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Recently, a new hadronic structure at around 6.9 GeV was observed in an LHCb experiment. From its 
limited yet known decay mode, one could still determine that it contains at least four charm quarks 
and hence belongs to the category of exotic state. This finding indicates for the first time the tetracharm 
exotic states and is therefore quite importance. In this letter, we propose a nature hybrid interpretation 
for the structure of X(6900), i.e. in [3̄c]cc ⊗[8c]G ⊗[3c]c̄c̄ configuration with J P C = 0++, and by using the 
QCD Sum Rule technique we performed mass spectrum calculation. The results showed that the observed 
X(6900) could be a gluonic tetracharm state, and some other structures may exist, e.g., one around 7.2
GeV in the tetracharm hybrid configuration and with J P C = 0−+. We also predict the tetrabottom hybrid 
states, leaving for future experiment.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The establishment of quark model (QM) in 1950s is a milestone in the exploration of micro world [1,2]. The spectroscopy of conven-
tional meson and baryon in QM is being gradually confirmed though experiments and will be completed soon. With the development of 
technology in the new millennium, the emergence of the so-called exotic state such as X(3872) has been reported [3], and new states tend 
to appear more frequently. Presently, we have a set of exotic state candidates that are waiting to be characterized; this situation is similar 
to the phase of “particle zoo” witnessed in the last century. Discovering more exotic states and exploring their properties are currently 
one of the most intriguing and important topics in particle physics, which may promote our understanding of quantum chromodynamics 
(QCD) and enrich our knowledge on hadron spectroscopy.

In the light hadron spectrum, as the spacings between various states are normally small, it is difficult to split the exotic states from 
conventional hadrons, except when the former possess some peculiar quantum numbers. In contrast, the exotic states in the heavy hadron 
spectrum may have relatively distinct signatures. Indeed, in recent years, a set of so-called charmonium-/bottomonium-like states XYZ 
have been observed in experiments [3–7], which provides a new horizon for our understanding of the emergent structures in QCD.

Recently, in proton-proton collision at the center-of-mass energies of 
√

s = 7, 8 and 13 TeV, LHCb Collaboration revealed a narrow 
structure in J/ψ-pair invariant mass of approximately 6.9 GeV with significance greater than 5 σ [8]. In additional to the narrow X(6900), 
a broad structure just above the double J/ψ threshold and another one at around 7.2 GeV were also reported. This is for the first time 
that clear structures in the J/ψ-pair mass spectrum were observed in the experiment. If X(6900) is further confirmed to be a hadronic 
structure, a tetracharm state rather merely some kinematic effect, the new finding will be considered as a huge breakthrough in the 
exploration of hadron spectroscopy.

In the literature, some studies on the tetracharm (bottom) states have been conducted [9–34], and most of these theoretical studies 
predict resonants with masses in the range of the broad structure [8]. Of the narrow structure X(6900), whose mass is higher than the 
double J/ψ threshold by approximately 700 MeV, it can be naturally attributed to certain excitation of the dicharm pair ground state. In 
this work, we conjecture that this structure is a tetracharm hybrid state, a kind of dicharm pair excitation containing a pair of constituent 
diquarks and a dynamic gluon, as shown in Fig. 1.

In the gluonic tetracharm model, the cc and c̄c̄ diquark pair lie in configurations of color 3̄ and (3) in the SU(3) gauge group re-
spectively, which are relatively compact and were once used to interpret the pentaquak state �(1540) [35]. Hybrid is a kind of hadronic 
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Fig. 1. A sketch of the tetracharm hybrid.

structure, which is accessible in light of QCD formalism, while has still no clear evidence in experiment. The hybrid charmonium model 
was applied to explain the Y(4260) [36], a somehow established exotic state.

We evaluate the four-quark hybrid by using the model with the independent Shifman, Vainshtein and Zakharov (SVZ) sum rule tech-
nique [37]. The SVZ sum rule, viz the QCD sum rule (QCDSR), has some peculiar advantages in exploring hadron properties involving 
nonperturbative QCD. It is a QCD based theoretical framework that incorporates nonperturbative effects universally order by order, rather 
a phenomenological model, and has already achieved much in the study of hadron spectroscopy and decays. To establish the sum rules, 
the starting point is to construct proper interpolating currents corresponding to the hadron of interest. By using the current, one can then 
construct the two-point correlation function, which has two representations: the QCD representation and the phenomenological repre-
sentation. Then, by equating these two representations, the QCDSR will be formally established, from which the hadron mass and decay 
width may be deduced.

In this work, to understand the nature of X(6900), we investigated the gluonic tetracharm state in the QCD sum rule with composite 
current quantum numbers of J P = 0++ and 0−+ , which exhibit to be the simplest ones. Their bottom partners are also evaluated similarly.

The lowest order possible interpolating currents for 0++ and 0−+ tetracharm hybrid states take the following forms:

j A
0++(x) = gsεiklε jmn[cT

k Cγμcl]
λa

i j

2
Ga

μν [c̄mγνCc̄T
n ] , (1)

jB
0++(x) = gsεiklε jmn[cT

k Cγμγ5cl]
λa

i j

2
Ga

μν [c̄mγνγ5Cc̄T
n ] , (2)

j A
0−+(x) = gsεiklε jmn[cT

k Cγμcl]
λa

i j

2
G̃a

μν [c̄mγνCc̄T
n ] , (3)

jB
0−+(x) = gsεiklε jmn[cT

k Cγμγ5cl]
λa

i j

2
G̃a

μν [c̄mγνγ5Cc̄T
n ] . (4)

Here, gs is the strong coupling constant, i, j, k, · · · are color indices, μ and ν are Lorentz indices, λa are the Gell-Mann matrices, C
represents the charge conjugation matrix, Ga

μν is the gluon field strength, and G̃a
μν = 1

2 εμναβ Ga, αβ denotes its dual field strength.
With the currents (1)−(4), the two-point correlation function can be readily established, i.e.,

�k
J P C (q2) = i

∫
d4x eiq·x〈0|T { jk

J P C (x), jk
J P C (0)†}|0〉 , (5)

where the subscript J P C represent for the quantum number of the involved hybrid state, k runs from A to B , and |0〉 denotes the physical 
vacuum. The Feynman diagrams of the correlation function in calculation are shown in Fig. 2.

On the QCD side, the correlation function �k
J P C can be expressed as a dispersion relationship:

�
k, O P E
J P C (q2) =

∞∫
smin

ds
ρk, O P E

J P C (s)

s − q2
. (6)

Here, ρk, O P E
J P C (s) = Im[�k, O P E

J P C (s)]/π and smin is a kinematic limit, which usually corresponds to the square of the sum of the current 
quark masses of the hadron [38], i.e., smin = 16m2

c . By applying the Borel transformation to (6), we have the following equation:

�
k, O P E
J P C =

∞∫
smin

dsρk, O P E
J P C (s)e−s/M2

B . (7)

On the hadron side, after separating the ground state contribution from the pole terms, the correlation function �k
J P C (q2) is obtained 

as a dispersion integral over a physical regime, i.e.,

�
k, phen
J P C (q2) =

(λk
J P C )2

(mk
J P C )2 − q2

+ 1

π

∞∫
s0

ds
ρk

J P C (s)

s − q2
, (8)

where mk
J P C denotes the mass of the lowest lying hybrid state, ρk

J P C (s) is the spectral density that contains the contributions from the 
higher excited states, λk

P C is the coupling constant and the continuum states above the threshold s0.

J

2
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Fig. 2. The typical Feynman diagrams of a tetraquark hybrid state, where the permutation diagrams are implied. (a), (b), (c), and (d) represent respectively the contributions 
from perturbative, two-gluon condensate, and trigluon condensates.

By performing the Borel transform on the hadronic side, Eq. (8), and matching it to Eq. (7), we can then obtain the mass of the 
tetraquark hybrid state,

mk
J P C (s0, M2

B) =
√√√√−

Lk
J P C , 1

(s0, M2
B)

Lk
J P C , 0

(s0, M2
B)

. (9)

Here the moments L1 and L0 are defined as follows:

Lk
J P C , 0(s0, M2

B) =
s0∫

smin

ds ρk, O P E
J P C (s)e−s/M2

B , (10)

Lk
J P C , 1(s0, M2

B) = ∂

∂ 1
M2

B

Lk, O P E
J P C (s0, M2

B) . (11)

In the numerical calculation, the input parameters are taken from [37–41]: mc(mc) = mc = (1.275 ±0.025) GeV, mb(mb) = mb = (4.18 ±
0.03) GeV, 〈g2

s G2〉 = 0.88 GeV4, 〈g3
s G3〉 = 0.045 GeV6, in which the MS running heavy quark masses are adopted. Furthermore, the leading 

order strong coupling constant

αs(M2
B) = 4π(

11 − 2
3 n f

)
ln

( M2
B

�2
QCD

) (12)

with �QCD = 300 MeV is taken, and n f , here 5, represents the number of active quarks.
Moreover, there exist two additional parameters M2

B and s0 that are introduced in establishing the sum rules, which will be fixed in 
light of the so-called standard procedures by fulfilling two criteria [37–40]. The first one requires the convergence of the OPE. That is, one 
needs to compare individual contributions with the overall magnitude on the OPE side, and choose a reliable region for M2

B to retain the 
convergence. The second criterion requires that the portion of the lowest lying pole contribution (PC), the ground state contribution, in 
the total, pole plus continuum, should be over 50% [42,43]. The two criteria can be formulated as follows:

Rk, O P E
J P C =

∣∣∣∣∣∣∣
L

k, 〈g3
s G3〉

J P C , 0
(s0, M2

B)

Lk
J P C , 0

(s0, M2
B)

∣∣∣∣∣∣∣ , (13)

Rk, P C
J P C =

Lk
J P C , 0

(s0, M2
B)

Lk
J P C , 0

(∞, M2
B)

. (14)

To find a proper value for continuum threshold s0, we perform a similar analysis as given in Refs. [42,43]. Therein, one needs to 
determine the proper value, which has an optimal window for the mass curve of the interested hadron. Within this window, the physical 
quantity, that is the mass of the concerned hadron, is independent of the Borel parameter M2

B as much as possible. In practice, we may 
vary 

√
s0 by 0.1 GeV in numerical calculation [42,43], which sets the upper and lower bounds and hence the uncertainties of 

√
s0.

With the above preparation we numerically evaluate the mass spectrum of the tetracharm hybrid states. For the current in Eq. (1), the 
ratios R A, O P E

0++ and R A, P C
0++ are shown as functions of Borel parameter M2

B in Fig. 3(a) with different values of 
√

s0, i.e., 7.6, 7.7, and 7.8
GeV. The dependence relationships between mA

0++ and parameter M2
B are given in Fig. 3(b). The optimal window of the Borel parameter 

is between 4.8 ≤ M2
B ≤ 5.9 GeV2, where a smooth section, the so called stable plateau, in the mA

0++ -M2
B curve exists, which suggest the 

mass of the possible 0++ tetracharm hybrid state. The mass mA
0++ can be extracted as follows:

mA++ = (6.92 ± 0.14) GeV . (15)
0
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Fig. 3. (a) The ratios R A, O P E
0++ and R A, P C

0++ as functions of the Borel parameter M2
B for different values of √s0, where blue lines represent R A, O P E

0++ and red lines denote R A, P C
0++ . 

(b) The mass M A
0++ as a function of the Borel parameter M2

B for different values of √s0.

Fig. 4. The same caption as in Fig. 3, but for the R B, O P E
0−+ , R B, P C

0−+ , and M B
0−+ .

This mass value is in good agreement with the observed mass of the X(6900) state [8], and implies a possible J P C = 0++ hybrid configu-
ration.

For currents (2) and (3), we can not obtain positive spectral density functions ρB
0++ and ρ A

0−+ , which implies that the current structures 
in Eqs. (2) and (3) do not support the corresponding hybrid states.

For current (4), the ratios R B, O P E
0−+ and R B, P C

0−+ as functions of the Borel parameter M2
B are shown in Fig. 4(a) with different values of √

s0 as well, and the relationship between mB
0−+ and the parameter M2

B is given in Fig. 4(b). The optimal window for the Borel parameter 
is found between 4.9 ≤ M2

B ≤ 6.0 GeV2, where a stable plateau in the mB
0−+ -M2

B curve emerges, suggesting the mass of a possible 0−+
tetracharm hybrid state to be

mB
0−+ = (7.10 ± 0.12) GeV . (16)

This mass fits well with the signature of a hadronic structure recently observed by LHCb at around 7.2 GeV [8].
In the results (15) and (16), the errors stem from the uncertainties of the quark masses, the Borel parameter M2

B and the threshold 
parameter 

√
s0.

Similarly, we can evaluate the tetrabottom hybrid states. By using the obtained analytical results but with mc being replaced by mb , 
the corresponding masses are readily obtained, that is

mA, b
0++ = (19.30 ± 0.23) GeV , (17)

mB, b
0−+ = (19.46 ± 0.20) GeV . (18)

Here, superscript b denotes the b-sector hybrid.
In summary, the gluonic tetracharm configuration, i.e. [3̄c]cc ⊗ [8c]G ⊗ [3c]c̄c̄ , is proposed to interpret the hadronic structure X(6900)

recently observed in the LHCb experiment. Here, we explore the hybrid states with quantum numbers J P C = 0++ and 0−+ , the lowest 
energy states, in the frame work of the QCD sum rule. Two stable hybrid states are obtained with masses of approximately 6.92 and 7.10
GeV for J P C = 0++ and 0−+ , respectively, which fit well with the measurements considering of the errors in theory and experiment. 
Moreover, the b-sector partners are also evaluated, and we find two tetrabottom hybrid states exist with masses (19.30 ± 0.23) and 
(19.46 ± 0.20) GeV for 0++ and 0−+ , respectively.
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Appendix A. The construction of the interpolating currents

The parity of Ga
μν(x):

P [Ga
μν(x)]P−1 = P [∂μ Aa

ν(x) − ∂ν Aa
μ(x) + gs f abc Ab

μ(x)Ac
ν(x)]P−1

= (−1)μ(−1)ν × [∂μ Aa
ν(x) − ∂ν Aa

μ(x) + gs f abc Ab
μ(x)Ac

ν(x)]
= (−1)μ(−1)ν Ga

μν(x) , (A.1)

with

P [∂μ]P−1 = (−1)μ∂μ , P [Aμ(x)]P−1 = (−1)μ Aμ(x). (A.2)

Here, we use the shorthand (−1)μ ≡ 1 for μ = 0 and (−1)μ ≡ −1 for μ = 1, 2, 3. Then the P-parity of G̃a
μν(x) can be deduced as follows:

P [G̃a
μν(x)]P−1 = P [1

2
εμναβ Ga, αβ(x)]P−1

= P [1

2
εμναβ(∂α Aaβ(x) − ∂β Aaα(x) + gs f abc Abα(x)Acβ(x))]P−1

= (−1)α(−1)β × 1

2
εμναβ(∂α Aaβ(x) − ∂β Aaα(x) + gs f abc Abα(x)Acβ(x))

= (−1)α(−1)β G̃a
μν(x) . (A.3)

Because the subscripts μ, ν , α and β are in the total antisymmetric factor εμναβ , it is not difficult to prove that (−1)α(−1)β =
(−1)(−1)μ(−1)ν . Then we have

P [G̃a
μν(x)]P−1 = (−1)(−1)μ(−1)ν G̃a

μν(x) . (A.4)

On the other hand, because

P [cT Cγμc][c̄γνCc̄T ]P−1 = (−1)μ(−1)ν [cT Cγμc][c̄γνCc̄T ] , (A.5)

P [cT Cγμγ5c][c̄γνγ5Cc̄T ]P−1 = (−1)μ(−1)ν [cT Cγμγ5c][c̄γνγ5Cc̄T ] , (A.6)

the J P of Eqs. (1) and (2) reads 0+ , and the J P of Eqs. (3) and (4) is 0− .
To maintain the invariance of the quark-gluon coupling under charge conjugate, i.e., Ĉ(�̄Aa

μT aγ μ�)Ĉ−1 = �̄Aa
μT aγ μ�, we need:

[Ĉ Aa
μT aĈ−1] = −Aa

μ(T a)T . (A.7)

Here, T a = λa

2 . It can be proved that

Ĉ[ f abc Ab(x)Ac(x)]Ĉ−1 = sign{Ĉ Aa(x)Ĉ−1} f abc Ab(x)Ac(x), (A.8)

by checking all possibilities of Ĉ [ f abc Ab(x)Ac(x)]Ĉ−1 with certain magnitudes of a, b, and c, where sign{Ĉ Aa(x)Ĉ−1} denotes the C-parity 
of the gluon field Aa(x). Then, the C-parity of the gluon field strength Ga

μν(x) can be deduced as follows:

Ĉ[Ga
μν(x)]Ĉ−1 = Ĉ[∂μ Aa

ν(x) − ∂ν Aa
μ(x) + gs f abc Ab

μ(x)Ac
ν(x)]Ĉ−1

= sign{Ĉ Aa(x)Ĉ−1}Ga
μν(x). (A.9)

Similarly,

Ĉ[G̃a
μν(x)]Ĉ−1 = sign{Ĉ Aa(x)Ĉ−1}G̃a

μν(x). (A.10)

Therefore,

Ĉ[Ga
μν(x)T a]Ĉ−1 = −Ga

μν(x)(T a)T , (A.11)

Ĉ[G̃a
μν(x)T a]Ĉ−1 = −G̃a

μν(x)(T a)T . (A.12)

It is not difficult to prove that the Lorentz indices of μ and ν will be exchanged in charge conjugate transformation. Because Ga
μν =

−Ga
νμ , the minus signs in Eqs. (A.11) and (A.12) will be canceled out. Similarly, the transposition signs T in T a will be eliminated by the 

color indices exchange. Therefore, the C-parity of all the interpolating currents in Eqs. (1) to (4) is +.
5
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Appendix B. The spectral densities of tetracharm hybrid

To calculate the spectral density of the operator product expansion (OPE) side, the heavy-quark (Q = c or b) full propagator S Q
ij (p) is 

used as follows:

S Q
jk(p) = iδ jk(/p + mQ )

p2 − m2
Q

− i

4

ta
jkGa

αβ

(p2 − m2
Q )2

[σαβ(/p + mQ ) + (/p + mQ )σαβ ] . (B.1)

Here, the vacuum condensates are explicitly shown. For more explanation on above propagators, the readers may refer to Refs. [38]. In the 
QCD representation, the spectral density may be expressed as follows:

ρO P E(s) = ρ pert(s) + ρ〈G2〉(s) + ρ〈G3〉(s) . (B.2)

B.1. The spectral densities for 0++ tetracharm hybrid

The spectral density ρO P E (s) is calculated up to dimension six. For all currents shown in Eqs. (1) and (2), we obtain the spectral 
densities as follows:

ρ
pert
i (s) = g2

s

210 × 5 × π8

x+∫
x−

dx

y+∫
y−

dy

z+∫
z−

dz

w+∫
w−

dw Axyzw H3
xyzw

×
{

4Axyzw H3
xyzw xyzw − 2H2

xyzw [18xyzw Axyzw s +Ni(xy + zw)m2
c ]

+ 20Axyzw(m4
c − xyzws2) + 5Hxyzw [12xyzw Axyzw s2

+ Ni(xy + zw)m2
c s + 2(Axyzw − 1)m4

c ]
}

, (B.3)

ρ
〈G2〉
i (s) = 〈g2

s G2〉
29 × 3 × π6

x+∫
x−

dx

y+∫
y−

dy

z+∫
z−

dzF 2
xyz

×
{

6m4
c +Nim

2
c (3s − 2Fxyz)(xy + zBxyz)

}
, (B.4)

ρ
〈G3〉
i (s) = 〈g3

s G3〉
28 × π6

x+∫
x−

dx

y+∫
y−

dy

z+∫
z−

dz

{
1

2

[
4xyzBxyz F 3

xyz

− s(m2
c +Ni xys)(m2

c +Ni zsBxyz) − 3F 2
xyz

(
6sxyzBxyz +Nim

2
c (xy + zBxyz)

)
+ 2Fxyz

(
m4

c + 6s2xyzBxyz + 3Ni sm2
c (xy + zBxyz)

)]
+ m2

c Fxyz

x

[
Ni(Fxyz − s)(xy + zBxyz) − 2m2

c

]}
, (B.5)

where the subscript i runs from A to B , and the factor Ni has the following definition: NA = 1 and NB = −1. Here, we use the following 
definitions:

Axyzw = (1 − x − y − z − w) , Bxyz = (1 − x − y − z) , (B.6)

Hxyzw =
(

1

x
+ 1

y
+ 1

z
+ 1

w

)
m2

c − s , (B.7)

Fxyz =
(

1

x
+ 1

y
+ 1

z
+ 1

1 − x − y − z

)
m2

c − s , (B.8)

x± =
[(

1 − 8m2
c

s

)
±

√(
1 − 8m2

c

s

)2

− 4m2
c

s

]/
2 , (B.9)

y± =
[

1 + 2x + 3sx2

m2
c − sx

±
√

[m2
c + sx(x − 1)][(8x + 1)m2

c + sx(x − 1)]
(m2

c − sx)2

]/
2 , (B.10)

z± =
[
(1 − x − y) ±

√
(x + y − 1)[m2

c (x + y − (x − y)2) + sxy(x + y − 1)]
sxy − (x + y)m2

]/
2 , (B.11)
c

6
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w− = xyzm2
c

sxyz − (xy + yz + xz)m2
c

, w+ = 1 − x − y − z . (B.12)

B.2. The spectral densities for 0−+ tetracharm hybrid

For all currents given in (3) and (4), we obtain the spectral densities as follows:

ρ
pert
i (s) = g2

s

210 × 5 × π8

x+∫
x−

dx

y+∫
y−

dy

z+∫
z−

dz

w+∫
w−

dw Axyzw H3
xyzw

×
{

− 4Axyzw H3
xyzw xyzw + 2H2

xyzw [18xyzw Axyzw s +Ni(3Axyzw − 1)

× (xy + zw)m2
c ] + 20sAxyzw(m2

c +Ni xys)(m2
c +Ni wzs)

− 5Hxyzw [12xyzw Axyzw s2 +Ni(6Axyzw − 1)(xy + zw)m2
c s

+ 2(Axyzw − 1)m4
c ]

}
, (B.13)

ρ
〈G2〉
i (s) = 〈g2

s G2〉
29 × 3 × π6

x+∫
x−

dx

y+∫
y−

dy

z+∫
z−

dzF 2
xyz

×
{

6m4
c +Nim

2
c (3s − 2Fxyz)(xy + zBxyz)

}
, (B.14)

ρ
〈G3〉
i (s) = 〈g3

s G3〉
28 × π6

x+∫
x−

dx

y+∫
y−

dy

z+∫
z−

dz

{
− 1

2

[
4xyzBxyz F 3

xyz

+ s(m4
c − s2xyzBxyz) − 18F 2

xyzsxyzBxyz + 2Fxyz(6s2xyzBxyz − m4
c )

]
+ m2

c Fxyz

x

[
Ni(Fxyz − s)(xy + zBxyz) − 2m2

c

]}
. (B.15)
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