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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit numerischen Lösungsmethoden von sehr großen linea-

ren Gleichungssystemen mit Anwendung im Bereich von Gitter-QCD Simulationen. Diese gehören

zu den rechenintensivsten Problemen des aktuellen Hochleistungsrechnens. Die zentrale Heraus-

forderung besteht dabei aus dem Lösen der diskretisierten Dirac-Gleichung, welche durch ein

dünnbesetztes lineares Gleichungssystem mit einer halben Milliarde und mehr Unbekannten gege-

ben ist. Wir stellen ein hochperformantes adaptives Mehrgitterverfahren auf Basis von Gebiets-

zerlegungsmethoden vor. Dabei werden Schwarz-Alternierende-Methode mit Aggregat-basierten

Gitterhierarchien kombiniert. Das Krylov-Unterraumverfahren FGMRES bildet das Rückgrat un-

seres Mehrgitterverfahrens.

Weiter werden neue Verfahren zur Spektralapproximation des symmetrisierten Dirac-Operators

vorgestellt, die auf Shift-Invertier-Ansätze wie der Rayleigh-Quotienten-Iteration und dem Jacobi-

Davidson-Verfahren basieren. Dazu wird das Mehrgitterverfahren angepasst und mit den genann-

ten Verfahren kombiniert. Wir zeigen, dass die resultierenden Verfahren mit in der Gitter-QCD

etablierten Vorgehensweisen konkurrieren können und durch besseres Skalierungsverhalten auch

und insbesondere bei zukünfig größeren Simulationen überlegen sind. Wir demonstrieren dies für

physikalisch relevante Szenarien.

Abstract

This thesis deals with numerical methods solving very large linear systems of equations arising

in the field of lattice QCD simulations. These are among the most computationally intensive

problems of modern high-performance computing. The central challenge is to solve a discretised

Dirac equation, which is given by a sparse linear system of equations with half a billion and more

unknowns. We present an efficient adaptive multigrid method based on domain decomposition

methods. In doing so, the Schwarz alternating procedure is combined with aggregate-based grid

hierarchies. The Krylov subspace method FGMRES forms the backbone of our multigrid process.

In addition, new methods for spectral approximations of the symmetrized Dirac operator based on

shift-invert approaches such as the Rayleigh quotient iteration and the Jacobi-Davidson method

will be presented. For this purpose, the multigrid method is adapted and combined with the

aforementioned methods. We show that the algorithms can compete with the ones currently in

use in lattice QCD and may even be superior for forthcomming larger simulations due to better

scaling behavior. We demonstrate this for physically relevant scenarios.
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1. Einleitung

Simulationen zur Gitter-Quantenchromodynamik (Gitter-QCD) gehören zu den rechenintensiv-

sten Problemen im Bereich des Hochleistungsrechnens, und ein nicht unerheblicher Teil der aktuell

verfügbaren Rechenleistung wird für Gitter-QCD-Simulationen aufgewendet [87]. Die zentrale

Herausforderung besteht dabei aus dem Lösen der diskretisierten Dirac1-Gleichung, welche im

Wesentlichen durch ein sehr großes, dünn besetztes, lineares Gleichungssystem

Dz = b (1.1)

gegeben ist. Das Ziel dieser Arbeit ist es, ein hochperformantes adaptives Mehrgitterverfahren

zum Lösen der Dirac-Gleichung vorzustellen und auf dieser Grundlage Spektralapproximationen

für den symmetrisierten Dirac-Operator zu berechnen.

Der Operator D ≡ D(U,m) ist hierbei eine Diskretisierung des kontinuierlichen Dirac-

Operators aus der QCD, typischerweise die Wilson2-Diskretisierung, auf einem vierdimensionalen

Raum-Zeit-Gitter. Der Wilson-Dirac-Operator D hängt dabei von einem Eichfeld U und einem

Massenparameter m ab. Aktuelle Simulationen arbeiten mit Gittern bestehend aus 144 × 643

Knoten und mehr, was in Gleichungssystemen mit mindestens einer halben Milliarde Unbekannten

mündet [5].

Üblicherweise werden die Gleichungssysteme (1.1) mit iterativen numerischen Verfahren

gelöst, überwiegend durch Krylov-Unterraumverfahren. Die Konvergenzrate dieser Verfahren

verschlechtert sich jedoch enorm, wenn große Gitterkonfigurationen und/oder physikalisch rele-

vante Massenparameter erreicht werden. Um dem entgegen zu wirken, müssen Präkonditionierer

für besagte Unterraumverfahren entwickelt werden, die dazu im Stande sind, die Skalierungspro-

bleme zu reduzieren. In der Gitter-QCD sind bereits
”
odd-even“-Präkonditionierung, Deflation und

Gebietszerlegungsmethoden verbreitet und liefern signifikante Laufzeitverbesserungen gegenüber

nicht-präkonditionierten Methoden. Deren Skalierungsverhalten ist dennoch nahezu unverändert

schlecht.

Hier kommen Mehrgitterverfahren ins Spiel, die in der Gitter-QCD bereits eine hohe Reputa-

tion genießen wegen ihrem Potential hohe Konvergenzraten praktisch unabhängig von Gitterweiten

zu erreichen, z. B. im Bereich der elliptischen partiellen Differentialgleichungen. Aufgrund der in

der Gitter-QCD involvierten Eichfelder und ihrer stochastischen Natur sind geometrische Mehrgit-

terverfahren, also Verfahren, die ausschließlich mit der vorliegenden partiellen Differentialgleichung

arbeiten, trotz jahrzehntelanger Forschung nicht praktikabel [19, 52]. Daher wurden in den letz-

ten Jahren vermehrt adaptive algebraische Mehrgitterverfahren konstruiert [4, 17], die direkt auf

der Struktur der Operatormatrix ansetzen und z. B. in der Programmbibliothek QOPQDP [81]

implementiert sind.
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10 1. Einleitung 10

Ein ähnlicher in der Gitter-QCD weitverbreiteter Löser-Ansatz namens
”
inexact deflation“

wurde von M. Lüscher in [61] vorgeschlagen und eine (verbesserte) Implementierung ist in [62]

verfügbar.

Der Fokus dieser Arbeit liegt zu Beginn auf der Herleitung des Aggregat-basierten adaptiven

Mehrgitterverfahrens DD-αAMG [35], welches Aspekte der vorher genannten Verfahren aufgreift,

jedoch an anderen Stellen signifikante Unterschiede aufweist. Letztendlich stellt dieses Verfahren

aber durch seine Skalierbarkeit eine wesentliche Verbesserung zu den aktuell in der Gitter-QCD

verbreiteten Gleichungssystemlöser dar. Die hier vorgestellten Ansätze spiegeln Resultate einer

engen Kooperation mit der Arbeitsgruppe A. Frommer (Angewandte Informatik) der Universität

Wuppertal wider.

Der wesentliche Beitrag der Arbeit besteht darin, das vorgestellte Mehrgitterverfahren anzu-

passen und mit numerischen Algorithmen zur Eigenwertbestimmung zu kombinieren. Es werden

neue Verfahren vorstellt, die signifikante Verbesserungen im Bereich der Eigenmodenberechnung

des symmetrischen Dirac-Operators Q := Γ5D aufweisen. Varianten der Verfahren wurden be-

reits in [7] veröffentlicht, eine weitere Publikation ist in Vorbereitung.

Die vorliegende Arbeit ist genauer wie folgt aufgebaut:

Kapitel 2 gibt einen Überblick zu physikalischen Hintergründen und der Herleitung der Wil-

son-Diskretisierung inklusive des Clover-Korrekturterms, sowie zu gewissen Eigenschaften des

hergeleiteten Operators. Darüber hinaus wird statisches Präkonditionieren und das Konzept des

Smearing, einhergehend mit einer Normalitätsanalyse von D, erläutert.

Kapitel 3 möchte eine knappe Einführung in das Gebiet der Krylov-Unterraumverfahren

vermitteln, mit Schwerpunkt auf dem robusten GMRES-Verfahren und dessen flexible Variante

FGMRES.

Kapitel 4 wendet sich Gebietszerlegungsmethoden zu und legt mit der Einführung der SAP-

Methode als Glätter den Grundstein für das genannte Mehrgitterverfahren.

Kapitel 5 stellt die Aggregat-basierte Interpolation vor, mit der zwischen verschiedenen

Gitterebenen kommuniziert wird. Ebenso ist die Adaptivität des resultierenden Verfahrens ein hier

vorgestellter wichtiger Aspekt. Das Kapitel schließt mit numerischen Ergebnissen und Vergleichen

zu verbreiteten anderen Lösern in der Gitter-QCD.

Schließlich präsentiert Kapitel 6 neue Resultate aus der Kombination des hergeleiteten

Mehrgitterverfahrens mit numerischen Verfahren zur Eigenwertberechnung mit Fokus auf Shift-

Invertier- bzw. Projektionsverfahrens-Ansätzen. Das Kapitel schließt mit Ergebnissen einer aktu-

ellen physikalischen Anwendung, die im Rahmen einer Kooperation entstand, in die zusätzlich die

Arbeitsgruppe G. Bali (Hochenergiephysik) der Universität Regensburg eingebunden war.
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Anmerkungen∗

1 Paul Adrien Maurice Dirac (* 8. August 1902 in Bristol; † 20. Oktober 1984 in Tallahassee)

war ein britischer Physiker, Nobelpreisträger und Mitbegründer der Quantenphysik. Eine von Di-

racs wichtigsten Entdeckungen ist in der Dirac-Gleichung von 1928 beschrieben, in der Einsteins

spezielle Relativitätstheorie und die Quantenphysik erstmals zusammengebracht werden konnten.
2 Kenneth Geddes Wilson (* 8. Juni 1936 in Waltham, Massachusetts; † 15. Juni 2013 in Saco,

Maine) war ein US-amerikanischer Physiker und Nobelpreisträger. Er war Schüler von Murray

Gell-Mann.

∗Alle Angaben aus der deutschen Wikipedia, stand 2017
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2. Quantenchromodynamik

Als Teil der Teilchenphysik, genauer der relativistischen Quantenmechanik, beschreibt die Quan-

tenchromodynamik (QCD) die starke Wechselwirkung der kleinsten der Menschheit bekannten

Elementarteilchen, die der Quarks. Im Unterschied zur Eichtheorie der Quantenelektrodynamik

(QED) besitzen Quarks neben der elektrischen- noch eine zusätzliche Ladung, die Farbladung

(daher der Name Chromodynamik). Quarks bilden zusammen mit den Leptonen (z. B. dem Elek-

tron) und den Eichbosonen (insbesondere dem Gluon) die fundamentalen Bestandteile der Materie

(siehe Abbildung 2.1).
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Abbildung 2.1: Das Standardmodell mit Quarks, Leptonen und Eichbosonen∗.

Quarks treten in insgesamt sechs sog. Quark-Flavours auf: Up, Down, Charm, Strange, Top

und Bottom und deren jeweiligen Antiteilchen (gegeben durch eine Anti-Farbladung). Quarks

treten allerdings niemals einzeln, sondern in Gruppierungen, sog. Hadronen, auf; Dieses Phänomen

wird als Confinement [110] bezeichnet. Das Proton, als Beispiel eines stabilen Hadrons, besteht

aus zwei Up-Quarks und einem Down-Quark. Der Zustand eines Fermions (insbesondere eines

Quarks, vgl. Abbildung 2.1) wird durch die Dirac-Gleichung beschrieben, welche bereits im Jahre

∗Ursprüngliche Quelle: Fermilab, Office of Science, United States Department of Energy, Particle Data Group
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14 2. Quantenchromodynamik 14

1928 entwickelt wurde. Der zugehörige Dirac-Operator, kann in der kontinuierlichen Theorie

geschrieben werden als

D =
4∑

µ=1

γµ ⊗ (∂µ +Aµ),

wobei die Summierung über µ = 1, 2, 3, 4 zum vierdimensionalen Raumzeitkontinuum korrespon-

diert. Weiter ist ∂µ = ∂/∂xµ, wobei xµ die Komponenten des Raumzeitpunkts x ∈ R4 be-

zeichnet. Die Eichfelder Aµ repräsentieren die Eichmatrizen Aµ(x) ∈ su(3), welche Elemente der

Lie3-Algebra† über der speziellen unitären Gruppe SU(3)‡ sind.

Die Dirac-Matrizen γ1, γ2, γ3, γ4 ∈ C4×4 sind hermitesche, unitäre Generatoren der Clif-

ford4-Algebra Cl0,4(R). Details zu diesen Objekten folgen im nächsten Abschnitt.

Erwähnt sei, dass es (viele) alternative Notationen gibt, wobei geringere Abweichungen

z. B. darin bestehen, dass die imaginäre Einheit i aus den Eichfeldern Aµ ausgeklammert und

vorangestellt wird.

Lösungen der Dirac-Gleichung, bzw. Vorhersagen über Hadronen (u. a. über ihre Obser-

vablen wie Masse, beteiligte Fermionen, gebundene Eichbosonen, vgl. [55]) können in der QCD

weder analytisch noch durch klassische Störungstheorie, sondern nur durch numerische Simulati-

on bestimmt werden (zumindest bei großer Kopplungskonstante, wie sie im Niederenergiebereich

auftritt). Hierfür werden wir im folgenden Kapitel Konzepte der Gitter-QCD sowie vor allem die

Wilson-Diskretisierung des Dirac-Operators vorstellen und herleiten. Das folgende Kapitel be-

ruht größtenteils auf den QCD-Theorie Abschnitten in [39, 16, 89] und [35]. Für einen tieferen

Einblick in die Materie sei hier auf [39, 24] sowie [69] verwiesen.

2.1 Kontinuierliche Theorie

Die physikalischen Hintergründe weitestgehend beiseitelassend, konzentrieren wir uns in diesem

Kapitel auf die mathematische Konstruktion des Dirac-Operators. Wir beginnen mit dem No-

tieren von Quarks und Gluonen in mathematisch handhabbaren Ausdrücken:

2.1.1 Definition

Seien C := {1, 2, 3} die Menge der Farb-Indizes, S := {0, 1, 2, 3} die Spin- oder Dirac-Indizes

sowie

ψ : R4 → C12 ∼= CC×S ,

x 7→
(
ψ10(x), ψ20(x), ψ30(x), ψ11(x), . . . , ψ33(x)

)T
†Die zur SU(n) gehörende Lie-Algebra su(n) entspricht dem Tangentialraum am Einselement der Gruppe. Sie

besteht aus dem Raum aller schiefhermiteschen n×n-Matrizen mit Spur Null.
‡Die spezielle unitäre Gruppe SU(n) besteht aus den unitären n×n-Matrizen mit komplexen Einträgen, deren

Determinante Eins beträgt.
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eine differenzierbare Funktion. Dann wird ψ als Quarkfeld, bzw. ψ(x) als Dirac-Spinor bezeich-

net. Wir sammeln diese in M := {ψ : ψ ist Quarkfeld}. Für µ = 1, 2, 3, 4 sind

Aµ : R4 → su(3),

x 7→ Aµ(x)

sog. Eichfelder, welche die Gluonen, also die Kopplung der Quarks, repräsentieren. ♦

Die Komponenten des Spinors ψ(x) werden typischerweise mit ψcσ(x) notiert, wobei sich

c ∈ C auf den Farb- und s ∈ S auf den Spin-Index bezieht. Die Notation für einen fixierten

Spin-Index σ ∈ S, ψσ(x) =
(
ψ1σ(x), ψ2σ(x), ψ3σ(x)

)T
, ist ebenso verbreitet, da die Eichfelder

nicht-trivial auf die Farbkomponenten und trivial auf die Spinkomponenten des Spinors ψ(x) im

Sinne von

(Aµψ)(x) := (I4 ⊗Aµ(x))ψ(x)

wirken. Essentiell für die Wirkung des Dirac-Operators auf die Quarkfelder ψ sind, neben den

oben bereits verwendeten Tensorprodukten (bzw. Kronecker5-Produkten), bestimmte 4×4-

Matrizen:

2.1.2 Definition

Die vier hermiteschen, unitären Matrizen γµ ∈ C4×4, µ = 1, 2, 3, 4 erzeugen die Clifford-

Algebra Cl0,4(R) genau dann, wenn für alle µ, ν = 1, 2, 3, 4 gilt

γµγν + γνγµ =

2I4, µ = ν,

0, sonst.
(2.1)

Die (nicht-eindeutigen) Matrizen γµ werden als Dirac- oder γ-Matrizen bezeichnet. ♦

Hintergründe zur Notation und Details zur Rolle der Clifford-Algebren in diesem Teil der

Physik kann z. B. im Buch [55] nachgegangen werden.

Wichtig ist anzumerken, dass im Gegensatz zu den Eichmatrizen Aµ(x) und dem Spinor

ψ(x), die γ-Matrizen nicht von der Raumzeit x abhängen. Die Multiplikation einer γ-Matrix mit

einem Quarkfeld ist wie folgt definiert:

(γµψ)(x) := (γµ ⊗ I3)ψ(x).

Nun sind wir in der Lage, den Dirac-Operator und dessen Wirkung auf Quarkfelder zu definieren.

2.1.3 Definition

SeiM der Raum der Quarkfelder, dann ist der kontinuierliche (massefreie) Dirac-Operator eine

lineare Abbildung

D : M → M
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definiert durch

D :=

4∑
µ=1

γµ ⊗ (∂µ +Aµ), (2.2)

wobei ∂µ = ∂/∂xµ die partielle Ableitung nach xµ, µ = 1, 2, 3, 4, bezeichnet. Die Auswertung

von Dψ an einem Punkt x ∈ R4 ist via

(Dψ)(x) =

4∑
µ=1

(
γµ(∂µ +Aµ)ψ

)
(x).

gegeben. ♦

Der Differentialoperator ∂µ + Aµ ist quantenmechanisch eine
”
minimale Kopplung“ und

darüber hinaus so konstruiert, dass
(
(∂µ +Aµ)ψ

)
(x) auf dieselbe Weise unter lokalen Eichtrans-

formationen transformiert, wie ψ(x), er ist also (Eich-)kovariant. Diese Eichtransformationen

entsprechen einem lokalen Wechsel des Farb-Koordinatensystems. Aµ, als Teil des kovarianten

Differentialoperators, kann hierbei als Kopplung verschiedener, infinitesimal nah beieinander lie-

gender, Raumzeitpunkte verstanden werden. Eigenschaften der γ-Matrizen γµ garantieren auch,

dass Dψ(x) unter Transformationen der speziellen Relativitätstheorie genau so transformiert wie

der Spinor ψ(x). Dies nennt man lokale Eichinvarianz und ist ein zentrales Prinzip des Standard-

modells der elementaren Teilchenphysik. Für Details siehe z. B. [86].

2.2 Gitter-QCD

Die Diskretisierung der Raumzeit des Euklid6ischen Kontinuums durch ein hyperkubisches Gitter

mit regelmäßigem Gitterabstand, wohl aber unterschiedlicher Ausdehnung in Zeit Nt und Raum

Nr, hat vor allem zwei Gründe: Sie ermöglicht numerische Simulationen zum Einen und das

Erforschen von nicht-perturbativen Phänomenen der QCD zum Anderen. Die auf Wilson [110]

zurückgehende Gitter-QCD assoziiert die fermionischen Spinor-Felder ψ(x) dabei mit Gitterknoten

x = [x1, x2, x3, x4]T und die Eichfelder werden durch Links zwischen diesen Knoten dargestellt.

Kernaufgabe bei Gitter-QCD Simulationen wird es auf lange Sicht immer sein, die diskretisierte

Dirac-Gleichung für eine gegebene (oder oft mehrere) rechte Seite zu Lösen. In diesem Abschnitt

werden wir, neben der Einführung in die Prinzipien der Wilson-Diskretisierung, auch auf die

numerischen Eigenschaften des resultierenden linearen Operators eingehen.

2.2.1 Definition

Wir betrachten ein periodisches regelmäßiges vierdimensionales Raumzeitgitter L mit Gitterweite

a. Für je zwei x, y ∈ L soll ein p ∈ Z4 existieren, sodass

y = x+ ap.
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So können wir Shiftoperationen mittels eines Shiftvektors µ̂ ∈ R4

µ̂ν :=

a, ν = µ,

0, sonst,

für µ ∈ {1, 2, 3, 4} und ν = 1, 2, 3, 4, definieren. ♦

Um Quarkfelder ψ auf dem Gitter zu definieren, genügt es Auswertungen an den Gitter-

punkten vorzunehmen:

ψ : L → C12,

x 7→ ψ(x).

Bis auf die Tatsache, dass diese Funktion nicht mehr differenzierbar ist, werden dieselben Notatio-

nen für den Spinor ψ(x) übernommen, d. h. Spin- und Farbindizes ψcσ(x) für c ∈ C, σ ∈ S (vgl.

Definition 2.1.1). Nun wenden wir uns den Eichfeldern Aµ zu, welche in der kontinuierlichen QCD

infinitesimal nah beieinanderliegende Punkte der Raumzeit koppeln und durch diskrete Variablen

Uµ(x) ersetzt werden müssen.

2.2.2 Definition

Zu jeder Eichmatrix Aµ(x) ist die korrespondierende Diskretisierung Uµ(x) durch ein (quanten-

mechanisches) Pfadintegral entlang der Kante (x, x+ µ̂) gegeben, genauer:

Uµ(x) := exp

− x+µ̂∫
x

Aµ(s)ds

 ≈ e−aAµ(x+ 1
2
µ̂).

Das diskretisierte Eichfeld U := {Uµ(x) : x ∈ L, µ = 1, 2, 3, 4} nennt man (Eich-)Konfiguration.

♦

Die analytische Transformation von Aµ zu Uµ ist allerdings nur von theoretischer Bedeu-

tung, da Gitter-QCD-Berechnungen immer direkt von diskret berechneten Eichkonfigurationen U

ausgehen. Anschaulich betrachtet,
”
lebt“ die Variable Uµ(x) nicht im oder auf dem Gitterknoten

x, sondern auf der Kante (x, x+ µ̂); Man spricht von Linkvariablen, denn Uµ(x) stellt die Kopp-

lung zwischen x und x + µ̂ dar. Insbesondere ist die Kopplung von x + µ̂ und x durch Uµ(x)−1

gegeben, vgl. Definition 2.2.2. Darüber hinaus gilt

Uµ(x) ∈ SU(3), insbesondere Uµ(x)−1 = Uµ(x)H , §

wobei Uµ(x)H ≡ UHµ (x) hier und im Folgenden die Adjungierte von Uµ(x) bezeichnet.

Abbildung 2.2 illustriert die hier verwendete Notationskonvention.

§Für A spurfrei gilt det
(
exp(A)

)
= exp

(
Spur(A)

)
= 1 sowie für A schiefhermitesch exp(A)−1 = exp(A)H .



18 2. Quantenchromodynamik 18

Uν(x+ ν̂) Uν(x+ µ̂+ ν̂)

Uµ(x− µ̂+ ν̂) Uµ(x+ ν̂) Uµ(x+ µ̂+ ν̂)

x+ ν̂ x+ µ̂+ ν̂

Uν(x) Uν(x+ µ̂)

Uµ(x− µ̂) Uµ(x) Uµ(x+ µ̂)

x x+ µ̂

Uν(x− ν̂) Uν(x+ µ̂− ν̂)

Abbildung 2.2: Die verwendete Notationskonvention auf dem Gitter.

Wir wenden uns nun der Diskretisierung der kovarianten Ableitung zu, welche auf ver-

schiedene Weise vollzogen werden kann; die hier beschriebene ist die am häufigsten verwendete

Wilson-Diskretisierung (vgl. [111]).

2.2.3 Definition

Sei Aµ ein Eichfeld und Uµ die zugehörige Eichkonfiguration. Die Definition der kovarianten

rechtsseitigen Differenzenquotienten

(∆µψσ)(x) :=
UHµ (x)ψσ(x+ µ̂)− ψσ(x)

a
≈ (∂µ +Aµ)ψσ(x)

und der kovarianten linksseitigen Differenzenquotienten

(∆µψσ)(x) :=
ψσ(x)− Uµ(x− µ̂)ψσ(x− µ̂)

a
,

führt mittels kovarianter zentralem Differenzenquotienten zu folgender naiven Diskretisierung des

(massefreien) Dirac-Operators D (2.2):

DN :=
4∑

µ=1

γµ ⊗ (∆µ + ∆µ)/2. (2.3)

♦

Bevor wir zu Problemen und Verbesserungen dieser naiven Diskretisierung kommen, führen

wir ein Lemma an, welches wir später benötigen.



19 2. Quantenchromodynamik 19

2.2.4 Lemma

Für die vorwärts und rückwärts kovarianten finiten Differenzen gilt

(∆µ)H = −∆µ.

Beweis. Seien ψ und η beliebige Quarkfelder. Dann gilt

〈ψσ,∆µησ〉 ≡
∑
x∈L
〈ψσ(x),∆µησ(x)〉

=
1

a

∑
x∈L
〈ψσ(x), UHµ (x)ησ(x+ µ̂)〉 − 1

a

∑
x∈L
〈ψσ(x), ησ(x)〉

= (∗).

Die Periodizität des Gitters L erlaubt es nun, in der ersten Summe eine Indextransformation

x 7→ x+ µ̂ anzuwenden

(∗) =
1

a

∑
x∈L
〈ψσ(x− µ̂), UHµ (x− µ̂)ησ(x)〉 − 1

a

∑
x∈L
〈ψσ(x), ησ(x)〉

= −1

a

∑
x∈L
〈ψσ(x)− Uµ(x− µ̂)ψσ(x− µ̂), ησ(x)〉

= −〈∆µψσ, ησ〉. �

Insbesondere ist die zentrale (kovariante) finite Differenz (∆µ+∆µ)/2 schiefhermitesch. Da

die γ-Matrizen γµ hermitesch sind (vgl. Definition 2.1), ergibt sich folgendes Korollar.

2.2.5 Korollar

Die naive Diskretisierung DN aus (2.3) ist schiefhermitesch, d. h.,

DH
N = −DN .

Die naive Diskretisierung DN erzeugt in dieser Form unphysikalische Eigenvektoren¶, auch

bekannt unter dem Problem der Fermionenverdopplung, welches untrennbar mit der chiralen Sym-

metrie auf dem Gitter verknüpft ist. Dies sind zwei der vier (hier nicht näher genannten) Eigen-

schaften für Diskretisierungen des Dirac-Operators, die nach dem Nielson-Nimomiya-Theorem

nicht gleichzeitig erfüllt werden können. Für Details verweisen wir auf [77] und [78]. Im Folgenden

stellen wir eine wiederum von Wilson [111] vorgeschlagene Möglichkeit vor, die Fermionenver-

dopplung zu vermeiden (welche jedoch die chirale Symmetrie explizit bricht): Der Stabilisierungs-

term a∆µ∆µ, welcher ein (kovarianter) zentraler Differenzenquotient zweiter Ordnung ist. Er wird

auch Wilson-Fermion genannt.

¶Der Eigenraum eines Eigenwertes von DN ist 16-dimensional, aber nur ein 1-dimensionaler Eigenraum korre-

spondiert zu jeweils einer Eigenfunktion des kontinuierlichen Operators D.
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2.2.6 Definition

Gegeben sei eine Konfiguration U auf einem Gitter L mit nL Knoten, Gitterweite a, sowie einem

Massenparameter m0. Dann ist die Wilson-Diskretisierung des Dirac-Operators (auch bekannt

als Wilson-Dirac-Operator) definiert durch

DW :=
m0

a
I12nL +

1

2
InL

4∑
µ=1

(
γµ ⊗ (∆µ + ∆µ)− aI4 ⊗∆µ∆µ

)
. (2.4)

♦

Zum Massenparameter m0, welcher sich auf die Quarkmasse bezieht, sei an dieser Stelle nur

gesagt, dass dieser die größten Schwierigkeiten insbesondere bei physikalisch relevanten kleinen

Quarkmassen hervorruft, bis dahingehend, dass frühere Gitter-QCD-Simulationen überhaupt nur

mit unrealistisch großen Werten möglich waren. Für physikalische Details zum Massenparameter

sei exemplarisch auf [69] verwiesen.

Die Vertauschungseigenschaften (2.1) der γ-Matrizen implizieren eine nicht-triviale Symmetrie

des Wilson-Dirac-Operators DW .

2.2.7 Lemma

Für γ5 := γ1γ2γ3γ4 gilt γ5γµ = −γµγ5, µ = 1, 2, 3, 4, vgl. (2.1), und mit Γ5 := InL ⊗ γ5 ⊗ I3

weist der Wilson-Dirac-Operator eine sog. Γ5-Symmetrie auf, d. h.,

(Γ5DW )H = Γ5DW .

Beweis. Aufgrund der Hermitizität von γµ und γ5 ist γ5γµ schiefhermitesch. Mit Hilfe von Lemma

2.2.4 sehen wir, dass (γ5γµ)⊗ (∆µ+∆µ) als Tensorprodukt zweier schiefhermitschen Operatoren

hermitesch ist. Dasselbe Lemma impliziert, dass

(∆µ∆µ)H = (∆µ)H(∆µ)H = (−∆µ)(−∆µ) = ∆µ∆µ

und somit auch I4⊗∆µ∆µ hermitesch ist. Außerdem kommutiert Γ5 (bzw. genauer γ5⊗ I3) mit

diesem Summanden, sodass die Behauptung folgt. �

2.2.8 Bemerkung

Mittels der beiden Projektoren

π+
µ :=

I4 + γµ
2

und π−µ :=
I4 − γµ

2

lässt sich DW , angewendet auf einen diskretisierten Spinor ψ(x), schreiben als

DWψ(x) =
4 +m0

a
ψ(x)− 1

a

4∑
µ=1

(
π−µ ⊗ UHµ (x)ψ(x+ µ̂) + π+

µ ⊗ Uµ(x− µ̂)ψ(x− µ̂)
)
.
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Aus dieser Formulierung geht nochmals hervor, dass DW die Γ5-Symmetrie aufweist, aller-

dings nicht hermitesch ist, da (π+
µ )H 6= π−µ (Darüber hinaus ist DW im Gegensatz zu D nicht

normal, vgl. Abschnitt 2.4). Neben kleineren Nachteilen, wie einer notwendigen Reskalierung des

Massenparameters, führt die Verwendung von Wilson-Fermionen zum Auftreten reeller Eigen-

werte von DW (vgl. Abbildung 2.4), auch exzeptionelle Konfigurationen genannt, was bei der

Verwendung des hermiteschen Operators Γ5DW zu sehr kleinen Eigenwerten führt und dieser

damit sehr schlecht konditioniert ist. Darüber hinaus führt der Wilson-Term im Gegensatz zum

naiven Ansatz DN dazu, dass Gitterartefakte nur noch in der Größenordnung O(a) verschwinden.

Um dieses letztgenannte Problem zu beheben, ist die im Folgenden beschriebene Clover-Wirkung,

welche auf Sheikholeslami und Wohlert [96] zurückgeht, eine (mit einem passenden Parameter)

sinnvolle Modifikation von DW . Zunächst benötigen wir hierfür die Definition einer Plakette.

2.2.9 Definition

Gegeben sei eine Konfiguration von Linkvariablen {Uµ(x)}, dann ist die Plakette Qµ,νx am Git-

terknoten x definiert durch

Qµ,νx := UHµ (x)UHν (x+ µ̂)Uµ(x+ ν̂)Uν(x). (2.5)

♦

Eine Plakette ist also ein Produkt von Linkvariablen, entlang eines Zykels der Länge vier,

was in der (µ, ν)-Ebene einem Quadrat entspricht:

Qµ,νx =̂
.

Entsprechend sind die Plaketten der anderen Quadranten wie folgt definiert

Qµ,−νx =̂ Q−µ,−νx =̂ Q−µ,νx =̂
, , .

Offenbar sind verschiedene benachbarte Plaketten miteinander konjugiert, in dem Sinne, dass

nur der Startpunkt ein anderer ist. Beispielsweise gilt Q−µ,νx+µ̂ = Uµ(x)Qµνx UHµ (x). Nun kommen

wir zum Sheikholeslami-Wohlert- oder auch Clover -(Korrektur-)Term:

2.2.10 Definition

Mit

Qµν(x) := Qµ,νx +Qµ,−νx +Q−µ,νx +Q−µ,−νx

wird der Clover -Term C definiert durch

C(x) :=
csw
32a

4∑
µ,ν=1
µ6=ν

(γµγν)⊗
(
Qµν(x)−Qνµ(x)

)
, (2.6)
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wobei csw > 0. Für eine Illustrierung der Wirkung des Clover-Terms auf dem Gitter siehe Abbildung

2.3. ♦

ν̂

µ̂

Abbildung 2.3: Graphische Darstellung des Clover- (zu Deutsch
”
Kleeblatt-“)Terms.

Der Clover-Term reduziert die lokalen Gitterartefakte und gleicht damit die negativen Auswir-

kungen der Wilson-Fermionen aus. Diese Reduzierung hängt allerdings stark vom Sheikholeslami-

Wohlert-Koeffizient csw ab, der geeignet gewählt werden muss. Während Sheikholeslami und

Wohlert den Koeffizienten zunächst auf dem Wert Eins beließen [96], entwickelte Wohlert später

Methoden, um diesen genauer zu bestimmen, bzw. mit der unrenormierten Kopplungskonstante

g der QCD in Beziehung zu setzen (csw = 1 + 0.2659g2) [112]. Neuere Arbeiten zu diesem Pa-

rameter, vor allem der ALPHA-Kollaboration‖, sind in [67, 29] und, speziell für den (wichtigen)

Fall der zwei-Flavour-Theorie, in [51] zu finden.

2.2.11 Lemma

Der Clover-Term (2.6) ist hermitesch.

Beweis. Nach Definition 2.1.2 ist γµ hermitesch und es gilt

γνγµ = −γµγν , solange nur µ 6= ν.

Mit anderen Worten, γµγν ist schiefhermitesch. Darüber hinaus ist

(Qµ,νx )H = UHν (x)UHµ (x+ ν̂)Uν(x+ µ̂)Uµ(x) = Qν,µx ,

und daher QHµν(x) = Qνµ(x). Demnach ist auch Qµν(x) − Qνµ(x) schiefhermitesch und das

Produkt (γµγν)⊗
(
Qµν(x)−Qνµ(x)

)
hermitesch sowie damit der gesamte Clover-Term C. �

‖DESY Zeuthen, https://www-zeuthen.desy.de/alpha/.

https://www-zeuthen.desy.de/alpha/
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2.2.12 Definition

Für ein Quarkfeld ψ und Gitterknoten x ist der Wilson-Dirac-Operator mit Clover-Term ge-

geben durch

Dψ(x) := DWψ(x)− C(x)ψ(x). (2.7)

Ausgeschrieben und wichtig für die Auffassung von D als Matrix ist folgende Darstellung:

(Dψ)(x) =
1

a

(
(m0 + 4)I12 −

csw
32

4∑
µ,ν=1

(γµγν)⊗
(
Qµν(x)−Qνµ(x)

))
ψ(x)

− 1

2a

4∑
µ=1

(
(I4 − γµ)⊗ UHµ (x)

)
ψ(x+ µ̂) (2.8)

− 1

2a

4∑
µ=1

(
(I4 + γµ)⊗ Uµ(x− µ̂)

)
ψ(x− µ̂).

♦

Offenbar erhält man für csw = 0 wieder den ursprünglichen Wilson-Dirac-Operator. Der

Clover-Wilson-Dirac-Operator D erhält die Γ5-Symmetrie, gewisse Spektralsymmetrien gehen

aber verloren:

2.2.13 Lemma

(i) Der Clover-Wilson-Dirac-Operator D ist Γ5-symmetrisch, d. h.,

(Γ5D)H = Γ5D.

(ii) Jeder Rechtseigenvektor ψλ zum Eigenwert λ von D korrespondiert zu einem Linkseigen-

vektor

ψ̂λ̄ = Γ5ψλ

des Eigenwerts λ̄ von D und umgekehrt. Mit anderen Worten, das Spektrum von D ist

symmetrisch bezüglich der reellen Achse.

(iii) Das Spektrum von DW ist symmetrisch bezüglich der vertikalen Gerade Re(z) = 4+m0
a ,

d. h.,

λ ∈ σ(DW ) ⇒ 2(4 +m0)

a
− λ ∈ σ(DW ).

Beweis. (i) Wegen Lemma 2.2.11 ist C hermitesch. Es bleibt also nur die Vertauschbarkeit von

C mit Γ5 zu untersuchen; dies ist gewährleistet, da

γ5(γµγν) = (γµγν)γ5.
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Also ist der Clover-Term Γ5-symmetrisch. Nach Lemma 2.2.7 ist der Wilson-Dirac-

Operator DW Γ5-symmetrisch, insbesondere ist es auch D als Differenz aus beidem.
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Abbildung 2.4: Spektrum eines 44

Wilson-Dirac-Operator mit m0 = 0

und csw = 0.
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Abbildung 2.5: Spektrum eines 44

Clover-Wilson-Dirac-Operator mit

m0 = 0 und csw = 1.

(ii) Wie eben gesehen, ist DH = Γ5DΓ5 und daher

Dψλ = λψλ ⇔ ψHλ D
H = λ̄ψHλ ⇔ (Γ5ψλ)HD = λ̄(Γ5ψλ)H .

(iii) Da die Diskretisierung DW ausschließlich über direkte Nachbarschaftsrelationen realisiert ist

(im Gegensatz zum Operator C, welcher diagonale Relationen aufweist), existiert eine Rot-

Schwarz-Ordnung [26] der Raumzeitpunkte so, dass der Operator durch Umsortieren dieser

auf eine spezielle Blockstruktur gebracht werden kann (vgl. auch für ein 44-Gitter-Beispiel

Abbildung 2.6):

DW −
4 +m0

a
I12nL =

[
0 Drs

Dsr 0

]
.

Falls nun x = (xr, xs) ein Eigenvektor von DW − 4+m0
a I12nL zum Eigenwert λ ist, dann

ist x′ = (xr,−xs) offenbar ein Eigenvektor von DW − 4+m0
a I12nL zum Eigenwert −λ. Ein

Shift in Richtung 4+m0
a liefert die Behauptung. �

Um D abschließend in Matrixform angeben zu können, müssen wir uns auf eine Re-

präsentation der γ-Matrizen wie folgt festlegen:
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Abbildung 2.6: Matrixstruktur von

DW − 4+m0
a I12nL ohne Rot-Schwarz-

Umordnung (44-Gitter).
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Abbildung 2.7: Matrixstruktur von

DW − 4+m0
a I12nL nach Rot-Schwarz-

Umordnung (44-Gitter).

γ1 =


i

i

−i

−i

 , γ2 =


−1

1

1

−1

 , γ3 =


i

−i

−i

i

 , γ4 =


1

1

1

1

 ,
(2.9)

was auf

γ5 = γ1γ2γ3γ4 =


1

1

−1

−1

 (2.10)

führt und bedeutet, dass γ5 trivial auf die Spins mit Index Null und Eins und als Vorzeichenwechsel

bei den Spins mit Index Zwei und Drei wirkt.

Zusammengefasst, handelt es sich nach (2.8) bei D ∈ Cn×n um eine dünnbesetzte Matrix,

die auf einem vierdimensionalen Gitter mit nL = NtN
3
r Knoten operiert. Jeder Knoten beher-

bergt dabei 12 Variablen, wodurch sich n = 12nL ergibt. Zusätzlich hängt die Matrix D von

einer Linkvariablen-Konfiguration {Uµ(x) : x ∈ L, µ = 1, 2, 3, 4}, sowie vom Massenparameter

m0 und dem Sheikholeslami-Wohlert-Koeffizienten csw ab. In der Praxis ist der Massenparameter

m0 negativ und das Spektrum von D befindet sich in der rechten Halbebene, vgl. Abbildungen

2.4 und 2.5. Das Spektrum des
”
symmetrisierten“ Operators Q := Γ5D ist reell und Q praktisch

maximal indefinit (z. B. [41]), d. h., das reelle Spektrum von Q ist nahezu punktsymmetrisch zum

Ursprung. Ab gewissen Gittergrößen ist eine explizite Formulierung bzw. Speicherung des Opera-

tors D als Matrix nicht mehr sinnvoll oder möglich, daher ist eine effiziente, parallel implementierte
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Anwendung von D bei Gitter-QCD-Simulationen essentiell und Gegenstand der Forschung [53].

2.3 Präkonditionierung mit Schurkomplement

Eine weitverbreitete (statische) Prä- oder auch Vorkonditionierungstechnik der Gitter-QCD (z. B.

[65], sog. even-odd-preconditioning) ist, statt mit dem gesamten System zu arbeiten, eine Um-

sortierung der Variablen vorzunehmen und nur auf der Hälfte der Knoten Berechnungen durch-

zuführen. Ähnlich zum Beweis von Lemma 2.2.13 (iii), führt eine Aufteilung der Gitterknoten in

gerade Knoten zuerst und ungerade Knoten zuletzt zur Blockstruktur

D =

[
Dgg Dgu

Dug Duu

]
,

wobei ein Knoten x = (x1, x2, x3, x4) als gerade bezeichnet wird, falls x1 + x2 + x3 + x4 gerade

ist, andernfalls als ungerade. Die Inverse von D ist dann gegeben durch

D−1 =

[
I 0

−D−1
uuDug I

][
D−1
S 0

0 D−1
uu

][
I −DguD

−1
uu

0 I

]
(2.11)

mit dem Schur7-Komplement

DS := Dgg −DguD
−1
uuDug.

Die Blöcke Dgg und insbesondere Duu sind nur auf der Diagonalen besetzt mit Blöcken der Größe

6 × 6, welche ausschließlich vom Clover-Term stammen. Das Lösen des Systems Dψ = η für

nur gerade Gitterknoten via Schur-Komplement liefert anschließend auch die Lösung auf den

ungeraden Gitterknoten und damit die Lösung des gesamten Systems. Hierzu wird der Vektor auf

der rechten Seite ebenfalls auf

η =

[
ηg

ηu

]

sortiert und wir lösen

ψg = D−1
S (ηg −DguD

−1
uu ηu)

mit einem iterativem Löser für DS , um danach über

ψu = D−1
uu ηu −D−1

uuDugψg

die Lösung für die ungeraden Gitterknoten zu erhalten. Eine einmalige Vorberechnung von D−1
uu

wird algebraisch vollzogen und ist in der Berechnung nicht sehr teuer, daher benötigt eine Anwen-

dung von DS auf einen Vektor etwa denselben Aufwand wie mit D, während sich die Kondition

von DS typischerweise gegenüber der von D verbessert.
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2.4 Normalität und Smearing

2.4.1 Definition

Ein linearer Operator A auf einem endlichdimensionalen Vektorraum heißt normal, wenn

AHA = AAH .

Äquivalent dazu ist A genau dann normal, wenn A ähnlich zu einer Diagonalmatrix bezüglich

unitärer Transformation ist (z. B. [90]). Obige Definition 2.4.1 ist übertragbar auf stetige lineare

Operatoren in unendlichdimensionalen Hilberträumen, wobei diese dann normal sind, wenn sie mit

ihrer Adjungierten kommutieren. Der kontinuierliche Dirac-Operator D ist (in geeigneten, hier

nicht näher betrachteten Hilberträumen) schief-selbstadjungiert, also, im Gegensatz zu D (vgl.

Bemerkung 2.2.8), normal. ♦

2.4.2 Definition

Für einen linearen Operator A auf einem endlichdimensionalen komplexen Vektorraum V ist der

(numerische) Wertebereich von A definiert durch

F(A) := {vHAv : vHv = 1, v ∈ V }. ♦

Für normale Operatoren ist der Wertebereich die konvexe Hülle des Spektrums (nach z. B.

[44]). Für numerische Gleichungssystemlöser, wie das Generalized Minimal Residual-Verfahren

mit Restart
(
GMRES(m)

)
, ist bekannt, dass sie konvergieren, falls der Wertebereich den Ur-

sprung nicht enthält [90]. Es hat also numerische Vorteile, wenn eine Diskretisierung D des

Dirac-Operators D möglichst normal ist und somit F(D) in der rechten Halbebene liegt (vgl.

Abbildungen 2.4 und 2.5). Normalität von D tritt asymptotisch tatsächlich auf, wenn Diskreti-

sierungseffekte bei zunehmender Gitterfeinheit und -größe ab- bzw. zunehmen. Um Normalität in

der Diskretisierung D zu erreichen, gibt es eine Reihe sog. Smearing -Techniken wie
”
stout“- [72],

APE- [2], HYP- [45] und HEX- [20] Smearing, Wuppertal-Smearing [42], sowie die Destillation

[85]. Typischerweise ist Smearing ein iterativer Prozess, in dem Linkvariablen über ihre Nachbarn

geglättet werden.

Die Abweichung zur Normalität von DW , dem Wilson-Dirac-Operator ohne Clover-Term,

kann mit Hilfe der Frobenius8-Norm als Summe von Plaketten (vgl. Definition 2.2.9) dargestellt

werden. Der folgende Abschnitt basiert auf [16] und [89] und soll zunächst die Berechnung der

Frobenius-Norm zeigen, welche eng mit der Wilson-Wirkung verknüpft ist, um dann damit

die Funktionsweise des
”
stout“-Smearings zu veranschaulichen.

Der Einfachheit halber vernachlässigen wir im Folgenden die Gitterweite, d. h., wir setzen

a = 1 und betrachten das Gitter

L = {x = (x1, x2, x3, x4) : 1 ≤ x1 ≤ Nt, 1 ≤ x2, x3, x4 ≤ Nr}.
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Nun stehen die Abweichungen der Plaketten zur Identität und die Normalität von DW in

folgendem Zusammenhang.

2.4.3 Satz

Die Frobenius-Norm von DH
WDW −DWD

H
W genügt der Gleichung

‖DH
WDW −DWD

H
W ‖2F = 16

∑
x

∑
µ<ν

Re
(

Spur(I3 −Qµ,νx )
)
, (2.12)

wobei die erste Summe über alle Gitterknoten x ∈ L läuft und
∑

µ<ν eine Abkürzung für∑4
µ=1

∑4
ν=µ+1 ist.

Beweis. Es gilt die Einträge von DH
WDW −DWD

H
W zu untersuchen. Dazu benutzen wir die in

Bemerkung 2.2.8 eingeführte Notation π±µ für die Matrizen

π±µ =
1

2
(I4 ± γµ), µ = 1, 2, 3, 4.

Die Beziehungen (2.1) zwischen den γ-Matrizen implizieren, dass π±µ (kommutierende) Projek-

tionen sind mit der zusätzlichen Eigenschaft

π+
µ π
−
µ = π−µ π

+
µ = 0, µ = 1, 2, 3, 4. (2.13)

Tabelle 2.1 listet die Kopplungsterme an den Gitterknoten x und x± µ̂ von DW bzw. DH
W ,

welche in Matrixdarstellung Teilblöcke der Größe 12 × 12 von DW bzw. DH
W entsprechen (vgl.

wieder mit Bemerkung 2.2.8). m steht hierbei für m0 + 4 mit m0 aus (2.4). Für das Produkt

DW DH
W

(x, x) mI12 mI12

(x, x+ µ̂) −π−µ ⊗ UHµ (x) −π+
µ ⊗ UHµ (x)

(x, x− µ̂) −π+
µ ⊗ Uµ(x− µ̂) −π−µ ⊗ Uµ(x− µ̂)

Tabelle 2.1: Kopplungsterme in DW und DH
W

DH
WDW entstehen die in Tabelle 2.2 gelisteten Kopplungsterme aus Summen aller Pfade der Länge

zwei auf dem vierdimensionalen Gitter sowie dem Produkt der entsprechenden Kopplungsterme

in DH
W und DW . Die relevanten Pfade sind die folgenden (vgl. auch Abbildung 2.2):

• Für die Diagonalposition (x, x) existieren neun Pfade der Länge Zwei, (x, x) → (x, x) →
(x, x) und (x, x)→ (x, x± µ̂)→ (x, x), mit µ = 1, 2, 3, 4.

• Für die nächsten Nachbarn (x, x ± µ̂) haben wir jeweils zwei Pfade (x, x) → (x, x) →
(x, x± µ̂) und (x, x)→ (x, x± µ̂)→ (x, x± µ̂).

• Für die Knoten (x, x ± 2µ̂) gibt es lediglich den Pfad (x, x) → (x, x ± µ̂) → (x, x ± 2µ̂),

für den aber das Produkt der Kopplungen wegen (2.13) Null ist.
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• Schließlich gibt es für die restlichen vier übernächsten Nachbarn jeweils zwei Pfade, exem-

plarisch (x, x)→ (x, x+ µ̂)→ (x, x+ µ̂− ν̂) und (x, x)→ (x, x− ν̂)→ (x, x+ µ̂− ν̂).

Die Kopplungsterme für DWD
H
W erhalten wir durch Vertauschen von π+

µ und π−µ sowie π+
ν und

π−ν .

DH
WDW

(x, x) m2I12 + 1
2

∑4
µ=1(π+

µ + π−µ )⊗ I3

(x, x+ µ̂) −m(π+
µ + π−µ )⊗ UHµ (x)

(x, x− µ̂) −m(π+
µ + π−µ )⊗ UHµ (x− µ̂)

(x, x± 2µ̂) 0

µ 6= ν:

(x, x+ µ̂+ ν̂) π−µ π
+
ν ⊗ UHµ (x)UHν (x+ µ̂) + π−ν π

+
µ ⊗ UHν (x)UHµ (x+ ν̂)

(x, x+ µ̂− ν̂) π−µ π
−
ν ⊗ UHµ (x)Uν(x+ µ̂− ν̂) + π+

ν π
+
µ ⊗ Uν(x− ν̂)UHµ (x− ν̂)

(x, x− µ̂− ν̂) π+
µ π
−
ν ⊗ Uµ(x− µ̂)Uν(x− µ̂− ν̂) + π+

ν π
−
µ ⊗ Uν(x− ν̂)Uµ(x− µ̂− ν̂)

Tabelle 2.2: Kopplungsterme in DH
WDW . Kopplungen für DWD

H
W erhalten wir durch Vertau-

schen von π+
µ und π−µ sowie π+

ν und π−ν .

Damit ergibt sich für DH
WDW −DWD

H
W , dass nur die Kopplungsterme an den Positionen

(x, x+ µ̂+ ν̂), (x, x+ µ̂− ν̂) und (x, x− µ̂− ν̂) für µ 6= ν nicht wegfallen, vgl. Tabelle 2.3. Es

µ 6= ν DH
WDW −DWD

H
W

(x, x+ µ̂+ ν̂) 1
2(γµ − γν)⊗ (I3 −Qµ,νx )UHν (x)UHµ (x+ ν̂)

(x, x+ µ̂− ν̂) 1
2(γµ + γν)⊗ (I3 −Qµ,−νx )UHµ (x)Uν(x+ µ̂− ν̂)

(x, x− µ̂− ν̂) 1
2(−γµ + γν)⊗ (I3 −Q−µ,−νx )Uν(x− ν̂)Uµ(x− µ̂− ν̂)

Tabelle 2.3: Nicht-verschwindende Kopplungsterme in DH
WDW −DWD

H
W .

wurden dabei die Identitäten

±π−µ π−ν ∓ π+
µ π

+
ν = 1

2(∓γµ ∓ γν) und

±π+
µ π
−
ν ∓ π−µ π+

ν = 1
2(±γµ ∓ γν)

verwendet, sowie die Plaketten aus Definition 2.2.9:

Qµ,νx = UHµ (x)UHν (x+ µ̂)Uµ(x+ ν̂)Uν(x),

Qµ,−νx = Uν(x− ν̂)UHµ (x− ν̂)UHν (x+ µ̂− ν̂)Uµ(x),

Q−µ,−νx = Uµ(x− µ̂)Uν(x− µ̂− ν̂)UHµ (x− µ̂− ν̂)UHν (x− ν̂).
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Exemplarisch rechnen wir für den Eintrag an Position (x, x+ µ̂+ ν̂) in Tabelle 2.3 nach:

π−µ π
+
ν ⊗ UHµ (x)UHν (x+ µ̂) + π−ν π

+
µ ⊗ UHν (x)UHµ (x+ ν̂)

−
(
π+
µ π
−
ν ⊗ UHµ (x)UHν (x+ µ̂) + π+

ν π
−
µ ⊗ UHν (x)UHµ (x+ ν̂)

)
= 1

2(−γµ + γν)⊗ UHµ (x)UHν (x+ µ̂) + 1
2(γµ − γν)⊗ UHν (x)UHµ (x+ ν̂)

= 1
2(γµ − γν)⊗ (I3 −Qµ,νx )UHν (x)UHµ (x+ ν̂).

Nun benutzen wir folgende generellen Eigenschaften der Frobenius-Norm

‖AQ‖F = ‖A‖F für jede unitäre Matrix Q (und solange AQ definiert ist),

‖A⊗B‖F = ‖A‖F ‖B‖F für alle Matrizen A, B,

um das Quadrat der Frobenius-Norm der Kopplungen in Tabelle 2.3 darzustellen als∗∗

2‖I3 −Qµ,νx ‖2F für Position (x, x+ µ̂+ ν̂),

2‖I3 −Qµ,−νx ‖2F für Position (x, x+ µ̂− ν̂),

2‖I3 −Q−µ,−νx ‖2F für Position (x, x− µ̂− ν̂).

Schließlich gilt für die Frobenius-Norm und unitäre Matrizen Q

‖I −Q‖2F = Spur
(
(I −QH)(I −Q)

)
= 2 Re

(
Spur(I −Q)

)
,

womit wir das Quadrat der Frobenius-Norm ‖DH
WDW −DWD

H
W ‖2F durch Summieren über die

Quadrate der Frobenius-Normen der einzelnen Kopplungen erhalten. Diese Summe erstreckt

sich über insgesamt 24nL Kopplungsmatrizen. Innerhalb dieser beziehen sich die Kopplungen

dabei in Vierergruppen, bis auf Konjugation in SU(3), auf dieselbe Plakette, d. h., Spur(I −Q)

hat denselben Wert für alle vier Plaketten Q. Deshalb genügt es beispielsweise nur die Plakette

Qµ,νx vierfach zu werten. Insgesamt ergibt sich

‖DH
WDW −DWD

H
W ‖2F = 4

∑
x

∑
µ<ν

2 · 2 · Re
(

Spur(I3 −Qµ,νx )
)
. �

Der obige Satz zeigt also, dass der Wilson-Dirac-Operator DW normal ist, falls alle

Qµ,νx gleich der Identität sind, d. h. alle Linkvariablen Uµ(x) sind gleich der Identität oder es gilt

Uµ(x) ≡ UH(x + µ̂)U(x) für gewisse U( · ) ∈ SU(3) (vgl. (2.5)). Dies ist der Fall in der sog.

freien Theorie. In physikalisch relevanten Konfigurationen ist DW allerdings immer nicht-normal.

2.4.4 Definition

Für eine gegebene Linkvariablenkonfiguration U = {Uµ(x)} wird die Größe

SW (U) :=
∑
x

∑
µ<ν

Re
(

Spur(I3 −Qµ,νx )
)

∗∗Es gilt ‖(−1)nγµ + (−1)mγν‖F =
√
8, ∀m,n, µ 6= ν, vgl. (2.9).
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als Wilson-Eichfeldwirkung bezeichnet††. ♦

Neben der numerischen Vorteile der Normalität ist Smearing in der Physik vor allem ver-

breitet, um sog.
”
cut-off“-Effekte zu reduzieren. Diese stehen eng in Verbindung mit lokalen

Eigenvektoren, die zu sehr nahe an der Null liegenden Eigenwerten gehören.

Beim
”
stout“-Smearing [72] werden nun im Wesentlichen die Linkvariablen auf folgende Art

modifiziert:

Uµ(x) Ũµ(x) := eεZ
U
µ (x)Uµ(x), (2.14)

wobei der Parameter ε positiv und hinreichend klein ist und

ZUµ (x) := −1

2

(
Mµ(x)−MH

µ (x)
)

+
1

6
Spur

(
Mµ(x)−MH

µ (x)
)
I3 (2.15)

mit wiederum

Mµ(x) :=
4∑

ν=1, ν 6=µ

(
Qµ,νx +Qµ,−νx

)
.

Insbesondere hängt ZUµ (x) von den lokalen Plaketten um x ab.

Das folgende Resultat aus [63, 72] verbindet das
”
stout“-Smearing mit dem Wilson-Fluss

V(τ) := {Vµ(x, τ) : x ∈ L, µ = 1, 2, 3, 4}, definiert durch die Lösung des Anfangswertproblems

∂

∂τ
Vµ(x, τ) = −{∂SW

(
V(τ)

)
}Vµ(x, τ), Vµ(x, 0) = Uµ(x). (2.16)

Insbesondere ist Vµ(x, τ) ∈ SU(3) und ∂ der kanonische Differentialoperator bezüglich der Link-

variablen Vµ(x, τ) mit Werten in su(3).

2.4.5 Satz

Sei V(τ) die Lösung des Anfangswertproblems (2.16). Dann gilt

(i) V(τ) ist eindeutig für alle V(0) und alle τ ∈ R, sowie differenzierbar nach τ und V(0).

(ii) SW
(
V(τ)

)
ist als Funktion in τ monoton fallend.

(iii) Ein Schritt der Lie-Euler9-Integration mit Schrittweite ε von (2.16), gestartet bei τ = 0,

liefert eine Approximation Ṽ(ε) = {Ṽµ(x, ε)} an V(ε) mit

Ṽµ(x, ε) = eεZ
U
µ (x)Uµ(x),

wobei ZUµ (x) aus (2.15) ist.

Wir verweisen zur Vertiefung dieses Themas auf [63, 72] sowie für Details zum Beweis

von (i) und (ii) auf [12], wobei aus dieser Quelle erwähnt sei, dass die Lösung von (2.16) Eich-

konfigurationen entlang der Richtung des steilsten Abstiegs im Raum der Eichkonfigurationen

††In unserem Kontext nicht wichtige Skalierungen sind nötig, um physikalische Relevanz zu erreichen, für Details

siehe z. B. [110].
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transportiert werden und somit SW tatsächlich lokal minimiert wird. Teil (iii) folgt direkt aus

einmaliger Anwendung des Lie-Euler-Schemas, vgl. [43].

Zusammengefasst impliziert der Satz, dass ein Schritt der Lie-Euler-Integration äquivalent

zu einem Schritt
”
stout“-Smearing ist (vgl. (2.14)), wobei gleichzeitig die Wilson-Eichwirkung

entlang der exakten Lösung von (2.16) minimiert wird. Wir können also, zumindest für hinreichend

kleine ε, erwarten, dass auch die Lie-Euler-Approximation die Wilson-Eichwirkung ebenso

minimiert und dadurch DW letztendlich normalisiert wird.

Für den Wilson-Dirac-Operator mit Clover-Term, d. h., für D = DW + C ergibt sich

bezüglich der Normalität Folgendes:

‖DHD −DDH‖F = ‖DH
WDW −DWD

H
W + (DH

W −DW )C − C(DH
W −DW )‖F

≤ ‖DH
WDW −DWD

H
W ‖F + 2‖C‖F ‖DH

W −DW ‖F .

Da alle Summanden von Re
(

Spur(I3 − Qµ,νx )
)

in (2.12) positiv sind (vgl. Beweis von 2.4.3),

folgt aus ‖DH
WDW − DWD

H
W ‖2F → 0 insbesondere, dass Qµ,νx → I3 für alle x. Dies bedeutet,

dass nach Definition 2.2.10 des Clover-Terms Qµν(x)−Qνµ(x)→ 0 für alle x und µ, ν gilt und

somit ‖C‖F verschwindet. Demnach gilt

DW wird normalisiert =⇒ D wird normalisiert.
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Abbildung 2.8: Effekt des
”
stout“-Smearings auf den Mittelwert der Plaketten‡‡.

Um die Wirkung des
”
stout“-Smearings auf die Plaketten zu veranschaulichen, betrachten

wir den Mittelwert über alle Plaketten

QM :=
1

NQ

∑
x

∑
µ<ν

Re
(

Spur(Qµ,νx )
)
, (2.17)

‡‡Daten aus [16].
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wobei NQ die Anzahl aller Plaketten bezeichnet. Damit vereinfacht sich (2.12) zu

‖DH
WDW −DWD

H
W ‖2F = 16NQ(3−QM ).

Abbildung 2.8 zeigt, wie die Wilson-Wirkung in den ersten Iterationen des
”
stout“-Smearings

rapide abnimmt.

Abschließend zu diesem Kapitel sei auf diverse Arbeiten verwiesen, die Beziehungen zwi-

schen der Spektralstruktur und Werteverteilung in den Plaketten analysieren. In [75] wird bei-

spielsweise gezeigt, dass der Abstand des Spektrums zum Ursprung damit zusammenhängt, ob

Re
(

Spur(I −Qµ,νx )
)

größer als eine gewisse Schranke ist, für alle Plaketten Qµ,νx . Andere Ar-

beiten studieren den Zusammenhang zwischen Schwankungen der Plakettenwerte und räumlich-

lokalen Eigenmoden nahe der Null [11, 74, 76], sowie den Einfluss von Smearing auf diese Eigen-

moden [46].
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Anmerkungen

3 Marius Sophus Lie [li:] (* 17. Dezember 1842 in Nordfjordeid; † 18. Februar 1899 in Kristiania,

heute Oslo) war ein norwegischer Mathematiker.
4 William Kingdon Clifford (* 4. Mai 1845 in Exeter, Devon, England; † 3. März 1879 auf

Madeira, Portugal) war ein britischer Philosoph und Mathematiker.
5 Leopold Kronecker (* 7. Dezember 1823 in Liegnitz; † 29. Dezember 1891 in Berlin) war ein

deutscher Mathematiker.
6 Euklid von Alexandria war ein griechischer Mathematiker, der wahrscheinlich im 3. Jahrhun-

dert v. Chr. in Alexandria gelebt hat.
7 Issai Schur (* 10. Januar 1875 in Mogiljow (Weißrussland); † 10. Januar 1941 in Tel Aviv)

war ein deutscher Mathematiker und Schüler von Frobenius.
8 Ferdinand Georg Frobenius, genannt Georg, (* 26. Oktober 1849 in Berlin; † 3. August 1917

in Charlottenburg, heute ein Ortsteil von Berlin) war ein deutscher Mathematiker und Schüler von

Karl Weierstraß und Ernst Eduard Kummer.
9 Leonhard Euler (lateinisch Leonhardus Eulerus; * 15. April 1707 in Basel; † 7. September

(jul.)/ 18. September 1783 (greg.) in Sankt Petersburg) war ein Schweizer Mathematiker und

Physiker. Wegen seiner Beiträge zur Analysis, zur Zahlentheorie und zu vielen weiteren Teilgebie-

ten der Mathematik gilt er als einer der bedeutendsten Mathematiker.



3. Krylov-Unterraumverfahren

In diesem Kapitel wollen wir uns einen Überblick im Gebiet der numerischen linearen Algebra

verschaffen, insbesondere bezüglich der Krylov10-Unterraumverfahren zur Lösung von Glei-

chungssystemen und final zur Berechnung von Eigenpaaren (also Eigenwerten mit zugehörigen

Eigenvektoren). Breiteren Überblick auf das Themengebiet liefern viele Lehrbücher, beispielsweise

[44, 68].

Wir gehen von einem eindeutig lösbaren linearen Gleichungssystem

Ax = b, A ∈ Cn×n, b ∈ Cn,

aus, dessen Lösung x = A−1b unbekannt und gesucht ist. Aufbauen wollen wir auf einem funda-

mentalen Satz aus der linearen Algebra, dem Satz von Cayley11-Hamilton12: Eine quadrati-

sche Matrix ist immer Nullstelle ihres charakteristischen Polynoms. Daraus leitete Krylov mit

folgender simpler Überlegung

χA(A) = An + αn−1A
n−1 + · · ·+Aα1 + α0 = 0 (αi ∈ C, i = 0, . . . , n− 1)

=⇒ A−1 = βn−1A
n−1 + βn−2A

n−2 + · · ·+ β1A+ β0 (βi ∈ C, i = 0, . . . , n− 1)

ab, dass die Inverse von A ein Polynom in A mit maximalem Grad n−1 ist. Insbesondere befindet

sich die Lösung x in dem Raum

Km(A, b) = Spann{b, Ab,A2b, . . . , Am−1b},

für ein m ≤ n, wobei Spann die lineare Hülle bezeichnet. Dieser Raum wurde erstmals 1931 im

Artikel [54] von Krylov benannt. Verfahren, welche sich diesen Sachverhalt auf verschiedenste

Arten zunutze machen, werden unter dem Begriff der Krylov-Unterraumverfahren zusammen-

gefasst. Andere Autoren nennen in diesem Zusammenhang den Begriff Projektionsverfahren, da

viele Verfahren Orthogonalbasen der (oder Derivate von) Krylov-Unterräume berechnen, um

dann, mittels Projektion auf diese Unterräume, Gleichungssysteme zu lösen oder Eigenwerte zu

berechnen.

Krylov-Unterraumverfahren basieren oft auf Umformulierung des linearen Gleichungs-

systems in ein Minimierungsproblem. Die zwei wohl bekanntesten Vertreter in diesem Bereich

sind das Verfahren der konjugierten Gradienten (CG) von Hestenes13 und Stiefel14 [47]

aus dem Jahre 1952, sowie das 1986 von Saad und Schultz [91] entwickelte Generalized mi-

nimal residual-Verfahren (GMRES). Beide Verfahren bestimmen die optimale Approximation

xm ∈ x0 + Km(A, r0) mit r0 = b− Ax0 an die Lösung x = A−1b mittels einer Orthogonalitäts-

oder Galerkin15-Bedingung, wobei in jeder Iteration die Dimension des Krylov-Unterraums

35
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um Eins erhöht wird. Insbesondere würden beide Methoden bei exakter Arithmetik nach maximal

n Schritten die richtige Lösung liefern.

Das CG-Verfahren, welches ausschließlich für symmetrische (bzw. hermitesche, im komplexen

Fall) und positiv definite Matrizen funktioniert, minimiert das Funktional

1

2
xHAx− xHb

über einer Orthonormalbasis von Km. Der Orthogonalisierungsprozess ist dank der Symmetrie von

A ohne Kenntnis aller vorherig berechneten Basisvektoren möglich, es handelt sich um ein Verfah-

ren mit kurzen Rekursionen. Insbesondere müssen keine Zwischenergebnisse langfristig gespeichert

werden, d. h., wachsende Krylov-Räume stellen kein Problem dar.

Nun ist klar, dass AHA für reguläres A immer symmetrisch und positiv definit ist und statt

Ax = b auch AHAx = AHb gelöst werden könnte, was aber ab bestimmten Systemgrößen, weder

aus praktischer noch aus analytischer Sicht, zu empfehlen ist. Insbesondere quadriert sich dabei die

Konditionszahl des Systems, die allgemein erheblichen Einfluss auf die Konvergenzgeschwindigkeit

von Krylov-Unterraumverfahren hat.

Eine Möglichkeit die Konditionszahl des Systems zu verringern, besteht darin, möglichst

”
leicht“-invertierbare Matrizen PL und PR ∈ Cn×n zu finden und statt der Ausgangsgleichung

das folgende präkonditionierte System

PLAPRx
P = PLb,

x = PRx
P

zu betrachten, mit dem Ziel, dass das Matrixprodukt PLAPR eine möglichst gute Approximation

an die Einheitsmatrix ist. Für das CG-Verfahren ist ein solch präkonditioniertes System aber

problematisch, da PLAPR in nur wenigen Fällen symmetrisch und positiv definit ist.

Ab bestimmten Konditionszahlen und/oder Systemgrößen werden Krylov-Unterraumver-

fahren selten ohne Präkonditionierung verwendet. Deshalb ist die Möglichkeit, auf bestimmte

Probleme abgestimmte Präkonditionierungen flexibel verwenden zu können, sehr wichtig. Dies

steht, bezogen auf unser Problem des Lösens der diskretisierten Dirac-Gleichung, besonders im

Vordergrund, weshalb wir uns im Folgenden auf das GMRES-Verfahren konzentrieren. Im Übrigen

hat das zu GMRES symmetrisierte Verfahren MINRES von Paige und Saunders [84] aus dem

Jahre 1975∗, aus ähnlichen Gründen, wie oben beschrieben, in der QCD-Praxis wenig Relevanz,

selbst wenn wir mit dem hermiteschen (aber indefiniten) Operator Q := Γ5D arbeiten.

3.1 GMRES

Das
”
Generalized minimal residual“-Verfahren GMRES minimiert zunächst ähnlich zum CG-

Verfahren das Funktional

F (x) := ‖b−Ax‖22
∗Historisch gesehen ist das GMRES-Verfahren eine Verallgemeinerung des MINRES-Verfahren.
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über einer mittels des Arnoldi16-Verfahrens berechneten Orthogonalbasis des Krylov-Unter-

raums. Das Arnoldi-Verfahren (siehe Algorithmus 1) arbeitet dabei ähnlich zum (numerisch

weniger stabilen) Gram-Schmidt-Orthogonalisierungs-Verfahren. Da in der Berechnung alle

Vektoren vj gebraucht werden, um das nächste vm zu berechnen, handelt es sich hier um ein

Verfahren mit langen Rekursionen.

Algorithmus 1: Arnoldi-Verfahren

Eingabe: Normierter Startvektor v1, Krylov-Dimension m

Ausgabe: Orthonormalbasis Vm, Hessenbergmatrix Hm

1 for i = 1, . . . ,m− 1 do

2 z ← Avi

3 for j = 1, . . . , i do

4 hi,j ← vHj z

5 end for

6 vi+1 ← z −
∑i

j=1 hj,ivj

7 hi+1,i ← ‖vi+1‖ /* Abbruch falls vi+1 = 0 */

8 vi+1 ← vi+1/hi+1,i

9 end for

10 return Vm = [v1, . . . , vm], Hm = (hi,j)

Vorausgesetzt, das Arnoldi-Verfahren bricht nicht vor der Berechnung von vm 6= 0 ab, stellen die

Spalten von Vj eine Orthonormalbasis des j-ten Krylov-Unterraums Kj(A, v1) für j = 1, . . . ,m

dar. Gilt ansonsten vi+1 = 0 mit i+ 1 ≤ m, so ist Ki+1(A, v1) = Ki(A, v1). D. h. Ki(A, v1) (und

somit auch Vi) enthält bereits alle Informationen.

Formal sind die Iterierten im GMRES-Verfahren gegeben durch das Minimierungsproblem

xm = argmin
x∈x0+Km

F (x),

was, um wieder den Bogen hin zum Krylov-Unterraumverfahren zu spannen, äquivalent zur

Galerkin-Bedingung ist: Finde xm ∈ x0 +Km(A, r0) mit

b−Axm⊥Lm := AKm(A, r0).

Nachdem die Matrix Vm ∈ Cn×m (mit orthogonalen Spalten) und die (obere) Hessen-

berg17-Matrix Hm ∈ Cm×m berechnet wurde, ist das weitere Vorgehen im GMRES-Verfahren

wie folgt:

• Schreibe xm = x0 +
m∑
j=1

αjvj = x0 + Vmα mit α = [α1, . . . , αm]T ∈ Cm.

• Finde α, welches die Bedingung J(α) ≤ J(a) := ‖b − A(x0 + Vma)‖2 für alle a ∈ Cm

erfüllt.

Unter Zuhilfenahme folgender Eigenschaften kann α explizit berechnet werden:
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(i) Hm = VmAVm mit Hm =



h11 . . . . . . . . . h1m

h21
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 hm,m−1 hmm


,

(ii) AVm = Vm+1Hm mit Hm =

[
Hm

0 . . . 0 hm+1,m

]
∈ C(m+1)×m.

Mit e1, dem ersten Einheitsvektor in Cm+1 ist folgende Gleichungskette wesentlich:

J(a) = ‖b−A(x0 + Vma)‖2
r0=b−Ax0= ‖r0 −AVma‖2
v1:=r0/‖r0‖2

=
∥∥‖r0‖2v1 −AVma

∥∥
2

(ii)
=

∥∥Vm+1(‖r0‖2e1 −Hma)
∥∥

2

=
∥∥‖r0‖2e1 −Hma

∥∥
2
,

wobei im letzten Schritt die Spaltenorthonormalität von Vm+1 ausgenutzt wurde. Um das Mini-

mum der letzten Zeile explizit zu berechnen, wird eine QR-Zerlegung† der erweiterten Hessen-

berg-Matrix Hm berechnet, was in modernen GMRES-Implementierungen mittels Givens18-

Rotationen realisiert wird. Diese Rotationen sind unitäre Matrizen Gi, welche im Wesentlichen

Diagonalmatrizen mit einem 2× 2-Block auf der Diagonalen sind. Je eine dieser Rotationen wird

explizit in jeder GMRES-Iteration berechnet. Qm := Gm · · ·G1 ∈ C(m+1)×(m+1) ist dann ebenfalls

eine unitäre Matrix, für die

QmHm = Rm (3.1)

mit

Rm =



r̄11 . . . . . . r̄1m

0
. . .

...
...

. . .
. . .

...
...

. . . r̄mm

0 . . . . . . 0


=:

[
Rm

0 . . . 0

]
∈ C(m+1)×m

gilt, wobei Rm regulär ist‡. Unter nochmaliger Verwendung von e1 = [1, 0, . . . , 0]T ∈ Cm+1

definieren wir den (Fehlergrößen-)Vektor

gm := ‖r0‖2Qme1 =: [γ
(m)
1 , . . . , γ(m)

m , γm+1]T =: [gTm, γm+1]T ∈ Cm+1

†H = QHR mit unitärer Matrix Q (d. h. QH = Q−1) und R einer rechten oberen Dreiecksmatrix.
‡Beweis per Induktion über m, vorausgesetzt das Arnoldi-Verfahren terminiert nicht vorzeitig.
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und es folgt

min
a∈Cm

J(a) = min
a∈Cm

∥∥‖r0‖2e1 −Hma
∥∥

2

= min
a∈Cm

∥∥Qm(‖r0‖2e1 −Hma)
∥∥

2

(3.1)
= min

a∈Cm
‖gm −Rma‖2

= min
a∈Cm

√
|γm+1|2 + ‖gm −Rma‖22

≥ |γm+1| = J(R−1
m gm).

Insbesondere erhalten wir das Minimum α durch einfaches Rückwärtseinsetzen der Gleichung

Rmα = gm, und die Norm des Residuum rm := b − Axm der aktuellen Iterierten ist gegeben

durch

‖rm‖2 = |γm+1|.

Algorithmus 2: GMRES-Verfahren (vereinfachte Darstellung)

Eingabe: Startvektor x0, Iterationsanzahal mmax

Ausgabe: Näherunglösung xm

1 for m = 1, . . . ,mmax do

2 Berechne Vm und Hm mit dem Arnoldi-Verfahren

3 Berechne QR-Zerlegung von Hm

4 α← R−1
m gm /* Rückwärtseinsetzen */

5 end for

6 return xm = x0 + Vmα

Falls im Arnoldi-Verfahren vi+1 = 0 auftritt und der Algorithmus vorzeitig abbricht, so

terminiert auch das GMRES-Verfahren. Es bricht aber in diesem Fall nicht etwa zusammen (wie

diverse andere Bi-CG-Verfahren), sondern liefert die exakte Lösung.

Darüber hinaus haben Saad und Schultz erkannt, dass der Rechenaufwand je Iteration (nur)

linear mit m wächst, wenn die Rechenschritte in Zeile 2 und 3 geeignet in die Schleife des

Arnoldi-Verfahrens integriert werden.

Da alle Berechneten Vektoren vi gespeichert werden müssen und das Arnoldi-Verfahren

mit wachsendem m immer aufwändiger wird, wird das GMRES-Verfahren in der Praxis nur in einer

Variante mit Neustarts genutzt, d. h, die Größe des Krylov-Raum wird limitiert. Genauer startet

das Verfahren nach mmax-Iterationen mit der aktuellen Näherung xmmax als neuen Startwert x0

erneut. Es werden dann solange Neustarts vollzogen bis eine gewünschte Toleranz erreicht ist.

Falls das Spektrum von A in der rechten Halbebene liegt und exakte Arithmetik vorliegt, ist

die Konvergenz selbst für mmax = 2 zwar noch garantiert (allerdings nicht mehr zwingend nach

m Iterationen), in der Praxis kommt es aber bei zu kleinen Krylov-Räumen zur Stagnation im

Residuenverlauf. Wir verwenden bei den im Verlauf der Arbeit vorgestellten Ergebnissen Krylov-

Unterräume mit höchstens Dimension 25. Ebenso verwenden wir sog.
”
deflated“-Neustarts, vgl.
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[70]. Hierbei wird bei einem Neustart nicht der gesamte Krylov-Unterraum verworfen, sondern es

werden nach dem Rayleigh19-Ritz20-Prinzip [93] Informationen über das System beibehalten.

Hierfür werden einige wenige Eigenwerte der (kleinen) Matrix

B := V H
mmax

AVmmax

berechnet und die zugehörigen Eigenvekoren in den neuen Krylov-Unterraum übernommen.

3.2 Flexibles GMRES

Bekanntlich hat die Kondition des zu lösenden Systems erheblichen Einfluss auf die Konvergenz

von Krylov-Unterraumverfahren. Deshalb ist es überaus sinnvoll, die Kondition des Systems

durch Anwenden von (links-)Präkonditionierung (wie zu Beginn des Kapitels gesehen)

Ax = b ⇔ MAx = Mb

zu reduzieren. Für dieses Vorgehen ist das GMRES-Verfahren besonders gut geeignet, da es

möglich ist, den Krylov-Unterraum derart zu modifizieren, dass jede Iteration mit einem eigenen

Präkonditionierer Mj versehen werden kann. Das Verfahren arbeitet dann mit dem modifizierten

Krylov-Unterraum

K̃m(A, r0) = Spann{r0,M1Ar0,M2AM1Ar0, . . . ,Mm−1AMm−2A · · ·M2AM1Ar0}.

Hierbei kann Mj insbesondere selbst wieder aus einem iterativen Verfahren resultieren. Dieses

Verfahren ist als flexibles GMRES-Verfahren (FMGRES) bekannt [92, 71]. Der (algorithmisch)

einzige Nachteil gegenüber statischem Präkonditionieren ist der doppelte Speicheraufwand, da ne-

ben den vj auch die präkonditionierten Vektoren Mjvj gespeichert werden müssen. Dies stellt aber

bei relativ kleinen Krylov-Unterraum-Dimensionen kein größeres Problem dar. Die außerordent-

liche Robustheit (d. h. die numerische Stabilität) von FMGRES qualifiziert es, als äußerer Löser

in Kombination mit den, im Verlauf der Arbeit vorgestellten, algebraischen Mehrgitterverfahren,

zu wirken.
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Anmerkungen§

10 Arthur Cayley (* 16. August 1821 in Richmond upon Thames, Surrey; † 26. Januar 1895

in Cambridge) war ein englischer Mathematiker. Er befasste sich mit sehr vielen Gebieten der

Mathematik von der Analysis, Algebra, Geometrie bis zur Astronomie und Mechanik, ist aber vor

allem für seine Rolle bei der Einführung des abstrakten Gruppenkonzepts bekannt.
11 Sir William Rowan Hamilton (* 4. August 1805 in Dublin; † 2. September 1865 in Dunsink

bei Dublin) war ein irischer Mathematiker und Physiker, der vor allem für seine Beiträge zur Me-

chanik und für seine Einführung und Untersuchung der Quaternionen bekannt ist.
12 Alexei Nikolajewitsch Krylow (* 3. (jul.)/ 15. August 1863 (greg.) in Wisjaga, Gouvernement

Simbirsk (heute Oblast Uljanowsk); † 26. Oktober 1945 in Leningrad (heute St. Petersburg), So-

wjetunion) war ein russischer Schiffbau-Ingenieur und Mathematiker.
13 Magnus Hestenes (* 1906 in Bricelyn, Minnesota; † 31. Mai 1991) war ein US-amerikanischer

Mathematiker.
14 Eduard Ludwig Stiefel (* 21. April 1909 in Zürich; † 25. November 1978 ebenda) war ein

Schweizer Mathematiker.
15 Boris Grigorjewitsch Galjorkin (wiss. Transliteration Boris Grigor’evič Galërkin, häufig als

Galerkin transkribiert; * 20. Februar (jul.)/ 4. März 1871 (greg.) in Polozk, heute Weißrussland;

† 12. Juli 1945 in Leningrad) war ein sowjetischer Ingenieur und Mathematiker.
16 Walter Edwin Arnoldi (* 14. Dezember 1917 in New York City; † 5. Oktober 1995) war

ein US-amerikanischer Maschinenbau-Ingenieur, bekannt für eine Arbeit zur numerischen linearen

Algebra.
17 Karl Adolf Hessenberg (* 8. September 1904 in Frankfurt am Main; † 22. Februar 1959

ebenda) war ein deutscher Elektrotechnik-Ingenieur und Mathematiker.
18 James Wallace Givens, Jr. (* 14. Dezember 1910 in Alberene bei Charlottesville; † 5. März

1993) war Mathematiker und Pionier der Informatik.
19 John William Strutt, 3. Baron Rayleigh (* 12. November 1842 in Langford Grove, Maldon,

England; † 30. Juni 1919 in Terlins Place bei Witham, England), war ein englischer Physiker. Er

erhielt 1904 den Nobelpreis für Physik.
20 Walter Ritz (oder Walther Ritz, * 22. Februar 1878 in Sion (Sitten); † 7. Juli 1909 in

Göttingen) war ein Schweizer Mathematiker und Physiker. Er war ein bedeutender Schweizer

Wissenschaftler und Forscher, obwohl er nach einer kurzen Karriere bereits mit 31 Jahren starb.

§Alle Angaben aus der deutschen Wikipedia, stand 2017
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4. Gebietszerlegungsmethoden

Wie in Kapitel 3 betrachten wir das Raumzeitgitter L mit normierter Gitterweite a = 1

L = {x = (x1, x2, x3, x4) : 1 ≤ x1 ≤ Nt, 1 ≤ x2, x3, x4 ≤ Nr}.

Gebietszerlegungsmethoden sind in der Gitter-QCD weit verbreitet und als zuverlässige

Präkonditionierung bekannt, siehe z. B. [60, 65, 64]. Wir wollen uns im Folgenden die Grund-

idee der Blockzerlegung des Gitters anschauen und die Schwarz21schen Algorithmen einführen.

Dieses Kapitel orientiert sich an [35], siehe auch [89, 99].

4.1 Blockzerlegung des Gitters

4.1.1 Definition

Es sei {T 1
1 , . . . , T 1

l1
} eine Partition von {1, . . . , Nt} in l1 Blöcke zusammenhängender Punkte in

der ersten Dimension, d. h. auf der Zeitachse, gilt:

T 1
j := {tj−1 + 1, . . . , tj}, j = 1, . . . l1, 0 = t0 < t1 · · · < tl1 = Nt.

Analog zerlegen wir die Raumdimensionen in Blöcke {T µ1 , . . . , T
µ
lµ
}, µ = 2, 3, 4. Eine Blockzerle-

gung des gesamten Gitters L in l = l1l2l3l4 Gitterblöcke Li hat nun die Form

Li = T 1
j1(i) × T

2
j2(i) × T

3
j3(i) × T

4
j4(i).

Darüber hinaus können nun alle 12nL Variablen aus V = L×C×S in l Variablenblöcke Vi zerlegt

werden, indem wir alle zugehörigen Spin- und Farbkomponenten des Gitterblocks Li hinzunehmen:

Vi = Li × C × S. (4.1)

Eine Vergröberung des Gitters liegt vor, wenn für eine weitere Blockzerlegung {L′i : i = 1, . . . , l′}
gilt: für jedes L′i existiert ein Lj mit

L′i ⊂ Lj . ♦

Zu den größten Herausforderungen im Bereich der Gitter-QCD gehört das wiederholte Lösen

der diskretisierten Dirac-Gleichung (siehe Abschnitt 2.2):

Dψ = η. (4.2)

Die Systeme, die in Gitter-QCD-relevanten Berechnungen auftreten, haben hunderte von Millionen

Unbekannte und sind daher in Computersimulationen nur mittels Parallelisierung in realistischer

43
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Rechenzeit durchführbar. Hier spielt die Blockzerlegung eine entscheidende Rolle; jeder Prozess

behandelt dabei einen Variablenblock Vi der Blockzerlegung des zugrundeliegenden Gitters und

führt dort Berechnungen durch. Danach teilt er die relevanten Ergebnisse den Nachbarprozessen

mit, denken wir hier beispielsweise an eine Matrix-Vektor-Operation, d. h., die Anwendung des

Operators D auf einen Vektor ψ. Dieses Konzept ist auch erweiterbar auf das Invertieren des

Operators. Effiziente Kommunikation zwischen den Prozessen vorausgesetzt, sind Gebietszerle-

gungsmethoden auf natürliche Weise kompatibel mit Parallelisierungsarchitekturen im Computer.

4.2 Additive und multiplikative Alternierende Verfahren von Schwarz

4.2.1 Definition

Sei Vi ⊂ V ein Variablenblock. Wir definieren die triviale Einbettung

IVi : Vi → V

als die Restriktion der Identität von V auf Vi, d. h.,

IVi := (idV)|Vi .

Hiermit sind die korrespondierenden Block-Inversen formal definiert durch

Bi := IViD
−1
i I

H
Vi mit Di := IHViDIVi . ♦

4.2.2 Lemma

Wir betrachten die Iteration

ψ(k+1) = Hψ(k) + Lη mit H,L ∈ Cn×n und ψ(k), η ∈ Cn, k ∈ N0.

(i) Ist ψ∗ ein Fixpunkt der Iteration, d. h., ψ∗ erfüllt ψ∗ = Hψ∗ + Lη, dann gilt für die Fehler

e(k) := ψ∗ − ψ(k):

e(k+1) = He(k).

Die Matrix H nennen wir den Fehlerpropagator.

(ii) Mit dem Startvektor ψ(0) = 0 ist die k-te Iterierte gegeben durch

ψ(k) =

k−1∑
i=0

H iLη.

Beweis. (i) Es gilt

e(k+1) = ψ∗ − ψ(k) = (Hψ∗ + Lη)− (Hψ(k) + Lη) = H(ψ∗ − ψ(k)) = He(k).
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(ii) Es ist ψ(1) = Hψ(0) + Lη = H0Lη und damit induktiv

ψ(k+1) = H

(
k−1∑
i=0

H iLη

)
+ Lη =

k∑
i=1

H iLη +H0Lη =

k∑
i=0

H iLη.
�

In unserem Kontext besteht eine Invertierung von D, bzw. das Lösen des Systems (4.2), aus

dem Lösen aller Blocksysteme

Diei = IHVir, (4.3)

mit dem Residuum des Ausgangsystems r = η −Dψ, und korrigieren von

ψ ← ψ +Bir mit Bir = IViei für i = 1, . . . , l. (4.4)

Das Residuum kann nach Bedarf zwischen den Iterationen via

r ← η −Dψ (4.5)

aktualisiert werden.

Im Falle, dass die Residuenberechnung (4.5) nur einmal vor dem Lösen aller Blocksysteme

durchgeführt wird, werden alle Iterationen (4.4) mit demselben Residuum r abgearbeitet und eine

Iteration der Gebietszerlegungsmethode ist durch

ψ ← ψ +M(η −Dψ) = (I −MD)ψ +Mη

gegeben, wobei die Abkürzung

M =
l∑

i=1

Bi

verwendet wurde. Der Fehlerpropagator ist dann (im Sinne von Lemma 4.2.2) gegeben durch

H = I −MD = I −
l∑

i=1

BiD.

Andernfalls, wenn wir das Residuum (4.5) in jeder Iteration aktualisieren, hat der Fehler-

propagator die Form

H =
l∏

i=1

(I −BiD).

Diese einfachsten Anwendungen von Gebietszerlegungsmethoden wurden im Rahmen der analyti-

schen Theorie von partiellen Differentialgleichungen bereits im Jahre 1870 von Schwarz [94, 95]

vorgeschlagen. Sie sind heutzutage unter den Namen additive- oder multiplikative Alternierende

Verfahren von Schwarz (siehe Algorithmus 3 und 4) bekannt. Für eine tiefer gehende Ausein-

andersetzung mit diesem Themenkomplex verweisen wir exemplarisch auf [99].
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Algorithmus 3: Additives Alternierendes Verfahren

Eingabe: ψ, η

Ausgabe: ψ

1 r ← η −Dψ
2 for i = 1, . . . , l do

3 ψ ← ψ +Bir

4 end for

Offenbar ist für Algorithmus 3 eine sehr einfache Parallelisierung möglich, da alle Blocksys-

teme unabhängig voneinander und gleichzeitig gelöst werden können.

Ganz anders in Algorithmus 4, welcher inhärent sequentiell ist, d. h., jeder folgende Schlei-

fendurchlauf benötigt Information aus dem vorhergehenden Durchlauf.

Algorithmus 4: Multiplikatives Alternierendes Verfahren

Eingabe: ψ, η

Ausgabe: ψ

1 for i = 1, . . . , l do

2 r ← η −Dψ
3 ψ ← ψ +Bir

4 end for

4.3 Rot-Schwarz-Ordnung und das multiplikative Alternierende Verfahren

Der Publikation [35] folgend, welche sich in diesem Teil auf [60] bezieht, stellen wir die multiplika-

tive Alternierende Verfahren für die Rot-Schwarz-Ordnung (siehe Kapitel 2.3) vor, die im weiteren

kurz SAP (Schwarz Alternating Procedure, vgl. [99]) genannt wird. Der Sinn ist, die ausschließli-

chen Nächste-Nachbar-Beziehungen des Wilson-Dirac-Operators auszunutzen. Hierfür werden

die benachbarten Variablen Schachbrettartig abwechselnd mit zwei unterschiedlichen Farben ko-

loriert. Algorithmus 5 zur Lösung von (4.2) fasst das Vorgehen zusammen.

Eine Iteration (d. h., ν = 1) von Algorithmus 5 kann zusammengefasst notiert werden durch

ψ ← (I −KD)ψ +Kη

mit der Abkürzung BFarbe =
∑

i∈FarbeBi und

K = Bschwarz(I −DBrot) +Brot.
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Algorithmus 5: Rot-Schwarz Multiplikatives Alternierendes Verfahren (SAP)

Eingabe: ψ, η, ν

Ausgabe: ψ

1 for k = 1, . . . , ν do

2 r ← η −Dψ
3 for all i ∈ rot do

4 ψ ← ψ +Bir

5 end for

6 r ← η −Dψ
7 for all i ∈ schwarz do

8 ψ ← ψ +Bir

9 end for

10 end for

Nach Lemma 4.2.2 ist der Fehlerpropagator der SAP-Methode gegeben durch

ESAP = I −KD = (I −BschwarzD)(I −BrotD)

und für den Startwert ψ = 0 erhalten wir nach ν Iterationen

M
(ν)
SAPη =

ν−1∑
i=0

(I −KD)iKη.

Offenbar ist K = MSAP := M
(1)
SAP und somit ESAP = I −MSAPD.
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Abbildung 4.1: Fehlerreduktion von SAP bezüglich der Eigenmoden auf einem 44-Gitter mit

Blöcken der Größe 24.
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Die Lösungen der lokalen Blocksysteme (4.3), welche benötigt werden um Bir zu berechnen,

sollten approximativ mit wenigen Iterationen eines Krylov-Unterraumverfahren bestimmt wer-

den. Dies hat zur Folge, dass die SAP-Methode zu ein nicht-stationären iterativen Prozess wird.

Wenn also diese nicht-stationäre SAP-Methode als Präkonditionierer fungieren soll, dann müssen

flexible Krylov-Unterraumverfahren verwendet werden, vgl. Abschnitt 3.2 sowie [38, 60, 90].

Untersucht man die SAP-Methode als Präkonditionierer genauer, stellt man fest, dass sie

nicht in der Lage ist, die Defizite, welche Krylov-Unterraumverfahren bei steigender Gittergröße

oder abnehmenden Quarkmassen zeigen, auszugleichen. Dies lässt sich darauf zurückführen, dass

die SAP-Methode Fehler, korrespondierend zu großen Eigenmoden, sehr gut reduziert, aber Feh-

ler zu eher kleinen Eigenmoden praktisch unberührt lässt. Abbildung 4.1 illustriert den Umstand,

wobei die horizontale Achse die Eigenvektoren v von D in aufsteigender Reihenfolge des Be-

trags des zugehörigen Eigenwertes repräsentiert. Die vertikale Achse beschreibt den Quotienten

‖ESAPv‖/‖v‖. Dieser ist klein für die meisten (größeren) Eigenwerte, wird aber signifikant größer

für betragsmäßig kleine Eigenwerte. Im Kontext von Glättern für Mehrgitterverfahren ist dies

ein typisches Verhalten, was die Motivation begründet, SAP als Glätter für unser algebraisches

Mehrgitterverfahren zu verwenden.
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Anmerkungen∗

21 Hermann Amandus Schwarz (* 25. Januar 1843 in Hermsdorf, Schlesien; † 30. November

1921 in Berlin) war ein deutscher Mathematiker in Berlin. Unter Einfluss von Karl Weierstraß

promovierte er 1864 bei Ernst Eduard Kummer.

∗Alle Angaben aus der deutschen Wikipedia, stand 2017
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5. Algebraische Mehrgitterverfahren

Mehrgitterverfahren bestehen immer aus zwei wesentlichen Komponenten: einem Glätter und einer

Grobgitterkorrektur. Der Glätter ist meist ein Relaxierungsschema wie die Jacobi- oder Gauss-

Seidel-Verfahren sowie ihre Blockvarianten, welche äquivalent zu den in Kapitel 4 vorgestellten

additiven und multiplikativen Alternierenden Verfahren von Schwarz sind. Ebenso kann auch ein

Krylov-Unterraumverfahren verwendet werden. Vorerst fixieren wir als Glätter die im vorherigen

Kapitel vorgestellte SAP-Methode.

Dieses Kapitel orientiert sich weiter an [35] (bzw. [89]) und konzentriert sich auf die Grob-

gitterkorrektur unseres Mehrgitterverfahrens.

Die Grobgitterkorrektur hat die Aufgabe, Fehlerkomponenten (auf einem gröberen Gitter,

mit wenigen nc Variablen) zu reduzieren, welche der Glätter schlecht oder gar nicht reduziert. Im

Falle der Wahl von SAP als Glätter sind dies die Fehler, die zu betragsmäßig kleinen Eigenwerten

korrespondieren. D. h., im Fokus stehen sog. Nah-Kern-Vektoren, also Eigenmoden, die von Eigen-

vektoren, zu betragsmäßig kleinen Eigenwerten, aufgespannt werden. Mit anderen Worten arbeitet

die Grobgitterkorrektur mit einem Operator Dc, der D auf einem Unterraum repräsentiert und

sowohl besonders im Nah-Kern-Bereich eine gute Approximation an D darstellt sowie gleichzeitig

Eigenschaften wie Dünnbesetztheit und im besten Falle auch weitere Eigenschaften des Operators

D (wie z. B. die Γ5-Symmetrie) erhält. Letzteres ist besonders wichtig, wenn ein rekursiver Ansatz

verfolgt wird, der es ermöglicht, nicht nur Zweigitter-, sondern auch echte Mehrgitterverfahren

(mit mehr als 2 Gitterebenen) zu verwenden.

Um Dc zu konstruieren sind zwei wichtige Operatoren nötig.

5.0.1 Definition

Mit n = 12nL, nc < n und den Restriktions- und Prolongationsoperatoren∗

R : Cn → Cnc ,

P : Cnc → Cn

definieren wir eine Petrov22-Galerkin-Projektion von D bzw. den Grobgitteroperator

Dc := RDP

sowie die korrespondierende Grobgitterkorrektur

ψ ← ψ + PD−1
c Rr

∗D. h., R ist surjektiv und P ist injektiv. Konkreteres folgt in Kapitel 5.3.

51
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mit dem Residuum r = η −Dψ. ♦

Die Abbildung R restringiert Informationen des ursprünglichen Raumes in einen
”
gröberen“

Unterraum und P transportiert (meist durch Interpolation) Informationen zurück in den ur-

sprünglichen Raum. Die Grobgitterkorrektur zur aktuellen Iterierten ψ restringiert das aktuelle

Residuum über R in den Unterraum, um dort

Dcec = Rr (5.1)

zu lösen. Der Grobgitterfehler ec wird dann via P zurück zum ursprünglichen Raum transportiert,

um die Grobgitterkorrektur zu vollziehen. Eine Iteration der Grobgitterkorrektur kann zusammen-

gefasst werden als

ψ ← (I − PD−1
c RD)ψ + PD−1

c Rη.

Der zugehörige Fehlerpropagator ist gegeben durch

I − PD−1
c RD.

Vorausgesetzt Dc ist bekannt, besteht ein Zweigitterverfahren aus wechselnder Anwendung

des Glätters und der Grobgitterkorrektur:

Algorithmus 6: Zweigitterverfahren (V-Zykel mit Nachglättung)

Eingabe: ψ, η, ν

Ausgabe: ψ

1 r ← η −Dψ
2 ψ ← ψ + PD−1

c Rr

3 r ← η −Dψ
4 ψ ← ψ +M

(ν)
SAPr

Algorithmus 6 zeigt die Vorgehensweise eines Zweigitterverfahrens mit ν-Schritten Nachglätt-

ung, in der Literatur auch V-Zykel genannt. Vorglätten ist ebenso möglich, resultiert aber wegen

der Spektralgleichung

σ
(
(I −MSAPD)(I − PD−1

c RD)
)

= σ
(
(I − PD−1

c RD)(I −MSAPD)
)

in keinem Vorteil (aber auch keinem Nachteil).

Dieses Zweigitterverfahren kann ebenso als Präkonditionierer für ein flexibles GMRES-Verfahr-

en verwendet werden, wie die SAP-Methode (siehe Ende des vorherigen Kapitels).

Das Update der aktuellen Iterierten ψ ist in obigem Fall ein multiplikatives Update, da die

Grobgitterkorrektur und die Anwendung des Glätters nacheinander mit dem jeweils aktuellsten

Residuum r = η −Dψ vollzogen wird. Wird andererseits auf Zeile 3 in Algorithmus 6 verzichtet

und beide Schritte mit demselben Residuum durchgeführt, so spricht man von einem additiven

Update. Eine Iteration des Verfahrens ist dann gegeben durch

ψ ← ψ +
(
PD−1

c R+M
(ν)
SAP

)
(η −Dψ).
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Diese additive Vorgehensweise erlaubt es, Glätter und Grobgitterkorrektur nebeneinander

parallel ablaufen zu lassen, allerdings führt dies zu Effizienzeinbrüchen im FGMRES-Verfahren.

Für mehr Details verweisen wir auf [99].

Algorithmus 6 können wir rekursiv zu einem echten Mehrgitterverfahren umwandeln, indem

wir in Zeile 2 wiederum ein Zweigitterverfahren desselben Typs solange aufrufen, bis die Gleichung

(5.1) aufgrund der kleinen Größe des Systems direkt gelöst werden kann.

Damit das gesamte Verfahren effizient ist, muss das Lösen von (5.1) wesentlich günstiger

im Rechenaufwand sein, als die Originalgleichung Dψ = η. Insbesondere heißt das, dass Dc

dünnbesetzt sein sollte. Um dies zu gewährleisten, müssen die Matrizen P und R, neben der

Fähigkeit Links- und Rechtseigenvektoren von D möglichst gut zu approximieren, ebenfalls dünn-

besetzt sein.

5.1 Aggregat-basierte Interpolation

Wir betrachten eine Blockzerlegung {Li : i = 1, . . . , l} des Gitters L (vgl. Definition 4.1.1).

In einer Arbeit von Lüscher [61] beobachtete er, dass Eigenvektoren von D, die zu betragsmäßig

kleinen Eigenwerten gehören, dazu tendieren, auf einer großen Anzahl von Gitterblöcken Li nahezu

konstant zu sein. Dieses Phänomen nannte er lokale Kohärenz (engl. local coherence). Lokale

Kohärenz bedeutet insbesondere, dass viele Eigenvektoren zu kleinen Eigenmoden durch einige

wenige dieser Vektoren darstellbar sind, indem sie über verschiedene Gitterblöcke zerlegt werden.

Für eine tiefergehende quantitative Analyse der Beobachtung siehe [61]. Lokale Kohärenz ist der

Kerngedanke hinter Aggregat-basierten Transferoperatoren in allgemeineren Problemstellungen,

siehe z. B. [13, 18] und speziell für Gitter-QCD-Anwendungen [4, 17, 81].

Ähnlich zur Blockzerlegung definieren wir die Aggregate folgendermaßen.

5.1.1 Definition

Eine Aggregation {A1, . . . ,As} ist eine Partition der Variablenmenge V = L × C × S (vgl.

Definition 4.1.1). Wir bezeichnen sie als Gitterblock-Aggregation, falls jedes Aggregat Ai von der

Form

Ai := Lj(i) ×Wi

ist, wobei Lj(i) ein Gitterblock einer Blockzerlegung des Gitters L sowie Wi ⊆ C × S ist. ♦

Aggregate für den Wilson-Dirac-Operator (2.7) werden typischerweise als Gitterblock-

Aggregate realisiert. Im Unterschied zu einer
”
puren“ Blockzerlegung {Vi : i = 1, . . . , l} des

Gitters (wie z. B. bei der SAP-Methode) müssen Aggregate nicht alle Spin- und Farbvariablen ent-

halten. Darüber hinaus können mehrere Aggregate denselben Gitterblock Li enthalten. Insbeson-

dere müssen der SAP-Glätter und die Aggregat-basierten Transferoperatoren nicht auf derselben

Blockzerlegung L basieren.
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5.1.2 Definition

Wir betrachten eine gewisse Anzahl von Testvektoren v1, . . . , vN ∈ Cn (welche möglichst den

Nah-Kern von D repräsentieren, N � n) und eine Aggregation {A1, . . . ,As} (s � n). Der

Aggregat-basierte Prolongations- oder Interpolationsoperator P ist dann anschaulich definiert

durch das Zerlegen der Testvektoren über die verschiedenen Aggregate:

(v1| . . . |vN ) =



n×N

−→ P =

 . . .


n×(N ·s)

A1

A2

...

As

. (5.2)

Formal induziert jedes Aggregat Ai N Variablen mit den Indizes (i − 1)N + 1, . . . , iN in das

grobe Gitter und wir definieren zeilenweise

Pe(i−1)N+j := IAiIHAivj , für i = 1, . . . , s, j = 1, . . . , N, (5.3)

wobei e(i−1)N+j den
(
(i− 1)N + j

)
-ten Einheitsvektor in CN ·s bezeichnet. ♦

Es wurden hierfür die trivialen Einbettungen aus Definition 4.2.1 verwendet, d. h., IAiIHAivj
lässt alle Komponenten von vj , welche zu Ai gehören, unverändert und setzt alle anderen auf

Null (M. a. W., IAiIHAi ist eine Orthogonalprojektion auf Ai). Aus Stabilitätsgründen werden die

Testvektoren lokal orthonormalisiert, d. h., für jedes i ersetzen wir IHAivj in (5.3) durch den j-ten

Basisvektor der Orthonormalbasis von Spann{IHAiv1, . . . , IHAivN}. Dies ändert weder das Bild von

P noch den Grobgitteroperator I − P (RDP )−1RD, garantiert aber, dass PHP = I.

Die Restriktion R wird analog zu P konstruiert: eine Menge von Testvektoren {v̂1, . . . v̂N}
muss gewählt werden, die Aggregate von P können wieder verwendet werden.

Abbildung 5.1 zeigt eine auf Gitterblöcken basierte Aggregation bezüglich eines Raumzeit-

Gitterknotens (reduziert auf zwei Dimensionen). Hierbei wurde für jedes Aggregat Ai als Wi

die gesamte Variablenmenge C × S verwendet. Anschaulich formt die Aggregation ein neues,

gröberes Gitter, wobei die Dünnbesetztheit und Kopplungsstruktur von Dc = RDP die von D

widerspiegeln, d. h., insbesondere haben wir wieder nur nächste-Nachbar-Beziehungen der einzel-

nen Gitterknoten. Jeder Gitterpunkt des groben Gitters (bzw. des Aggregats) fasst N Variablen

zusammen.

5.2 Galerkin und Petrov-Galerkin Ansätze

Um die Struktur- und Spektraleigenschaften (siehe Lemma 2.2.13) des Wilson-Dirac-Operators

D auf das grobe Gitter zu übertragen, bedarf es einer expliziten Abhängigkeit zwischen der Re-

striktion R und der Interpolation P . Die folgende Konstruktion von P (und damit auch von R)
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A2

A1

A4

A3

P

R

D Dc

Abbildung 5.1: Aggregat-basierte Interpolation (Ansicht auf zwei Dimensionen reduziert).

ist ähnlich zu den Konstruktionen in [17, 81, 61, 4] mit einem Unterschied im Bereich der zu

wählenden Testvektoren.

Der Petrov-Galerkin Ansatz ist

R := (Γ5P )H .

Wenn hierbei P aus den Testvektoren v1, . . . , vN konstruiert wurde, die die Rechtseigenvektoren zu

betragsmäßig kleinen Eigenwerten von D approximieren, so liegen R = (Γ5P )H die Testvektoren

v̂i = Γ5vi zugrunde, welche die Linkseigenvektoren zu kleinen Eigenwerten approximieren.

In [61] wird unter anderem festgestellt, dass es möglich ist, R = PH zu erreichen, solange

Aggregate gewisse Regeln für Spin-Variablen einhalten, was auf folgende Definition führt.

5.2.1 Definition

Eine Aggregation {Ai : i = 1, . . . , s} heißt Γ5-kompatibel, falls jedes Aggregat Ai Raumzeit-

Variablen ausschließlich entweder mit Spin-Variablen mit Index Null und Eins des feinen Gitters

oder Spin-Variablen mit Index Zwei und Drei des feinen Gitters gruppiert. ♦

Angenommen, wir haben eine Γ5-kompatible Aggregation und betrachten den Interpola-

tionsoperator (5.2). Dann sehen wir, da Γ5 trivial auf die Spins mit Index Null und Eins, und

als Vorzeichenwechsel auf die Spins Zwei und Drei wirkt (vgl. (2.10) bzw. Lemma 2.2.7), dass

beim Übergang von P zu Γ5P jeder Block eines speziellen Aggregats entweder mit +1 oder −1

multipliziert wird. Mit anderen Worten

Γ5P = PΓc5,

wobei Γc5 alle Spin-Null und -Eins Aggregate unverändert lässt und die Spin-Zwei und -Drei

Aggregate mit −1 multipliziert.

5.2.2 Lemma

Gegeben sei eine Γ5-kompatible Aggregation und P eine Aggregat-basierte Interpolation wie in

(5.2) mit R = (Γ5P )H . Wir unterscheiden die beiden Grobgitteroperatoren

DPG
c = RDP und Dc = PHDP.
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Dann gelten

(i) Dc = Γc5D
PG
c .

(ii) I − PD−1
c PHD = I − P (DPG

c )−1RD.

(iii) DPG
c ist hermitesch, Dc ist Γc5-symmetrisch.

(iv) Für den Wertebereich (siehe Definition 2.4.2) gilt F(Dc) ⊆ F(D).

Beweis. Zunächst ist klar, dass Γc5 genau wie Γ5 eine Diagonalmatrix mit Einträgen +1 oder −1

ist, d. h., Γc5 = (Γc5)H = (Γc5)−1. Teil (i) folgt nun aus

DPG
c = RDP = (Γ5P )HDP = (PΓc5)HDP = Γc5P

HDP = Γc5Dc.

Daraus folgt ebenfalls unmittelbar

P (DPG
c )−1RD = P (Γc5Dc)

−1(Γ5P )HD = PD−1
c Γc5P

HΓ5D = PD−1
c Γc5Γc5P

HD = PD−1
c PHD,

was Behauptung (ii) zeigt. Für Teil (iii) gilt wegen DHΓ5 = Γ5D (vgl. Lemma 2.2.13):

(DPG
c )H = PHDHRH = PHDHΓ5P = PHΓ5DP = RDP = DPG

c .

Also ist DPG
c hermitesch, was äquivalent dazu ist, dass Dc = Γc5D

PG
c eine Γc5-Symmetrie aufweist.

Schließlich gilt, da P eine Isometrie ist (vgl. Definition 5.1.2 ff.), d. h., PHP = I:

F(Dc) = {ψHc Dcψc : ψHc ψc = 1} = {(Pψc)HD(Pψc) : (Pψc)
H(Pψc) = 1}

⊆ {ψHDψ : ψHψ = 1} = F(D).

Dies zeigt Teil (iv) der Behauptung. �

Lemma 5.2.2 hat einige tiefgreifende Konsequenzen. Zunächst besagt Teil (ii), dass un-

abhängig davon, ob wir den Petrov-Galerkin-Ansatz DPG
c mit R = (Γ5P )H , oder den Ga-

lerkin-Ansatz Dc mit R = PH wählen, bei derselben Grobgitterkorrektur landen. Letzterer

Ansatz erhält die Γ5-Symmetrie von D auf dem gröberen Gitter und somit die Symmetrie des

Spektrums (siehe nochmals Lemma 2.2.13). Falls F(D) in der rechten Halbebene liegt (wo-

von i. d. R. ausgegangen wird), befindet sich nach (iv) auch F(Dc) in der rechten Halbebene

und somit auch das Spektrum von Dc. Betrachten wir den
”
symmetrisierten“ Wilson-Dirac-

Operator Q := Γ5D, so wissen wir aus Kapitel 2, dass dieser annähernd maximal indefinit ist und

wünschenswerter Weise ergeben sich ähnliche Beobachtungen bei numerischer Untersuchung des

Operators Γc5Dc = DPG
c .

Die Γ5-Symmetrie impliziert eine weitere bemerkenswerte Eigenschaft, wenn es um Eigen-

systeme von Q und die Singulärwertzerlegung von D geht:
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5.2.3 Proposition

Sei eine Eigendekomposition

Q = V ΛV H , Λ diagonal, V HV = I,

des hermiteschen Operators Q = Γ5D gegeben. Dann ist

D =
(
Γ5V Sign(Λ)

)
|Λ|V H = UΣV H (5.4)

eine Singulärwertzerlegung von D mit unitärem U := Γ5V Sign(Λ) und der Diagonalmatrix

Σ := |Λ|. ♦

In Publikationen zum Thema algebraische Mehrgitterverfahren wie [18] wird vorgeschlagen,

Restriktion und Interpolation mittels Links- und Rechtssingulärvektoren (von zugehörigen kleinen

Singulärwerten) zu konstruieren, anstelle von Eigenvektoren, um dann die obige Relation auszu-

nutzen. Allerdings sind gute Approximationen an jene Singulärvektoren in der Praxis bei unserem

Problem Q schwerer zu berechnen als Eigenvektoren zum Problem D. Dies liegt (vermutlich)

letztendlich an der Spektralstruktur der Operatoren, da es beim Operator Q schwieriger ist an

kleine Eigenwerte heran zu kommen, weil diese im Zentrum des Spektrums liegen. Im Falle von D,

wo die kleinen Eigenwerte am Rand des Spektrums liegen und darüber hinaus in der rechten Halb-

ebene C+ liegen (falls F(D) ⊂ C+), ist deren Beschaffung einfacher. Verschiedene numerische

Tests ergaben keinen Mehrwert im Verfolgen des Singulärwert-Ansatzes, sodass wir auf ein auf

Eigenvektoren basierendes Mehrgitterverfahren setzen, was auch motiviert, Dc gegenüber DPG
c

als
”
korrekten“ Grobgitteroperator anzusehen, insbesondere um ein echtes Mehrgitterverfahren

rekursiv auf Dc (mit identischen Attributen wie D) anwenden zu können.

Um dies möglichst universell machen zu können, verwenden wir eine spezielle Γ5-kompatible

Gitterblock-Aggregation:

5.2.4 Definition

Sei eine Blockzerlegung {Li : i = 1, . . . , nLc} des Gitters L gegeben. Dann ist die Standard-

Aggregation {Ai,τ : i = 1, . . . , nLc , τ = 0, 1} bezüglich dieser Blockzerlegung gegeben durch

Ai,0 := Li × {0, 1} × C und Ai,1 := Li × {2, 3} × C. ♦

Diese Standard-Aggregation kombiniert immer zwei Spin-Freiheitsgrade in Γ5-kompatibler

Weise (vgl. Definition 5.2.1) mit allen drei Farb-Freiheitsgraden. Zu jedem i sind die Aggregate

Ai,0 und Ai,1 die einzigen beiden Aggregate, die mit dem Gitterblock Li assoziiert sind. Die

Standard-Aggregation induziert hier ein grobes Gitter Lc mit nLc Punkten, wobei jeder Grobgit-

terpunkt zu einem Gitterblock Li korrespondiert und 2N Variablen umfasst, mit N der Anzahl
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der Testvektoren. Jeweils N Variablen gehören zu den Spin-Indizes Null und Eins (bzw. dem Ag-

gregat Ai,0) und weitere N zu den Spin-Indizes Zwei und Drei (bzw. dem Aggregat Ai,1). Daraus

ergibt sich eine Gesamtgröße des Grobgittersystems von nc = 2NnLc . Standard-Aggregation und

Konsequenzen aus Lemma 5.2.2, d. h., Dc = PHDP , erhalten die Eigenschaften der Nächste-

Nachbar-Kopplung, Γ5-Kompatibilität, Spektraleigenschaften sowie Dünnbesetztheit.

Nun wenden wir uns den Testvektoren zu.

5.3 Adaptive Testvektorberechnung

Solange keine a priori Informationen über den Nah-Kern vorhanden ist, werden die Testvektoren

v1, . . . , vN für unser auf Aggregation basierendes Mehrgitterverfahren in einer sog. Setup-Phase

berechnet. Weiter [35] folgend, welches sich hierbei stark auf [18] bezieht, gehen wir folgender-

maßen vor. Wir legen uns auf den Galerkin-Ansatz fest, d. h.,

R = PH .

Die fundamentale Idee von Mehrgitterverfahren ist es, Fehlerkomponenten zu finden, die vom

Glätter nicht effektiv reduziert werden können, in unserem Kontext also den Nah-Kern. Dem-

nach liefert ein Glätter nach einigen wenigen Iterationsschritten, angewendet auf die homogene

Testgleichung

Du = 0

mit einem zufälligen Startvektor u, eine Näherung ṽ mit hohen Fehleranteilen in Eigenmoden,

welche vom Glätter schlecht reduziert werden können. Nun könnten wir immer weitere Zufallsvek-

toren generieren und die homogene Gleichung lösen bis die gewünschte Anzahl von Testvektoren

erreicht ist. Die nach (5.3) konstruierte Interpolation garantiert dann, dass auf dem groben Git-

ter genau diese Eigenmoden betont werden. Diese (vorläufige) Konstruktion von Dc kann dann

verwendet werden, um die homogene Gleichung mittels eines Mehrgitterverfahrens zu lösen, was

ein neueres, verbessertes Set an Testvektoren produziert mit hohen Fehleranteilen, welche vom

Mehrgitterverfahren schlecht reduziert werden können. Damit wird wiederum ein verbesserter

Grobgitteroperator Dc konstruiert, der sich immer spezieller auf jene Eigenmoden konzentriert.

Das Iterieren dieses Prozesses führt ultimativ zu einem schnell konvergierenden Verfahren, aller-

dings mit womöglich unverhältnismäßig großem Aufwand, abhängig davon, wie oft der Prozess

iterieren und wie viele Testvektoren verwendet werden sollen.

Den Aufwand, immer das gesamte Mehrgitterverfahren auf die homogene Gleichung anzu-

wenden, um eventuelle Mängel aufzuzeigen und diese dann zu beheben, gilt es im Zaum zu halten.

Wir wollen uns eine Methode anschauen, die ihren Ursprung in den Arbeiten [14, 15] hat – den

sog.
”
Bootstrap“-Ansatz. Der Ansatz beruht auf der folgenden fundamentalen Beobachtung.
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5.3.1 Lemma

Gegeben ein Eigenpaar (λc, vc) des Eigenwertproblems auf dem groben Gitter

Dcvc = λcvc,

so löst das Paar (λc, Pvc) das bedingte Eigenwertproblem

finde (λ, v) mit v ∈ Bild(P ) so, dass PH(Dv − λv) = 0

auf dem feinen Gitter.

Beweis.

PH(DPvc − λcPvc) = Dcvc − λcPHPvc = 0,

wobei wegen PHP = I die Behauptung folgt. �

Es ist natürlich einfacher, Eigenvektoren zu betragsmäßig kleinen Eigenwerten auf dem

groben Gitter zu berechnen, als auf dem feinen, und die Information des Grobgitteroperators wird

so optimal genutzt. Einige Iterationen des Glätters angewandt auf Pvc liefern dann brauchbare

Testvektoren mit hohen Anteilen im Nah-Kern-Bereich des feinen Gitters. Der Ansatz in Lüschers

Arbeit [61], d. h., der
”
inexakt deflation“-Ansatz, beruht ebenfalls auf dieser Idee, wobei das grobe

Eigenwertproblem dort approximativ mit relativ grober Fehlertoleranz gelöst wird.

5.4 DD-αAMG

Wir haben nun alle Zutaten zur Beschreibung des auf Gebietszerlegung und Aggregation beruhen-

den adaptiven (die adaptive Komponente des Verfahrens liegt in der Generierung der Testvektoren,

der Setup-Phase) algebraischen Mehrgitterverfahrens DD-αAMG † [35] zum Lösen der diskreti-

sierten Dirac-Gleichung mittels des Wilson-Dirac-Operators mit Clover-Term (2.7).

Der Glätter ist standardmäßig M
(ν)
SAP, in späteren Anwendungen aber auch ein mit Schur-

Komplement (siehe Abschnitt 2.3) präkonditioniertes FGMRES mit Neustarts (wie in der Imple-

mentierung des Verfahrens in der QOPQDP Software-Bibliothek, [82]).

Das verwendete Grobgittersystem ist Dc = PHDP , wobei P der auf Aggregation basierende

Interpolationsoperator ist, welcher in einer adaptiven Setup-Phase generiert wird. Algorithmus 7

gibt eine Übersicht des Vorgehens in Pseudocode. Die Konstruktionsphase in Zeile 6 wird, wie in

Definition 5.1.2 beschrieben, vollzogen, inklusive lokaler Orthonormalisierung. Der Operator C(ν)

in Zeile 8 ist ein Platzhalter für entweder eine iterative Methode, um ein Eigenpaar (λc, Pvc)

des Grobgitteroperators Dc zu generieren und den
”
gelifteten“ Vektor Pvc mit ν Schritten zu

glätten, oder aber einen V-Zykel des gesamten Lösers (ebenfalls mit ν Glättungsschritten). Bei

letzterem gibt es wieder eine Wahl zwischen Anwendung des Lösers auf die homogene Gleichung

†Engl.: Domain Decomposition-adaptive Algebraic MultiGrid
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mit Startvektor vi oder Lösen der Gleichung Dvneu = vi mit dem Nullvektor als Startvektor, wie

in Lüschers Arbeit [61] vorgeschlagen. Wir werden im folgenden den ersten Ansatz verwenden.

Für weitere Details und Vergleiche, sowohl analytischer als auch numerischer Natur, der beiden

Methoden DD-αAMG und Lüschers
”
inexact deflation“-Methode verweisen wir auf [35].

Algorithmus 7: Zweigitter-Setup-Phase

Eingabe: ninv, η, ν

Ausgabe: v1, . . . , vn, P,Dc

1 Generiere v1, . . . , vN ∈ Cn Zufallsvektoren

2 for i = 1, . . . , N do

3 vi ←M
(η)
SAPvi

4 end for

5 for j = 1, . . . , ninv do

6 (Re-)Konstruiere P und Dc aus aktuellen v1, . . . , vN

7 for i = 1, . . . , N do

8 vi ← C(ν)

9 end for

10 end for

Zur Veranschaulichung zeigt Abbildung 5.2 die Wirkung der Grobgitterkorrektur auf die

aufsteigend sortierten Eigenmoden. Die erhoffte Fehlerreduktion in den kleinen Eigenmoden tritt

(zumindest in diesem kleinen Beispiel, ninv = 10, η = ν = 3) deutlich ein. Mit dem Fehlerpropa-

gator der Zweigitterverfahren (mit Nachglättung)

E2G := (I −MSAPD)(I − PD−1
c PHD)
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Abbildung 5.2: Fehlerreduktion der

Grobgitterkorrektur bezüglich der Eigen-
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zeigt Abbildung 5.3 die Wirkung des gesamten DD-αAMG-Verfahrens auf Fehlerreduktion in

aufsteigend sortierten Eigenmoden am Beispiel eines Zweigitter-V-Zykels. Eine Fehlerreduktion

entlang aller Eigenmoden ist zu beobachten.

Generell gibt es für ein (echtes) Mehrgitterverfahren verschiedene Zykel-Strategien, so wie

den bereits angesprochenen V-Zykel (Algorithmus 6) oder den W-Zykel (ab drei Gitter). Als

numerisch besonders stabil hat sich der sog. K-Zykel [79] erwiesen (K wie Krylov). Um diesen

zu skizzieren, definieren wir Notationen im Zusammenhang mit echten Mehrgitterverfahren:

5.4.1 Definition

Sei L die Anzahl der Gitter, wobei das feinste Gitter das Erste ist, d. h., D1 := D. Mit nl,

l = 1, . . . , L, sei die Dimension des jeweils zugrundeliegenden Vektorraums auf jeder Gitterebene

l bezeichnet. Die verschiedenen Interpolationen notieren wir dann mit

Pl : Cnl+1 → Cnl , l = 1, . . . , L− 1.

Sie transportieren Informationen von Gitterebene l+1 nach Ebene l. Entsprechend transportieren

die Operatoren PHl Informationen von Gitterebene l nach Ebene l+ 1. Die Grobgitteroperatoren

sind rekursiv gegeben durch

Dl : Cnl → Cnl , Dl := PHl−1Dl−1Pl−1,

für l = 2, . . . , L. Die Glätter auf den verschiedenen Ebenen schreiben wir kurz als

Ml, l = 1, . . . , L− 1.

Analog kennzeichnet ψl, dass der Vektor zur Gitterebene l bzw. zum Vektorraum Cnl gehört. ♦

Das Vorgehen bei der K-Zykel-Strategie ist in Algorithmus 8 skizziert. Zum Verständnis

muss betont werden, dass FGMRES stets selbst mit einem K-Zykel präkonditioniert wird, daher

ist der Aufruf in Zeile 9 tatsächlich eine Rekursion, da eine neue Instanz von FGMRES mit Matrix

Dl+1 und rechter Seite ηl+1 auf der nächst tieferen Gitterebene alsbald einen K-Zykel aufruft.

Die Setup-Phase für ein echtes Mehrgitterverfahren besteht nun ähnlich wie Algorithmus 7

aus zwei wesentlichen Phasen:

1. Eine Anfangsphase, gegeben durch Algorithmus 9, welche ausschließlich den Glätter benutzt

um eine hierarchische Mehrgitterstruktur aufzubauen.

2. Eine iterative Phase, in der die Testvektoren der verschiedenen Gitterebenen durch An-

wendung des aktuell verfügbaren Mehrgitterverfahrens verbessert werden. Algorithmus 10

skizziert hier das Vorgehen in Pseudocode.
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Algorithmus 8: K-Zykel

Eingabe: l, ηl

Ausgabe: ψl

1 if l = L then

2 ψl ← D−1
l ηl

3 else

4 ψl ← 0

5 for i = 1, . . . , µ do

6 ψl ←Ml(ηl −Dlψl) /* Vorglätten */

7 end for

8 ηl+1 ← PHl (ηl −Dlψl)

9 ψl+1 ← FGMRES(Dl+1, ηl+1) /* Erläuterung siehe Text */

10 ψl ← ψl + Plψl+1

11 for i = 1, . . . , ν do

12 ψl ← ψl +Ml(ηl −Dlψ) /* Nachglätten */

13 end for

14 end if

Algorithmus 9: Anfangs-Mehrgitter-Setup-Phase

Eingabe: l, N, η

Ausgabe: v
(1)
j , . . . , v

(N)
j , Pj , Dj+1 für j = l, . . . , L− 1

1 if l = 1 then

2 Generiere N Zufallstestvektoren v
(1)
1 , . . . , v

(N)
1

3 else

4 for j = 1, . . . , N do

5 v
(j)
l ← PHl−1v

(j)
l−1 /* Restringiere Vektoren von feinerem Gitter */

6 end for

7 end if

8 for j = 1, . . . , N do

9 v
(j)
l ←M

(η)
l (v

(j)
l ) /* η Glättungsschritte angewendet auf das homo-

gene System Dlx = 0 mit Startvektor v
(j)
l */

10 end for

11 Konstruiere Pl und setze Dl+1 := PHl DlPl

12 if l < L− 1 then

13 Rekursiver Aufruf von Algorithmus 9 auf Gitterebene l+1

14 end if

Es ist durchaus möglich, auf verschiedenen Gitterebenen eine unterschiedliche Anzahl von

Testvektoren Nl zu verwenden. Aufgrund des verminderten Rechenaufwandes auf gröberen Gittern
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Algorithmus 10: Iterative Mehrgitter-Setup-Phase

Eingabe: l, N, ninv, v
(1)
j , . . . , v

(N)
j , Pj , Dj+1 für j = l, . . . , L− 1

Ausgabe: Verbesserte v
(1)
j , . . . , v

(Nl)
j , Pj , Dj+1 für j = l, . . . , L− 1

1 if l < L then

2 for i = 1, . . . , ninv do

3 for j = 1, . . . , N do

4 for m = l, . . . , L− 1 do /* Löser anw. auf allen Gitterebenen */

5 ψm ← K-Zykel(l, v
(j)
l−1)

6 v
(j)
m ← ψm/‖ψm‖

7 end for

8 end for

9 for m = l, . . . , L− 1 do

10 aktualisiere Pm, Dm+1

11 end for

12 end for

13 Rekursiver Aufruf von Algorithmus 10 auf Gitterebene l + 1

14 end if

könnte eine wachsende Folge Nl ≤ Nl+1 verwendet werden, aber die Auswirkungen sind wenig

signifikant. Für weitere Details siehe [89].

DD-αAMG (Dreigitter)

Setup-Schritte ninv Setup-Zeit Löser-Zeit Gesamtzeit

1 2.08s 6.42s 8.5s

2 3.06s 3.42s 6.48s

3 4.69s 2.37s 7.06s

4 7.39s 1.95s 9.34s

5 10.8s 1.82s 12.6s

6 14.1s 1.89s 16.0s

8 19.5s 2.02s 21.5s

10 24.3s 2.31s 21.6s

Tabelle 5.1: Vergleich Setup- und Löser-Zeiten, 484 Gitter, η = 5.‡

Bei der Setup-Phase gilt es generell, eine gute Balance zwischen Setup-Zeit und Löser-Zeit

zu finden. Eine optimale Wahl für die Inversion von D bezüglich einer einzigen rechten Seite kann

in Tabelle 5.1 bei ninv = 2 ausgemacht werden. Soll dasselbe System mehrfach für verschiedene

rechte Seiten gelöst werden, sind Setups im Bereich ninv = 5 effizienter.

‡Daten aus [35]. Berechnung auf Juropa, Jülich Supercomputing Center (JSC).
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Das Performancepotential des DD-αAMG-Verfahrens auf größeren Konfigurationen wird

eindrucksvoll durch Abbildung 5.4 beschrieben. Die Abkürzung
”
mp oe“ steht hierbei für

”
mixed

precision“ und
”
odd-even preconditioned“. Es beschreibt einen

”
state-of-the-art“ Krylov-Löser,

welcher aufgebaut ist auf FGMRES(25) mit doppelter Maschinengenauigkeit, präkonditioniert

mit 50 Iterationen BiCGStab in einfacher Maschinengenauigkeit. Das System ist darüber hinaus

statisch präkonditioniert mit Schur-Komplement. mud = −0.05294 bezeichnet den physikali-

schen Massenparameter, der den thermischen Zustand der genutzten Konfiguration beschreibt

und mcrit = −0.05419 bezeichnet die kritische Masse (Details dazu in [27, 28]; hieraus stammt

auch die benutzte 644-BMW-c Konfiguration). Insbesondere wird hier zwischen den Massen des

Up- und Down-Quark unterschieden. Weitere Details zu der Vielzahl an Parametern innerhalb der

Löser, siehe [89, 35].
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Abbildung 5.4: Skalierung von BiCGStab und DD-αAMG bezüglich des Massenparameters m0

(644-Gitter, 128 Prozesse).§

Abbildung 5.5 zeigt einen Vergleich des DD-αAMG-Verfahrens mit dem (durch [35] in-

spirierten) aktuellen
”
inexact deflation“-Methode von Lüscher mit

”
inaccurate projection“, im-

plementiert in der Programmbibliothek Open-QCD [62]. Sein Vorgehen unterscheidet sich von

(Zweigitter-) DD-αAMG insbesondere durch die Konstruktion des Grobgitteroperators, welche

die Γ5-Symmetrie nicht erhält. Darüber hinaus konstruiert die
”
inexact deflation“-Methode den

Prolongationsoperator so, dass nur halb so viele Variablen ins Grobgitter übernommen werden und

konsequenterweise hat der Grobgitteroperator in Matrixdarstellung dann viermal weniger nicht-

Null Einträge gegenüber unserem Verfahren, falls dieselbe Anzahl von Testvektoren verwendet

wurde. In Tests stellte sich allerdings heraus, dass 30 Testvektoren (gegenüber 20 in DD-αAMG)

§Daten aus [35]. Berechnung auf Juropa, Jülich Supercomputing Center (JSC).
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Abbildung 5.5: Skalierung der Lüscher-Methoden und DD-αAMG bezüglich des Massenparame-

ters m0 (644-Gitter, 128 Prozesse).¶

in den Lüscher-Methoden die beste Performance liefert. Obwohl mehr Testvektoren verwendet

wurden, ist die Arbeit auf dem zweiten Gitter geringer im Vergleich zum Zweigitterverfahren.

Sobald aber drei Gitter verwendet werden, sinkt die benötigte Arbeit um auf dem zweiten Gitter

zu iterieren erheblich, was die Überlegenheit des Dreigitterverfahrens erklärt.

Die
”
Inexact deflation“-Methode mit

”
inaccurate projection“ ist der Zweigitter-DD-αAMG

bis zum Massenparameter md in Sachen Rechenzeiten unterlegen, die Skalierung von ersterem

ist aber etwas besser. Ab Massenparametern kleiner als md ist die Skalierung des Zweigitter-

verfahren ähnlich zum (insgesamt schlechtestem)
”
inexact deflation“-Ansatz. Die Verbesserung

der
”
inexact deflation“-Methode durch die Verwendung von inakkuraten Projektionen, führt zu

einem verbesserten Skalierungsverhalten, ähnlich zum Verhalten des Dreigitterverfahrens. Insge-

samt führt der Ansatz mehr Testvektoren zu nutzen (aber damit höheren Setup-Aufwand in Kauf

zu nehmen), um dafür günstiger zu lösende Grobgittersysteme zu erhalten, generell zu einem

gänzlich anderen Skalierungsverhalten als der des DD-αAMG-Ansatzes. Die insgesamt beste Per-

formance (sowohl in Rechenzeit als auch Skalierung) wird durch Dreigitter-DD-αAMG erreicht.

DreigitterDD-αAMG lohnt sich sogar wenn schwerere Massen als md verwendet werden. Voraus-

sichtlich wird der Löser in Zukunft stark von seiner rekursiven Struktur profitieren, wenn immer

größere Gitterkonfigurationen verwendet werden.

Ein Nachteil des robusten FGMRES-Verfahrens, welches als äußerer Löser für DD-αAMG

dient, ist der sehr hohe Speicherbedarf (vgl. Abschnitt 3.2). Hier könnte dieses durch andere

¶Daten aus [89]. Berechnung auf Juropa, Jülich Supercomputing Center (JSC).
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Verfahren ersetzt werden, wie zum Beispiel dem zu GMRES-ähnlichen FQMR-Verfahren (Flexible

Quasi-Minimal Residual) von Szyld und Vogel [104] aus dem Jahre 2001. Das QMR-Verfahren

basiert auf der
”
look-ahead“-Bi-Lanczos-Methode, welcher

”
Breakdowns“, also Verfahrensab-

brüche ohne verwendbares Ergebnis, verhindert, an denen andere Bi-CG-Verfahren kränkeln.

QMR benötigt, genau wie alle anderen Bi-CG-Verfahren und anders als GMRES, zwei Operator-

Anwendungen pro Iteration. Es verfügt aber über kurze Rekursionen, kann also mit geringem Spei-

cheraufwand betrieben werden. Praxistests zeigten beim vorliegenden Problem aber leider keine

ernsthaften Verbesserungen bezüglich Konvergenzverhalten und Rechenzeit gegenüber FGMRES.

Ebenfalls könnte DD-αAMG mit FQMRIDR (Flexible QMR- Induced Dimension Reduction) [107]

und mit FBi-CGSTAB (Flexible Bi-Conjugated Gradient STABilized) [108] (Bi-CGSTAB wurde

ursprünglich von van der Vorst [106], 1992 entwickelt) kombiniert werden. Beide Verfahren leiden

bei vorliegendem Problem an stagnierenden Residuenverläufen. FGMRES ist also weiterhin die

bessere Wahl.
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Anmerkungen‖

22 Georgi Iwanowitsch Petrow (wiss. Transliteration Georgij Ivanovič Petrov; * 18. Mai (jul.)

/ 31. Mai 1912 (greg.) in Pinega; † 13. Mai 1987) war ein sowjetischer Ingenieur. Von 1965 bis

1973 war Petrow Direktor des Instituts für Weltraumforschung der Akademie der Wissenschaften

der UdSSR.

‖Alle Angaben aus der deutschen Wikipedia, stand 2017



68 5. Algebraische Mehrgitterverfahren 68



6. Eigenlöser und eine physikalische Anwendung

In dem nun folgenden Hauptteil der Arbeit soll aufgezeigt werden, wie die Methoden aus dem

vorherigen Kapitel angewendet werden können, um ein neues Verfahren zur einfacheren Berech-

nung von Eigenmoden des Operators Q := Γ5D zu erhalten. Eine Variante der hier vorgestellten

Methodik wurde gemeinsam mit der Arbeitsgruppe um A. Frommer an der Universität Wuppertal

implementiert und in [7] publiziert.

Generell gibt es innerhalb der Gitter-QCD neben Lösungen der Dirac-Gleichung auch großen

Bedarf an Informationen über das Spektrum des Wilson-Dirac-Operators D. Viele physikali-

sche Eigenschaften sind insbesondere in betragsmäßig kleinen Eigenwerten und deren zugehörigen

Eigenmoden dieses Operators kodiert und deshalb begehrt. Das komplexe Spektrum von D (vgl.

Abbildung 2.5) ist vergleichsweise schwer zu fassen, weshalb in der Gitter-QCD eher die Eigen-

moden des positiv definiten Operators DHD (reelles Spektrum) betrachtet werden, zum Beispiel

um stochastisches Rauschen bei Kenngrößen wie den unverbundenen Fermionenschleifen [73] zu

reduzieren. Neben diesen spielen in der Gitter-QCD die kleinen Eigenmoden des hermiteschen,

maximal indefiniten, Operators Q (ebenfalls reelles Spektrum) für Anwendungen wie
”
low-mode

averaging“ und andere [23, 10, 17] eine wohl noch größere Rolle.

Trotz erhöhter Symmetrieeigenschaft und reellem Spektrum gegenüber D ist die Eigenwert-

berechnung noch immer äußerst aufwendig. Nach Lüscher [61, 58] skaliert das Problem etwa mit

V N2
eig, wobei V dem Volumen des 4D-Raumzeitgitters und Neig der Anzahl der zu berechnenden

kleinen Eigenmoden entspricht. Die Anzahl der gesuchten kleinen Eigenmoden Neig steigt dabei

etwa in demselben Maße wie das Volumen V . Es gibt im Wesentlichen zwei Herangehenswei-

sen, um dem Eigenwertproblem numerisch gegenüber zu treten: Zum einen sind das Krylov-

Unterraumverfahren wie das Arnoldi-Verfahren oder aber Verfahren die auf Shift-Invertierung

des vorliegenden Operators basieren wie die Rayleigh23-Quotienten-Iteration. Im besten Fall

kann beides kombiniert werden. Generell liegt es nahe, die hermitesche Struktur von Q auszunut-

zen, was für das Arnoldi-Verfahren sehr einfach ist, denn dieses ist für hermitesche Operatoren

äquivalent zum wesentlich weniger aufwendigen Lanczos24-Algorithmus. Beim Einsatz der Shift-

Invertierung bzw. des Gleichungsysstemlösers ist beispielsweise MINRES eines der bekanntesten

Verfahren die für (und nur für) hermitesche Operatoren ausgelegt sind.

Um die Symmetrie des hermiteschen Operators auszunutzen, könnte DD-αAMG für den

Operator Q derart angepasst werden, dass die Glättung via der SAP-Methode (vgl. Kapitel 4.3)

symmetrisiert wird (durch entsprechendes Vor- und Nachglätten; da nicht-stationäre Verfahren

vorliegen, ist dies nicht trivial). Ebenso muss der Grobgitteroperator Qc hermitesch sein (dies ist

vergleichsweise einfach zu realisieren), damit die Grobgittersysteme mit MINRES gelöst werden

69
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können. Darüber hinaus ist es auch kein Problem die Schurkomplement-Präkonditionierung zu

symmetrisieren. Erste vielversprechende Ergebnisse für kleinere Konfigurationen konnten leider im

Größeren nicht bestätigt werden. Dies liegt nachweisbar daran, dass die Hermitizität der auftre-

tenden Systeme sehr anfällig gegenüber Störungen ist, insbesondere sind die Grobgittersysteme

aufgrund von Rundungsfehlern niemals hundertprozentig hermitesch. Weiter konvergiert auch

die SAP-Methode nur sehr schlecht für Q, unabhängig davon, ob zum Lösen der Blocksysteme

MINRES oder GMRES verwendet wird. Demnach müssen wir uns leider vorerst vom Gedanken

verabschieden, die Hermitizität von Q ausnutzen zu wollen.

Wie bereits erwähnt, zeigten viele Tests, dass SAP nicht, oder nur unzureichend, als Glätter

fürQ funktioniert, selbst wenn Überrelaxationsvarianten verwendet werden. Das GMRES-Verfahren

konvergiert bekanntlich für jedes eindeutig lösbare Gleichungssystem und mit passend gewählten

Neustarts produziert das Verfahren auch für Q stabile Glättungsresultate (vgl. auch Abbildung

6.6). Durch diese Anpassung ähnelt DD-αAMG für Q (im Folgenden mit AMG bezeichnet) den

in [4, 17, 81] vorgeschlagenen Mehrgitterverfahren für D und wird darüber hinaus etwa um den

Faktor 2.5 langsamer als DD-αAMG für D. Da das adaptive Mehrgitterverfahren darauf basiert,

kleine Eigenmoden von Q auf den gröberen Gittern zu behandeln, funktioniert dies auch für

Q − σI, solange σ betragsmäßig hinreichend klein ist. Demnach erlaubt dieses Vorgehen Shift-

Invertier-Eigenlöser mit Mehrgitterverfahren zu beschleunigen. In aller Regel sind die Shifts σ

innerhalb solcher Verfahren nahe an Eigenwerten λ von Q, daher wird Q − σI noch sehr viel

schlechter konditioniert sein als bereits ohnehin. Dennoch werden wir zeigen, dass wenn wir auf

Eigenlöser-Strategien setzen, die auf einer Invertierung des geshifteten Systems Q− σI beruhen,

wir das in der Gitter-QCD verbreitete Arnoldi-Verfahren (Programmbibliothek ARPACK und

seine parallelisierte Variante PARPACK [100]) in Sachen Effizienz übertreffen können.

Eine der am weit verbreitetsten Shift-Invertier-Eigenlöser ist die Rayleigh25-Quotienten-

Iteration, auf die wir uns nun konzentrieren.

6.1 Rayleigh-Quotienten-Iteration

Zum leichteren Verständnis der Rayleigh-Quotienten-Iteration betrachten wir zunächst die Po-

tenzmethode nach von Mises26 (vgl. auch [44, 73, 93]). Sei hierfür im Beispiel A ∈ Rn×n

eine invertierbare Matrix mit reellen Eigenwerten, welche o. E. betragsmäßig aufsteigend geordnet

werden können:

0 < |λ1| < |λ2| < · · · < |λn|.

Angenommen wir haben zu jedem λi den zugehörigen Eigenvektor vi, i = 1, . . . , n, mit ‖vi‖22 :=

vHi vi = 1, so können wir jeden Vektor x ∈ Rn in die Eigenbasis von A,

x =

n∑
i=1

αivi,
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entwickeln. Hieraus erhalten wir

Akx =
n∑
i=1

λki αivi, k ∈ N,

und stellen fest, dass sich für große k auf der rechten Seite der Summand durchsetzt mit dem

dominanten Eigenwert λn (o. E. αn 6= 0, sonst wähle anderes x). Wir können also mittels

Akx ≈ λknαnvn

aus Akx den Eigenvektor zum betragsmäßig größten Eigenwert von A berechnen. ‖Akx‖ konver-

giert demnach gegen |λn| (unabhängig von der gewählten Norm). Das bestimmen des Vorzeichens

des Eigenwerts benötigt einige Tricks, im komplexen Fall ist die Berechnung des Eigenwerts via

vHAv, mit v := Akx, k hinreichend groß, aber sehr einfach, zumindest wenn keine vielfachen

Eigenwerte auftreten (die Diagonalisierbarkeit von A spielt hier eine Rolle). Algorithmus 11 be-

schreibt das Verfahren (auch für komplexe Matrizen, ohne vielfache Eigenwerte), wobei die Nor-

mierung in jeder Iteration aus Stabilitätsgründen erfolgt.

Algorithmus 11: Potenzmethode nach von Mises (bzgl. der Euklid-Norm)

Eingabe: Startvektor v(0) mit ‖v(0)‖2 = 1

Ausgabe: Approximatives Eigenpaar (λ(k), v(k)) zum betragsgrößten Eigenwert von A

1 for k = 1, 2, . . . do

2 ṽ(k) ← Av(k−1)

3 v(k) ← ṽ(k)/‖ṽ(k)‖2
4 λ(k) ← (v(k−1))H ṽ(k)

5 end for

In der vorliegenden Form kann die Potenzmethode nur verwendet werden um den be-

tragsmäßig größten Eigenwert und den zugehörigen Eigenvektor zu bestimmen. Zur Berechnung

anderer Eigenwerte kann die Matrix aber passend transformiert werden:

(i) Ersetzten wir Zeile 2 von Algorithmus 11 durch ṽ(k) ← A−1v(k−1), so konvergiert das Ver-

fahren gegen den Eigenvektor zum kleinsten Eigenwert λ1. Insbesondere hat A−1 dieselben

Eigenvektoren wie A.

(ii) Falls λ eine Näherung an einen beliebigen Eigenwert von A ist, selbst aber nicht im Spektrum

σ(A) liegt, so konvergiert Algorithmus 11 mit (A − λI)−1 gegen einen Eigenvektor zum

Eigenwert nahe an λ, denn (A−λI)−1 besitzt die Eigenwerte (λi−λ)−1, i = 1, . . . , n. Diese

Variante des Algorithmus 11 ist bekannt als die gebrochene Iteration von Wielandt27.

(iii) Passen wir schließlich in jeder Iteration λ durch die aktuelle Eigenwertnäherung λ(k) an,

so führt dies auf die Rayleigh-Quotienten-Iteration (RQI), welche lokal quadratisch, für

hermitesche Matrizen sogar lokal kubisch konvergiert (für einen Beweis siehe z. B. [83]).
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Beste Voraussetzungen also für das Eigenwertproblem mit hermiteschem Q, wobei statt

einer echten Invertierung (Q − σI)−1 selbstverständlich unser Mehrgitterverfahren angewendet

auf (Q− σI)x = v zum Einsatz kommt.

Wir verbinden RQI auf folgende Weise mit dem Mehrgitterverfahren: Initial werden Neig

orthonormale Startvektoren v1, . . . , vNeig
korrespondierend zu Eigenwertstartwerten λ1 = · · · =

λNeig = 0 fixiert. Unter Verwendung des Mehrgitterverfahrens werden alle Vektoren vi durch eine

Shift-Inversion vi ← (Q − λiI)−1vi aktualisiert. Anschließend werden die Vektoren v1, . . . , vNeig

re-orthonormalisiert und die Eigenwertapproximationen mittels λi = vHi Qvi angepasst. Diesen

Prozess wiederholen wir solange, bis die Norm des Eigenvektorresiduums ‖Qvi − λivi‖2 kleiner

als eine vorgegebene Fehlertoleranz ε ist.

Das beschriebene Vorgehen ist im Algorithmus 12 zusammengefasst. In der Praxis starten

wir mit den Testvektoren v1, . . . , vNeig
, die in der Setup-Phase des Mehrgitterverfahrens generiert

wurden, welche approximativ schon Eigenvektoren zu kleinen Eigenwerten darstellen. In diversen

Tests stellte sich heraus, dass nicht immer alle Neig kleinsten Eigenpaare (λi, vi) berechnet werden.

Zwar sind diejenigen λi, die sehr nahe an Null liegen immer dabei, bei größerem Abstand zum

Ursprung fehlen jedoch einige der übrigen kleinsten Eigenwerte. Dies passiert insbesondere dann,

wenn der zufällige Startvektor nur wenig mit der Richtung des gewünschten neuen Eigenvektors

gemein hat oder wenn die aktuelle Eigenwert-Iterierte zu groß wird. Um die Häufigkeit dieses

Effekts zu reduzieren, wurde in Zeile 4 eine Dämpfung eingebaut, welche die Reichweite der

Shifts begrenzt.

Für die folgenden numerischen Ergebnisse mit Neig = 20 wurde AMG mit der in Algorith-

mus 12 beschriebenen Rayleigh-Quotienten-Iteration kombiniert. Dabei wurden alle Berechnun-

Algorithmus 12: Rayleigh-Quotienten Iteration + AMG

Eingabe: Orthonormale Startvektoren v1, . . . , vNeig
, Fehlertoleranz ε

Ausgabe: Eigenpaare (λ1, v1), . . . , (λNeig
, vNeig

)

1 Setze λi = 0, εi = 1, ∀ i = 1, . . . , Neig

2 while ∃ εi : εi > ε do

3 for all i = 1, . . . , Neig mit εi > ε do

4 σ ← λi ·max(1− εi, 0)

5 vi ← (Q− σI)−1vi /* GLS lösen via Mehrgitterverfahren */

6 vi ← vi −
∑i−1

j=1(vHj vi)vj

7 vi ← vi/‖vi‖2
8 Aktualisiere vi in Interpolation P

9 λi ← vHi Qvi

10 εi ← ‖Qvi − λivi‖2
11 end for

12 end for
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Abbildung 6.1: Vergleich zwischen PARPACK und RQI+AMG, benötigte Zeit um Neig = 20

kleinste Eigenvektoren zu berechnen.

gen innerhalb der RQI bis auf die Invertierung mit doppelter Maschinengenauigkeit durchgeführt.

Jede Shift-Inversion wurde mit FGMRES in doppelter Maschinengenauigkeit ausgeführt, welches

wiederum flexibel mit dem algebraischen Mehrgitterverfahren (AMG) in einfacher Maschinenge-

nauigkeit präkonditioniert wurde. Alle Ergebnisse wurden auf dem Juropa Rechencluster des Jülich

Supercomputing Center (JSC) berechnet. Dieser Rechner besitzt 2208 Nodes, jeweils mit zwei

Intel Xeon X5570 (Nehalem-EP) Quad-Core-Prozessoren. Er lässt ein Maximum von 8192 Ker-

nen pro Job zu und der verwendete ICC-Compiler benutzte die Optimierungs-Flags -O3, -ipo,

-axSSE4.2 und -m64.

In Abbildung 6.1 ist ein Vergleich zwischen der Rayleigh-Quotienten-Iteration, kombiniert

mit dem algebraischen Mehrgitterverfahren (RQI+AMG) und dem PARPACK [100] dargestellt.

Letzteres ist die parallelisierte Implementierung der Open-Source-Programmbibliothek ARPACK,

basierend auf dem implicit restarted-Arnoldi-Algorithmus, welcher (nicht nur∗) in der Gitter-

QCD verbreitet ist. Das Verfahren (vgl. Algorithmus 1) baut zunächst einen Krylov-Unterraum

mit fest gewählter Dimension Nkw (die Größe, bei der neu gestartet wird) auf und approximiert

dort Neig Eigenpaare von Q durch die der Hessenberg-Matrix HNkw
. Der Neustart innerhalb des

Verfahrens behält die Neig berechneten Eigenpaarapproximationen und verbessert diese mit einem

neuen Krylov-Unterraum, bestehend aus Neig alten Vektoren und Nkw − Neig neuen Eigen-

vektoren aus neuerlichen Arnoldi-Iterationen. Mit der Neustartlänge von Nkw = 100 wurden

hier die besten Resultate erzielt. Wir stellen fest, RQI+AMG schlägt PARPACK bezüglich der

Rechenzeit bereits bei kleineren 48× 243-Konfigurationen um eine Zehnerpotenz. Für Gitter mit

Volumen 64 × 403 überschreitet PARPACK bereits das 24-Stunden Job-Limit bei 1024 Kernen,

∗Die Matlab-Funktion eigs basiert ebenfalls auf ARPACK.
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Abbildung 6.2: Vergleich zwischen PARPACK und RQI+AMG, Skalierung bezügl. der Anzahl

kleinster Eigenmoden Neig.

dennoch lässt sich an den Kurven ablesen, dass die Skalierung bezüglich der Gittergröße bei RQI

wesentlich besser ist als bei PARPACK. Dies ist ein großer Vorteil, wenn es um aktuelle großvolu-

mige Gittersimulationen geht. Die betrachteten Konfigurationen sind zwei-Flavour-Simulationen

mit mud ∼ 290 MeV und Gitterabstand a ∼ 0.071 fm (weitere Details zu den verwendeten

Konfigurationen sind in [8] zu finden).

Etwas anders ist die Situation leider, wenn wir die Skalierung bezüglich Neig untersuchen.

In den Rechnungen für Abbildung 6.2 verwenden wir konstante Nkw = 200, da Tests gezeigt

haben, dass es kaum Einfluss auf die Laufzeit hat Nkw in Abhängigkeit zu Neig zu setzen. Wir

merken an, dass bei allen diesbezüglichen Tests immer Neig <
1
2Nkw eingehalten wurde. Die Re-

chenzeit für RQI+AMG wächst rapide je mehr Eigenwerte berechnet werden sollen. PARPACK

hingegen weißt nahezu konstante Laufzeiten bei wachsendem Neig auf. Grundsätzlich skaliert der

Orthogonalisierungsprozess des Arnoldi-Verfahrens in der Größenordnung O(N2
eig). In den vor-

liegenden Berechnungen dominieren aber, wegen der Neustarts, eher die Matrix-Vektor-Produkte

und nicht der Orthogonalisierungsprozess. RQI+AMG andererseits verwendet alle Neig berechne-

ten Eigenvektorapproximationen für den Interpolationsoperator P des Mehrgitterverfahrens. Der

Grobgitteroperator Qc = PHQP hat dann die Komplexität O(N2
eig), da jeder Grobgitterknoten

2Neig Variablen hält, die alle benachbarten Grobgitterknoten über eine (weniger dünnbesetzte)

2Neig × 2Neig-Matrix koppelt. Das Lösen des Grobgittersystems skaliert dadurch mindestens mit

O(N2
eig).

Abbildung 6.3 zeigt schließlich den Einfluss von Fluktuationen in acht verschiedenen, sto-

chastisch unabhängigen Konfigurationen für zwei verschiedene Gittergrößen. Die Einflüsse sind

wenig signifikant.
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Abbildung 6.3: Vergleich zwischen PARPACK und RQI+AMG, Fluktuation über 2× 8 stochas-

tisch unabhängige Konfigurationen.

Um die Probleme bei der Skalierung bezüglich Neig in den Griff zu bekommen, käme ein

Ansatz in Frage, der nicht immer alle Eigenvektorapproximationen verwendet, um die Interpolation

P zu verbessern. Tatsächlich ist es möglich, die Shift-Inversionen bezüglich Q durch Systeme mit

dem Operator D zu ersetzen, um die Schwächen des algebraischen Mehrgitterverfahrens bezüglich

Q zu umgehen. Genauer gilt aufgrund der Γ5-Symmetrie des Wilson-Dirac-Operators

(Q− σI)−1 = (D − σΓ5)−1Γ5 (6.1)

und numerische Tests zeigen, dass eine Anpassung in Zeile fünf von Algorithmus 12 zu

vi ← (D − σΓ5)−1Γ5vi

den verloren gegangenen Laufzeitfaktor von 2.5 wieder nahezu gutmacht, auch weil es wieder

möglich wird, SAP sinnvoll als Glätter zu verwenden.

Um die Skalierung bezüglich Neig bei RQI+AMG weiter zu verbessern, soll im Folgenden

ein neuer, alternativer Ansatz vorgestellt werden, der RQI durch ein Verfahren ersetzt, das auf

Shift-Invertierung und Unterraumprojektionen basiert und zwar zusätzlich und anders zu den

Krylov-Unterraumprojektionen und den Projektionen innerhalb des Mehrgitterverfahrens.

6.2 Jacobi-Davidson

Das Jacobi28-Davidson-Verfahren (JD) wurde 1996 von Sleijpen und van der Vorst [97] vorge-

schlagen. Es kombiniert Ideen des Davidson-Verfahrens von Ernest R. Davidson [22] aus dem Jahre

1975 und des Jacobi-Verfahrens [49, 50] von 1845 (!). Ursprünglich für nur reell-symmetrische
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Matrizen konzipiert, gibt es auch Versionen für hermitesche Operatoren [3] wie unser Q. Ver-

einfacht können wir uns das JD-Verfahren als ein Unterraumverfahren in Kombination mit RQI

vorstellen, daher funktioniert der
”
Γ5-Trick“ hier ebenso (vgl. Gleichung (6.1) und (6.2)).

Das Verfahren teilt sich im Wesentlichen in zwei Schritte, erstens einen Informationsgewinn

aus dem aktuellen Ansatzraum und zweitens eine Erweiterung dieses Raumes. Ersteres wird durch

ein Standard-Rayleigh-Ritz-Verfahren oder mittels harmonischer- (z. B. [98]) bzw.
”
refined“-

Rayleigh-Ritz-Vektoren [31] realisiert. Zweiteres, die Erweiterung des Ansatzraumes, erfolgt

durch approximatives Lösen der sog. Korrekturgleichung(
I − uuH

)
(Q− θI)

(
I − uuH

)
v = −r. (6.2)

Um das JD-Verfahren im Detail zu verstehen, beginnen wir mit einem kurzen Überblick zum

Davidson-Verfahren. Sei dazu A ∈ Rn×n regulär und Uk := [u1, . . . , uk] ∈ Rn×k eine Matrix mit

orthonormalen Spalten. Sei weiter (θ, w) ein Eigenpaar der projizierten Eigenwertgleichung

UHk AUkw = θw.

Davidson schlug nun vor den Ansatzraum Spann{u1, . . . , uk} mit der Suchrichtung

t := (DA − θI)−1r

zu erweitern, wobei r := Au− θu das Residuum bezüglich des sog. Ritz-Paares (θ, u) mit u :=

Ukw und DA die Diagonale von A bezeichnet. uk+1 ist dann festgelegt durch Orthonormalisieren

von t gegen Spann{u1, . . . , uk}. Algorithmus 13 beschreibt das Vorgehen in Pseudocode.

Algorithmus 13: Davidson-Verfahren

Eingabe: A, u1

Ausgabe: Uk+1

1 for j = 1, . . . , k do

2 B ← UHj AUj

3 Berechne Eigenpaar (θ, w) von B

4 u← Ujw

5 r ← Au− θu
6 t← (DA − θI)−1r

7 Orthogonalisiere t gegen u1, . . . , uj

8 uj+1 ← t/‖t‖2
9 Uj+1 ← [Uj , uj+1]

10 end for

Bemerkenswert ist die Tatsache, dass das Davidson-Verfahren scheitert, falls A selbst eine Dia-

gonalmatrix ist, denn dann gilt

t = (DA − θI)−1r = u ∈ Spann{u1, . . . , uk},
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d. h., der Ansatzraum wird nicht erweitert.

Jacobis Ansatz (vgl. [97]), approximative Eigenpaare von diagonaldominanten Matrizen zu

berechnen beruht auf folgender Überlegung: Ist α := a11 das größte Diagonalelement, dann ist

α ein approximativer Eigenwert zum approximativen Eigenvektor e1 := [1, 0, . . . , 0]T ≡ [1, zT0 ]T .

Um diese Approximationen zu verbessern, können wir die Gleichung

A

[
1

z

]
≡

[
α cT

b F

][
1

z

]
= λ

[
1

z

]

nach dem unbekannten (verbesserten) Eigenvektorteil z und dem unbekannten (verbesserten)

Eigenwert λ lösen†. Dies ist äquivalent zum Lösen des Gleichungssystems

λ = α+ cT z,

(F − λI)z = −b. (6.3)

Jacobi schlug hier vor, dieses Gleichungssystem iterativ zu lösen:

θk = α+ cT z(k),

(DF − θkI)z(k+1) = (DF − F )z(k) − b,

mit DF der Diagonalen von F .

Tatsächlich können die Eigenwertverbesserungen z(k+1) des Jacobi-Verfahrens auch der-

art interpretiert werden, dass sie einer Orthogonalitätsbedingung genügen, d. h., das Jacobi-

Verfahren kann als Projektionsmethode angesehen werden. Betrachten wir hierfür einen simpleren

Fall mit Az = b (vgl. Gleichung (6.3)), dann gilt für die Iterierten komponentenweise

z
(k+1)
i =

1

aii

bi − n∑
j=1

j 6=i

aijz
(k)
i

 .

Dies ist mit L := Spann{ei} und z0 := [z
(k)
1 , . . . , z

(k)
i−1, 0, z

(k)
i+1, . . . , z

(k)
n ]T äquivalent zu

bi − (Az(k+1))i = 0 mit z(k+1) ∈ z0 + L

⇔ b−Az(k+1)⊥L mit z(k+1) ∈ z0 + L.

Sleijpen und van der Vorst kombinierten nun das Davidson-Verfahren und die Projektions-

Idee von Jacobi zu einer neuen iterativen Projektionsmethode (vgl. [97]). Genauer soll zu einem

gegebenen Ritz-Paar (θ, u) der gegebene Ansatzraum U um eine Suchrichtung erweitert werden,

die orthogonal zu u steht und approximativ die Korrekturgleichung (6.2) erfüllt.

Sei u eine Approximation an einen Eigenvektor von A und sei θ ein Ritz-Wert bezüglich u.

Ähnlich zum Jacobi-Ansatz bestimmen wir eine Verbesserung des approximativen Eigenvektors u

†Jeder Eigenvektor v (der nicht orthogonal zu e1 ist) lässt sich durch entsprechende Skalierung auf die Gestalt

v = (1, ṽ)T bringen.
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durch einen Anteil, der orthogonal zu u steht. Falls ‖u‖2 = 1 ist, sieht eine Orthogonalprojektion

von A an u⊥ (≡ Spann{u}⊥) folgendermaßen aus:

B = (I − uuH)A(I − uuH).

Wegen θ = uHAu gilt

A = B +AuuH + uuHA− θuuH . (6.4)

Sei (λ, x) ein Eigenpaar von A mit x = u + v, wobei v unbekannt mit der Eigenschaft v⊥u.

Diese Darstellung ist möglich solange x 6= αu, α ∈ C, und x /∈ u⊥. Falls x = αu haben wir einen

Eigenvektor gefunden und sind fertig. Der Fall x ∈ u⊥ hat Wahrscheinlichkeit Null. Für dieses

Eigenpaar gilt

A(u+ v) = λ(u+ v).

Mit Bu = 0 und u⊥v folgt mit Hilfe von Gleichung (6.4)

A(u+ v) = Bv +Au+ λu− θu

und demnach

(B − λI)v = −r,

wobei r = Au − θu. Da λ unbekannt ist, ersetzen wir den Wert durch den Ritz-Wert θ (oder

falls vorhanden, durch eine andere Approximation an einen gesuchten Eigenwert) und erhalten die

Korrekturgleichung (
I − uuH

)
(A− θI)

(
I − uuH

)
v = −r.

Die Lösbarkeit der Korrekturgleichung mit v ∈ u⊥ ist äquivalent zur Existenz eines α ∈ C mit

(A− θI)v = −r + αu.

Dabei geht ein, dass uHr = 0. Sofern θ /∈ σ(A) gilt folgende Rechnung

v = −(A− θI)−1r + α(A− θI)−1u

= −u+ α(A− θI)−1u

und α lässt sich so bestimmten, dass v⊥u, außer wenn (A− θI)−1u ∈ u⊥, was mit Wahrschein-

lichkeit Null eintritt.

Darüber hinaus heißt das, dass der Ansatzraum, welcher um v erweitert wird und u bereits

enthält, auch den Vektor t := (A−θI)−1u enthält. Mit anderen Worten: t ist eine Verbesserung des

Ritz-Paares (θ, u) generiert durch einen Schritt RQI mit Shift θ und Startvektor u. Demnach kann

das JD-Verfahren als eine Variante der RQI angesehen werden, und wir können Konvergenzraten

erwarten, die mindestens so hoch sind wie die der RQI, d. h. quadratisch oder im hermiteschen

Fall sogar kubisch [1].

Nachdem die Korrekturgleichung approximativ nach v gelöst wurde, wird v Anschließend

gegen den Ansatzraum U orthonormalisiert und um diesen Vektor erweitert. Dann bestimmen wir
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Algorithmus 14: Jacobi-Davidson-Verfahren (vereinfachte Darstellung)

Eingabe: Startvektor u

Ausgabe: Eigenwerte von A auf Diagonale von UHAU

1 for j = 1, . . . do

2 Berechne Eigenpaare (θ, w) von UH(A− θI)U

3 Wähle Ritz-Paar (θ, u := Uw)

4 Residuum r ← Au− θu /* Abbruch, wenn ‖r‖2 klein genug */

5 Löse Korrekturgleichung mit Mehrgitterverfahren:

6
(
I − uuH

)
(A− θI)

(
I − uuH

)
v = −r

7 Orthonormalisiere v gegen bisherigen Ansatzraum

8 Erweitere Ansatzraum U ← [U, v]

9 end for

darin das nächste Ritz-Paar. Diesen Prozess iterieren wir solange bis ein Abbruchkriterium erfüllt

wird (d. h., die berechnete Eigenpaarapproximation ist hinreichend gut).

Damit ist das JD-Verfahren von Sleijpen und van der Vorst im Groben beschrieben. Algorith-

mus 14 beschreibt das Vorgehen (vereinfacht) im Pseudocode. Für die konkrete C-Implementierung

des JD-Verfahrens verwenden wir Neustarts [109], harmonische Ritz-Werte [98] und optionale

Polynomfilterung [114].

Für weiterführende Details und Analysen des JD-Verfahrens siehe [80] oder [109]. Tatsächlich

100

1000

10000

50 100 150 200 250 300 350 400

Z
ei

t
zu

r
L

ös
u

n
g

(i
n

C
or

e-
h

)

Anzahl Eigenvektoren Neig

PARPACK
Jacobi-Davidson

Abbildung 6.4: Vergleich zwischen PARPACK und Jacobi-Davidson, Skalierung bzgl. Anzahl

kleinster Eigenmoden Neig.
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wird in den Quellen auch gezeigt, dass die Ansatzraumerweiterung im JD-Verfahren auf die ro-

busteste Art geschieht, in dem Sinne, dass die Erweiterung möglichst unempfindlich gegenüber

dem Fehler der approximativen Lösung der Korrekturgleichung ist.

Abbildung 6.4 zeigt das Ergebnis erster Tests mit bis zu 400 kleinsten Eigenvektoren eines

48× 243 Gitters bei m0 = 350 MeV. Das resultierende Verfahren ist über zehn Mal schneller als

PARPACK.

PARPACK, bzw. bereits das zugrundeliegende Arnoldi-Verfahren (im hermiteschen Fall

das Lanczos-Verfahren), kann bei vorliegenden Problem durch Polynomfilterung teilweise we-

sentlich beschleunigt werden [23], auch wenn z. B. die MATLAB-Funktion eigs entgegen früherer

Versionen [88] stattdessen vorschlägt, mit A−1 oder (A−σI)−1 zu arbeiten. Zu diesem Vorschlag

konnte in zahlreichen Tests keine Laufzeitverbesserungen festgestellt werden (ganz im Gegenteil).

6.3 Polynomfilter

Polynomfilterung ist in der Gitter-QCD eine verbreitete Methode und ermöglicht es, Bereiche

des Spektrums hervorzuheben und gleichzeitig weniger gewünschte Bereiche zu dämpfen. Abbil-

dung 6.5 und 6.6 veranschaulichen den Sachverhalt mit Tschebyscheff29-Polynomen der Grade

acht und zehn, sowie Polynomen konstruiert von Zhou und Saad [114]. Ausgenutzt wird bei der

Polynomfilterung insbesondere, dass die Eigenvektoren einer Matrix Q identisch sind mit den Ei-

genvektoren von p(Q), wobei p(x) ein beliebiges nicht-konstantes Polynom ist. Die Eigenwerte von

Q erhalten wir leicht aus den Eigenvektoren von p(Q) zurück, indem vQvH für jeden Eigenvektor

v von p(Q) berechnet wird. Durch die rekursive Definition der Tschebyscheff-Polynome

T0(x) := 1, T1(x) := x, Tk+1(x) = 2Tk(x)x− Tk−1(x), k = 2, 3, . . . ,

können die entsprechenden Matrixpolynome durch diverse weitere Matrix-Vektor-Operationen aus-

gerechnet werden. Mittels a-priori-Informationen über das Spektrum von Q via kleineren Konfigu-

rationen (vgl. Kapitel 2.2), liefert z. B. Tm(Q−10I)Tm(Q+10I) via Algorithmus 15 teils deutliche

Beschleunigung im Arnoldi-Verfahren, vgl. [23]. Es gibt auch Varianten der Rekursion, sodass

Algorithmus 15: Tschebycheff-Polynomfilter

Eingabe: Matrix Q, Vektor v, Shift σ und Polynomgrad m ≥ 2

Ausgabe: v ← Tm(Q+ σ)v

1 v0 ← v

2 v1 ← Qv + σv

3 for k = 2, . . . ,m do

4 v ← 2Qv1 − v0

5 v0 ← v1

6 v1 ← v

7 end for



81 6. Eigenlöser und eine physikalische Anwendung 81

T
[a,b]
m (x) das Spektrum auf einem beliebigen Intervall [a, b] (statt auf[−1, 1]) dämpft, vgl. [115].

Verbreitet ist auch Tm(Q2) für m bis zu 20 zu verwenden. Der Clou ist nun aber, dass auch das

JD-Verfahren mit Polynomfiltern beschleunigt werden kann [114].
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Abbildung 6.5: Zwei Tschebycheff-

Polynome.

0.00 0.05 0.10 0.15 0.20 0.25

1.0

0.8

0.6

0.4

0.2

0.0

−0.2

Poly. Grad 64
Poly. Grad 96
Poly. Grad 128

Gesuchter Eigenwertbereich
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Abbildung 6.6: Polynome von Zhou und

Saad [114].

Als Ausblick ist das JD-basierte PRIMME-Verfahren (PReconditioned Iterative MultiMethod

Eigensolver) von Stathopoulos et al. [113] von 2016 interessant. Darüber hinaus arbeitet auch

der FEAST-Algorithmus von Polizzi et al. [105] von 2014 mit approximativen Inversionen, die mit

unserem hochperformanten DD-αAMG-Löser harmonieren könnten.

Zum Abschluss der Arbeit betrachten wir im folgenden Abschnitt eine physikalische Anwen-

dung von Eigenlösern für die Gitter-QCD, das approximative
”
low-mode averaging“.

6.4 Approximative Eigenmoden und deren physikalische Anwendung

Wir wollen die beschriebenen Eigenlöser für das
”
low-mode averaging“ benutzen, welches ver-

wendet wird um stochastisches Rauschen in zusammenhängenden (engl. connected) [25, 40] und

unzusammenhängenden (engl. disconnected) [73, 10, 32, 9] Hadron-Observablen zu reduzieren.

Dabei konzentrieren wir uns auf sog. Pion- und η-Meson-Korrelatoren.

Diese Art Rauschunterdrückungstechniken sind besonders wichtig bei fermionischen n-Punkt-

Funktionen von sog. Flavour-Singulett-Größen. Für η-Mesonen der Zwei-Flavour-Theorie, ist bei-

spielsweise ein Interpolator gegeben durch

Oηx =
1√
2

(
ūxΓ5ux + d̄xΓ5dx

)
,

wobei ūx, ux, d̄x, dx Spinore der verschiedenen Pion-Flavours bezüglich des Raumzeitpunkts x

bezeichnen. Für weitere Details zur Notation siehe [39]. Mittels Wick30-Rotationen angewandt
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auf Zwei-Punkt-Funktionen erhalten wir für den Fall von entarteten Quarkmassen den η-Korrelator

Cη = 〈OηxŌηy〉 ∝ Spur
(
D−1
x,yΓ5D

−1
y,xΓ5

)
− 2 Spur(D−1

x,xΓ5) Spur(D−1
y,yΓ5), (6.5)

mit verschiedenen Quarkpropagatoren. Bspw. transportiert D−1
x,y einen Up- oder Down-Quark von

Raumzeitpunkt x nach y (insbesondere unterscheiden wir nicht zwischen Du und Dd, d. h., wir

betrachten eine sog. exakte Isospin-Geometrie). Der erste Term auf der rechten Seite von Glei-

chung (6.5), dem zusammenhängenden Anteil, ist auf einer einzelnen Quelle y0 unter Verwendung

der Γ5-Symmetrie und der Translationsinvarianz günstig zu berechnen:

Spur
(
D−1
x,y0Γ5D

−1
y0,xΓ5

)
= Spur

(
D−1
x,y0(D−1

x,y0)H
)
,

wobei sich die Spur wie oben auf die Spin- und Farbindizes bezieht. Für den komplizierteren,

unzusammenhängenden Anteil startet und endet der Propagator an demselben Raumzeitknoten

und die Berechnung der
”
Schleife“ D−1

x,xΓ5 würde die Inversion der vollen Matrix D benötigen,

was viel zu aufwändig wäre. Stattdessen werden stochastische Methoden verwendet (vgl. [9]),

d. h.,

Q−1 = D−1Γ5 =
1

Nstoch

Nstoch∑
i=1

siη
H
i +O

(
1√
Nstoch

)
(6.6)

mit hinreichend großem Nstoch und einer approximativen Lösung des linearen Gleichungssystems

Qsi = ηi, (6.7)

wobei ηi ein zufällig verrauschter Vektor mit Eigenschaften

1

Nstoch

Nstoch∑
i=1

ηi = O
(

1√
Nstoch

)
und

1

Nstoch

Nstoch∑
i=1

ηiη
H
i = I +O

(
1√
Nstoch

)
ist. Eine verbreitete Wahl, welche wir hier auch verwenden, ist die Einträge von ηi mit zufälligen

Werten aus Z/2Z + iZ/2Z zu füllen.

In Gleichung (6.6) akkumulieren sich mehrere Quellen stochastischen Rauschens, die sich zu

dem inhärenten stochastischen Verhalten der Eichfelder aufaddieren. Genauer heißt das, Nstoch

muss so groß gewählt werden, dass das stochastische Rauschen der Eichfelder im gesamten Feh-

lerrauschen dominiert. Dies benötigt weitere Lösungen der Gleichung (6.7) und wird bei kleinen

Pionmassen und großem Gittervolumen schnell sehr rechenintensiv, selbst wenn moderne Mehr-

gitterverfahren verwendet werden.

Um das stochastische Rauschen zu reduzieren, gibt es eine Fülle an Techniken wie z. B. die

Partitionierung [32, 11, 108], die
”
truncated solver“-Methode [9] oder das

”
low-mode averaging“

(in diesem Zusammenhang bekannt als
”
truncated eigenmode acceleration“ [10, 32]), und viele

mehr. Welche Kombination dieser Methoden am besten funktioniert, hängt im Allgemeinen nicht

nur von der Effizienz der benutzten Löser ab, sondern auch von der betrachteten Observable. Der

η-Korrelator ist bekannt dafür, dominant in den kleinen Eigenmoden zu sein [73], daher ist er eine

ideale Größe, um die von unserem Eigenlöser generierten, approximativen Eigenpaare zu testen.
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6.4.1 Low-Mode Averaging

Die Grundidee des
”
low-mode averaging“ (LMA) ist es, die inverse des Operators Q additiv in

zwei Teile zu trennen:

Q−1 = Q−1
low +Q−1

high,

wobei Q−1
low den Beitrag der Neig kleinsten Eigenmoden von Q enthält:

Q−1
low =

Neig∑
i=1

1

λi
viv

H
i . (6.8)

Entsprechend ist Q−1
high = Q−1 −Q−1

low, vgl. (6.6).

Für den η-Korrelator (vgl. Gleichung 6.5) wenden wir LMA sowohl auf den verbundenen

(Pion-) Korrelator

Ccon(x, y) = Spur
(
Q−1
x,yQ

−1
y,x

)
als auch auf den unverbundenen Beitrag

Cdis(x, y) = Spur
(
Q−1
x,x

)
Spur

(
Q−1
y,y

)
an, jeweils wiederum durch Aufteilen der Terme. Für den ersteren, verbundenen Teil mitteln wir

über die Raumdimensionen und dämpfen über die Euklidische Zeitdimension t, d. h.,

Ccon(t) = C low
con(t) + Chigh

con (t) = C low
con(t) +

(
Cp2a
con (t)− C low,p2a

con (t)
)
, (6.9)

wobei die einzelnen Terme mit x = (x̃, t0 + t), y = (ỹ, t0), y0 = (ỹ0, t0) gegeben sind durch

C low
con(t) =

1

V

∑
x̃,ỹ,t0

Spur
(
(Q−1

low)x,y(Q
−1
low)y,x

)
,

C low,p2a
con (t) =

∑
x̃

Spur
(
(Q−1

low)x,y0(Q−1
low)y0,x

)
,

Cp2a
con (t) =

∑
x̃

Spur
(
(D−1)x,y0(D−1)Hy0,x

)
.

Die konkrete Berechnung ist wie folgt: Zuerst berechnen wir die kleinen Eigenmoden von C low
con,

welcher die gesamte (
”
all-to-all“) Information des Operators Q benötigt. Die Korrektur über die

restlichen, hohen Eigenmoden (die Terme in der Klammer von Gleichung (6.9)) wird aus den

Eigenmoden der
”
point-to-all“-Zweipunkt-Funktionen C2pa

con und C low,p2a
con am Punkt y0 gewonnen.

Für den unzusammenhängenden Teil korrelieren wir zwei Schleifen zu den Zeitpunkten t0

und t0 + t:

Cdis(t) =
1

Nt

∑
t0

L(t0 + t)L(t0),

wobei die Information zu den kleinen Eigenmoden aus wiederum aufgeteilten Einzelschleifen

stammt:

L(t) =
∑
x̃

Spur
(
Q−1
x,x

)
= Llow(t) + Lhigh(t).
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Entsprechend Gleichung (6.8) werden die kleinen Eigenmoden via

Llow(t) =
∑
x̃

Spur
(
(Q−1

low)x,x
)

berechnet. Um die restlichen Eigenmoden von Q in diesem Fall zu extrahieren benutzen wir den

Orthogonalprojektor

P = I −
Neig∑
i=1

viv
H
i ,

und mitteln

Lhigh(t) =
∑
x̃

Spur
(
(PQ)−1

x,x

)
.

Wir merken an, dass in diesem Fall PQ = QP gilt.

Wenn nun, wie im Fall des η-Korrelators, die kleinen Eigenmoden dominieren, so ist die

Berechnung von Q−1
high sehr günstig. Die größte Rechenzeit liegt indes beim Berechnen der Ei-

genmoden von Q, weshalb sich LMA umso mehr lohnt, desto öfter die Eigenmoden verwendet

werden können.

6.4.2 Approximatives LMA

Neben dem Verbessern der Eigenlöser können auch die Rechenkosten für LMA selbst reduziert

werden, indem die Fehlertoleranz der einzelnen Eigenmoden heruntergeschraubt wird und da-

nach mit eben dieser Fehlertoleranz auftretendes Rauschen reduziert wird. Sei dazu mit (λ̃i, ṽi),

i = 1, . . . , Neig, das i-te approximative Eigenpaar zum exakten Eigenpaar (λi, vi) von Q bezeich-

net. Dann ist die Eigenmoden-Fehlertoleranz durch

εi = ‖Qṽi − λ̃iṽi‖2,

gegeben, wobei wir annehmen, dass die ṽi orthonormalisiert sind. Seien weiter

Aij := ṽHi Qṽj , i, j = 1, . . . , Neig,

die Einträge einer Matrix A, die wir zum Messen der Inexaktheit der Eigenmoden verwenden

können: Mit

ṽi = vi + vδi

und dem Kronecker-Delta δij können wir die Einträge Aij schreiben als

Aij = λjδij + λiv
H
i v

δ
j + λj(v

δ
i )
Hvj + (vδi )

HQvδj .

Insbesondere ist A eine Diagonalmatrix, für den Fall, dass alle Eigenpaare exakt wären, d. h.,

vδi = 0, i = 1, . . . , Neig. Wenn wir nun in Gleichung (6.8) alle inversen Eigenwerte durch die

Einträge der Inverse von A ersetzen, ergibt sich

Q̃−1
low :=

Neig∑
i,j=1

(A−1)ij ṽiv
H
j , (6.10)
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Abbildung 6.7: Jeweils 30 kleinste Eigenwerte von Q zu 64 Konfigurationen mit 64×403 Knoten,

mud ≈ 290 MeV. Der untere Bereich zeigt das
”
exakte“ Spektrum (ε ≤ 10−8). Die Eigenwerte

im oberen Bereich sind mittels der Testvektoren der Setup-Phase berechnet mit dem relativen

Fehler ε
|λ| .

wobei Q̃−1
low = Q−1

low für exakte Eigenpaare gilt. Ersetzen aller Q−1
low im vorherigen Abschnitt 6.4.1

durch Q̃−1
low bewirkt eine gleichmäßige Einflussnahme aller inexakten Eigenmoden und wir erhalten

trotz geringerer Fehlertoleranzen ähnliche, stochastisch unverzerrte Resultate.

6.4.3 Verwenden von Testvektoren für LMA

Um weitere Rechenkosten für LMA einzusparen, können wir noch einen Schritt weitergehen und

die Testvektoren, die in der Setup-Phase des Mehrgitterverfahrens anfallen, als approximative

Eigenvektoren verwenden, da diese bereits ebenfalls kleine Eigenmoden approximieren. Tatsächlich

hat sich in numerischen Tests bei vorliegender Gitter-Konfiguration gezeigt, dass sich nach 30

Setup-Iterationen und Fehlern der Größenordnung ε ≈ 10−1 durchaus gute Ergebnisse mit LMA

erzielen lassen.

Da innerhalb der Setup-Phase die Testvektoren als Zufallsvektoren initialisiert werden und

der Mittelwert über alle rHQr verschwindet (wobei r hier einen Zufallsvektor bezeichnet), hat dies

den Effekt, dass einige Eigenwerte unterrepräsentiert sind und die Eigenapproximationen spiegeln

die sog. Massenlücke nicht wider. Dies hat störenden Einfluss auf die Qualität von Q̃−1
low.

Glücklicherweise können solche Abweichungen durch Untersuchen der relativen Toleranz

ε/|λ̃| der Eigenmoden erkannt werden, vgl. Abbildung 6.7.

Es stellt sich heraus, dass die Eigenmoden, welche die Massenlücke nicht widerspiegeln,

genau die sind mit großem ε/|λ̃|. Für unsere Berechnungen schneiden wir daher die Menge der

verwendeten Eigenpaare ab: {
(λ̃, ṽ, ε)

}
 
{

(λ̃, ṽ, ε) :
ε

|λ̃|
≤ C

}
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Abbildung 6.8: Der pseudoskalare verbundene Zwei-Punkt-Korrelator zum Zeitpunkt t = Nt/2,

berechnet mit den abgeschnittenen Eigenmoden bezüglich C. Die Kästchen zeigen den Beitrag

der inexakten kleinen Eigenmoden, die Kreise zeigen den vollen Beitrag der Zwei-Punkt-Funktion.

Zum Vergleich zeigt der rote Streifen die berechneten Werte unter Verwendung von 20 exakten

Eigenmoden (ε ≤ 10−8), sowie der gelbe Streifen die konventionellen
”
point-to-all“ Resultate.

Zu beachten ist, dass nach gefundener Schranke C, diese unabhängig vom Gittervolumen oder

der Pionmasse ist, da sich jede Normalisierung herauskürzt.

Ein guter Test zur Bestimmung der Schranke C ist es, den Beitrag der kleinen Eigenmoden

der unverbundenen Zweipunkt-Funktion zu untersuchen, da diese ohne stochastische Abschätzung

berechnet werden kann. Abbildung 6.8 zeigt das Verhalten von C low
con in Abhängigkeit von C. Die

Daten stammen aus einer zentralen Zeitebene, wo die relativen Beiträge der kleinen Eigenmoden

am größten sind und demnach der Effekt der inexakten Eigenmoden am besten gesehen werden

kann. Falls C zu groß gewählt wird, treten große Fehler in den Funktionen C low
con und C full

con auf,

denn viele irrelevante Richtungen dominieren die Eigenmoden. Wird C zu klein gewählt, können

wir vom Effekt von LMA nicht mehr profitieren. Nachdem die Korrektur bezüglich der großen

Eigenmoden (vgl. Gleichung (6.9)) vollzogen wird, sind die Ergebnisse unabhängig von C bezüglich

der Fehlertoleranz korrekt, wie an den horizontalen Streifen im Fall des
”
point-to-all“ und dem

LMA-Fall zu erkennen ist. Tatsächlich scheint C = 0.75 ein guter Kompromiss zu sein.

Wir betonen, dass, obwohl Q̃−1
low sowohl von der Anzahl als auch der Genauigkeit der Eigen-

moden beeinflusst ist, die Korrektur der größeren Eigenmoden stabil und stochastisch unverzerrt

ist. Variieren des Abschneideparameters C zeigt dies empirisch.

6.4.4 Numerische Ergebnisse

Für den ersten Praxistest benutzen wir dieselbe Gitterkonfiguration wie im vorhergehenden Ab-

schnitt: ein moderat großes Gitter mit Volumen V = 64×403 mit zwei Seequark-Flavours generiert

von QCDSF [8] bei Pionmasse mud ≈ 290 MeV und Invers-Kopplung β = 5.29, d. h. Gitterab-
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stand a ≈ 0.071 fm. Um die Beiträge angeregter Zustände zu reduzieren, verwenden wir 400

Schritte Wuppertal-Smearing [42] mit Parameter δ = 0.25 für die Quark-Quellen und -Senken

sowie für die Eigenvektoren. Für die Eichfelder verwenden wir APE-Smearing [30] mit Gewichtung

α = 0.25.

Insgesamt wurden 64 stochastisch unabhängige Konfigurationen verwendet. Für jede werden

30 approximative Eigenmoden mit Hilfe der Setup-Phase des DD-αAMG-Lösers für Q berechnet.

Die Inexaktheit beläuft sich bei diesen Eigenmoden auf etwa ε ≈ 10−1. Im Mittel werden durch

C = 0.75 etwa drei der 30 Eigenmoden verworfen. Zum Vergleich und Verifizierung wurden eben-

falls die 20 kleinsten Eigenmoden mittels RQI+AMG (siehe Abschnitt 6.1) mit einer Fehlertoleranz

ε = 10−8 berechnet. Wir bezeichnen diese als
”
exakt“.

Abbildung 6.9 zeigt den verbundenen (Pion-) Korrelator und seinen relativen Fehler. Auf-
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Abbildung 6.9: Der pseudoskalare verbundene (Pion-) Korrelator (links) und sein relativer Fehler

zu jeder Zeitebene (rechts), berechnet mit exaktem (rote Dreiecke), approximativem (orangene

Kreise) und ganz ohne (blaue Boxen) LMA.
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Abbildung 6.10: Der unverbundene Beitrag (links) und der volle η-Korrelator (rechts), berechnet

mit exakten (rote Dreiecke), approximativen (orangene Kreise) und ohne (blaue Boxen) LMA. Für

alle Berechnungen wurde Nstoch = 20 verwendet. (Die Datenpunkte sind zur besseren Lesbarkeit

geringfügig horizontal verschoben.)



88 6. Eigenlöser und eine physikalische Anwendung 88

5 10 15 20 25 30 35 40 100 1000

1.0·10−12

8.0·10−13

6.0·10−13

4.0·10−13

2.0·10−13

0

1.0·10−12

8.0·10−13

6.0·10−13

4.0·10−13

2.0·10−13

0

kein lma
approx. lma
exaktes lma

kein lma
approx. lma
exaktes lma

σ
( C η(

t/
a
)) 2

σ
( C η(

t/
a
)) 2

Nstoch Rechenzeit (Core-h / Konf.)

Abbildung 6.11: Der durchschnittliche quadratische Fehler der ersten zehn Zeitebenen des η-

Korrelators berechnet mit exaktem (rote Dreiecke), approximativem (orangene Kreise) und ohne

(blaue Boxen) LMA. Der linke Plot zeigt wie viele stochastische Schätzer Nstoch gebraucht werden,

um eine gewisse Fehlerschranke zu erreichen (gemittelt über 64 stoch. unabh. Konfigurationen).

Der rechte Plot vergleicht die tatsächlich anfallenden gesamt Rechenkosten.

grund der Mittelung über die Raumkoordinaten funktioniert LMA in diesem Fall sehr gut. Der

verbundene Beitrag liefert erste Hinweise darauf, dass unsere Verbesserungen funktionieren: Die

Fehler für das approximative LMA sind fast gleich wie bei der Verwendung von exakten Eigenmo-

den. Für den unverbundenen Anteil wurde in allen Fällen
”
time dilution“ [108, 81, 6] verwendet

mit ∆t = 4a. Wie in Abbildung 6.10 zu sehen, stimmen die Datenpunkte des approximativen

LMA sowie exakten LMA mit denen überein, für die kein LMA verwendet wurde. Die blauen Wer-

te in der Mitte der beiden Plots schwanken etwas stärker, hier scheint LMA glättend zu wirken.

Um beim Kombinieren der verbundenen und unverbundenen Korrelator-Anteile den η-Korrelator

Cη zu erhalten, akkumulieren sich die Fehler bei größeren Zeiteinheiten und die Daten zeigen

nicht das zu erwartende exponentielle Abfallverhalten. Dies beruht vermutlich auf den zu kleinen

Stichproben der gewählten Konfigurationen (vgl. auch [6]).

An den Plots erkennen wir, dass sowohl exaktes als auch approximatives LMA tendenzi-

ell Fehler reduzieren. Alternativ führt sicherlich das Erhöhen der Anzahl stochastischer Vektoren

Nstoch zu ähnlichen Fehlertoleranzen ohne LMA zu benutzen. Die linke Abbildung 6.11 zeigt hier-

zu den quadratischen Fehler gemittelt über die ersten zehn Zeitabschnitte (danach erhöht sich das

Rauschen rapide) in Abhängigkeit von Nstoch. Dieser Vergleich verdeutlicht den positiven Effekt

von LMA: In allen Fällen sind ohne LMA knapp doppelt so viele Inversionen nötig um dieselbe

Fehlertoleranz zu erreichen. Exaktes und approximatives LMA zeigen nahezu gleiches Verhalten.

Schließlich zeigt der rechte Plot von Abbildung 6.11 den wohl interessantesten Teil: Berechnungs-

zeit des η-Korrelators in Abhängigkeit zu gewissen Fehlerschranken. Hier zeigt sich, die benötigte

Rechenzeit kann mit approximativem LMA um etwa einen Faktor zehn gegenüber exaktem LMA

reduziert werden. Insbesondere ist approximatives LMA kosteneffizient und zuverlässig anwend-

bar bei größeren Gitterkonfigurationen, sogar dann, wenn nur eine kleine Anzahl verschiedener

n-Punkt-Funktionen berechnet werden müssen. Es bleibt zu betonen, dass die Möglichkeiten des
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LMA sowie die benötigte Anzahl an Eigenmoden stark von der untersuchten Observable, sowie

noch stärker vom Volumen der Gitterkonfiguration und der Pionmasse abhängt.

Die Berechnungen in diesem Abschnitt wurden gemeinsam mit der Arbeitsgruppe G. Bali

an der Universität Regensburg auf SuperMUC im Leibniz-Rechenzentrum in Garching ausgeführt

und in [7] publiziert.
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Anmerkungen‡

23 John William Strutt, 3. Baron Rayleigh (* 12. November 1842 in Langford Grove, Maldon,

England; † 30. Juni 1919 in Terlins Place bei Witham, England), war ein englischer Physiker. Er

erhielt 1904 den Nobelpreis für Physik.
24 Carl Gustav Jacob Jacobi (eigentlich Jacques Simon; * 10. Dezember 1804 in Potsdam; †

18. Februar 1851 in Berlin) war ein deutscher Mathematiker.
25 Cornelius Lanczos (auch Kornél Lőwy, Kornél Lánczos; * 2. Februar 1893 in Székesfehérvár,

Österreich-Ungarn; † 25. Juni 1974 in Budapest) war ein ungarischer Mathematiker und Physiker.
26 Richard Edler von Mises (* 19. April 1883 in Lemberg, Galizien, Österreich-Ungarn; † 14.

Juli 1953 in Boston, Massachusetts, Vereinigte Staaten) war ein österreichischer Mathematiker.

Er ist der Bruder des Wirtschaftswissenschaftlers Ludwig von Mises.
27 Helmut Wielandt (* 19. Dezember 1910 in Niedereggenen; † 14. Februar 2001 in Schliersee)

war ein deutscher Mathematiker. Sein Hauptarbeitsgebiet war die Gruppentheorie, speziell die

Theorie der Permutationsgruppen.
28 Pafnuti Lwowitsch Tschebyscheff (wiss. Transliteration Pafnutij L’vovič Čebyšëv; * 4. (jul.)/

16. Mai 1821 (greg.) in Okatowo im Kreis Borowsk (heute in der Oblast Kaluga); † am 26. No-

vember (jul.)/ 8. Dezember 1894 (greg.) in Sankt Petersburg) war ein russischer Mathematiker.

Tschebyscheff gilt zusammen mit Nikolai Iwanowitsch Lobatschewski als der bedeutendste russi-

sche Mathematiker des 19. Jahrhunderts.
29 Gian-Carlo Wick (* 15. Oktober 1909 in Turin; † 20. April 1992 ebenda) war ein italienischer

Physiker, der wichtige Beiträge zur Quantenfeldtheorie leistete.

‡Alle Angaben aus der deutschen Wikipedia, Stand 2017
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[42] S. Güsken, U. Löw, K. H. Mütter, R. Sommer, A. Patel und K. Schilling, Non-singlet axial

vector couplings of the baryon octet in lattice QCD. Phys. Lett. B 227(2): 266-269, 1989.

[43] E. Hairer, C. Lubich und G. Wanner, Geometric Numerical Integration. Volume 31 of Sprin-

ger Series in Computational Mathematics. Springer, Heidelberg, 2010.

[44] M. Hanke-Bourgeois, Grundlagen der Numerischen Mathematik und des Wissenschaftlichen

Rechnens. Vieweg+Teubner, Wiesbaden, 3. Auflage, 2009.

[45] A. Hasenfratz, R. Hoffmann und S. Schaefer, Hypercubic smeared links for dynamical fer-

mions. JHEP, 0705-029, 2007.

[46] A. Hasenfratz, R. Hoffmann und S. Schaefer, Localized eigenmodes of the overlap operator

and their impact on the eigenvalue distribution. JHEP, 0711-071, 2007.

[47] M. Hestenes und E. Stiefel, Methods of conjugate gradients for solving linear sys-

tems. Journal of Research of the National Bureau of Standards 49: 409–436, 1952.

doi:10.6028/jres.049.044

[48] M. E. Hochstenbach, Jacobi-Davidson Gateway. Webseite: http://www.win.tue.nl/

casa/research/scientificcomputing/topics/jd/, 2014.
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