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1. Introduction

The Galilei group is the spacetime symmetry of non-relativistic systems
as the Poincare group is the symmetry of relativistic systems. We can
consider Galilei algebra in 2 + 1 Minkowski space as subalgebra of the
Poincare algebra in 3 + 1 Minkowski space or as Inonu-Wigner contraction
of Poincare algebra in 2 + 1 Minkowski space [1].

The non-relativistic field theory is of vital importance in modern theoreti-
cal physics. First, most of non-relativistic theories are the non-relativistic
limit of corresponding relativistic theories. Using non-relativistic theories
we can study the generic field-theories concepts such as, for example, renor-
malization group in simpler way [3]. Second, Galilean field theories are
second-quantized descriptions of quantum mechanics and they are rather
suitable for description of many body problems in non-relativistic system,
for example, Aharonov-Bohm scattering problem. Finally, Galilean field
theories are also used in the relativistic superstring theory [2].

Supersymmetric generalization of the Galilean algebra were first proposed
by Puzalowski in 3+ 1 Minkowski space [4]. Puzalowski constructed repre-
sentations of Galilean superalgebra with a single supercharge @ which can
be understood as non-relativistic limit of N = 1 Poincare superalgebra.

In the present paper we consider representations of Galilean superalge-
bra and Galilean parasuperalgebra in 2+1 Minkowski space in terms of
grassmannian variables and physical models invariant under the Galilean
superalgebra.

2. Galilei superalgebra N =2 in 2 + 1 space

The Galilei superalgebra in 2 + 1 space has seven operators of the Galilei
algebra AG(1,2) Py, P;, K;, J and M which satisfy the following commu-
tation relations

(P, K] =i M, [P, J] = —ieijPj, [Py, K| =1iP;, [K; J] = —¢;K;

€12 = —&91 = 1, €11 = €22 =10 (1)
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and two supercharges @ and R

{Q.Q"} =M, {R,R"} =2PR,

Q=% =3, @)

[R,K]=iQ, {R,Q"} =-PT,

where K~ = K| —iK5 and PT = P; +iP,. The rest commutation relations
between the generators of the Galilean superalgebra are equal to zero.

The Galilei superalgebra N = 2 in 241 space is subalgebra of the Poincare
superalgebra N=1 in 341 Minkowski space. It can be verified using (2.2)
and the following relations

M = Py + Ps, Py=3 (P — P3),

Ki = Joi + J3i, J = Jig, (3)
1 1

QZEQ% R= 7501

The Galilei superalgebra in 2 + 1 can be also found from N = 2 Poincare
superalgebra with nontrivial central charge in 241 by the contraction. One
can choose new basis

~ 1 1
P():——QM—F—P(),
€ €

P =P, Py, =P,
J = Jia, Gy = eJo, Go = €J02,

6%1 - % @i+ab), G- i (@ - b, W
Q3= \/2—— @+, Q3 7(@1 ),
Z = —€—2M

(we suppose that M commutes with any generators of Poincare superal-
gebra). In the commutation and anticommutation relations of Poincare
superalgebra in 2 4+ 1 we put ¢ — 0 and then denoting

R=2(Q}+QP), Q=0Q}+qQl'

we come to (1) and (2).
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3. Representations of the Galilei superalgebra and parasu-
peralgebra N =2 in 2 4+ 1 and invariant physical models

Representations of the Galilei superalgebra in 2+1 in terms of grassmannian
variables can be found using the representation of the Poincare superalgebra
in 3+ 1 in terms of grassmannian variables. The generators (1) and (2)
have the form 5 5

Pozia, B:ia—xi, 1=1,2, (5)
Ky = tP, — 2y M + 191822 + i@{ai%, Ky = tPy — oM + 91822 mai*’
J=21P —xoP + = (918(31 28—92—91%‘1“9;%)
and supercharges @), R have the following form ©)
Q= o — 20 Py + i0}(Py +iPy),
Qf = _a%j — 201 Py — ifo(Py — iPy),
R= a% —ifl(P —iPy) — i M, "

Rt = _iT + ’i(gl(Pl + ’ipg) + 109 M .
06}

We can also define the covariant derivatives, which are used to build the
physical models invariant under the Galilean superalgebra as

1,0
. C
D :—( +2(91P0—02(P1—’LP2))
\/5 90 @®)
0 .
DQ 7(8—+9J{(P1—2P2)—9;M),
D= (0 g (P +iPy) + oM
2—5(&9;— 1(P1 + i) + 02M) .

Covariant derivatives (8) satisfy the following anticommutation relations
{D1, R} ={D1,Q} ={Ds, R} = {D2,Q} =0
{D],R} = {D],Q} = {D}, R} = {D},Q} =0,
{D1,R"} = {D1,Q"} = {D2, R} = {D»,Q"} =0,
{D}, BT} = {D],Q"} = {D, R} = {D},Q"} = 0.

9)
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4. Galilei superalgebra in 3+1 dimensions.

The minimal nontrivial generalization of N = 2 Galilei superalgebra in 2+1
is N = 4 superalgebra in 3 + 1 dimensions with commutation relations

{01, Q1Y =2Py, {Q1,Q2} =0, {Q1,Q5} =15, {Q1,Q4) = P, —iP,
{Q2,Q1} =0, {Q2,Q2} =2Py, {Q2,Qs} =P +iP, {Q2,Qu}=—Ps,
{Q3,Q1} = P3, {Q3,Q2} =P —iP, {Q3,Q3} =2M, {Q3,Q4} =0,

{Q4,Q1} = P, +iPs, {Q4,Q2} = —Py, {Q4,Q3} =0, {Qus,Qs} =2M,

(@1, /1] =
[Q2, 1] =
(@3, /1] =
[Qs, 1] =

[Q1,GH1]
[Q2,GH]

5@ [Qukl=-3Q [@ukl=—5Qn
_% @, (@2, J2] = %Q% [Q2, J3] = %Q%
5Qu [Qshl=-3Qu [@uh=—5Qs
_% @, (@4, 12] = %Qi’n [Qu, J3] = %Q47
= iQ4’ [Q17 GQ] = _Q47 [Ql, Gg] = ng,
= iQs, [Q2,Ga] = —Q3, [Q2,G3) = —iQu.

(10)

In terms of grassmannian variables the supercharges Q; (i = 1,2,3,4) can

be written as

0 0 0 0 0
Ql——la—el-l-@la +928—+2928—+98

0 0 0 0 0
QQ——Za—eQ-l-@Qa +918—+2918—+928

0 0 0 0

Qg = —28—93 —293M+928— —1(928— +918

0 0 0 0

Q4 = —28—94 —294M+918— +Z¢918—y - 928 (11)

Q—i—98+«98+98+98
Y0, o T o T oy T o
~ 0 0 0 0 8
Q2—8—9—2—928 +(918 +’L¢98 a
= .0 0 0 0
Q3—1893+93M (928——’“928 9182
0 0

0 0
= j— M — — .
Q4 ’L84+’L94 01856—1_2028 +(928Z
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The covariant derivatives take the following from
Dy = —igh +ibh 5 +ibags — 0o +ith £,
Dy = —igh=+ 0y 5 + 10135 — 015 + 024,
Dy = —ig=+ 03M + ibs % + 2% + i1 £,
Dy = —igge + 0M +i01 & — 01 & — 025,
Dy =gy —ib1f +iba s — Oa . + i1,
Dy =g — iy +ibr5s — 015 + il S,
D3 = z'a% + 03 M — 0y 2 + 92% — i1 2,
Dy=izd- — M — it & — 022 + il £ .

Below we consider the physical models invariant under the Galilei superal-
gebra.

5. Physical models invariant under the Galilean superalge-
bra.

To build the physical models in 2 4+ 1 we introduce scalar superfield @,
which has 16 component, in the form

® = A(@) + Oatba + 000 + 0102 B(x) + 0a0)Aas + 0]03C ()
+ 010200 B + 00161, + 016,0103D(2) (13)

where x = (zg, 1, z2).

Using covariant derivatives (8) we can build operator L which commutes
with any generators of the Galilei superalgebra and act in the space of
scalar superfields

L = DDy —aD}D} + bDyD} + cM.

So we have following equation invariant under the Galilean superalgebra in
2+1
Lo = g DD, (14)
where a, b, ¢c and ¢ are constants.
Using covariant derivatives (12), we can build the operator L for the case
of the Galilei superalgebra in 3 + 1 dimensions
L = (D1Dy—D3Dy)+a(D1Dy— Dy Dy) +bD3Ds+cD3sDy+ fM,  (15)

where a,b,c and f are constant. The invariant equation (14) does not
change the form in this case. The scalar superfield in 3 + 1 dimensions
b =d(t,z,y,2,01,09,03,04,01,05,03,04) has 64 components.



202 A.V. GALKIN

References
[1] Inonu E., Wigner T.P.,Proc. Nat. Acad Sci. U.S.39(1953) p.510.

[2] Thorn C.B., Nucl.Phys B29(1986) p.493.
[3] Bergman O.,Phys.Rev.D46(1992) p.5474

[4] Puzalowski R., Acta Physica Austriaca 50 (1978) p.45



