CDF/DOC/TRACKING/CDFR/6047
Version 1.0 , July 24, 2002

Vxprim in Run II

Hartmut Stadie, Wolfgang Wagner, Thomas Miiller

Institut fir Exzperimentelle Kernphysik, Universitat Karlsruhe

Hans Wenzel

Fermailab

Abstract

During Run I Vxprim was used to find primary vertices with high resolution.
We have ported the code to the Run II framework. In this note we briefly
describe the algorithm and explain the parameters used in the Vxprim AC++
module. We give an example how to use the underlying vertex fitter directly
and introduce a derived class that allows to seed the primary vertex finding with
a physics object. We also investigate the performance concerning resolution and
efficiency of the algorithm using beam data and Monte Carlo events.

1 Introduction

Many analyses like life time measurements and analyses needing a b-tag require a
good knowledge of the primary vertex position for each event. In most cases in Run I
the position of the beam line was used to estimate the primary vertex position in x
and y if the z coordinate was known. This method proved to be sufficient for most
applications in b-physics. Vxprim [1] was used to find the primary vertex with a
better precision than the beam width for events with a high multiplicity (e.g. tf).
To achieve this goal Vxprim fitted the primary vertex using reconstructed tracks. In
Run 1 one method to fit the beam line on a run by run basis [2] used the primary
vertices found by Vxprim. In addition in Run II primary vertex reconstruction will
be an useful tool to distinguish different interactions in a single bunch crossing.

We have ported the Vxprim algorithm and the underlying vertexing functions [3]
to C++. An AC++ module that calls the Vxprim algorithm is run in production.
The results of this module are used to determine the beam line positions [4]. The
code for the module resides in the VertexMods package [5]. The VertexFitter class
that houses the vertexing algorithms can be found in the VertexAlg package [6]. The
Vxprim module stores the found primary vertices in a VertexColl object [7].

2 The Algorithm

We use the same algorithm as in Run I[1]. Subsection 2.2 describes the fitting function
vxgtpr. As described in subsection 3.1 this function can be used outside the Vxprim
module by using the VertexFitter class directly.

2.1 The Track Selection in the Vxprim Module

The Vxprim module reads in CdfTrack[8] objects and applies cuts on the tracks. The
Vxprim module allows to cut on the transverse momentum of the tracks and on their
impact parameter [9]. At least two stereo and two axial super layers with at least six
hits each have to be assigned to a COT track to accept this track. Up to now no cuts
are performed on the hit content of silicon tracks.

2.2 Finding the Primary Vertex

The main task of the algorithm is to find the tracks that originate from the primary
vertex and remove all other tracks from the vertex fit. Using a wrong track in the
fit results in getting a primary vertex position and covariance matrix that is not
compatible with the right vertex position. To remove the tracks that do not originate
from the primary vertex the fitting procedure is iterative. It starts with fitting a
vertex with all tracks that passed the track selection cuts. Then it loops over all the
tracks and subtracts one track a time from the fit and calculates the x? of this track
with respect to the fitted vertex. If the highest x? value for any of the tracks exceeds
a specified value(maztrackchi2) this track is removed from the track sample. Then
all remaining tracks are used to fit a vertex and this pruning procedure is repeated.
If all tracks pass the x? cut, the tracks go through the same procedure again doing a
vertex fit with steering of the track parameters this time. This pruning of the track
collection stops if a specified minimum number of tracks is left or all tracks pass the
x? cut. A last vertex fit is done with the remaining tracks to find the primary vertex
position.

2.3 The Vertex Selection in the Vxprim Module

In the Vxprim module the pruning is allowed to go down to minn - 1 tracks. If at
least minn tracks are used in the final fit, none of the tracks has a y? with respect to
the vertex that is greater than maxtrackchi2. In this case a Vertex object with the
results of the fit is created and appended to the event record as part of a VertexColl.
There is the possibility to rerun this algorithm using all the tracks that have been
dropped in the pruning to search for additional primary vertices. All tracks with a
2o parameter in a specified window around the z coordinate of the previously found
vertex will be removed from the sample beforehand to reduce combinatorics.

3 How to use Vxprim

3.1 Using the VertexFitter Class directly

The algorithm as described in subsection 2.2 is coded as a function named vxgtpr in
the VertexFitter class. This class belongs to the VertexAlg package [6]. The fitting
routines can be used directly as described in [10] where the VertexFitter class is
used to fit the decay vertex of J/W¥ candidates. The code in Figure 1 instantiates a
VertexFitter object and passes a track view to the fitter. The return value of vxgtpr
is the number of tracks used in the final fit. The last step is to access the fit results
from the VertexFitter object.

VertexFitter fitter;

//get the default tracks

Handle<CdfTrackView> mytracks;
CdfTrackView: :defTracks (mytracks,"PROD") ;

//pass a CdfTrackView to the fitter

fitter.newTracks (*mytracks) ;

//call the primary vertex finding algorithm

int nused = fitter.vxgtpr(4);

//print the vertex

std::cout << "vertex:" << fitter.vertex() << std::endl;

Figure 1: Code to call the primary vertex finding algorithm directly using the Ver-
texFitter class.

3.2 Using the Vxprim Module

To use Vxprim one has to add the Vxprim module to its reconstruction/analysis job.
The first set of parameters that can be set in the talk-to of the module specify the
track selection cuts:

manpt: only tracks with a transverse momentum greater than minpt GeV will
be selected. The default value is 0.5 GeV.

mazd0: tracks with an absolute value of the impact parameter(D) greater than
mazd(will be removed. The default value is 3.0 cm.

cot: set true to use tracks found in the Central Outer Tracker. The default
value is true.

svr: set true to use tracks found by one of the silicon tracking strategies. The
default value is true.

If both cot and svz are set to true the best available tracks will be used. More
technical, CdfTrackView::defTracks will be used to get a track set. If cot is set true
and svz is set false the module will use the segment linked tracks (algorithm id = 14)
from CdfTrackView::allTracks.

The zcut parameter is closely related to two other parameters:

zeut: if the z position is already known only tracks that are less then zcut times
the error on z away in z will be used.

combine: set true to use FastZVertex information. The default is false.

QPV_z_resol: defines the error that should be assumed for the FastZVertex z
position in cm.

repeatsearch: if this parameter is set to true, all tracks that are not close to any
already found vertex will be used in the next pass. This allows to search for
more than one primary vertex. The default is true.

keepall: set true to bypass the check that at least minn tracks have been used
in the final fit.

scattertracks: set true to add multiple scattering and energy loss effects to COT
stand-alone tracks from the last COT measurement to the beam pipe. The
default is true.

COTErrorScale: set the scale for the covariance matrix of COT stand-alone
tracks. The default is 2.25 in analogy to the value used in outside-in silicon
tracking.

There are two parameters that are used in the algorithm:

mazxtrackchi2: if the worst track has a x? with respect to the vertex greater
than maxztrackchi?2 the track will be dropped. The default value is 30.

e minn: at least minn tracks have to have been used in the final fit to accept the
vertex. The default value is four.

Appendix A gives examples how to use the Vxprim Module only with COT or silicon
tracks. These are the parameters used in production to create the ”cot_vertices” and
"svx_vertices” vertex collections.

3.3 Seeded Vxprim

Basically all physics analyses need to relate their physics objects to the vertex of the
primary hard interaction. One possible strategy is to search for a primary vertex in-
dependent of any particular object and then check whether the objects of the analysis
are compatible with originating from that vertex. Using vxprim we believe that this
approach will best be served by running the vxprim module upstream of your analysis
as described in section 3.2.

A second approach is based on utilizing the physics objects to seed the search for
a primary vertex. Typical examples for these objects we have in mind are high-p;
leptons from the decay of heavy gauge bosons, jets or photons. To serve this second
vertexing strategy we have developed the SeededVxPrimFitter as an interface to the
VertexFitter class described in section 3.1. The idea is that a user can hand over
one of the above mentioned objects to the SeededVxPrimFitter and the program uses
this information to prepare a set of tracks which are forwarded to the actual fitter to
calculate a vertex.

In the case of high-p, leptons the seeding proceeds via the z, of the associated
track. The SeededVxPrimFitter collects all tracks which have a z; that is within a
window of the seed-z;:

|ZO,tmck - ZO,seed| <Az (]-)

For jets and photons the criterion is based on the angle # between the jet axis and
the track momentum pj,q.p-

ATCCOS (J * Ptrack) < econe (2)

|;| : |ﬁ;§rack|

where fis a vector pointing along the jet axis. Alternatively, an n-¢-space criterion
can be used:

\/(njet - ntrack)2 + (¢jet - ¢track)2 < A]%cone (3)

The code for seeding with tracks is implemented, the code for the jets and photons
is yet under development.

In the following we discuss the implementation of the SeededVxPrimFitter in
more detail. The class publicly inherits from the VertexFitter class and therefore
establishes an ”is-a” relationship. This pattern maintains the entire functionality of

the basic fitter while providing extensions which are meant to ease the usage of the
fitter class for the standard applications mentioned above.

The SeededVxPrimFitter is included in the VertexAlg package [6]. To use the
program one has to include the header file "VertexAlg/SeededVxPrimFitter.hh"
and link against the VertexAlg library. The dependency on VertexAlg has to be
added to your makefile.

The steering parameters of the algorithm are initialized with the initialize()
member function which takes the following arguments:

e minpt: minimum p, of the tracks handed over to the vertex fitter. Default is
0.5 GeV.

® Dgmee: maximum impact parameter Dy with respect to the origin. Default is
3 cm.

e Az: window to select tracks according to the criterion given in (1).

e minNtrack: minimum number of tracks required to be attached to a vertex.
Default is 4. Integer values greater or equal to 3 are allowed.

° X%rack,ma:v: threshold of the pruning algorithm. Maximum allowed x? of a track
with respect to a vertex. Default is 12.25.

e combine: flag to enable the usage of a seed vertex for a constraint fit. Default
is false.

e trackSet: number to characterize the algorithms of the tracks which are used to
prepare a track set for the fitter. Numbers: 1, 2 and 3 are allowed. 1 means the
tracks in the defTracks set made by the silicon outside-in or silicon stand-alone
algorithms are used. 2 means all tracks from defTracks are used. 3 means only
COT stand-alone tracks are used.

In a typical application it is foreseen that the initialize () function is called only
once at the beginning of the analysis job. In the event loop the fit is performed by
calling the member function £fitPVtx () giving the reference to the CdfTrack object
of the seed, e.g. the electron, as an argument.

If the 2y of the primary interaction is known by some other source, e.g. the ZVertex
collection, £itPVtx () can be called with giving the 2z, as an argument.

The results of the fit can be accessed as described in section 3.1. Additionally, the
Seeded VxPrimFitter provides a pointer to the input track collection and the number
of input tracks using the access function getResults(). Example code how to use
the SeededVxPrimFitter in an analysis module is given in appendix C.

3.4 Reading the VertexColl from Processed Data

The Vxprim module is run as a standard component in production. Three different
collections of primary vertices are produced. The different VertexColl objects in the
event record can be distinguished by their description:

e DEFAULT_VXPRIM_VERTICES: this VertexColl contains primary vertices re-
constructed using the default track view(defTracks).

e cot_vertices: this VertexColl contains primary vertices reconstructed using COT
tracks.

e svur_vertices: this VertexColl contains primary vertices reconstructed using sili-
con tracks.

The code fragment in Figure 2 shows how to access the VertexColl with primary
vertices reconstructed using COT tracks.

EventRecord: :ConstIterator iter(event,
StorableObject::SelectByClassName ("VertexColl") &&
StorableObject::SelectByDescription("cot_vertices"));

if (iter.is_valid())
{

//std::cout << "coll found" << std::endl;

ConstHandle<VertexColl> vertexset(iter);

const VertexColl::CollType contents = vertexset->contents();

for(VertexColl::const_iterator vertex = contents.begin();
vertex != contents.end() ;++vertex)

{

Link<Vertex> vtxlnk = *vertex ;
std::cout << "vertex x: " << vertex->x() << std::endl;

¥

Figure 2: Code to access a primary vertex collection created by the Vxprim module.

4 Validation with the Run I Code

To see that the Run II code gives the same results as the Run [version both programs
processed the same events. We used Run I events and stripped off all track banks
except the SVXS banks. In the Run I program we took out the part that deals
with multiple scattering. The Run II job contained a little module that creates a

CdfTrackColl out of the SVXS banks. So both programs got the same tracks with
the same track parameters and covariance matrices. By applying the same track
cuts and using the same parameters inside Vxprim both versions produced the same
results with respect to the expected (floating point) precision. Part of the output of
this test is shown in appendix B.

5 Vxprim using Beam Data from Run 11

We have looked at the primary vertex positions in run 144574 using production version
4.3.2a_01. The figures 3 and 4 show the distribution of the primary vertex positions
in x respectively y for COT tracks. Ounly vertices with a z coordinate between -1 cm

| COT vertices with-1cm <z<1lcm | Entries 565
Mean -0.1708
B RMS 0/08284
300— Underflow 8
| Overflow 1
Integral 1.247e+04
2501— X2/ ndf 313.1/346
L Prob 0.8972
constant 1.192 +0[09172
200[— N, 210.2 45.929
- mean -0.1714 + 0.0405354
o, 0.04464 + 000115
150— N, 48.74 4 5.956
= 0.09789 + 0.003606
100—
50—
0 poros _ ! 111 111 11 N _ ,
06 -05 -04 -03 -02 -01 0 0.1 0.2 0.3
x[cm]

Figure 3: Distribution of the x-coordinate of primary vertices found by Vxprim using
COT tracks.

and 1 cm have been used to reduce the effect of the slope of the beam line. One
can see the beam profile convoluted with the Vxprim resolution. For COT tracks the
distribution is clearly dominated by the Vxprim resolution (approximately 450 pm).
The expected beam width is in the order of 30 pm [4]. The same plot for silicon tracks
can be seen in the figures 5 and 6. Here the width of the peak is around 50 pm.

We have used run 138046 stream G data to make distributions for the number of
tracks used in the final fit. Figure 7 shows the result for Vxprim using COT tracks.
The mean number of tracks used in the fit is around 16 and far away from the cut
value of four tracks. In Figure 8 for silicon tracks the situation is worse. There are
many events that do not have enough tracks after the pruning to form a vertex. The
mean number of tracks used in the fit is six. We explain this apparent discrepancy
with the misalignment of the silicon detectors.

COT vertices with-1cm <z<1lcm | Entries 566

Mean 0.4504

350 RMS 008106

B Underflow 1

300— Overflow 7

L Integral 1.244e+04

X2/ ndf 289.7 /351

250— Prob 0.9926

- constant 1.288 + 0/08807

2001— N, 203.8 £ 6.286

mean 0.4527 + 0.0905303

B o, 0.03822 +0.401174

150 — N, 70.87 & 6.45

| 0.0896 + 0.002598
100—
50—

0 p By
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ylecm]

Figure 4: Distribution of the y-coordinate of primary vertices found by Vxprim using
COT tracks.

| SVX vertices with-1cm <z<1cm | Entries 228

Mean -0.1687

B RMS 0.008278

++ Underflow 0

600— Overflow 0

o Integral 8928

2

| X2/ ndf 1066 / 143

500 Prob 0.99

B constant 1.234 +|0.1308

400— Ny 525.4 +11.79

L mean -0.1687 + 6.808e-05

Oy 0.005133 + 0.0001199

300— N, 65.65 + 11.38

L 0.01185 * 0.0006326
200—
100—

9).22 -0.2 -0.18 -0.16 -0.14 -0.12
x[cm]

Figure 5: Distribution of the x-coordinate of primary vertices found by Vxprim using
silicon tracks.

SVX vertices with -1cm <z<1cm

Entries 214
Mean 0.446
B RMS 0.007746
+ Underflow 0
600— Overflow 0
- Integral 8942
2/ ndf 90.65/88
5001— Srob 0.405
constant 1.55+ 0.2447
400 1 77.52 4 17.42
mean 0.446 + 6.462e-05
0.01015 + 0.0006312
300) 546 % 17.06
0.00492 + 0.0001305
200
100
0 200000%8 s ceoen00oeorie
0.4 0.42 0.44 0.46 0.48 0.5
ylcm]

Figure 6: Distribution of the y-coordinate of primary vertices found by Vxprim using

silicon tracks.

20840
15.87
8.457

0
35

[vxprim vertices Run:138046 | —
L Mean
L RMS
1000— Underflow
: Overflow
800 N Integral 2.08e+04
600[—
400—
200[—
O N 1 1 1 1 I 1 1 1 1 I 1 1 1 I 1 1 1 1 I 1 1
0 10 20 30 40 50
number of tracks used in fit

Figure 7: Distribution of the number of tracks used in the final vertex fit of the

primary vertex using COT tracks.

10

[vxprim vertices Run:138046 | — P
2200 Mean 6.089
2000 i RMS 2.958

- Underflow 0
1800
- Overflow 0
1600—
, Integral 1.128e+04
1400
1200
1000
800
600
400
200
O ? Il ‘ Il Il Il Il ‘ Il Il Il Il I
0 30 40 50
number of tracks used in fit

Figure 8: Distribution of the number of tracks used in the final vertex fit of the
primary vertex using silicon tracks.

The goal of Vxprim is to find a primary vertex with a resolution below the beam
width for events with a high track multiplicity and not to find a primary vertex for
every event. Nevertheless we have investigated how often Vxprim finds a primary
vertex. The percentage of events for which at least one vertex has been found in an
event during production is shown in table 1 for different data streams and production
versions. One sees good performance for COT tracks. The alignment and the silicon
tracking are still being worked on, so we expect the numbers for silicon tracks to
improve,as well as the numbers for Vxprim using the default tracks.

data file cdfsoft version | default Vxprim cot-Vxprim svx-Vxprim
jr0234be.0031phys 4.3.2a_ 01 70.98% 94.69% 59.07%
jr0234be.0073phys 4.3.2a_ 01 70.90% 95.31% 59.62%
br0234be.002cphys 4.3.2a_01 73.31% 94.20% 58.17%
br0234be.009ephys 4.3.2a_01 73.31% 94.15% 57.22%
br0234be.002cphys 4.5.2.03 79.84% 94.49% 41.97%
br0234be.009ephys 4.5.2_03 80.24% 94.32% 41.79%

Table 1: The percentage of events for which at least one vertex has been found. The
second column gives the name of the production version that has been used. The third
column shows the results for the Vxprim module using the default track collection.
The fourth column shows the results for the Vxprim module using COT tracks and
the fifth shows the results for Vxprim using silicon tracks.

11

6 Tests with Monte Carlo Events

To study the Vxprim performance and the performance of the SeededVxprimFitter
class in particular we have run the seeded fitter over 1000 W +¢g — e+ v, + g
Monte Carlo (MC) events. The MC sample was generated using the version 6.203
of the PYTHIA event generator integrated in the CDF software framework. Event
generation, detector simulation and reconstruction were done using the CDF software
release 4.5.0int4.

In a first test, Vxprim was seeded with the z-Vertex taken from the Monte Carlo
truth, which is provided in the CDF framework by the OBSV bank. A second test
was performed by seeding the vertexing with the z; of the reconstructed electron track
in the event.

The electron identification does not rely on Monte Carlo truth information. In the
Monte Carlo sample no more than one electron per event can be identified. The elec-
tron identification proceeds as follows: The electromagnetic cluster (CAfEMObject)
is required to have a minimum E; > 18.0 GeV. We require the cluster to have a track
attached. Further identification cuts are: Had/EM < 0.125 (ratio of hadronic en-
ergy over electromagnetic energy in the calorimeter), E/p < 2.0 and isolation < 0.1.
Using those cuts we can successfully identify an electron in 521 events.

Before an attempt is made to fit a vertex an adequate track sample is produced
by requiring certain quality criteria as described in subsection 3.3. As a basic sample
we used all default tracks (defTracks) as output by the CDF tracking software. This
track sample comprises COT stand-alone tracks, silicon outside-in tracks and silicon
stand-alone tracks. As a z-window we used Az = 1.5 cm. The tracks need to have
p; > 0.3 GeV. The maximum D, with respect to the origin is 3.0 cm. These track
cuts result in a track selection efficiency of 93.3% in the first test (OBSV seeding)
and 98.7% in the second test (electron seeding). In the second case the denominator
of the efficiency is the number of events with an identified electron. We believe
that the difference between the two track selection efficiencies is due to the electron
identification yielding an event sample with a slightly harder track p, spectrum and
a higher track multiplicity.

For those events which pass the track selection criteria an attempt is made to fit a
primary vertex using Vxprim. The pruning parameters of the algorithm are as follows:
the minimum number of tracks is set to 3, the maximum y? of a track with respect
to the vertex is set to 12.25 (3.5 - 3.5). If the pruning succeeds the algorithm stops
when all tracks attached to the vertex have a x? below this threshold. If the pruning
fails, the algorithm runs down to the limit of the minimum number of required tracks.
Out of these tracks there is still at least one which has a higher x? value than the
threshold. In practice, we let the algorithm run down to the minimum minus one
and look at the number of tracks attached to the vertex. If this number is below the
minimum, we know, the pruning failed. In our study those are events with two tracks
attached to the vertex. Figure 9 shows the number of tracks attached to the vertex.

12

N tracks R TRY.inTrk {GLO.return == 2} K
Entries 483 Entries 31

RMS 2.317

45

~

RMS 5.26

A

o

=)

3!

@
3}

3

o

2!

3}
IS

2

=}

w

1!

3
N

1

-

&)

N»HH‘HH‘HH‘\H\‘HH‘HH‘HH‘\

o
O FFTTITTT T[T T[T [T T[T T[T [TTTT 17T

9 10 11 12

o

o
w
IS
&
o
~
©

Figure 9: In the left plot we show the distribution of the number of tracks which are
used to fit the found vertices.

On the left plot you see the events for which the pruning succeeded, on the right plot
the events for which the pruning failed. It is expected to have some pruning failures
in the 3,4 and 5 track bins. However, the shape of the distribution, in particular, the
long tail to events with 7,8,9 and 10 input tracks is not understood and needs further
investigation.

We define the vertexing efficiency as the ratio of events for which the vertex fit
succeeded over those events which passed the track selection cuts. For our first test
(OBSV seeding) we reach a vertexing efficiency of 93.0% and 94.0% for the second
test.

An important issue of consideration is the vertex resolution we can expect with
Vxprim. To get an estimate on what could be reached with a perfect detector we
compare the reconstructed vertex positions with the MC truth. In Figure 10 the
distributions of differences between reconstruction and MC truth are given. No major
deviations between the two test cases are found. We find a typical resolution of 30
to 35 um in the transverse coordinates x and y and a resolution of about 60 ym in z.
The resolution is here quoted as the RMS value of the distribution.

We have also looked at the impact parameter resolution of the tracks attached
to the vertex. The distribution of impact parameters is shown in the left plot of
Figure 11. We find 0y, = 32 pm (RMS). If assigning the tracks to different p, bins
we get the p;-dependence of the impact parameter resolution. The result is shown in
the right plot of Figure 11. The curve exhibits the expected 1/p, dependence, starting
with 50 pm for 0.5 GeV down to about 5 um at p; > 10 GeV. The horizontal error
bars on pt are assigned by taking the RMS of the p, for the six different bins. The
vertical error bar is set to an estimated, fixed value of 2 pm. Fitting to the hypothesis
o = a+ b/p, yields the coefficients a = (5 £2) pm and b = (18 & 2) pum. Within
the errors the expected functional form of the p, dependence can be reproduced.
The actual numbers for the parameters have to be taken cum grano salis. Realistic

13

seeded with MC truth seeded with electron ID

X0 diff X0 diff
Entries 868 Entries 483
F RMS 0003234 F RMS 0.004055
100— b=
L 50[—
80— F
C 40F
60(— C
L 30—
40 F
F 20—
201 10
C L | P E L oo de | R S, NI
8oz -0.02 -0.01 0 0.01 0.02 0.03 803 -0.02 -0.01 0 0.01 0.0 0
X, residual /cm X, residual /cm
yO diff yO diff
Entries 868 Entries 483
120~ RMS 0003491 o RMS 0003986
C 60
100— =
C 50—
80[— E
C 40}
60(— F
C 30—
40— E
C 20—
20 10F
C Al o ! oo E_ o mooc dn ! b n Lo 1o
8oz -0.02 -0.01 0 0.01 0.02 0.03 803 -0.02 -0.01 0 0.01 0.02 0.03
Yy, residual /cm Yy, residual /cm
20 diff 20 diff
Entries 868 Entries 483
60— RMS 0.005094 r RMS 0.005834
r 30
50— E
r 25—
40 E
C 20—
30 =
C 15
20— 10}
10 sF
pmppmpuys | LS | kel 4 | S, E_ o0 nnnaflfl ﬁ | LR 0
8oz -0.02 -0.01 0 0.01 0.02 0.03 803 -0.02 -0.01 0 0.01 0.02 0.03
z, residual / cm z, residual / cm

Figure 10: The plots show the difference Az, Ay and Az of the vertex coordinates
taken from the Monte Carlo truth (as given by the OBSV bank) and the reconstructed
vertex coordinates. The first column shows the results if the vertexing algorithm was
seeded with the Monte Carlo truth. The second column shows the result if the vertex
algorithm was seeded with the identified electron.

14

2D impact para. of tracks impact para. resolution versus pt
Entries 5725

RMS 0.003417

350

3
=)

30

o
imp. RMS / um

N
=)

25

o

20!

=]
w
=]

15

=)

10

=]

S N
o o
TT T T[T T T T[T T T [TTTT

50

WP DY e L e bl L I
0015 -001 -0.005 0 0.005 001 0015 0.2 12 14 1
impact parameter / cm pt/ GeV

o

o
S[TTTT
SL

S

N

N

o

®

-

IS

Figure 11: The left plot shows the impact parameter resolution of the tracks used for
the vertex fit in simulated data. The vertex algorithm was seeded with the identified
electron in the event. The right plot shows the average impact parameter resolution
for 6 p; bins in simulated data. First bin: p, < 0.5 GeV; 2nd bin: 0.5 GeV < p;, <
0.8 GeV; 3rd bin: 0.8GeV < p; < 1.2 GeV; 4th bin: 1.2GeV < p; < 2.0 GeV; 5th
bin: 2.0GeV < p; < 5.0 GeV; 6th bin: p; > 5.0 GeV. The p, value for each bin was
obtained by averaging over the p; of all input tracks for this bin.

numbers have to be extracted from data and not Monte Carlo events.

6.1 Impact Parameter Resolution in Collider Data

We run the analysis described above also on collider data and extracted the impact pa-
rameter resolution versus p;. The result is shown in Fig. 12. The data are taken from
the stripped high p; inclusive electron sample, file CentralEle_Inclusive PR0713_0.dat.
The data were reconstructed with the CDF software version 4.5.2. The base sample
was bhel03.

The fit yields: @ = (18 £ 2) pm and b = 30 £ 3) pm, results quite different from
the MC. The reason is probably that the amount of material is underestimated in the
MC and that alignment is not simulated.

7 Conclusions

We have ported the Run I code of the primary vertex finding package Vxprim to the
Run II framework. The algorithm can be used with an AC++ module as well as be
called directly using the VertexFitter class. The ported code was validated against
the Run I algorithm. The results are consistent within the expected floating point
precision. Vxprim is used to calculate the beam line for CDF. The width of the
central peak of the vertex distribution in x and y is on the order of 50 pm using only
tracks with silicon information. This value includes the vertex resolution and the

15

impact para. resolution versus pt

m
=
o
o

imp. RMS / u
8 &
|IIII|IIII|IIII|IIII|IIII|IIII|IIII IIII|IIII

~
o

60

50

40

w
o

N
o

=
o

o
O T

2 4 6 8 10 12 14 16
pt/ GeV

Figure 12: Average impact parameter resolution for 6 p, bins in collider data.

16

beam width. We have tested Vxprim with MC W — er events. The results suggest
that a resolution of 40 pm (RMS) in x and y and 60 pm (RMS) in z can be achieved,
assuming a perfectly aligned detector and no dead regions.

References

[1] F. Bedeschi et. al., “A Primary Vertex Finding Package,”. CDF Note-1789.
[2] H. Wenzel, “Fitting the beam position with the SVX,”. CDF Note-1924.

3] G. Punzi and S. Dell’Agnello, “The C$VTX Vertex-Finding Package,”. CDF
Note-1791.

[4] Run IT Alignment group
http://www-cdf.fnal.gov/internal /upgrades/align /alignment.html.

[5] VertexMods source in the code browser
http://cdfcodebrowser.fnal.gov/CdfCode/source/VertexMods/.

(6] VertexAlg source in the code browser
http://cdfcodebrowser.fnal.gov/CdfCode/source/VertexAlg/ .

[7] H. Stadie and H. Wenzel, “Proposal for a Run II Vertex Object,”. CDF
Note-5161.

[8] J. Boudreau and R. Snider, “A User’s Guide to CdfTrack and Related
Classes,”. CDF Note-5089.

9] H. Wenzel, “Tracking in the SVX,”. CDF Note-1790.

[10] H. Stadie and H. Wenzel, “The inclusive B Lifetime Analysis in the Run II
Software Framework,”. CDF Note-5631.

17

A Example Talk-tos for Vxprim

Vxprim using COT tracks only:

module talk vxprim

repeatsearch set f

cot set t

svx set f

vertexcolldescription set cot_vertices
exit

Vxprim using silicon tracks:

module talk vxprim

repeatsearch set f

cot set f

SVX set t

vertexcolldescription set svx_vertices
exit

B Output of the Validation with the Run I version

Run I Vxprim (no multiple scattering):

Run: 71022 Event: 472

tracks found: 42

tracks after cuts: 17

vertex: -0.1189836 , 9.8704264E-02 , -3.433281
ntracks: 13 CHIZ2: 41.20278

Run: 71022 Event: 529

tracks found: 51

tracks after cuts: 23

vertex: -0.1207503 , 0.1007950 , -4.527749
ntracks: 17 CHIZ2: 45.45284

Run IT Vxprim on the same events(SVXS bank):

SVXSReadModule: 36 out of 42 added to EventRecord
Vxprim:

of tracks after cuts:17

fit results: used tracks:13 chi2:41.1999
vertex:(-0.118984,0.098704,-3.43314)
SVXSReadModule: 45 out of 51 added to EventRecord

18

Vxprim:

of tracks after cuts:23

fit results: used tracks:17 chi2:45.4389
vertex:(-0.120746,0.100795,-4.52783)

C Example Code to Use the SeededVxprimFitter
Class

#include "VertexAlg/SeededVxprimFitter.hh"
SeededVxprimFitter _fitter;

MyAnalyis: :beginJob()
{
_fitter.initialize(3, 3.5%3.5, 1.0, false, 0.5, 3.0, false, 1);

MyAnalyis: :event ()
{
CdfTrack& trk = findElectronFromWdecay() ;
int usedTrk = _fitter.fitPVtx(trk);
if (usedTrk > 0) {
// Enough tracks found
if (usedTrk >= 3) {
// Pruning succeeded
HepPoint3D vt = _fitter.vertex();
HepSymMatrix cov = _fitter.vertexCovarianceMatrix();
}
else {
// Pruning failed. However, the fit was performed with
// the minimum number of tracks required.
HepPoint3D vt = _fitter.vertex();
HepSymMatrix cov = _fitter.vertexCovarianceMatrix();
}
}
else {
// Not enough tracks could be found to do the vertex fit.
}

19

