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Abstract
Quantum nondemolition (QND) measurement plays an essential role in quantum optics and
quantum information. Here, a feedback-assisted atom-light-correlated interferometer (FALCI) is
proposed and applied to the QND measurement of photon number, in which the phase of the
probe acquires information about the photon number of the signal without perturbing it due to
the AC-Stark effect. A beam splitter with adjustable reflectivity is employed as a feedback controller
to enhance the performance of QND measurement. The FALCI harnesses interference between
quantum-correlated atoms and light to perform the measurement. It is found that the quantum
correlation can be enhanced by manipulating the feedback ratio. Furthermore, the QND
measurement sensitivity is theoretically studied via homodyne detection. It is demonstrated that
the FALCI can achieve the sensitivity enhancement with suitable feedback ratio. For the lossy case,
feedback control can mitigate the effect of losses on the sensitivity.

1. Introduction

Quantum nondemolition (QND) measurement is an important tool for engineering and manipulating
quantum systems in the field of quantum precision measurement [1–5]. In a QND measurement, a signal is
coupled to a probe through an interaction, such that the information about the signal can be obtained
indirectly by performing the measurement on the probe. The key to achieving QND measurement is
conceiving the measurement scheme in which the back action noise brought by the measurement is
transferred to the conjugate observable that we are not concerned about, that is, the probe reveals
information about the signal without causing further perturbation to it. The QND measurement has been
implemented successfully in various precision measurement applications, such as squeezed state preparation
[6–8] and gravitational wave detection [9, 10].

Accurate measurement of photon number is a cornerstone in quantum optics, enabling precise control
and detection of quantum states in various applications, including quantum computing [11], quantum
information [12], and fundamental physics research [6]. In the quantum optics community, the usual
approach to QNDmeasurement of photon number is encoding the photon number of a signal into the phase
shift of a probe through a cross-Kerr interaction [13–19]. The problem of determining photon number is
transformed into the problem of determining the phase shift. Nevertheless, the major impediments to QND
measurement using the optical Kerr effect are the small value of nonlinearity and the photon absorption.
This leads to the small phase shift which is difficult to distinguish and measure. There are two main methods
to further enhance the performance of QND measurement. The first one is to improve the nonlinear effect
for QND measurement, for example, schemes utilizing cavity or circuit quantum electrodynamical systems
have enabled photon number QND measurement through strong coupling between the signal and the probe
[20–27]. The second is to exploit the higher precision detection scheme for QND measurement [28–30].
Here we focus on the second method.

More recently, coherent feedback control [31–33] that feeds the output of the controlled system back into
the input to evolve the quantum system towards a desired result has resulted in various applications, such as
quantum state preparation [34–38], quantum enhanced metrology [39–42] and so on [43, 44]. Inspired by
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the employment of coherent feedback control to manipulate quantum systems, in this work we propose a
feedback-assisted atom-light-correlated interferometer (FALCI) and apply it to QND measurement of
photon number. Compared to the prior works involving atom-light hybrids [28–30], in this paper, we
introduce a feedback structure to manipulate the interference between quantum-correlated atoms and light.
It is demonstrated that the quantum correlation and the QND measurement sensitivity can be enhanced
with suitable feedback ratio. Furthermore, feedback control can mitigate the effect of losses on the QND
measurement.

This paper is organized as follows. In section 2, we introduce the theoretical model of the FALCI, and
investigate the quantum correlation enhancement with the change of feedback ratio. In section 3, we study
the QND measurement sensitivity in both lossless and lossy case, feedback control can enhance the
performance of the QND measurement and mitigate the effect of losses on the sensitivity. Finally, we
summarize the results in section 4.

2. Feedback-assisted atom-light-correlated interferometer

2.1. Model
The schematic of FALCI is shown in figure 1(a), in which two nonlinear Raman processes, NRP1 and NRP2,
are utilized to realize the beam splitting and recombination of the quantum-correlated atomic spin wave and
optical wave, and a BS with adjustable reflectivity is employed to construct a controllable feedback structure,
which feeds part of output field back into the input port. The corresponding energy levels of the atom are
given in figure 1(b). A strong pump field Ap1 (Ap2) and a weak seed field â2 (â4) interact with a Λ-shaped

atomic ensemble to generate an amplified optical field â3 (â5) and a correlated atomic spin wave Ŝ1 (Ŝ3) via
the NRP1 (NRP2).

The Hamiltonian that describes the dynamics of the NRP is given by [45, 46]

Ĥ= ih̄ηApâ
†Ŝ† +H.c., (1)

where η is the nonlinear coupling coefficient, Ap is amplitude of the pump field, and Ŝ≡ (1/
√
N)

∑
k|g⟩k⟨m|

is the spin wave (atomic collective excitation), with N the number of atoms in the ensemble. The
input–output relations of NRP1 and NRP2 derived from the above Hamiltonian equation can be written as

â3 = G1â2 + g1e
iθ1 Ŝ†0, Ŝ1 = G1Ŝ0 + g1e

iθ1 â†2, (2)

and

â5 = G2â4 + g2e
iθ2 Ŝ†2, Ŝ3 = G2Ŝ2 + g2e

iθ2 â†4, (3)

respectively. Here eiθj = ηApj/|ηApj |, Gj = cosh(|ηApj |τ) and gj = sinh(|ηApj |τ) are the gain factors, satisfying

G2
j − g2j = 1 (j = 1,2). τ denotes the pulse duration of pump field. Here Ŝ2 = Ŝ1eiφ and â2 = â1eiϕ, where φ

denotes the phase difference between the two arms of the interferometer and ϕ represents the phase delay
introduced by the feedback path.

A BS with adjustable reflectivity is employed as a feedback controller to construct a feedback structure.
The input–output relation of the BS controller can be expressed as

â1 =
√
1−Râ0 −

√
Râ3, â4 =

√
Râ0 +

√
1−Râ3, (4)

where R is the reflectivity of the BS, and the feedback ratio is determined by it. After the feedback controller,
one output field â4 serves as the input of the NRP2 while the other output field â1 is fed back as the input of
the NRP1 through a feedback path.

The full input–output relation of the FALCI has the following form

â5 = T1â0 + T2Ŝ†0, Ŝ3 = T3Ŝ0 + T4â†0, (5)

with

T1 =
G1G2eiϕ + g1g2

√
1−Rei(θ2−θ1+ϕ−φ) +G2

√
R

G1

√
Reiϕ + 1

,

T2 =
G2g1

√
1−Reiθ1 + g2

√
Rei(θ2−φ+ϕ) +G1g2ei(θ2−φ)

G1

√
Reiϕ + 1

,

2



New J. Phys. 27 (2025) 064104 G-F Jiao

Figure 1. (a) Schematic of QND measurement of photon number. The probe system comprises a feedback-assisted
atom-light-correlated interferometer (FALCI), which is achieved utilizing NRP1 and NRP2 as beam splitting and recombination
of the quantum-correlated atoms spin wave and optical wave. The feedback scheme is implemented by mixing the output â3 of
NRP1 and coherent input â0 using a BS with adjustable reflectivity. The combined field â1 is fed back as the input mode of
NRP1 after the phase delay ϕ. (b) Energy levels of the atom. The lower two energy states |g⟩ and |m⟩ are coupled through a

higher-energy state |e⟩ by the strong pump field Ap1 (Ap2 ) and the weak seed field â2 (â4), respectively. b̂0 is far off resonance with

the transition |m⟩ → |e⟩ by a large detuning. The atomic spin wave Ŝ1 undergoes a phase shift of φAC due to the AC-Stark effect

by signal light b̂0 and evolves to Ŝ2. BS, beam splitter; NRP, nonlinear Raman process.

T3 =
G1G2eiφ + g1g2

√
1−Rei(θ2−θ1) +G2

√
Rei(φ−ϕ)

G1

√
Re−iϕ + 1

,

T4 =
G2g1

√
1−Rei(θ1+φ−ϕ) + g2

√
Reiθ2 +G1g2ei(θ2−ϕ)

G1

√
Re−iϕ + 1

. (6)

2.2. Quantum correlation between atoms and light
Here, we focus on the performance of the quantum correlation between the atomic spin wave and optical
wave, which can be characterized by the degree of relative intensity squeezing (DS) defined as the ratio of the
quantum fluctuation for the intensity difference between the two output fields to the fluctuation at the
standard quantum limit (SQL). Then the DS takes the form of

DS=
∆2

(
â†4 â4 − Ŝ†1 Ŝ1

)
⟨â†4 â4 + Ŝ†1 Ŝ1⟩

, (7)

where

∆2
(
â†4 â4 − Ŝ†1 Ŝ1

)
=

⟨(
â†4 â4 − Ŝ†1 Ŝ1

)2
⟩
−⟨â†4 â4 − Ŝ†1 Ŝ1⟩2. (8)

Without loss of generality, the phase of the NRP1 can be set to zero. The output field â4 and Ŝ1 of the
NRP1 under the feedback condition are given by

â4 =Aâ0 +BŜ†0, Ŝ1 = CŜ0 +Dâ†0, (9)

with

A=
G1eiϕ +

√
R

G1

√
Reiϕ + 1

,B =
g1
√
1−R

G1

√
Reiϕ + 1

,

C =

√
Re−iϕ +G1

G1

√
Re−iϕ + 1

,D =
g1
√
1−Re−iϕ

G1

√
Re−iϕ + 1

. (10)

Consider a coherent state together with a vacuum state as input (Ŝ0 is in a vacuum state). Through
equations (7)–(10), one can get the relationship between DS and the feedback ratio R, phase delay ϕ, gain
factors G and g as follows

DS=
Na

Na (AA∗ +BB∗)+ 2BB∗ , (11)

3
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Figure 2. DS as a function of feedback ratio R and phase delay ϕ when g1 = 0.5, g1 = 1, g1 = 2 and g1 = 3, where Na = 10.

where Na = ⟨â†0 â0⟩. Taking no account of the feedback, i.e. the feedback ratio R and phase delay ϕ are set to
zero, the above DS is reduced to

DS=
Na

Na (G2
1 + g21)+ 2g21

, (12)

which is consistent with the result in [47]. Making the bright beam approximation Na ≫ 1, the DS becomes
DS= 1/(2G2

1 − 1). The relative intensity fluctuation∆2(â†4 â4 − Ŝ†1 Ŝ1) is smaller than SQL by 2G2
1 − 1 times,

â4 and Ŝ1 is quantum correlated.
Now we analyze the dependence of DS on the feedback ratio R, phase delay ϕ and gain factor g. Figure 2

describes how the feedback ratio R and phase delay ϕ affect the DS when gain factor g1 is set to 0.5, 1, 2, and
3. As shown in figure 2, when the feedback ratio R and phase ϕ are set within a suitable range, the value of DS
is smaller than that of the situation without feedback (R= 0), which implies that the quantum correlation
between the atomic spin wave and optical wave is enhanced. Nevertheless, note that excessive feedback
results in the disappearance of quantum correlation enhancement. That is to say, there exists an optimal
feedback ratio that maximizes the quantum correlation. Furthermore, it can be seen that the minimum of DS
is obtained when ϕ = π. In this situation, the optimal feedback ratio is found to be 1/G2

1. It means that the
optimal feedback ratio depends solely on the gain factor, regardless of the input photon number. When the
gain factor is known, then the feedback ratio can be manipulated such that the quantum correlation is
maximum.

3. QNDmeasurement of photon number

In the previous section, this new type interferometer is introduced in detail, and we can adjust feedback ratio
to manipulate and enhance the quantum correlation between the output fields of the interferometer. In this
section, it is employed as a probe system for the QND measurement of photon number. The measurement
scheme is shown in figure 1. Here, the atom system of the proposed interferometer is subject to the
illumination of the signal light b̂0 that is far off resonance with the atomic transition with a large detuning.
During the interaction, the phase of the atom probe is shifted by the value depending on the photon number
in signal light, can be presented as follows [48, 49]

φAC = κn̂b, (13)

where n̂b = b̂†0 b̂0, κ denotes the AC-Stark coefficient, this effect is called AC-Stark effect. The photon number
of the signal light is preserved while the phase is perturbed during the interaction, which ensures the
fulfillment of the Heisenberg uncertainty principle [50]

∆nb∆φb ⩾ 1, (14)

∆nb and∆φb are the uncertainty of photon number and phase for signal light b̂0, respectively. This means
that the QNDmeasurement of photon number is accomplished at the cost of increasing the uncertainty in its
conjugate observable. By measuring the atomic phase using this interferometer, one can determine the
photon number without altering it.

4
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3.1. Sensitivity analysis
Now we analyze the QND measurement sensitivity. The FALCI is studied in a balanced configuration, which
corresponds to having θ1 = 0, θ2 = π and g1 = g2 = g, such that with φ= 0 we have T1 = T3 = 1 and
T2 = T4 = 0 and thus â5 = â0 and Ŝ3 = Ŝ0 when not considering the feedback (see equation (5)). That is,
if there is no phase difference between the two arms of the interferometer, the output fields of the
interferometer are equal to the input fields, otherwise, it will lead to a change in the output related to the
induced phase shift. In this situation, by setting ϕ = π for maximum quantum correlation and combining
equations (5) and (13), it is found that

â5 = T̂ 1â0 + T̂ 2Ŝ
†
0, Ŝ3 = T̂ 3Ŝ0 + T̂ 4â

†
0, (15)

with

T̂ 1 =
g2
√
1−Re−iκn̂b +G

√
R−G2

1−G
√
R

,

T̂ 2 =
g
√
Re−iκn̂b −Gge−iκn̂b +Gg

√
1−R

1−G
√
R

,

T̂ 3 =
G2eiκn̂b −G

√
Reiκn̂b − g2

√
1−R

1−G
√
R

,

T̂ 4 =
−Gg

√
1−Reiκn̂b − g

√
R+Gg

1−G
√
R

. (16)

Here we consider the homodyne detection of the quadrature Ŷa5 , defined as

Ŷa5 =−i
(
â5 − â†5

)
. (17)

The measurement sensitivity for the photon number in the signal light can be calculated by error
propagation formula

(∆nb)
2
=

(
∆Ŷa5

)2
G2

, (18)

where

G =
∂⟨Ŷa5⟩
∂nb

(19)

represents the transfer function, (
∆Ŷa5

)2
= ⟨Ŷ2

a5⟩− ⟨Ŷa5⟩2, (20)

⟨Ŷa5⟩ and ⟨Ŷ2
a5⟩ are calculated for a given value of nb, here, for the number state |nb⟩ of the signal light.

In the case of a coherent state |α⟩ (α= |α|) together with a vacuum state |0⟩ as input (Ŝ0 is in a vacuum
state),

G =−iN1/2
a ∂ (E −E∗)/∂nb,(

∆Ŷa5

)2
= EE∗ +FF∗, (21)

with

E =
g2
√
1−Re−iκnb +G

√
R−G2

1−G
√
R

,

F =
g
√
Re−iκnb −Gge−iκnb +Gg

√
1−R

1−G
√
R

. (22)

Clearly, the sensitivity is related to the value of κnb. In particular, one can verify that the sensitivity achieves
its minimum when κnb is 0 since the transfer function G and (∆Ŷa5)

2 respectively sit at their maximum and
minimum. The optimal sensitivity is calculated to be

5
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Figure 3. The variation of (∆nb)2 with Na for different feedback ratio R, where g= 1 and κ= 10−4.

Figure 4. The lossy model. Two virtual beam splitters are introduced to simulate the photon losses. Lj, vj (j = 1,2) denote the

corresponding reflectivity and introduced vacuum noise. The atomic spin wave Ŝ2 undergoes collisional dephasing e−Γτ and
becomes Ŝ2l.

(∆nb)
2
opt =

(
g2
√
1−R+G

√
R−G2

)2
4κ2Nag4 (1−R)

+

(
g
√
R−Gg+Gg

√
1−R

)2
4κ2Nag4 (1−R)

. (23)

Figure 3 describes dependence of the optimal sensitivity (∆nb)2 on the input photon number Na with
different feedback ratio, for convenience, we omit the subscript opt. The magenta, blue, and green line,
respectively, stand for the case that the feedback ratio R= 0.1, 0.3 and 0.9. For comparison, the case of R= 0
(i.e. no feedback) is also plotted by the red line. It can be observed that the performance of the sensitivity is
related to the feedback ratio. In detail, the sensitivity without feedback is worse than that with feedback ratio
R= 0.1 and 0.3, however, it is better than the case of feedback ratio R= 0.9. The result shows that an
appropriate feedback ratio can further enhance the sensitivity while the overdone feedback makes the
sensitivity worse, which agrees with that obtained by analyzing the dependence of the quantum correlation
on the feedback ratio. It is not difficult to understand from the perspective of physics. A higher degree of
quantum correlation leads to a higher measurement sensitivity. Additionally, it is worth noting that here we
use the actual experimental parameter κ= 10−4 in the case of cold atomic system [51, 52]. Compared to the
vapor atomic system, the interferometer with cold atoms provides the better performance in the QND
measurement due to the larger AC-Stark coefficient.

3.2. Effect of losses
There exist inevitable losses in the real experiment, which will bring negative effect on the measurement
sensitivity. Here we investigate the effect of losses on the interferometer. The lossy model is shown in figure 4.
After taking into account losses, Ŝ2, â4 and â1 in terms of the lossless case described in the previous section
can be rewritten as

6
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Figure 5. Plot of the optimal sensitivity as a function of the losses for four scenarios: (i) L2 = 0 and R= 0, (ii) L2 = 0 and R= 0.1,
(iii) L1 = 0 and R= 0, and (iv) L1 = 0 and R= 0.1. In all cases, κ= 10−4, g= 1, Na = 107, and e−Γτ = 0.9.

Ŝ2l = Ŝ2e
−Γτ + F̂,

â4l =
√
1− L2â4 +

√
L2v̂2,

â1l =
√
1− L1â1 +

√
L1v̂1, (24)

where the subscript l represents that the losses are taken into account. Lj (j = 1,2) denotes the reflectivity of
the virtual BS which is used to simulate the photon losses and vj (j = 1,2) corresponds to the introduced
vacuum noise. e−Γτ denotes the atomic decoherence losses and ⟨F̂F̂†⟩= 1− e−2Γτ guarantees the
consistency of the operator property of Ŝ2l. The input–output relation for the lossy case of â5 becomes

â5l = â0
G1G2

√
(1− L1)(1− L2)eiϕ + g1g2

√
(1−R)(1− L1)e−Γτ ei(θ2−θ1+ϕ−φ) +G2

√
R(1− L2)

G1

√
R(1− L1)eiϕ + 1

+ Ŝ†0
G2g1

√
(1−R)(1− L2)eiθ1 + g2

√
R(1− L1)e−Γτ ei(θ2−φ+ϕ) +G1g2e−Γτ ei(θ2−φ)

G1

√
R(1− L1)eiϕ + 1

+ v̂1
G1G2

√
L1 (1−R)(1− L2)eiϕ + g1g2

√
L1e−Γτ ei(θ2−θ1+ϕ−φ)

G1

√
R(1− L1)eiϕ + 1

+ v̂2G2

√
L2 + F̂†g2e

iθ2 . (25)

In the case of L1 = L2 = 0 and e−Γτ = 1 (i.e. no losses), this expression can be simplified and consistent with
equation (5). For the balanced case and for ϕ = π, the sensitivity under the lossy condition can be shown to
be of the form

(∆nbl)
2
=

HH∗ + II∗ +JJ ∗ +G2L2 + g2
(
1− e−2Γτ

)[
−iN1/2

a ∂ (H−H∗)/∂nb
]2 , (26)

with

H=
g2
√
(1−R)(1− L1)e−Γτ e−iκnb +G

√
R(1− L2)−G2

√
(1− L1)(1− L2)

1−G
√

R(1− L1)

I =
g
√

R(1− L1)e−Γτ e−iκnb −Gge−Γτ e−iκnb +Gg
√
(1−R)(1− L2)

1−G
√

R(1− L1)

J =
g2
√
L1e−Γτ e−iκnb −G2

√
L1 (1−R)(1− L2)

1−G
√

R(1− L1)
. (27)

One can find that the sensitivity under the lossy condition also achieves its minimum when κnb is 0.
In figure 5 the optimal sensitivity is plotted as a function of the losses for four scenarios: (i) L2 = 0 and

R= 0, (ii) L2 = 0 and R= 0.1, (iii) L1 = 0 and R= 0, and (iv) L1 = 0 and R= 0.1. It can be seen from these
plots that in all cases, the sensitivities degrade with photon losses. Nevertheless, with the increase of photon
losses, the sensitivities in the case of (iii) and (iv) decrease more slowly. This indicates that this proposed
interferometer is more tolerant with the photon losses L2 compared to the photon losses L1 in feedback path.
The reason behind the phenomenon is that the photon losses in feedback path affect the quantum

7
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Figure 6. Plot of the optimal sensitivity as a function of the atomic decoherence losses, where κ= 10−4, g= 1, Na = 107 and
L1 = L2 = 0.

correlation between the atomic spin wave and optical wave, which is highly fragile and quickly degrades with
photon losses. Furthermore, by comparing (i) and (ii), (iii) and (iv), one can find that the feedback control
can mitigate the effect of losses on the sensitivity. Additionally, note that in our scheme, the optical field
travels out of the atomic ensemble while the atomic spin wave stays in the atomic ensemble. Within the
coherence time, the atomic decoherence loss is small, and then we set e−Γτ = 0.9.

Next, the effect of the atomic decoherence losses is analyzed. As shown in figure 6, the blue solid line and
the blue dashed line represent the situations with a feedback ratio of R= 0 and R= 0.1, respectively. We can
observe that the sensitivities degrade with the atomic decoherence losses. Additionally, the sensitivity
decreases more rapidly under atomic decoherence losses than it does under photon losses. Nevertheless,
feedback control can mitigate the effect of losses on the sensitivity.

4. Discussion and conclusion

Experimental consideration of the implementation of the scheme may be performed in a cold rubidium
atomic system. The energy levels of the Rb atom are shown in figure 1(b), where state |e⟩ is the excited state
|52P1/2,F= 2⟩, and states |g⟩ and |m⟩ are the two ground states |52S1/2,F= 1,2⟩ from hyperfine splitting. In
the case of cold rubidium atoms, due to the weak Doppler broadening the detuning of the signal field from
the transition |52S1/2,F= 2⟩ → |52P1/2,F= 2⟩ can be decreased to 120 MHz. The interaction between the
signal field and atoms will induce an atomic phase shift that is proportional to the photon number of the
signal field. With a detuning 120 MHz, the AC-Stark coupling coefficient κ is∼ 10−4 rad per photon. This is
feasible in the experiment [51, 52]. In addition, experimental implementations of coherent feedback
strategies have demonstrated significant efficacy in facilitating various tasks, such as stabilization of
entanglement [53], swaps of quantum states [32], sympathetic cooling [54] and qubit control [55]. This
indicates that the current experimental technology for coherent feedback is very mature, which lays a solid
foundation for the experimental implementation of our scheme. Furthermore, it is worth noting the
difference between coherent feedback and measurement-based feedback [56, 57]. In contrast to
measurement-based feedback, coherent feedback operates independently of measurement process, thereby
avoiding issues such as decoherence, dispersion, latency, and other imperfections in data processing and
optical control.

Our scheme has some advantages compared to other schemes. First, the atom-light hybrid interferometer
system utilizes the stimulated Raman scattering process in the atomic system, which enables the phase of the
Stokes optical field and the atomic spin wave to be mutually correlated [58]. This ensures the stability of the
phase. Such phase stability is crucial for interferometric measurements, as it can effectively reduce
measurement errors caused by phase fluctuations. Second, this type of interferometer is sensitive to both
optical and atomic phase shift, thus it can be applied to a variety of measurement scenarios. The third merit
lies in its robust performance against losses.

In conclusion, we have theoretically proposed a FALCI and applied it to the QND measurement of
photon number by means of the AC-Stark effect. The FALCI performs the measurement by harnessing the
interference between the quantum-correlated atoms and light, in which a BS with adjustable reflectivity is
employed as a feedback controller to further manipulate it. We find that the quantum correlation can be
enhanced by tuning the feedback ratio, and the optimal feedback ratio is given. Furthermore, it is found that

8
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a suitable feedback ratio can also enhance the QND measurement sensitivity. In addition, the FALCI is
robust to the losses. The effect of losses on the sensitivity can be mitigated through the feedback control. Our
results lay a solid foundation for the practical application of the FALCI in quantum enhanced metrology.
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