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Abstract. All realistic quantum systems will interact with their environments. This fact
presents challenges to the implementation of quantum systems for practical systems. One
of the most important quantum resources is the implementation of entanglement. In this
paper, we investigate the interplay between the effects of noisy environments and the dynamics
of entanglement. The open quantum system model that will be used is cavity quantum
electrodynamics (CQED) with three-qubit interacting independently with a variation of
environmental model. We use master equation to describe the dynamics of the open quantum
system and a lower bound concurrence (Crpc) to measure the entanglement of tripartite qubit.
We derive the exact dynamics of each model and use Crpc method proposed by Li et.al to
visualize entanglement dynamics. By adjusting the environmental parameters, we also found
revivals and dark-periods of entanglement which are unique to non-Markovian processes.

1. Introduction

Quantum information and computation is deemed as the next revolution in information
technology and genuine entanglement is its indispensable and most valuable ingredient and
resource [1]. The quantumness of entangled states have been exploited for the popular
teleportation and dense coding [2] to quantum error correction [3], and the understanding
of the dynamical evolution of entanglement will prove valuable for its vast and far-reaching
applications potential. The characterization of entanglement is one of many problems that
must be confronted by the researchers in implementing entanglement as information resource.
Maintaining and controlling entanglement also present obstacles that must be overcome, since
it is related to practical questions about the robustness of many quantum computing and
information processing technologies. This problem will be aggravated for systems in contact with
the environment, which in practice is unavoidable for all quantum systems. For multipartite
quantum systems, interaction with environment not only will change local properties of the
systems but also global properties like the entanglement between the subsystems. Careful
analysis of the interplay between the effects of noisy environments and the dynamics of
entanglement may help us understand the foundation of quantum systems better and can reveal
the underlying requirements for building workable quantum computers.
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In this paper, we investigate the entanglement of qubits interacting with electromagnetic
modes inside a lossy cavity commonly referred to as the cavity quantum electrodynamics
(CQED) model. In the last two decades, many applications and architectures have been
developed using the CQED model both from theoretical [4] and experimental [5] perspectives.
It is then interesting to see the entanglement dynamics of this noisy system especially for
multipartite qubits that offer much more power as information resources [6]. We describe each
and total qubit in cavity dynamics analytically using Bellomo procedures [7] and visualized
entanglement evolution using lower bound concurrence by Li et al. [8] as a measure. We will
consider three different models of environment each differ by which qubits are inside the cavity.

This paper is organized as follows. In section 2 we solve exact evolution dynamics for atom-
cavity mode with Lorentzian spectral density to obtain dynamical density matrix for each qubit.
Section 3 introduces the procedure to obtain the composite reduced density matrix for three
qubits with entangled initial states and the methodology to measure its entanglement. In section
4 we calculate entanglement evolution for each environment model. We summarize our result in
section 5.

2. Model and Qubit Dynamical Calculation

We will consider systems of three two-level subsystems where each qubit either interacts with
its own environment or is isolated from the external environment. The three qubits are initially
in the state of maximally entangled and spatially separated. We consider three types of systems
illustrated in Figure 1. A single qubit coupled to the cavity is described by the Hamiltonian

H = Hs+ Hp + H, (1)

where in the RWA we have Jaynes-Cummings Hamiltonian

1
Hs = Shwoos, Hp = By wbfbr,
g (2)

Hy = hzgkaerk + glﬁo-*b]zv
k

where wq is the transition frequency between the two levels, o4 is the raising and lowering
operators of the qubit, g; is the coupling strength between system and the cavity for single
excitation with frequency wg, and by and bz are annihilation and creation operators of the
cavity, respectively.
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(a) Three-Cavity System (b) Two-Cavity System (c) One-Cavity System

Figure 1: Environment Models

We will use the subscript os (cs) to denote the evolution of the open system (closed system).
From the Hamiltonian (1), exact dynamics of the qubit system can be obtained by solving the
Schrodinger equation for the total system in the interaction picture,

a0} = —iH (1) Q
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with all possible qubit-cavity states are,

[Yos(t)) = co(t) [0)g @ [0) g + c1(t) [1) 5 ® [0) +ch )s © k) (4)

and setting initial condition as

[%05(0)) = c0(0) [0)g @ [0) g +1(0) [1)g @ [0) ()

where |0) = ]00...00) is the state when there is no excitation in the cavity and |1;) =
|00...1...00) is the state containing one photon in mode k.

As it is with lossy systems we can assume the excited photon in the cavity be either re-
excite the qubits or dissipate to the larger environment. Then the bath state can be taken as a
stationary vacuum state pp(t) ~ pp = |0) (O|]and the reduced density matrix of the qubits as

2 *
ps = tru(wio) o = ([0 Q). (6

Substituting (4-5) to solve the Schrédinger equation (3) we calculate the dynamical coefficient
C1 (t) and Co(t)

d d d
37 [os()) = o) [0)5 ®10) g + 1 (D) [1) g ® 0 +Z (010}, ® L) g
= =iy groybre T 4 gig plet(@rmeolt <co<t> 0)s ®10) 5 (7)
k

+e(t)|1)g®0) 5 +Zq ®!11>)

%co()\o>s®\o>R+§t 1(t) 1) ® 0) 5 +Zdt 1)[0)s ® [1g) g =

= _ZZ <9k01 0 |0) @ |1x) Z%gm Tl ) g @ ’0>R>'

Compare both 31de of equation (8), the differential equatlon for the dynamical coefficient are

d
ECO(t) 07

701 =—1 Z gka —ilwr— wo)t7 (9)

Z*C’c ngcl eilokwolt,
k

(8)

and its solutions
Co(t) = 60(0),

Substitute solution (10) to equation (9) to Oget the solution for ¢y (t)
761 Z 91| / c1(s)el@n—wo)s g milwr—wolt g
(11)
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Taking the limit of infinite cavity mode, one finds that the dynamic of the system is fully
characterized by the spectral density describing the correlation function of the environment
observable,

< B — Z |gk| —twy (t— s)
| - | (12)
D g 07D = (Bt B0 et = | et ea,

—00

Here we will use the following spectral density J(w) which describes a typical imperfect/lossy
cavity supporting one mode wqg in the vacuum state,

1 Yo )\2

J(w):%(wo—w)—i-)\y

(13)

where g is the microscopic system-cavity coupling constant and A defines the spectral width
of the coupling. The parameter 7 is related to the relaxation time 7, Land X is related to the
bath correlation time 75 [9]. Using spectral density (13), equation (12) can be calculated with
complex integral and residue theorem,

> 1 70A2 i(wo—w)(t—s 1 —Alt—s

It follows that equation (11) can be rewritten as,

d

t
Lo s
— . 1
dtcl(t) /0 2’}’0)\6 c1(s)ds (15)

And its solution using Laplace transformation,

er(t) = er(0)e > <cosh<2> + 2 sin h< t)) (16)

g =V —2\y. (17)

The dynamical density matrix representation, equation (6), is then given by

B P?p11(0) Pip10(0)
pos(t) = (Ptp(jll(O) poo(0) + mi?o)(l - Pt2)> ’ )

Po=e % (cosh< 2) + 2 h(?)) . (19)

For a qubit in isolation, the evolution can be described by the unitary operator U(t),

U(t) = exp<—i / Hs(t)dt>, (20)

as a solution to Schrodinger equation,

[Yes(t)) = U(#) [thes(0)) - (21)

with,

with
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Integrating the Hamiltonian Hg we obtain

cos(Ept) — isin(Ept 0
U(t)=< (Eot) 0 (ot cos(Eot)+isin(Eot)>

with,
1
= ~hwg. 2
e (23)

And the state for the isolated qubit is

_ _( Pa(0)  Zipio(0)
peat) = U 0)0(0) = £ Zo)) (24)
with
Z; = cos?(Egt) — sin?(Eqt) — 2i sin(Egt) cos(Fot). (25)

3. Entanglement of Tripartite System

3.1. Dynamics of Three-Qubits State

From the obtained dynamical state for each interacting (18) and isolated qubit (24), the
total composite state for three-qubit according to each environment models, Figure 1, can be
calculated. We shall follow the procedure proposed in [7] to obtain the state for a system of
three non-interacting qubits. The density matrix element for a single qubit can be written as

pZN'L Z AZN’L lNl/ (0)7 (26)
INUy
AEZ?,V is matrix element of Krauss operator with N = a,b,c and ¢,7,[,I’ = 0,1. The reduced
N
density matrix element for three non-interacting qubits is correspondingly expressed by

APy lele
pzaz zbz (A Z Z Z A'Laz le)ﬂb )A’Lcl/c (t)plal{llbl;)lcl’c (0) (27)

lall, Ly} Ll

For example, the element (111] p(¢) |[111) = p111111(¢) for 3-cavity models can be obtained using
equation (27) as follows

cavi l Iy 1.l
?1111U1ty ZZZAI 1/, 1bb1'( )A1 1/( )Plalglbz;lclg(o)- (28)
lall, Ly} el
In Figure 1a, all three qubits interact with their environment and each qubit dynamics is
(a) (a a) (a
PO (t) = (P{Z( )p(§1))(0) “ Pt(()fgo)(o) " )
By per’ (0) pog (0) + py7 (0)(1 — PZ)
® (b b) (b
I L L (L 29
P po1 (0) poo (0) + p1g (0)(1_Pt? )
7(0) Pt

0

P2< (
s (t) = ( Lo (lc%
From qubit a density matrix, we shall obtain Al“’ ¢ (t) term. Expand equation (26) for qubit a

pETe (8) = A5 (D00, (0) + AQir ()96, (0) + Aj e (0612, (0) + Ajie (1)pi2,, (0). (30)
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Compare equation (29) with equation (30) for element (14,1,) then it follows
04,0q Oa,1q 14,04 1a,1a (a)
A (t) = Ajve(t) = Ao (t) = 0, Aty =P, (31)

and for elements (14,04), (04, 14), and (04,0,) we obtained

04,04 0a,1la 1a,1a 14,0q
AQe () = AYge(t) = Al () =0, Ajnge(t) = B,
04,04 14,0a 1a,1a 0a,1a
A (1) = gl () = Ayt () =0, AJmie(t) = Y, (32)
anla 10,700, Oa,O,l 1(1,1& (a)
AOa,Oa (t) = AOa,Oa (t) =0, Aoa,oa (t) =1, Aoa,oa (t)=1- Pt2 .

Using the same method, we obtain identical non zero terms of A b jN (t) for qubit b and c,
N>IN

1p, (b) 15,0 b 0Op,1 b
A =r2", Al =pPY, AR =P,
05,0 1p,1 ()

Agron(t) =1,  Agor(t) =1- P2,

(33)

1C7]‘C (C) 1C70C OC71C

A = P27, Ay = P, Age(n) = P,
00701;‘ 1C71C (c)
Apoc(t) =1, Aoty =1-P7".
And substitute results (31-33) to equation (28),
3 it laala l l/ e le
Pt ( ZZA 1bb,1b< ) X (A ( )P zbz’11(0)>
la,ly Iyl
la,ll, 1,1 lele

= ZAla, i ( (All;;z(t)Ah 1 ()p, 1'1111(0)> (34)

la,ll,
la,lq 1p,1 1e,le
= A1 1a (t )Alz,fg(t)A1c,1c(t)P111111(0)7
(a) 52(b) 9(c)
= P P2 P? p111111(0).

Each dynamic of density matrix element for 3-cavity models can be obtained with the same
procedure. And by changing each qubit dynamics, equation (29), the evolution of density
matrix element for different environment models can also be calculated.
To specify the limit of this study and present the dynamical density matrix for each model in
a closed-form we impose an initial condition of the qubits system to be a maximally entangled
Agrawal-Pati W state mentioned in [10]. Agrawal-Pati W state is a class of W state that can be
used as a resource for teleportation and superdense coding algorithm, which has the following
shape [10]
W) = \/2172”(|100> + v/n]010) + v/n + 1]001)). (35)
Using a class of W state as the initial condition, following procedure (28-34), the dynamical
density matrix for all three environment models have a general form of

0 0 0 0 0 0 0 0
0 0 O 0 0 0 0 0
0 0O 0 0 0 0 0
0 0 O t) 0 pi,(t s (T 0
p(t) = 0 0 0 :0446( ) 0 p64(1)( ) P?za( ) 0 , (36)
0 0 0 pea(t) O pes(t) pig(t) 0O
0 0 0 pu(t) 0 pre(t) prr(t) O
0 0 O 0 0 0 0 pgg(t)
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here we have used the computational basis

111) = 1), [110)=[2), [100) = [3),
1100) = [4), [011) =15), [010) = |6), (37)
001) = [7), |000) = |8}

3.2. Entanglement Measure
In studying the entanglement dynamics of a system consisting of non-interacting parts described
by the Hamiltonian (1), one needs to quantify the entanglement. There is no general and
analytical entanglement measure for a multipartite mixed quantum state [11]. However, using
entanglement criterion, monogamy inequality of the entanglement for multipartite state exists
[12]. From this inequality, a lower bound can be found to give an operational and useful method
of quantifying entanglement. One that will be used in this paper is the proposal by Li et al.
[8] that calculates lower bound concurrence for arbitrary tripartite mixed states using bipartite
entanglement of formation as a foundation.

For a general three-qubit pure state ) =3, . . ajk |ijk), the concurrence is given by [13]

1
C3(|¥)) = \/3(3 — (Tr(p?) + Tr(p3) + Tr(p3))), (38)
with p; = trjr(p), i # j # k, and i = 1,2,3. Any mixed state p can be decomposed into an
ensemble of pure states p = >, p; [¥;) (¥;], and the concurrence of p is then the convex roof of

all possible decomposition
C3(p) = inf Y p;C5(|¥;)). (39)
J
The minimization procedure to obtain (39) is a high dimensional optimization problem and
generally is difficult because of the many possible pure states that can be used to construct the
mixed state. Instead of solving this optimization problem numerically, Li et al. proposed
a theorem and proof to express its lower boundary that gives rise to genuine multipartite
entanglement measures [8]. For an arbitrary three-qubit mixed state, its concurrence lower
bound follows

6
1 12|3 1312 23|1
Crpe(p) = 3 Z C;7)2 +(C7)3, (40)

where

C,];2|3 _ max{ \/)\12\73 Z \/)\12|—3} (41)

i>1

with A123(j) are the eigenvalues of pﬁ;m

ﬁ;2|3 = S;Ql?’p*S;Q'S nd 512‘3 (L12 & L3) with L12 is the j-th generator of SO( ) acting on

qubits I and 2, and L3 is the generator of SO(2) actlng on qubit 3, or L? = o3

the Y Pauli matrix. C 13[2

dynamical density matrlx obtained in equation (36) with concurrence lower bound we get the
analytical expression of its entanglement value as

in decreasing order. The operator ,5]1-2‘3 is defined by

Y where o, is

and nggu are defined similarly. Evaluating the general form of the

Creo(p) = \/;l [(maX {0, [p7a(t)[})? 4 (max {0, |p7(£)})* + (max {0, [pea()[})?]- (42)
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Moreover, it has been shown in [14] that the lower bound concurrence method by Li et al.
coincides with the result from the numerical method for solving the convex roof problem (39)
for density matrices with rank < 4. And as we obtained earlier, the exact dynamical density
matrix in the scope of this study (36) has a maximum rank of 4 and hence this method can be
used.

4. Result and Discussion

In this section, we will investigate the entanglement dynamics of qubits following the procedure
and measure introduce in the previous section. The dependency of Crpc (42) on \P64(t)\2,
|p7a(t)|?, and |p76(t)|* deppends on the dynamical function P,. The function P; has two distinctly
different behaviour that depends on the value of g (17). When g is a real number or A\/yy > 2,
P, is an exponentially decaying function whereas if g is an imaginary number or A/ < 2,
P, is describing an oscillatory function. These different behaviours can be correlated with
the non-Markovian and Markovian processes by the environment. Markovian approximation,
Tr > 7p, can perfectly describe the dynamics of open quantum systems under fast dynamics
as the Lindblad master equation. With the connection between characteristic time and systems
parameter as follows,

Y 7B
the Markovian process corresponds with exponentially decaying behaviour of P;. While the
more general non-Markovian process, without the Markovian approximation, corresponds to
the oscillatory function of P, with A/79 = 2 as a boundary between the two processes. The
physical interpretation of the non-Markovian process is sometimes described as having non-
trivial memory or feedback from the environment to the system.

The three-dimensional graphs in Figure 2 show the value of Cppc as a function of a
dimensionless parameter ot and A/7p. Setting the parameter A/~ to the corresponding values
for Markovian/non-Markovian regime, one gets the two-dimensional graphs of Figure. 2. For
all of the three models, the Cpc exhibits exponential decay behavior in the Markovian regime
with A/7p as the decay constant until it reaches a stationary value. For the 1-cavity system in
Figure 2f, this value is a constant. Meanwhile, for the other two cases, the stationary value is
asymptotically zero. In the non-Markovian regime, all the three models give the same stationary
value as in the Markovian regime for t — oo.

In the non-Markovian regime, the Cppc of the 3-cavity in Figure 2b displays damped
oscillatory behavior. In contrast, the 2-cavity system in Figure 2d saw alternating patterns of
two damped oscillators, which is expected given the in-homogeneity qubit-environment coupling
in the 2-cavity models contrary to the 3-cavity. We will call the larger damped oscillatory pattern
in the two-cavity system primary and the smaller one secondary. The entanglement value of the
primary damped oscillator comes from the contribution of both coupled-isolated and coupled-
coupled qubits pair. While the secondary damped oscillators correspond with the dark periods
between the entanglement revival of coupled-isolated qubits pair that causing the entanglement
value contribution comes only from the entanglement between the two environmentally coupled
qubits. For both of the models with the same value of \/vp, because of the entanglement
alternating patterns, the decay of Cpc for the 2-cavity model is not as fast as the 3-cavity
model. The oscillatory behaviour of the entanglement shows the characteristic entanglement
revival of the non-Markovian process. Stationary values of both models are asymptotically zero,
which means that the three qubits will disentangle in a finite time such that C(p) ~ 0. But
compared to their Markovian regime in respective models, the non-Markovian regime extends
the time of entanglement because of the revival phenomenon.

For the 1-cavity model, the entanglement does not disappear completely because of the non-
zero stationary value. Qubits a and c are in isolation with the bipartite entanglement between

A TR (43)
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them is a non-zero constant. For a class of W state, as qubit b interacts with cavity and

disentangle with qubit @ and ¢ (partially trace b subsystems), the other two qubits will still
be entangled [15]. The concurrence between qubit a and c is then contribute to the Crpc as
a minimum or the stationary value when t — oco. Figure 2f also shows pseudo-dark-periods

(non-zero value) between the revival of entanglement, which contribute to slower entanglement
decay.

=
| 0

Figure 2: The Crpc(p), n = 1, for (a) 3-cavity, (c) 2-cavity, and (e) 1-cavity model. And

two-dimensional projection of (b) 3-cavity, (d) 2-cavity, (f) 1-cavity model setting the value of
A/70 = 2.1 (solid blue line) for Markovian regime, A/vy = 0.1 (dashed red line) for experimental
value of QED cavity, and A/~y = 0.001 (dot-dashed black line) for non-Markovian regime.
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5. Conclusion

In summary, the entanglement dynamics of an atomic-cavity system consisting of three qubits
initially prepared as a class of W state with different environment model was investigated. Total
dynamics of the systems are calculated using the Bellomo procedure and governed by each qubit
dynamic (26-27). We solved the system evolution of multiple environment schemes in Figure
1, measure their entanglement evolution analytically using lower bound concurrence (42), and
visualize the result using graphs in Figure 2.

Without using Markovian approximation, the calculation is valid for both Markovian and
non-Markovian processes with the systems parameter A\/vy define the respective regime. In
the Markovian regime, the evolution of LBC displays the usual decaying behaviour as in
the GKSL master equation [16]. In the non-Markovian regime, we observe the revival of
entanglement that depends on the structure of qubits bipartition. We also found the dark
period of entanglement revival in the non-Markovian regime which prolongs entanglement time
compared to the Markovian process. We also show that for the 3-cavity and 2-cavity models, even
though both models always lead to disentangled states, the 2-cavity model is more robust because
the disentanglement time is relatively longer. This is consistent with what one would expect
about the relation between the amount of exposure to the environment and the decoherence
time.
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