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Introduction

In the bestiary of elementary particles, neutrinos are quaint creatures. These neutral leptons
are so elusive that they might be qualified as bystanders of particle physics, yet nothing could
be further from the truth. In fact, their etherealness is rivalled but by their abundance and
nearly lightning-fast speed, i.e. properties which make them ideal candidates for studying
locations humanly inaccessible, be they stars, the core of the Earth, or man-made sources of
energy such as nuclear power plants.

By all manner of means, neutrinos themselves come with their own secrets, and the more
we learn about these messengers of new physics, the less we doubt their peculiarity. Although
theories can accommodate for them by minimal extensions, it seems as though something
is awry. For indeed, their individual masses, albeit unmeasured, are unquestionably small,
suspiciously small. By the same token, neutrinos mingle amongst one another, in a fickle
manner, presenting the largest mixing between particle species ever observed. If that was
not enough, antineutrinos and neutrinos seemingly mix in different ways, which heralds con-
sequences all the greater that these neutral fermions exist in copious quantities throughout
the universe.

For all these prospects, we must first ensure that the gateway to further knowledge, i.e.
the value of the smallest mixing parameter 63, is not biased. Quite apposite in the year
2016, let us emphasise that, like when attributing Nobel prizes, great care must be taken
that values — or discoveries — have been cross-checked and identically observed by other
experiments. Double Chooz gave the first direct indication of the non-zeroness of ;3 with
reactor antineutrinos, and like other experiments, it still strives to refine the significance of
its measurement.

Accurately measuring #;3 is no leisurely stroll, and the difficulty of such an endeavour is
underscored by the length of this document. The latter is divided into four parts, of varying
lengths.

The first part reviews the main properties of neutrinos by way of two chapters. Chapter 1
focuses on the discovery and first properties of neutrinos, while Chapter 2 introduces the neu-
trino oscillation phenomenon and eventually derives the antineutrino oscillation probability
relevant to this thesis.

Part II is set on presenting a detailed picture of the Double Chooz experiment, from the
production of electron antineutrinos (Chapter 3), to the design of the two detectors with
which they may interact (Chapter 4). Additionally, in Chapter 5, the antineutrino production
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model to which the recorded events are compared, along with the reconstruction algorithms,
are reviewed. After the analysis cuts have separated the wheat from the chaff, the actual
measurement of sin?(20;3) — by means of a multi-detector configuration — is performed in
Chapter 6.

Part I11 is dedicated to the background dominating the uncertainty on the sin?(26,3) mea-
surement from Chapter 6, caused by the decays of cosmogenic isotopes within the detector
itself. These decays, that hamper the reliability of the antineutrino spectra, are simulated
in Chapter 7. The building of spectra from these simulated events, complemented by a
thorough error treatment, is presented in Chapter 8. The corresponding decays are partially
selected within the data samples by dint of a cosmogenic veto, the performance of which is
discussed in-depth in Chapter 9, for both detectors. The assessment of the rate of cosmo-
genic background remaining after the veto has been applied is the main topic of Chapter
10.

Chapter 11 is a loner in its Part IV, albeit no less stirring, for it addresses the absolute
and relative normalisations of the antineutrino rates observed in both detectors.



Part 1

Neutrino physics






Chapter 1

Admitting neutrinos in the field

Nowadays, neutrinos are perfectly valid contenders of the particle physics playground, and
one may dare say, amongst the top-rated and most exciting players of the beginning of the
twenty-first century. Now is also the time to remember that it has not always been like
that. Not only did we not know that they came in several species — the number of which
still being subject to debate — but a mere century ago, neutrinos we regarded as a pure
construct of the mind, even for eminent physicists such Niels Bohr. At best, neutrinos were
bookkeeping devices to rescue the conservation laws. And yet, if they would safeguard the
energy conservation law, they would also emphasise parity violation, and even be detected
with a different flavour than that with which they had been produced. But before studying
neutrino oscillations, which we save as the main topic for Chapter 2, let us go back in time
to the theoretical birth of this exceedingly abundant particle the neutrino is.

1.1 Discovery

1.1.1 Conundrum and postulate

Less than twenty years after the discovery of natural radioactivity by Henri Becquerel [1], the
continuous nature of S-spectra was exhibited by James Chadwick in 1914 [2]. The kinematics
of two and many-body decays will be extensively reviewed in part I1I, but it is not too much
of a forecast to point out that two-body decays are characterised by a spectrum showing two
distinct kinetic energy peaks. The disagreement between the experimental evidence and the
two-body decay assumption

X =Y +e, (1.1)

where X stands for the decaying nucleus, Y its daughter, e~ the ejected electron, could not
have been greater.

Undoubtedly, a third particle had to be involved in [-decays. This particle had to
be neutral to conserve charge and remain hardly detectable. It must also be extremely
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lightweight, for occasionally, there is no missing energy so that the maximum kinetic energy
T, available for the electron is

T."% = mx — my — me., (1.2)

which still holds up to the accuracy of current measurements, with m indicating the nuclear
masses. Besides, it must carry a 1/2 spin to ensure the latter is conserved (thus, coupling with
the electron would result in a 0 or 1 spin). Such a candidate was originally labelled "neutron'
by Wolfgang Pauli, in 1930, in the originally-derided "Liebe Radioaktive Damen und Herren"
open letter [3]. However, the "neutron" as we picture it today, would be discovered in 1932 by
James Chadwiwick [4], and appear as far too heavy a fermion to meet Pauli’s requirements.
Enrico Fermi made the most of it all and offered, at the turn of the following year [5]!, a
theory of B-decay so successful that Pauli’s suggestion eventually had to be taken seriously.
Thereafter, the lightweight neutral fermion, enforcing energy and spin conservation in (-
decays, was labelled "neutrino" (symbol v), from the Italian equivalent of "small neutron".
Thus, the theoretical postulate — that "v" embodies — corrects (1.1) into

X =Y +e +r (1.3)

1.1.2 Compelling evidence

Thanks to Fermi’s theory, which can truly be regarded as a cornerstone in the building of
the Standard Model, the theoretical foundations for the role of neutrinos had been laid. In
1947, the missing particles on the photographic emulsions of Cecil Frank Powell, that lead to
the discovery of pions (m) [6], was more compelling evidence for the existence of neutrinos,
as highlighted in the decay of the former into muons (u)

T = U+ (1.4)

Less than three years later, the spectrum of the subsequent muon decay was confirmed to be
continuous, with a mean energy of 34 MeV and an endpoint of 55 MeV [7]?, thereby leaving
room for two neutrinos

p—e+v+u. (1.5)

1.1.3 Detecting a poltergeist

Despite the theoretical motivations, there remained to directly detect this ghost particle, for
it left no tracks, and did not decay. If truth be told, no one had every seen a neutrino do

!The first iterations appear in Italian and German journals because the famous Nature journal had
deemed Fermi’s theory "too remote from reality".

2Which is in stunningly good agreement with what is reconstructed from such decays in the Double Chooz
detectors.
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Cd-doped
water

n-capture

et annihilation

Figure 1.1 — Reactor antineutrino detection method used by F. Reines and C. L. Cowan
at the Hanford and Savannah River experiments. Antineutrinos interact with water protons
through inverse (3-decay. The emitted e™ annihilates with an e~ of the medium, and a few
microseconds after, the n is captured by a Cd nucleus, which in turn, emits several ¥’s. The
~’s can be detected thanks to horizontal liquid scintillator tanks not drawn on the schematic.

anything. And yet, as Fermi’s interaction predicts, it should interact with a target full of
water (and therefore of protons p) through the so-called "inverse -decay'

p+v7—n+et, (1.6)

thereupon emitting a neutron (symbol n) and Dirac’s positron (symbol et). In equation
(1.6), we took a step forward by enforcing the antimatter character of the neutrino involved
in this decay. This distinction first appears experimentally in 1955, when Raymond Davis
reported his failed attempt to detect antineutrinos (7) — allegedly emitted by the Brookhaven
nuclear reactor — using the neutrino-sensitive reaction [§]

04+ v — ¥Ar + e, (1.7)

that was first advocated by Bruno Pontecorvo [9]. In order to unambiguously detect the
interaction of the antineutrino with a proton from a water tank, both the double coincidence
between a prompt and a delayed event (see Figure 1.1) and a significant shielding to cosmic
rays, were crucial.

Indeed, if the requirement of a time coincidence between the annihilation of the positron
and the capture of the neutron — a technique still put to good use in Double Chooz (with Gd

3Before he left Canada for USSR in 1950, B. Pontecorvo had initiated the building of a neutrino detector
using the Chlorine-Argon technique at the Chalk River laboratory.
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instead of Cd, cf. Chapter 4) — removes a large amount of background, in 1953, at the ?*Pu-
producing Hanford reactor, the overwhelming rate of cosmic muons prevented Clyde Lorrain
Cowan and Frederick Reines from detecting the antineutrino with enough significance [10].
On the other hand, when C. L. Cowan and F. Reines moved to the better shielded Savannah
River experimental site, with a detector design aimed at rejecting backgrounds, they could
detect a reactor-power dependent signal in good agreement with the predicted cross-section
[11]. The antineutrino had been discovered.

1.2 First properties

1.2.1 Several neutrino flavours

Along with the experimental progress to detect (anti)neutrinos, theoretical works, initiated
by E. J. Konopinski and H. M. Mahmoud [12], had introduced a quantity L, which we now
call "lepton number". This supposedly conserved number evaluates to L = 1 for neutrinos
and negatively charged leptons, and L. = —1 for antineutrinos and the positively charged
leptons. From that, it is clear that the Chlorine-Argon technique from (1.7) is insensitive to
antineutrinos. Nevertheless, the theoretically allowed process

w— e+ (1.8)

had never been observed [13], and the experiment was in accordance with process (1.5),
hence suggesting the existence of different lepton numbers for different "kinds", or rather
'"flavours", of particles : L. and L, at that time. Such an assumption implied that there
were not only neutrinos and antineutrinos out there, but in fact, several flavours of them,
as discussed in detail by B. Pontecorvo [14]. This hypothesis was confirmed by the 1962
Brookhaven experiment [15], in which muon (anti)neutrinos — produced by pion and kaon
decays — successfully produced muons through

n+v,—=p+p (1.9)
p+U, = n+u, (1.10)

but during which the forbidden processes

n+v, —p+e (1.11)
p+U, > n+eh, (1.12)
were not observed in meaningful amounts. Everything comes in threes, at least that much

can be said of the neutrinos that interact with the weak interaction?, and a few decades
later, the v, was found by the DONUT collaboration [16].

4This thesis shall eagerly refrain itself from opening the "sterile neutrino" can of worms before the hurly-
burly’s done.
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1.2.2 Parity and handedness

As emphasised in 1956 by T. D. Lee and C. N. Yang, the so-called "7 — 6 puzzle" was but an
incentive to study parity violation in the weak interaction [17]; no experiment determining
whether this interaction differentiated the right from the left, had ever been performed.
Mathematically speaking, the parity operator changes the sign of all the spatial coordinates,
and hereby the direction of motion of particles. The parity operator leaves the spin direction
unchanged, thus, aligning the spin of particles or nuclei in the direction opposite to their
previous ones, while retaining the observation along the same spatial direction, is effectively
a parity transformation. Observing an asymmetric behaviour in the $-decays of nuclei, when
reversing the direction of the magnetic field polarising them, is consequently a proof of parity
violation.

Examining the parity conservation in S-decays requires an allowed® transition, with a spin
change AJ = 1, so that the electron and the antineutrino always align the spin they carry
away with that of the daughter nucleus. Moreover, orienting the spins of nuclei demands
a H/T ratio (with H the magnetic field, and T" the temperature) so high to overcome the
tiny value of the Bohr magnetron up, that nuclei with a large coupling between the nuclear
spin and the electronic moment had to be used. On top of having a relatively manipulable
half-life of 5.27y, the J™ = 5% (with 7 the parity of the state) ground state of ®*Co, which
mainly S-decays to the 4% state of ®Ni in

0Co — Ni + e + 77, (1.13)

meets all the aforementioned requirements. An asymmetry between the number of detected
electrons when polarizing the *°Co upwards or downwards was observed by Chien-Shiung Wu
in 1957 [18]. Tt follows that the antineutrino is always® emitted in the half-space into which
the %°Ni spin points, the direction of which being identical to its polarized %°Co mother.
Recalling that the spin of the antineutrino is aligned with the %°Ni spin, it means that its
helicity — defined as the sign of the projection of the spin on the direction of motion — is
always positive (see Figure 1.2).

A few months later, M. Goldhaber confirmed that the neutrino emitted in the electron
capture reaction

P2Eu +e” — ¥2Sm + v, (1.14)

had a negative helicity [19]. In a nutshell, neutrinos are left-handed, and antineutrinos are
right-handed. It was natural to assume that neutrinos were massless, for in addition of
the apparent mass conservation in f-decays (see 1.1.1), massive neutrinos could have been
overtaken by a Lorentz boost.

5In allowed decays, the electron and the antineutrino do not carry any orbital angular momentum, which
unambiguously determines the direction of their spins.

5Due to the difficulty of aligning all the spins of all the nuclei, C. S. Wu could only observe a significant
asymimetry.
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]

V. A

o
Co/l\ii‘ Co/Ni ,
%t

“$

Figure 1.2 — In the 3-decay of %°Co into ®Ni, the electrons are emitted in the direction
opposite the nuclear spins — which have been polarized by a magnetic field H — and the
antineutrinos, thus, have a positive helicity. Spin conservation is emphasised by the colourful
arrows.

e

Undoubtedly, the weak interaction — that is to say, the only interaction through which
neutrinos interact — does not conserve parity. It is worthwhile noting that although the mirror
image of the left-handed neutrino is the yet to be detected right-handed neutrino, combining
the charge conjugation C' — which turns matter into anti-matter — with the parity operator
P, does output a particle we are well acquainted with : the right-handed antineutrino.
Obviously, it took us but a few more years to understand that the C'P symmetry was not a
symmetry good enough for this world, at least that much can be said for mesons [20]; the
measurement to which this thesis contributes, is closely related to the global picture.

10



Chapter 2

Oscillating neutrinos

If it were not for neutrinos, the Standard Model, as formalised in the sixties for its elec-
troweak part, and in the seventies for its strong interaction component, would hold in tri-
umph, and the 2012 discovery of the Higgs particle would but vouch for it. However, over
the last two decades, irrefutable evidence for neutrino oscillations has been exhibited by
several collaborations of physicists spread across the terrestrial globe, using either natural
or man-made neutrino sources. Neutrino oscillations were world-acknowledged by the 2015
Nobel prize in Physics, attributed to Takaaki Kajita and Arthur B. McDonald, pillars of the
Super-Kamiokande and SNO experiments, respectively. The oscillation phenomenon is not
highlighted so much for it is the main topic of this thesis, but rather because it unequivocally
proves that neutrinos have a mass, and in doing so, unveils a new area of physics beyond the
Standard Model. Therefore, building up an increasingly accurate knowledge of the param-
eters characterising neutrino oscillations, amongst which 6,3 is a peculiar contender, paves
the way for a better understanding of the physical world.

2.1 Experimental signs

2.1.1 Disturbing experimental data

Parity violation favoured the development of chiral symmetries in which neutrinos were
massless [21, 22]. And yet, disturbing data started to accumulate at the end of the sixties,
shaping what would be referred to as the "solar neutrino problem".

Indeed, the very same Raymond Davis who had confirmed the impossibility to detect
reactor antineutrinos with the Chlorine-Argon technique (see 1.1.3), turned his attention [23]
to the number of neutrinos emitted by nuclear fusion inside the sun. To do so, R. Davis and
his colleagues placed their 380 m? tetrachloroethylene Brookhaven detector at the Homestake
Gold Mine, 1478 m below the surface, and for more than a decade, issued frequent reports
[24, 25] acknowledging a two-third deficit in the rate of detected neutrinos, when compared
to the predictions of John Bahcall [26, 27]. The detected rate was exceedingly low and

11
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about one 3"Ar atom was produced every two days, which had to be collected regularly by
helium purging, to examine its subsequent decay through electron capture. Of course, such
an indirect radiochemical method, along with the expected low rate, arose doubts amongst
experimentalists. Similarly, the solar model was called into question [28], and the rather high
energy threshold of the Chlorine detection method limited the comparison to the production
of ®B in the sun', which is far from dominant.

2.1.2 Supporters

More than twenty years after it had recorded its first neutrino, the Homestake experiment
eventually saw its results backed by data from the Kamiokande and Baksan detectors.
In 1990, through the use of elastic scattering on electrons

v+e —v+te, (2.1)

the Japanese water Cherenkov? detector measured the boron-related neutrino flux, and found
it to be 0.46 £ 0.05(sys.) £ 0.06(stat.) of the value predicted by the solar model [29]. At this
point, it is apposite to stress that if elastic scattering on electrons can proceed via the
weak interaction mediator Z° for all neutrino flavours, there is an extra Feynman diagram
mediated by the W boson for v,. Therefore, if a part of the v, flux had converted — or
oscillated — to other flavours, the total neutrino flux could not be assessed, unless one were
to rely on the charged current results from Homestake to isolate the v, contribution [30],
which was not a persuasive disentangling procedure to all.

On the other hand, the Soviet-American Gallium Experiment (SAGE), sensitive also to
low-energy neutrinos released by deuteron production® in the sun — which account for more
than 90% of the solar neutrino production, and are less dependant on solar models than
boron-induced neutrinos — reported a neutrino-capture rate from

"Ga+v, — "Ge+e, (2.2)

40% lower than its prediction with a 90% confidence level [31]. At Gran Sasso, the GALLEX
experiment would soon swell the ranks of the Gallium supporters [32].

2.1.3 Crowning achievements
2.1.3.1 Solar neutrinos

If the aforementioned experiments had put the lid on the coffin of the solar neutrino problem,
the Canadian Sudbury Neutrino Observatory (SNO) genuinely nailed the pine box. When

!The signal comes from the 3t-decay of 8B into ®Be, which is accompanied by the emission of a v,.

2Pet peeve: great diligence is often taken to substitute "Ch" for "C", thereby heralding a stylistic Czech
or Slovak transcription, but let us emphasise that the Nobel laureate is actually Russian.

3Two protons fusion into a deuteron, thereby emitting a v,.

12
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conceding that neutrinos change flavour according to the oscillation mechanism, one must
needs design an experiment able to detect all species with the same efficiency. In addition,
the original sun-produced v,.’s must be counted over the same period of time, to compare
both fluxes unambiguously. To do so, SNO made the most of the relatively low break-up
threshold of deuteron’s (d):

d+v—-n+p+v, (2.3)

a process equally sensitive to all flavours (only the Z° diagram is available to v,’s), and for
which neutron emission is a characteristic signature. Moreover, since the incoming neutrinos
do not have a kinetic energy large enough to produce heavy leptons, the charged current
channel

d+ve—>p+p+e, (2.4)

is — as made explicit — relevant to v.’s only. The cherry on the cake is neutrino detection
via elastic scattering on electrons (2.1), as in the Kamiokande (and their upgraded Super-
Kamiokande version) detectors, which allows to cross-check the purely neutral and charged
current channels. Taking into account the available Feynman diagrams, the expected fluxes
from equations (2.3), (2.4) and (2.1), respectively read

¢neutral - ¢l/e + Qbyu + Qby.,. (25)
¢charged = ¢I/e (26)
qbelastic = ¢l/e +0.15 (Qbyu + Qby.r) (27)

A last, in 2002, by means of a 1kt spherical heavy water detector [33], located 2039 m
below the surface, SNO published the following flux measurements

¢neutral - 509f83§(stat)f8jig(syst) <28)
Gehargea = 1.767000 (stat.) 1005 (syst.) (2.9)
Getastic = 2.3975 25 (stat.) 7012 (syst.) . (2.10)

Without reserve, all the previous experiments had seen a deficit because all but a third of
the v,.’s produced by fusion reactions in the sun, had oscillated to the muon or tau flavour.
As if that was not enough, the total neutrino flux was in conformity with the solar standard
model [34].

2.1.3.2 Atmospheric neutrinos

Assuredly, the sun is not the only supplier of neutrinos and these neutral fermions are also
produced in copious quantities in the upper atmosphere, particularly owing to high energy
protons hitting air molecules, whereby pions are created (see Figure 2.1). Setting the right

flavours on the pion and subsequent muon decays, we find
+ + + + —
T — +v — e+ V. + v
O g (2.11)
T = p U, o o—e +v.+v,.

13



CHAPTER 2. OSCILLATING NEUTRINOS

air molecule

Figure 2.1 — Production of electron and muon neutrinos and antineutrinos in the upper
atmosphere by bombardment of high energy protons.

Discarding neutrino oscillations for a just an moment, one would expect the ratio of the
number of muon neutrinos (and antineutrinos alike) over that of electron neutrinos, to be
close to 2, as is clear according to (2.11). The role of atmospheric kaons and the highly
suppressed pion decays with an electron flavour are hereby overlooked, but this does not
change the argument. In 1998, by way of charged currents — allowing flavour identification
via the emitted charged lepton — the 50 kt water Cherenkov detector of Super-Kamiokande
reported with great accuracy the value of the R ratio [35]

R = 0.63 + 0.03(sys.) % 0.05(stat.) . (2.12)

The R quantity is defined as the data to Monte-Carlo ratio

N,NMC¢ N
nile M (2.13)

R=—% ~ ,
N, NMC — NMC

with N standing for the sum of the number of neutrinos and antineutrinos. To put it differ-
ently, nearly half of the muon (anti)neutrinos were missing with respect to the prediction,
and their oscillation to the tau flavour was a competing explanation.

Furthermore, the Super-Kamiokande collaboration was able to detect the direction of the
incoming neutrinos. Neutrinos coming downwards onto the detector travel a distance that
is of the order of L = 10km, on the other hand, neutrinos coming upwards have travelled
a distance of the order of L = 10000 km. Thus, defining a quantity that is a function of
the zenith angle 6 (cf. Figure 2.2), directly challenges the alleged distance-dependence of
neutrino oscillations. The asymmetry A embodies such a quantity, it is defined as

_ Ny—Np

=-v- D 2.14
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2.1. EXPERIMENTAL SIGNS

cos 6 =-0.8
i L = 10000 km

Figure 2.2 — Distance travelled by incoming atmospheric neutrinos as function of the
cosine of the zenith angle 6, whose value is defined with respect to the axis of the Super
- Kamiokande cylindrical detector. Thus, downward neutrinos have a positive cosine, and
neutrinos coming upwards have a negative one.

where Ny and Np are the number of upward and downward* events, respectively. If the
asymmetry for electron-like events is consistent with zero (see [35]), and therefore no oscilla-
tions of electron neutrinos presumably happen, muon-like events with an energy larger than
1330 MeV exhibit a staggering asymmetry

A = —0.296 4 0.048(sys.) =+ 0.01(stat.) , (2.15)

which deviates from zero by more than 6 standard deviations. Although Super-Kamiokande
did not quite solve the solar neutrino problem, it did bear the most conclusive testimony
to atmospheric neutrino oscillations. Not only did it show data compatible with v, — v,
oscillation®, but it also highlighted the dependence of this phenomenon on the neutrino
energy and the distance it had travelled.

4To be precise, downward events are defined by cos € [0.2, 1] and upward events by cos € [—1,—0.2].
STau neutrinos were the only ones that Super-Kamiokande could not detect, hence the deficit. The
OPERA collaboration would later endeavour to detect the v, — v, oscillation.
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Figure 2.3 — Ratio of the background-subtracted number of 7¢’s to the expectation for
no-oscillation, as a function of Ly/Ey-, with Ly = 180 km the effective baseline and E, the
7, energy. Extracted from KamLAND’s data [38].

2.1.3.3 Anthropogenic neutrinos

Man-made sources do not fall short of expectations, they allowed us to discover the neutrino,
and it is to them that we shall turn — in the framework of this thesis — to understand one of
the last properties of neutrino oscillations.

Shortly after SNO’s marvellous results, at the former Kamiokande site, the Kamioka Liq-
uid Scintillator Anti-Neutrino Detector (KamLAND) was bent on observing oscillating 7;’s,
which were produced by the sizeable number of Japanese nuclear reactors. To characterise
the 77.’s, that had journeyed along a typical flux-weighted 180 km baseline, the detection
method of choice was the inverse §-decay reaction (1.6), with which F. Reines and C. L.
Cowan had raised their profiles (see 1.1.3). Unsurprisingly, in 2003, a deficit with respect
to the standard expectation was observed, with a 4o significance [36]. The unimpeachable
energy-dependence of this deficit would latter be refined [37], thereby upholding it as the
trademark of neutrino oscillations (at fixed distances). An up-to-date plot of this signature
is to be found in Figure 2.3.

At much shorter baselines — essentially, a few hundreds of meters — the two thousand and
tens have cast the limelight onto the Daya Bay, RENO (Reactor Experiment for Neutrino
Oscillation), and Double Chooz reactor experiments, whose achievements we shall review
later, for they all aim at precisely measuring the smallest (anti)neutrino deficit ever observed.

However discreet neutrinos can be, accelerator neutrinos are by no means bystanders.
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2.2. THEORY OF NEUTRINO OSCILLATIONS

In fact, in June 2011, the Tokai to Kamioka (T2K) collaboration provided the first positive
indication of the value of the smallest deficit, with a 2.50 significance [39]. Besides, with
their energies of the order the GeV, and their baselines of a few hundreds of kilometres,
experiments such as MINOS [40] tackle the same type of oscillation that affects atmospheric
neutrinos. In addition, they do it with a different sensitivity, as will become obvious after
we have laid the theoretical groundwork for measuring all the physical quantities that drive
neutrino oscillations, in section 2.2.

2.2 Theory of neutrino oscillations

2.2.1 First draft

All the deficits and patterns observed by the previously introduced experiments can be
explained in the framework of neutrino oscillations.

Although B. Pontecorvo, inspired by the kaon transitions K° — K©°, had speculated
on the oscillation of neutral® particles in 1957 [41], and thus on that of v — 7 [42]- each
of which possibly being a quantum superposition of other particles — it is not quite the
phenomenon that has been observed over the last fifty years”. In 1962, Ziro Maki, Masami
Nakagawa and Shoichi Sakata, in an attempt to unify all particules into a unitary scheme,
put forth the quaint idea that baryons could be compound systems of leptons and a new
sort of "B-matter" [43]. Stirred by the v, discovery (cf. 1.2.1), they also contemplated, for
the first time, that the "weak" neutrinos v, and v, could be a mixture of "true" neutrinos v,
and v, and therefore that v, = v, conversions, or rather, oscillations, were possible. They
postulated that both representations were related by an orthogonal transformation, and that
the weak neutrinos — which should separately conserve the leptonic numbers (see 1.2.1) —

were but rotated versions of the true ones®,

{|ye) = cosf|vy) +sinf |vy), (2.16)

lv,) = —sin|vy) + cosf|vy),

with 6 € [0,7/2], the angle between the states |v.) and |vy).

5B. Pontecorvo paid attention to neutral particles because he focused on particle to anti-particle transi-
tions, which are otherwise intricate...

Tt does relate to the search for neutrinoless double-beta decays, though.

8In [43], the angle is actually opposite ours, and the true neutrinos are the ones rotated by 6 with respect
to the weak neutrinos, but we here follow the modern convention, that will simplify later comparisons and
ease the reading.
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2.2.2 Mixing matrix
2.2.2.1 Two-dimensional formalism

It would, however, take more than ten years, and the vital progress made by Cabibbo in the
quark sector, to make plain that the weak neutrinos do not have a definite mass [44], and
that there exists mixing with what are the true mass eigenstates [45]. Accordingly, we shall
henceforth call the former "flavour eigenstates"', and the latter, "mass eigenstates".

Mathematically, the system (2.16) defines the coordinates of the flavour neutrinos in the
mass basis, from which is derived the change of basis matrix

il cos  —sinf
P <sin9 cos 6 ) ' (2.17)

The P/! matrix embodies the rotation of the mass eigenstates by an angle of 6 and allows to
convert back into the mass basis, the coordinates of neutrinos which are expressed in terms of
the flavour eigenstates. Explicitly writing the basis as a subscript turns the counter-intuitive
observation into a rule of thumb (superscripts and subscripts cancel)

(V) = P Jvge). (2.18)
From there, the aptly-named change of basis matrix Uy, yg reads

cos sm@) ’ (2.19)

 om fl -1t fl _
UMNS—Pfl_(Pm) _Pm_<_sin9 cos 6

with the transpose being indicated as a pre-superscript. Consequently, the Uy matrix
corresponds to a rotation by an angle (—6) and its columns are simply the coordinates of
the mass eigenstates in the flavour basis, hence partly justifying the abusive writing

Uel U62>

2.20
Ui U (2.20)

Umvns = (

The Ujpsns matrix is the rotation we wish to apply to neutrinos in the "true" mass basis in
order to get their coordinates in the flavour basis

) = Unns [vim) - (2.21)

Any state from the mass basis reads |v,,,) = x1 |v1)+x2 |v1), with 21 and 25 arbitrary complex
numbers. In the mass basis, |v,,) simply reads

V) = (i;)m (2.22)

Applying Upng, we obtain (z.,z,), the coordinates of this state in the flavour basis

) = <1‘6> _ ( cos Bxq + sin Oz, ) ' (2.93)
Tu) pu 1l

u —sinfxq + cos Oz
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2.2. THEORY OF NEUTRINO OSCILLATIONS

Taking x1 = 1 and x5 = 0 confirms that
l11) = cosf|v.) —sinf|y,). (2.24)

The diligence of this paragraph may seem overly pedantic to the reader, but (2.24) is there
to stress that Uy allows to expand the mass eigenstates into the flavour basis, and not the
other way around, which is, more often than not, stated in other documents, based on an
erroneous interpretation of (2.21). Such statements, in the generalisation that is to follow,
usually lead to magical air-drops of stars in a crooked attempt to get the complex conjugates
on the coefficients of Upng®.

2.2.2.2 Three-dimensional case

Change of basis
When adding the tau neutrinos, the Uy;yg matrix sometimes gets an additional subscript
letter, hereby turning into Upp/ns

Uel Ue? Ue3
UPMNS = P}? == Uﬂl ng Uﬂg 5 (225)
U‘rl UT2 UTB

which is a unitary matrix, and thus satisfies an equation similar to (2.19), that is
Pl = (Upuns)™" = (Upnns)' (2.26)
where the 1 denotes the Hermitian transpose. Accordingly

Uel - Uul * UTl *
Pll=1Uy" Uwn" Un'|, (2.27)
Ue3* U;L3* UT3*

and any flavour eigenstate |v,) where a € {e, u, 7}, represented by a 1 at the a-th line of a
column vector in the flavour basis, has the following coordinates in the mass basis

*
Ua 1

Vo) = [ U™ | - (2.28)
UaS*

In terms of states, we have for all o € {e, u, 7},

3

V) = ; Uai i) = Z Uil lv) = Z (P, ) (2.29)

hereby corroborating the first-class role of P!, which is often improperly peddled as Upp/ns.

9When tackling this issue the proper way, that is, starting from quantum fields, one gets complex conju-
gates from the creation operators for particles, as opposed to antiparticles, the former bearing a "dagger".
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Parametrisation

Let us express the Upy;g matrix in the case of NV neutrino flavours and N mass eigenstates,
with N > 1. Each eigenvalue A, of a unitary matrix U, has modulus |A| = 1, thus, there
exists 6 such that A\ = exp(if). By diagonalising the matrix, it is easy to see that it can be
written as the exponential of a Hermitian matrix H so that

U=exp(iH). (2.30)

Since H = H', Hermitian matrices have N diagonal real terms, and N (N —1)/2 off-diagonal
independent complex terms, thereby amounting to a total of N? independent real coefficients.
Likewise, orthogonal matrices O can be written

O = exp(A4), (2.31)
where A is antisymmetric and verifies "A = —A, leaving room for
N(N -1

real coefficients, or angles. Consequently, of the N? real coefficients that parametrise a

unitary matrix, there remains

N(N+1)
2

phases, which cannot be expressed as angles. Nevertheless, 2N —1 of these phases are already

free parameters of the lepton fields!’, which leaves

Ngree:N(N—i_l)_(zN_l):
2

N = (2.33)

(N-1)(N-2)
2

(2.34)

free phases in the Up,ss matrix.

Plugging N = 3 in (2.32) and (2.34), provides us with three mixing angles, which we
baptise 019, 013, 023, and one phase §. Abiding by the usual parametrisation (see [46]), for
Dirac neutrinos, we can write

1 0 0 C13 0 813671'6 C12 S12 0
UPMNS =10 Ca3 S923 0 ‘ 1 0 —S12 C12 0 s (235)
0 —S923 Ca3 —813626 0 C13 0 0 1

with ¢;; = cos(6;;), sij = sin(;;). When multiplying all matrices out, we find
is

C12C13 $12€13 S13€
_ i i
Upmns = | —512C23 — C12523513€" C12C23 — S12523513€" S523C13 | - (2-36)
i i
812C23 — C12C23813€" —C12823 — S12C23513€" C23C13
Solar experiments deal with parameters related to |Ues/U.;| = tan(f12) and atmospheric
experiments, with |U,3/U-3| = tan(fi3). In the meantime, reactor experiments, such as

Double Chooz, are particularly interested in |Ugs| = sin(fy3), as the title of this thesis hints
at.

19For Dirac neutrinos, global U(1) gauge transformations are indeed allowed for e, yu, 7 and ve, v, v;.
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2.2.3 Quantum-mechanical approach
2.2.3.1 Plane wave derivation

If truth be told, all this does not tell us how to experimentally extract the aforementioned
parameters. In fact, all the experiments we have reviewed in section 2.1 involve neutrino
production of a certain flavour, may it be in the sun as v,’s, in the atmosphere as v,’s,
U,'s Ue's and v,’s, or in nuclear reactors, as 7,'s. They also imply propagation from the
production area to the detector, and eventually, detection, by charged or neutral currents.
As 2.2.2 recommends, all these operations imply thoughtful change of coordinates, which is
precisely how the Upynys coefficients — that we strive to measure — end up in the equations.

We hereby present the simpler quantum-mechanical derivation of the oscillation proba-
bilities in vacuum, an approach based on quantum field theory can be studied in [47]. To
do so, we start with a flavour eigenstate |v,) with a € {e, u, 7}, produced at the space-time
origin

¥a(0)) = [va) - (2.37)

In order to easily propagate this state to another location, let us first expand it with respect
to the mass eigenstates (v )reqi,37. As underscored by (2.29), we obtain

Va(0)) = ’; Uper i) = ]; Uak™ [Vk) - (2.38)

Assuming that the mass eigenstates follow the time-dependent Schrodinger equation with no
potentials — as is the case in vacuum — at a different point z in space-time, for all k£ € [1, 3],
we have

(@) = 7P ) (2.39)

where py is the four-momentum of the k-th state. Thus, the state |v,(z)) evolves as
3 .
V(@) = > Uak™e™ P 1) (2.40)
k=1

Detecting |v,(z)) amounts to projecting it on a flavour eigenstate |v5) with 5 € {e, u, 7}. For
this reason, it is suitable to expand the |v)’s back to the flavour basis, which, for once, does
rely on Uppns, from which we can directly read the column vectors introduced in (2.25).
When doing so, we find

Wa(@) =" > Un*Uyre ™" |1y). (2.41)

k=17=e,T,pt

Since the flavour eigenstates form an orthonormal set, the probability for a neutrino of a
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given flavour «, produced at origin, to be detected with a § flavour at x is

Pruswy =/ (vslva(@) "
2

Ua *U —ipg-T
kUpk © (2.42)

3
k=1
3 3 |
= Z Z Uozk:*UﬂkUajUﬂj*e_Z(pk_pj)‘x )
k=1j=1
It is worthwhile noting that for antineutrinos, the expansion of the flavour eigenstates into

the mass basis proceeds through Up)y,ng directly, which would exchange the conjugate terms
in (2.42).

2.2.3.2 Ultra-relativistic approximation

A few dodgy assumptions are now needed to simplify further (2.42) and derive its usual
form for neutrino experiments. The masses of the neutrinos are very small compared to the
energies at which they are detected, in a nutshell, neutrinos are ultra-relativistic particles!!.
In natural units, this implies that ¢ ~ || 2’| = L, where L is the distance between the
neutrino source and the detector (on whose direction the three-momenta pi’s are taken to
be aligned). Consequently, the phases can be approximated by

(px = p3)- & = [(By — |IBE]l) — (B5 = 155 )] L - (2.43)

Carrying on with the ultra-relativistic assumption, we assume that the energy FE, given by
the kinematics of the production process neglecting neutrino masses, verifies, for all k € [1, 3]

2 2
my mi.
E.— pil = ~ , 2.44
so that we can write )
Amk'
(pr — pj)-x =~ TEJL, (2.45)

where Amy;? = my? —m;?. Inserting (2.45) into (2.42) eventually leads to the probability
to detect a neutrino oscillation at a distance L from a source which produces them with a
(kinetic) energy E

3 3 Am2 .

Py (L E) = 323 Uk UptUnjUsy™ €28 L (2.46)

k=1j=1

H'We are treating relativistic particles as plane waves, we could hardly do with less sense regarding that
plane waves are everywhere but nowhere, nevertheless, imposing coherent contributions of wave packets
yields identical results, see [48] for discussions.
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2.2.3.3 Oscillation probabilities with trigonometric functions

We can expand (2.46) into a more usable form that has only trigonometric functions. For
each space-time position z, regardless of any relativistic approximation, (2.42) and (2.46)
bring out a Hermitian matrix in (k, j) € [1,3]*, whose coefficients read

hig = Uak " UppUa;Ug;"e PP 7, (2.47)

Evidently, these satisfy hy; = h;,". It is apposite to take advantage of the Hermitian
symmetry and split the integral into diagonal and off—diagonal terms

3 3 3 k-1
> Py = thHZthﬁZ Z s
k=1j=1 k=1 j=1 k=1 j=k+1
X 5 r (2.48)
thzzwz Z ik
= k=2 j=1 k=1 j=k+1
Up to a conjugate, the last term is identical to the second one, as a result
3 k-1
Z Z hk] Z hip + 2 Z Z %e hk] (249)
k=1j=1 k=2 j=1
where PRe denotes the real part. Along these lines,
3 k-1 AmkjL
P, s, (L, E) = Z| Uoi)*|Usi|? +2ZZ%< ok UgplUyUg™ €728 — )
k=1 k=2 j=1
3 3 k-1 Am? L
:Z| ak| ’ng‘ +ZZZCOS< >9{6(Uak UBkUagUB] ) (250)
k=1 k=2 j=1
3 k-1 Am
+ 2 Z Z sin ( > Jm (Uak*U/BkUa]’Uﬁj*) s
k=2 j=1

Am?2 L Am2.L o Am?2 ;L
since exp ( ’;"ng ) = cos ( n;zﬁ ) — 7sin ( SE ) The unitarity of Upynvs also implies
that

3 2
(Z UakUgB> = 0op. (2.51)
k=1

Using the same property that yielded (2.49), we obtain

3 k-1
Z|Uak| Uskl” = 6ap =23 > Re (Uak UpilUa;Us;") - (2.52)
k=1 k=2 j=1

Substituting (2.52) into (2.50), we conclude that
3 k-1

Am?2 L
Pya—wﬁ (L7 E 045 —4 Z Z sin ( e ) Re (Uak*UﬁkUajUﬁj*)

k=2 j=1

+QZZsm

k=2 j=1

) Jm (Uak*ngUajUgj*) .
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2.2.3.4 Survival probability

Nuclear power plants, in which we are most interested, are actually generators of antineutri-
nos. One could go back to 2.2.3.1 and read the comments there that concern antineutrinos
to derive the antineutrino version of (2.53), but we can also use some ingenuity and recall
that C'P transforms left-handed neutrinos into right-handed antineutrinos (cf. 1.2.2), the
time operator 7', on the other hand, essentially changes the direction of the arrow in the
probability P, ,,. To put it differently,

Pﬂﬁﬁ - PZ/B*HJQ (254)

as long as C'PT holds, and it does, so far. Recalling that the real part of a complex number is
unaffected by conjugation, and that the imaginary part takes a minus sign, we can explicitly
write

3 k-1 A 2 L
P,,a_)Z,B(L E ag —42 ZSIH ( 4E )E)%e (Uak ngUa]Um )
k=2 j=1

3 k-1 (Am

—2ZZsm

k=2 j=1

(2.55)

;L
) Jm (Uak*UﬁkUajUgj*) .

The survival probability, which determines the chances to project the incoming neutrino
back to the flavour state |v,) with which one started, is even simpler than (2.55)

S 2 22 ((AmigL
Pror(L,E) = P,y (LLE) =1—=4) Y " |Upsi|"|Us;]" sin ( 4EJ ) (2.56)
k=2 j=1

2.3 Parameters of the model

2.3.1 Neutrino masses
2.3.1.1 Individual masses

On top of a non-diagonal mixing matrix, it should now be clearer — with the help of section
2.2 — why neutrino oscillations demand the neutral leptons to have mass. All the fuss
about physics beyond the Standard Model comes from the neutrino masses, whose simplest
experimental signature is neutrino oscillations. To be fair, at least two of the mass eigenstates
(Vk)ke1,3) should have a non-vanishing mass, since the oscillation probabilities boil down to
the squared mass differences introduced in (2.45). The individual masses are indeed difficult
to access experimentally, and direct measurements of the electron neutrino mass — which is
but a Upyrys-weighted average of the mass eigenvalues (1) ke 3] — relying on the endpoint
of the f-decay of tritium, have only been able to set an upper-limit [49]

My =\ (Te| M?|7) = Z|Uek| mp? < 2.05eV  (95%CL), (2.57)
k=1
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where M designs the mass operator, which is diagonal in the mass basis. Other model-
dependent limits, coming from cosmology, have set more stringent limits on the sum of the
mass eigenvalues themselves [50]

3
> my < 01366V (95%CL). (2.58)
k=1

2.3.1.2 Squared mass differences

As is apparent from (2.53), the frequencies that drive the probability to detect one flavour
or another, as a function of L/FE, are explicitly related to the squared mass differences, and
are responsible for the pattern from Figure 2.3. There are various regimes, determined by
the energy of the neutrino source, the location of the detector with respect to the source,
and of course, by the distribution of the squared mass differences. Fortunately, the latter
are well-separated and allow experiments to focus on one particular set of values. Echoing
back to our comments from 2.1.3.3, that is precisely because they can adjust relatively well
the L/FE ratio — hence overshadowing irrelevant terms in the oscillation probabilities — that
man-made neutrinos particularly shine when it comes to estimating certain parameters.
From solar neutrinos'?, we have learnt that [51]

Am3, = (7.5340.18) x 1077 eV?. (2.59)

On the other hand, atmospheric neutrinos'® have us wavering between the two conflicting
values that follow [51]

Am3, =(2.44 £ 0.06) x 1072 eV? (2.60)
OR Am3, = — (2.49£0.06) x 1072 eV (2.61)

How come we seem to only have knowledge about the absolute value | Am32,|, which cannot be
distinguished from |Am2,|? Why are there two different numbers for Am3, ? As it happens,
we do not know yet if the two close mass eigenstates, v; and vs, are much lighter than v3, or
if there actually are two "heavy" neutrinos out there. The first situation, in which Am3, > 0,
is referred to as the "normal mass hierarchy', the second one corresponds to Am2, < 0 and
goes by the name of "inverted mass hierarchy'. To get a better grasp of these ambiguities, we
must look for bare sines in (2.53) and (2.55), which are the sole terms that can tell us about
the signs of the squared mass differences. From (2.56), it is clear that no such information
can effortlessly come from the study of neutrino survival, for one would have to endeavour
to see sub-leading order differences between Am32, and Am3,'*. Unfortunately, in apparition

2KamLAND is effectively looking at the solar regime although the lightweight leptons it observes come
from nuclear reactors.

13 Accelerator neutrinos, observed by MINOS and K2K, shed light on the same parameters as atmospheric
neutrinos.

4By and large, the JUNO experiment will actually try to understand if |Am§2| > ’Amgl
correspond to a normal ordering.

, which would
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Figure 2.4 — Visual summary of the knowledge about neutrino oscillations. On the left-
hand side, the normal mass hierarchy is assumed, on the right, the inverted ordering is
presented. The colourful bars indicate the components of the mass eigenstates in the flavour
basis. For instance, the state of mass m; has its largest component along |v.) whereas |v3)
has barely any weight along it, on account of the tininess of 6;3. Figure taken from [53].

experiments, which answer for P, ,,, with o # 3, the set of model parameters is such that
the bare sine terms are also second order corrections. The different behaviour of neutrinos
and antineutrinos in matter can, however, help to disentangle the two mass hierarchies [52].
While on the subject, that it is precisely due to the considerable matter effect in the sun
that the ordering my > my has been resolved.

A visual representation of the knowledge about neutrino masses can be found in Figure
2.4, it presents the two possible mass hierarchies and serves as an appetiser for the next
sub-section, which tackles the coefficients of Uppsns.

2.3.2 DMatrix coefficients
2.3.2.1 Large mixing angles

The squared mass differences appear in the sines of the oscillation formula (2.53), and ac-
cordingly, determine the frequency with which the values of the probabilities are repeated
when moving along a L/E axis. On the other hand, the amplitude of the oscillations is
fixed by the Upyrys matrix coefficients. As reviewed in 2.2.2.2, the mixing matrix consists
of three angles of rotation #,5, 13, 023 and one phase §. Nonetheless, the coefficients of the
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matrix remain to be predicted by any theory, and we must rely on experiments to set their
values'®. For the solar sector, these experiments have observed [51]

sin?(f12) = 0.304 & 0.014, (2.62)
and for the atmospheric angle, we have [51]

sin?(fy3) = 0.514 £ 0.056
OR  sin?(fy3) = 0.511 + 0.055,

where (2.64) is the estimation in the case of an inverted mass hierarchy.

2.3.2.2 Minute mixing angle

With regards to the remaining mixing angle 6,3, it has proven to be the most challenging
to quantify and it remained unmeasured until just a few years ago. In the pursuit of its
measurement, two types of experiments have been undertaken: accelerator experiments and
reactor experiments.

The former, such as T2K and MINOS, are relying on v, appearance in a v, beam. To put
it differently, these experiments are measuring P,,,,,, which involves the real and imaginary
parts of the terms U, "UetU,;Ue;” for 2 <k <3 and 1 < j < k — 1. Thus, these terms are
dependent on the unknown ¢ phase, that will be presented more in-depth in 2.3.2.3. Besides,
as underlined in 2.3.1.2, there are second order corrections related to the mass hierarchy in
the apparition formula'®.

On the contrary, insofar as the survival formula (2.56) bears only moduli, disappearance
experiments are utterly agnostic as to whether the Upjy;nyg matrix is complex or purely real,
i.e. they are independent of whether § # 0 or 6 = 0. Moreover, inasmuch as there are
only squared sines in (2.56), they are, for the most part, free from assumptions on the mass
hierarchy provided that Am2, ~ Am2,. Therefore, it is scarcely surprising that reactor
experiments such as Daya Bay, RENO, and Double Chooz, have set the most stringent
bounds on the value of sin(6;3).

Electron antineutrino survival in the vicinity of a nuclear power plant
Let us explicitly write the survival probability for the 77;’s produced in nuclear reactors, and
detected a few hundreds of meters farther, via inverse S-decay (1.6). Expanding (2.56), we

15Tn that regard, the neutrino masses are scarcely different since they require fine-tuned Yukawa couplings.
16Let us emphasise again that T2K and MINOS, on top of looking for v, appearance, are set on measuring
023 and Am3, by v, disappearance and think anyhow bigger than reactor experiments.
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Recalling that
U.1|* = cos?(612) cos?(fr3) ~ cos?(f13) = 1 — sin®(6y,) (2.66)
U.o|? = sin?(612) cos®(f13) ~ sin®(612) (2.67)
|Ues|” = sin®(013) (2.68)
and in light of the value from (2.62), it may seem as though the last two terms in (2.65)

are negligible compared to the first. That would be too hasty a judgement, for we must
first discuss the value of the phase. As such, rewriting back the ¢ next to each mass, with
¢ being the speed of light, the phases are in MeV - fm or any equivalent unit. To cut the
matter short, the phases are missing hc, with A the reduced Planck constant, and read in
conventional units A2 ] AL
~ 6 x7—1,..—1

W_1.27><10e\/ m T

In reactor experiments looking for 63, typically E = 3MeV and L = 10®m, so we may

benefit from writing

(2.69)

Am2ctL
4hcE
Considering the measurements from 2.3.1.2, it is plain to see that the first sine falls in the

~ 4.2 x 10> eV 2Am?*c*. (2.70)

approximation sin? z ~ x? with z ~ 3 x 1072 and is consequently three orders of magnitude
smaller than the last two sines, whose argument is around 1. All things considered, in our
case, we have

Am2,L Am2,L
Pr (L, B) = 1 — sin2(2013) |cos?(01s) sin? [ 317 ) 4 sin?(6s) sin? [~ ) | | (2.71)
e 4F 4F
since 4sin?(6;3) cos?(613) = sin?(260;3). To shrink (2.71) further down, we consider that
Am3, ~ Am3,. Tt follows that the oscillation probability relevant for moderately short
baseline reactor experiments is well-approximated by

Am3, L
Pye_we(L,E)21—sin2(26’13)sin2( TE ) (2.72)

In accordance, a detector located 1km away from a nuclear power plant must show signs of

an energy-dependent deficit in the neutrino spectrum it observes, as epitomised by Figure
2.5.
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Figure 2.5 — Electron antineutrino survival probability E;- — Py 5-(Lo, Er2) at a dis-
tance Ly = 1km from the source. The kinetic energy of the antineutrino is designated by
F5-. The textbook case sin?(26;3) = 0.1 is assumed.

Experimental values
In spite of the robustness of (2.72), the CHOOZ experiment — located on the current "far
site" of Double Chooz (more details will follow in Chapter 3) — could but set a lower limit on
the smallness of ;5. Indeed, mostly plagued by liquid scintillator degradation and accidental
background from several origins, at the turn of the twenty-first century, CHOOZ reported
Considerably improving the detector design used by CHOOZ, the Double Chooz col-
laboration showed the first indication of 7, disappearance in January 2012 [55], reporting
sin?(26;3) = 0.086 & 0.041(sys.) £ 0.030(stat.). Notwithstanding the excellence of the Dou-
ble Chooz analysis, the irrefutable evidence came from the China-based Daya Bay experi-
ment, a few months later. In April 2012, by means of two experimental halls near Hong Kong,
at distinct flux-weighted distances from the nuclear cores L,, >~ 500 m and L; ~ 1600 m, the
Daya Bay collaboration indeed issued [56]

sin?(2013) = 0.092 % 0.016(sys.) + 0.05(stat.). (2.73)

Comparing the spectra from the detectors of the "near hall" (at which the survival probability
P 7z(L,, E) ~ 1 for all E) to that of the "far hall" (located where the survival probability
Pyw-(Ly,3MeV) < 1), they obtained Figure 2.6, which bears gratifying resemblance!” to

1"Daya Bay’s far hall actually corresponds to Ly ~ 1.6 km # 1km so the oscillation maximum is expected
at Ey- ~ 3.2MeV. And yet, Figure 2.6 uses the prompt energy, which is about 0.8 MeV lower than Fi,
thus, it is hardly surprising that both curves look alike.
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Figure 2.6 — Ratio of the far and near hall Daya Bay spectra. To all intents, the near
hall spectrum is a no-oscillation prediction. The solid curve is the best-fit solution with
sin?(26,3) = 0.092, obtained from a so-called rate-only analysis, which integrates the deficit
over all energies. Figure extracted from [56].

Figure 2.5. Such a differential measurement, using a "near" and a "far site", is actually the
key to great accuracy. This method was first advocated by Double Chooz, at the end of
the year 2002, to cancel the systematic errors originating from the prediction of the reactor
spectra and to dwarf the detector-related uncertainties [57].

It is worthwhile noticing that the size of the deficit along the energy axis is driven by the
phase Am2, L/4E. Tn 2015, taking advantage of more statistics, Daya Bay thus provided an
interesting measurement of m2,'® [58].

The Korean RENO experiment confirmed Daya Bay’s 613 value shortly after, in May 2012,
with a comparable 4.90 significance [59]. Although Double Chooz latest’s paper [60], uses
only the "far" experimental site, and exhibits a lower 3¢ significance than its competitors,
with sin? (26,3) = 0.090%5 052, the collaboration has not kept idle hands. Not only did it
build its near detector, which is put to good use in this thesis, but it also developed an
unprecedented understanding of its detectors, as we shall explain in Chapter 6.

A best-fit from global analyses published up to 2015 yields [51]

sin?(26,3) = 0.085 % 0.050 (2.74)
sin®(f13) = (2.19 £ 0.12) x 1072 (2.75)

2.3.2.3 (P violation phase

To this day, the most enigmatic parameter is unmistakably the C'P violation phase ¢§. It
is called that way because if it were zero, the imaginary parts would be but nought in the

18 Actually, access to Am?2, ~ m3; ~ m%, — which can effortlessly be defined from the square bracket in

(2.71) — is offered by electron antineutrino survival.
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oscillation probabilities, and the difference between (2.53) and (2.55)

(Prosvy = Praos) (L, E) =43 > sin ok

k=2 j=1

3 k-1 A 2-L
( Mk )Jm(Uak*ngUajUﬁj*). (2.76)

would vanish identically. Put another way, should 6 = 0, the behaviour of neutrinos and
antineutrinos would be identical, and there would be no C'P violation indications coming
from oscillation experiments. Understanding C'P violation in the neutrino sector would fill
a piece in the leptogenesis puzzle, and enlighten us as to why our universe is mostly made
of electrons, and not of positrons, which is a bit akin to understanding why there are so few
left-handed persons in our societies'.

As is obvious in (2.36), 613 has no ordinary position in the Upy/yg matrix. In fact, the
mixing matrix has been parametrised in such a way that the smallest mixing angle is in
front of the C'P violation phase [46]. The smaller 6,3, the more difficult § is to measure.
Nevertheless, the values from (2.75) are actually large, and certainly not much smaller than
CHOOZ’s limit. Consequently, the very same accelerator experiments that are sensitive to
013, but hindered by corrections related to the unknown mass hierarchy and the ¢ value, may
use the input from reactor experiments to better assess and constrain theses corrections.
With encouraging results already published at the beginning of the current year, NOvA
swells the list of experiments looking at v, appearance in a v, beam [61]. Using a classical
Likelihood event selector, they disfavour 0.17 < § < 0.57 for the inverted mass hierarchy
at 90% CL whereas a new-fangled Library Event Matching classifier provides much bolder
results, disfavouring all ¢ values in the case of an inverted ordering, and in this manner, the
inverted mass hierarchy altogether (see Figure 2.7).

Of course, all these results are dependent on the value of 6,3, which is precisely the
reason why the inputs handed over to these new undertakings must be cross-checked by
several experiments. Beyond the shadow of a doubt, both the provided central values and
the errors are of paramount importance.

19 Although shooting footballs with the left foot, as well as wielding a battle-axe in the left hand, should
boost the survival probability of individuals with the quaint handedness.
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Figure 2.7 — Significance of the difference between the selected and predicted number of
events as a function of § and the mass hierarchy (designated by NH or IH). The disagreement
with the observed data is shown in solid lines for the primary Likelihood Identifier (LID),
and in dotted lines for the secondary Library Event Matching (LEM) classifier. Figure taken

from [61].
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Neutrinos in Double Chooz
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Chapter 3

7. production at Chooz

As long as particle physicists trade in patience with the safety authorities, nuclear power
plants are inexpensive (anti)neutrino sources. All things considered, they are remarkably
easier to get by than thermonuclear weapons. Besides, commercial nuclear reactors provide
a much steadier flux than the latter or potentially malfunctioning accelerators. For indeed,
the money-makers know how willing the folks are to light up their households and blast
music at night, and accordingly, try hard to keep the machine roaring. In addition, fuel
reloading does shrink the emitted antineutrino rate in a very predictable way. All that being
said, the main strength of reactor experiments undeniably lies in the copiousness and purity
of this electron antineutrino rate, which the reactors pour isotropically at the near and far
detectors.

3.1 Production site

The 757-inhabitant Chooz village — located in northern France, slyly protruding into Bel-
gium, by the Meuse river (cf. Figure 3.1)- has a long history in pioneering nuclear engi-
neering. Indeed, following the American guidelines, Chooz was the target of choice to build
the first Pressurised Water Reactor (PWR) in France, in 1967, with a 320 MW generating
capacity. Later, the picturesque village welcomed on its banks the first powerful 1450 MW
PWR’s, B1 and B2, in 1996 and 1997, respectively.

On top of being a first-class nuclear power site, over the last two decades, Chooz has
had tight links with research in particle physics. Before the new generation reactors B1 and
B2 were built, the Chooz experiment took advantage of the vast network of tunnels, at the
Chooz A site — where the former 320 MW nuclear reactor entered the decommissioning phase
in 2001 — to set up its 5t liquid scintillator antineutrino detector, 100 m underground.
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Figure 3.1 — Location of the 7 factory for the Double Chooz experiment. In red, the two
cooling towers of the 2 x 1450 MW Chooz nuclear power station. For information purposes
only, older nuclear reactors are also shown in light blue (900 MW cores) and in purple
(1300 MW cores).

3.2 Nuclear fission

3.2.1 Overcoming the Coulomb barrier

Predicting the antineutrino production of a nuclear reactor is no leisurely stroll, for fission
itself, is no simple matter.

Nuclear fission is a process in which the nucleus of an atom breaks into lighter nuclei,
referred to as "fission fragments'. The process can be initiated by a nuclear reaction, such
as neutron capture; it may also occur spontaneously, as a usual decay. Fission primarily
results from the competition between the nuclear binding force, which increases roughly in
proportion to A, the mass number, and the Columb repulsion of protons, growing faster
as Z%, with Z the atomic number. In other words, the higher the ratio Z?/A, the easier
it is for the nucleus to split apart. Naively, if the unstable nucleus 42U were to split into
two equal-mass fragments ;g\/, the characteristic ratio would be divided in two for both
fragments, hence the increase in stability, at least with respect to fission. To this end, the
fission fragments must first overcome the Coulomb barrier, which inhibits spontaneous fission
(see Figure 3.2) in way analogous to a-decay.

The absorption of a relatively small amount of energy, however, forms an intermediate
state, which is above the Columb barrier, so that fission occurs readily. The absorbed
energy may not be too large though, for the cross section decreases with energy: the slower
the incoming neutron, the higher the probability to interact with the nucleus. Isotopes with
an odd mass but an even atomic number willingly welcome another neutral nucleon, by
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Figure 3.2 — Unless it receives an additional energy from fast neutrons, 2**U does not come
apart. The two fission fragment candidates, **Sm and ™Zn, cannot overcome the Coulomb
barrier, and are thus trapped by the nuclear potential V', at small r, with r the separation
distance between the fission fragments.

means of the pairing force, to which the large fission cross sections of 23°U and #Pu owe
much. An example of a fission process, induced by neutron capture, is given in (3.1)

25U +n — BU" - MCs+ SBRb+2n . (3.1)

3.2.2 Chain reaction in nuclear reactors

Nuclear reactors indulge in the latter type of mechanism, i.e. neutron capture, and there is
many a reaction similar to (3.1) happening in the reactor cores. In accordance, the fission
products are not always “!Cs and **Rb and there actually is a whole distribution of them,
which shows two distinct peaks (see Figure 3.3).

Taking into account Figure 3.3, one can show that when uranium is bombarded by a
neutron flux in a PWR, its fission is accompanied by the emission of an average of 2.4
neutrons [63]. Out of these 2.4 neutrons, all but one of them is to be lost, either by being
absorbed by another nucleus which cannot undergo fission, or by leaving the reactor core.
If each fission is accompanied by the effective release of exactly one neutron, the process is
self-sustaining, considering that uranium fission is induced by one neutron, as exemplified
by (3.1). If too few neutrons are lost, the fission is explosive. If too many are absorbed or
spill out, the reaction is just a wet firecracker.

Inasmuch as the fission cross-sections decrease with energy, maintaining a self-sustaining
chain reaction implies lowering the energy of the released neutrons. To this end, the nuclear
fuel is placed in a neutron moderator. Ideally, out of all choices, the moderator should have
a mass closest to A = 1 (so that each collision adequately slows the neutrons) while meagrely
capturing neutrons. In PWR’s; a pressure of 155bar [63] ensures that ordinary water, the
moderator, remains liquid well above its atmospheric boiling point, thereby retaining its
capacity to slow neutrons down and transfer the heat from the reactor cores to electrical
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