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Abstract of “Bi-local Approach to Higher Spin Gravity”
by Qibin Ye, Ph.D., Brown University, May 2013

We review a field theory approach to Higher Spin Gravity in 4 dimensional Anti
de Sitter (AdS) space within the framework of the AdS/CFT correspondence. Based
on large N collective field theory of vector type models, we develop a bi-local dipole
picture of Higher Spin theory. We also describe a geometric (Kahler space) framework
for the bi-local theory which applies to Sp(2N) fermions and potentially to the de
Sitter (dS) correspondence. We discuss in this framework the structure and size of the
bi-local Hilbert space and the implementation of (finite V) exclusion principle. For
the correspondence based on free CFTs we first discuss the transformation for O(N)
collective field and the Higher spin filed, and then the nature of bulk 1/N interactions
through an S-matrix which by the Coleman-Mandula theorem is argued to be equal

to 1.
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CHAPTER 1

Introduction

The AdS/CFT correspondence [1] represents a major tool in our understanding
of non-perturbative phenomena in gauge theory (and other related systems). Insight
into the mechanism behind this duality was obtained through various different tools,
such as large N expansion, D-branes and higher symmetries. The explicit construc-
tion, even in the simplest models, has not been achieved yet (except in special limits
or sub-sectors of the full theory such as the 1/2 BPS case). What characterizes the
correspondence is the emergence of AdS spacetime (and of extra Kaluza-Klein dimen-
sions) and even more remarkably of gravitational and stringy degrees of freedom.

Recently a very simple model has been studied (the O(N) vector model) with its
duality [2, 17] to AdS higher-spin gravity of Vasiliev [3, 5]. This proposal, which
identifies the critical points of the 3 dimensional O(/N') vector model with two versions
of the 4 dimensional Vasiliev theory, has received solid support and definite degree
of understanding [17, 18, 20, 28, 29, 30, 39, 40, 41, 44, 53, 54, 45|. Equally
interesting is the correspondence between 2d minimal CFT’s and 3d Chern-Simons
Higher Spin Gravity [21, 57, 58, 59, 60, 67]. These large N dualities involve
quantum field theories that have been thought to be understood for some time and
a relatively novel version of HS Gravity built on a single Regge trajectory. These
theories feature many properties that have been unreachable in String Theory, in
particular the structure and explicit form of the higher spin gauge symmetry group.
They also offer a potentially solvable framework for studies of black hole formation
and de Sitter theory itself [78, 52].

In the case of three dimensional O(N) vector field theory, one has two conformally
invariant fixed points, the UV and the IR one. The HS duals are given by the same
Vasiliev theory [3, 4, 68, 69, 70, 71, 72] but with different boundary conditions
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on the scalar field [17]. This provides a simple relationship between a (HS) theory
dual to a free N-component scalar field (UV) and the nontrivial dual corresponding
to the IR CFT. The correspondence provided by the free O(NV) scalar field theory
is then of central interest. This theory is characterized by an infinite sequence of
conserved currents which are themselves boundary duals of higher spin fields and
whose correlation functions represent a point of comparison [28, 29] between the two
descriptions.

This thesis is about the bi-local approach to higher spin gravity. In chapter two,
we discuss the correspondence in the quantum mechanics level which involves the
collective dipole model and higher spin particle, which demonstrates that d + 1 di-
mensional AdS spacetime and higher spins are generated in terms of the d dimensional
collective dipole. We first introduce the collective dipole as a two-body system with
constraints and discuss gauge fixing to time-like or light-cone gauges. Following that,
we introduce the higher spin particle in AdS. In the end of this chapter, we give a
one-to-one map which shows how the two systems are transformed into one another.

In chapter three, we move on to discuss the higher spin theory correspondence
with large N vector model both in the frame work of AdS/CFT and dS/CFT. We
briefly describe the AdS/CFT in the example of Higher Spin theory/O(N) vector
model by summarizing the work in [20, 30]. Then we switch to dS/CFT case. We
start by introducing the Sp(NN) vector model and then construct a collective field
theory of the Lorentzian Sp(2N) model which captures the singlet state dynamics of
the Sp(2N) vector model. We further establish the bi-local theory as the bulk space-
time representation of de Sitter higher spin gravity by double analytic continuation.
We also describe a geometric (pseudo-spin) version of the collective theory which will
be seen to incorporate the Grassmannian origin of the field operators. In the end
of this chapter, we also give an interpretation of phase transition from a different
perspective than shown by Shenker and Yin.

In chapter four, we apply Coleman-Mandula theorem in higher spin theory and

introduce S matrix for higher spin theory and show that S = 1. We first discuss the



differences between “boundary S-matrix” and “collective S-matrix” that we propose.
In particular we give an LSZ formula for the S-matrix and evaluate the associated
three- and four-point amplitudes using the cubic and quartic vertices of the 1/N
theory demonstrating the result S = 1. In the end of this chapter, we present a

construction of a nonlinear bi-local field transformation that linearizes the theory.



CHAPTER 2

Collective Dipole Picture of Higher Spin Theory

1. Overview

In this chapter, we study a discrete bi-particle system which we call the collective
dipole. A dipole picture was originally contemplated by Fronsdal and Flato [7] in
the study of Rac representations of the conformal group [8]. It was also identified
in studies of high energy scattering in QCD [9]. It has also appeared in studies
of noncommutative field theory in [10]. In what follows we describe and study its
classical dynamics and work out the details of its map to AdS higher spin particle.
This we do in any dimension d showing the reconstruction of higher-spin system in
AdS through a canonical transform. As such the collective dipole offers possibly the
simplest system for a deeper understanding of the emergence of extra spacetime and
higher-spin degrees of freedom.

The content of this chapter is as follows: in section two we describe the collective
dipole as a two-body system with constraints and discuss gauge fixing to time-like
or light-cone gauges. In section three we describe the system representing a higher
spin particle in AdS. In section four we explain how the two systems are transformed
into one another through a one-to-one map. This completes the demonstration that
d + 1 dimensional AdS spacetime and higher spins are generated in terms of the d

dimensional collective dipole.

2. The Collective Dipole

The large N quantum field theory of the O(N) vector model

L= /ddx%(ami)(a%i) +V(p-¢), i=1,..,N (2.1)
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represents a relatively simple field theory for critical phenomena and more recently as
a model of AdS;;,/CFT, correspondence. In three dimensions, besides the free field
theory UV fixed point, one also has a nontrivial IR fixed point (for detailed studies
see [11]). The AdS/CFT duality with Vasiliev’s higher spin theory for both fixed
points was understood in [17] and subsequent more recent work. In any dimension d,
the free theory in the large N limit exhibits a duality with a theory of higher spin in
d+ 1 dimensions. The origin of higher spins and of the emergence of the extra radial

AdS spatial dimension was given [20] in terms of bi-local (collective) fields

Uz, 5) ZQSZ )¢’ (a5), (2:2)

where p,v = 0,1,--- ,d — 1 with the metric diag(—, +,--- ,+). These fields close a
set of Schwinger-Dyson equations with an effective action that leads to a systematic
1/N expansion [16]. It was argued in [20, 30] that this provides a bulk description
of the AdS, dual higher-spin gravity (for the two conformal fixed points of the three
dimensional field theory). This picture was sharpened in the time-like or null-plane

quantization scheme, where the bi-local field involves a single time

t [L’l,l'g ZQSZ Z T ) (23)

In this case a precise one-to-one map was formulated in [30] relating the light-cone

higher spin field in AdS, and the collective bi-local field
Oz, 2,2,0) = /derdpmdpzei(mp++mpz+2pz)
/ dpy dps dprdp20(py +p3 —p")d(p1 +p2 — p*)
0 (pl\/z% - pz\/}% p )
- §(2arctan M — 9)@(]91 D1, D1, D2), (2.4)

where U(pi, ps, p1, p2) is the Fourier transform of the field W(x7, 25, x1, z2).
The physical basis of the correspondence can then be identified by a bi-particle
system of a collective dipole which through a canonical transformation maps into the

first quantization version of the higher spin system. In what follows, we discuss and
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study this dipole construction in full detail. Our goal is to establish a first quantized or
rather a world-sheet description of the AdS/CFT construction developed in [20, 30].

Let us start with the two-particle system in d-dimensional Minkowski space-time

S = /dﬁm\”i’%(ﬁ” +/d72m |3(72)| (2.5)

which leads to the constraints

with the action

pi+m® = 0, (2.6)

pe+m? = 0. (2.7)
Switching to the center-of-mass variables
P = p1 + po, X = =(z1 + x2), (2.8)
p=Dp1— D, r = 5(z1— 22), (2.9)
the constraints (2.6-2.7) become

T, = P>+ p*+4m* =0, (2.10)

T, = P-p=0. (2.11)

This system, written in the above covariant form, is described with two time coordi-
nates. It, therefore, can potentially have problems with unitarity and the appearance
of ghosts as discussed in the investigations of [31]. In the present simple system one
has the existence of a canonical gauge in which one can eliminate (gauge fix) the
relative time and obtain a physical picture with a single time. This is analogous to
the (second-quantized) collective field theory where one also had a covariant and a
canonical, equal-time representation [32].

Let us describe the details of such gauge fixing procedure; it was given some time
ago [33] in connection with the investigation of Yukawa’s bi-local field theory. One
introduces the condition

6



Then the constraints (2.11, 2.12) become second-class while (2.10) remains first-class.
If one considers the interacting problem with m = m(x?), then the above condition
arises from the the Poisson commutation of (2.10) and (2.11).

Next, taking P, to be time-like, we can explicitly solve the second class constraints
and eliminate the relative time coordinate. First, one makes a canonical transforma-

tion

P, = P, (2.13)
v Lyps L . . . ,0b5  ulmyp
Xt = Xt 4 oulpen, — ﬁbs“u —u"mb, oP, 72 pPr, (2.14)
P T
Pu = Pyt b (2.15)
" = Pruf b Fu" (2.16)
with r;s=1,...,d — 1 and b * satisfying
btP, = 0, (2.17)
bubt = grs=(+,---,+), (2.18)
i, Prp,
b = ¢ (2.19)

One can easily see that u”, 7 are the components parallel to P, while u", 7, are
normal to P,. Then the constraints (2.11) and (2.12) lead to u” = w7 = 0. Therefore
the system can be described using only the center-of-mass coordinates (X # P,) and
the relative (spatial) coordinates (i, 7). The canonical transformation (2.13-2.16) is

simplified to be

P, = P, (2.20)
- ob,?

Xt o= XM bt 2.21

Wb S (2.21)

pu = b7, (2.22)

o = blru". (2.23)



For the massless case where m = 0, the conformal generators of the bi-particle system

are given by

Pro— ok (221
M* = ahpl — 2l + abpy — aiph, (2.25)
D = pry + Th5pay, (2.26)
% = (alpa)oh — S(mt + (apa)7h — S (e, (220)

where we have neglected the scaling constant term for simplicity. It is instructive to
find the explicit form of the conformal generators. Choosing a solution satisfied by

(2.17-2.19) as follows

Iz B P,

, bir = 0ip — ; = (0,14
VP pypoyip MY

one achieves a single time (X° = X° = ¢) formulation of the conformal generators

P’ = PY=\/P24 2 (2.29)

by, = (2.28)

P = P (2.30)
N ) ~ . 1 ) )
M = tP'— X'P'+ ———(u' P, — 7' Pou”), (2.31)
VP — P
M9 = X'PI— XIP' 4+ uind —uint, (2.32)
D = —tP"+ X'P, +u'm;, (2.33)
A 1 ~ . ) 1 ~ . ~ .
K = =P+ ¢(X°P, + u'm)) + ———— (X', PPy — X'm Pou"
S ) )

1 ~ - 1 2¢/|P2%|—P° . -
—§P0 (XX, + u'ug) + Ll (u'Pimy — T Pa”)?,  (2.34)

2P% (\/|P?] — PY)?
1 . .
4+ —(u'Pry — P
el )
-~ . o~ 1
+ X" X'P; +um;| — n' [ X u; +

(2w m; Porrs — mim; Pou”)]

) 1 ) ~ .
K = §t2PZ+t[—P0XZ

wu; PP

+ut [ X, 4

1
P2+ P0,/|P?]

1 .~ - . 1
—— P X)X, —I—uju' +
R Ty
8

(' Pomy — 7' Pou”)?]. (2.35)



Now recall the canonical, equal-time (2 = 29 = t) collective field version of the

bi-particle system, where the conformal generators are given by

PO = 04 = A2+, (2.36)
Pro= pl+ph, (2.37)
MY = t(p} +ph) — 2ip) — ahph, (2.38)
MY = zip) — @lp, + whph — wiph, (2.39)
D = —t(p) +p)) + x\p} + ziph, (2.40)
RO = 2208+ 1) + et + 2iph)
— gt - Skt (241)
K = %tz(pi +py) — t(2yp) + xhph)
vadplat + ofpjel — Sollpl - Solip) (2.42)

There is a simple canonical transformation between the phase space (X, P':u’, %)
and the bi-particle phase pace (x%, pi;z%, pb), which transforms the generators (2.29-

2.35) to (2.36-2.42). It is given by

T Tl 1
P+ ph PO(P? + PY\/|P?|)
x[(2} — 24) (p1pS — pip?) (P + 1))
—(piph — php?) (z] — 23) (W] + pb)], (2.44)

, VIP?2 =208 . NP - 200 .
i | | Do Z_l_ | | P1 % (245)

™ - 9
SR = o = o
i _}(i_i)_Pg—Pg(j_ j)(j_l_j)(io_iO)
u = 5 Ty — Ty (P9)2p2 Ty — T)\p1 T P2 )\P1P2 — PaP1
2pp5

(2] — 23)(p] + pb) (P} + pb).- (2.46)

_l_
(PO)2(P? + PO/ P?))
We have in the above described the canonical structure of the composite, two par-

ticle “collective” dipole system. It was constructed to describe the singlet subspace

of the vector model CFT. Since the CFT has two collective field representations (one
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covariant with an associated action and another equal-time with a related Hamilton-
ian) it was important to demonstrate the existence of a single time gauge. We have
also seen that in this gauge the dipole system exhibits an identical canonical struc-
ture to the collective field theory one. This structure is characterized by an additive
contribution to the symmetry generators which we established. In the next section
we will review the field theory of higher spins in AdS and describe its first quantized

description given by particles with spin moving in AdS spacetime.

3. Higher Spin Theory in AdS

We now switch to a discussion of higher spin theory in AdS;i1 spacetime. From
the field theoretic description of this theory we will deduce a first-quantized AdS
particle system (with spin). We will then demonstrate in section four that the AdS
spin particle system emerges through a canonical change of variables from the d-

dimensional collective dipole system.

3.1. Higher Spin Fields. There are two formalisms for describing higher spin
fields, one being the frame-like formulation in terms of generalized vielbeins and spin
connections, the other the metric-like formulation due to Fronsdal [34], which employs
higher tensor fields with arbitrary rank and symmetry properties. Here, we will use
the second formulation. One has a spin s field represented by a symmetric and double

traceless tensor of rank s: hy, ., («*), which obeys the equations of motion [35]

1
VoVPhy, s — Svpvﬂlh'puz...,us + 53(3 — D)V, Vb’

PH3 - fhs

+2(s —1)(s +d —2)h,, ... = 0. (2.47)
The gauge transformation is given by
Ophf Lt = VHL K2 s Guops N1 = 0. (2.48)
A covariant gauge can be specified with the gauge conditions

Vphﬁ#zm,us = 07 gpghpcrp3...ps = 0. (249)
10



Then the equation of motion (2.47) reduces to
(O+m*)hyy.p, =0, (2.50)

with the effective mass m? = s* + (d — 5)s — 2(d — 2).

It is useful to embed the d+1 dimensional AdS spacetime z* into d+2 dimensional
hyperboloid z* with the metric diag(—, +, ..., 4+, —). The higher spin field h,,, . (z")
is related to the field kq,. o. (%) by

h'/»llml»ls (l’“) = l’uolq e $“?Ska1...as (Ia)7 (251)

where z,* = 0x®/0x*. Introducing an internal set of coordinates y* spacetime, one

forms the field with all spins
K($a> ya) = Z kal...as (Ia)yal te yas- (252)

In this notation the constraints implied by embedding, the covariant gauge conditions

as well as the equations of motion become the following system of equations [8]

02K (x,y) =0, (2.53)
2K (x,y) =0, (2.54)
8, - 0,K (z,y) =0, (2.55)
(x-0p+y-0y+1)K(x,y) =0, (2.56)
z-0,K(x,y) = 0. (2.57)

It is easy to check that the constraints (2.53-2.57) are all first-class constraints. We
should also point out that ®(x~, xz, z,0) in (2.4) is the light-cone form of K(z®,y*)
in AdS,.

In the above representation one has an asymmetry between the spacetime coor-
dinates x and the internal spin coordinates y due to (2.57). One can through a series
of canonical transformations achieve a totally symmetric description. The transfor-

mation takes the form

®(p,q) = (FK)(z,y) (2.58)
11



where p = (z +vy)/2, ¢ = (x — y)/2 and the kernel for a particular spin s is given by
Fo=> (4" Yy - 0.)*/(h + (A +2) -+ (R + k) (2.59)
k
with 7 = y - 0,. After the mapping (2.59), as well as a Fourier transformation

B (u,v) = / dpdq €7 B(p,q), (2.60)

one finds the symmetric version

(- 0y + 1/2)D(u,v) = 0, (2.61)
(v- 0y + 1/2)®(u,v) =0, (2.62)
u? =0, (2.63)
v? =0, (2.64)
u-v=0. (2.65)

Next we show that it is possible to reduce the system by solving the first four
constraints (2.61-2.64) which are decoupled into two sets of constraints involving

separately v and v. Parameterizing the cone u? = 0 as
ug = Usint, gy = U cost, u = U, W =1, (2.66)

we find the constraint (2.61) becomes 9/9U + 1/2. Consequently the dependence on

the variable U can be factored out
o(u) = U™ 2¢(t, ), (2.67)

and the remaining degrees of freedom are the coordinates (¢,u) (and its conjugates).
Similarly, this reduction works for the v system. Therefore, by solving the first four
constraints, we reduced the bi-local field ®(u,v) with 2(d + 2) variables to 2d vari-
ables. This agrees precisely with the bi-local collective field ® (2!, 2%) in d dimensions.

However, in this formulation, we need to interpret (2.65) as the equation of motion,

12



which does not take the form the collective equation of motion [20]. In order to make

contact with the collective field equation, one can replace (2.65) with a new constraint
D202®(u,v) = 0, (2.68)

which does not commute with (2.65). As shown in [20], this is the equation of motion
for the collective field after a field redefinition. This shows that the bi-local collective
field theory of [20] corresponds to another gauge choice when compared with the

Fronsdal’s covariant gauge of higher spin theory.

3.2. Higher Spin Particles in AdS,. To describe particles in AdS with spin,
one uses the spacetime coordinate = and an internal spin coordinate y. For simplicity,
we will mainly discuss the AdS; case (only in this subsection), which corresponds
to the isometry group SO(2,3). The system requires constraints expressing strong
conservation of the phase space counterparts of the second- and fourth-order Casimir

operators of SO(2,3). We have the generators
Jap = xapp — TP + Yabh — YBPY (2.69)

where 4 and y“ represent two separate objects and A, B = 0,1,2,3,5 with the
metric nap = diag(—, +,+,+, —). The second- and fourth-order Casimir operators

are given by

1
0 = §JAB JAB

= 2l — (x-p)? + Y70 — (y-py)°
+2(z - y)(pz - py) — 2(x - py) (Y  Pa), (2.70)
0y = iJABJBcJCDJDA - %(%JABJAB)z
= 2*(p)(yp=)? + P2 (ypy)? — 2(pepy) (yp2) (ypy))
+y? (0 (xp2)” + 3 (xpy)? — 2(papy) (zp2) (2Dy))
+2%y* ((papy)® — 22p}) + (2y)* (020, — (Pepy)?)
—(2py)*(yps)® = (2p2)* (ypy)? + 2(xps) (@py) (yp2) (ypy)
+2(papy) (2p2) (2y) (ypy) + 2(p2py) (DY) (2Y) (YP2)

—2p3(xpy) (2y) (ypy) — 205 (2p2) (2y) (yp=)- (2.71)
13



They are constrained by
M+ E+s* =0, (2.72)
O+ E3s® = 0. (2.73)

One solution to the constraints leads to

x-p. = —Ep, (2.74)
x-p, = 0, (2.75)
y-py = S (2.76)
p2 = 0, (2.77)
P, = 0, (2.78)
Pe-py = 0. (2.79)

The massless higher spin particle corresponds to the special case Ey = s + 1. These
constraints are seen to agree with Fronsdal’s covariant formulation of higher-spin the-
ory (2.53-2.57). Another canonical representation of the higher-spin particle system

solving the constraints (2.72-2.73) was given in [36]

P+t = 0, (2.80)
T-py = 0, (2.81)
-y = 0, (2.82)
z-p, = 0, (2.83)
y-py = 0, (2.84)

Py = 0, (2.85)
Py = Eg;gsz, (2.86)
pen = (95)" 287

where 7 is the radius of the AdS spacetime and (2.80, 2.82) are gauge conditions for

the first-class constraints (2.81, 2.83) respectively.
14



4. AdS;.; from d-dimensional dipole

We now come to the main part of our construction. We will show (in the framework
of the light-cone gauge) that d-dimensional relativistic bi-particle system of section
two can be mapped into the higher spin AdS;,; particle system that we have just
described. This map will be accomplished by an explicit canonical transformation
between the respective phase space variables. In the process, we will be able to map
the collective field version of the generators of the conformal group to the generators
that can be constructed in AdS spacetime.

For specifying the light-cone gauge of higher spin theory in AdS;,; one starts,
following [38], with the covariant (and gauge invariant) description with the AdS and
internal coordinates denoted by (4, p”, &z, ), fi = 0,1,2, .., d. One can parametrize

the AdSyy1 space with the Poincaré coordinates
N 1 :
dxpdx! = ;(—dt2 + da? + dz* + dz3), t=1,...,d—2. (2.88)
The light-cone variables and transverse coordinates are denoted as
- Loa .o I i
xr=—(2"x2"), ' = (2" 2). (2.89)

V2

The light-cone gauge [38], is now fully specified by the conditions

at =0, (2.90)
olal = s, (2.91)
a'al =0, (2.92)
! + + 5%
Y s+d—1 z 2(p —OéOé) —z
a __ZFQ + o a _p+(p+—2a+6zz)a’ (2.93)
. N J . AUnpt — ata?
(P — au@z)z — (20% — afpf — Pl At + a2az)p+((g+ - Zai‘a)z)az
—d(p* — a*a®) —s* + (4 —d)s +2d — 4 = 0. (2.94)

Here (2.90) represents the light cone gauge condition, and the constraints (2.91, 2.92,
2.94) are analogous to (2.76, 2.78) and (2.77) in our particle description respectively.

From the Lorentz condition (2.79), one can solve for &~ (2.93). For more detailed
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studies of light-cone higher spin theory in AdS spacetime the reader should consult
[38].

Our construction of the canonical relationship between the two sets of variables
will come from the comparison of two different representations of the generators of
the conformal group: one corresponding to the d-dimensional dipole and the other to
the d 4+ 1 dimensional higher-spin AdS particle. For this we first recall the light-cone
form of generators in AdS given by [38]

. p? 1 1, 1

Prom G — (4= 3)(d =), (2.05)
Pt = p, (2.96)

Po— 4 (2.97)
Jt™ = tP™ —apt, (2.98)
Jt = tpf — ipt, (2.99)

-1 B S e JE 2] Jt

J' = xp—2P +m o 2zp+{m ,m’'}, (2.100)
JU = 2y —aipt - m, (2.101)

. . d—1

D = tP +z pt+alp + —5 (2.102)
. 1, d—1
K- = —§:B§P_ + 2 (z7pt + 2lp’ + 5 )

+—alptm!’ — 5 —{m*, m’"}, (2.103)
zp

St 2 P rr, d-1 Loy

K™ = t°P" +t(a'p + ?) — 5P (2.104)
J
K' = t(:vif’_ —x7p — m“p— + {m™ mi'})
pt  2zpt ’
1 : : d—1 :
_§I3pl + 2t (7 pt + 2lp’ + T) +mial (2.105)

These generators are to be compared with the bi-local CF'T,; transformations. In the

light-cone gauge (x

+

Uz, 28) = Ut a7, 28 25, 7).
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The conformal generators take the form

_ L PipL | Phph
Po o= prpp = — (B0 ), 2.107
P T Do pr Qp; ( )
BY = pf +at, (2.108)
P’ = pi+ph, (2.109)
JtT = tPT —aipf —a3p7, (2.110)
JT = P —xipf — xhpy, (2.111)
J.J J,
s _ _ ; P11 ; PoDd
JT = xipl g ph + v + o=, (2.112)
1M1 2 2 12pil,- 22p;—
J9 = aipl — wlph + whpl — adph, (2.113)
D = tP™ +a7pf +aypf +2ipt + ziph + 2d,, (2.114)
K= w0 PP i)+ dy)
4p; ' 4]92
+xy (2503 + Thph +dy), (2.115)
2 >— i g i L L
Kt = P~ + t(xip] + xoph +2dy) — iaﬁfﬂﬁ - 5552552]9; (2.116)
Jo.J J.J
N Y S S S U PSR S
Kt = —¢ <z1if + Igﬁ + 2] pl' + x5 p2) — ia:{a:{pl - 5:17%:1:%]92
+ay(zypf +2ip] + dg) + wh(Ta Py + Tapy + dg). (2.117)

For simplicity, we will again neglect the scale dimension terms on both sides in
the following discussion, which can be added at the quantum level. Furthermore,

the Poisson bracket {m* m/} and {m*/,m/!} can be simplified as 2m*m’* and

szJI

2m respectively.

17y and (27, 2%, x5,

The phase space on the two sides are (27, 2%, z, 0/; p*, p', p*, m
xb:pl, Pl py, ph). The canonical transformation is found by comparing the higher-

spin generators (2.95-2.105) with the collective dipole generators (2.107-2.117). The
17



AdS coordinates and conjugate momenta are given by

_ i py + 25 py

g = Db TTaP (2.118)
P+
Pt = pi+0p3, (2.119)
it it
g o= TPLF TPy (2.120)
P1 + Do
Pt = P+, (2.121)
[oF
P1 P2 ; ;
z = ————\/(2} —2}4)?, (2.122)
prps VL

. | | pt - pf
pF = 1i 2i 2 <p{ =2y _i), (2.123)

and the angular momenta are given by

m* = ————[(a} = 25)(pp; —popl) — (w1 = w)(pips —popy)],  (2.124)
P1 Tt P2
. a—a T () (e3P (e — )
m” = ———===\/PIps (¥ —73) + n n T
(27 — 23)? (pi +p3 )V PiDs

Ipl —ps [ el [Ps i [PY
v B TP :BJ)2<pZ P2 i —). (2.125)
2pf +p; VO TN ol T
One can verify by using the Poisson brackets that this is a canonical transformation.

{$_>p+} = 17 {$Z>p)} - 5ij, {Z,pz} = 1, (2126)
{mIJ’mKL} — 5JKmIL _l_é‘ILmJK _5JLmIK _ 51KmJL’ (2127)

with all others vanishing.

In summary, we have established a one-to-one map between the phase space co-
ordinates of the collective dipole and the phase space of the higher spin AdS particle.
This map generalizes the earlier construction established in [30] for d = 3 to any di-
mension. The map provides a simple explicit model of the AdS/CFT correspondence.
In the light-cone gauge that we have used, the map reconstructs the AdS theory in
the bulk. Issues of locality in the AdS spacetime have been studied recently in [95].
This construction demonstrates how a non-local (bi-particle space) is transformed

into the local AdS space-time with higher spins.
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CHAPTER 3

Higher Spin Theory From Large N Vector Model

1. Overview

Collective fields extend the space of (conformal) operators (and conserved cur-
rents) that are usually used for “holographic” comparisons of correlators and ampli-
tudes at the boundary. In the specific case of the O(N) (Sp(IN)) vector models these
fields are given by bi-local invariants representing scalar products of basic local fields.
The correspondence of higher spin theory with O(N) (Sp(N)) vector model has been
studied both in the framework of AdS/CFT (dS/CFT).

In section two, we summarized the work in [20, 30]. It was demonstrated in [30] in
the example of 3d free CFT that the bi-local field contains fully the additional (radial)
AdS dimension and also the infinite sequence of fields with growing spins. This
construction (done in the light-cone gauge) provides a full one-to-one map between
(fields) observables of the field theory and fields of the higher-spin gravity.

In contrast to AdS/CFT correspondence, any dS/CFT correspondence [50] in-
volves an emergent holographic direction which is timelike. It is then of interest to
understand how a timelike dimension is generated from the large-N degrees of free-
dom. Recently, Anninos, Hartman and Strominger [78] put forward a conjecture that
the Euclidean Sp(2N) vector model in three dimensions is dual to Vasiliev higher spin
theory in four dimensional de Sitter space.

In section three, we introduced the Sp(2N) vector model. Then in section four we
construct a collective field theory of the Lorentzian Sp(2N) model which captures the
singlet state dynamics of the Sp(2N) vector model. Using the results of [20] and [30]
we then in section five argue that a natural interpretation of the resulting action is by
double analytic continuation which makes the emergent direction time-like, relating
this to higher spin theory in dSy4, in a way reminiscent of the way the Louiville mode
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in worldsheet string theory has to be interpreted as a time beyond critical dimensions
[56]. Our map establishes the bi-local theory as the bulk space-time representation
of de Sitter higher spin gravity.

Since the bilocal collective field is a composite of two Grassmann variables there-
fore it might not appear to be a genuine bosonic field. In particular, for finite NV,
a sufficiently large power of the field operator vanishes, reflecting its Grassmannian
origin *. This is further reflected on the size of its Hilbert space.

In section six we will describe a geometric (pseudo-spin) version of the collective
theory which will be seen to incorporate these effects. For dS/CFT, this implies that
the true number of degrees of freedom in the dual higher spin theory in dS is, in this
framework, reduced from what is seen perturbatively (with G = R%4/N being the
coupling constant squared).

In the last section we will give an interpretation of phase transition from a different

perspective than shown by Shenker and Yin [41].

2. Bi-local representation of O(N) CFTj

The O(N)/Higher Spin duality is based on a three dimensional N-component
scalar field theory

‘C:% H¢aa‘u¢a+%(¢'¢)2> Cl:l,"',N (31)

where ¢¢ = ¢%(t,7) = ¢*(x, 27, 21); p = 0,1,2. This theory features two critical
points with conformal symmetry: the UV fixed point at zero coupling (¢ = 0) and
the nontrivial IR fixed point at nonzero coupling constant (¢ # 0). The latter can be
evaluated in the large NV limit and serves as the classic example of critical phenomena
in 3d.

For the correspondence with higher spin fields, a central role is played by the
sequence of traceless and symmetric higher spin currents

o = S () ()

IThis property of higher spin currents has already been recognized in [52]
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Xaﬂl Ce a,quSa 8,uk+1 Ce 8“5 ¢a — traces (32)

which are exactly conserved in the free case. These operators can be summarized in

the semi bi-local form by the generating functional
O(x,e) = ¢%(x — € Z <2€2(8_m . 8_; —4(e- <8_m)(e . 8_;))n % (x +€) (3.3)
n=0

where €2 = 0 to satisfy the traceless condition. As a result, € represents a cone with a
two dimensional coordinate and altogether O(x,€) is a five dimensional semi bi-local
field. The currents that it generates represent boundary duals of AdS, higher spin
fields

i pgeeons () = Hifigpe (x, 2 — 0) (3.4)

where ds? = dm%dz‘z is the AdS, metric.

In the AdS/CFT correspondence, correlation functions of currents are to match
up with the boundary transition amplitudes (sometimes referred to as the boundary
S-matrix) of the higher dimensional AdS theory. A successful demonstration of this
was accomplished in the three-point case by Giombi and Yin [28, 29] who were able
to match the two critical points of the vector model with two versions of Vasiliev’s
Higher Spin Gravity in AdS,. The trivial and nontrivial fixed points are seen as
conjectured by Klebanov and Polyakov [17] to correspond to different boundary con-
ditions involving the lowest spin (s = 0) field.

A constructive approach for this AdS;/CFTj correspondence, given in [20], is
based on the notion of collective fields. These are described by bi-local invariants of

the O(N) field theory

Oz, y) = d(x) - d(y) = Y ¢"(x) - ¢ (v) (3.5)

that close under the Large N Schwinger-Dyson equations. These operators represent
a more general set than the conformal fields O(x, €) since there is no restriction to a

cone. The collective action evaluates the complete O(N) invariant partition function

/ [dp®(z)]e ™51 = / H [dD(z, )] pu(D)e™I®) (3.6)
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FiGURE 1. Illustration of the four-point collective field diagrams.

where the measure is given by u(®) = (det ®)"="» with V,, = L? the volume of space
and V,, = A? the volume of momentum space with A being the momentum cutoff.

Explicitly one has the collective action
2 2 N
Se[®] = Tr [—(92 + 9,)®(z,y) + V] + ETr In®(z,y) (3.7)

where the trace is defined as Tr B = [ d®x B(x, z). This collective action is nonlinear,
with 1/N appearing as the expansion parameter. Through the identification of 1/N
with G (the coupling constant of higher spin gravity), this collective field represen-
tation provides a bulk description of the dual AdS theory. One also has a natural
(star) product defined as (U x ®)(z,y) = [dz ¥(x, 2)P(z,y).

The perturbative expansion is defined in this (bi-local) space. The nonlinear
equation of motion specified by S. gives the background in the expansion: ¢ =
b+ \/—lﬁn. Expanding about the background gives us an infinite number of interaction
vertices [16]

S.[®] = S[®] + Tr[®; Dy n] + %nz +S NPT (3.8)
n>3
where B = ®;'n. The nonlinearities built into S, are precisely such that all invariant
correlators: (¢(z1) - ¢(y1) -+ - d(xn) - ¢(yn)) are now reproduced through the Witten
(Feynman) diagrams with 1/ vertices. The four-point example is shown in Figure 1.
We stress that this nonlinear structure is there for both the free and the interacting
fixed point.
This bi-local theory is expected to represent a (covariant) gauge fixing of Vasiliev’s

gauge invariant theory. An attempt at a gauge invariant formalism is given in [39].
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A one-to-one relationship between bi-local and AdS higher spin fields can be demon-
strated in a physical (single-time) picture. The existence of such a gauge and the
discussion of the collective dipole underlying the collective construction is given in
[40].

The single-time formulation that we will follow involves the equal time bi-local

operators
Ut &,9) =Y 6 (t, 5)0" (L, 1) (3.9)
and its conjugate momenta: I1(Z,y) = —im with a Hamiltonian of the form
H = 2Tr(IIVII) + % / d¥[—V2U(7,7)|z=5] + %QTrW_l, (3.10)

where we have set the coupling constant ¢ = 0. This Hamiltonian again has a natural

1/N expansion, after a background shift

1
U=Uy4+—~n, I=VNr, 3.11

ith W0 = [ dk i) t dratic Hamilt
wi [ dke . \/k_ one gets a quadratic Hamiltonian
1
H® = 2Tr(n¥qn) + gTr(\Ifgln\Ifaln\Ifgl) , (3.12)
which in momentum space reads
7 = 2 [ ak,ar L dkdk 014 yo 1)’
=3 14k T b T g, T 3 10R2 Mg &, <w,31 ‘l‘w,;z ) e ks (3.13)

producing the (singlet) spectrum wy; — /k2+1/k2 of the O(N) theory. A sequence
of 1/N vertices representing interactions can be found similarly and the cubic and

quartic interactions are given explicitly as

2 1

HY = —=Tr(mym) — ——=Trl ¥ ¥ ¥y (3.14)
1

HY = —TrlylngWyinW;nv, nw;! (3.15)

8N
We note that the form of these vertices is the same for both the free (UV) and the
interacting (IR) conformal theories (the only difference is induced by the different

background shifts in these two cases).
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One also has a null-plane version of this construction which would correspond to
light-cone gauge higher spin theory. This was used in [30] to demonstrate the one-to-
one map between the two descriptions: the null-plane bi-locals W(x™; 27, x5 ; 21, 22)
and the higher spin fields H(x™; 27, z, z; 0) in AdS, (with 6 denoting a coordinate that
generates the sequence of higher spins). Both fields have same number of dimensions
1+2+2=1+3+1, the same representation of the conformal group, and the same
number of degrees of freedom.

The bi-local to AdS canonical transformation given in [30] reads

- i pl +aapy x1p] + xopy
P1 T D2 P1 T Do
Pips /
z = %(zl — Ta) , 0 = 2arctan \/p3 /p] , (3.17)
Pi t P2

where p;" are the conjugate momenta of z; . The map going from the bi-local field to

the higher spin field is given by an integral transformation

H(x™, x,2,0) = / dp* dp*dp* ' P / dp{ dp1dps dp:

S(pi +p3 —pT)o(p1 + pa — p*)S(pin/p3 /T — p2
d(2arctan \/pj /pf — )V (pf,p3. p1,p2) | (3.18)

where U(p7, ps, p1, p2) is the Fourier transform of the bi-local field W (a7, 25, @1, 2).
It was shown in [30] that under this transformation all the generators of the bi-
local theory map into the generators of light-cone Higher Spin Gravity in the form

given by Metsaev [38]. In particular, the quadratic bi-local Hamiltonian

\Y% \Y%:
p-® /da:l dxydxy dzy vl < 28:1 — 28;) U (3.19)
takes an AdS, form
2 2
P~ = / dr~dvdzdf H' (—%) H . (3.20)

This establishes, at the quadratic level, that the bi-local representation is identical
to the local AdS, higher spin representation. One should note that the 1/N vertices

do not become local in AdS spacetime. In fact the light-cone gauge fixing of Vasiliev’s
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theory has not been established yet and based on the collective map one can expect
that it takes nonlocal form.

Another important check regarding the identification of the “extra” AdS coordi-
nate z can be seen by taking the z — 0 limit. Evaluating the bi-local field at z = 0

gives the following “boundary” form
M) = [ dpfdpger v
20(0 —2tan”t \/p3 D)V (] p3s e e) . (3.21)

Expanding the kernel in the above transformation intoits Fourier series, for a fixed
even spin s, one finds agreement with conformal operators of a fixed spin s which are

explicitly given in [73, 74] by

(s — k) T(s—k+ %)F(z‘ +3)

As a result, in the bi-local picture one has a clear definition of the boundary z = 0 and

k=0

the notion of boundary amplitudes (boundary S-matrix). Due to the construction
through collective field theory, one is guaranteed to reproduce the boundary correla-
tors in full agreement with the O(/N) model. The bulk/bi-local theory is nonlinear
with nonlinearities governed by 1/N = G. All this provides a nontrivial check of the
collective picture and the proposal that bi-local fields provide a bulk representation

of AdS, higher spin fields.

3. The Sp(2N) vector model

The Sp(2N) vector model in d spacetime dimensions is defined by the action
S=i [ e (B0, — YoV} - Viiciod) (3.23)

where ¢%, ¢4 with 4 = 1--- N are N pairs of Grassmann fields. This is of course a
model of ghosts.
In this section we will quantize this model following [79] and [80]. In this quanti-

zation, the fields ¢¢ and ¢! are Hermitian operators, while the canonically conjugate
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momenta
Pl =i0,¢h , Py = —i0¢" (3.24)
are anti-Hermitian. The Hamiltonian H is Hermitian
H=i / A [PyP] + V¢ Ve + V(igi¢))] (3.25)
The (equal time) canonical anticommutation relations are

{60(2), P{(9)} = —i6;0"6 (7 — &)
{6a(@), 00} = {R@),F@}=0, (a,b=1,2) (3.26)

with all other anticommutators vanishing. With these anticommutators, the equa-

tions of motion for the corresponding Heisenberg picture operators
0ol — V2L + V' =0 (3.27)
follow. The operator relations (3.26) allow a representation of the operators are given

by

a (= a (= a . 5
61() = @) | P~ i (329)

where ¢’ are now Grassmann fields.

For the free theory, the solution to the equation of motion is

'k

a0~ | G

where the operators o' satisfy

[ai(%)e_mk't_'z'm + ozfj(l;:))ei(““'t_'g'ﬁ) (3.29)

{ai(k), oy (K')} = i6"5(k = K') , {af'(k),ah(K)} = —id"6(k —K')  (3.30)

with all the other anticommutators vanishing. The Hamiltonian is given by

-

H=i / (k] |K] [al(E)Tag(E) — an(k) e (k) (3.31)
The basic commutators lead to

[H, 0 (k)] = —kag (k) . [H, o] = kol (k) (3.32)
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To discuss the quantization of the free theory it is useful to review the quantization

of the Sp(2N) oscillator, following [80] 2. The Hamiltonian is

02 o
H=i (— R + kz%ﬁgb;) (3.33)

where ¢¢, ¢5 are N pairs of Grassmann numbers. Due to the Grassmann nature of the

variables, the spectrum of the theory is bounded both from below and from above.

In the Schrodinger picture, the oscillators are defined by:

[, + agl] (3.34)

ol

while the momenta are

P = eab\/g (ah — o) (3.35)
The ground state |0) and the highest state |2/V) are then defined by the conditions
a0y =0, o'f|2N) =0 (3.36)
with the wavefunctions
Wy = exp|—ik@'dh] , Uon = explikd:dh] (3.37)
and the energy spectrum is given by
E,=kln—N], n=0,1,--- 2N (3.38)
Finally, the Feynman correlator of the Grassmann coordinates is easily seen to be

OISO I0) = 5 e (3.30)

Extension of these results to the free field theory is straight forward: for each mo-

mentum lg, we have a fock space with a finite number of states.

2Note that our notation is different from that of [80]
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4. Collective Field Theory for the Sp(2N) model

In the representation (3.28), a general wavefunctional is given by W[¢’ (T),t]. Our
aim is to obtain a description of the singlet sector of the theory, i.e. wavefunctionals
that are invariant under the Sp(2N) rotations of the fields ¢ (Z). All the invariants

in field space are functions of the bi-local collective fields
p(Z,9) = i€ ¢, () ¢3(9) (3.40)

We have defined this collective field to be Hermitian (which is why there is a i
in the definition). Notice that clearly p(Z,y) = p(¢,Z). The aim now is to rewrite
the theory in terms of a Hamiltonian that is a functional of p(¥, %) and its canonical
conjugate —i% that acts on wavefunctionals, which are in turn functionals of
p(Z, ).

It is important to remember that p(Z,7y) is not a genuine bosonic field. This
will have important consequences at finite N. In a perturbative expansion in 1/N,
however, there is no problem in treating p(Z, ) as a bosonic field [16].

Before dealing with the Sp(2/N) field theory, it is useful to review some aspects of
the collective theory for the usual O(N) model, starting with the O(N) oscillator.

4.1. Collective fields for the O(N) theory. In this section we review the bi-
local collective field theory construction for the O(V) field theory, starting with the
O(N) oscillator. This has a Hamiltonian

| o
H =[PP+ XX (3.41)

The collective variable is the square of the radial coordinate ¢ = X°X°® and the

Jacobian for transformation from X° to o and the angles is
L _(n-2)2
J(o) = ita Qn_1 (3.42)

where Qu_; is the volume of unit S™~!. The idea is to find the Hamiltonian H(o, a%)
which acts on wavefunctions [.J(c)]*/?¥ (o). The key observation of [32] is that this
can also be obtained by requiring that H (o, 22 ) acting on wavefunctions [J(o)]*/?¥ (o)
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is Hermitian with the trivial measure do. This determines both the Jacobian and the
Hamiltonian and the technique generalizes to higher dimensional field theory. The

final result is well known,
+ 5180 (3.43)

The large-N expansion then proceeds as usual by expanding around the saddle point

solution oy which minimizes the potential 2,

2 N2

o

Clearly, we have to choose the positive sign since in this case o is a positive real

quantity,
N
= — 3.45
00 ok ( )

which reproduces the coincident time two point function (0| X*(¢) X*(¢)|0) and the cor-
rect ground state energy, Fy = %k‘ The subleading contributions are then obtained

by expanding around the saddle point,

[2N k
o =09+ ?77 s Ho— = Wﬂ-n (346)

The quadratic part of the Hamiltonian becomes

1
H® = 3 (72 + 4k*n?] (3.47)

This leads to the excitation spectrum to O(1), E, = 2nk with n = 0,1,---  occ.
The Hamiltonian of course contains all powers of 1. Terms with even number of the
fluctuations (m,,n) come with odd factors of og. This fact will play a key role in the
following.

In the following it will be necessary to consider wavefunctions. It follows directly
from (3.41) that the ground state wavefunction is given by (up to a normalization

3To see why the saddle point approximation is valid, rescale ¢ — No and II, — %Hg so that
there is an overall factor of N in front of the potential energy term. We will, however, stick to the

unrescaled fields.
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which is not important for our purposes)

Wo(X') = expl~ o] ~ expl—y/ ) (3.43)

where we have expanded o as in (3.46), used (3.45) and ignored an overall constant.
We should get the same result from the collective theory. Recalling that the collective
wavefunction is related to the original wavefunction by a Jacobian factor, the ground

state wavefunction follows from (3.47)

=

Wo(n) = [J(0)] 72 exp[—kn’] (3.49)

The presence of the Jacobian is crucial in obtaining agreement with (3.48) [48]. Ex-
panding the argument in the Jacobian in powers of 7 according to (3.46) it is easy to
see that the quadratic term in 7, coming from the Jacobian, exactly cancels the ex-
plicit quadratic term in (3.49) and similarly the linear term in 7 is in exact agreement
with (3.48). The expression (3.49) contains all powers of 7 in the exponentiated -
these should also cancel once one takes into account the cubic and higher order terms
in the collective Hamiltonian as well as finite N corrections which we have ignored to
begin with. The above formalism can be easily generalized to an additional invariant
potential, since the latter is a function of o.

The collective theory for O(N) field theory can be constructed following similar ar-
gument. We reproduce the relevant formulae from [32] that are direct generalizations
of the formulae for the oscillator. The O(N) model has the Hamiltonian

Hel / 1y {—L L VRV (F) + U@ @) (3.50)
2 0¢*(L)0¢" ()
The singlet sector Hamiltonian in terms of the bi-local collective field o(Z,y) =
¢'(7)¢' () and its canonically conjugate momentum II,(Z,7) is, to leading order in
1/N 4

N2 1
HOY =21 | (gay) + 5507 | = § [ diV2o(a s+ Vol ) - 351

4To subleading order there are singular terms which are crucial for reproducing the correct 1 /N
contributions.
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where the spatial coordinates are treated as matrix indices.
So far our considerations are valid for an arbitrary interaction potential U. Let
us now restrict ourselves to the free theory, U = 0 to discuss the large-N solution

explicitly. In momentum space the saddle point solution is

R N - -
0’(/{51, k‘g) = 5 = (5(/{51 — k‘g) (352)

k1|

Once again we have chosen the positive sign in the solution of the saddle point equa-
tion, and the saddle point value of the collective field agrees with the two point
correlation function of the basic vector field, which should be positive. The 1/N

expansion is generated in a fashion identical to the single oscillator,

ol

o(ki, ko) = oo(ky, ko) + M |k | k2]
N([k1] + |k2l)

the quadratic piece becomes
HO = / dFdFy [y o, By (R, o) + (Rl + Rl P, By B)| (3.5
so that the energy spectrum is given by
E(ky, k2) = |kr| + |k (3.55)

as it should be. It is easy to check that the unequal time two point function of
the fluctuations reproduces the connected part of the two point function of the full
collective field as calculated from the free field theory. A nontrivial U can be reinstated
easily (see e.g. the treatment of the (gz_S)z)2 model in [20], which discusses the RG flow

to the nontrivial IR fixed point).

4.2. Collective theory for the Sp(2N) oscillator. Since there is a representa-
tion of the field operator and the conjugate momentum operator of the Sp(2N) theory
in terms of Grassmann fields, (3.28), it is clear that the derivation of the collective
field theory of the Sp(2N) model closely parallels that of the O(N) theory. In this

subsection we consider the Sp(2N) oscillator. The Hamiltonian is given by (3.33).
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The collective variable is
p =i g} (3.56)

The fully connected correlators of this collective variable have a simple relationship

with those of the O(2/N) harmonic oscillator,

{p(t1)p(t2) - p(tn))spian) = —{o(t)a(ta) -+ o (tn)) 55 (3.57)

This result follows from (3.39) and the application of Wick’s theorem for Grassmann
variables.

The collective variable p is a Grassmann even variable - it is not an usual bosonic
variable. This key fact is intimately related to the finite number of states of the
Sp(2N) oscillator. In this section we will show that in a 1/N expansion we can
nevertheless proceed, defering a proper discussion of this point to a later section.

The Hamiltonian for the collective theory is obtained by the same method used
to obtain the collective theory in the bosonic case, with various negative sign coming
from the Grassmann nature of the variables. Using the chain rule and taking care of
negative signs coming because of Grassmann numbers, one gets the Jacobian J'(p)

(determined by requiring the hermicity of J~/2H J'/?)
J'(p) = A" p~NFD (3.58)

where A’ is a constant. The negative power of p of course reflects the Grassmann
nature of the variables. ® Despite this difference, the final collective Hamiltonian is

in fact identical to the O(2N) oscillator collective Hamiltonian

o 9 N* 1
gseN) _ 59 0 N7 1, 3.59
coll 8ppap + 2p + 2 P ( )

This leads to the same saddle point equation, and the solutions satisfy the same

equation as (3.44) with N — 2N.

5This p dependence of the Jacobian follows from a direct calculation J'(p) = [ doiddid(p —
p 14@2
igigh) = [dAe [ dpideh e A4i9% ~ pm(NHD)
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In the O(2N) oscillator, we had to choose the positive sign, since o is by definition
a real positive variable. In this case, there is no reason for p to be positive. In fact
we need to choose the negative sign, since (3.57) requires that the one point function
of p must be the negative of the one point function of o.

N
po=—= (3.60)

It is interesting that the singlet sectors of the O(2N) and Sp(2/N) models are described
by two different solutions of the same collective theory.
The leading order ground state energy is the Hamiltonian evaluated on the saddle

point,
E, = —Nk (3.61)

in agreement with (3.38). The fluctuation Hamiltonian is obtained as usual by ex-

AN k
p=rotif ?5 ; Iy = IN e (3.62)

The quadratic Hamiltonian is now negative, essentially because of the negative sign

panding

in the saddle point,

1
HE = —5 [nE + 4k°¢°] (3.63)

A standard quantization of this theory leads to a spectrum which is unbounded from
below. We will now argue that we need to quantize this theory rather differently, in a
way similar to the treatment of [49]. This involves defining annihilation and creation

operators ag, ag

1 .
= \/—4_/7{:[% +a] , me = iVk[ag — af] (3.64)
which now satisfy
lag,al] = —1, [H, a¢] = —2kac , [H, a]] = 2kal (3.65)

Because of the negative sign of the first commutator in (3.65) a standard quantization

will lead to a highest energy state annihilated by az, and then the action of powers of
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a¢ leads to an infinite tower of states with lower and lower energies. The highest state
has a normalizable wavefunction of the standard form e~*¢’ (Note that the expression
for m¢ has a negative sign compared to the usual harmonic oscillator). It is easy to
see that this standard quantization does not reproduce the correct two-point function
of the Sp(2N) theory, does not lead to the correct spectrum (3.38) and, as shown
below, does not lead to the correct wavefunction.

All this happens because p and hence £ is not really a bosonic variable, and
this allows other possibilities. Consider now a state |0)¢ which is annihilated by the
annihilation operator a¢. This leads to a wavefunction exp[k£?], which is inadmissible
if £ is really a bosonic variable since it would be non-normalizable. However the true
integration is over the Grassmann partons of these collective fields, and in terms of
Grassmann integration this wavefunction is perfectly fine. This is in fact the state
which has to be identified with the ground state of the Sp(2/N) oscillator. Including

the factor of the Jacobian, the full wavefunction is (at large N)

Wicle] = [T ()] explhe?) = [~ 7+ 2\/%]N/2exp[k52] (3.66)

Expanding the Jacobian factor in powers of & one now sees that the term which is

quadratic in £ cancels exactly, leaving with
Wie[€] = exp[—VNEE 4+ O(E)] (3.67)
This is easily seen to exactly agree with Wy in (3.37)
W ~ expl k) ~ expl~V/Nk] (3.68)

up to a constant. Once again we need to take into account the interaction terms in the
collective Hamiltonian to check that the O(£?) terms cancel. It can be easily verified
that the propagator of fluctuations & will now be negative of the usual harmonic
oscillator propagator. Furthermore the action of az now generates a tower of states
with the energies (3.38) - except that the integer n is not bounded by N.

The fact that we get an unbounded (from above) spectrum from the collective

theory is not a surprise. This is an expansion around N = oo and at N = o0
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the spectrum of Sp(2N) is also unbounded. At finite N a change of variables to
p is not useful because of the constraints coming from the Grassmann origin of p.
Nevertheless, even in the 1/N expansion, the Grassmann origin allows us to consider
wavefunctions which would be otherwise considered inadmissible.

The negative propagator ensures that the relationship (3.57) is satisfied for the 2
point functions. Once this choice is made, the relationship (3.57) holds for all m-point
functions to the leading order in the large-/N limit. As commented earlier, a term
with even number of ¢ or £ would have an odd number of factors of py. Therefore
a n-point vertex in the theory will differ from the corresponding n-point vertex of
the O(N) theory by a factor of (—1)"*!. The connected correlator which appears in
(3.57) is the sum of all connected tree diagrams with n external legs. The collective

theory gives us the following Feynman rules

1 Every propagator contributes a negative sign.

2 A p point vertex has a factor of (—1)P*!

We now argue that these rules ensure the validity of the basic relation (3.56). We do

it by the following simple diagrammatic method:

r lines

C

FiGURE 2. Connected tree level correlators of the collective theory

Consider first the simplest diagram for a n-point function, figure A, which is a

star graph. The net sign of the diagram is (—1)"* x (=1)" = —1, where the first
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factor is from the vertex ag and the second one from the number of lines. Now we
proceed to construct all other tree level diagrams from A, by pulling ‘r’ lines resulting
in figure B, which now has vertices, a; and b; joined by a new line. It is easy to see,
that the sign of figure A is not changed by this operation. The net sign of figure
B is (—1)m O+ 5 (—1) D+ 5 (1) () — 1 where the 3 factors are from aq,
by and the number of lines respectively. In figure C' we repeat this method for the
substar diagrams until we exhaust all possibilities. It is easy to see that the sign stays
invariant. Assigning a sign « to the blob, we first find the net sign of the left diagram
in figure C. It turns out to be, a x (—1)*+D+L x (—1)¥1 = . After the “pulling”
operation we get o x (—1)Fm+2+1 5 (1) (rH)+ 5 (_1)k+1+1 = . Thus it is proved
that in every move the sign is preserved. This proves the relationship (3.57) for all

correlation functions.

4.3. Sp(2N) Correlators. Our discussion of the bosonic O(N) collective field
theory shows that the Sp(2N) collective field theory in momentum space is a straight-
forward generalization. In this subsection we discuss the relevant features of the
collective theory for the free Sp(2N) model.

The collective Hamiltonian is again exactly the same as in the O(NV) theory, given

by (3.51) with 0 — p. Since the connected correlators of the collective fields satisfy

(p(kr, Ky, 1) p(ka, K o) -+ pkn, KL 1)) nth
= (o (Fa, Ky 1) Ry By, t2) -+ 0 (i By 1)) 8500 (3.69)

we now need to choose the negative saddle point,

- N .

po(k, K t) = _ﬁé(k — K (3.70)
The fluctuation Hamiltonian once again has a factor of (—1)"*! for the n-point vertex.
In particular, the propagator of the collective field is negative of that of the O(V) col-
lective field - the quadratic Hamiltonian has an overall negative sign! This is required

- the diagramatic argument for the Sp(2V) oscillator generalizes in a straightforward

fashion, ensuring that (3.69) holds.
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5. Bulk Dual of the Sp(2/N) model

In [20], it was proposed that the collective field theory for the d dimensional free
O(N) theory is in fact Vasiliev’s higher spin theory in AdS,.;. It is easy to see that
the collective field has the right collection of fields. Consider for example d = 3. The
field depends on four spatial variables, which may be reorganized as three spatial
coordinates one of which is restricted to be positive and an angle. A fourier series in
the angle then gives rise to a set of fields x4, which depend on three spatial variables,
with the integer n denoting the conjugate to the angle. Symmetry under interchange
of the arguments of the collective field then requires n to be even integers. But this
is precisely the content of a theory of massless even spin fields in four space-time
dimensions, with n labelling the spin and the two signs corresponding to the two
helicities. (Recall that in four space-time dimensions massless fields with any spin
have just two helicity states).

The precise relationship between collective fields and higher spin fields in AdS was
found in [30] which we now summarize for d = 3. The correspondence is formulated
in the light cone quantization. Denote the usual Minkowski coordinates on the space-

time on which the O(N) fields live by ¢, y, z and define light cone coordinates

¥ = %(t +y) (3.71)

The conjugate momenta to z, 2z~ are denoted by p~, p*. Then in light front quanti-
zation where 27 is treated as time, the Schrodinger picture fields are ¢'(z~, z) while
the momentum space fields are given by ¢*(p™, p). The corresponding collective field

is then defined as

U(pf—>p1;p;>p2) = ¢Z(pf—>p1)¢l(p;—>p2) (372)

The fluctuation of this field around the saddle point is denoted by ¥(p{, p1;py, po).
Now define the following bilocal field

o(pt,p®,2,0) = /dpzdpfdpidpldpz K(p*,p", z,0,pf,p1,p3 . p2)
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where the kernel is given by

K(p+>pm>z>9;pii_>pl>p;>p2)

=2z e §(pf +p3 —p") 6(p1+p2 —p)
+ + +

Sy |2 — poy [EL — ) 5(2tant 22 — ) (3.74)
Y%\ 2 Y%\

In [30] it was shown that the Fourier transforms of the field ®(p*, p®, z, ) with respect
to 0 satisfy the same linearized equation of motion as the physical helicity modes of
higher spin gauge fields in AdS, in light cone gauge. The metric of this AdS, is given

by the standard Poincare form

1 1
ds® = ;[—Qd:ﬁd:z_ +da” +dz%) = ;[—dt2 + dy? + da® + d2?) (3.75)

The momenta p*, p are conjugate to z~, x. The additional dimension generated from
the large-N degrees of freedom is z, which is canonically conjugate to p* and is given
in terms of the phase space coordinate of the bi-locals by

Pl + s

In particular, the linearized equation for the spin zero field, p(z~, z, z), follows from

the quadratic action
1 g 1 2 2 2 5
S = 3 drtdx~dzdx = (=20, 90_@ — (9:0)* — (020)°) + ¢ (3.77)
z

which is of course the action of a conformally coupled scalar in the AdS, with coor-
dinates given by (3.76). The actions for the spin-2s fields can be similarly written
down. Even though these actions are derived using light cone coordinates, they can be
covariantized easily since these are free actions. In terms of the coordinates t,y, x, z
the scalar action is given by

5:%/&@@@[;«awkw@w”%&w”%@wﬁ+%ﬁ (3.78)

Let us now turn to the Sp(2NN) collective theory. One can define once again the
fields as in (3.73) and (3.74). The coordinates (x*, 2™, x, z) will continue to transform

appropriately under AdS isometries. However, we saw earlier that the quadratic part
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of the Hamiltonian, and therefore the quadratic part of the action will have an overall
negative sign.

A negative kinetic term signifies a pathology. Indeed we derived this theory with
the Lorentzian signature Sp(2/N) model, which has negative norm states. The nega-
tive kinetic term of the collective theory is possibly intimately related to this lack of
unitarity.

However, the form of the action (3.78) cries out for a analytic continuation
z=1iT, t=—iw (3.79)
Under this continuation the action, S becomes

=3 / drduwdzdy [Ti (00 ~ (By0)" — (0u0)* — (Dup)?) — 5¢°| (380

The sign of the mass term has not changed in this analytic continuation, and this
action has become the action of a conformally coupled scalar field in de Sitter space

with the metric
1
ds® = =[—dr? + da® + dy* + dw®] (3.81)
T

This mechanism works for all even higher spin fields at the quadratic level.

To summarize, the collective field theory of the three dimensional Lorentzian
Sp(2N) model can be written as a theory of massless even spin fields in AdSy, but
with negative kinetic terms. Under a double analytic continuation this becomes the
action in dS, with positive kinetic terms. This is consistent with the conjecture of [78]
that the Euclidean Sp(NN) model is dual to Vasiliev theory in dSs. It is interesting
to note that the way an emergent holographic direction is similar to the way the
Liouville mode has to be interpeted as a time dimension in worldsheet supercritical
string theory [56]. In this latter case, the sign of the kinetic term for the Liouville
mode is negative for d > d.,.

Even for the O(N) model, the collective field is an represents seemingly an over-
complete description, since for a finite number of points in space K, one replaces at

most N K variables by K? variables, which is much larger in the thermodynamic and
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continuum limit. However, in the perturbative 1/N expansion this is not an issue and
the collective theory is known to reproduce the standard results of the O(/N) model.
The issue becomes of significance at finite NV level. The relevance of incorporating for
such features has been noted in [52, 41].

For the fermionic Sp(2N) model, there appears potentially an even more im-
portant redundancy related to the Grassmannian origin of the construction. Conse-
quently the fields are to obey nontrivial constraint relationships and the Hilbert space
is subject to a cutoff of highly excited states. This ‘exclusion principle’ was noted
already in the AdS correspondence involving Sy orbifolds[75, 76, 77].

In an expansion around N = oo most effects of this are invisible. Our discussion
shows that this can be regarded as a theory of higher spin fields in dS that is insensitive
to these effects. However, as we saw above, the Grassmannian origin was already of
importance in choosing the correct saddle point and the correct quantization of the
quadratic Hamiltonian. In the next section we will address the question of finite
N and the Hilbert space of the bi-local theory. In the framework of a geometric
(pseudo-spin) representation, we will give evidence that the bi-local theory is non-

perturbatively satisfactory at the finite NV level.

6. Geometric Representation and The Hilbert Space

The bi-local collective field representation is seen to give a bulk description dS
space and the Higher Spin fields. It provides an interacting theory with vertices
governed by G = 1/N as the coupling constant. We will now show that the collective
theory has an equivalent geometric (Pseudo-spin) variable description appropriate
for nonperturbative considerations. The essence of this (geometric) description is in
reinterpreting the bi-local collective fields (and their canonical conjugates) as matrix
variables (of infinite dimensionality) endowed with a Kéahler structure.

This geometric description will provide a tractable framework for quantization and

non-perturbative definition of the bi-local and HS de Sitter theory. It will be seen
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capable to incorporate non-perturbative features related to the Grassmannian ori-
gin of bi-local fields and its Hilbert space. Pseudo-spin collective variables represent
all Sp(2N) invariant variables of the theory (both commuting and non-commuting).
These close a compact algebra and at large N are constrained by the corresponding
Casimir operator. One therefore has an algebraic pseudo-spin system whose non-
linearity is governed by the coupling constant G = 1/N. As such they have been
employed earlier for developing a large N expansion [90] and as a model for quanti-
zation [91]. This version of the theory is in its perturbative (1/N) expansion identical
to the bi-local collective representation. It therefore has the same map to and cor-
respondence with Higher Spin dS, at perturbative level. We will see however that
the geometric representation becomes of use for defining (and evaluating) the Hilbert
space and its quantization.

To describe the pseudo-spin description of the Sp(2N) theory we will follow the

quantization procedure of [93]. In this approach one starts from the action:
S = /ddzv dt(0"n;0,m5) (3.82)
and deduces the canonical anti-commutation relations
{1 (2, )0 (2, £)} = —{n3(, )] (', 1)} = i6%(x — )6 (3.83)

The quantization based on the mode expansion

i ddk it —ikx 7 ikx

m(z) = (—(—ak_e + aj,, e'*) (3.84)
with

{ai_,a)f }={ai ,all } = 0%k — k)57 (3.85)

Note that in this approach the operators 1’ are not Hermitian, but pseudo-Hermitian

in the sense of [83].
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Pseudo-spin bi-local variables will be introduced based on Sp(2N) invariance, we

have the vectors:

no= (L0 M )

a(k) = (allc >allc+>ai >ai+>"' aé\/_’aé\g—)
a(k) = (akl, a,j ,ail, a,j R aff\?’, —affVT) (3.86)
and the notation:
)= [ o @R+ alhe) (387
)= | ——— .
1 (2m) 220,

so that a complete set of Sp(2/V) invariant operators now follows:

—1

S(p1,p2) = 2\/NGT(P1)€NG(P2):

N
9 Z ID1+ pz—_l_apz-l—apl )

%s.
Mzn

—1
ST(p1,p2) = a” (p1)ena(ps) = (apsam,— +ay a) )
2\/_ 2 =1
B(pi,p2) = a'(p)eva(ps) Zap1+ap2+ +a _al (3.88)
0 1

and ey = e® 1y, e =
-1 0

These invariant operators close an invariant algebra. The commutation relations

are found to equal:

[S(B1, 2), S (73, )] = % (052 52050.1 + Opa5a ) — ﬁ (07,55 B(P1, 1) + 0,0 B (D5, 1)
+ 0515 B (D1, P2) + 05,5, B (D3 P2)]

[B(p1, 72), ST (05, 51)] = 05,5 ST(P1. Pa) + 05,5 (P, D)

(B, 12), S(B3,04)] = —0,5S (D2, 1) — 05 (D2, P3) (3.89)

The singlet sector of the original Sp(2N) theory is characterized by a further
constraint. This constraint is is associated with the Casimir operator of of the algebra

and can be shown to take the form:

4 1 1
T _ B\ =
NS *S+ (1 NB)*(l NB) I (3.90)
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Here we have used the matrix star product notation: x product as: with Ax B =
[ dps A(pr2) B (paps).

The form of the Casimir, which commutes with the above pseudo-spin fields points
to the compact nature of the bi-local pseudo-spin algebra associated with the Sp(2V)
theory. This will have major consequences which we will highlight later.

Indeed it is interesting to compare the algebra with the bosonic case, where we

have:
S(p1,p2) = ﬁgai(m)ai(m)
S'prp) = ﬁgaz@oam
B(pi,p2) = ial(pl)ai(m) (3.91)

with the commutation relations:

1

S . 1 . S
[S(plap2)> ST(p3>p4)} = P (513’2713’3513’443’1 + 513’2713’4513’343’1) + AN [5ﬁ2,ﬁ33(p4>p1) + 5;3’2,13’43(]93,]91)

2
+ 0py 55 B(P1, D2) + 05,5, B (D3, P2)]

S ST (D1, ) + 67,55 (B, P3)
—05,,555 (P2, 1) — 6,55 (P2, D3)

[B(p1,12), ST(Ps, P1)]
[B(1,52), S (73, )]

In this case the Casimir constraint is found to equal:

4 1 1
_ gt hl _B)=
ST RS+ (14 B)x (14 B) =1 (3.93)

featuring the non-compact nature of the bosonic problem.
We can therefore see that the singlet sectors of the fermionic Sp(2N) theory
and the bosonic O(2N) theory can be described in analogy to a bi-local pseudo-spin

algebraic formulations with a quadratic Casimir taking the form:
4yST % S+ (1 —vB)* (1 —yB) =1 (3.94)

the difference being that with v = & (—) for the fermionic (bosonic) case respec-

tively. This signifies the compact versus the non-compact nature of the algebra, but

43

(3.92)



also exhibits the relationship obtained through the N «» —N switch that was central
in the argument for de Sitter correspondence in [78].

From this algebraic bi-local formulation one can easily see the the collective field
representation(s) that we have discussed in sections 2 and 3. Very simply, the Casimir
constraints can be solved, and the algebra implemented in terms of a canonical pair

of bi-local fields:

v = / » 1 1
IS _ durd i(p1y2+p2y2) [ _ IIx WU «II - - =
(p1p2) 5 Yy1ay2¢ { Ko Fing (y12) 272ty fipy U (y192)
I () — i« () — 2% U ()}
2 Kpy Kpy
J= B 2 11
gt _ durd i(p1y2+p2y2) [ _ IIx WU «II - - =
(p1p2) 5 / yidyze { . (y1y2) ey . U (y192)
Kp, K K K
+ U (yrye) + iU x H(yays) + i1 U (yry2) }
; ” 2 " 11
B(pip2) = —+ /dyldyge_i(ply”pzy”{iﬂ* Uk (y1ye) + 55— (1192)
¥ o p Kpy Kps ; 292K, Kp, W
P (yayn) — U D (yage) + i 1k U ()} (3.95)
2 Kpy Kpy

where Kk, = ,/w,.

Recalling that the Hamiltonian is given in terms of B, we now see that its bi-
local form is the same in the fermionic and the bosonic cases. This explains the
feature that we have established before by direct construction. While the bi-local
field representation of B is the same in the fermionic and bosonic cases, the difference
is seen in the representations of operators S and ST. These operators create singlet
states in the Hilbert space and the difference contained in the sign of v implies the
opposite shifts for the background fields that we have identified. The algebraic pseudo
spin reformulation is therefore seen to account for all the perturbative (1/N) features
of the the bi-local theory that we have identified. However, we would like to emphasize
that, the algebraic formulation provides a proper framework for defining the bi-local

Hilbert space.

6.1. Quantization and the Hilbert Space. The bi-local pseudo-spin algebra
has several equivalent representations that turn out to be useful. Beside that col-

lective representation that we have explained above, one has the simple oscillator
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representation:

1
S(p1,p2) = a*(l—ﬁoﬂ*a)%(phm)
1
St(pi,po) = (1—NQT*Q)%*QT(P1>P2)

B(py,p2) = QQT*a(pl,pg) (3.96)

with standard canonical canonical commutators (or Poisson brackets).

A more relevant geometric representation is obtained through a change:

[Nl

1 _
= Z(14+—=27)"
o (—l—lN )
= 1+=22)
o (+N )

N

Z (3.97)
The pseudo-spins in the Z representation are given by:

1 =
S(p1,p2) = Zx(+ —Z*Z) (p1,p2)

N
1 = _
St(pi,pa) = (1+NZ*Z)‘1*Z(p1,p2)
1 = _
B(pi,p2) = 2Z*(1—|—NZ*Z)_1*Z(p1,p2) (3.98)

It is easy to see that these satisfy the Casimir constraint: +ST*S+(1—+B)? = 1.

One can write the Lagrangian in this Z representation as:

1 - a . 1 - _
L= z'/dt tr[Z(1 + NZZ)‘lZ - Z(1+ NZZ)‘IZ] —H (3.99)
For regularization purposes, it is useful to consider putting # in a box and limiting
the momenta by a cutoff A: this makes the bi-local fields into finite dimensional
matrices (which we will take to be a size K). For Sp(2N) one deals with a K x K

dimensional complex matrix Z, where we have obtained in the above a compact

symmetric (Kéhler) space :

ds* =tr[dZ(1 — Z2)dZ(1 — ZZ) ™ (3.100)

According to the classification of [92], this would correspond to manifold M; (K, K).
We note that the standard fermionic problem which was considered in detail in [91]

corresponds to manifold M;;;(K, K) of complex antisymmetric matrices.
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Quantization on Kahler manifolds in general has been formulated in detail by
Berezin [91]. We also note that the usefulness of Kéhler quantization for discretizing
de Sitter space was pointed out by A. Volovich in a quantum mechanical scenario[25].
In the present quantization, we are dealing with a field theory with infinitely many
degrees of freedom and an infinite number of Khaler matrix variables. We will now
summarize some of the results of quantization which are directly relevant to the
Sp(2N) bi-local collective fields theory. Commutation relations of this system follow
from the Poisson brackets associated with the Lagrangian £(Z,Z). States in the
Hilbert space are represented by (holomorphic) functions (functionals) of the bi-locals

Z(k,l). A Kéhler scalar product defining the bi-local Hilbert space reads:
(Fy, Fy) =C(N,K) /d,u(Z, ZVF(Z2)Fy(Z) det[1 + ZZ)7N (3.101)
with the (Ké&hler) integration measure:
dy = det[l + ZZ)*KdZdz (3.102)
The normalization constant is found from requiring (F}, Fy) = 1 for F' = 1. Let:

a(N,K) = = / du(Z,Z)det[l + 22N (3.103)

1
C(N, K)

This leads to the matrix integral (complex Penner Model)

a(N,K) = N %) / H dZ(k,1)dZ(k,l)det[1 + ZZ] KN (3.104)

k=1
which determines C'(N, K).

The following results on quantization of this type of Kahler system are of note:
First, the parameter N: much like for ordinary spin, one can show that N (and
therefore GG in Higher Spin Theory) can only take integer values, i.e. N =0,1,2,3,---.
Next, one has question about the total number of states in the above Hilbert space.
Naively, the bi-local theory would seem to grossly overcount the number of states of
the original fermionic theory. Originally one essentially had 2/N K fermionic degrees
of freedom with a finite Hilbert space. The bi-local description is based on (complex)

bosonic variables of dimensions K2 and the corresponding Hilbert space would appear
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to be much larger. However, due to the compact nature of the phase space, the number
of states is in fact much smaller.

We will now evaluate this number (at finite N and K) for the present case of
Sp(2N) (in [91] ordinary fermions were studied) and show that the exact dimen-
sion of the bi-local Hilbert space in geometric (Kéhler) quantization agrees with the
dimension of the singlet Hilbert space of the Sp(2/N) fermionic theory.

The dimension of quantized Hilbert space is found as follows: considering the

operator O = I one has that:
K
Tr(I) = C(N, K) / T] 42k, 0)dZ (k, 1) det[1 + Z2] 2K (3.105)
ke l=1
Consequently the dimension of the bi-local Hilbert space is given by:

. _ C(N,K) _ a(0,K)
Dim Hp = CO.R = AV K (3.106)

The evaluation of the matrix (Penner) integral therefore also determines the di-
mension of the bi-local Hilbert space. Since this evaluation is a little bit involved, we
present it in the following. Evaluation of matrix integrals (for real matrices) is given
in [81] the extension to the complex case was considered in [82].

We will use results of [92], whereby every (complex) matrix can be reduced

through (symmetry) transformations to a diagonal form:

w1

w0

Z(k,1) — ws (3.107)

WK

and the matrix integration measure becomes:

[dZdZ) = |A(w) P [ ] dwid® (3.108)
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where d§) denotes “angular” parts of the integration and A(xy, -+, 2x) = [ [, (x —

7;) is a Vandermonde determinant, with z; = w?. Consequently the matrix integral

for a(N, K) (and C(N, K)) becomes:

Vol Q oK
a(N, K) = — /A(a:l,--- o) [ +w)) N [ deo (3.109)
1 1
Through a change of variables, z; = —lfiy,, we get:
Vol Q
a(N, K) = o7 / dez (1, ) [ ] = w)™ (3.110)
*Jo

This integral can be evaluated exactly. It belongs to a class of integrals evaluated

by Selberg in 1944 [84]:

1
I(a,ﬁ,'y,n) = / dIl" / de’n|A |2A{Hl'a 1 1—l’j -1
0

_ H 1+7+]7)F(04+]7) (ﬁ+ﬂ) (3.111)
F1+y)a+p+(n+7—1)) '
We have the case witha =1, 3=N+1, v=1, n= K and
i 1r2+ JT(1+ TN + 1+ 5)
I(1,N +1,1,K) H J) J J (3.112)

p 2)I(N+K+j+1)

We therefore obtain the following formula for the number of states in our bi-local

Sp(2N) Hilbert space:

Ii—[ G+DI(V+K+j+1)

NK+j+DIN+j+1)

Dim H (3.113)

=0

We have compared this number with explicit enumeration of Sp(2/V) invariant
states in the fermionic Hilbert space (for low values of N and K) and found com-
plete agreement. It is probably not that difficult to prove agreement for all N, K.
This settles however the potential problem of overcompletness of the bi-local repre-
sentation. Since the Sp(2N) counting uses the fermionic nature of creation operators

and features exclusion when occupation numbers grow above certain limit it is seen
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that bi-local geometric quantization elegantly incorporates these effects. The com-
pact nature of the associated infinite dimensional Kéahler manifold secures the correct
dimensionality of the the singlet Hilbert space. By using Stirling’s approximation
for the number of states in the bi-local Hilbert space (3.113), we see the dimension

growing linearly in N (with K > N):
In(Dim Hp) ~ 2NK In2 at leading order (3.114)

This is a clear demonstration of the presence of an N-dependent cutoff in agreement
with the fermionic nature of the original Sp(2N) Hilbert space. So in the nonlinear
bi-local theory with G = 1/N as coupling constant, we have the desired effect that
the Hilbert space is cutoff through 1/G effects. Consequently we conclude that the
geometric bi-local representation with infinite dimensional matrices Z(k,[) provides
a complete framework for quantization of the bi-local theory and of de Sitter HS
Gravity.

The following further results on quantization of this type of Kéhler systems have
direct relevance to Higher Spin duality. First, the parameter N (and therefore G
in Higher Spin Theory) can only take integer values, i.e. N = 0,1,2,3,---. This
feature might appear to be very puzzling from Vasiliev’s theory itself, but the fact
that there exists a geometric (Kédhler manifold) representation of the theory provides
the explanation. We therefore expect that Vasiliev’s theory when suitably canonically
quantized takes the form of the above geometric Kahler system.

We also mention a very recent study of finite N — N + 1 deformation in these
theories [94]. This can possibly also be investigated by the present Hilbert space

method as well.

7. Phase Transition

It was shown by Shenker and Yin [41] that the N-component vector model under-
goes a phase transition at high temperature. The transition occurs at temperature of
order v N where 1/N = G plays the role of coupling constant. This is an important

non-perturbative effect that characterizes Higher Spin theories. The argument in [41]
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is based on the exact analysis of O(NN) vector model partition function. Here we will
show how the transition (and the presence of two phases) can be understood from
the bulk field theoretic viewpoint.

We have already described two versions of bi-local field theory: the covariant
one and a canonical (time-like) gauge one. The canonical gauge version (with the
Hamiltonian in (3.10)) represents the singlet spectrum of the theory, and then the

partition function is simply

Z(B) =Tr (e "H@) (3.115)

giving in the large-N limit the answer
FB) = I (1 - 6_6W(E1’E2)) (3.116)
k1 ks
corresponding to the singlet bi-local spectrum with E 5 = wky, k) = |k1| + |kal.
This leads to the O(1) result:

F(B) ~ V¢(B)T! (3.117)

where the power (and the argument of the (-function) features the dimensionality
D = 4 of the bi-local space: (#1,Z2). This recovers the lower phase of [41].

The upper phase can be seen through a stationary point of the bi-local action as it
was given in [20]. Namely, the covariant collective action (3.7) at finite temperature
(with periodic boundary conditions in Euclidean time) has the following stationary-

point solution:

By =3 3115
glz,y) = = 3.118
R
which is quantized as ky = 2”7" Evaluation of the action leads to the O(NN) partition
function:
. N Sy 2N,
Fy = 8:(®p) = -+ Zln (k: + (7) ) (3.119)
n,k
giving the upper phase result
FN(B) ~ =NV ((3)T? (3.120)
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as stated, this result is proportional to N characterizing the N-component vector
model. In this and also lower phase case the volume is inherited from the special
volume of the CFT.

An interpretation of this phase transition was suggested by Shenker and Yin in
terms of an increase/decrease of number of degrees of freedom, namely from bi-locals
to N-component partons. From the bi-local field theory viewpoint, we would like to
offer an additional interpretation. In terms of the collective dipole (much like in the
case of a string) the upper temperature phase is associated with condensation of extra
(“winding”) modes, an effect which gives a classical result of order N = 1/G. The
covariant gauge bi-local field (used in exhibiting the upper phase) indeed contains such
an extra mode whose relevance comes at finite temperature. It will be interesting to
investigate this scenario and in general the physics of this interesting phase transition

further.
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CHAPTER 4

Coleman-Mandula Theorem in Higher Spin Theory

1. Overview

Since conserved currents imply the existence of an infinite sequence of conserved
charges and higher symmetries, one is faced with the question regarding the imple-
mentation (and implication) of the Coleman-Mandula theorem. This question was
raised and addressed in the recent work of Maldacena and Zhiboedov [44, 45] who
were able to show the existence of conserved currents (charges) implies that the cor-
relation functions are built in terms of free fields. This demonstrates the simplicity
of the corresponding Vasiliev theory. One still, however, has the question regarding
the triviality of the theory in the bulk. In standard field theories this question is
addressed (and answered) through the S-matrix. The Coleman-Mandula theorem
in particular would imply S = 1 for theories with higher symmetries. Due to the
equivalence theorem (under field transformations) this means that there exists a field
redefinition which linearizes the field equations. In the AdS/CFT framework one
sometimes think of the correlators as taking the role analogous to an S-matrix. A
proposal along this line, offered by Mack [86, 87], has been nicely implemented in
recent works [97, 98, 99, 100]. If this analogy is taken at face value, one has the puz-
zling fact that this “boundary” S-matrix is non-trivial, even for the correspondence
based on free theory.

We have in [20, 30] formulated a constructive approach to bulk AdS duality and
HS Gravity in terms of bi-locals. It leads to a nonlinear, interacting theory (with
1/N as the coupling constant) which was seen to possess all the properties of the
dual AdS theory. This theory reproduces arbitrary-point correlation functions and
provides a construction of HS theory (in various gauges) based on CFT [40]. The
construction also, as we will explain, offers a framework for defining and calculating
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an S-matrix and addressing the implementation of the Coleman-Mandula theorem in
the nonlinear bulk framework. The construction is based on the two-particle collective
dipole and its interactions in the large N limit. It has been known since the early
work that nontrivial collective phenomena can appear “even” for free theories (for
example excitations near the large N fermion surface). In the present case we are
led to consider the S-matrix for collective dipoles; the corresponding L.SZ reduction
formula is easily stated as a limit of bi-local correlators. Its evaluation will produce
the result S = 1 as claimed in the title.!

S = 1 implies triviality, namely that interactions can be removed by a nonlin-
ear transformation of fields (by this we mean the 1/N interactions which equal G
interactions in Vasiliev’s theory). We demonstrate this for the nonlinear dipole repre-
sentation, where we establish a construction of a nonlinear field transformation that
linearizes the effective large N field theory. This transformation is analogous to a
construction of the so-called master field [101, 102].

The content of this chapter is as follows. In section 2 we discuss the differences
between “boundary S-matrix” and “collective S-matrix” that we propose. In par-
ticular we give an LSZ formula for the S-matrix and evaluate the associated three-
and four-point amplitudes using the cubic and quartic vertices of the 1/N theory
demonstrating the result S = 1. In section 3 we present a construction of a nonlinear

bi-local field transformation that linearizes the theory.

2. Coleman-Mandula Theorem in AdS,/CFTj;

Our concern is the simplest case of the correspondence which involves the UV
fixed point CFT of noninteracting N-component bosonic or fermionic fields and the
corresponding Vasiliev theory. These theories are characterized by the existence of
an infinite sequence of higher spin currents that are conserved. Consequently one has

'We mention that this is analogous to an earlier situation involving the ¢ = 1 matrix model with
2d string correspondence where one had the statement “S = 1 for ¢ = 1”7 demonstrated in [105].
The only difference is that the collective boson (representing fluctuations above the fermion surface)
is now replaced by the collective dipole.
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a higher symmetry and an infinite sequence of generators

Q° = / A% Jop g - (4.1)

In such a theory, the Coleman-Mandula theorem implies that the S-matrix should be
1. The relevance and implications of the Coleman-Mandula theorem in AdS,/CFTj3
was recently considered in the work of Maldacena and Zhiboedov [44, 45]. Using the

light cone charges
Q° = /d;v_d:zJ _______ , (4.2)

they demonstrate that the existence of this infinite sequence implies that the cor-
relators are given by free fields, establishing in this sense that the theory can be
categorized as simple.

The recovered correlators C,, = (0105 --- O,,) are nonetheless nonzero for all n.
They describe a nonlinear bulk theory, with nonlinearities governed by 1/N = Gy.
The question then concerns the fate of these nonlinearities characterizing the AdS,
HS theory.

Boundary correlators are sometimes described in the literature as a “boundary
S-matrix” of the AdS theory. In fact Mack [86, 87| has put forward arguments
whereby CFT correlation functions themselves possess a structure equivalent to an
S-matrix. He argued that they can be in general written in an integral form (the
Mellin representation), which then implies various properties (crossing, duality, etc.)
in support of their S-matrix interpretation. This interpretation was strengthened by
the AdS calculation [97]. Nevertheless, this “boundary S-matrix” lacks some of the
key features of a genuine scattering matrix.

Based on the collective construction we would like to put forward (and evaluate)
another more direct S-matrix which we will base on the physical picture of (collective)
dipoles that underlie the CFT3/Higher Spin Holography. In bi-local field theory this
would corresponds to amplitudes of “mesons”. Following this picture we first identify

an appropriate on-shell relation (specified as always by the quadratic Hamiltonian)
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and then define the S-matrix through a standard reduction formula where external

leg poles are amputated.

2.1. An example. Before proceeding with the details, we describe an analogous
example that features a simple (free) theory duality: the old d = 1 Matrix Model /
2d non-critical string theory correspondence [103]. One has the matrix Hamiltonian

corresponding to N? decoupled harmonic oscillators

1 % o2
H:—§Z(8M2—M§). (4.3)
a=1 2

In this model one also had an infinite sequence of higher charges: Q, = Tr[(P?*— M?)?]
and an infinite W,, symmetry. In the basic matrix theory representation, there is
clearly no scattering and no visible S-matrix. A spacetime interpretation of the model
(and an S-matrix) is found through the collective (Fermi-Droplet) representation

represented by the large N collective Hamiltonian [103]

i~ [ (Joneota) + T %as) (4.9

where ¢(z) and II(z) obey the canonical commutation relations [p(x),Il(y)] =
id(x — y). This collective Hamiltonian correctly reproduces all the correlators
(O, Oy -+ - Oy,.) for the most general invariant operators O,, = Tr(M™) = [ dx 2™¢ .

Small fluctuations of this (collective) theory ¢ = ¢+ 0,0, I = —8;%& features a
2d massless boson [104]

1. 2
H(2) = /dU (ng(t, U) + %wlz(t, U)) s (45)
where the prime is the derivative with respect to the Liouville coordinate defined by
1 [* dy
o=— . 4.6
mJo do(y) (46)

Consequently one is led to consider the scattering of collective massless bosons [105]
with an on-shell condition: K, = (E, K) and E* — K? = 0. Evaluation of the cor-

responding scattering amplitudes gives the S-matrix. For the three-point scattering
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amplitude, one has

3
Sg(El, EQ, Eg) = 27T(5(E1 + E2 + Eg) H(EZ — Kz) — H(EZ + Kz)
i=1 i=1
3 3

= 2m6(Ey + Ey + Ej3) H(Ez - |Ez|) - H(EZ + |El|)

i=1 i=1

(4.7)

where we have used K; = |E;| (corresponding to Liouville as time). For the scattering

of incoming (outgoing) particles, we have F1, Ey > 0, F5 < 0, so that
53(+> +, _) =0. (48)

In the same way one can show the result S,>4 = 0 due to Gross and Klebanov. A
change of boundary conditions (in particular Dirichlet), gives however a non-trivial

result S, # 0 which was then compared with the string scattering amplitudes.

2.2. Evaluation of the three- and four-point amplitudes. Let us now re-
turn to the bi-local theory and consider therefore the S-matrix for scattering of “col-
lective dipoles”. In a time-like gauge (single-time), one has the on-shell relation:

— (k1| + |K2])2 = 0, and the S-matrix can be defined by the LSZ-type reduction

formula
S =lim [[(B? = (k| + [ )?) (U (B, ky, by ) U (B, ko, ) -+ ) (4.9)

where the U operators denote energy-momentum transforms of the bi-local fields
(3.9). The limit implies the on-shell specification for the energies of the dipoles. In
the light-cone gauge, (4.9) would correspond to

lim H

We note that the correlation functions appearing in this construction are not the corre-

2

QpZ 22% NP pE s pu, ph 01 ) (Py s o po ol por) -+ )

lation functions of conformal current operators J__.._. As Maldacena and Zhiboedov
have discussed, the Ward identities based on currents provide a reconstruction of cor-
relation functions for bi-local operators of the form B(z™; (27,25 ); 21 = x2). Since
these are bi-local in x but local in the other coordinates one is not in a position to

consider the above defined S-matrix.
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Our evaluation of the S-matrix proceeds as follows. Using the time-like quan-
tization we will evaluate the 3 and 4-point scattering amplitude corresponding to
associated Witten diagrams. In momentum space, in terms of creation-annihilation

operators, the cubic (3.14) and quartic (3.15) interaction potentials take the form

3
HG® = ﬁ dk Wk ko ks
- /N H g 3 OF ko Yok Vs
=1

.i.
TR O 1, Oy, O T h.cl (4.10)

4
1 - W
4 — = | Phikakskq | o - L. L
H = ¥ dk; 4 O By O ks O Tk O
i=1

L L LAt
+4ak1k2a_k2k3a_k3k4aE4E1 + h.c.

T T

ool f
Fska  —kak1

L L. L LAt
tag, pa g5, + 2O‘k1k2a,;2,;30‘k3k404,;4,;1 (4.11)

where we used the notation wg, k..., = Wk, + Wk, + - -+ + wg, and h.c. means taking
the Hermitian conjugate of only the terms before.

We first evaluate the three-point correlation function at order \/—%:

(T(n(te; 21, yo)n(te; zo, y2)n(ts; T3, y3))) - (4.12)

The propagator is given by

(O|T((t1; m1, 1) (ta; w2, y2))|0) = / dley dkyd Ee~E( 1)
Wk, + Wk, 7
Wiy Wiy B2 — (wiy + wiy)? + i€

> 6lk1'($1—r2 ) elkz'(yl —92)

(4.13)

The corresponding Feynman diagram is shown in Figure 1(a). The vertices follow

from (3.14), working in momentum space, one has

(O|T(n(Enr; pr, p1r)n(Ea; p2, per)n(Es; ps, psr))|0)

— (B + B+ )5 — 50 — )0 (5 + )

1 1 1
EZ—(wp, +wp,, )2+ie EZ—(wp, +wpy )2+ie E%—(wp3+wp3, )2+ie

X {%U%Eg + (Wpy + Wpy ) (W + wpy )]

WpoWp

X

Wpys +Wpyy

+ r—— [E1E3 + (wp, +wp, ) (Wps + wp,, )]
Wpy +Wp,,
L0 1) By + (wyy + Wy, ) (@ + wpz,)]} . (4.14)
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The on-shell three-point (1 +2 — 3) scattering amplitude is obtained by amputating
the leg poles and putting the external states on-shell leading to

2
S14+42—3) = —L(E1 + Ey — E3) 0(Ey + Ey — Es)

8VN
{6(pr — p3)0(Por — P )6 (Prr + Pa) + 7 more terms}  (4.15)
where we have used energy conservation and the delta functions. The result S3 = 0
is now manifest.
Next for the four-dipole scattering (142 — 3+4), we use the interaction picture
and also the creation-annihilation basis as given in (4.10, 4.11). The 1/N contribu-

tions to the Sy scattering amplitude are collected as follows

dkidlj Wk koksWiylols <0 | O Far Opapyr OF By X Fpley Y — ks

9N AL,
oL i s |0)
- / dl%-dl; Wrywi, (0| gy 3, O‘ﬁ4ﬁ4/0‘1311320‘—E21330‘T1;3;;1
a}lfzaifz%al3lla;1pll oy |0)
_% / dEi Wy kaks ka <0|Ozﬁ3ﬁ3, Qi O, 7y O Tk
Ut i Wi Y 0)
_# dk: wk1k2k3k4(0|ap3p3,amm,a,;l,;zoz%z%
k3k4az4k1 O‘:npl/ OBy |0> (4-16)
The relevant bi-local propagator symmetrized over the momenta is
je—iE(ti—t2)
O, (), (1)10) = [ dB 57—
X %[5(51 — P2)0(Pr — Par) + 0(pr — P )d (P — Pa)] - (4.17)

The first term of (4.16) has only s-channel contributions shown in Figure 1(b), while
the second term of (4.16) has all s, ¢, u-channel contributions. The s-channel diagrams

and their twisted ones (due to the symmetrization of propagators) are summed to be

8LN5(E1 —+ E2 — E3 — E4)><
[ Wy, ps0(P1 — P3)0 (D1 + P2)6(Par — Par)6(P3 + pPi) + 15 similar terms
+ Wpps (P2 — 3) (P + Do )d (P — Par )6 (Py + Pa) + 15 similar terms] . (4.18)
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(a) Three-dipole diagram;  (b) The s-channel diagram; (c) The cross-shaped

diagram.

FIGURE 1. Scattering of three and four dipoles.

It is also convenient to calculate the ¢, u-channel diagrams together, with their twisted

diagrams, they are summed to be

8LN5(E1 + E2 — E3 — E4)><

| Wpypa O (D1 — P3)0 (P + P2)0(Par — Par )0 (P3r + Pia) + 15 terms

+ wplpz,é(ﬁg — ﬁg)é(ﬁl + ﬁz/)é(ﬁy — ]74/)(5(]33/ + ﬁ4) + 15 terms} (419)
+ HSLN(S(E1+E2_E3_E4)X

[ Woipypapy 0 (F1 — 53)0 (1 — Pa)d (P — P )8 (P2 — Pzr) + 15 terms
+ wplpl,pzpz,é(ﬁg - ﬁg)é(ﬁg/ - ﬁ4)(5(ﬁ1/ - ﬁ4/)(5(ﬁ1 - ]73/) + 15 terms} . (420)

The third term of (4.16) is the cross-shaped diagram shown in Figure 1(c), which

gives the result

— 8L'N(S(E1—|—E2—E3—E4)X
[ Woupypspsd(P1 — P3)0 (1 + 52)8 (P — Par )8 (P + pa) + 15 terms
+ wp1p2p3,p4,(5(ﬁg — ﬁg)é(ﬁl + ﬁz/)é(ﬁy — ]74/)(5(]33/ + ﬁ4) + 15 terms} . (4.21)

The calculation of the fourth term is similar to the third one, which gives the result

— HSLN(S(E1+E2_E3_E4)X

[ Wpipypapy 6 (B — §3)0 (D1 — a)8 (P — Par )0 (P2 — Par) 4 15 terms

+ wplpl,pzpz,é(ﬁg - ﬁg)é(ﬁg/ - ﬁ4)(5(ﬁ1/ - ﬁ4/)(5(ﬁ1 - ﬁg/) + 15 terms} . (422)
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Summing all the diagrams, it is easy to see (4.20) and (4.22) cancel each other, while

the rest diagrams give the final result

S(l—|—2—>3—|—4):L(El—l—Eg—Eg—E4)(S(E1—|—E2—E3—E4)

16N
X [8(py = D5)0 (P + P2)0 (P — Par)d (P + Pa) + 15 more terms
+6(p2 — P3)0(p1 + Par )8 (P — Par)0(Par + fia) + 15 more terms] ,  (4.23)

which implies S; = 0.

It is clear that the direct evaluation can be continued to higher point scattering
with the conjectured result S,>5 = 0. One can describe the nonlinear collective field
theory in the following way: its nonlinearity, and higher point vertices are precisely
such that they reproduce the boundary correlators through bi-local (Witten) dia-
grams. These same diagrams however give vanishing results in the on-shell evaluation
as described above. We also mention that in the framework of BCFW recursions for
higher spin interactions, the relevance of extended observables was noted in [88, 89].

In general quantum field theory, one has the equivalence theorem. A vanishing
S-matrix implies that there should exist a (nonlinear) field transformation which
linearizes the theory. For the present case this concerns the linearization of bulk Gy =
1/N interactions. We will in the next section describe such a field transformation.

Since we view the collective construction to represent a gauge fixed description of
Vasiliev’s HS theory, analogous statements are expected to hold there. Finally it is
also clear that one can expect that any change of boundary conditions will result in

non-trivial S-matrix.

3. Field Transformation

We have concluded in the previous section that the S-matrix equals 1 for the
bi-local theory of the free UV fixed point. The theory is nonlinear with a sequence
of 1/N vertices which are needed to reproduce arbitrary n-point correlators (and the
“boundary S-matrix”). By correspondence Vasiliev’s HS theory has the same proper-
ties. As suggested in section 2, this implies that there should be a field transformation

that linearizes the Gy = 1/N interactions. We will now describe such a procedure for
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deducing the transformation. The procedure is based on considering an algebraic de-
scription of the bi-local system. We will be able to show that the bi-local pseudo-spin
algebra has among other two representations: one equalling the nonlinear collective
field theory and another in which the Hamiltonian becomes quadratic.

For the free theory in question one has exact creation operators for the singlet

sector of the theory. They are given by the bi-local operators
M) = 7= S0 ) (.24
AR = D) (1.25)
B) = 53l (4.26)
In terms of these collective variables the Hamiltonian is

-,

o . . N
H=[GHED . HED =2 BEH + urd@).  (420)

The above operators (representing bi-local pseudo-spin variables) close an algebra

Lo Lo 1 1 Lo
[A(p1>p2)> AT(p3>p4)} = 5 (513’2713’3513’4#3’1 + 513’2713’4513’3#3’1) + N [513’243’33(]94,291)
+5ﬁ2,ﬁ4B(ﬁ3>ﬁl) + 5ﬁ17ﬁ3B(ﬁ4>ﬁ2) + 5ﬁ1,ﬁ4B(ﬁ3>ﬁ2)} > (4'28)
oL Lo 1 Lo Lo
[B(py, ), AN (s, pu)] = 5(5ﬁz,ﬁaAT(P1>p4) + 05,5 AN (1, 3)) (4.29)
Lo Lo 1 Lo oL
[B(p1, 0a), A(ps, Pa)| = —5(5ﬁ1,ﬁaA(P2>P4) + 05 A(P2, P5)) - (4.30)

We note that the theory based on this algebra was studied in detail by Berezin
[91]. In the O(N) case one finds the quadratic (Casimir) constraint

8 4 4
——Af — — =
NA * A+ (1 + NB) * (1 + NB) I. (4.31)

The importance of the Casimir constraint is that it implies that the above non-
commuting set of bi-local operators is not independent. In particular the bi-local
pseudo-spin algebra has representations in terms of canonical pairs of variables.

The canonical collective theory based on the equal-time bi-local field and its con-

jugate provides one specific representation of the above algebra. Explicitly, one can
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show
A(Zy,15) = /dﬁldﬁzdgldgzeiﬁl'(fl—ﬁl)eiﬁz'(fz—ﬁz)

-2
(31, 21) x (21, Z2) * [1(Z2, 2)
[ mepz

—Z\/_\/ 9272’1 *H y1>2’1)
—Z\/_1 / yl, Zl *H yg, Zl)

(—» —»)_l_ N\/ wpleZ (
8 1/wplwp2 \

Y1, Y2 T, 2)| - (4.32)
Transforming it to momentum space and expanding in 1/N we generate an infinite

series
ALR) = agg, — —a—lagg *a gz, ol *al
(1’ 2) = %%k \/W[akﬂ%*a—/%kz aE1E3 a—EgEg
—O% ks *OzJLBEZ — O Fy Oz;i E} + O(Oég) , (4 33)
I 1 2
+%zza*af; b N ORE ~ O % ORE K O
—al ol wal T4 0(Y). (4.34)

The key to our arguments is the fact that one can write another realization of the

algebra in terms of an oscillator (3(py, p2) obeying

1

I 2 T S
g5 = (1+58) @) < A7 (4.39
2\
) = AG (14 58) G (4.36)
which has two important properties that
B(py, p2) = 5 (7, 9) * B, p2) (4.37)
(351, 52), 5" (P53, 54) ] = 051 50 - (4.38)

We see that in this realization the Hamiltonian is quadratic due to (4.27). Further-

more, using (4.35) one can generate the transformation between the fields

s g B oy i
Bk, ko) = Yk ~ VN [ak1k3 OBk, aE1E3 * a—];(;]gg
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T T
—Qp 7 kOn - — Oy 77 KOs o
aklkB ak3k2 aklkB ak3k2

+0(a?) . (4.39)

In conclusion we have presented a construction of the field transformation (in bi-
local space) that linearizes the nonlinear 1/N Hamiltonian. Under this transformation
the correlation functions change but the S-matrix does not. This represents the

working of the Coleman-Mandula theorem in the large N dual associated with the

free field CFT. As such it complements the Maldacena-Zhiboedov argument for these

theories.
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CHAPTER 5

Conclusion

We have in this thesis described the collective dipole picture of AdS/CFEFT cor-
respondence. This picture was extracted from the bi-local field representation of a
conformally invariant O(NN) vector model. These fields which fully describe the O(N)
singlet sector of the theory were seen to contain the full interacting bulk AdS theory
with higher spins. A first quantized description represents a bi-particle system which
we called the collective dipole.

We have studied the structure of constraints and the gauge fixing of the dipole
system. This issue itself is nontrivial as we are dealing with a fully relativistic sys-
tem with two time coordinates. Consequently various issues related to unitarity and
absence of ghosts have to be addressed. We have following earlier work discussed in
detail the issue of gauge fixing to a physical time-like or light-cone gauge. Using a
gauge condition which leads to elimination of the relative time, we have exhibited the
existence of a unitary, ghost free representation of the dipole system. This gauge also
establishes contact with the equal time Hamiltonian bi-local field theory.

Using the light-cone frame we have then demonstrated the correspondence with
the higher-spin particle in AdS space-time. This correspondence is constructed in
terms of an explicit one-to-one canonical map relating the d-dimensional collective
dipole with the d + 1 dimensional higher spin particle in AdS. The map gives an
explicit reconstruction of the extra (radial) AdS space dimension and of the infinite
sequence of higher spin states. As such it likely represents the simplest system where
the AdS/CFT correspondence is established in the bulk.

For higher spin theory the relevance of the dipole picture lies in the following.
It provides a first quantized world sheet description of the theory and also has the

promise to lead to a BRST quantization of the the system. The BRST approach has
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been extremely relevant in the case of string theory [96] (and of course gauge theory
[107]), however, even though there have been various attempts there is not as yet a
complete BRST description of Vasiliev’s Higher Spin gauge theory.

Further, we have motivated the use of double analytic continuation and hence
the connection between the Sp(2NN) model and de Sitter higher field theory for the
quadratic action for the collective field. To establish this connection one needs to
establish this for the interaction terms. This is highly nontrivial, and in fact the
connection between the collective theory for the O(/N) model and the AdS higher spin
theory is only beginning to be understood. We believe that once this is understood
well, one can address the question for the Sp(2N)-dS connection.

In this thesis we have dealt mostly with the free Sp(2/N) vector model. As the
parallel O(N)/AdS case, this theory is characterized with an infinite sequence of con-
served higher spin currents and associated conserved charges. The question regarding
the implementation of the Coleman-Mandula theorem then arises, this question was
discussed recently in [44, 45, 46]. One can expect that identical conclusions hold
for the present Sp(2N) case. The bi-local collective field theory techngiue is trivially
extendible to the linear sigma model based on Sp(2NV), as commented in section (4.2).
Of particular interest is the IR behavior of the theory which presumably takes the
theory from the Gaussian fixed point to a nontrivial fixed point.

It is well known that dS/CFT correspondence is quite different from AdS/CFEFT
correspondence, particularly in the interpretation of bulk correlation functions [50,
51]. We have not addressed these issues in this thesis. Recently it has been pro-
posed that the Sp(2/N)/dS connection can be used to understand subtle points about
dS/CFT [52]. We hope that an explicit construction as described in this thesis will
be valuable for a deeper understanding of these issues.

The bi-local formulation that we have presented was cast in a geometric, pseudo-
spin framework. We have suggested that this representation offers the best framework

for quantization of the bi-local theory and consequently the Hilbert space in dS/CFT.
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We have demonstrated through counting of the size of the Hilbert space that it in-
corporates finite NV effects through a cutoff which depends on the coupling constant
of the theory: G = 1/N. Most importantly it incorporates the finite N exclusion
principle and provides an explanation on the quantization of G = 1/N from the bulk
point of view. These features are obviously of definite relevance for understanding
quantization of Gravity in de Sitter space-time. Nevertheless the question of under-
standing de Sitter entropy from this 3 dimensional CF'T remains an interesting and
challenging problem.

It would be interesting to consider the analogues of Sp(2/N)/dS correspondence
in the CFTy/Chern-Simons version [58, 21, 57|, as well as to three dimensional
conformal theories which have a line of fixed points, as in [43]. Finally higher spin
theories arise as limits of string theory in several contexts, e.g. [18] and [43]. It
would be interesting to see if these models can be modified to realize a dS/CFT
correspondence in string theory.

Finally we discussed some features of the Higher Spin AdS correspondence in-
volving free O(N) fields, especially the existence of an (infinite) sequence of higher
symmetries in these theories, which raises the question regarding the implementation
of the Coleman-Mandula theorem. Our focus was the question regarding the non-
linear 1/N theory which reproduces the (boundary) correlators. We argued that in
these theories we are able to define a genuine S-matrix representing the scattering of
collective dipoles. The S-matrix is specified with the standard LSZ procedure as an
on-shell limit of (bi-local) correlation functions.

For the theory based on the free correspondence i.e. the UV fixed point of the
vector model we have evaluated the S-matrix showing the result S = 1. This rep-
resents the consequence of the Coleman-Mandula theorem for the associated Higher
Spin theory and complements the results of Maldacena and Zhiboedov. As we have
discussed it implies that the nonlinear Higher Spin theory can be linearized through

nonlinear field transformations. We have explicitly constructed such a transformation
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in the bi-local framework. We have also emphasized that a change of boundary con-
ditions will change the above conclusion, namely one expects a nontrivial S-matrix.
Based on the present results and the earlier ¢ = 1 case, it is plausible to conclude
that these features will characterize any large N correspondence based on free fields.

To conclude, the bi-local field representation possesses several relevant features
which have implications on the nature of higher spin theory. The correspondence
between O(N) vector models and higher spin AdS gravity itself demonstrates a very

interesting example of AdS/CFT correspondence.
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