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Abstract of “Bi-local Approach to Higher Spin Gravity”

by Qibin Ye, Ph.D., Brown University, May 2013

We review a field theory approach to Higher Spin Gravity in 4 dimensional Anti

de Sitter (AdS) space within the framework of the AdS/CFT correspondence. Based

on large N collective field theory of vector type models, we develop a bi-local dipole

picture of Higher Spin theory. We also describe a geometric (Kahler space) framework

for the bi-local theory which applies to Sp(2N) fermions and potentially to the de

Sitter (dS) correspondence. We discuss in this framework the structure and size of the

bi-local Hilbert space and the implementation of (finite N) exclusion principle. For

the correspondence based on free CFTs we first discuss the transformation for O(N)

collective field and the Higher spin filed, and then the nature of bulk 1/N interactions

through an S-matrix which by the Coleman-Mandula theorem is argued to be equal

to 1.
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CHAPTER 1

Introduction

The AdS/CFT correspondence [1] represents a major tool in our understanding

of non-perturbative phenomena in gauge theory (and other related systems). Insight

into the mechanism behind this duality was obtained through various different tools,

such as large N expansion, D-branes and higher symmetries. The explicit construc-

tion, even in the simplest models, has not been achieved yet (except in special limits

or sub-sectors of the full theory such as the 1/2 BPS case). What characterizes the

correspondence is the emergence of AdS spacetime (and of extra Kaluza-Klein dimen-

sions) and even more remarkably of gravitational and stringy degrees of freedom.

Recently a very simple model has been studied (the O(N) vector model) with its

duality [2, 17] to AdS higher-spin gravity of Vasiliev [3, 5]. This proposal, which

identifies the critical points of the 3 dimensional O(N) vector model with two versions

of the 4 dimensional Vasiliev theory, has received solid support and definite degree

of understanding [17, 18, 20, 28, 29, 30, 39, 40, 41, 44, 53, 54, 45]. Equally

interesting is the correspondence between 2d minimal CFT’s and 3d Chern-Simons

Higher Spin Gravity [21, 57, 58, 59, 60, 67]. These large N dualities involve

quantum field theories that have been thought to be understood for some time and

a relatively novel version of HS Gravity built on a single Regge trajectory. These

theories feature many properties that have been unreachable in String Theory, in

particular the structure and explicit form of the higher spin gauge symmetry group.

They also offer a potentially solvable framework for studies of black hole formation

and de Sitter theory itself [78, 52].

In the case of three dimensional O(N) vector field theory, one has two conformally

invariant fixed points, the UV and the IR one. The HS duals are given by the same

Vasiliev theory [3, 4, 68, 69, 70, 71, 72] but with different boundary conditions
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on the scalar field [17]. This provides a simple relationship between a (HS) theory

dual to a free N -component scalar field (UV) and the nontrivial dual corresponding

to the IR CFT. The correspondence provided by the free O(N) scalar field theory

is then of central interest. This theory is characterized by an infinite sequence of

conserved currents which are themselves boundary duals of higher spin fields and

whose correlation functions represent a point of comparison [28, 29] between the two

descriptions.

This thesis is about the bi-local approach to higher spin gravity. In chapter two,

we discuss the correspondence in the quantum mechanics level which involves the

collective dipole model and higher spin particle, which demonstrates that d + 1 di-

mensional AdS spacetime and higher spins are generated in terms of the d dimensional

collective dipole. We first introduce the collective dipole as a two-body system with

constraints and discuss gauge fixing to time-like or light-cone gauges. Following that,

we introduce the higher spin particle in AdS. In the end of this chapter, we give a

one-to-one map which shows how the two systems are transformed into one another.

In chapter three, we move on to discuss the higher spin theory correspondence

with large N vector model both in the frame work of AdS/CFT and dS/CFT. We

briefly describe the AdS/CFT in the example of Higher Spin theory/O(N) vector

model by summarizing the work in [20, 30]. Then we switch to dS/CFT case. We

start by introducing the Sp(N) vector model and then construct a collective field

theory of the Lorentzian Sp(2N) model which captures the singlet state dynamics of

the Sp(2N) vector model. We further establish the bi-local theory as the bulk space-

time representation of de Sitter higher spin gravity by double analytic continuation.

We also describe a geometric (pseudo-spin) version of the collective theory which will

be seen to incorporate the Grassmannian origin of the field operators. In the end

of this chapter, we also give an interpretation of phase transition from a different

perspective than shown by Shenker and Yin.

In chapter four, we apply Coleman-Mandula theorem in higher spin theory and

introduce S matrix for higher spin theory and show that S = 1. We first discuss the
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differences between “boundary S-matrix” and “collective S-matrix” that we propose.

In particular we give an LSZ formula for the S-matrix and evaluate the associated

three- and four-point amplitudes using the cubic and quartic vertices of the 1/N

theory demonstrating the result S = 1. In the end of this chapter, we present a

construction of a nonlinear bi-local field transformation that linearizes the theory.
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CHAPTER 2

Collective Dipole Picture of Higher Spin Theory

1. Overview

In this chapter, we study a discrete bi-particle system which we call the collective

dipole. A dipole picture was originally contemplated by Fronsdal and Flato [7] in

the study of Rac representations of the conformal group [8]. It was also identified

in studies of high energy scattering in QCD [9]. It has also appeared in studies

of noncommutative field theory in [10]. In what follows we describe and study its

classical dynamics and work out the details of its map to AdS higher spin particle.

This we do in any dimension d showing the reconstruction of higher-spin system in

AdS through a canonical transform. As such the collective dipole offers possibly the

simplest system for a deeper understanding of the emergence of extra spacetime and

higher-spin degrees of freedom.

The content of this chapter is as follows: in section two we describe the collective

dipole as a two-body system with constraints and discuss gauge fixing to time-like

or light-cone gauges. In section three we describe the system representing a higher

spin particle in AdS. In section four we explain how the two systems are transformed

into one another through a one-to-one map. This completes the demonstration that

d + 1 dimensional AdS spacetime and higher spins are generated in terms of the d

dimensional collective dipole.

2. The Collective Dipole

The large N quantum field theory of the O(N) vector model

L =

∫

ddx
1

2
(∂µφ

i)(∂µφi) + V (φ · φ), i = 1, ..., N (2.1)
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represents a relatively simple field theory for critical phenomena and more recently as

a model of AdSd+1/CFTd correspondence. In three dimensions, besides the free field

theory UV fixed point, one also has a nontrivial IR fixed point (for detailed studies

see [11]). The AdS/CFT duality with Vasiliev’s higher spin theory for both fixed

points was understood in [17] and subsequent more recent work. In any dimension d,

the free theory in the large N limit exhibits a duality with a theory of higher spin in

d+ 1 dimensions. The origin of higher spins and of the emergence of the extra radial

AdS spatial dimension was given [20] in terms of bi-local (collective) fields

Ψ(xµ
1 , x

ν
2) =

N
∑

i=1

φi(xµ
1)φ

i(xν
2), (2.2)

where µ, ν = 0, 1, · · · , d − 1 with the metric diag(−,+, · · · ,+). These fields close a

set of Schwinger-Dyson equations with an effective action that leads to a systematic

1/N expansion [16]. It was argued in [20, 30] that this provides a bulk description

of the AdS4 dual higher-spin gravity (for the two conformal fixed points of the three

dimensional field theory). This picture was sharpened in the time-like or null-plane

quantization scheme, where the bi-local field involves a single time

Ψ(t, ~x1, ~x2) =
N
∑

i=1

φi(t, ~x1)φ
i(t, ~x2). (2.3)

In this case a precise one-to-one map was formulated in [30] relating the light-cone

higher spin field in AdS4 and the collective bi-local field

Φ(x−, x, z, θ) =

∫

dp+dpxdpzei(x−p++xpx+zpz )

·
∫

dp+
1 dp

+
2 dp1dp2δ(p

+
1 + p+

2 − p+)δ(p1 + p2 − px)

· δ
(

p1

√

p+
2 /p

+
1 − p2

√

p+
1 /p

+
2 − pz

)

· δ
(

2 arctan
√

p+
2 /p

+
1 − θ

)

Ψ̃(p+
1 , p

+
2 , p1, p2), (2.4)

where Ψ̃(p+
1 , p

+
2 , p1, p2) is the Fourier transform of the field Ψ(x−1 , x

−
2 , x1, x2).

The physical basis of the correspondence can then be identified by a bi-particle

system of a collective dipole which through a canonical transformation maps into the

first quantization version of the higher spin system. In what follows, we discuss and
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study this dipole construction in full detail. Our goal is to establish a first quantized or

rather a world-sheet description of the AdS/CFT construction developed in [20, 30].

Let us start with the two-particle system in d-dimensional Minkowski space-time

with the action

S =

∫

dτ1m
√

|ẋ2
1(τ1)|+

∫

dτ2m
√

|ẋ2
2(τ2)| (2.5)

which leads to the constraints

p2
1 +m2 = 0, (2.6)

p2
2 +m2 = 0. (2.7)

Switching to the center-of-mass variables

P = p1 + p2, X =
1

2
(x1 + x2), (2.8)

p = p1 − p2, x =
1

2
(x1 − x2), (2.9)

the constraints (2.6-2.7) become

T1 = P 2 + p2 + 4m2 = 0, (2.10)

T2 = P · p = 0. (2.11)

This system, written in the above covariant form, is described with two time coordi-

nates. It, therefore, can potentially have problems with unitarity and the appearance

of ghosts as discussed in the investigations of [31]. In the present simple system one

has the existence of a canonical gauge in which one can eliminate (gauge fix) the

relative time and obtain a physical picture with a single time. This is analogous to

the (second-quantized) collective field theory where one also had a covariant and a

canonical, equal-time representation [32].

Let us describe the details of such gauge fixing procedure; it was given some time

ago [33] in connection with the investigation of Yukawa’s bi-local field theory. One

introduces the condition

T3 = P · x = 0. (2.12)

6



Then the constraints (2.11, 2.12) become second-class while (2.10) remains first-class.

If one considers the interacting problem with m = m(x2), then the above condition

arises from the the Poisson commutation of (2.10) and (2.11).

Next, taking Pµ to be time-like, we can explicitly solve the second class constraints

and eliminate the relative time coordinate. First, one makes a canonical transforma-

tion

Pµ = Pµ, (2.13)

Xµ = X̃µ + uLbµsπs −
πL

P 2
b µ
s u

s − urπsb
ν

r

∂b s
ν

∂Pµ
+
uLπL

P 2
P µ, (2.14)

pµ =
Pµ

P 2
πL + b r

µ πr, (2.15)

xµ = P µuL + b µ
r u

r, (2.16)

with r, s = 1, ..., d− 1 and b µ
r satisfying

b µ
r Pµ = 0, (2.17)

bµrb
µ

s = grs = (+, · · · ,+), (2.18)

bµrb
r

ν = gµ
ν −

P µPν

P 2
. (2.19)

One can easily see that uL, πL are the components parallel to Pµ while ur, πr are

normal to Pµ. Then the constraints (2.11) and (2.12) lead to uL = πL = 0. Therefore

the system can be described using only the center-of-mass coordinates (X̃µ, Pµ) and

the relative (spatial) coordinates (~u, ~π). The canonical transformation (2.13-2.16) is

simplified to be

Pµ = Pµ, (2.20)

Xµ = X̃µ − urπsb
ν

r

∂b s
ν

∂Pµ
, (2.21)

pµ = b r
µ πr, (2.22)

xµ = b µ
r u

r. (2.23)
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For the massless case where m = 0, the conformal generators of the bi-particle system

are given by

P̂ µ = pµ
1 + pµ

2 , (2.24)

M̂µν = xµ
1p

ν
1 − xν

1p
µ
1 + xµ

2p
ν
2 − xν

2p
µ
2 , (2.25)

D̂ = xµ
1p1µ + xµ

2p2µ, (2.26)

K̂µ = (xν
1p1ν)x

µ
1 −

1

2
(xν

1x1ν)p
µ
1 + (xν

2p2ν)x
µ
2 −

1

2
(xν

2x2ν)p
µ
2 , (2.27)

where we have neglected the scaling constant term for simplicity. It is instructive to

find the explicit form of the conformal generators. Choosing a solution satisfied by

(2.17-2.19) as follows

b0r =
Pr

√

|P 2|
, bir = δir −

PiPr

P 2 + P 0
√

|P 2|
, µ = (0, i) (2.28)

one achieves a single time (X0 = X̃0 = t) formulation of the conformal generators

P̂ 0 = P 0 =

√

~P 2 + ~π2, (2.29)

P̂ i = P i, (2.30)

M̂0i = tP i − X̃iP 0 +
1

√

|P 2| − P 0
(uiP sπs − πiPru

r), (2.31)

M̂ ij = X̃iP j − X̃jP i + uiπj − ujπi, (2.32)

D̂ = −tP 0 + X̃iPi + uiπi, (2.33)

K̂0 = −1

2
t2P 0 + t(X̃iPi + uiπi) +

1
√

|P 2| − P 0
(X̃iuiP

sπs − X̃iπiPru
r)

−1

2
P 0[X̃iX̃i + uiui] +

1

2P 2

2
√

|P 2| − P 0

(
√

|P 2| − P 0)2
(uiP sπs − πiPru

r)2, (2.34)

K̂i =
1

2
t2P i + t[−P 0X̃i +

1
√

|P 2| − P 0
(uiP sπs − πiPru

r)]

+X̃i[X̃jPj + ujπj]− πi[X̃juj +
1

P 2 + P 0
√

|P 2|
ujujP

sπs]

+ui[X̃jπj +
1

P 2 + P 0
√

|P 2|
(2ujπjP

sπs − πjπjPru
r)]

−1

2
P i
[

X̃jX̃j + ujuj +
1

P 2(
√

|P 2| − P 0)2
(uiP sπs − πiPru

r)2
]

. (2.35)
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Now recall the canonical, equal-time (x0
1 = x0

2 = t) collective field version of the

bi-particle system, where the conformal generators are given by

P̂ 0 = p0
1 + p0

2 =
√

~p1
2 +

√

~p2
2, (2.36)

P̂ i = pi
1 + pi

2, (2.37)

M̂0i = t(pi
1 + pi

2)− xi
1p

0
1 − xi

2p
0
2, (2.38)

M̂ ij = xi
1p

j
1 − xj

1p
i
1 + xi

2p
j
2 − xj

2p
i
2, (2.39)

D̂ = −t(p0
1 + p0

2) + xi
1p

i
1 + xi

2p
i
2, (2.40)

K̂0 = −1

2
t2(p0

1 + p0
2) + t(xi

1p
i
1 + xi

2p
i
2)

−1

2
xi

1x
i
1p

0
1 −

1

2
xi

2x
i
2p

0
2, (2.41)

K̂i =
1

2
t2(pi

1 + pi
2)− t(xi

1p
0
1 + xi

2p
0
2)

+xj
1p

j
1x

i
1 + xj

2p
j
2x

i
2 −

1

2
xj

1x
j
1p

i
1 −

1

2
xj

2x
j
2p

i
2. (2.42)

There is a simple canonical transformation between the phase space (X̃i, P i; ui, πi)

and the bi-particle phase pace (xi
1, p

i
1; x

i
2, p

i
2), which transforms the generators (2.29-

2.35) to (2.36-2.42). It is given by

P i = pi
1 + pi

2, (2.43)

X̃i =
xi

1p
0
1 + xi

2p
0
2

p0
1 + p0

2

+
1

P 0(P 2 + P 0
√

|P 2|)
×[(xi

1 − xi
2)(p

j
1p

0
2 − pj

2p
0
1)(p

j
1 + pj

2)

−(pi
1p

0
2 − pi

2p
0
1)(x

j
1 − xj

2)(p
j
1 + pj

2)], (2.44)

πi = −
√

|P 2| − 2p0
2

√

|P 2| − P 0
pi

1 +

√

|P 2| − 2p0
1

√

|P 2| − P 0
pi

2, (2.45)

ui = −1

2
(xi

1 − xi
2)−

p0
1 − p0

2

(P 0)2P 2
(xj

1 − xj
2)(p

j
1 + pj

2)(p
i
1p

0
2 − pi

2p
0
1)

+
2p0

1p
0
2

(P 0)2(P 2 + P 0
√

|P 2|)
(xj

1 − xj
2)(p

j
1 + pj

2)(p
i
1 + pi

2). (2.46)

We have in the above described the canonical structure of the composite, two par-

ticle “collective” dipole system. It was constructed to describe the singlet subspace

of the vector model CFT. Since the CFT has two collective field representations (one
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covariant with an associated action and another equal-time with a related Hamilton-

ian) it was important to demonstrate the existence of a single time gauge. We have

also seen that in this gauge the dipole system exhibits an identical canonical struc-

ture to the collective field theory one. This structure is characterized by an additive

contribution to the symmetry generators which we established. In the next section

we will review the field theory of higher spins in AdS and describe its first quantized

description given by particles with spin moving in AdS spacetime.

3. Higher Spin Theory in AdS

We now switch to a discussion of higher spin theory in AdSd+1 spacetime. From

the field theoretic description of this theory we will deduce a first-quantized AdS

particle system (with spin). We will then demonstrate in section four that the AdS

spin particle system emerges through a canonical change of variables from the d-

dimensional collective dipole system.

3.1. Higher Spin Fields. There are two formalisms for describing higher spin

fields, one being the frame-like formulation in terms of generalized vielbeins and spin

connections, the other the metric-like formulation due to Fronsdal [34], which employs

higher tensor fields with arbitrary rank and symmetry properties. Here, we will use

the second formulation. One has a spin s field represented by a symmetric and double

traceless tensor of rank s: hµ1...µs(x
µ), which obeys the equations of motion [35]

∇ρ∇ρhµ1...µs − s∇ρ∇µ1h
ρ
µ2...µs

+
1

2
s(s− 1)∇µ1∇µ2h

ρ
ρµ3...µs

+2(s − 1)(s+ d− 2)hµ1...µs = 0. (2.47)

The gauge transformation is given by

δΛh
µ1...µs = ∇µ1Λµ2...µs, gµ2µ3Λ

µ2...µs = 0. (2.48)

A covariant gauge can be specified with the gauge conditions

∇ρhρµ2...µs = 0, gρσhρσµ3...µs = 0. (2.49)
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Then the equation of motion (2.47) reduces to

(� +m2)hµ1...µs = 0, (2.50)

with the effective mass m2 = s2 + (d− 5)s − 2(d − 2).

It is useful to embed the d+1 dimensional AdS spacetime xµ into d+2 dimensional

hyperboloid xα with the metric diag(−,+, ...,+,−). The higher spin field hµ1...µs(x
µ)

is related to the field kα1...αs(x
α) by

hµ1...µs(x
µ) = x α1

µ1
· · ·x αs

µs
kα1...αs(x

α), (2.51)

where x α
µ = ∂xα/∂xµ. Introducing an internal set of coordinates yα spacetime, one

forms the field with all spins

K(xα, yα) ≡
∑

s

kα1...αs(x
α)yα1 · · · yαs. (2.52)

In this notation the constraints implied by embedding, the covariant gauge conditions

as well as the equations of motion become the following system of equations [8]

∂2
xK(x, y) = 0, (2.53)

∂2
yK(x, y) = 0, (2.54)

∂x · ∂yK(x, y) = 0, (2.55)

(x · ∂x + y · ∂y + 1)K(x, y) = 0, (2.56)

x · ∂yK(x, y) = 0. (2.57)

It is easy to check that the constraints (2.53-2.57) are all first-class constraints. We

should also point out that Φ(x−, x, z, θ) in (2.4) is the light-cone form of K(xα, yα)

in AdS4.

In the above representation one has an asymmetry between the spacetime coor-

dinates x and the internal spin coordinates y due to (2.57). One can through a series

of canonical transformations achieve a totally symmetric description. The transfor-

mation takes the form

Φ(p, q) = (FK)(x, y) (2.58)

11



where p = (x+ y)/2, q = (x− y)/2 and the kernel for a particular spin s is given by

Fs =
∑

k

(4kk!)−1(y · ∂x)
2k/(n̂ + 1)(n̂+ 2) · · · (n̂+ k) (2.59)

with n̂ = y · ∂y. After the mapping (2.59), as well as a Fourier transformation

Φ(u, v) =

∫

dpdq eip·ueiq·vΦ(p, q), (2.60)

one finds the symmetric version

(u · ∂u + 1/2)Φ(u, v) = 0, (2.61)

(v · ∂v + 1/2)Φ(u, v) = 0, (2.62)

u2 = 0, (2.63)

v2 = 0, (2.64)

u · v = 0. (2.65)

Next we show that it is possible to reduce the system by solving the first four

constraints (2.61-2.64) which are decoupled into two sets of constraints involving

separately u and v. Parameterizing the cone u2 = 0 as

u0 = U sin t, ud+1 = U cos t, ~u = Uû, û2 = 1, (2.66)

we find the constraint (2.61) becomes ∂/∂U + 1/2. Consequently the dependence on

the variable U can be factored out

φ(u) = U−1/2φ(t, û), (2.67)

and the remaining degrees of freedom are the coordinates (t, û) (and its conjugates).

Similarly, this reduction works for the v system. Therefore, by solving the first four

constraints, we reduced the bi-local field Φ(u, v) with 2(d + 2) variables to 2d vari-

ables. This agrees precisely with the bi-local collective field Φ(xµ
1 , x

µ
2) in d dimensions.

However, in this formulation, we need to interpret (2.65) as the equation of motion,

12



which does not take the form the collective equation of motion [20]. In order to make

contact with the collective field equation, one can replace (2.65) with a new constraint

∂2
u∂

2
vΦ(u, v) = 0, (2.68)

which does not commute with (2.65). As shown in [20], this is the equation of motion

for the collective field after a field redefinition. This shows that the bi-local collective

field theory of [20] corresponds to another gauge choice when compared with the

Fronsdal’s covariant gauge of higher spin theory.

3.2. Higher Spin Particles in AdS4. To describe particles in AdS with spin,

one uses the spacetime coordinate x and an internal spin coordinate y. For simplicity,

we will mainly discuss the AdS4 case (only in this subsection), which corresponds

to the isometry group SO(2, 3). The system requires constraints expressing strong

conservation of the phase space counterparts of the second- and fourth-order Casimir

operators of SO(2, 3). We have the generators

JAB = xAp
x
B − xBp

x
A + yAp

y
B − yBp

y
A (2.69)

where xA and yA represent two separate objects and A,B = 0, 1, 2, 3, 5 with the

metric ηAB = diag(−,+,+,+,−). The second- and fourth-order Casimir operators

are given by

Ω1 =
1

2
JABJ

AB

= x2p2
x − (x · px)

2 + y2p2
y − (y · py)

2

+2(x · y)(px · py)− 2(x · py)(y · px), (2.70)

Ω2 =
1

4
JABJ

B
CJ

C
DJ

DA − 1

2

(1

2
JABJ

AB
)2

= x2(p2
y(ypx)

2 + p2
x(ypy)

2 − 2(pxpy)(ypx)(ypy))

+y2(p2
y(xpx)

2 + p2
x(xpy)

2 − 2(pxpy)(xpx)(xpy))

+x2y2((pxpy)
2 − p2

xp
2
y) + (xy)2(p2

xp
2
y − (pxpy)

2)

−(xpy)
2(ypx)

2 − (xpx)
2(ypy)

2 + 2(xpx)(xpy)(ypx)(ypy)

+2(pxpy)(xpx)(xy)(ypy) + 2(pxpy)(xpy)(xy)(ypx)

−2p2
x(xpy)(xy)(ypy)− 2p2

y(xpx)(xy)(ypx). (2.71)
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They are constrained by

Ω1 + E2
0 + s2 = 0, (2.72)

Ω2 + E2
0s

2 = 0. (2.73)

One solution to the constraints leads to

x · px = −E0, (2.74)

x · py = 0, (2.75)

y · py = s, (2.76)

p2
x = 0, (2.77)

p2
y = 0, (2.78)

px · py = 0. (2.79)

The massless higher spin particle corresponds to the special case E0 = s+ 1. These

constraints are seen to agree with Fronsdal’s covariant formulation of higher-spin the-

ory (2.53-2.57). Another canonical representation of the higher-spin particle system

solving the constraints (2.72-2.73) was given in [36]

x2 + r2 = 0, (2.80)

x · px = 0, (2.81)

x · y = 0, (2.82)

x · py = 0, (2.83)

y · py = 0, (2.84)

p2
y = 0, (2.85)

p2
x =

E2
0 + s2

r2
, (2.86)

px · py =
(E2

0s
2

r2y2

)1/2

, (2.87)

where r is the radius of the AdS spacetime and (2.80, 2.82) are gauge conditions for

the first-class constraints (2.81, 2.83) respectively.
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4. AdSd+1 from d-dimensional dipole

We now come to the main part of our construction. We will show (in the framework

of the light-cone gauge) that d-dimensional relativistic bi-particle system of section

two can be mapped into the higher spin AdSd+1 particle system that we have just

described. This map will be accomplished by an explicit canonical transformation

between the respective phase space variables. In the process, we will be able to map

the collective field version of the generators of the conformal group to the generators

that can be constructed in AdS spacetime.

For specifying the light-cone gauge of higher spin theory in AdSd+1 one starts,

following [38], with the covariant (and gauge invariant) description with the AdS and

internal coordinates denoted by (xµ̂, p
µ̂, ᾱµ̂, α

µ̂), µ̂ = 0, 1, 2, .., d. One can parametrize

the AdSd+1 space with the Poincaré coordinates

dxµ̂dx
µ̂ =

1

z2
(−dt2 + dx2

i + dz2 + dx2
d), i = 1, ..., d− 2. (2.88)

The light-cone variables and transverse coordinates are denoted as

x± =
1√
2
(xd ± x0), xI = (xi, z). (2.89)

The light-cone gauge [38], is now fully specified by the conditions

ᾱ+ = 0, (2.90)

αI ᾱI = s, (2.91)

ᾱI ᾱI = 0, (2.92)

ᾱ− = − p
I

p+
ᾱI +

s+ d− 1

p+
ᾱz − 2(p+ − α+ᾱz)

p+(p+ − 2α+ᾱz)
ᾱz, (2.93)

(pµ̂ − αµ̂ᾱz)2 − (2αz − αµ̂pµ̂ − αzαµ̂ᾱµ̂ + α2ᾱz)
2(p+ − α+ᾱz)

p+(p+ − 2α+ᾱz)
ᾱz

−d(pz − αzᾱz)− s2 + (4− d)s+ 2d − 4 = 0. (2.94)

Here (2.90) represents the light cone gauge condition, and the constraints (2.91, 2.92,

2.94) are analogous to (2.76, 2.78) and (2.77) in our particle description respectively.

From the Lorentz condition (2.79), one can solve for ᾱ− (2.93). For more detailed
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studies of light-cone higher spin theory in AdS spacetime the reader should consult

[38].

Our construction of the canonical relationship between the two sets of variables

will come from the comparison of two different representations of the generators of

the conformal group: one corresponding to the d-dimensional dipole and the other to

the d+ 1 dimensional higher-spin AdS particle. For this we first recall the light-cone

form of generators in AdS given by [38]

P̂− = − p2
I

2p+
− 1

2z2p+
(
1

2
m2

ij −
1

4
(d − 3)(d − 5)), (2.95)

P̂+ = p+, (2.96)

P̂ i = pi, (2.97)

Ĵ+− = tP̂− − x−p+, (2.98)

Ĵ+i = tpi − xip+, (2.99)

Ĵ−i = x−pi − xiP̂− +miJ p
J

p+
− 1

2zp+
{mzj , mji}, (2.100)

Ĵ ij = xipj − xjpi +mij, (2.101)

D̂ = tP̂− + x−p+ + xIpI +
d− 1

2
, (2.102)

K̂− = −1

2
x2

IP̂
− + x−(x−p+ + xIpI +

d − 1

2
)

+
1

p+
xIpJmIJ − xI

2zp+
{mzJ , mJI}, (2.103)

K̂+ = t2P̂− + t(xIpI +
d− 1

2
)− 1

2
x2

Ip
+, (2.104)

K̂i = t(xiP̂− − x−pi −miJ p
J

p+
+

1

2zp+
{mzj , mji})

−1

2
x2

Jp
i + xi(x−p+ + xIpI +

d− 1

2
) +miIxI . (2.105)

These generators are to be compared with the bi-local CFTd transformations. In the

light-cone gauge (x+
1 = x+

2 = t), one has the bi-local collective field

Ψ(xµ
1 , x

ν
2) 7→ Ψ(t; x−1 , x

i
1; x

−
2 , x

j
2). (2.106)
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The conformal generators take the form

P̂− = p−1 + p−2 = −
(pi

1p
i
1

2p+
1

+
pi

2p
i
2

2p+
2

)

, (2.107)

P̂+ = p+
1 + p+

2 , (2.108)

P̂ i = pi
1 + pi

2, (2.109)

Ĵ+− = tP̂− − x−1 p+
1 − x−2 p+

2 , (2.110)

Ĵ+i = tP̂ i − xi
1p

+
1 − xi

2p
+
2 , (2.111)

Ĵ−i = x−1 p
i
1 + x−2 p

i
2 + xi

1

pj
1p

j
1

2p+
1

+ xi
2

pj
2p

j
2

2p+
2

, (2.112)

Ĵ ij = xi
1p

j
1 − xj

1p
i
1 + xi

2p
j
2 − xj

2p
i
2, (2.113)

D̂ = tP̂− + x−1 p
+
1 + x−2 p

+
2 + xi

1p
i
1 + xi

2p
i
2 + 2dφ, (2.114)

K̂− = xi
1x

i
1

pj
1p

j
1

4p+
1

+ xi
2x

i
2

pj
2p

j
2

4p+
2

+ x−1 (x−1 p
+
1 + xi

1p
i
1 + dφ)

+x−2 (x−2 p
+
2 + xi

2p
i
2 + dφ), (2.115)

K̂+ = t2P̂− + t(xi
1p

i
1 + xi

2p
i
2 + 2dφ)− 1

2
xi

1x
i
1p

+
1 −

1

2
xi

2x
i
2p

+
2 , (2.116)

K̂i = −t
(

xi
1

pj
1p

j
1

2p+
1

+ xi
2

pj
2p

j
2

2p+
2

+ x−1 p
i
1 + x−2 p

i
2

)

− 1

2
xj

1x
j
1p

i
1 −

1

2
xj

2x
j
2p

i
2

+xi
1(x

−
1 p

+
1 + xj

1p
j
1 + dφ) + xi

2(x
−
2 p

+
2 + xj

2p
j
2 + dφ). (2.117)

For simplicity, we will again neglect the scale dimension terms on both sides in

the following discussion, which can be added at the quantum level. Furthermore,

the Poisson bracket {mzj , mji} and {mzJ , mJI} can be simplified as 2mzjmji and

2mzJmJI respectively.

The phase space on the two sides are (x−, xi, z, θIJ ; p+, pi, pz, mIJ) and (x−1 , x
i
1, x

−
2 ,

xi
2; p

+
1 , p

i
1, p

+
2 , p

i
2). The canonical transformation is found by comparing the higher-

spin generators (2.95-2.105) with the collective dipole generators (2.107-2.117). The
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AdS coordinates and conjugate momenta are given by

x− =
x−1 p

+
1 + x−2 p

+
2

p+
1 + p+

2

, (2.118)

p+ = p+
1 + p+

2 , (2.119)

xi =
xi

1p
+
1 + xi

2p
+
2

p+
1 + p+

2

, (2.120)

pi = pi
1 + pi

2, (2.121)

z =

√

p+
1 p

+
2

p+
1 + p+

2

√

(xi
1 − xi

2)
2, (2.122)

pz =
xj

1 − xj
2

√

(xi
1 − xi

2)
2

(

pj
1

√

p+
2

p+
1

− pj
2

√

p+
1

p+
2

)

, (2.123)

and the angular momenta are given by

mij =
1

p+
1 + p+

2

[(xi
1 − xi

2)(p
j
1p

+
2 − pj

2p
+
1 )− (xj

1 − xj
2)(p

i
1p

+
2 − pi

2p
+
1 )], (2.124)

miz =
xi

1 − xi
2

√

(xj
1 − xj

2)
2

[

√

p+
1 p

+
2 (x−1 − x−2 ) +

(

(p+
1 )2pj

2 + (p+
2 )2pj

1)(x
j
1 − xj

2)

(p+
1 + p+

2 )
√

p+
1 p

+
2

]

+
1

2

p+
1 − p+

2

p+
1 + p+

2

√

(xj
1 − xj

2)
2
(

pi
1

√

p+
2

p+
1

− pi
2

√

p+
1

p+
2

)

. (2.125)

One can verify by using the Poisson brackets that this is a canonical transformation.

{x−, p+} = 1, {xi, pj} = δij, {z, pz} = 1, (2.126)

{mIJ , mKL} = δJKmIL + δILmJK − δJLmIK − δIKmJL, (2.127)

with all others vanishing.

In summary, we have established a one-to-one map between the phase space co-

ordinates of the collective dipole and the phase space of the higher spin AdS particle.

This map generalizes the earlier construction established in [30] for d = 3 to any di-

mension. The map provides a simple explicit model of the AdS/CFT correspondence.

In the light-cone gauge that we have used, the map reconstructs the AdS theory in

the bulk. Issues of locality in the AdS spacetime have been studied recently in [95].

This construction demonstrates how a non-local (bi-particle space) is transformed

into the local AdS space-time with higher spins.
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CHAPTER 3

Higher Spin Theory From Large N Vector Model

1. Overview

Collective fields extend the space of (conformal) operators (and conserved cur-

rents) that are usually used for “holographic” comparisons of correlators and ampli-

tudes at the boundary. In the specific case of the O(N) (Sp(N)) vector models these

fields are given by bi-local invariants representing scalar products of basic local fields.

The correspondence of higher spin theory with O(N) (Sp(N)) vector model has been

studied both in the framework of AdS/CFT (dS/CFT).

In section two, we summarized the work in [20, 30]. It was demonstrated in [30] in

the example of 3d free CFT that the bi-local field contains fully the additional (radial)

AdS dimension and also the infinite sequence of fields with growing spins. This

construction (done in the light-cone gauge) provides a full one-to-one map between

(fields) observables of the field theory and fields of the higher-spin gravity.

In contrast to AdS/CFT correspondence, any dS/CFT correspondence [50] in-

volves an emergent holographic direction which is timelike. It is then of interest to

understand how a timelike dimension is generated from the large-N degrees of free-

dom. Recently, Anninos, Hartman and Strominger [78] put forward a conjecture that

the Euclidean Sp(2N) vector model in three dimensions is dual to Vasiliev higher spin

theory in four dimensional de Sitter space.

In section three, we introduced the Sp(2N) vector model. Then in section four we

construct a collective field theory of the Lorentzian Sp(2N) model which captures the

singlet state dynamics of the Sp(2N) vector model. Using the results of [20] and [30]

we then in section five argue that a natural interpretation of the resulting action is by

double analytic continuation which makes the emergent direction time-like, relating

this to higher spin theory in dS4, in a way reminiscent of the way the Louiville mode
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in worldsheet string theory has to be interpreted as a time beyond critical dimensions

[56]. Our map establishes the bi-local theory as the bulk space-time representation

of de Sitter higher spin gravity.

Since the bilocal collective field is a composite of two Grassmann variables there-

fore it might not appear to be a genuine bosonic field. In particular, for finite N ,

a sufficiently large power of the field operator vanishes, reflecting its Grassmannian

origin 1. This is further reflected on the size of its Hilbert space.

In section six we will describe a geometric (pseudo-spin) version of the collective

theory which will be seen to incorporate these effects. For dS/CFT, this implies that

the true number of degrees of freedom in the dual higher spin theory in dS is, in this

framework, reduced from what is seen perturbatively (with G = R2
dS/N being the

coupling constant squared).

In the last section we will give an interpretation of phase transition from a different

perspective than shown by Shenker and Yin [41].

2. Bi-local representation of O(N) CFT3

The O(N)/Higher Spin duality is based on a three dimensional N -component

scalar field theory

L =
1

2
∂µφ

a∂µφa +
g

4
(φ · φ)2 , a = 1, · · · , N (3.1)

where φa = φa(t, ~x) = φa(x+, x−, x⊥); µ = 0, 1, 2. This theory features two critical

points with conformal symmetry: the UV fixed point at zero coupling (g = 0) and

the nontrivial IR fixed point at nonzero coupling constant (g 6= 0). The latter can be

evaluated in the large N limit and serves as the classic example of critical phenomena

in 3d.

For the correspondence with higher spin fields, a central role is played by the

sequence of traceless and symmetric higher spin currents

Jµ1µ2···µs =
s
∑

k=0

(−1)k

(

s − 1/2

k

)(

s− 1/2

s− k

)

1This property of higher spin currents has already been recognized in [52]
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×∂µ1 · · · ∂µk
φa ∂µk+1

· · · ∂µsφ
a − traces (3.2)

which are exactly conserved in the free case. These operators can be summarized in

the semi bi-local form by the generating functional

O(x, ε) = φa(x− ε)
∞
∑

n=0

1

(2n)!

(

2ε2
←−
∂x ·
−→
∂x − 4(ε · ←−∂x)(ε ·

−→
∂x)
)n

φa(x+ ε) (3.3)

where ε2 = 0 to satisfy the traceless condition. As a result, ε represents a cone with a

two dimensional coordinate and altogether O(x, ε) is a five dimensional semi bi-local

field. The currents that it generates represent boundary duals of AdS4 higher spin

fields

Jµ1µ2···µs(x)↔ Hµ̂1µ̂2···µ̂s(x, z → 0) (3.4)

where ds2 = dx2+dz2

z2 is the AdS4 metric.

In the AdS/CFT correspondence, correlation functions of currents are to match

up with the boundary transition amplitudes (sometimes referred to as the boundary

S-matrix) of the higher dimensional AdS theory. A successful demonstration of this

was accomplished in the three-point case by Giombi and Yin [28, 29] who were able

to match the two critical points of the vector model with two versions of Vasiliev’s

Higher Spin Gravity in AdS4. The trivial and nontrivial fixed points are seen as

conjectured by Klebanov and Polyakov [17] to correspond to different boundary con-

ditions involving the lowest spin (s = 0) field.

A constructive approach for this AdS4/CFT3 correspondence, given in [20], is

based on the notion of collective fields. These are described by bi-local invariants of

the O(N) field theory

Φ(x, y) ≡ φ(x) · φ(y) =

N
∑

a=1

φa(x) · φa(y) (3.5)

that close under the Large N Schwinger-Dyson equations. These operators represent

a more general set than the conformal fields O(x, ε) since there is no restriction to a

cone. The collective action evaluates the complete O(N) invariant partition function

Z =

∫

[dφa(x)]e−S[φ] =

∫

∏

x,y

[dΦ(x, y)]µ(Φ)e−Sc[Φ] (3.6)
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Figure 1. Illustration of the four-point collective field diagrams.

where the measure is given by µ(Φ) = (detΦ)VxVp with Vx = L3 the volume of space

and Vp = Λ3 the volume of momentum space with Λ being the momentum cutoff.

Explicitly one has the collective action

Sc[Φ] = Tr
[

−(∂2
x + ∂2

y)Φ(x, y) + V
]

+
N

2
Tr lnΦ(x, y) (3.7)

where the trace is defined as TrB =
∫

d3xB(x, x). This collective action is nonlinear,

with 1/N appearing as the expansion parameter. Through the identification of 1/N

with GN (the coupling constant of higher spin gravity), this collective field represen-

tation provides a bulk description of the dual AdS theory. One also has a natural

(star) product defined as (Ψ ? Φ)(x, y) =
∫

dzΨ(x, z)Φ(z, y).

The perturbative expansion is defined in this (bi-local) space. The nonlinear

equation of motion specified by Sc gives the background in the expansion: Φ =

Φ0+
1√
N
η. Expanding about the background gives us an infinite number of interaction

vertices [16]

Sc[Φ] = S[Φ0] + Tr[Φ−1
0 ηΦ−1

0 η] +
g

4
η2 +

∑

n≥3

N1−n/2 TrBn , (3.8)

where B ≡ Φ−1
0 η. The nonlinearities built into Sc are precisely such that all invariant

correlators: 〈φ(x1) · φ(y1) · · ·φ(xn) · φ(yn)〉 are now reproduced through the Witten

(Feynman) diagrams with 1/N vertices. The four-point example is shown in Figure 1.

We stress that this nonlinear structure is there for both the free and the interacting

fixed point.

This bi-local theory is expected to represent a (covariant) gauge fixing of Vasiliev’s

gauge invariant theory. An attempt at a gauge invariant formalism is given in [39].
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A one-to-one relationship between bi-local and AdS higher spin fields can be demon-

strated in a physical (single-time) picture. The existence of such a gauge and the

discussion of the collective dipole underlying the collective construction is given in

[40].

The single-time formulation that we will follow involves the equal time bi-local

operators

Ψ(t, ~x, ~y) =
∑

a

φa(t, ~x)φa(t, ~y) (3.9)

and its conjugate momenta: Π(~x, ~y) = −i δ
δΨ(~x,~y)

with a Hamiltonian of the form

H = 2Tr(ΠΨΠ) +
1

2

∫

d~x[−∇2
~xΨ(x̃, ỹ)|x̃=ỹ] +

N2

8
TrΨ−1, (3.10)

where we have set the coupling constant g = 0. This Hamiltonian again has a natural

1/N expansion, after a background shift

Ψ = Ψ0 +
1√
N
η , Π =

√
Nπ , (3.11)

with Ψ0
~x~y =

∫

d~kei~k·(~x−~y) 1

2
√

~k2
, one gets a quadratic Hamiltonian

H(2) = 2Tr(πΨ0π) +
1

8
Tr(Ψ−1

0 ηΨ−1
0 ηΨ−1

0 ) , (3.12)

which in momentum space reads

H(2) =
1

2

∫

d~k1d~k2 π~k1
~k2
π~k1

~k2
+

1

8

∫

d~k1d~k2 η~k1
~k2

(

ψ0 −1
~k1

+ ψ0 −1
~k2

)2

η~k1
~k2

(3.13)

producing the (singlet) spectrum ω~k1
~k2

=

√

~k2
1 +

√

~k2
2 of the O(N) theory. A sequence

of 1/N vertices representing interactions can be found similarly and the cubic and

quartic interactions are given explicitly as

H(3) =
2√
N

Tr(πηπ)− 1

8
√
N

TrΨ−1
0 ηΨ−1

0 ηΨ−1
0 ηΨ−1

0 , (3.14)

H(4) =
1

8N
TrΨ−1

0 ηΨ−1
0 ηΨ−1

0 ηΨ−1
0 ηΨ−1

0 . (3.15)

We note that the form of these vertices is the same for both the free (UV) and the

interacting (IR) conformal theories (the only difference is induced by the different

background shifts in these two cases).
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One also has a null-plane version of this construction which would correspond to

light-cone gauge higher spin theory. This was used in [30] to demonstrate the one-to-

one map between the two descriptions: the null-plane bi-locals Ψ(x+; x−1 , x
−
2 ; x1, x2)

and the higher spin fieldsH(x+; x−, x, z; θ) in AdS4 (with θ denoting a coordinate that

generates the sequence of higher spins). Both fields have same number of dimensions

1 + 2 + 2 = 1 + 3 + 1, the same representation of the conformal group, and the same

number of degrees of freedom.

The bi-local to AdS canonical transformation given in [30] reads

x− =
x−1 p

+
1 + x−2 p

+
2

p+
1 + p+

2

, x =
x1p

+
1 + x2p

+
2

p+
1 + p+

2

, (3.16)

z =

√

p+
1 p

+
2

p+
1 + p+

2

(x1 − x2) , θ = 2arctan
√

p+
2 /p

+
1 , (3.17)

where p+
i are the conjugate momenta of x−i . The map going from the bi-local field to

the higher spin field is given by an integral transformation

H(x−, x, z, θ) =

∫

dp+dpxdpz ei(x−p++xpx+zpz )

∫

dp+
1 dp1dp

+
2 dp2

δ(p+
1 + p+

2 − p+)δ(p1 + p2 − px)δ(p1

√

p+
2 /p

+
1 − p2

√

p+
1 /p

+
2 − pz)

δ(2 arctan
√

p+
2 /p

+
1 − θ)Ψ̃(p+

1 , p
+
2 , p1, p2) , (3.18)

where Ψ̃(p+
1 , p

+
2 , p1, p2) is the Fourier transform of the bi-local field Ψ(x−1 , x

−
2 , x1, x2).

It was shown in [30] that under this transformation all the generators of the bi-

local theory map into the generators of light-cone Higher Spin Gravity in the form

given by Metsaev [38]. In particular, the quadratic bi-local Hamiltonian

P−(2) =

∫

dx−1 dx1dx
−
2 dx2 Ψ†

(

− ∇
2
1

2∂x−

1

− ∇
2
2

2∂x−

2

)

Ψ (3.19)

takes an AdS4 form

P−(2) =

∫

dx−dxdzdθ H†
(

−∂
2
x + ∂2

z

2∂x−

)

H . (3.20)

This establishes, at the quadratic level, that the bi-local representation is identical

to the local AdS4 higher spin representation. One should note that the 1/N vertices

do not become local in AdS spacetime. In fact the light-cone gauge fixing of Vasiliev’s
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theory has not been established yet and based on the collective map one can expect

that it takes nonlocal form.

Another important check regarding the identification of the “extra” AdS coordi-

nate z can be seen by taking the z → 0 limit. Evaluating the bi-local field at z = 0

gives the following “boundary” form

H(x+, x−, x, θ) =

∫

dp+
1 dp

+
2 e

ix−(p+
1 +p+

2 )

· δ(θ− 2 tan−1
√

p+
2 /p

+
1 )Ψ̃(p+

1 , p
+
2 ; x, x) . (3.21)

Expanding the kernel in the above transformation intoits Fourier series, for a fixed

even spin s, one finds agreement with conformal operators of a fixed spin s which are

explicitly given in [73, 74] by

Os =
s
∑

k=0

(−1)k Γ(s + 1
2
)Γ(s + 1

2
)

k!(s− k)! Γ(s− k + 1
2
)Γ(k + 1

2
)
(∂+)kφ (∂+)s−kφ . (3.22)

As a result, in the bi-local picture one has a clear definition of the boundary z = 0 and

the notion of boundary amplitudes (boundary S-matrix). Due to the construction

through collective field theory, one is guaranteed to reproduce the boundary correla-

tors in full agreement with the O(N) model. The bulk/bi-local theory is nonlinear

with nonlinearities governed by 1/N = GN . All this provides a nontrivial check of the

collective picture and the proposal that bi-local fields provide a bulk representation

of AdS4 higher spin fields.

3. The Sp(2N) vector model

The Sp(2N) vector model in d spacetime dimensions is defined by the action

S = i

∫

dtdd−1x
[

{∂tφ
i
1∂tφ

i
2 −∇φi

1∇φi
2} − V (iφi

1φ
i
2)
]

(3.23)

where φi
1, φ

i
2 with i = 1 · · ·N are N pairs of Grassmann fields. This is of course a

model of ghosts.

In this section we will quantize this model following [79] and [80]. In this quanti-

zation, the fields φi
1 and φi

2 are Hermitian operators, while the canonically conjugate
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momenta

P i
1 = i∂tφ

i
2 , P

i
2 = −i∂tφ

i
1 (3.24)

are anti-Hermitian. The Hamiltonian H is Hermitian

H = i

∫

dd−1x
[

P i
2P

i
1 +∇φi

1∇φi
2 + V (iφi

1φ
i
2)
]

(3.25)

The (equal time) canonical anticommutation relations are

{φa
i (~x), P

b
j (~y)} = −iδijδ

abδd−1(~x− ~x′)
{φi

a(~x), φ
j
b(~y)} = {P i

a(~x), P
j
b (~y)} = 0 , (a, b = 1, 2) (3.26)

with all other anticommutators vanishing. With these anticommutators, the equa-

tions of motion for the corresponding Heisenberg picture operators

∂2
t φ

i
a −∇2φi

a + V ′ = 0 (3.27)

follow. The operator relations (3.26) allow a representation of the operators are given

by

φa
i (~x)→ φa

i (~x) , P
a
i → −i

δ

δφa
i (~x)

(3.28)

where φi
a are now Grassmann fields.

For the free theory, the solution to the equation of motion is

φi
a(~x, t) =

∫

dd−1k

(2π)d−1
√

2|k|

[

αi
a(
~k)e−i(|k|t−~k·~x) + αi†

a (~k)ei(|k|t−~k·~x)
]

(3.29)

where the operators αi
a satisfy

{αi
1(
~k), α†j

2 (~k′)} = iδijδ(~k − ~k′) , {α†i
1 (~k), αj

2(
~k′)} = −iδijδ(~k − ~k′) (3.30)

with all the other anticommutators vanishing. The Hamiltonian is given by

H = i

∫

[d~k] |~k|
[

α1(~k)
†α2(~k)− α2(~k)

†α1(~k)
]

(3.31)

The basic commutators lead to

[H,αi
a(k)] = −kαi

a(k) , [H,αi†
a ] = kαi†

a (k) (3.32)
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To discuss the quantization of the free theory it is useful to review the quantization

of the Sp(2N) oscillator, following [80] 2. The Hamiltonian is

H = i

(

− ∂2

∂φi
2∂φ

i
1

+ k2φi
1φ

i
2

)

(3.33)

where φi
1, φ

i
2 are N pairs of Grassmann numbers. Due to the Grassmann nature of the

variables, the spectrum of the theory is bounded both from below and from above.

In the Schrodinger picture, the oscillators are defined by:

φi
a =

1√
2k

[αi
a + αi†

a ] (3.34)

while the momenta are

P i
a = εab

√

k

2
(αi

b − αi†
b ) (3.35)

The ground state |0〉 and the highest state |2N〉 are then defined by the conditions

αi
a|0〉 = 0 , αi†

a |2N〉 = 0 (3.36)

with the wavefunctions

Ψ0 = exp[−ikφi
1φ

i
2] , Ψ2N = exp[ikφi

1φ
i
2] (3.37)

and the energy spectrum is given by

En = k[n−N ] , n = 0, 1, · · · , 2N (3.38)

Finally, the Feynman correlator of the Grassmann coordinates is easily seen to be

〈0|T [φi
1(t)φ

j
2(t

′)]|0〉 =
iδij

2k
e−ik|t−t′| (3.39)

Extension of these results to the free field theory is straight forward: for each mo-

mentum ~k, we have a fock space with a finite number of states.

2Note that our notation is different from that of [80]
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4. Collective Field Theory for the Sp(2N) model

In the representation (3.28), a general wavefunctional is given by Ψ[φi
a(~x), t]. Our

aim is to obtain a description of the singlet sector of the theory, i.e. wavefunctionals

that are invariant under the Sp(2N) rotations of the fields φi
a(~x). All the invariants

in field space are functions of the bi-local collective fields

ρ(~x, ~y) ≡ iεabφi
a(~x)φ

i
b(~y) (3.40)

We have defined this collective field to be Hermitian (which is why there is a i

in the definition). Notice that clearly ρ(~x, ~y) = ρ(~y, ~x). The aim now is to rewrite

the theory in terms of a Hamiltonian that is a functional of ρ(~x, ~y) and its canonical

conjugate −i δ
δρ(~x,~y)

that acts on wavefunctionals, which are in turn functionals of

ρ(~x, ~y).

It is important to remember that ρ(~x, ~y) is not a genuine bosonic field. This

will have important consequences at finite N . In a perturbative expansion in 1/N ,

however, there is no problem in treating ρ(~x, ~y) as a bosonic field [16].

Before dealing with the Sp(2N) field theory, it is useful to review some aspects of

the collective theory for the usual O(N) model, starting with the O(N) oscillator.

4.1. Collective fields for the O(N) theory. In this section we review the bi-

local collective field theory construction for the O(N) field theory, starting with the

O(N) oscillator. This has a Hamiltonian

H =
1

2
[P iP i + k2XiXi] (3.41)

The collective variable is the square of the radial coordinate σ = XiXi and the

Jacobian for transformation from Xi to σ and the angles is

J(σ) =
1

2
tσ(N−2)/2ΩN−1 (3.42)

where ΩN−1 is the volume of unit SN−1. The idea is to find the Hamiltonian H(σ, ∂
∂σ

)

which acts on wavefunctions [J(σ)]1/2Ψ(σ). The key observation of [32] is that this

can also be obtained by requiring that H(σ, ∂
∂σ

) acting on wavefunctions [J(σ)]1/2Ψ(σ)
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is Hermitian with the trivial measure dσ. This determines both the Jacobian and the

Hamiltonian and the technique generalizes to higher dimensional field theory. The

final result is well known,

Hcoll = −2
∂

∂σ
σ
∂

∂σ
+

(N − 2)2

8σ
+

1

2
k2σ (3.43)

The large-N expansion then proceeds as usual by expanding around the saddle point

solution σ0 which minimizes the potential 3,

σ2
0 =

N2

4k2
(3.44)

Clearly, we have to choose the positive sign since in this case σ is a positive real

quantity,

σ0 =
N

2k
(3.45)

which reproduces the coincident time two point function 〈0|Xi(t)Xi(t)|0〉 and the cor-

rect ground state energy, E0 = N
2
k. The subleading contributions are then obtained

by expanding around the saddle point,

σ = σ0 +

√

2N

k
η , Πσ =

√

k

2N
πη (3.46)

The quadratic part of the Hamiltonian becomes

H(2) =
1

2

[

π2
η + 4k2η2

]

(3.47)

This leads to the excitation spectrum to O(1), En = 2nk with n = 0, 1, · · · ,∞.

The Hamiltonian of course contains all powers of η. Terms with even number of the

fluctuations (πη, η) come with odd factors of σ0. This fact will play a key role in the

following.

In the following it will be necessary to consider wavefunctions. It follows directly

from (3.41) that the ground state wavefunction is given by (up to a normalization

3To see why the saddle point approximation is valid, rescale σ → Nσ and Πσ → 1
N

Πσ so that

there is an overall factor of N in front of the potential energy term. We will, however, stick to the

unrescaled fields.
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which is not important for our purposes)

Ψ0(X
i) = exp[−k

2
σ] ∼ exp[−

√

Nk

2
η] (3.48)

where we have expanded σ as in (3.46), used (3.45) and ignored an overall constant.

We should get the same result from the collective theory. Recalling that the collective

wavefunction is related to the original wavefunction by a Jacobian factor, the ground

state wavefunction follows from (3.47)

Ψ′
0(η) = [J(σ)]−

1
2 exp[−kη2] (3.49)

The presence of the Jacobian is crucial in obtaining agreement with (3.48) [48]. Ex-

panding the argument in the Jacobian in powers of η according to (3.46) it is easy to

see that the quadratic term in η, coming from the Jacobian, exactly cancels the ex-

plicit quadratic term in (3.49) and similarly the linear term in η is in exact agreement

with (3.48). The expression (3.49) contains all powers of η in the exponentiated -

these should also cancel once one takes into account the cubic and higher order terms

in the collective Hamiltonian as well as finite N corrections which we have ignored to

begin with. The above formalism can be easily generalized to an additional invariant

potential, since the latter is a function of σ.

The collective theory for O(N) field theory can be constructed following similar ar-

gument. We reproduce the relevant formulae from [32] that are direct generalizations

of the formulae for the oscillator. The O(N) model has the Hamiltonian

H =
1

2

∫

dd−1x

[

− δ2

δφi(~x)δφi(~x)
+∇φi(~x)∇φi(~x) + U [φi(~x)φi(~x)]

]

(3.50)

The singlet sector Hamiltonian in terms of the bi-local collective field σ(~x, ~y) =

φi(~x)φi(~y) and its canonically conjugate momentum Πσ(~x, ~y) is, to leading order in

1/N 4

H
O(N)
coll = 2Tr

[

(ΠσσΠσ) +
N2

16
σ−1

]

− 1

2

∫

d~x∇2
xσ(~x, ~y)|~y=~x + U(σ(~x, ~x)) (3.51)

4To subleading order there are singular terms which are crucial for reproducing the correct 1/N

contributions.
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where the spatial coordinates are treated as matrix indices.

So far our considerations are valid for an arbitrary interaction potential U . Let

us now restrict ourselves to the free theory, U = 0 to discuss the large-N solution

explicitly. In momentum space the saddle point solution is

σ(~k1, ~k2) =
N

2|~k1|
δ(~k1 − ~k2) (3.52)

Once again we have chosen the positive sign in the solution of the saddle point equa-

tion, and the saddle point value of the collective field agrees with the two point

correlation function of the basic vector field, which should be positive. The 1/N

expansion is generated in a fashion identical to the single oscillator,

σ(~k1, ~k2) = σ0(~k1, ~k2) +

(

|~k1||~k2|
N(|~k1|+ |~k2|)

)− 1
2

η(~k1, ~k2) , Πσ =

(

|~k1||~k2|
N(|~k1|+ |~k2|)

)
1
2

πη(~k1, ~k2)(3.53)

the quadratic piece becomes

H(2) =
1

2

∫

d~k1d~k2

[

πη(~k1, ~k2)πη(~k1, ~k2) + (|~k1|+ |~k2|)2η(~k1, ~k2)η(~k1, ~k2)
]

(3.54)

so that the energy spectrum is given by

E(~k1, ~k2) = |~k1|+ |~k2| (3.55)

as it should be. It is easy to check that the unequal time two point function of

the fluctuations reproduces the connected part of the two point function of the full

collective field as calculated from the free field theory. A nontrivial U can be reinstated

easily (see e.g. the treatment of the (~φ2)2 model in [20], which discusses the RG flow

to the nontrivial IR fixed point).

4.2. Collective theory for the Sp(2N) oscillator. Since there is a representa-

tion of the field operator and the conjugate momentum operator of the Sp(2N) theory

in terms of Grassmann fields, (3.28), it is clear that the derivation of the collective

field theory of the Sp(2N) model closely parallels that of the O(N) theory. In this

subsection we consider the Sp(2N) oscillator. The Hamiltonian is given by (3.33).
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The collective variable is

ρ = iεabφi
aφ

i
b (3.56)

The fully connected correlators of this collective variable have a simple relationship

with those of the O(2N) harmonic oscillator,

〈ρ(t1)ρ(t2) · · · ρ(tn)〉conn
Sp(2N) = −〈σ(t1)σ(t2) · · · σ(tn)〉conn

SO(2N) (3.57)

This result follows from (3.39) and the application of Wick’s theorem for Grassmann

variables.

The collective variable ρ is a Grassmann even variable - it is not an usual bosonic

variable. This key fact is intimately related to the finite number of states of the

Sp(2N) oscillator. In this section we will show that in a 1/N expansion we can

nevertheless proceed, defering a proper discussion of this point to a later section.

The Hamiltonian for the collective theory is obtained by the same method used

to obtain the collective theory in the bosonic case, with various negative sign coming

from the Grassmann nature of the variables. Using the chain rule and taking care of

negative signs coming because of Grassmann numbers, one gets the Jacobian J ′(ρ)

(determined by requiring the hermicity of J−1/2HJ1/2)

J ′(ρ) = A′ ρ−(N+1) (3.58)

where A′ is a constant. The negative power of ρ of course reflects the Grassmann

nature of the variables. 5 Despite this difference, the final collective Hamiltonian is

in fact identical to the O(2N) oscillator collective Hamiltonian

H
Sp(2N)
coll = −2

∂

∂ρ
ρ
∂

∂ρ
+
N2

2ρ
+

1

2
k2ρ (3.59)

This leads to the same saddle point equation, and the solutions satisfy the same

equation as (3.44) with N → 2N .

5This ρ dependence of the Jacobian follows from a direct calculation J ′(ρ) =
∫

dφi
1dφi

2δ(ρ −

iφi
1φ

i
2) =

∫

dλeiλρ
∫

dφi
1dφi

2 e−iλφi

1
φi

2 ∼ ρ−(N+1)

32



In the O(2N) oscillator, we had to choose the positive sign, since σ is by definition

a real positive variable. In this case, there is no reason for ρ to be positive. In fact

we need to choose the negative sign, since (3.57) requires that the one point function

of ρ must be the negative of the one point function of σ.

ρ0 = −N
k

(3.60)

It is interesting that the singlet sectors of the O(2N) and Sp(2N) models are described

by two different solutions of the same collective theory.

The leading order ground state energy is the Hamiltonian evaluated on the saddle

point,

Egs = −Nk (3.61)

in agreement with (3.38). The fluctuation Hamiltonian is obtained as usual by ex-

panding

ρ = ρ0 +

√

4N

k
ξ , Πρ =

√

k

4N
πξ (3.62)

The quadratic Hamiltonian is now negative, essentially because of the negative sign

in the saddle point,

H
(2)
ξ = −1

2

[

π2
ξ + 4k2ξ2

]

(3.63)

A standard quantization of this theory leads to a spectrum which is unbounded from

below. We will now argue that we need to quantize this theory rather differently, in a

way similar to the treatment of [49]. This involves defining annihilation and creation

operators aξ, a
†
ξ

ξ =
1√
4k

[aξ + a†ξ] , πξ = i
√
k[aξ − a†ξ] (3.64)

which now satisfy

[aξ, a
†
ξ] = −1 , [H, aξ] = −2kaξ , [H, a†ξ] = 2ka†ξ (3.65)

Because of the negative sign of the first commutator in (3.65) a standard quantization

will lead to a highest energy state annihilated by a†ξ, and then the action of powers of
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aξ leads to an infinite tower of states with lower and lower energies. The highest state

has a normalizable wavefunction of the standard form e−kξ2
(Note that the expression

for πξ has a negative sign compared to the usual harmonic oscillator). It is easy to

see that this standard quantization does not reproduce the correct two-point function

of the Sp(2N) theory, does not lead to the correct spectrum (3.38) and, as shown

below, does not lead to the correct wavefunction.

All this happens because ρ and hence ξ is not really a bosonic variable, and

this allows other possibilities. Consider now a state |0〉ξ which is annihilated by the

annihilation operator aξ. This leads to a wavefunction exp[kξ2], which is inadmissible

if ξ is really a bosonic variable since it would be non-normalizable. However the true

integration is over the Grassmann partons of these collective fields, and in terms of

Grassmann integration this wavefunction is perfectly fine. This is in fact the state

which has to be identified with the ground state of the Sp(2N) oscillator. Including

the factor of the Jacobian, the full wavefunction is (at large N)

Ψ′
0ξ[ξ] = [J ′(ρ)]−1/2exp[kξ2] = [−N

k
+ 2

√

N

k
ξ]N/2exp[kξ2] (3.66)

Expanding the Jacobian factor in powers of ξ one now sees that the term which is

quadratic in ξ cancels exactly, leaving with

Ψ′
0ξ[ξ] = exp[−

√
Nkξ +O(ξ3)] (3.67)

This is easily seen to exactly agree with Ψ0 in (3.37)

Ψ0 ∼ exp[−1

2
kρ] ∼ exp[−

√
Nkξ] (3.68)

up to a constant. Once again we need to take into account the interaction terms in the

collective Hamiltonian to check that the O(ξ3) terms cancel. It can be easily verified

that the propagator of fluctuations ξ will now be negative of the usual harmonic

oscillator propagator. Furthermore the action of a†ξ now generates a tower of states

with the energies (3.38) - except that the integer n is not bounded by N .

The fact that we get an unbounded (from above) spectrum from the collective

theory is not a surprise. This is an expansion around N = ∞ and at N = ∞
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the spectrum of Sp(2N) is also unbounded. At finite N a change of variables to

ρ is not useful because of the constraints coming from the Grassmann origin of ρ.

Nevertheless, even in the 1/N expansion, the Grassmann origin allows us to consider

wavefunctions which would be otherwise considered inadmissible.

The negative propagator ensures that the relationship (3.57) is satisfied for the 2

point functions. Once this choice is made, the relationship (3.57) holds for all m-point

functions to the leading order in the large-N limit. As commented earlier, a term

with even number of πξ or ξ would have an odd number of factors of ρ0. Therefore

a n-point vertex in the theory will differ from the corresponding n-point vertex of

the O(N) theory by a factor of (−1)n+1. The connected correlator which appears in

(3.57) is the sum of all connected tree diagrams with n external legs. The collective

theory gives us the following Feynman rules

1 Every propagator contributes a negative sign.

2 A p point vertex has a factor of (−1)p+1

We now argue that these rules ensure the validity of the basic relation (3.56). We do

it by the following simple diagrammatic method:
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Figure 2. Connected tree level correlators of the collective theory

Consider first the simplest diagram for a n-point function, figure A, which is a

star graph. The net sign of the diagram is (−1)n+1 × (−1)n = −1, where the first
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factor is from the vertex a0 and the second one from the number of lines. Now we

proceed to construct all other tree level diagrams from A, by pulling ‘r’ lines resulting

in figure B, which now has vertices, a1 and b1 joined by a new line. It is easy to see,

that the sign of figure A is not changed by this operation. The net sign of figure

B is (−1)(n−r+1)+1 × (−1)(r+1)+1 × (−1)(n+1) = −1, where the 3 factors are from a1,

b1 and the number of lines respectively. In figure C we repeat this method for the

substar diagrams until we exhaust all possibilities. It is easy to see that the sign stays

invariant. Assigning a sign α to the blob, we first find the net sign of the left diagram

in figure C. It turns out to be, α× (−1)(k+1)+1 × (−1)k+1 = −α. After the “pulling”

operation we get α×(−1)(k−r+2)+1×(−1)(r+1)+1×(−1)k+1+1 = −α. Thus it is proved

that in every move the sign is preserved. This proves the relationship (3.57) for all

correlation functions.

4.3. Sp(2N) Correlators. Our discussion of the bosonic O(N) collective field

theory shows that the Sp(2N) collective field theory in momentum space is a straight-

forward generalization. In this subsection we discuss the relevant features of the

collective theory for the free Sp(2N) model.

The collective Hamiltonian is again exactly the same as in the O(N) theory, given

by (3.51) with σ → ρ. Since the connected correlators of the collective fields satisfy

〈ρ(~k1, ~k
′
1, t1)ρ(

~k2, ~k
′
2, t2) · · · ρ(~kn, ~k

′
n, tn)〉conn

Sp(2N)

= −〈σ(~k1, ~k
′
1, t1)σ(~k2, ~k

′
2, t2) · · · σ(~kn, ~k

′
n, tn)〉conn

SO(2N) (3.69)

we now need to choose the negative saddle point,

ρ0(~k,~k
′, t) = −N

|~k|
δ(~k − ~k′) (3.70)

The fluctuation Hamiltonian once again has a factor of (−1)n+1 for the n-point vertex.

In particular, the propagator of the collective field is negative of that of the O(N) col-

lective field - the quadratic Hamiltonian has an overall negative sign! This is required

- the diagramatic argument for the Sp(2N) oscillator generalizes in a straightforward

fashion, ensuring that (3.69) holds.
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5. Bulk Dual of the Sp(2N) model

In [20], it was proposed that the collective field theory for the d dimensional free

O(N) theory is in fact Vasiliev’s higher spin theory in AdSd+1. It is easy to see that

the collective field has the right collection of fields. Consider for example d = 3. The

field depends on four spatial variables, which may be reorganized as three spatial

coordinates one of which is restricted to be positive and an angle. A fourier series in

the angle then gives rise to a set of fields χ±n which depend on three spatial variables,

with the integer n denoting the conjugate to the angle. Symmetry under interchange

of the arguments of the collective field then requires n to be even integers. But this

is precisely the content of a theory of massless even spin fields in four space-time

dimensions, with n labelling the spin and the two signs corresponding to the two

helicities. (Recall that in four space-time dimensions massless fields with any spin

have just two helicity states).

The precise relationship between collective fields and higher spin fields in AdS was

found in [30] which we now summarize for d = 3. The correspondence is formulated

in the light cone quantization. Denote the usual Minkowski coordinates on the space-

time on which the O(N) fields live by t, y, x and define light cone coordinates

x± =
1√
2
(t± y) (3.71)

The conjugate momenta to x+, x− are denoted by p−, p+. Then in light front quanti-

zation where x+ is treated as time, the Schrodinger picture fields are φi(x−, x) while

the momentum space fields are given by φi(p+, p). The corresponding collective field

is then defined as

σ(p+
1 , p1; p

+
2 , p2) = φi(p+

1 , p1)φ
i(p+

2 , p2) (3.72)

The fluctuation of this field around the saddle point is denoted by Ψ(p+
1 , p1; p

+
2 , p2).

Now define the following bilocal field

Φ(p+, px, z, θ) =

∫

dpzdp+
1 dp

+
2 dp1dp2 K(p+, px, z, θ; p+

1 , p1, p
+
2 , p2)

·Ψ(p+
1 , p1; p

+
2 , p2) (3.73)
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where the kernel is given by

K(p+, px, z, θ; p+
1 , p1, p

+
2 , p2)

= z eizpz δ(p+
1 + p+

2 − p+) δ(p1 + p2 − p)

·δ(p1

√

p+
2

p+
1

− p2

√

p+
1

p+
2

− pz) δ(2 tan−1

√

p+
2

p+
1

− θ) (3.74)

In [30] it was shown that the Fourier transforms of the field Φ(p+, px, z, θ) with respect

to θ satisfy the same linearized equation of motion as the physical helicity modes of

higher spin gauge fields in AdS4 in light cone gauge. The metric of this AdS4 is given

by the standard Poincare form

ds2 =
1

z2
[−2dx+dx− + dx2 + dz2] =

1

z2
[−dt2 + dy2 + dx2 + dz2] (3.75)

The momenta p+, p are conjugate to x−, x. The additional dimension generated from

the large-N degrees of freedom is z, which is canonically conjugate to pz and is given

in terms of the phase space coordinate of the bi-locals by

z =
(x1 − x2)

√

p+
1 p

+
2

p+
1 + p+

2

(3.76)

In particular, the linearized equation for the spin zero field, ϕ(x−, x, z), follows from

the quadratic action

S =
1

2

∫

dx+dx−dzdx

[

1

z2

(

−2∂+ϕ∂−ϕ− (∂xϕ)2 − (∂zϕ)2
)

+
2

z4
ϕ2

]

(3.77)

which is of course the action of a conformally coupled scalar in the AdS4 with coor-

dinates given by (3.76). The actions for the spin-2s fields can be similarly written

down. Even though these actions are derived using light cone coordinates, they can be

covariantized easily since these are free actions. In terms of the coordinates t, y, x, z

the scalar action is given by

S =
1

2

∫

dtdzdxdy

[

1

z2

(

(∂tϕ)2 − (∂yϕ)2 − (∂xϕ)2 − (∂zϕ)2
)

+
2

z4
ϕ2

]

(3.78)

Let us now turn to the Sp(2N) collective theory. One can define once again the

fields as in (3.73) and (3.74). The coordinates (x+, x−, x, z) will continue to transform

appropriately under AdS isometries. However, we saw earlier that the quadratic part
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of the Hamiltonian, and therefore the quadratic part of the action will have an overall

negative sign.

A negative kinetic term signifies a pathology. Indeed we derived this theory with

the Lorentzian signature Sp(2N) model, which has negative norm states. The nega-

tive kinetic term of the collective theory is possibly intimately related to this lack of

unitarity.

However, the form of the action (3.78) cries out for a analytic continuation

z = iτ , t = −iw (3.79)

Under this continuation the action, S becomes

S ′ =
1

2

∫

dτdwdxdy

[

1

τ 2

(

(∂τϕ)2 − (∂yϕ)2 − (∂xϕ)2 − (∂wϕ)2
)

− 2

τ 4
ϕ2

]

(3.80)

The sign of the mass term has not changed in this analytic continuation, and this

action has become the action of a conformally coupled scalar field in de Sitter space

with the metric

ds2 =
1

τ 2
[−dτ 2 + dx2 + dy2 + dw2] (3.81)

This mechanism works for all even higher spin fields at the quadratic level.

To summarize, the collective field theory of the three dimensional Lorentzian

Sp(2N) model can be written as a theory of massless even spin fields in AdS4, but

with negative kinetic terms. Under a double analytic continuation this becomes the

action in dS4 with positive kinetic terms. This is consistent with the conjecture of [78]

that the Euclidean Sp(N) model is dual to Vasiliev theory in dS4. It is interesting

to note that the way an emergent holographic direction is similar to the way the

Liouville mode has to be interpeted as a time dimension in worldsheet supercritical

string theory [56]. In this latter case, the sign of the kinetic term for the Liouville

mode is negative for d > dcr .

Even for the O(N) model, the collective field is an represents seemingly an over-

complete description, since for a finite number of points in space K, one replaces at

most NK variables by K2 variables, which is much larger in the thermodynamic and
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continuum limit. However, in the perturbative 1/N expansion this is not an issue and

the collective theory is known to reproduce the standard results of the O(N) model.

The issue becomes of significance at finite N level. The relevance of incorporating for

such features has been noted in [52, 41].

For the fermionic Sp(2N) model, there appears potentially an even more im-

portant redundancy related to the Grassmannian origin of the construction. Conse-

quently the fields are to obey nontrivial constraint relationships and the Hilbert space

is subject to a cutoff of highly excited states. This ‘exclusion principle’ was noted

already in the AdS correspondence involving SN orbifolds[75, 76, 77].

In an expansion around N = ∞ most effects of this are invisible. Our discussion

shows that this can be regarded as a theory of higher spin fields in dS that is insensitive

to these effects. However, as we saw above, the Grassmannian origin was already of

importance in choosing the correct saddle point and the correct quantization of the

quadratic Hamiltonian. In the next section we will address the question of finite

N and the Hilbert space of the bi-local theory. In the framework of a geometric

(pseudo-spin) representation, we will give evidence that the bi-local theory is non-

perturbatively satisfactory at the finite N level.

6. Geometric Representation and The Hilbert Space

The bi-local collective field representation is seen to give a bulk description dS

space and the Higher Spin fields. It provides an interacting theory with vertices

governed by G = 1/N as the coupling constant. We will now show that the collective

theory has an equivalent geometric (Pseudo-spin) variable description appropriate

for nonperturbative considerations. The essence of this (geometric) description is in

reinterpreting the bi-local collective fields (and their canonical conjugates) as matrix

variables (of infinite dimensionality) endowed with a Kähler structure.

This geometric description will provide a tractable framework for quantization and

non-perturbative definition of the bi-local and HS de Sitter theory. It will be seen
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capable to incorporate non-perturbative features related to the Grassmannian ori-

gin of bi-local fields and its Hilbert space. Pseudo-spin collective variables represent

all Sp(2N) invariant variables of the theory (both commuting and non-commuting).

These close a compact algebra and at large N are constrained by the corresponding

Casimir operator. One therefore has an algebraic pseudo-spin system whose non-

linearity is governed by the coupling constant G = 1/N . As such they have been

employed earlier for developing a large N expansion [90] and as a model for quanti-

zation [91]. This version of the theory is in its perturbative (1/N) expansion identical

to the bi-local collective representation. It therefore has the same map to and cor-

respondence with Higher Spin dS4 at perturbative level. We will see however that

the geometric representation becomes of use for defining (and evaluating) the Hilbert

space and its quantization.

To describe the pseudo-spin description of the Sp(2N) theory we will follow the

quantization procedure of [93]. In this approach one starts from the action:

S =

∫

ddx dt(∂µηi
1∂µη

i
2) (3.82)

and deduces the canonical anti-commutation relations

{ηi
1(x, t)∂tη

j
2(x

′, t)} = −{ηi
2(x, t)∂tη

j
1(x

′, t)} = iδd(x− x′)δij (3.83)

The quantization based on the mode expansion

ηi
1(x) =

∫

ddk

(2π)d/2
√

2ωk

(ai†
k+e

−ikx + ai
k−e

ikx)

ηi
2(x) =

∫

ddk

(2π)d/2
√

2ωk

(−ai†
k−e

−ikx + ai
k+e

ikx) (3.84)

with

{ai
k−, a

j†
k′−} = {ai

k+, a
j†
k′+} = δd(k − k′)δij (3.85)

Note that in this approach the operators ηi
a are not Hermitian, but pseudo-Hermitian

in the sense of [83].
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Pseudo-spin bi-local variables will be introduced based on Sp(2N) invariance, we

have the vectors:

η = (η1
1 , η

1
2, η

2
1 , η

2
2, · · · , ηN

1 , η
N
2 )

a(k) = (a1
k−, a

1
k+, a

2
k−, a

2
k+, · · · , aN

k−, a
N
k+)

ã(k) = (a1†
k+,−a

1†
k−, a

2†
k+,−a

2†
k−, · · · , aN+

k† ,−a
N†
k−) (3.86)

and the notation:

η(x) =

∫

ddk

(2π)d/2
√

2ωk

(ã(k)e−ikx + a(k)eikx) (3.87)

so that a complete set of Sp(2N) invariant operators now follows:

S(p1, p2) =
−i

2
√
N
aT (p1)εNa(p2) =

i

2
√
N

N
∑

i=1

(ai
p1+

ai
p2− + ai

p2+
ai

p1−)

S†(p1, p2) =
−i

2
√
N
ãT (p1)εN ã(p2) =

i

2
√
N

N
∑

i=1

(ai†
p1+a

i†
p2− + ai†

p2+a
i†
p1−)

B(p1, p2) = ãT (p1)εNa(p2) =
N
∑

i=1

ai†
p1+a

i
p2+

+ ai†
p1−a

i
p2− (3.88)

and εN = ε⊗ IN , ε =





0 1

−1 0





These invariant operators close an invariant algebra. The commutation relations

are found to equal:

[

S(~p1, ~p2), S
†(~p3, ~p4)

]

=
1

2
(δ~p2,~p3δ~p4,~p1 + δ~p2,~p4δ~p3,~p1)−

1

4N
[δ~p2,~p3B(~p4, ~p1) + δ~p2,~p4B(~p3, ~p1)

+ δ~p1,~p3B(~p4, ~p2) + δ~p1,~p4B(~p3, ~p2)]
[

B(~p1, ~p2), S
†(~p3, ~p4)

]

= δ~p2,~p3S
†(~p1, ~p4) + δ~p2,~p4S

†(~p1, ~p3)
[

B(~p1, ~p2), S(~p3, ~p4)
]

= −δ~p1,~p3S(~p2, ~p4)− δ~p1,~p4S(~p2, ~p3) (3.89)

The singlet sector of the original Sp(2N) theory is characterized by a further

constraint. This constraint is is associated with the Casimir operator of of the algebra

and can be shown to take the form:

4

N
S† ? S + (1− 1

N
B) ? (1− 1

N
B) = I (3.90)
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Here we have used the matrix star product notation: ? product as: with A ? B =
∫

d~p2A(~p1~p2)B(~p2~p3).

The form of the Casimir, which commutes with the above pseudo-spin fields points

to the compact nature of the bi-local pseudo-spin algebra associated with the Sp(2N)

theory. This will have major consequences which we will highlight later.

Indeed it is interesting to compare the algebra with the bosonic case, where we

have:

S(p1, p2) =
1

2
√
N

2N
∑

i=1

ai(p1)ai(p2)

S†(p1, p2) =
1

2
√
N

2N
∑

i=1

a†i(p1)a
†
i (p2)

B(p1, p2) =
2N
∑

i=1

a†i (p1)ai(p2) (3.91)

with the commutation relations:

[

S(~p1, ~p2), S
†(~p3, ~p4)

]

=
1

2
(δ~p2,~p3δ~p4,~p1 + δ~p2,~p4δ~p3,~p1) +

1

4N
[δ~p2,~p3B(~p4, ~p1) + δ~p2,~p4B(~p3, ~p1)

+ δ~p1,~p3B(~p4, ~p2) + δ~p1,~p4B(~p3, ~p2)]
[

B(~p1, ~p2), S
†(~p3, ~p4)

]

= δ~p2,~p3S
†(~p1, ~p4) + δ~p2,~p4S

†(~p1, ~p3)
[

B(~p1, ~p2), S(~p3, ~p4)
]

= −δ~p1,~p3S(~p2, ~p4)− δ~p1,~p4S(~p2, ~p3) (3.92)

In this case the Casimir constraint is found to equal:

− 4

N
S† ? S + (1 +

1

N
B) ? (1 +

1

N
B) = I (3.93)

featuring the non-compact nature of the bosonic problem.

We can therefore see that the singlet sectors of the fermionic Sp(2N) theory

and the bosonic O(2N) theory can be described in analogy to a bi-local pseudo-spin

algebraic formulations with a quadratic Casimir taking the form:

4γS† ? S + (1− γB) ? (1− γB) = I (3.94)

the difference being that with γ = 1
N

(− 1
N

) for the fermionic (bosonic) case respec-

tively. This signifies the compact versus the non-compact nature of the algebra, but
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also exhibits the relationship obtained through the N ↔−N switch that was central

in the argument for de Sitter correspondence in [78].

From this algebraic bi-local formulation one can easily see the the collective field

representation(s) that we have discussed in sections 2 and 3. Very simply, the Casimir

constraints can be solved, and the algebra implemented in terms of a canonical pair

of bi-local fields:

S(p1p2) =

√−γ
2

∫

dy1dy2e
−i(p1y2+p2y2){− 2

κp1κp2

Π ?Ψ ?Π(y1y2)−
1

2γ2κp1κp2

1

Ψ
(y1y2)

+
κp1κp2

2
Ψ(y1y2)− i

κp1

κp2

Ψ ?Π(y1y2)− i
κp2

κp1

Π ? Ψ(y1y2)}

S†(p1p2) =

√−γ
2

∫

dy1dy2e
−i(p1y2+p2y2){− 2

κp1κp2

Π ?Ψ ?Π(y1y2)−
1

2γ2κp1κp2

1

Ψ
(y1y2)

+
κp1κp2

2
Ψ(y1y2) + i

κp1

κp2

Ψ ?Π(y1y2) + i
κp2

κp1

Π ?Ψ(y1y2)}

B(p1p2) =
1

γ
+

∫

dy1dy2e
−i(p1y2+p2y2){ 2

κp1κp2

Π ? Ψ ?Π(y1y2) +
1

2γ2κp1κp2

1

Ψ
(y1y2)

+
κp1κp2

2
Ψ(y1y2)− i

κp1

κp2

Ψ ?Π(y1y2) + i
κp2

κp1

Π ? Ψ(y1y2)} (3.95)

where κp =
√
ωp.

Recalling that the Hamiltonian is given in terms of B, we now see that its bi-

local form is the same in the fermionic and the bosonic cases. This explains the

feature that we have established before by direct construction. While the bi-local

field representation of B is the same in the fermionic and bosonic cases, the difference

is seen in the representations of operators S and S†. These operators create singlet

states in the Hilbert space and the difference contained in the sign of γ implies the

opposite shifts for the background fields that we have identified. The algebraic pseudo

spin reformulation is therefore seen to account for all the perturbative (1/N) features

of the the bi-local theory that we have identified. However, we would like to emphasize

that, the algebraic formulation provides a proper framework for defining the bi-local

Hilbert space.

6.1. Quantization and the Hilbert Space. The bi-local pseudo-spin algebra

has several equivalent representations that turn out to be useful. Beside that col-

lective representation that we have explained above, one has the simple oscillator

44



representation:

S(p1, p2) = α ? (1− 1

N
α† ? α)

1
2 (p1, p2)

S†(p1, p2) = (1− 1

N
α† ? α)

1
2 ? α†(p1, p2)

B(p1, p2) = 2 α† ? α(p1, p2) (3.96)

with standard canonical canonical commutators (or Poisson brackets).

A more relevant geometric representation is obtained through a change:

α = Z(1 +
1

N
Z̄Z)−

1
2

α† = (1 +
1

N
Z̄Z)−

1
2 Z̄ (3.97)

The pseudo-spins in the Z representation are given by:

S(p1, p2) = Z ? (1 +
1

N
Z̄ ? Z)−1(p1, p2)

S†(p1, p2) = (1 +
1

N
Z̄ ? Z)−1 ? Z̄(p1, p2)

B(p1, p2) = 2 Z ? (1 +
1

N
Z̄ ? Z)−1 ? Z̄(p1, p2) (3.98)

It is easy to see that these satisfy the Casimir constraint: 4
N
S†?S+(1− 1

N
B)2 = 1.

One can write the Lagrangian in this Z representation as:

L = i

∫

dt tr[Z(1 +
1

N
Z̄Z)−1 ˙̄Z − Ż(1 +

1

N
Z̄Z)−1Z̄]−H (3.99)

For regularization purposes, it is useful to consider putting ~x in a box and limiting

the momenta by a cutoff Λ: this makes the bi-local fields into finite dimensional

matrices (which we will take to be a size K). For Sp(2N) one deals with a K ×K
dimensional complex matrix Z, where we have obtained in the above a compact

symmetric (Kähler) space :

ds2 = tr[dZ(1− Z̄Z)−1dZ̄(1− ZZ̄)−1] (3.100)

According to the classification of [92], this would correspond to manifoldMI(K,K).

We note that the standard fermionic problem which was considered in detail in [91]

corresponds to manifold MIII(K,K) of complex antisymmetric matrices.
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Quantization on Kähler manifolds in general has been formulated in detail by

Berezin [91]. We also note that the usefulness of Kähler quantization for discretizing

de Sitter space was pointed out by A. Volovich in a quantum mechanical scenario[25].

In the present quantization, we are dealing with a field theory with infinitely many

degrees of freedom and an infinite number of Khaler matrix variables. We will now

summarize some of the results of quantization which are directly relevant to the

Sp(2N) bi-local collective fields theory. Commutation relations of this system follow

from the Poisson brackets associated with the Lagrangian L(Z̄, Z). States in the

Hilbert space are represented by (holomorphic) functions (functionals) of the bi-locals

Z(k, l). A Kähler scalar product defining the bi-local Hilbert space reads:

(F1, F2) = C(N,K)

∫

dµ(Z̄ , Z)F1(Z)F2(Z̄) det[1 + Z̄Z]−N (3.101)

with the (Kähler) integration measure:

dµ = det[1 + Z̄Z]−2KdZ̄dZ (3.102)

The normalization constant is found from requiring (F1, F1) = 1 for F = 1. Let:

a(N,K) =
1

C(N,K)
=

∫

dµ(Z̄, Z) det[1 + Z̄Z]−N (3.103)

This leads to the matrix integral (complex Penner Model)

a(N,K) =
1

C(N,K)
=

∫ K
∏

k,l=1

dZ̄(k, l)dZ(k, l) det[1 + Z̄Z]−2K−N (3.104)

which determines C(N,K).

The following results on quantization of this type of Kähler system are of note:

First, the parameter N : much like for ordinary spin, one can show that N (and

thereforeG in Higher Spin Theory) can only take integer values, i.e. N = 0, 1, 2, 3, · · · .
Next, one has question about the total number of states in the above Hilbert space.

Naively, the bi-local theory would seem to grossly overcount the number of states of

the original fermionic theory. Originally one essentially had 2NK fermionic degrees

of freedom with a finite Hilbert space. The bi-local description is based on (complex)

bosonic variables of dimensions K2 and the corresponding Hilbert space would appear

46



to be much larger. However, due to the compact nature of the phase space, the number

of states is in fact much smaller.

We will now evaluate this number (at finite N and K) for the present case of

Sp(2N) (in [91] ordinary fermions were studied) and show that the exact dimen-

sion of the bi-local Hilbert space in geometric (Kähler) quantization agrees with the

dimension of the singlet Hilbert space of the Sp(2N) fermionic theory.

The dimension of quantized Hilbert space is found as follows: considering the

operator Ô = I one has that:

Tr(I) = C(N,K)

∫ K
∏

k,l=1

dZ̄(k, l)dZ(k, l) det[1 + Z̄Z]−2K (3.105)

Consequently the dimension of the bi-local Hilbert space is given by:

Dim HB =
C(N,K)

C(0, K)
=

a(0, K)

a(N,K)
(3.106)

The evaluation of the matrix (Penner) integral therefore also determines the di-

mension of the bi-local Hilbert space. Since this evaluation is a little bit involved, we

present it in the following. Evaluation of matrix integrals (for real matrices) is given

in [81] the extension to the complex case was considered in [82].

We will use results of [92], whereby every (complex) matrix can be reduced

through (symmetry) transformations to a diagonal form:

Z(k, l)→























ω1

ω2 0

ω3

0 . . .

ωK























(3.107)

and the matrix integration measure becomes:

[dZ̄dZ] = |∆(ω)|2
K
∏

l=1

dωldΩ (3.108)
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where dΩ denotes “angular” parts of the integration and ∆(x1, · · · , xK) =
∏

k<l(xk−
xl) is a Vandermonde determinant, with xi = ω2

i . Consequently the matrix integral

for a(N,K) (and C(N,K)) becomes:

a(N,K) =
Vol Ω

K!

∫

∆(x1, · · · , xK)2
∏

l

(1 + ω2
l )

−2K−N
∏

l

dωl (3.109)

Through a change of variables, xi = − yi

1−yi
, we get:

a(N,K) =
Vol Ω

2KK!

∫ Λ

0

K
∏

i

dyi∆(y1, · · · , yK)2
∏

i

(1− yi)
N (3.110)

This integral can be evaluated exactly. It belongs to a class of integrals evaluated

by Selberg in 1944 [84]:

I(α, β, γ, n) =

∫ 1

0

dx1 · · ·
∫ 1

0

dxn|∆(x)|2γ
n
∏

j=1

xα−1
j (1− xj)

β−1

=
n−1
∏

j=0

Γ(1 + γ + jγ)Γ(α + jγ)Γ(β + jγ)

Γ(1 + γ)Γ(α + β + (n+ j − 1)γ)
(3.111)

We have the case with α = 1, β = N + 1, γ = 1, n = K and

I(1, N + 1, 1, K) =
K−1
∏

j=0

Γ(2 + j)Γ(1 + j)Γ(N + 1 + j)

Γ(2)Γ(N +K + j + 1)
(3.112)

We therefore obtain the following formula for the number of states in our bi-local

Sp(2N) Hilbert space:

Dim HB =
K−1
∏

j=0

Γ(j + 1)Γ(N +K + j + 1)

Γ(K + j + 1)Γ(N + j + 1)
(3.113)

We have compared this number with explicit enumeration of Sp(2N) invariant

states in the fermionic Hilbert space (for low values of N and K) and found com-

plete agreement. It is probably not that difficult to prove agreement for all N,K.

This settles however the potential problem of overcompletness of the bi-local repre-

sentation. Since the Sp(2N) counting uses the fermionic nature of creation operators

and features exclusion when occupation numbers grow above certain limit it is seen
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that bi-local geometric quantization elegantly incorporates these effects. The com-

pact nature of the associated infinite dimensional Kähler manifold secures the correct

dimensionality of the the singlet Hilbert space. By using Stirling’s approximation

for the number of states in the bi-local Hilbert space (3.113), we see the dimension

growing linearly in N (with K � N):

ln(Dim HB) ∼ 2NK ln 2 at leading order (3.114)

This is a clear demonstration of the presence of an N -dependent cutoff in agreement

with the fermionic nature of the original Sp(2N) Hilbert space. So in the nonlinear

bi-local theory with G = 1/N as coupling constant, we have the desired effect that

the Hilbert space is cutoff through 1/G effects. Consequently we conclude that the

geometric bi-local representation with infinite dimensional matrices Z(k, l) provides

a complete framework for quantization of the bi-local theory and of de Sitter HS

Gravity.

The following further results on quantization of this type of Kähler systems have

direct relevance to Higher Spin duality. First, the parameter N (and therefore G

in Higher Spin Theory) can only take integer values, i.e. N = 0, 1, 2, 3, · · · . This

feature might appear to be very puzzling from Vasiliev’s theory itself, but the fact

that there exists a geometric (Kähler manifold) representation of the theory provides

the explanation. We therefore expect that Vasiliev’s theory when suitably canonically

quantized takes the form of the above geometric Kähler system.

We also mention a very recent study of finite N → N + 1 deformation in these

theories [94]. This can possibly also be investigated by the present Hilbert space

method as well.

7. Phase Transition

It was shown by Shenker and Yin [41] that the N -component vector model under-

goes a phase transition at high temperature. The transition occurs at temperature of

order
√
N where 1/N = G plays the role of coupling constant. This is an important

non-perturbative effect that characterizes Higher Spin theories. The argument in [41]
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is based on the exact analysis of O(N) vector model partition function. Here we will

show how the transition (and the presence of two phases) can be understood from

the bulk field theoretic viewpoint.

We have already described two versions of bi-local field theory: the covariant

one and a canonical (time-like) gauge one. The canonical gauge version (with the

Hamiltonian in (3.10)) represents the singlet spectrum of the theory, and then the

partition function is simply

Z(β) = Tr
(

e−βH(2)
)

(3.115)

giving in the large-N limit the answer

F (β) =
∑

~k1,~k2

ln
(

1− e−βω(~k1,~k2)
)

(3.116)

corresponding to the singlet bi-local spectrum with E~k1,~k2
= ω(~k1, ~k2) = |~k1| + |~k2|.

This leads to the O(1) result:

F1(β) ∼ V ζ(5)T 4 (3.117)

where the power (and the argument of the ζ-function) features the dimensionality

D = 4 of the bi-local space: (~x1, ~x2). This recovers the lower phase of [41].

The upper phase can be seen through a stationary point of the bi-local action as it

was given in [20]. Namely, the covariant collective action (3.7) at finite temperature

(with periodic boundary conditions in Euclidean time) has the following stationary-

point solution:

Φβ(x, y) =
∑

kµ

eik·(x−y)

k2
0 − ~k2

(3.118)

which is quantized as k0 = 2πn
β

. Evaluation of the action leads to the O(N) partition

function:

FN ≡ Sc(Φβ) = −N
2

∑

n,~k

ln

(

~k2 + (
2πn

β
)2

)

(3.119)

giving the upper phase result

FN(β) ∼ −NV ζ(3)T 2 (3.120)
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as stated, this result is proportional to N characterizing the N -component vector

model. In this and also lower phase case the volume is inherited from the special

volume of the CFT.

An interpretation of this phase transition was suggested by Shenker and Yin in

terms of an increase/decrease of number of degrees of freedom, namely from bi-locals

to N -component partons. From the bi-local field theory viewpoint, we would like to

offer an additional interpretation. In terms of the collective dipole (much like in the

case of a string) the upper temperature phase is associated with condensation of extra

(“winding”) modes, an effect which gives a classical result of order N = 1/G. The

covariant gauge bi-local field (used in exhibiting the upper phase) indeed contains such

an extra mode whose relevance comes at finite temperature. It will be interesting to

investigate this scenario and in general the physics of this interesting phase transition

further.
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CHAPTER 4

Coleman-Mandula Theorem in Higher Spin Theory

1. Overview

Since conserved currents imply the existence of an infinite sequence of conserved

charges and higher symmetries, one is faced with the question regarding the imple-

mentation (and implication) of the Coleman-Mandula theorem. This question was

raised and addressed in the recent work of Maldacena and Zhiboedov [44, 45] who

were able to show the existence of conserved currents (charges) implies that the cor-

relation functions are built in terms of free fields. This demonstrates the simplicity

of the corresponding Vasiliev theory. One still, however, has the question regarding

the triviality of the theory in the bulk. In standard field theories this question is

addressed (and answered) through the S-matrix. The Coleman-Mandula theorem

in particular would imply S = 1 for theories with higher symmetries. Due to the

equivalence theorem (under field transformations) this means that there exists a field

redefinition which linearizes the field equations. In the AdS/CFT framework one

sometimes think of the correlators as taking the role analogous to an S-matrix. A

proposal along this line, offered by Mack [86, 87], has been nicely implemented in

recent works [97, 98, 99, 100]. If this analogy is taken at face value, one has the puz-

zling fact that this “boundary” S-matrix is non-trivial, even for the correspondence

based on free theory.

We have in [20, 30] formulated a constructive approach to bulk AdS duality and

HS Gravity in terms of bi-locals. It leads to a nonlinear, interacting theory (with

1/N as the coupling constant) which was seen to possess all the properties of the

dual AdS theory. This theory reproduces arbitrary-point correlation functions and

provides a construction of HS theory (in various gauges) based on CFT [40]. The

construction also, as we will explain, offers a framework for defining and calculating
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an S-matrix and addressing the implementation of the Coleman-Mandula theorem in

the nonlinear bulk framework. The construction is based on the two-particle collective

dipole and its interactions in the large N limit. It has been known since the early

work that nontrivial collective phenomena can appear “even” for free theories (for

example excitations near the large N fermion surface). In the present case we are

led to consider the S-matrix for collective dipoles; the corresponding LSZ reduction

formula is easily stated as a limit of bi-local correlators. Its evaluation will produce

the result S = 1 as claimed in the title.1

S = 1 implies triviality, namely that interactions can be removed by a nonlin-

ear transformation of fields (by this we mean the 1/N interactions which equal GN

interactions in Vasiliev’s theory). We demonstrate this for the nonlinear dipole repre-

sentation, where we establish a construction of a nonlinear field transformation that

linearizes the effective large N field theory. This transformation is analogous to a

construction of the so-called master field [101, 102].

The content of this chapter is as follows. In section 2 we discuss the differences

between “boundary S-matrix” and “collective S-matrix” that we propose. In par-

ticular we give an LSZ formula for the S-matrix and evaluate the associated three-

and four-point amplitudes using the cubic and quartic vertices of the 1/N theory

demonstrating the result S = 1. In section 3 we present a construction of a nonlinear

bi-local field transformation that linearizes the theory.

2. Coleman-Mandula Theorem in AdS4/CFT3

Our concern is the simplest case of the correspondence which involves the UV

fixed point CFT of noninteracting N -component bosonic or fermionic fields and the

corresponding Vasiliev theory. These theories are characterized by the existence of

an infinite sequence of higher spin currents that are conserved. Consequently one has

1We mention that this is analogous to an earlier situation involving the c = 1 matrix model with

2d string correspondence where one had the statement “S = 1 for c = 1” demonstrated in [105].

The only difference is that the collective boson (representing fluctuations above the fermion surface)

is now replaced by the collective dipole.
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a higher symmetry and an infinite sequence of generators

Qs =

∫

d~xJ0µ1µ2···µs . (4.1)

In such a theory, the Coleman-Mandula theorem implies that the S-matrix should be

1. The relevance and implications of the Coleman-Mandula theorem in AdS4/CFT3

was recently considered in the work of Maldacena and Zhiboedov [44, 45]. Using the

light cone charges

Qs =

∫

dx−dxJ−−−···− , (4.2)

they demonstrate that the existence of this infinite sequence implies that the cor-

relators are given by free fields, establishing in this sense that the theory can be

categorized as simple.

The recovered correlators Cn = 〈O1O2 · · · On〉 are nonetheless nonzero for all n.

They describe a nonlinear bulk theory, with nonlinearities governed by 1/N = GN .

The question then concerns the fate of these nonlinearities characterizing the AdS4

HS theory.

Boundary correlators are sometimes described in the literature as a “boundary

S-matrix” of the AdS theory. In fact Mack [86, 87] has put forward arguments

whereby CFT correlation functions themselves possess a structure equivalent to an

S-matrix. He argued that they can be in general written in an integral form (the

Mellin representation), which then implies various properties (crossing, duality, etc.)

in support of their S-matrix interpretation. This interpretation was strengthened by

the AdS calculation [97]. Nevertheless, this “boundary S-matrix” lacks some of the

key features of a genuine scattering matrix.

Based on the collective construction we would like to put forward (and evaluate)

another more direct S-matrix which we will base on the physical picture of (collective)

dipoles that underlie the CFT3/Higher Spin Holography. In bi-local field theory this

would corresponds to amplitudes of “mesons”. Following this picture we first identify

an appropriate on-shell relation (specified as always by the quadratic Hamiltonian)
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and then define the S-matrix through a standard reduction formula where external

leg poles are amputated.

2.1. An example. Before proceeding with the details, we describe an analogous

example that features a simple (free) theory duality: the old d = 1 Matrix Model /

2d non-critical string theory correspondence [103]. One has the matrix Hamiltonian

corresponding to N2 decoupled harmonic oscillators

H = −1

2

N2
∑

α=1

(

∂2

∂M2
α

−M2
α

)

. (4.3)

In this model one also had an infinite sequence of higher charges: Qs = Tr[(P 2−M2)s]

and an infinite W∞ symmetry. In the basic matrix theory representation, there is

clearly no scattering and no visible S-matrix. A spacetime interpretation of the model

(and an S-matrix) is found through the collective (Fermi-Droplet) representation

represented by the large N collective Hamiltonian [103]

Hc =

∫

dx

(

1

2
∂xΠ(x)φ(x)∂xΠ(x) +

π2

6
φ3 − x2

2
φ

)

(4.4)

where φ(x) and Π(x) obey the canonical commutation relations [φ(x),Π(y)] =

iδ(x − y). This collective Hamiltonian correctly reproduces all the correlators

〈On1On2 · · · Onk
〉 for the most general invariant operators On = Tr(Mn) =

∫

dx xnφ .

Small fluctuations of this (collective) theory φ = φ0 + ∂xψ, Π = −∂−1
x ψ̇ features a

2d massless boson [104]

H(2) =

∫

dσ

(

1

2
ψ̇2(t, σ) +

π2

2
ψ′2(t, σ)

)

, (4.5)

where the prime is the derivative with respect to the Liouville coordinate defined by

σ =
1

π

∫ x

0

dy

φ0(y)
. (4.6)

Consequently one is led to consider the scattering of collective massless bosons [105]

with an on-shell condition: Kµ = (E,K) and E2 −K2 = 0. Evaluation of the cor-

responding scattering amplitudes gives the S-matrix. For the three-point scattering
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amplitude, one has

S3(E1, E2, E3) = 2πδ(E1 + E2 + E3)

[

3
∏

i=1

(Ei −Ki)−
3
∏

i=1

(Ei +Ki)

]

= 2πδ(E1 + E2 + E3)

[

3
∏

i=1

(

Ei − |Ei|
)

−
3
∏

i=1

(

Ei + |Ei|
)

]

(4.7)

where we have used Ki = |Ei| (corresponding to Liouville as time). For the scattering

of incoming (outgoing) particles, we have E1, E2 > 0, E3 < 0, so that

S3(+,+,−) = 0 . (4.8)

In the same way one can show the result Sn≥4 = 0 due to Gross and Klebanov. A

change of boundary conditions (in particular Dirichlet), gives however a non-trivial

result Sn 6= 0 which was then compared with the string scattering amplitudes.

2.2. Evaluation of the three- and four-point amplitudes. Let us now re-

turn to the bi-local theory and consider therefore the S-matrix for scattering of “col-

lective dipoles”. In a time-like gauge (single-time), one has the on-shell relation:

E2 − (|~k1| + |~k2|)2 = 0, and the S-matrix can be defined by the LSZ-type reduction

formula

S = lim
∏

i

(E2
i − (|~ki|+ |~ki′|)2)〈Ψ̃(E1, ~k1, ~k1′)Ψ̃(E2, ~k2, ~k2′) · · · 〉 (4.9)

where the Ψ̃ operators denote energy-momentum transforms of the bi-local fields

(3.9). The limit implies the on-shell specification for the energies of the dipoles. In

the light-cone gauge, (4.9) would correspond to

lim
∏

i

(P−
i −

p2
i

2p+
i

− p2
i′

2p+
i′

)〈Ψ̃(P−
1 ; p+

1 , p1, p
+
1′, p1′)Ψ̃(P−

2 ; p+
2 , p2, p

+
2′, p2′) · · · 〉 .

We note that the correlation functions appearing in this construction are not the corre-

lation functions of conformal current operators J−−···−. As Maldacena and Zhiboedov

have discussed, the Ward identities based on currents provide a reconstruction of cor-

relation functions for bi-local operators of the form B(x+; (x−1 , x
−
2 ); x1 = x2). Since

these are bi-local in x but local in the other coordinates one is not in a position to

consider the above defined S-matrix.
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Our evaluation of the S-matrix proceeds as follows. Using the time-like quan-

tization we will evaluate the 3 and 4-point scattering amplitude corresponding to

associated Witten diagrams. In momentum space, in terms of creation-annihilation

operators, the cubic (3.14) and quartic (3.15) interaction potentials take the form

H(3) =

√
2√
N

∫ 3
∏

i=1

d~ki

[

−ωk1k2k3

3
α~k1

~k2
α−~k2

~k3
α−~k3−~k1

+ωk2α~k1
~k2
α−~k2

~k3
α†

~k3
~k1

+ h.c.
]

(4.10)

H(4) =
1

N

∫ 4
∏

i=1

d~ki
ωk1k2k3k4

4

[

α~k1
~k2
α−~k2

~k3
α−~k3

~k4
α−~k4−~k1

+4α~k1
~k2
α−~k2

~k3
α−~k3

~k4
α†

~k4
~k1

+ h.c.

+4α~k1
~k2
α−~k2

~k3
α†

~k3
~k4
α†
−~k4

~k1
+ 2α~k1

~k2
α†

~k2
~k3
α~k3

~k4
α†

~k4
~k1

]

(4.11)

where we used the notation ωk1k2···ki
≡ ωk1 + ωk2 + · · · + ωki

and h.c. means taking

the Hermitian conjugate of only the terms before.

We first evaluate the three-point correlation function at order 1√
N

:

〈T(η(t1; x1, y1)η(t2; x2, y2)η(t3; x3, y3))〉 . (4.12)

The propagator is given by

〈0|T(η(t1; x1, y1)η(t2; x2, y2))|0〉 =

∫

d~k1d~k2dEe
−iE(t1−t2)

×ei~k1·(~x1−~x2)ei~k2·(~y1−~y2)ωk1 + ωk2

ωk1ωk2

i

E2 − (ωk1 + ωk2)
2 + iε

. (4.13)

The corresponding Feynman diagram is shown in Figure 1(a). The vertices follow

from (3.14), working in momentum space, one has

〈0|T(η(E1; p1, p1′)η(E2; p2, p2′)η(E3; p3, p3′))|0〉
= 4√

N
δ(E1 + E2 + E3)δ(~p1 − ~p3)δ(~p2′ − ~p3′)δ(~p1′ + ~p2))

× 1
E2

1−(ωp1+ωp1′
)2+iε

1
E2

2−(ωp2+ωp2′
)2+iε

1
E2

3−(ωp3+ωp3′
)2+iε

×
{

ωp2+ωp3

ωp2ωp3
[E2E3 + (ωp2 + ωp2′

)(ωp3 + ωp3′
)]

+
ωp1′

+ωp3′

ωp
1′

ωp
3′

[E1E3 + (ωp1 + ωp1′
)(ωp3 + ωp3′

)]

+
ωp1+ωp

2′

ωp1ωp
2′

[E1E2 + (ωp1 + ωp1′
)(ωp2 + ωp2′

)]
}

. (4.14)
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The on-shell three-point (1 +2→ 3) scattering amplitude is obtained by amputating

the leg poles and putting the external states on-shell leading to

S(1 + 2→ 3) = −
√

2

8
√
N

(E1 + E2 − E3) δ(E1 + E2 − E3)

{δ(~p1 − ~p3)δ(~p2′ − ~p3′)δ(~p1′ + ~p2) + 7 more terms} (4.15)

where we have used energy conservation and the delta functions. The result S3 = 0

is now manifest.

Next for the four-dipole scattering (1 + 2→ 3 +4), we use the interaction picture

and also the creation-annihilation basis as given in (4.10, 4.11). The 1/N contribu-

tions to the S4 scattering amplitude are collected as follows

− 2

9N

∫

d~kid~lj ωk1k2k3ωl1l2l3〈0|α~p3~p3′
α~p4~p4′

α~k1
~k2
α−~k2

~k3
α−~k3−~k1

α†
~l1~l2

α†
−~l2~l3

α†
−~l3−~l1

α†
~p1~p1′

α†
~p2~p2′
|0〉

− 2

N

∫

d~kid~lj ωk2ωl2〈0|α~p3~p3′
α~p4~p4′

α~k1
~k2
α−~k2

~k3
α†

~k3
~k1

α†
~l1~l2
α†
−~l2~l3

α~l3~l1
α†

~p1~p1′
α†

~p2~p2′
|0〉

− i

N

∫

d~ki ωk1k2k3k4〈0|α~p3~p3′
α~p4~p4′

α~k1
~k2
α−~k2

~k3

α†
~k3

~k4
α†
−~k4

~k1
α†

~p1~p1′
α†

~p2~p2′
|0〉

− i

2N

∫

d~ki ωk1k2k3k4〈0|α~p3~p3′
α~p4~p4′

α~k1
~k2
α†

~k2
~k3

α~k3
~k4
α†

~k4
~k1
α†

~p1~p1′
α†

~p2~p2′
|0〉 . (4.16)

The relevant bi-local propagator symmetrized over the momenta is

〈0|Tα~p1~p1′
(t1)α

†
~p2~p2′

(t2)|0〉 =

∫

dE
ie−iE(t1−t2)

E − ωp1 − ωp1′

×1

2
[δ(~p1 − ~p2)δ(~p1′ − ~p2′) + δ(~p1 − ~p2′)δ(~p1′ − ~p2)] . (4.17)

The first term of (4.16) has only s-channel contributions shown in Figure 1(b), while

the second term of (4.16) has all s, t, u-channel contributions. The s-channel diagrams

and their twisted ones (due to the symmetrization of propagators) are summed to be

i
8N
δ(E1 + E2 − E3 − E4)×

[

ωp2′p3δ(~p1 − ~p3)δ(~p1′ + ~p2)δ(~p2′ − ~p4′)δ(~p3′ + ~p4) + 15 similar terms

+ ωp1′p3δ(~p2 − ~p3)δ(~p1 + ~p2′)δ(~p1′ − ~p4′)δ(~p3′ + ~p4) + 15 similar terms
]

. (4.18)
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(a) Three-dipole diagram; (b) The s-channel diagram; (c) The cross-shaped

diagram.

Figure 1. Scattering of three and four dipoles.

It is also convenient to calculate the t, u-channel diagrams together, with their twisted

diagrams, they are summed to be

i
8N
δ(E1 + E2 − E3 − E4)×

[

ωp1′p2δ(~p1 − ~p3)δ(~p1′ + ~p2)δ(~p2′ − ~p4′)δ(~p3′ + ~p4) + 15 terms

+ ωp1p2′
δ(~p2 − ~p3)δ(~p1 + ~p2′)δ(~p1′ − ~p4′)δ(~p3′ + ~p4) + 15 terms

]

(4.19)

+ i
16N

δ(E1 + E2 − E3 −E4)×
[

ωp1p1′p2p2′
δ(~p1 − ~p3)δ(~p1′ − ~p4)δ(~p2′ − ~p4′)δ(~p2 − ~p3′) + 15 terms

+ ωp1p1′p2p2′
δ(~p2 − ~p3)δ(~p2′ − ~p4)δ(~p1′ − ~p4′)δ(~p1 − ~p3′) + 15 terms

]

. (4.20)

The third term of (4.16) is the cross-shaped diagram shown in Figure 1(c), which

gives the result

− i
8N
δ(E1 + E2 −E3 − E4)×

[

ωp1′p2′p3p4δ(~p1 − ~p3)δ(~p1′ + ~p2)δ(~p2′ − ~p4′)δ(~p3′ + ~p4) + 15 terms

+ ωp1p2p3′p4′
δ(~p2 − ~p3)δ(~p1 + ~p2′)δ(~p1′ − ~p4′)δ(~p3′ + ~p4) + 15 terms

]

. (4.21)

The calculation of the fourth term is similar to the third one, which gives the result

− i
16N

δ(E1 + E2 − E3 − E4)×
[

ωp1p1′p2p2′
δ(~p1 − ~p3)δ(~p1′ − ~p4)δ(~p2′ − ~p4′)δ(~p2 − ~p3′) + 15 terms

+ ωp1p1′p2p2′
δ(~p2 − ~p3)δ(~p2′ − ~p4)δ(~p1′ − ~p4′)δ(~p1 − ~p3′) + 15 terms

]

. (4.22)
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Summing all the diagrams, it is easy to see (4.20) and (4.22) cancel each other, while

the rest diagrams give the final result

S(1 + 2→ 3 + 4) = i
16N

(E1 + E2 − E3 − E4)δ(E1 + E2 − E3 − E4)

×
[

δ(~p1 − ~p3)δ(~p1′ + ~p2)δ(~p2′ − ~p4′)δ(~p3′ + ~p4) + 15 more terms

+δ(~p2 − ~p3)δ(~p1 + ~p2′)δ(~p1′ − ~p4′)δ(~p3′ + ~p4) + 15 more terms
]

, (4.23)

which implies S4 = 0.

It is clear that the direct evaluation can be continued to higher point scattering

with the conjectured result Sn≥5 = 0. One can describe the nonlinear collective field

theory in the following way: its nonlinearity, and higher point vertices are precisely

such that they reproduce the boundary correlators through bi-local (Witten) dia-

grams. These same diagrams however give vanishing results in the on-shell evaluation

as described above. We also mention that in the framework of BCFW recursions for

higher spin interactions, the relevance of extended observables was noted in [88, 89].

In general quantum field theory, one has the equivalence theorem. A vanishing

S-matrix implies that there should exist a (nonlinear) field transformation which

linearizes the theory. For the present case this concerns the linearization of bulkGN =

1/N interactions. We will in the next section describe such a field transformation.

Since we view the collective construction to represent a gauge fixed description of

Vasiliev’s HS theory, analogous statements are expected to hold there. Finally it is

also clear that one can expect that any change of boundary conditions will result in

non-trivial S-matrix.

3. Field Transformation

We have concluded in the previous section that the S-matrix equals 1 for the

bi-local theory of the free UV fixed point. The theory is nonlinear with a sequence

of 1/N vertices which are needed to reproduce arbitrary n-point correlators (and the

“boundary S-matrix”). By correspondence Vasiliev’s HS theory has the same proper-

ties. As suggested in section 2, this implies that there should be a field transformation

that linearizes the GN = 1/N interactions. We will now describe such a procedure for
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deducing the transformation. The procedure is based on considering an algebraic de-

scription of the bi-local system. We will be able to show that the bi-local pseudo-spin

algebra has among other two representations: one equalling the nonlinear collective

field theory and another in which the Hamiltonian becomes quadratic.

For the free theory in question one has exact creation operators for the singlet

sector of the theory. They are given by the bi-local operators

A(~p1, ~p2) =
1√
2N

∑

i

ai(~p1)a
i(~p2) , (4.24)

A†(~p1, ~p2) =
1√
2N

∑

i

ai †(~p1)a
i †(~p2) , (4.25)

B(~p1, ~p2) =
1

2

∑

i

ai †(~p1)a
i(~p2) . (4.26)

In terms of these collective variables the Hamiltonian is

H =

∫

d~p H(~p, ~p) , H(~p, ~p) = 2ω~p B(~p, ~p) +
N

2
ω~p δ(~0) . (4.27)

The above operators (representing bi-local pseudo-spin variables) close an algebra

[

A(~p1, ~p2), A
†(~p3, ~p4)

]

=
1

2
(δ~p2,~p3δ~p4,~p1 + δ~p2,~p4δ~p3,~p1) +

1

N

[

δ~p2,~p3B(~p4, ~p1)

+δ~p2,~p4B(~p3, ~p1) + δ~p1,~p3B(~p4, ~p2) + δ~p1,~p4B(~p3, ~p2)
]

, (4.28)

[

B(~p1, ~p2), A
†(~p3, ~p4)

]

=
1

2

(

δ~p2,~p3A
†(~p1, ~p4) + δ~p2,~p4A

†(~p1, ~p3)
)

, (4.29)

[

B(~p1, ~p2), A(~p3, ~p4)
]

= −1

2

(

δ~p1,~p3A(~p2, ~p4) + δ~p1,~p4A(~p2, ~p3)
)

. (4.30)

We note that the theory based on this algebra was studied in detail by Berezin

[91]. In the O(N) case one finds the quadratic (Casimir) constraint

− 8

N
A† ? A +

(

1 +
4

N
B

)

?

(

1 +
4

N
B

)

= I . (4.31)

The importance of the Casimir constraint is that it implies that the above non-

commuting set of bi-local operators is not independent. In particular the bi-local

pseudo-spin algebra has representations in terms of canonical pairs of variables.

The canonical collective theory based on the equal-time bi-local field and its con-

jugate provides one specific representation of the above algebra. Explicitly, one can
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show

A(~x1, ~x2) =

∫

d~p1d~p2d~y1d~y2e
i~p1·(~x1−~y1)ei~p2·(~x2−~y2)

[ −2
√
ωp1ωp2

Π(~y1, ~z1) ?Ψ(~z1, ~z2) ?Π(~z2, ~y2)

−i
√
N

√

ωp2

ωp1

Ψ(~y2, ~z1) ?Π(~y1, ~z1)

−i
√
N

√

ωp1

ωp2

Ψ(~y1, ~z1) ?Π(~y2, ~z1)

−N
8

1
√
ωp1ωp2

1

Ψ
(~y1, ~y2) +

N
√
ωp1ωp2

2
Ψ(~y1, ~y2)

]

. (4.32)

Transforming it to momentum space and expanding in 1/N we generate an infinite

series

A(~k1, ~k2) = α~k1
~k2
− 1√

2N

[

α~k1
~k3
? α−~k3

~k2
− α†

~k1
~k3
? α†

−~k3
~k2

−α~k1
~k3
? α†

~k3
~k2
− α~k1

~k3
? α†

~k3
~k2

]

+O(α3) , (4.33)

B(~k1, ~k2) =
1

2

[

α~k1
~k3
? α†

~k3
~k2

+ α†
~k1

~k3
? α~k3

~k2

]

+

√

2

N

[

α~k1
~k3
? α−~k3

~k4
? α−~k4

~k2

+α~k1
~k3
? α†

~k3
~k4
? α~k4

~k2
− α†

~k1
~k3
? α~k3

~k4
? α†

~k4
~k2

−α†
~k1

~k3
? α†

−~k3
~k4
? α†

−~k4
~k2

]

+O(α4) . (4.34)

The key to our arguments is the fact that one can write another realization of the

algebra in terms of an oscillator β(~p1, ~p2) obeying

β(~p1, ~p2) =

(

1 +
2

N
B

)− 1
2

(~p1, ~p) ? A(~p, ~p2) (4.35)

β†(~p1, ~p2) = A†(~p1, ~p) ?

(

1 +
2

N
B

)− 1
2

(~p, ~p2) (4.36)

which has two important properties that

B(~p1, ~p2) = β†(~p1, ~p) ? β(~p, ~p2) (4.37)

[

β(~p1, ~p2), β
†(~p3, ~p4)

]

= δ~p1,~p4δ~p2,~p3 . (4.38)

We see that in this realization the Hamiltonian is quadratic due to (4.27). Further-

more, using (4.35) one can generate the transformation between the fields

β(~k1, ~k2) = α~k1
~k2
− 1√

2N

[

α~k1
~k3
? α−~k3

~k2
− α†

~k1
~k3
? α†

−~k3
~k2
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−α~k1
~k3
? α†

~k3
~k2
− α~k1

~k3
? α†

~k3
~k2

]

+O(α3) . (4.39)

In conclusion we have presented a construction of the field transformation (in bi-

local space) that linearizes the nonlinear 1/N Hamiltonian. Under this transformation

the correlation functions change but the S-matrix does not. This represents the

working of the Coleman-Mandula theorem in the large N dual associated with the

free field CFT. As such it complements the Maldacena-Zhiboedov argument for these

theories.
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CHAPTER 5

Conclusion

We have in this thesis described the collective dipole picture of AdS/CFT cor-

respondence. This picture was extracted from the bi-local field representation of a

conformally invariant O(N) vector model. These fields which fully describe the O(N)

singlet sector of the theory were seen to contain the full interacting bulk AdS theory

with higher spins. A first quantized description represents a bi-particle system which

we called the collective dipole.

We have studied the structure of constraints and the gauge fixing of the dipole

system. This issue itself is nontrivial as we are dealing with a fully relativistic sys-

tem with two time coordinates. Consequently various issues related to unitarity and

absence of ghosts have to be addressed. We have following earlier work discussed in

detail the issue of gauge fixing to a physical time-like or light-cone gauge. Using a

gauge condition which leads to elimination of the relative time, we have exhibited the

existence of a unitary, ghost free representation of the dipole system. This gauge also

establishes contact with the equal time Hamiltonian bi-local field theory.

Using the light-cone frame we have then demonstrated the correspondence with

the higher-spin particle in AdS space-time. This correspondence is constructed in

terms of an explicit one-to-one canonical map relating the d-dimensional collective

dipole with the d + 1 dimensional higher spin particle in AdS. The map gives an

explicit reconstruction of the extra (radial) AdS space dimension and of the infinite

sequence of higher spin states. As such it likely represents the simplest system where

the AdS/CFT correspondence is established in the bulk.

For higher spin theory the relevance of the dipole picture lies in the following.

It provides a first quantized world sheet description of the theory and also has the

promise to lead to a BRST quantization of the the system. The BRST approach has
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been extremely relevant in the case of string theory [96] (and of course gauge theory

[107]), however, even though there have been various attempts there is not as yet a

complete BRST description of Vasiliev’s Higher Spin gauge theory.

Further, we have motivated the use of double analytic continuation and hence

the connection between the Sp(2N) model and de Sitter higher field theory for the

quadratic action for the collective field. To establish this connection one needs to

establish this for the interaction terms. This is highly nontrivial, and in fact the

connection between the collective theory for the O(N) model and the AdS higher spin

theory is only beginning to be understood. We believe that once this is understood

well, one can address the question for the Sp(2N)-dS connection.

In this thesis we have dealt mostly with the free Sp(2N) vector model. As the

parallel O(N)/AdS case, this theory is characterized with an infinite sequence of con-

served higher spin currents and associated conserved charges. The question regarding

the implementation of the Coleman-Mandula theorem then arises, this question was

discussed recently in [44, 45, 46]. One can expect that identical conclusions hold

for the present Sp(2N) case. The bi-local collective field theory technqiue is trivially

extendible to the linear sigma model based on Sp(2N), as commented in section (4.2).

Of particular interest is the IR behavior of the theory which presumably takes the

theory from the Gaussian fixed point to a nontrivial fixed point.

It is well known that dS/CFT correspondence is quite different from AdS/CFT

correspondence, particularly in the interpretation of bulk correlation functions [50,

51]. We have not addressed these issues in this thesis. Recently it has been pro-

posed that the Sp(2N)/dS connection can be used to understand subtle points about

dS/CFT [52]. We hope that an explicit construction as described in this thesis will

be valuable for a deeper understanding of these issues.

The bi-local formulation that we have presented was cast in a geometric, pseudo-

spin framework. We have suggested that this representation offers the best framework

for quantization of the bi-local theory and consequently the Hilbert space in dS/CFT.
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We have demonstrated through counting of the size of the Hilbert space that it in-

corporates finite N effects through a cutoff which depends on the coupling constant

of the theory: G = 1/N . Most importantly it incorporates the finite N exclusion

principle and provides an explanation on the quantization of G = 1/N from the bulk

point of view. These features are obviously of definite relevance for understanding

quantization of Gravity in de Sitter space-time. Nevertheless the question of under-

standing de Sitter entropy from this 3 dimensional CFT remains an interesting and

challenging problem.

It would be interesting to consider the analogues of Sp(2N)/dS correspondence

in the CFT2/Chern-Simons version [58, 21, 57], as well as to three dimensional

conformal theories which have a line of fixed points, as in [43]. Finally higher spin

theories arise as limits of string theory in several contexts, e.g. [18] and [43]. It

would be interesting to see if these models can be modified to realize a dS/CFT

correspondence in string theory.

Finally we discussed some features of the Higher Spin AdS correspondence in-

volving free O(N) fields, especially the existence of an (infinite) sequence of higher

symmetries in these theories, which raises the question regarding the implementation

of the Coleman-Mandula theorem. Our focus was the question regarding the non-

linear 1/N theory which reproduces the (boundary) correlators. We argued that in

these theories we are able to define a genuine S-matrix representing the scattering of

collective dipoles. The S-matrix is specified with the standard LSZ procedure as an

on-shell limit of (bi-local) correlation functions.

For the theory based on the free correspondence i.e. the UV fixed point of the

vector model we have evaluated the S-matrix showing the result S = 1. This rep-

resents the consequence of the Coleman-Mandula theorem for the associated Higher

Spin theory and complements the results of Maldacena and Zhiboedov. As we have

discussed it implies that the nonlinear Higher Spin theory can be linearized through

nonlinear field transformations. We have explicitly constructed such a transformation
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in the bi-local framework. We have also emphasized that a change of boundary con-

ditions will change the above conclusion, namely one expects a nontrivial S-matrix.

Based on the present results and the earlier c = 1 case, it is plausible to conclude

that these features will characterize any large N correspondence based on free fields.

To conclude, the bi-local field representation possesses several relevant features

which have implications on the nature of higher spin theory. The correspondence

between O(N) vector models and higher spin AdS gravity itself demonstrates a very

interesting example of AdS/CFT correspondence.
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