FERMILAB-CONF-17-307-CD

ACCEPTED

Deep Packet/Flow Analysis using GPUs

Qian Gong, Wenji Wu, Phil DeMar
Core Computing Division, Fermilab
PO Box 500, MS-368, Batavia, IL 60510, USA
{qgong, wenji, demar} @fnal.gov

Abstract—Deep packet inspection (DPI) faces severe perfor-
mance challenges in high-speed networks (40/100 GE) as it
requires a large amount of raw computing power and high I/0O
throughputs. Recently, researchers have tentatively used GPUs
to address the above issues and boost the performance of DPI.
Typically, DPI applications involve highly complex operations
in both per-packet and per-flow data level, often in real-time.
The parallel architecture of GPUs fits exceptionally well for
per-packet network traffic processing. However, for stateful
network protocols such as TCP, their data stream need to be
reconstructed in a per-flow level to deliver a consistent content
analysis. Since the flow-centric operations are naturally anti-
parallel and often require large memory space for buffering
out-of-sequence packets, they can be problematic for GPUs,
whose memory is normally limited to several gigabytes. In this
work, we present a highly efficient GPU-based deep packet/flow
analysis framework. The proposed design includes a purely
GPU-implemented flow tracking and TCP stream reassembly.
Instead of buffering and waiting for TCP packets to become in
sequence, our framework process the packets in batch and uses
a deterministic finite automaton (DFA) with prefix-/suffix- tree
method to detect patterns across out-of-sequence packets that
happen to be located in different batches. Evaluation shows that
our code can reassemble and forward tens of millions of packets
per second and conduct a stateful signature-based deep packet
inspection at 55 Gbit/s using an NVIDIA K40 GPU.

I. INTRODUCTION

Deep packet analysis examines packet contents to search
for the transport of sensitive information, signs of suspicious
attacks, and signatures of different network applications. In
order to perform a complete evaluation on the network status
and safeguard the security environment, the inspection has
to be performed at both per-packet and per-flow data levels.
For the latter, packets belonging to the same flow need to be
buffered, reassembled in sequence, and inspected in aggregate.
Viewed at a high level, real-time DPI requires significant
computing power and high I/O bandwidth. As the 40/100 GE
network technologies come into play, keeping up with the
inspection of full packet becomes quite difficult.

Special-purpose hardware devices such as FPGAs, ASICs,
TCAM, and NPUs normally provide better performance than a
functionally equivalent implementation in software. However,
these systems have poor programmability and are difficult
to extend. Software implementation on commodity hardwares
can be an alternative solution for DPI applications. Recently,
GPUs have shown great potentials in accelerating compu-
tationally intensive tasks in both scientific and engineering
fields. Compared to multicore CPUs, GPU’s ample memory
bandwidth and native data-parallel execution mode are a better

fit for the network I/O throughout-intensive requirements and
scale better for packet analysis applications.

Nevertheless, most GPU-based traffic analysis tools are
limited to per-packet level data parallelism and heavily rely on
CPU to tackle stateful operations such as TCP flow state man-
agement and stream reassembly [2, 3]. A notable exception is
GASPP [1], which pairs consecutive packets by hashing their
TCP sequences. When any thread encounters a TCP sequence
hole, GSAPP marks all subsequence packets of the same flow
as out-of-sequence and buffers them until a new batch of
traffic is received. Although this packet buffering mechanism
is common in current per-flow level IDSs, it is very resource-
intensive and vulnerable to denial-of-service attack triggered
by intentionally sending legitimate mis-ordered traffic. More-
over, we argue the hash-based stream reassembly approach
presented in GASPP is memory-consuming and degrades the
performance in the case of hash collision.

Below, we present our effort towards designing a highly
efficient GPU-based packet analysis framework, which pro-
vides both per-packet and per-flow level DPI capability. This
framework fully utilizes the parallelism offered by multi-queue
network interface cards (NICs), multicore architectures, and
GPUs, to meet the challenges at both the packet capture and
traffic analysis levels. Network flows are tracked and TCP
streams reassembled on GPUs. Instead of buffering and wait-
ing for TCP packets to become in sequence, incoming packets
are processed in batches. Packets that belong to the same
batch are aggregated and aligned according to their protocols
and TCP sequences, with pattern matching states between
consecutive batches connected by combining an Aho-Corasick
(AC) DFA with a suffix tree [5]. Below, we will describe
our pipeline architecture, packet processing mechanism, and
preliminary results.

II. DESIGN ARCHITECTURE AND MECHANISM

The high-level design of our GPU-based DPI system is
shown in Fig. 1. It includes a multi-parallel network traffic
analysis architecture. Packets are captured using the Wire-
CAP [4], a zero-copy packet capture engine, and are scaled
to multi-queue NICs and multicore systems. WireCAP intro-
duces an advanced buffer-pool mechanism to handle short-
term packet overload situations on the NIC’s ring buffer, as
well as an advanced load balance mechanism to handle long-
term load imbalance situations. These advanced mechanisms
eliminate packet loss vulnerabilities inherent in conventional
packet engines, such as PF_RING [6].

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science,
Office of High Energy Physics. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government
purposes.

TABLE I

RAW PROCESSING THROUGHPUT

GPU CPU
TCP Reassembly | 552.28 Gbit/s | 4.55 Gbit/s (Libnids)
Pattern Matching 62.53 Gbit/s 0.271 Gbit/s (Snort)

Captured f’;él:e't-' Packet
| TR
B3] 11
. ; Packet 1 TCP Stream o]
© : [ibuffer 1y [Reassembly [2
9 L RS ﬁ
&
IR R | a2 | E
,_ Statistical Pattern 5
9 | Pre | | Pre | Analyzer Matching é
=} 15
‘ ‘ ‘ﬁ? z
O
Stream [~ E]
Processing

NIC

Fig. 1. System Architecture. (CE: capture engine; Pre: pre-processor).

Incoming packets are transferred to GPU in batches to
reduce PCle transaction overhead. We allocate a separate
buffer for each capture thread to collect packets and a queue
containing a number of empty buffer chunks of the same
size. Whenever a buffer gets full, the host thread exchanges
it with an empty chunk in the queue and continue to load
new packets. At the GPU side, we employ a double buffering
scheme to pipeline the inter-device memory transfer and the
GPU execution. While the GPU is performing deep analysis
for the packets in one buffer, the CPU copies newly arrived
packets to another.

Transferred traffic first goes through a packet filter. The filter
is a program with a set of rules to decide what packets will be
processed. For the packet analysis, payloads of the TCP traffic
have to be reconstructed and processed in-sequence, although
some stateless protocols such as UDP can be executed in a
per-packet data-parallel mode. The stream reassembly function
uses a few basic GPU operations, such as sort and prefix-
sum, to aggregate packets belonging to the same TCP flow.
Packets are sorted by their IP addresses, TCP ports, and TCP
sequences. The result is a list of indices of the next in-order
packets. Payloads of TCP packets are then concatenated by
a normalizer, which marks the overlaps and updates the next
packet array if encountering duplicate. Traffic aggregated by
the flow reassembler can be sent to a header analyzer as well
to further learn the traffic distribution.

= Received & forwarded packets AC state

== Newly arrived packets

AC-suffix state AC state AC-suffix state

case 3 o e

Fig. 2. Pattern matching over out-of-sequence TCP segments.

Here we implemented a signature-based intrusion detection.
To detect patterns that happen to cross TCP segments in
different batches, we scan each incoming traffic stream twice,
one through an AC automaton and one through a AC-suffix
automaton. Our DPI framework uses a hash table stored at

GPU for keeping the state of TCP connections. For each in-
sequence TCP segment, the sequence number of its lastly
received packet and the final matching states are stored. Hash
table collisions are handled via a linked list. As illustrated in
Fig. 2, when a new batch of traffic is received and reassembled,
the stream processing module searches the records in the
connection table, and the matching process of pre-established
connections will continue from the previously stored states.
The stream processor is executed again at the end of each
batch operation to update the stored matching states and flow
connections records.

III. THROUGHPUT PERFORMANCE

We compare the throughputs of our GPU code to two
widely adopted IDSs—Snort [8] and Libnids [7], and to a
CPU-implemented multithreading AC-suffix-tree code. The
experiments were conducted using a server equipped with an
Intel E5-2650 v3 CPU and an NVIDIA K40 GPU. Table I
shows the raw processing throughputs of two core traffic
processing applications—TCP stream reassembly and pattern
matching; Fig. 3 displays the comparison of end-to-end GPU
and CPU processing throughputs, with and without PCle data
transfer. The results suggest that our raw GPU applications can
be hundreds of times faster than an equivalent single-threading
CPU code; when the overhead of data transfer is considered,
our code is still over 15 times faster than a multithreading
application using 8 CPU cores.

z 5H6t
é
2 40 31.95 B
H
E" 20 + -
= 0] ol ‘&\ Nl Pl

%Qo %Qo S {Ac‘s‘)@* N g\)ﬁg\‘ﬁ

S d

Fig. 3. Comparison of end-to-end throughputs. gpu?> and gpu! measure the
throughputs with and without data transfer; cpu-ac-suffix! uses one CPU
thread while cpu-ac-suffix? uses eight.

IV. CONCLUSION AND FUTURE WORKS

To conclude, we present the first (to the best of our
knowledge) purely GPU-implemented DPI code that tracks
the flow states on GPU and fully addresses the patterns across
any out-of-sequence packets. The next work will be extending
the current intrusion detection capacity by 1) fusing the
information learned from the header and payload of traffics;
2) implementing a regular expression matching engine for out-
of-sequence packets without requiring packet buffering.

(1]

(2]

[5]

[6]
[7]
(8]

REFERENCES

Vasiliadis, Giorgos, et al. “GASPP: A GPU-Accelerated
Stateful Packet Processing Framework.” USENIX Annual
Technical Conference. 2014.

Jamshed, Muhammad Asim, et al. “Kargus: a highly-
scalable software-based intrusion detection system.” Pro-
ceedings of the 2012 ACM conference on Computer and
communications security. ACM, 2012.

Vasiliadis, Giorgos, Michalis Polychronakis, and Sotiris
Ioannidis. “MIDeA: a multi-parallel intrusion detection
architecture.” Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 2011.
Wu, Wenji, and Phil DeMar. “Wirecap: a novel packet
capture engine for commodity NICs in high-speed net-
works.” Proceedings of the 2014 Conference on Internet
Measurement Conference. ACM, 2014.

Chen, Xinming, et al. “AC-suffix-tree: Buffer free string
matching on out-of-sequence packets.” Architectures for
Networking and Communications Systems (ANCS), 2011
Seventh ACM/IEEE Symposium on. IEEE, 2011.

Deri, Luca. “Improving passive packet capture: Beyond
device polling.” Proceedings of SANE. Vol. 2004. 2004.
Libnids, accessed on July 26, 2017. [Online]. Available:
http://libnids.sourceforge.net.

Roesch, Martin. ”Snort: Lightweight intrusion detection
for networks.” Lisa. Vol. 99. No. 1. 1999.

