitter.newTracks(*mytracks);//call the primary vertex finding algorithmint nused = fitter.vxgtpr(4);//print the vertexstd::cout << "vertex:" << fitter.vertex() << std::endl;Figure 1: Code to call the primary vertex �nding algorithm directly using the Ver-texFitter class.3.2 Using the Vxprim ModuleTo use Vxprim one has to add the Vxprim module to its reconstruction/analysis job.The �rst set of parameters that can be set in the talk-to of the module specify thetrack selection cuts: 3

� minpt: only tracks with a transverse momentum greater than minpt GeV willbe selected. The default value is 0:5 GeV.� maxd0: tracks with an absolute value of the impact parameter(D) greater thanmaxd0 will be removed. The default value is 3:0 cm.� cot: set true to use tracks found in the Central Outer Tracker. The defaultvalue is true.� svx: set true to use tracks found by one of the silicon tracking strategies. Thedefault value is true.If both cot and svx are set to true the best available tracks will be used. Moretechnical, CdfTrackView::defTracks will be used to get a track set. If cot is set trueand svx is set false the module will use the segment linked tracks (algorithm id = 14)from CdfTrackView::allTracks.The zcut parameter is closely related to two other parameters:� zcut: if the z position is already known only tracks that are less then zcut timesthe error on z away in z will be used.� combine: set true to use FastZVertex information. The default is false.� QPV z resol: de�nes the error that should be assumed for the FastZVertex zposition in cm.� repeatsearch: if this parameter is set to true, all tracks that are not close to anyalready found vertex will be used in the next pass. This allows to search formore than one primary vertex. The default is true.� keepall: set true to bypass the check that at least minn tracks have been usedin the �nal �t.� scattertracks: set true to add multiple scattering and energy loss e�ects to COTstand-alone tracks from the last COT measurement to the beam pipe. Thedefault is true.� COTErrorScale: set the scale for the covariance matrix of COT stand-alonetracks. The default is 2.25 in analogy to the value used in outside-in silicontracking.There are two parameters that are used in the algorithm:� maxtrackchi2: if the worst track has a �2 with respect to the vertex greaterthan maxtrackchi2 the track will be dropped. The default value is 30.4

� minn: at least minn tracks have to have been used in the �nal �t to accept thevertex. The default value is four.Appendix A gives examples how to use the Vxprim Module only with COT or silicontracks. These are the parameters used in production to create the "cot vertices" and"svx vertices" vertex collections.3.3 Seeded VxprimBasically all physics analyses need to relate their physics objects to the vertex of theprimary hard interaction. One possible strategy is to search for a primary vertex in-dependent of any particular object and then check whether the objects of the analysisare compatible with originating from that vertex. Using vxprim we believe that thisapproach will best be served by running the vxprim module upstream of your analysisas described in section 3.2.A second approach is based on utilizing the physics objects to seed the search fora primary vertex. Typical examples for these objects we have in mind are high-ptleptons from the decay of heavy gauge bosons, jets or photons. To serve this secondvertexing strategy we have developed the SeededVxPrimFitter as an interface to theVertexFitter class described in section 3.1. The idea is that a user can hand overone of the above mentioned objects to the SeededVxPrimFitter and the program usesthis information to prepare a set of tracks which are forwarded to the actual �tter tocalculate a vertex.In the case of high-pt leptons the seeding proceeds via the z0 of the associatedtrack. The SeededVxPrimFitter collects all tracks which have a z0 that is within awindow of the seed-z0: jz0;track � z0;seed j < �z (1)For jets and photons the criterion is based on the angle � between the jet axis andthe track momentum ~ptrack. arccos ~j � ~ptrackj~jj � j~ptrackj! < �cone (2)where ~j is a vector pointing along the jet axis. Alternatively, an �-�-space criterioncan be used: q(�jet � �track)2 + (�jet � �track)2 < �Rcone (3)The code for seeding with tracks is implemented, the code for the jets and photonsis yet under development.In the following we discuss the implementation of the SeededVxPrimFitter inmore detail. The class publicly inherits from the VertexFitter class and thereforeestablishes an "is-a" relationship. This pattern maintains the entire functionality of5

the basic �tter while providing extensions which are meant to ease the usage of the�tter class for the standard applications mentioned above.The SeededVxPrimFitter is included in the VertexAlg package [6]. To use theprogram one has to include the header �le "VertexAlg/SeededVxPrimFitter.hh"and link against the VertexAlg library. The dependency on VertexAlg has to beadded to your make�le.The steering parameters of the algorithm are initialized with the initialize()member function which takes the following arguments:� minpt: minimum pt of the tracks handed over to the vertex �tter. Default is0.5 GeV.� D0;max: maximum impact parameter D0 with respect to the origin. Default is3 cm.� �z: window to select tracks according to the criterion given in (1).� minNtrack: minimum number of tracks required to be attached to a vertex.Default is 4. Integer values greater or equal to 3 are allowed.� �2track;max: threshold of the pruning algorithm. Maximum allowed �2 of a trackwith respect to a vertex. Default is 12.25.� combine:
ag to enable the usage of a seed vertex for a constraint �t. Defaultis false.� trackSet: number to characterize the algorithms of the tracks which are used toprepare a track set for the �tter. Numbers: 1, 2 and 3 are allowed. 1 means thetracks in the defTracks set made by the silicon outside-in or silicon stand-alonealgorithms are used. 2 means all tracks from defTracks are used. 3 means onlyCOT stand-alone tracks are used.In a typical application it is foreseen that the initialize() function is called onlyonce at the beginning of the analysis job. In the event loop the �t is performed bycalling the member function fitPVtx() giving the reference to the CdfTrack objectof the seed, e.g. the electron, as an argument.If the z0 of the primary interaction is known by some other source, e.g. the ZVertexcollection, fitPVtx() can be called with giving the z0 as an argument.The results of the �t can be accessed as described in section 3.1. Additionally, theSeededVxPrimFitter provides a pointer to the input track collection and the numberof input tracks using the access function getResults(). Example code how to usethe SeededVxPrimFitter in an analysis module is given in appendix C.
6

3.4 Reading the VertexColl from Processed DataThe Vxprim module is run as a standard component in production. Three di�erentcollections of primary vertices are produced. The di�erent VertexColl objects in theevent record can be distinguished by their description:� DEFAULT VXPRIM VERTICES: this VertexColl contains primary vertices re-constructed using the default track view(defTracks).� cot vertices: this VertexColl contains primary vertices reconstructed using COTtracks.� svx vertices: this VertexColl contains primary vertices reconstructed using sili-con tracks.The code fragment in Figure 2 shows how to access the VertexColl with primaryvertices reconstructed using COT tracks.EventRecord::ConstIterator iter(event,StorableObject::SelectByClassName("VertexColl") &&StorableObject::SelectByDescription("cot_vertices"));if (iter.is_valid()){ //std::cout << "coll found" << std::endl;ConstHandle<VertexColl> vertexset(iter);const VertexColl::CollType contents = vertexset->contents();for(VertexColl::const_iterator vertex = contents.begin();vertex != contents.end();++vertex){ Link<Vertex> vtxlnk = *vertex ;std::cout << "vertex x: " << vertex->x() << std::endl;}}Figure 2: Code to access a primary vertex collection created by the Vxprim module.4 Validation with the Run I CodeTo see that the Run II code gives the same results as the Run I version both programsprocessed the same events. We used Run I events and stripped o� all track banksexcept the SVXS banks. In the Run I program we took out the part that dealswith multiple scattering. The Run II job contained a little module that creates a7

CdfTrackColl out of the SVXS banks. So both programs got the same tracks withthe same track parameters and covariance matrices. By applying the same trackcuts and using the same parameters inside Vxprim both versions produced the sameresults with respect to the expected (
oating point) precision. Part of the output ofthis test is shown in appendix B.5 Vxprim using Beam Data from Run IIWe have looked at the primary vertex positions in run 144574 using production version4.3.2a 01. The �gures 3 and 4 show the distribution of the primary vertex positionsin x respectively y for COT tracks. Only vertices with a z coordinate between -1 cm

x[cm]
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

50

100

150

200

250

300

Entries 565
Mean -0.1708
RMS 0.08284
Underflow 8
Overflow 1
Integral 1.247e+04

 / ndf 2χ 313.1 / 346
Prob 0.8972
constant 0.09172± 1.192

 1N 5.929± 210.2
mean 0.0005354± -0.1714

 1σ 0.00115± 0.04464
 2N 5.956± 48.74
 2σ 0.003606± 0.09789

COT vertices with -1 cm < z < 1 cm Entries 565
Mean -0.1708
RMS 0.08284
Underflow 8
Overflow 1
Integral 1.247e+04

 / ndf 2χ 313.1 / 346
Prob 0.8972
constant 0.09172± 1.192

 1N 5.929± 210.2
mean 0.0005354± -0.1714

 1σ 0.00115± 0.04464
 2N 5.956± 48.74
 2σ 0.003606± 0.09789

Figure 3: Distribution of the x-coordinate of primary vertices found by Vxprim usingCOT tracks.and 1 cm have been used to reduce the e�ect of the slope of the beam line. Onecan see the beam pro�le convoluted with the Vxprim resolution. For COT tracks thedistribution is clearly dominated by the Vxprim resolution (approximately 450 �m).The expected beam width is in the order of 30 �m [4]. The same plot for silicon trackscan be seen in the �gures 5 and 6. Here the width of the peak is around 50 �m.We have used run 138046 stream G data to make distributions for the number oftracks used in the �nal �t. Figure 7 shows the result for Vxprim using COT tracks.The mean number of tracks used in the �t is around 16 and far away from the cutvalue of four tracks. In Figure 8 for silicon tracks the situation is worse. There aremany events that do not have enough tracks after the pruning to form a vertex. Themean number of tracks used in the �t is six. We explain this apparent discrepancywith the misalignment of the silicon detectors.8

y[cm]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

50

100

150

200

250

300

350

Entries 566
Mean 0.4504
RMS 0.08106
Underflow 1
Overflow 7
Integral 1.244e+04

 / ndf 2χ 289.7 / 351
Prob 0.9926
constant 0.08807± 1.288

 1N 6.286± 203.8
mean 0.0005303± 0.4527

 1σ 0.001174± 0.03822
 2N 6.45± 70.87
 2σ 0.002598± 0.0896

COT vertices with -1 cm < z < 1 cm Entries 566
Mean 0.4504
RMS 0.08106
Underflow 1
Overflow 7
Integral 1.244e+04

 / ndf 2χ 289.7 / 351
Prob 0.9926
constant 0.08807± 1.288

 1N 6.286± 203.8
mean 0.0005303± 0.4527

 1σ 0.001174± 0.03822
 2N 6.45± 70.87
 2σ 0.002598± 0.0896

Figure 4: Distribution of the y-coordinate of primary vertices found by Vxprim usingCOT tracks.

x[cm]
-0.22 -0.2 -0.18 -0.16 -0.14 -0.120

100

200

300

400

500

600

Entries 228
Mean -0.1687
RMS 0.008278
Underflow 0
Overflow 0
Integral 8928

 / ndf 2χ 106.6 / 143
Prob 0.99
constant 0.1308± 1.234

 1N 11.79± 525.4
mean 6.808e-05± -0.1687

 1σ 0.0001199± 0.005133
 2N 11.38± 65.65
 2σ 0.0006326± 0.01185

SVX vertices with -1 cm < z < 1 cm Entries 228
Mean -0.1687
RMS 0.008278
Underflow 0
Overflow 0
Integral 8928

 / ndf 2χ 106.6 / 143
Prob 0.99
constant 0.1308± 1.234

 1N 11.79± 525.4
mean 6.808e-05± -0.1687

 1σ 0.0001199± 0.005133
 2N 11.38± 65.65
 2σ 0.0006326± 0.01185

Figure 5: Distribution of the x-coordinate of primary vertices found by Vxprim usingsilicon tracks. 9

y[cm]
0.4 0.42 0.44 0.46 0.48 0.50

100

200

300

400

500

600

Entries 214
Mean 0.446
RMS 0.007746
Underflow 0
Overflow 0
Integral 8942

 / ndf 2χ 90.55 / 88
Prob 0.405
constant 0.2447± 1.55

 1N 17.42± 77.52
mean 6.462e-05± 0.446

 1σ 0.0006312± 0.01015
 2N 17.06± 546
 2σ 0.0001305± 0.00492

SVX vertices with -1 cm < z < 1 cm Entries 214
Mean 0.446
RMS 0.007746
Underflow 0
Overflow 0
Integral 8942

 / ndf 2χ 90.55 / 88
Prob 0.405
constant 0.2447± 1.55

 1N 17.42± 77.52
mean 6.462e-05± 0.446

 1σ 0.0006312± 0.01015
 2N 17.06± 546
 2σ 0.0001305± 0.00492

Figure 6: Distribution of the y-coordinate of primary vertices found by Vxprim usingsilicon tracks.

number of tracks used in fit
0 10 20 30 40 50

0

200

400

600

800

1000

Entries 20840

Mean 15.87

RMS 8.457

Underflow 0

Overflow 35

Integral 2.08e+04

vxprim vertices Run:138046 Entries 20840

Mean 15.87

RMS 8.457

Underflow 0

Overflow 35

Integral 2.08e+04

Figure 7: Distribution of the number of tracks used in the �nal vertex �t of theprimary vertex using COT tracks. 10

number of tracks used in fit
0 10 20 30 40 50

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Entries 11283

Mean 6.089

RMS 2.958

Underflow 0

Overflow 0

Integral 1.128e+04

vxprim vertices Run:138046 Entries 11283

Mean 6.089

RMS 2.958

Underflow 0

Overflow 0

Integral 1.128e+04

Figure 8: Distribution of the number of tracks used in the �nal vertex �t of theprimary vertex using silicon tracks.The goal of Vxprim is to �nd a primary vertex with a resolution below the beamwidth for events with a high track multiplicity and not to �nd a primary vertex forevery event. Nevertheless we have investigated how often Vxprim �nds a primaryvertex. The percentage of events for which at least one vertex has been found in anevent during production is shown in table 1 for di�erent data streams and productionversions. One sees good performance for COT tracks. The alignment and the silicontracking are still being worked on, so we expect the numbers for silicon tracks toimprove,as well as the numbers for Vxprim using the default tracks.data �le cdfsoft version default Vxprim cot-Vxprim svx-Vxprimjr0234be.0031phys 4.3.2a 01 70.98% 94.69% 59.07%jr0234be.0073phys 4.3.2a 01 70.90% 95.31% 59.62%br0234be.002cphys 4.3.2a 01 73.31% 94.20% 58.17%br0234be.009ephys 4.3.2a 01 73.31% 94.15% 57.22%br0234be.002cphys 4.5.2 03 79.84% 94.49% 41.97%br0234be.009ephys 4.5.2 03 80.24% 94.32% 41.79%Table 1: The percentage of events for which at least one vertex has been found. Thesecond column gives the name of the production version that has been used. The thirdcolumn shows the results for the Vxprim module using the default track collection.The fourth column shows the results for the Vxprim module using COT tracks andthe �fth shows the results for Vxprim using silicon tracks.11

6 Tests with Monte Carlo EventsTo study the Vxprim performance and the performance of the SeededVxprimFitterclass in particular we have run the seeded �tter over 1000 W + g ! e + �e + gMonte Carlo (MC) events. The MC sample was generated using the version 6.203of the PYTHIA event generator integrated in the CDF software framework. Eventgeneration, detector simulation and reconstruction were done using the CDF softwarerelease 4.5.0int4.In a �rst test, Vxprim was seeded with the z-Vertex taken from the Monte Carlotruth, which is provided in the CDF framework by the OBSV bank. A second testwas performed by seeding the vertexing with the z0 of the reconstructed electron trackin the event.The electron identi�cation does not rely on Monte Carlo truth information. In theMonte Carlo sample no more than one electron per event can be identi�ed. The elec-tron identi�cation proceeds as follows: The electromagnetic cluster (CdfEMObject)is required to have a minimum Et > 18:0 GeV. We require the cluster to have a trackattached. Further identi�cation cuts are: Had=EM < 0:125 (ratio of hadronic en-ergy over electromagnetic energy in the calorimeter), E=p < 2:0 and isolation < 0:1.Using those cuts we can successfully identify an electron in 521 events.Before an attempt is made to �t a vertex an adequate track sample is producedby requiring certain quality criteria as described in subsection 3.3. As a basic samplewe used all default tracks (defTracks) as output by the CDF tracking software. Thistrack sample comprises COT stand-alone tracks, silicon outside-in tracks and siliconstand-alone tracks. As a z-window we used �z = 1:5 cm. The tracks need to havept > 0:3 GeV. The maximum D0 with respect to the origin is 3.0 cm. These trackcuts result in a track selection e�ciency of 93.3% in the �rst test (OBSV seeding)and 98.7% in the second test (electron seeding). In the second case the denominatorof the e�ciency is the number of events with an identi�ed electron. We believethat the di�erence between the two track selection e�ciencies is due to the electronidenti�cation yielding an event sample with a slightly harder track pt spectrum anda higher track multiplicity.For those events which pass the track selection criteria an attempt is made to �t aprimary vertex using Vxprim. The pruning parameters of the algorithm are as follows:the minimum number of tracks is set to 3, the maximum �2 of a track with respectto the vertex is set to 12.25 (3:5 � 3:5). If the pruning succeeds the algorithm stopswhen all tracks attached to the vertex have a �2 below this threshold. If the pruningfails, the algorithm runs down to the limit of the minimum number of required tracks.Out of these tracks there is still at least one which has a higher �2 value than thethreshold. In practice, we let the algorithm run down to the minimum minus oneand look at the number of tracks attached to the vertex. If this number is below theminimum, we know, the pruning failed. In our study those are events with two tracksattached to the vertex. Figure 9 shows the number of tracks attached to the vertex.12

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45
Entries 483

RMS 5.26

N tracks
Entries 483

RMS 5.26

2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

Entries 31

RMS 2.317

TRY.inTrk {GLO.return == 2}
Entries 31

RMS 2.317

Figure 9: In the left plot we show the distribution of the number of tracks which areused to �t the found vertices.On the left plot you see the events for which the pruning succeeded, on the right plotthe events for which the pruning failed. It is expected to have some pruning failuresin the 3,4 and 5 track bins. However, the shape of the distribution, in particular, thelong tail to events with 7,8,9 and 10 input tracks is not understood and needs furtherinvestigation.We de�ne the vertexing e�ciency as the ratio of events for which the vertex �tsucceeded over those events which passed the track selection cuts. For our �rst test(OBSV seeding) we reach a vertexing e�ciency of 93.0% and 94.0% for the secondtest.An important issue of consideration is the vertex resolution we can expect withVxprim. To get an estimate on what could be reached with a perfect detector wecompare the reconstructed vertex positions with the MC truth. In Figure 10 thedistributions of di�erences between reconstruction and MC truth are given. No majordeviations between the two test cases are found. We �nd a typical resolution of 30to 35 �m in the transverse coordinates x and y and a resolution of about 60 �m in z.The resolution is here quoted as the RMS value of the distribution.We have also looked at the impact parameter resolution of the tracks attachedto the vertex. The distribution of impact parameters is shown in the left plot ofFigure 11. We �nd �imp = 32 �m (RMS). If assigning the tracks to di�erent pt binswe get the pt-dependence of the impact parameter resolution. The result is shown inthe right plot of Figure 11. The curve exhibits the expected 1=pt dependence, startingwith 50 �m for 0:5 GeV down to about 5 �m at pt > 10 GeV. The horizontal errorbars on pt are assigned by taking the RMS of the pt for the six di�erent bins. Thevertical error bar is set to an estimated, �xed value of 2 �m. Fitting to the hypothesis� = a + b=pt yields the coe�cients a = (5 � 2) �m and b = (18 � 2) �m. Withinthe errors the expected functional form of the pt dependence can be reproduced.The actual numbers for the parameters have to be taken cum grano salis. Realistic13

seeded with MC truth seeded with electron ID

 residual / cm0x
-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

20

40

60

80

100

Entries 868

RMS 0.003234

x0 diff
Entries 868

RMS 0.003234

 residual / cm0x
-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

10

20

30

40

50

60

Entries 483

RMS 0.004055

x0 diff
Entries 483

RMS 0.004055

 residual / cm0y
-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

20

40

60

80

100

120

Entries 868

RMS 0.003491

y0 diff
Entries 868

RMS 0.003491

 residual / cm0y
-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

10

20

30

40

50

60

70

Entries 483

RMS 0.003986

y0 diff
Entries 483

RMS 0.003986

 residual / cm0z
-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

10

20

30

40

50

60

Entries 868

RMS 0.005994

z0 diff
Entries 868

RMS 0.005994

 residual / cm0z
-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

5

10

15

20

25

30

Entries 483

RMS 0.005834

z0 diff
Entries 483

RMS 0.005834

Figure 10: The plots show the di�erence �x, �y and �z of the vertex coordinatestaken from the Monte Carlo truth (as given by the OBSV bank) and the reconstructedvertex coordinates. The �rst column shows the results if the vertexing algorithm wasseeded with the Monte Carlo truth. The second column shows the result if the vertexalgorithm was seeded with the identi�ed electron.
14

impact parameter / cm
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
0

50

100

150

200

250

300

350

Entries 5725

RMS 0.003417

2D impact para. of tracks
Entries 5725

RMS 0.003417

pt / GeV
0 2 4 6 8 10 12 14 16

mµ
im

p
. R

M
S

 /

0

10

20

30

40

50

impact para. resolution versus ptimpact para. resolution versus pt

Figure 11: The left plot shows the impact parameter resolution of the tracks used forthe vertex �t in simulated data. The vertex algorithm was seeded with the identi�edelectron in the event. The right plot shows the average impact parameter resolutionfor 6 pt bins in simulated data. First bin: pt < 0:5 GeV; 2nd bin: 0:5GeV � pt <0:8 GeV; 3rd bin: 0:8GeV � pt < 1:2 GeV; 4th bin: 1:2GeV � pt < 2:0 GeV; 5thbin: 2:0GeV � pt < 5:0 GeV; 6th bin: pt � 5:0 GeV. The pt value for each bin wasobtained by averaging over the pt of all input tracks for this bin.numbers have to be extracted from data and not Monte Carlo events.6.1 Impact Parameter Resolution in Collider DataWe run the analysis described above also on collider data and extracted the impact pa-rameter resolution versus pt. The result is shown in Fig. 12. The data are taken fromthe stripped high pt inclusive electron sample, �le CentralEle Inclusive PR0713 0.dat.The data were reconstructed with the CDF software version 4.5.2. The base samplewas bhel03.The �t yields: a = (18 � 2) �m and b = 30 � 3) �m, results quite di�erent fromthe MC. The reason is probably that the amount of material is underestimated in theMC and that alignment is not simulated.7 ConclusionsWe have ported the Run I code of the primary vertex �nding package Vxprim to theRun II framework. The algorithm can be used with an AC++ module as well as becalled directly using the VertexFitter class. The ported code was validated againstthe Run I algorithm. The results are consistent within the expected
oating pointprecision. Vxprim is used to calculate the beam line for CDF. The width of thecentral peak of the vertex distribution in x and y is on the order of 50 �m using onlytracks with silicon information. This value includes the vertex resolution and the15

pt / GeV
0 2 4 6 8 10 12 14 16

mµ
im

p
. R

M
S

 /

0

10

20

30

40

50

60

70

80

90

100

impact para. resolution versus ptimpact para. resolution versus pt

Figure 12: Average impact parameter resolution for 6 pt bins in collider data.

16

beam width. We have tested Vxprim with MC W ! e� events. The results suggestthat a resolution of 40 �m (RMS) in x and y and 60 �m (RMS) in z can be achieved,assuming a perfectly aligned detector and no dead regions.References[1] F. Bedeschi et. al., \A Primary Vertex Finding Package,". CDF Note-1789.[2] H. Wenzel, \Fitting the beam position with the SVX,". CDF Note-1924.[3] G. Punzi and S. Dell'Agnello, \The C$VTX Vertex-Finding Package,". CDFNote-1791.[4] Run II Alignment grouphttp://www-cdf.fnal.gov/internal/upgrades/align/alignment.html.[5] VertexMods source in the code browserhttp://cdfcodebrowser.fnal.gov/CdfCode/source/VertexMods/.[6] VertexAlg source in the code browserhttp://cdfcodebrowser.fnal.gov/CdfCode/source/VertexAlg/.[7] H. Stadie and H. Wenzel, \Proposal for a Run II Vertex Object,". CDFNote-5161.[8] J. Boudreau and R. Snider, \A User's Guide to CdfTrack and RelatedClasses,". CDF Note-5089.[9] H. Wenzel, \Tracking in the SVX,". CDF Note-1790.[10] H. Stadie and H. Wenzel, \The inclusive B Lifetime Analysis in the Run IISoftware Framework,". CDF Note-5631.

17

A Example Talk-tos for VxprimVxprim using COT tracks only:module talk vxprimrepeatsearch set fcot set tsvx set fvertexcolldescription set cot_verticesexitVxprim using silicon tracks:module talk vxprimrepeatsearch set fcot set fsvx set tvertexcolldescription set svx_verticesexitB Output of the Validation with the Run I versionRun I Vxprim (no multiple scattering):Run: 71022 Event: 472tracks found: 42tracks after cuts: 17vertex: -0.1189836 , 9.8704264E-02 , -3.433281ntracks: 13 CHI2: 41.20278Run: 71022 Event: 529tracks found: 51tracks after cuts: 23vertex: -0.1207503 , 0.1007950 , -4.527749ntracks: 17 CHI2: 45.45284Run II Vxprim on the same events(SVXS bank):SVXSReadModule: 36 out of 42 added to EventRecordVxprim:# of tracks after cuts:17fit results: used tracks:13 chi2:41.1999vertex:(-0.118984,0.098704,-3.43314)SVXSReadModule: 45 out of 51 added to EventRecord18

Vxprim:# of tracks after cuts:23fit results: used tracks:17 chi2:45.4389vertex:(-0.120746,0.100795,-4.52783)C Example Code to Use the SeededVxprimFitterClass#include "VertexAlg/SeededVxprimFitter.hh"...SeededVxprimFitter _fitter;...MyAnalyis::beginJob(){ _fitter.initialize(3, 3.5*3.5, 1.0, false, 0.5, 3.0, false, 1);...}MyAnalyis::event(){ CdfTrack& trk = findElectronFromWdecay();int usedTrk = _fitter.fitPVtx(trk);if (usedTrk > 0) {// Enough tracks foundif (usedTrk >= 3) {// Pruning succeededHepPoint3D vt = _fitter.vertex();HepSymMatrix cov = _fitter.vertexCovarianceMatrix();}else {// Pruning failed. However, the fit was performed with// the minimum number of tracks required.HepPoint3D vt = _fitter.vertex();HepSymMatrix cov = _fitter.vertexCovarianceMatrix();}}else {// Not enough tracks could be found to do the vertex fit.}...} 19

