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Zusammenfassung

Die vorliegende Arbeit beschéftigt sich mit numerischen Ldsungsmethoden von sehr groBen linea-
ren Gleichungssystemen mit Anwendung im Bereich von Gitter-QCD Simulationen. Diese gehéren
zu den rechenintensivsten Problemen des aktuellen Hochleistungsrechnens. Die zentrale Heraus-
forderung besteht dabei aus dem Lésen der diskretisierten Dirac-Gleichung, welche durch ein
diinnbesetztes lineares Gleichungssystem mit einer halben Milliarde und mehr Unbekannten gege-
ben ist. Wir stellen ein hochperformantes adaptives Mehrgitterverfahren auf Basis von Gebiets-
zerlegungsmethoden vor. Dabei werden Schwarz-Alternierende-Methode mit Aggregat-basierten
Gitterhierarchien kombiniert. Das Krylov-Unterraumverfahren FGMRES bildet das Riickgrat un-

seres Mehrgitterverfahrens.

Weiter werden neue Verfahren zur Spektralapproximation des symmetrisierten Dirac-Operators
vorgestellt, die auf Shift-Invertier-Ansétze wie der Rayleigh-Quotienten-Iteration und dem Jacobi-
Davidson-Verfahren basieren. Dazu wird das Mehrgitterverfahren angepasst und mit den genann-
ten Verfahren kombiniert. Wir zeigen, dass die resultierenden Verfahren mit in der Gitter-QCD
etablierten Vorgehensweisen konkurrieren kdnnen und durch besseres Skalierungsverhalten auch
und insbesondere bei zukiinfig groBeren Simulationen iiberlegen sind. Wir demonstrieren dies fiir

physikalisch relevante Szenarien.

Abstract

This thesis deals with numerical methods solving very large linear systems of equations arising
in the field of lattice QCD simulations. These are among the most computationally intensive
problems of modern high-performance computing. The central challenge is to solve a discretised
Dirac equation, which is given by a sparse linear system of equations with half a billion and more
unknowns. We present an efficient adaptive multigrid method based on domain decomposition
methods. In doing so, the Schwarz alternating procedure is combined with aggregate-based grid

hierarchies. The Krylov subspace method FGMRES forms the backbone of our multigrid process.

In addition, new methods for spectral approximations of the symmetrized Dirac operator based on
shift-invert approaches such as the Rayleigh quotient iteration and the Jacobi-Davidson method
will be presented. For this purpose, the multigrid method is adapted and combined with the
aforementioned methods. We show that the algorithms can compete with the ones currently in
use in lattice QCD and may even be superior for forthcomming larger simulations due to better

scaling behavior. We demonstrate this for physically relevant scenarios.
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1. Einleitung

Simulationen zur Gitter-Quantenchromodynamik (Gitter-QCD) geh&ren zu den rechenintensiv-
sten Problemen im Bereich des Hochleistungsrechnens, und ein nicht unerheblicher Teil der aktuell
verfiigbaren Rechenleistung wird fiir Gitter-QCD-Simulationen aufgewendet [87]. Die zentrale
Herausforderung besteht dabei aus dem Losen der diskretisierten DIRAC!-Gleichung, welche im

Wesentlichen durch ein sehr groBes, diinn besetztes, lineares Gleichungssystem
Dz=5b (1.1)

gegeben ist. Das Ziel dieser Arbeit ist es, ein hochperformantes adaptives Mehrgitterverfahren
zum Loésen der DIRAC-Gleichung vorzustellen und auf dieser Grundlage Spektralapproximationen

fiir den symmetrisierten DIRAC-Operator zu berechnen.

Der Operator D = D(U,m) ist hierbei eine Diskretisierung des kontinuierlichen DIRAC-
Operators aus der QCD, typischerweise die WILSON?2-Diskretisierung, auf einem vierdimensionalen
Raum-Zeit-Gitter. Der WiLSON-DIRAC-Operator D hangt dabei von einem Eichfeld U und einem
Massenparameter m ab. Aktuelle Simulationen arbeiten mit Gittern bestehend aus 144 x 643
Knoten und mehr, was in Gleichungssystemen mit mindestens einer halben Milliarde Unbekannten

miindet [5].

Ublicherweise werden die Gleichungssysteme (1.1) mit iterativen numerischen Verfahren
gelost, iiberwiegend durch KRyLOv-Unterraumverfahren. Die Konvergenzrate dieser Verfahren
verschlechtert sich jedoch enorm, wenn groBe Gitterkonfigurationen und/oder physikalisch rele-
vante Massenparameter erreicht werden. Um dem entgegen zu wirken, miissen Prakonditionierer
fiir besagte Unterraumverfahren entwickelt werden, die dazu im Stande sind, die Skalierungspro-
bleme zu reduzieren. In der Gitter-QCD sind bereits ,,odd-even “-Prdkonditionierung, Deflation und
Gebietszerlegungsmethoden verbreitet und liefern signifikante Laufzeitverbesserungen gegeniiber
nicht-prakonditionierten Methoden. Deren Skalierungsverhalten ist dennoch nahezu unverdndert

schlecht.

Hier kommen Mehrgitterverfahren ins Spiel, die in der Gitter-QCD bereits eine hohe Reputa-
tion genieBen wegen ihrem Potential hohe Konvergenzraten praktisch unabhangig von Gitterweiten
zu erreichen, z. B. im Bereich der elliptischen partiellen Differentialgleichungen. Aufgrund der in
der Gitter-QCD involvierten Eichfelder und ihrer stochastischen Natur sind geometrische Mehrgit-
terverfahren, also Verfahren, die ausschlieBlich mit der vorliegenden partiellen Differentialgleichung
arbeiten, trotz jahrzehntelanger Forschung nicht praktikabel [19, 52]. Daher wurden in den letz-
ten Jahren vermehrt adaptive algebraische Mehrgitterverfahren konstruiert [4, 17], die direkt auf
der Struktur der Operatormatrix ansetzen und z.B. in der Programmbibliothek QOPQDP [81]

implementiert sind.
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Ein 3hnlicher in der Gitter-QCD weitverbreiteter Loser-Ansatz namens ,,inexact deflation”
wurde von M. Liischer in [61] vorgeschlagen und eine (verbesserte) Implementierung ist in [62]

verfiigbar.

Der Fokus dieser Arbeit liegt zu Beginn auf der Herleitung des Aggregat-basierten adaptiven
Mehrgitterverfahrens DD-aAMG [35], welches Aspekte der vorher genannten Verfahren aufgreift,
jedoch an anderen Stellen signifikante Unterschiede aufweist. Letztendlich stellt dieses Verfahren
aber durch seine Skalierbarkeit eine wesentliche Verbesserung zu den aktuell in der Gitter-QCD
verbreiteten Gleichungssystemltser dar. Die hier vorgestellten Ansdtze spiegeln Resultate einer
engen Kooperation mit der Arbeitsgruppe A. Frommer (Angewandte Informatik) der Universitat

Wauppertal wider.

Der wesentliche Beitrag der Arbeit besteht darin, das vorgestellte Mehrgitterverfahren anzu-
passen und mit numerischen Algorithmen zur Eigenwertbestimmung zu kombinieren. Es werden
neue Verfahren vorstellt, die signifikante Verbesserungen im Bereich der Eigenmodenberechnung
des symmetrischen DIRAC-Operators @) := ['s D aufweisen. Varianten der Verfahren wurden be-

reits in [7] veroffentlicht, eine weitere Publikation ist in Vorbereitung.
Die vorliegende Arbeit ist genauer wie folgt aufgebaut:

Kapitel 2 gibt einen Uberblick zu physikalischen Hintergriinden und der Herleitung der WiL-
SON-Diskretisierung inklusive des Clover-Korrekturterms, sowie zu gewissen Eigenschaften des
hergeleiteten Operators. Dariiber hinaus wird statisches Prakonditionieren und das Konzept des

Smearing, einhergehend mit einer Normalitidtsanalyse von D, erldutert.

Kapitel 3 mochte eine knappe Einfiihrung in das Gebiet der KRYLOV-Unterraumverfahren
vermitteln, mit Schwerpunkt auf dem robusten GMRES-Verfahren und dessen flexible Variante
FGMRES.

Kapitel 4 wendet sich Gebietszerlegungsmethoden zu und legt mit der Einfiihrung der SAP-

Methode als Glatter den Grundstein fiir das genannte Mehrgitterverfahren.

Kapitel 5 stellt die Aggregat-basierte Interpolation vor, mit der zwischen verschiedenen
Gitterebenen kommuniziert wird. Ebenso ist die Adaptivitat des resultierenden Verfahrens ein hier
vorgestellter wichtiger Aspekt. Das Kapitel schlieBt mit numerischen Ergebnissen und Vergleichen

zu verbreiteten anderen Ldsern in der Gitter-QCD.

SchlieBlich prasentiert Kapitel 6 neue Resultate aus der Kombination des hergeleiteten
Mehrgitterverfahrens mit numerischen Verfahren zur Eigenwertberechnung mit Fokus auf Shift-
Invertier- bzw. Projektionsverfahrens-Ansédtzen. Das Kapitel schlieBt mit Ergebnissen einer aktu-
ellen physikalischen Anwendung, die im Rahmen einer Kooperation entstand, in die zusatzlich die

Arbeitsgruppe G. Bali (Hochenergiephysik) der Universitat Regensburg eingebunden war.
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Anmerkungen*

1 Paul Adrien Maurice Dirac (* 8. August 1902 in Bristol; T 20. Oktober 1984 in Tallahassee)
war ein britischer Physiker, Nobelpreistrager und Mitbegriinder der Quantenphysik. Eine von Di-
racs wichtigsten Entdeckungen ist in der Dirac-Gleichung von 1928 beschrieben, in der Einsteins
spezielle Relativitatstheorie und die Quantenphysik erstmals zusammengebracht werden konnten.

2 Kenneth Geddes Wilson (* 8. Juni 1936 in Waltham, Massachusetts; 1 15. Juni 2013 in Saco,
Maine) war ein US-amerikanischer Physiker und Nobelpreistrager. Er war Schiiler von Murray
Gell-Mann.

*Alle Angaben aus der deutschen Wikipedia, stand 2017
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2. Quantenchromodynamik

Als Teil der Teilchenphysik, genauer der relativistischen Quantenmechanik, beschreibt die Quan-
tenchromodynamik (QCD) die starke Wechselwirkung der kleinsten der Menschheit bekannten
Elementarteilchen, die der Quarks. Im Unterschied zur Eichtheorie der Quantenelektrodynamik
(QED) besitzen Quarks neben der elektrischen- noch eine zusitzliche Ladung, die Farbladung
(daher der Name Chromodynamik). Quarks bilden zusammen mit den Leptonen (z. B. dem Elek-
tron) und den Eichbosonen (insbesondere dem Gluon) die fundamentalen Bestandteile der Materie

(siehe Abbildung 2.1).

Drei Generationen
der Materie (Fermionen)

Masse—| 1,275 GeV 173,07 GeV 125,9 GeV
Ladung—| % % 0 I I
Spin—, 2 C 2 0
Higgs
Name—)| charm top Boson
95 MeV 4,18 GeV
- -
g 'S b
é 2 2
= strange bottom
S [¢]
<2eV <0,19 MeV <18.2 MeV
0 0 V 0
Ve YU B VT
Elektron- Myon- Tau-
Neutrino Neutrino Neutrino
c
0,511 MeV 105,7 MeV 1,777 GeV 8
c
o |1 e il i1 §
S |2 2 u Y2 T 2
8 Elektron Myon Tau O
- L

Abbildung 2.1: Das Standardmodell mit Quarks, Leptonen und Eichbosonen*.

Quarks treten in insgesamt sechs sog. Quark-Flavours auf: Up, Down, Charm, Strange, Top
und Bottom und deren jeweiligen Antiteilchen (gegeben durch eine Anti-Farbladung). Quarks
treten allerdings niemals einzeln, sondern in Gruppierungen, sog. Hadronen, auf; Dieses Phanomen
wird als Confinement [110] bezeichnet. Das Proton, als Beispiel eines stabilen Hadrons, besteht
aus zwei Up-Quarks und einem Down-Quark. Der Zustand eines Fermions (insbesondere eines

Quarks, vgl. Abbildung 2.1) wird durch die DIrRAC-Gleichung beschrieben, welche bereits im Jahre

*Urspriingliche Quelle: Fermilab, Office of Science, United States Department of Energy, Particle Data Group

13
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1928 entwickelt wurde. Der zugehorige DIRAC-Operator, kann in der kontinuierlichen Theorie

geschrieben werden als
4
D= ZW ® (O + Ap),
p=1

wobei die Summierung iliber ;x = 1,2, 3,4 zum vierdimensionalen Raumzeitkontinuum korrespon-
diert. Weiter ist 0, = 0/0x,, wobei x, die Komponenten des Raumzeitpunkts = € R* be-
zeichnet. Die Eichfelder A, reprasentieren die Eichmatrizen A, (x) € su(3), welche Elemente der
Lie3-Algebra' iiber der speziellen unitiren Gruppe SU(3)* sind.

(C4><4

Die DirAC-Matrizen v1,v2, 73,74 € sind hermitesche, unitdre Generatoren der CLIF-

FORD*-Algebra Cly 4(R). Details zu diesen Objekten folgen im nichsten Abschnitt.

Erwdhnt sei, dass es (viele) alternative Notationen gibt, wobei geringere Abweichungen
z.B. darin bestehen, dass die imagindre Einheit i aus den Eichfeldern A, ausgeklammert und

vorangestellt wird.

Losungen der DIRAC-Gleichung, bzw. Vorhersagen iiber Hadronen (u. a. iiber ihre Obser-
vablen wie Masse, beteiligte Fermionen, gebundene Eichbosonen, vgl. [55]) kdnnen in der QCD
weder analytisch noch durch klassische Stérungstheorie, sondern nur durch numerische Simulati-
on bestimmt werden (zumindest bei groBer Kopplungskonstante, wie sie im Niederenergiebereich
auftritt). Hierfiir werden wir im folgenden Kapitel Konzepte der Gitter-QCD sowie vor allem die
WILSON-Diskretisierung des DIRAC-Operators vorstellen und herleiten. Das folgende Kapitel be-
ruht groBtenteils auf den QCD-Theorie Abschnitten in [39, 16, 89] und [35]. Fir einen tieferen

Einblick in die Materie sei hier auf [39, 24] sowie [69] verwiesen.

2.1 Kontinuierliche Theorie

Die physikalischen Hintergriinde weitestgehend beiseitelassend, konzentrieren wir uns in diesem
Kapitel auf die mathematische Konstruktion des DIRAC-Operators. Wir beginnen mit dem No-

tieren von Quarks und Gluonen in mathematisch handhabbaren Ausdriicken:

2.1.1 Definition
Seien C := {1,2,3} die Menge der Farb-Indizes, S := {0,1,2,3} die Spin- oder DIRAC-Indizes
sowie
b @ R* = C12 = %S,
z = (Y10(2), Yoo (), Y30(2), Y11 (), - .. ,¢33($))T

"Die zur SU(n) gehérende LiE-Algebra su(n) entspricht dem Tangentialraum am Einselement der Gruppe. Sie

besteht aus dem Raum aller schiefhermiteschen n x n-Matrizen mit Spur Null.
Die spezielle unitire Gruppe SU(n) besteht aus den unitiren n x n-Matrizen mit komplexen Eintrigen, deren

Determinante Eins betrigt.
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eine differenzierbare Funktion. Dann wird ¢ als Quarkfeld, bzw. 1(z) als DIRAC-Spinor bezeich-
net. Wir sammeln diese in M := {4 : v ist Quarkfeld}. Fiir p = 1,2, 3,4 sind

A, s RY = su(3),
x— Ay(x)

sog. Eichfelder, welche die Gluonen, also die Kopplung der Quarks, reprdsentieren. %

Die Komponenten des Spinors v(x) werden typischerweise mit 1., (x) notiert, wobei sich
¢ € C auf den Farb- und s € S auf den Spin-Index bezieht. Die Notation fiir einen fixierten
Spin-Index 0 € S, ¥, (7) = (wlg(:p),z/JQg(:z),@bga(a:))T, ist ebenso verbreitet, da die Eichfelder
nicht-trivial auf die Farbkomponenten und trivial auf die Spinkomponenten des Spinors ¥ (z) im
Sinne von

(Ap) () := (1a ® Apu())y(x)
wirken. Essentiell fiir die Wirkung des DIRAC-Operators auf die Quarkfelder i sind, neben den
oben bereits verwendeten Tensorprodukten (bzw. KRONECKER’-Produkten), bestimmte 4 x 4-

Matrizen:

2.1.2 Definition

Die vier hermiteschen, unitaren Matrizen v, € C*4, 1 = 1,2,3,4 erzeugen die CLIFFORD-

Algebra Cly 4(R) genau dann, wenn fiir alle 1, v = 1,2,3, 4 gilt

2-[47 n=rv,
VuYv + VoV = (2.1)
0, sonst.

Die (nicht-eindeutigen) Matrizen ,, werden als DIRAC- oder y-Matrizen bezeichnet. %

Hintergriinde zur Notation und Details zur Rolle der CLIFFORD-Algebren in diesem Teil der

Physik kann z. B. im Buch [55] nachgegangen werden.

Wichtig ist anzumerken, dass im Gegensatz zu den Eichmatrizen A,(x) und dem Spinor
Y (x), die y-Matrizen nicht von der Raumzeit = abhingen. Die Multiplikation einer y-Matrix mit

einem Quarkfeld ist wie folgt definiert:

(Vu¥)(@) = (7u ® I3) ().

Nun sind wir in der Lage, den DIRAC-Operator und dessen Wirkung auf Quarkfelder zu definieren.

2.1.3 Definition
Sei M der Raum der Quarkfelder, dann ist der kontinuierliche (massefreie) DIRAC-Operator eine

lineare Abbildung
D: M- M
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definiert durch

4
Di=> 7 ® 0+ Ay, (2.2)
pn=1

wobei 0, = 0/0x, die partielle Ableitung nach x,, p = 1,2,3,4, bezeichnet. Die Auswertung

von D) an einem Punkt z € R? ist via

4
(D¥)(2) = Y (3B + A0 (2).

p=1

gegeben. O

Der Differentialoperator 9, + A, ist quantenmechanisch eine , minimale Kopplung" und
dariiber hinaus so konstruiert, dass ((9, + A,)v¥)(z) auf dieselbe Weise unter lokalen Eichtrans-
formationen transformiert, wie ¢ (x), er ist also (Eich-)kovariant. Diese Eichtransformationen
entsprechen einem lokalen Wechsel des Farb-Koordinatensystems. A, als Teil des kovarianten
Differentialoperators, kann hierbei als Kopplung verschiedener, infinitesimal nah beieinander lie-
gender, Raumzeitpunkte verstanden werden. Eigenschaften der y-Matrizen ,, garantieren auch,
dass D (x) unter Transformationen der speziellen Relativititstheorie genau so transformiert wie
der Spinor 1 (x). Dies nennt man lokale Eichinvarianz und ist ein zentrales Prinzip des Standard-

modells der elementaren Teilchenphysik. Fiir Details siehe z. B. [86].

2.2 Gitter-QCD

Die Diskretisierung der Raumzeit des EUKLID®ischen Kontinuums durch ein hyperkubisches Gitter
mit regelmaBigem Gitterabstand, wohl aber unterschiedlicher Ausdehnung in Zeit N; und Raum
N,., hat vor allem zwei Griinde: Sie ermdglicht numerische Simulationen zum Einen und das
Erforschen von nicht-perturbativen Phanomenen der QCD zum Anderen. Die auf WILsON [110]
zuriickgehende Gitter-QCD assoziiert die fermionischen Spinor-Felder ¢(x) dabei mit Gitterknoten
x = [21, 72,23, 24]7 und die Eichfelder werden durch Links zwischen diesen Knoten dargestellt.
Kernaufgabe bei Gitter-QCD Simulationen wird es auf lange Sicht immer sein, die diskretisierte
DirAcC-Gleichung fiir eine gegebene (oder oft mehrere) rechte Seite zu Losen. In diesem Abschnitt
werden wir, neben der Einfiihrung in die Prinzipien der WILSON-Diskretisierung, auch auf die

numerischen Eigenschaften des resultierenden linearen Operators eingehen.

2.2.1 Definition

Wir betrachten ein periodisches regelmiBiges vierdimensionales Raumzeitgitter £ mit Gitterweite

a. Fiir je zwei =,y € L soll ein p € Z* existieren, sodass

Yy =1+ ap.
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So kénnen wir Shiftoperationen mittels eines Shiftvektors 1 € R*

a, V=W,
My =
0, sonst,

fiur p € {1,2,3,4} und v = 1,2, 3,4, definieren. O

Um Quarkfelder ¢ auf dem Gitter zu definieren, geniigt es Auswertungen an den Gitter-

punkten vorzunehmen:

Y L — C2
x — P(x).

Bis auf die Tatsache, dass diese Funktion nicht mehr differenzierbar ist, werden dieselben Notatio-
nen fiir den Spinor 1 (x) iibernommen, d. h. Spin- und Farbindizes 9., (x) fiir c € C, 0 € S (vgl.
Definition 2.1.1). Nun wenden wir uns den Eichfeldern Au zu, welche in der kontinuierlichen QCD
infinitesimal nah beieinanderliegende Punkte der Raumzeit koppeln und durch diskrete Variablen

Uu(x) ersetzt werden miissen.

2.2.2 Definition

Zu jeder Eichmatrix A, (z) ist die korrespondierende Diskretisierung U, (x) durch ein (quanten-

mechanisches) Pfadintegral entlang der Kante (x,z + [i) gegeben, genauer:

x4
T
Das diskretisierte Eichfeld U := {U,(z) : € £, p = 1,2, 3,4} nennt man (Eich-)Konfiguration.
O

Die analytische Transformation von A, zu U, ist allerdings nur von theoretischer Bedeu-
tung, da Gitter-QCD-Berechnungen immer direkt von diskret berechneten Eichkonfigurationen U
ausgehen. Anschaulich betrachtet, , lebt" die Variable UM(ZE) nicht im oder auf dem Gitterknoten
x, sondern auf der Kante (z,z + fi); Man spricht von Linkvariablen, denn U, (z) stellt die Kopp-
lung zwischen = und z + i dar. Insbesondere ist die Kopplung von z + i und x durch Uy, (z)~!

gegeben, vgl. Definition 2.2.2. Dariiber hinaus gilt
U,(x) € SU(3), insbesondere U, (z)~* = U, (z)","

wobei U, (z) = Uf(m) hier und im Folgenden die Adjungierte von U,(x) bezeichnet.

Abbildung 2.2 illustriert die hier verwendete Notationskonvention.

SFiir A spurfrei gilt det (exp(A)) = exp (Spur(A)) = 1 sowie fiir A schiefhermitesch exp(A4)~" = exp(A)".
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Up(x ﬂ+ﬁ\>OUu(x+ﬁ>\,\ Unlz+ g D)
e+ TR+ pto 7
Uy(x) Uy(z+ )

Abbildung 2.2: Die verwendete Notationskonvention auf dem Gitter.

Wir wenden uns nun der Diskretisierung der kovarianten Ableitung zu, welche auf ver-
schiedene Weise vollzogen werden kann; die hier beschriebene ist die am h&ufigsten verwendete
WILSON-Diskretisierung (vgl. [111]).

2.2.3 Definition

Sei A, ein Eichfeld und U, die zugehorige Eichkonfiguration. Die Definition der kovarianten

rechtsseitigen Differenzenquotienten

H (o Vipo (z+ 1) — g (
(A () = DT ER) ZYol0) o g (o)

a

und der kovarianten linksseitigen Differenzenquotienten

(Au¢0)($) — ¢a(x) B UM(:C B ﬂ)wa(lf - ﬂ)’

a

fiihrt mittels kovarianter zentralem Differenzenquotienten zu folgender naiven Diskretisierung des
(massefreien) DIRAC-Operators D (2.2):

4
Dy =) 7 ® (A + AM)/2. (2.3)
pn=1

Bevor wir zu Problemen und Verbesserungen dieser naiven Diskretisierung kommen, fiihren

wir ein Lemma an, welches wir spater bendtigen.



19 2. Quantenchromodynamik 19

2.2.4 Lemma

Fiir die vorwérts und riickwarts kovarianten finiten Differenzen gilt
(AM)H = Ay
Beweis. Seien 1) und 7 beliebige Quarkfelder. Dann gilt

(o, M) = Y (o(), Al (@)

zeL
= 2 Z<¢U($), Uf(.%’)?’]g(l' + /l)> - é Z<'¢U('r)>na(x)>
zeLl zel

= (%).

Die Periodizitat des Gitters £ erlaubt es nun, in der ersten Summe eine Indextransformation

x +— x + i anzuwenden

() = S lola— ), UL (&~ o)) — + (o (a), o (@)
zeLl xeLl
= ) U = i = ), m0(2)
€L
= _<Aud)o’770>- [l

Insbesondere ist die zentrale (kovariante) finite Differenz (A* 4 A},) /2 schiefhermitesch. Da
die y-Matrizen ~,, hermitesch sind (vgl. Definition 2.1), ergibt sich folgendes Korollar.

2.2.5 Korollar

Die naive Diskretisierung Dy aus (2.3) ist schiefhermitesch, d. h.,

Die naive Diskretisierung Dy erzeugt in dieser Form unphysikalische EigenvektorenY, auch
bekannt unter dem Problem der Fermionenverdopplung, welches untrennbar mit der chiralen Sym-
metrie auf dem Gitter verkniipft ist. Dies sind zwei der vier (hier nicht ndher genannten) Eigen-
schaften fiir Diskretisierungen des DIRAC-Operators, die nach dem Nielson-Nimomiya-Theorem
nicht gleichzeitig erfiillt werden konnen. Fiir Details verweisen wir auf [77] und [78]. Im Folgenden
stellen wir eine wiederum von WILSON [111] vorgeschlagene Méglichkeit vor, die Fermionenver-
dopplung zu vermeiden (welche jedoch die chirale Symmetrie explizit bricht): Der Stabilisierungs-
term aA,A*, welcher ein (kovarianter) zentraler Differenzenquotient zweiter Ordnung ist. Er wird

auch WILSON-Fermion genannt.

TDer Eigenraum eines Eigenwertes von Dy ist 16-dimensional, aber nur ein 1-dimensionaler Eigenraum korre-

spondiert zu jeweils einer Eigenfunktion des kontinuierlichen Operators D.
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2.2.6 Definition

Gegeben sei eine Konfiguration U auf einem Gitter £ mit n,s Knoten, Gitterweite a, sowie einem
Massenparameter mg. Dann ist die WILSON-Diskretisierung des DIRAC-Operators (auch bekannt
als WILSON-DIRAC-Operator) definiert durch

— Mo By _ M
Dy = a Il2n1;+ Z (’yu A + A ) CLI4®A A ) (243

Zum Massenparameter myg, welcher sich auf die Quarkmasse bezieht, sei an dieser Stelle nur
gesagt, dass dieser die groBten Schwierigkeiten insbesondere bei physikalisch relevanten kleinen
Quarkmassen hervorruft, bis dahingehend, dass friihere Gitter-QCD-Simulationen iiberhaupt nur
mit unrealistisch groBen Werten moglich waren. Fiir physikalische Details zum Massenparameter

sei exemplarisch auf [69] verwiesen.

Die Vertauschungseigenschaften (2.1) der y-Matrizen implizieren eine nicht-triviale Symmetrie

des WILSON-DIRAC-Operators Dy .

2.2.7 Lemma

Fir 75 := v1v27374 8ilt 57 = =5, 1= 1,2,3,4, vgl. (2.1), und mit I's := 1,,, ® 5 ® I3
weist der WILSON-DIRAC-Operator eine sog. I's-Symmetrie auf, d. h.,

(TsDw )" =TsDy.

Beweis. Aufgrund der Hermitizitat von «y, und 5 ist 757, schiefhermitesch. Mit Hilfe von Lemma
2.2.4 sehen wir, dass (v57,) ® (A, + A*) als Tensorprodukt zweier schiefhermitschen Operatoren

hermitesch ist. Dasselbe Lemma impliziert, dass
(A AT = (AMT(A)T = (=A,)(-AM) = A,A"

und somit auch Iy ® A, A" hermitesch ist. AuBerdem kommutiert I's (bzw. genauer v5 ® I3) mit

diesem Summanden, sodass die Behauptung folgt. O

2.2.8 Bemerkung
Mittels der beiden Projektoren

+ . I4+’7# und - 14_’7/1

T =g T =g

lasst sich Dy, angewendet auf einen diskretisierten Spinor ¢ (x), schreiben als

4+’ITL()

4
Dy () = v) =3 (my @ UL hb(a + ) + 7w @ Ul — bl — ).
pn=1
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Aus dieser Formulierung geht nochmals hervor, dass Dy die I's-Symmetrie aufweist, aller-
dings nicht hermitesch ist, da (w,f)H # m, (Dariiber hinaus ist Dy im Gegensatz zu D nicht
normal, vgl. Abschnitt 2.4). Neben kleineren Nachteilen, wie einer notwendigen Reskalierung des
Massenparameters, fiihrt die Verwendung von WILSON-Fermionen zum Auftreten reeller Eigen-
werte von Dy (vgl. Abbildung 2.4), auch exzeptionelle Konfigurationen genannt, was bei der
Verwendung des hermiteschen Operators I's Dy zu sehr kleinen Eigenwerten fiihrt und dieser
damit sehr schlecht konditioniert ist. Dariiber hinaus fiihrt der WILSON-Term im Gegensatz zum
naiven Ansatz Dy dazu, dass Gitterartefakte nur noch in der GréBenordnung O(a) verschwinden.
Um dieses letztgenannte Problem zu beheben, ist die im Folgenden beschriebene Clover-Wirkung,
welche auf Sheikholeslami und Wohlert [96] zuriickgeht, eine (mit einem passenden Parameter)

sinnvolle Modifikation von Dyy. Zunachst bendtigen wir hierfiir die Definition einer Plakette.

2.2.9 Definition

Gegeben sei eine Konfiguration von Linkvariablen {U,(z)}, dann ist die Plakette Q%" am Git-

terknoten z definiert durch

QLY = U () UM (x + p)Uy(x + 2)U, (x). (2.5)
O

Eine Plakette ist also ein Produkt von Linkvariablen, entlang eines Zykels der Lange vier,

was in der (u, v)-Ebene einem Quadrat entspricht:

Pl

ngy = —
Entsprechend sind die Plaketten der anderen Quadranten wie folgt definiert

o~ ey~ cuy ~ 1

leh v = T_1 Qm M=y T_)l Qx wy o = '

Offenbar sind verschiedene benachbarte Plaketten miteinander konjugiert, in dem Sinne, dass

nur der Startpunkt ein anderer ist. Beispielsweise gilt Q" = U, (2)Q5" UM (). Nun kommen
wir zum Sheikholeslami-Wohlert- oder auch Clover-(Korrektur-) Term:

2.2.10 Definition
Mit
Quu(z) == Q" + Q™ + Q" + Q™"
wird der Clover-Term C definiert durch
. 4
Cla)i= 203 () @ (Qu(a) — Quala)), (26)

pv=1
53l
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wobei cgy, > 0. Fiir eine lllustrierung der Wirkung des Clover-Terms auf dem Gitter siehe Abbildung
2.3. O

> >

v
=

Abbildung 2.3: Graphische Darstellung des Clover- (zu Deutsch , Kleeblatt- ") Terms.

Der Clover-Term reduziert die lokalen Gitterartefakte und gleicht damit die negativen Auswir-
kungen der WILSON-Fermionen aus. Diese Reduzierung hdngt allerdings stark vom Sheikholeslami-
Wohlert-Koeffizient cs,, ab, der geeignet gewahlt werden muss. Wihrend Sheikholeslami und
Wohlert den Koeffizienten zunichst auf dem Wert Eins belieBen [96], entwickelte Wohlert spater
Methoden, um diesen genauer zu bestimmen, bzw. mit der unrenormierten Kopplungskonstante
g der QCD in Beziehung zu setzen (csw = 1+ 0.2659g%) [112]. Neuere Arbeiten zu diesem Pa-
rameter, vor allem der ALPHA-Kollaboration!l, sind in [67, 29] und, speziell fiir den (wichtigen)

Fall der zwei-Flavour-Theorie, in [51] zu finden.

2.2.11 Lemma

Der Clover-Term (2.6) ist hermitesch.

Beweis. Nach Definition 2.1.2 ist y,, hermitesch und es gilt
MV = —YuYvs solange nur p # v.
Mit anderen Worten, 7,7, ist schiefhermitesch. Dariiber hinaus ist
(@ = U () U (& + 0)U, (& + @)Uy () = Q"

und daher ny(x) = Quu(x). Demnach ist auch Q. (z) — Q,u(x) schiefhermitesch und das
Produkt (v,7) ® (Quv(x) — Quu(x)) hermitesch sowie damit der gesamte Clover-Term C. [

IDESY Zeuthen, https://www-zeuthen.desy.de/alpha/.


https://www-zeuthen.desy.de/alpha/
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2.2.12 Definition

Fiir ein Quarkfeld v und Gitterknoten x ist der WILSON-DIRAC-Operator mit Clover-Term ge-

geben durch
Dip(z) := Dwi(z) — Cla)(x). (2.7)

Ausgeschrieben und wichtig fiir die Auffassung von D als Matrix ist folgende Darstellung:

4
(D9) (&) = ((mo + ) 112 — T2 3 0008 (Qule) = Quule) 1o
oo S (- ) @ U @) + ) (29)
pn=1
4
oo S (s ) @ Ul — i) — )
pn=1 <>

Offenbar erhalt man fiir cs,, = 0 wieder den urspriinglichen WILSON-DIRAC-Operator. Der
Clover-WILSON-DIRAC-Operator D erhilt die ['s-Symmetrie, gewisse Spektralsymmetrien gehen

aber verloren:

2.2.13 Lemma

(i) Der Clover-WILSON-DIRAC-Operator D ist I's-symmetrisch, d. h.,

(TsD) =T5D.

(ii) Jeder Rechtseigenvektor 1y zum Eigenwert A von D korrespondiert zu einem Linkseigen-

vektor
¥y = Tsthy

des Eigenwerts A\ von D und umgekehrt. Mit anderen Worten, das Spektrum von D ist

symmetrisch beziiglich der reellen Achse.

(iii) Das Spektrum von Dy ist symmetrisch beziiglich der vertikalen Gerade Re(z) = %,
d.h.,
2(4
reo(Dy) = (Z’”O) — X € o(Dw).

Beweis. (i) Wegen Lemma 2.2.11 ist C' hermitesch. Es bleibt also nur die Vertauschbarkeit von

C mit I's zu untersuchen; dies ist gewahrleistet, da

Y5 (V) = (Yun) s
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Imaginarteil

Also ist der Clover-Term I's-symmetrisch. Nach Lemma 2.2.7 ist der WILSON-DIRAC-

Operator Dy I's-symmetrisch, insbesondere ist es auch D als Differenz aus beidem.

2 - - - - - - - 2
1.5 1 1.5 1
1 1 1 1
0.5 | ?_) 0.5 ;‘x}« Xg:%i%%xxx:“x’:‘:f:* f&‘f o |
t : %x M X
20 x XX * x):‘(x;,i xX;: 2% M ]
—0.5 1 g —0.5 %&& N T {xx:;x;w o % :;;X“:
1 = et y ]
-1.5 1 -1.5 ]
_9 L S S S _9 P I S
o 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8
Realteil Realteil
Abbildung 2.4: Spektrum eines 4% Abbildung 2.5: Spektrum eines 4%
WIiLsSON-DIRAC-Operator mit mg =0 Clover-WILSON-DIRAC-Operator mit
und cg = 0. mo = 0 und ¢cg = 1.

(i) Wie eben gesehen, ist D =T'5DI'5 und daher

Dy =M & DT =X o  (Ts)"D = ATsv0)".

(iii) Da die Diskretisierung Dy ausschlieBlich iiber direkte Nachbarschaftsrelationen realisiert ist

(im Gegensatz zum Operator C', welcher diagonale Relationen aufweist), existiert eine Rot-
Schwarz-Ordnung [26] der Raumzeitpunkte so, dass der Operator durch Umsortieren dieser

auf eine spezielle Blockstruktur gebracht werden kann (vgl. auch fiir ein 4%-Gitter-Beispiel
Abbildung 2.6):

4+ myg 0 Dy

Dy, Lion, = D 0
Sr

Falls nun = = (z,,zs) ein Eigenvektor von Dy — dtmq L2, zum Eigenwert X ist, dann

a
44+myg
a

Shift in Richtung % liefert die Behauptung. O

ist ' = (z,, —xs) offenbar ein Eigenvektor von Dy, — L2, zum Eigenwert —\. Ein

Um D abschlieBend in Matrixform angeben zu kdnnen, miissen wir uns auf eine Re-

prasentation der v-Matrizen wie folgt festlegen:
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500 g\%@ N \ 500| N &\:

1000 -\\ ‘*««m%, \ : \ | 100
2000} 4 1 2000
\Tw\%&% N A\
%%a 25001

N
1500} ““ %% \ | 15001
2500 -\“~\ \ g‘:
S B N 30001 \_. \4% |

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Anzahl der nicht-Null Eintrage: 147456 Anzahl der nicht-Null Eintrage: 147456
Abbildung 2.6: Matrixstruktur von Abbildung 2.7: Matrixstruktur von
Dy — 4*;”0112n£ ohne Rot-Schwarz- Dy — 4*:10112,15 nach Rot-Schwarz-
Umordnung (4*-Gitter). Umordnung (4*-Gitter).
i -1 i 1
i 1 —i 1
71_ i 7/)/2_ 1 7/}/3_ i 774_ 1 )
—i —1 i 1
2.9)
was auf
1
1
V5 = Y1727Y374 = . (2.10)
-1

fiihrt und bedeutet, dass 5 trivial auf die Spins mit Index Null und Eins und als Vorzeichenwechsel

bei den Spins mit Index Zwei und Drei wirkt.

Zusammengefasst, handelt es sich nach (2.8) bei D € C™*™ um eine diinnbesetzte Matrix,
die auf einem vierdimensionalen Gitter mit ny = NtN,:Q’ Knoten operiert. Jeder Knoten beher-
bergt dabei 12 Variablen, wodurch sich n = 12n, ergibt. Zusatzlich hangt die Matrix D von
einer Linkvariablen-Konfiguration {U,(z) : = € £, p = 1,2,3,4}, sowie vom Massenparameter
mg und dem Sheikholeslami-Wohlert-Koeffizienten cg,, ab. In der Praxis ist der Massenparameter
mg negativ und das Spektrum von D befindet sich in der rechten Halbebene, vgl. Abbildungen
2.4 und 2.5. Das Spektrum des ,, symmetrisierten* Operators @) := I's D ist reell und @ praktisch
maximal indefinit (z. B. [41]), d. h., das reelle Spektrum von @ ist nahezu punktsymmetrisch zum
Ursprung. Ab gewissen GittergroBen ist eine explizite Formulierung bzw. Speicherung des Opera-

tors D als Matrix nicht mehr sinnvoll oder méglich, daher ist eine effiziente, parallel implementierte
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Anwendung von D bei Gitter-QCD-Simulationen essentiell und Gegenstand der Forschung [53].

2.3 Prakonditionierung mit Schurkomplement

Eine weitverbreitete (statische) Pri- oder auch Vorkonditionierungstechnik der Gitter-QCD (z. B.
[65], sog. even-odd-preconditioning) ist, statt mit dem gesamten System zu arbeiten, eine Um-
sortierung der Variablen vorzunehmen und nur auf der Hélfte der Knoten Berechnungen durch-
zufiihren. Ahnlich zum Beweis von Lemma 2.2.13 (iii), fiihrt eine Aufteilung der Gitterknoten in

gerade Knoten zuerst und ungerade Knoten zuletzt zur Blockstruktur

D: DQQ DQU
Dug Duul|’

wobei ein Knoten z = (x1,x2,x3,x4) als gerade bezeichnet wird, falls x1 + xo + x3 + x4 gerade

ist, andernfalls als ungerade. Die Inverse von D ist dann gegeben durch

-1 _
el [ I o] [DS 0 ] [I —Dgqu}] (2.11)
—-DylDy, I|| 0 DZl o I

uu

mit dem SCHUR’-Komplement
Dg := Dyy — DgyDyt Dyg.

Die Blocke Dy, und insbesondere D, sind nur auf der Diagonalen besetzt mit Blocken der GroBe
6 x 6, welche ausschlieBlich vom Clover-Term stammen. Das Losen des Systems Dy = n fiir
nur gerade Gitterknoten via SCHUR-Komplement liefert anschlieBend auch die Losung auf den

ungeraden Gitterknoten und damit die Losung des gesamten Systems. Hierzu wird der Vektor auf
n
T

Vg = Dgl(”g - DguDJJnu)

der rechten Seite ebenfalls auf

sortiert und wir losen

mit einem iterativem Ldser fiir Dg, um danach iiber
—1 —1
wu = Duunu - Duu Dugwg

die Lésung fiir die ungeraden Gitterknoten zu erhalten. Eine einmalige Vorberechnung von D!
wird algebraisch vollzogen und ist in der Berechnung nicht sehr teuer, daher benétigt eine Anwen-
dung von Dg auf einen Vektor etwa denselben Aufwand wie mit D, wihrend sich die Kondition

von Dg typischerweise gegeniiber der von D verbessert.
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2.4 Normalitat und Smearing
2.4.1 Definition

Ein linearer Operator A auf einem endlichdimensionalen Vektorraum heit normal, wenn
AT A = AAF.

Aquivalent dazu ist A genau dann normal, wenn A ihnlich zu einer Diagonalmatrix beziiglich
unitdrer Transformation ist (z. B. [90]). Obige Definition 2.4.1 ist iibertragbar auf stetige lineare
Operatoren in unendlichdimensionalen Hilbertraumen, wobei diese dann normal sind, wenn sie mit
ihrer Adjungierten kommutieren. Der kontinuierliche DIRAC-Operator D ist (in geeigneten, hier
nicht ndher betrachteten Hilbertrdumen) schief-selbstadjungiert, also, im Gegensatz zu D (vgl.

Bemerkung 2.2.8), normal. O

2.4.2 Definition

Fiir einen linearen Operator A auf einem endlichdimensionalen komplexen Vektorraum V ist der

(numerische) Wertebereich von A definiert durch

F(A) = {oAv : vlv =1, 0 e V}. O

Fiir normale Operatoren ist der Wertebereich die konvexe Hiille des Spektrums (nach z. B.
[44]). Fir numerische Gleichungssystemldser, wie das Generalized Minimal Residual-Verfahren
mit Restart (GMRES(m)), ist bekannt, dass sie konvergieren, falls der Wertebereich den Ur-
sprung nicht enthélt [90]. Es hat also numerische Vorteile, wenn eine Diskretisierung D des
DirAc-Operators D mdglichst normal ist und somit F(D) in der rechten Halbebene liegt (vgl.
Abbildungen 2.4 und 2.5). Normalitdt von D tritt asymptotisch tatsichlich auf, wenn Diskreti-
sierungseffekte bei zunehmender Gitterfeinheit und -groBe ab- bzw. zunehmen. Um Normalitat in
der Diskretisierung D zu erreichen, gibt es eine Reihe sog. Smearing-Techniken wie , stout - [72],
APE- [2], HYP- [45] und HEX- [20] Smearing, Wuppertal-Smearing [42], sowie die Destillation
[85]. Typischerweise ist Smearing ein iterativer Prozess, in dem Linkvariablen iiber ihre Nachbarn

geglattet werden.

Die Abweichung zur Normalitat von Dy, dem WILSON-DIRAC-Operator ohne Clover-Term,
kann mit Hilfe der FROBENTUS®-Norm als Summe von Plaketten (vgl. Definition 2.2.9) dargestellt
werden. Der folgende Abschnitt basiert auf [16] und [89] und soll zunichst die Berechnung der
FROBENIUS-Norm zeigen, welche eng mit der WILSON-Wirkung verkniipft ist, um dann damit

die Funktionsweise des ,,stout “-Smearings zu veranschaulichen.

Der Einfachheit halber vernachlassigen wir im Folgenden die Gitterweite, d. h., wir setzen
a = 1 und betrachten das Gitter

L={x=(r1,22,23,24) : 1 <21 < Ny, 1 <z9,23,24 < N, }.
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Nun stehen die Abweichungen der Plaketten zur Identitdt und die Normalitdt von Dy in

folgendem Zusammenhang.

2.4.3 Satz

Die FROBENIUS-Norm von D{,L{,DW — DWD{,L{, geniigt der Gleichung

| D Dw — Dw DI = 163 3 Re (Spur(ls — Q4)), (212)

T p<v
wobei die erste Summe iiber alle Gitterknoten z € L lauft und Z#Q, eine Abkiirzung fiir
Zi:l Ei:u+l ist.

Beweis. Es gilt die Eintrage von D{/LIVDW — DWD{,{V zu untersuchen. Dazu benutzen wir die in

Bemerkung 2.2.8 eingefiihrte Notation Trff fiir die Matrizen

1
mo= gy, n=1234.

Die Beziehungen (2.1) zwischen den ~-Matrizen implizieren, dass 7"

o (kommutierende) Projek-

tionen sind mit der zusatzlichen Eigenschaft
T =0, p=1234 (2.13)

Tabelle 2.1 listet die Kopplungsterme an den Gitterknoten x und x %+ i von Dy, bzw. D{fv,
welche in Matrixdarstellung Teilblocke der GréBe 12 x 12 von Dy bzw. D{,LIV entsprechen (vgl.
wieder mit Bemerkung 2.2.8). m steht hierbei fiir mo + 4 mit mg aus (2.4). Fiir das Produkt

 Dw Dl
(z,z) mlyz mlyg
- - H H
(x,x+p) | —m, @ U, (x) —7r:[®UM (x)

(2 —p) | —mt @Uu(z =) | =7, @ Uu(x — 1)

Tabelle 2.1: Kopplungsterme in Dy und D{/{V

D{,{VDW entstehen die in Tabelle 2.2 gelisteten Kopplungsterme aus Summen aller Pfade der Lange
zwei auf dem vierdimensionalen Gitter sowie dem Produkt der entsprechenden Kopplungsterme
in D{f{/ und Dyy. Die relevanten Pfade sind die folgenden (vgl. auch Abbildung 2.2):

e Fiir die Diagonalposition (z, ) existieren neun Pfade der Lange Zwei, (z,2) — (z,2) —

(z,z) und (z,2) = (z,x + () — (x,z), mit p=1,2,3,4.

e Fiir die nichsten Nachbarn (z,z % i) haben wir jeweils zwei Pfade (z,z) — (z,2) —
(x,z £ i) und (z,2) = (z,x £ ) — (z,x £ [2).

e Fiir die Knoten (z,x &+ 21) gibt es lediglich den Pfad (z,2) — (x,z £ i) — (z,z £ 24),
fiir den aber das Produkt der Kopplungen wegen (2.13) Null ist.
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e SchlieBlich gibt es fiir die restlichen vier iberndchsten Nachbarn jeweils zwei Pfade, exem-

plarisch (z,2) = (z,x 4+ i) = (x,x + o —0) und (z,2) = (z,2 — D) = (x,x + o — D).

Die Kopplungsterme fiir Dy, D erhalten wir durch Vertauschen von mt und 7, sowie m} und
™, -

D Dy,
(x,z) m?I9 + % Zizl(ﬂ': + W;) ® I3
(x,x+ 1) —m(mf +m,) @ UM (x)
(x,x — 1) —m(ﬂj—l—W;)@Uf(x—ﬂ)
(x,x +2/0) 0

~ ~ _ H —

(z, 2+ p+0) | mymf QUM (2)U) H (2 4 i)+, @
(z,x+p—0) | mym, QU (2)U,(x+ f— m+ i
(w0 —j—9) | mim, @ Uule — iUz — p— )+

U (x)U (2 + D)
® Uy (z — ) U (z — D)
LU, (z — 0)Uu(a — i — D)

+
Ty
+
T, T

Tabelle 2.2: Kopplungsterme in D%DW. Kopplungen fiir DWD{,LIV erhalten wir durch Vertau-

+ — . + -
schen von 7, und 7, sowie ] und 7, .

Damit ergibt sich fiir D& Dy, — DWDH dass nur die Kopplungsterme an den Positionen

(x,z+p+70), (z,x+ o —v) und (z,z — L — D) fiir 4 # v nicht wegfallen, vgl. Tabelle 2.3. Es
Lt v \DHDW—DWDg
(x+a+0) | 3070 — ) @ (I3 —Qg’V)U,f{(x)Uf(aH—ﬁ)
(z,2+ i —7) %hﬁ+%)(k—@ﬁWWf®ﬂMw+ﬂ—W
(z—p—0) | 3(=+%) @ Is— Q" " U(z— 0)Uu(z — i — D)

Tabelle 2.3: Nicht-verschwindende Kopplungsterme in D{,{VDW — DWD{}/.

wurden dabei die ldentitaten

t+m,m, Foin, = 5(FuFw) und

1
- 2
(v Fw)

+ _
:tﬂ'uﬂ'y Fr,m, =

verwendet, sowie die Plaketten aus Definition 2.2.9:

QY = U («) U (z + @)Uy (2 + D)U, (),
Q™" = Uy(x = 0)U (& = D)UJ (x + i = 0)Up (),

Q"™ = Uule = iUy (z = o = DU (w = o = DU (& = 7).
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Exemplarisch rechnen wir fiir den Eintrag an Position (z,2 + f1 + ©) in Tabelle 2.3 nach:

“w
— (mim, @ UM (@)U (2 + ) + mfmy, @ U (@)U (@ + D))
= 3= +7) QUL (@)U (x4 4) + 300 — W) @ U (2)UL (z + D)
= 500 — ) © (Is — Q¥ YUH () U (z + p).

momt @ U (@)U (@ + p) + 7 mf @ U (2) UM (x4 9)
H

Nun benutzen wir folgende generellen Eigenschaften der FROBENIUS-Norm

|AQ||r = ||A|F fiir jede unitdre Matrix @ (und solange AQ definiert ist),
|A® Bl|lr = [|Allp||Bl|F fir alle Matrizen A, B,

um das Quadrat der FROBENIUS-Norm der Kopplungen in Tabelle 2.3 darzustellen als**

2|15 — QL ||% fiir Position (z,x + /i +
25 — Q"% fiir Position (z,z + i —
213 — Qz"""||%  fiir Position (z,z — i —

>

),
).

>

A

SchlieBlich gilt fiir die FROBENIUS-Norm und unitdre Matrizen Q)
I = QIIE = Spur (I - Q")(I - Q)) = 2Re (Spur(I - Q)),

womit wir das Quadrat der FROBENIUS-Norm || D{, Dy — Dy D ||%. durch Summieren iiber die
Quadrate der FROBENIUS-Normen der einzelnen Kopplungen erhalten. Diese Summe erstreckt
sich iiber insgesamt 24n, Kopplungsmatrizen. Innerhalb dieser beziehen sich die Kopplungen
dabei in Vierergruppen, bis auf Konjugation in SU(3), auf dieselbe Plakette, d.h., Spur(/ — Q)
hat denselben Wert fiir alle vier Plaketten (). Deshalb geniigt es beispielsweise nur die Plakette

Q" vierfach zu werten. Insgesamt ergibt sich

ID{ Dw — Dw D |3 = 4) ) " 2-2-Re (Spur(ls — Q). 0

xr pu<v

Der obige Satz zeigt also, dass der WILSON-DIRAC-Operator Dy normal ist, falls alle
QL gleich der Identitét sind, d. h. alle Linkvariablen U, () sind gleich der Identitit oder es gilt
Uu(z) = UH(z + p)U(x) fiir gewisse U(-) € SU(3) (vgl. (2.5)). Dies ist der Fall in der sog.

freien Theorie. In physikalisch relevanten Konfigurationen ist Dy allerdings immer nicht-normal.

2.4.4 Definition

Fiir eine gegebene Linkvariablenkonfiguration U = {U,(x)} wird die GréBe

Sw(U):=>_> Re(Spur(ls — Q4"))

x u<v

“Es gilt |(—1) "y + (— 1) wllr = VB, Vm,n, £ v, vel. (2.9).
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als WILSON-Eichfeldwirkung bezeichnet! %
Neben der numerischen Vorteile der Normalitdt ist Smearing in der Physik vor allem ver-
breitet, um sog. ,cut-off“-Effekte zu reduzieren. Diese stehen eng in Verbindung mit lokalen

Eigenvektoren, die zu sehr nahe an der Null liegenden Eigenwerten gehoren.

Beim , stout “-Smearing [72] werden nun im Wesentlichen die Linkvariablen auf folgende Art

modifiziert:
Up(z) ~ U,(z) = 20U, (2), (2.14)

lef(x) = —%(Mu(x) — Mf(m)) + é Spur (M, (z) — Mf(m))[;; (2.15)
mit wiederum .
Mu(x) = ) (¥ +Qk™).
v=1,v#u

Insbesondere hangt ZY(x) von den lokalen Plaketten um z ab.

Das folgende Resultat aus [63, 72] verbindet das , stout “-Smearing mit dem WILSON-Fluss

V(1) :={Vu(z,7) : @ € L, =1,2,3,4}, definiert durch die Lésung des Anfangswertproblems
9

or

Insbesondere ist V,,(z,7) € SU(3) und 0 der kanonische Differentialoperator beziiglich der Link-

Vilz, 1) = *{aSW(V(T))}VH(‘T,T), Viu(x,0) = Uy(z). (2.16)

variablen V,,(z,7) mit Werten in su(3).

2.4.5 Satz
Sei V(1) die Lésung des Anfangswertproblems (2.16). Dann gilt

(i) V() ist eindeutig fiir alle V(0) und alle 7 € R, sowie differenzierbar nach 7 und V(0).

(ii) Sw(V(r)) ist als Funktion in 7 monoton fallend.

(iii) Ein Schritt der Lie-EULER?-Integration mit Schrittweite € von (2.16), gestartet bei 7 = 0,
liefert eine Approximation V(e) = {‘N/u(x,&?)} an V(e) mit

Vi(z,e) = egzg(x)U“(x),
wobei Zlf(x) aus (2.15) ist.

Wir verweisen zur Vertiefung dieses Themas auf [63, 72] sowie fiir Details zum Beweis
von (i) und (i) auf [12], wobei aus dieser Quelle erwdhnt sei, dass die Lésung von (2.16) Eich-

konfigurationen entlang der Richtung des steilsten Abstiegs im Raum der Eichkonfigurationen

TTIn unserem Kontext nicht wichtige Skalierungen sind nétig, um physikalische Relevanz zu erreichen, fiir Details
siehe z. B. [110].
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transportiert werden und somit Sy tatsichlich lokal minimiert wird. Teil (iii) folgt direkt aus
einmaliger Anwendung des L1E-EULER-Schemas, vgl. [43].

Zusammengefasst impliziert der Satz, dass ein Schritt der LiE-EULER-Integration dquivalent
zu einem Schritt ,,stout “-Smearing ist (vgl. (2.14)), wobei gleichzeitig die WILSON-Eichwirkung
entlang der exakten Lsung von (2.16) minimiert wird. Wir kénnen also, zumindest fiir hinreichend
kleine e, erwarten, dass auch die LiE-EULER-Approximation die WILSON-Eichwirkung ebenso

minimiert und dadurch Dy letztendlich normalisiert wird.
Fiir den WILSON-DIRAC-Operator mit Clover-Term, d. h., fir D = Dy + C ergibt sich
beziiglich der Normalitdt Folgendes:
|IDY D — DD"||p = ||Dif, Dw — Dw Dif; + (Df; — Dw)C — C(D{}; — Dw)l|r
< |Df Dw — DwDiy|r + 2|CllF | DY — Dw | F-

Da alle Summanden von Re (Spur(l3 — Q%)) in (2.12) positiv sind (vgl. Beweis von 2.4.3),
folgt aus || DI, Dy, — Dy DIL||% — 0 insbesondere, dass Q5" — I3 fiir alle z. Dies bedeutet,
dass nach Definition 2.2.10 des Clover-Terms Q. (z) — Q.. (x) — 0 fiir alle 2 und x, v gilt und

somit ||C||r verschwindet. Demnach gilt

Dy wird normalisiert = D wird normalisiert.

3.5
=
S Bpmeemmmmmmmemeoeo- - mm
= __m--- a
1) a-
E -t
S p”
s 2.5 i
S g )
c ’
3 ’
E ’
4
(g0 L 4
o 2 ,'
4
1.5T : : : : :
0 1 2 3 4 5 6

Anzahl der ,,stout“-Smearing Iterationen

Abbildung 2.8: Effekt des ,stout “-Smearings auf den Mittelwert der Plakettentt,

Um die Wirkung des ,,stout “-Smearings auf die Plaketten zu veranschaulichen, betrachten

wir den Mittelwert tiber alle Plaketten

Q- ! Z Z Re (Spur(Q4™")), (2.17)

NQ T pu<v

HDaten aus [16].
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wobei N¢ die Anzahl aller Plaketten bezeichnet. Damit vereinfacht sich (2.12) zu

|Diy, Dw — Dw Dy || = 16Ng(3 — Qur).

Abbildung 2.8 zeigt, wie die WILSON-Wirkung in den ersten lterationen des, stout “-Smearings
rapide abnimmt.

AbschlieBend zu diesem Kapitel sei auf diverse Arbeiten verwiesen, die Beziehungen zwi-
schen der Spektralstruktur und Werteverteilung in den Plaketten analysieren. In [75] wird bei-
spielsweise gezeigt, dass der Abstand des Spektrums zum Ursprung damit zusammenhangt, ob
Re (Spur(I — Q%")) groBer als eine gewisse Schranke ist, fiir alle Plaketten Q4. Andere Ar-
beiten studieren den Zusammenhang zwischen Schwankungen der Plakettenwerte und rdumlich-
lokalen Eigenmoden nahe der Null [11, 74, 76], sowie den Einfluss von Smearing auf diese Eigen-
moden [46].
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Anmerkungen

3 Marius Sophus Lie [li;] (* 17. Dezember 1842 in Nordfjordeid;  18. Februar 1899 in Kristiania,
heute Oslo) war ein norwegischer Mathematiker.

4 William Kingdon Clifford (* 4. Mai 1845 in Exeter, Devon, England; 1 3. Mirz 1879 auf
Madeira, Portugal) war ein britischer Philosoph und Mathematiker.

% Leopold Kronecker (* 7. Dezember 1823 in Liegnitz; 1 29. Dezember 1891 in Berlin) war ein
deutscher Mathematiker.

6 Euklid von Alexandria war ein griechischer Mathematiker, der wahrscheinlich im 3. Jahrhun-
dert v. Chr. in Alexandria gelebt hat.

7 Issai Schur (* 10. Januar 1875 in Mogiljow (WeiBrussland); 1 10. Januar 1941 in Tel Aviv)
war ein deutscher Mathematiker und Schiiler von Frobenius.

8 Ferdinand Georg Frobenius, genannt Georg, (* 26. Oktober 1849 in Berlin; + 3. August 1917
in Charlottenburg, heute ein Ortsteil von Berlin) war ein deutscher Mathematiker und Schiiler von
Karl WeierstraB und Ernst Eduard Kummer.

9 Leonhard Euler (lateinisch Leonhardus Eulerus; * 15. April 1707 in Basel; f 7. September
(jul.)/ 18. September 1783 (greg.) in Sankt Petersburg) war ein Schweizer Mathematiker und
Physiker. Wegen seiner Beitrage zur Analysis, zur Zahlentheorie und zu vielen weiteren Teilgebie-

ten der Mathematik gilt er als einer der bedeutendsten Mathematiker.



3. Krylov-Unterraumverfahren

In diesem Kapitel wollen wir uns einen Uberblick im Gebiet der numerischen linearen Algebra
verschaffen, insbesondere beziiglich der KrRyLov!9-Unterraumverfahren zur Lésung von Glei-
chungssystemen und final zur Berechnung von Eigenpaaren (also Eigenwerten mit zugehdrigen
Eigenvektoren). Breiteren Uberblick auf das Themengebiet liefern viele Lehrbiicher, beispielsweise
[44, 68].

Wir gehen von einem eindeutig |6sbaren linearen Gleichungssystem
Ax = b, AeC™™ beC",

aus, dessen Losung z = A~'b unbekannt und gesucht ist. Aufbauen wollen wir auf einem funda-
mentalen Satz aus der linearen Algebra, dem Satz von CAYLEY!'!'-HAMILTON'?: Eine quadrati-
sche Matrix ist immer Nullstelle ihres charakteristischen Polynoms. Daraus leitete KRYLOV mit

folgender simpler Uberlegung

xa(A) = A" + ap 1 A" Aag +ag =0 (; €Ci=0,...,n—1)
— A =B, AV 4 B0 A"V 4 1A+ B (B €C,i=0,...,n—1)

ab, dass die Inverse von A ein Polynom in A mit maximalem Grad n — 1 ist. Insbesondere befindet

sich die Losung x in dem Raum
K (A, b) = Spann{b, Ab, A%b, ..., A" b},

fiir ein m < n, wobei Spann die lineare Hiille bezeichnet. Dieser Raum wurde erstmals 1931 im
Artikel [54] von KRYLOV benannt. Verfahren, welche sich diesen Sachverhalt auf verschiedenste
Arten zunutze machen, werden unter dem Begriff der KRYLOV-Unterraumverfahren zusammen-
gefasst. Andere Autoren nennen in diesem Zusammenhang den Begriff Projektionsverfahren, da
viele Verfahren Orthogonalbasen der (oder Derivate von) KRYLOV-Unterrdume berechnen, um
dann, mittels Projektion auf diese Unterrdume, Gleichungssysteme zu l6sen oder Eigenwerte zu

berechnen.

KryLov-Unterraumverfahren basieren oft auf Umformulierung des linearen Gleichungs-
systems in ein Minimierungsproblem. Die zwei wohl bekanntesten Vertreter in diesem Bereich
sind das Verfahren der konjugierten Gradienten (CG) von HESTENES'® und STIEFEL'* [47]
aus dem Jahre 1952, sowie das 1986 von Saad und Schultz [91] entwickelte Generalized mi-
nimal residual-Verfahren (GMRES). Beide Verfahren bestimmen die optimale Approximation
T € T + K (A, 70) mit rg = b — Axg an die Lésung * = A~1b mittels einer Orthogonalitits-

oder GALERKIN'®-Bedingung, wobei in jeder Iteration die Dimension des KRYLOV-Unterraums

35
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um Eins erhoht wird. Insbesondere wiirden beide Methoden bei exakter Arithmetik nach maximal

n Schritten die richtige Losung liefern.

Das CG-Verfahren, welches ausschlieBlich fiir symmetrische (bzw. hermitesche, im komplexen
Fall) und positiv definite Matrizen funktioniert, minimiert das Funktional
%xHAx —zHp
tiber einer Orthonormalbasis von /C,,,. Der Orthogonalisierungsprozess ist dank der Symmetrie von
A ohne Kenntnis aller vorherig berechneten Basisvektoren moglich, es handelt sich um ein Verfah-
ren mit kurzen Rekursionen. Insbesondere miissen keine Zwischenergebnisse langfristig gespeichert

werden, d. h., wachsende KRYLOV-R3ume stellen kein Problem dar.

Nun ist klar, dass AH A fiir regulires A immer symmetrisch und positiv definit ist und statt
Az = b auch A" Ax = AHD gelost werden kénnte, was aber ab bestimmten SystemgroBen, weder
aus praktischer noch aus analytischer Sicht, zu empfehlen ist. Insbesondere quadriert sich dabei die
Konditionszahl des Systems, die allgemein erheblichen Einfluss auf die Konvergenzgeschwindigkeit

von KRYLOV-Unterraumverfahren hat.

Eine Méoglichkeit die Konditionszahl des Systems zu verringern, besteht darin, mdglichst
»leicht “-invertierbare Matrizen Py, und Pr € C™*™ zu finden und statt der Ausgangsgleichung

das folgende prikonditionierte System

P APra’ = Pprb,

T = PRxP

zu betrachten, mit dem Ziel, dass das Matrixprodukt Pr, APgr eine moglichst gute Approximation
an die Einheitsmatrix ist. Fiir das CG-Verfahren ist ein solch prakonditioniertes System aber

problematisch, da P APg in nur wenigen Fillen symmetrisch und positiv definit ist.

Ab bestimmten Konditionszahlen und/oder SystemgroBen werden KRYLOV-Unterraumver-
fahren selten ohne Prédkonditionierung verwendet. Deshalb ist die Moglichkeit, auf bestimmte
Probleme abgestimmte Prakonditionierungen flexibel verwenden zu konnen, sehr wichtig. Dies
steht, bezogen auf unser Problem des Losens der diskretisierten DIRAC-Gleichung, besonders im
Vordergrund, weshalb wir uns im Folgenden auf das GMRES-Verfahren konzentrieren. Im Ubrigen
hat das zu GMRES symmetrisierte Verfahren MINRES von Paige und Saunders [84] aus dem
Jahre 1975%, aus dhnlichen Griinden, wie oben beschrieben, in der QCD-Praxis wenig Relevanz,

selbst wenn wir mit dem hermiteschen (aber indefiniten) Operator @) :=I's D arbeiten.

3.1 GMRES

Das , Generalized minimal residual “-Verfahren GMRES minimiert zunidchst dhnlich zum CG-
Verfahren das Funktional
F(z) := ||b— Axlf3

*Historisch gesehen ist das GMRES-Verfahren eine Verallgemeinerung des MINRES-Verfahren.
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iiber einer mittels des ARNOLDI'®-Verfahrens berechneten Orthogonalbasis des KRYLOV-Unter-
raums. Das ARNOLDI-Verfahren (siehe Algorithmus 1) arbeitet dabei dhnlich zum (numerisch
weniger stabilen) GRAM-SCHMIDT-Orthogonalisierungs-Verfahren. Da in der Berechnung alle
Vektoren v; gebraucht werden, um das nachste v, zu berechnen, handelt es sich hier um ein

Verfahren mit langen Rekursionen.

Algorithmus 1: Arnoldi-Verfahren
Eingabe: Normierter Startvektor vy, Krylov-Dimension m

Ausgabe: Orthonormalbasis V,,,, Hessenbergmatrix H,,

1fori=1,....m—1do

2 z +— Av;

3 for j=1,...,ido

4 ‘ hij < U]Hz

5 end for

6 Vigl ¢ 2 — Z;zl h;,iv;

7 hivii < |Jvis1] /* Abbruch falls v;11 =0 */
8 Vit1 < Vig1/hiy1

9 end for

10 return Vp,, = [v1,...,0p], Hy = (hij)

Vorausgesetzt, das ARNOLDI-Verfahren bricht nicht vor der Berechnung von v,,, # 0 ab, stellen die
Spalten von Vj eine Orthonormalbasis des j-ten KRyLOV-Unterraums KC;(A,vq) fiirj =1,...,m
dar. Gilt ansonsten v; 11 =0 mit i+ 1 <m, soist ;11(A4,v1) = Ki(A,v1). D.h. K;(A,v1) (und

somit auch V;) enthilt bereits alle Informationen.

Formal sind die Iterierten im GMRES-Verfahren gegeben durch das Minimierungsproblem

Ty = argmin F(z),
rExo+Km

was, um wieder den Bogen hin zum KRYLOV-Unterraumverfahren zu spannen, dquivalent zur

GALERKIN-Bedingung ist: Finde z,, € ¢ + K, (A, rg) mit
b— Azl Lo = AKom(A, 7).

Nachdem die Matrix V,,, € C™™ (mit orthogonalen Spalten) und die (obere) HESSEN-
BERG!"-Matrix H,, € C™*™ berechnet wurde, ist das weitere Vorgehen im GMRES-Verfahren

wie folgt:
e Schreibe z,, = zo + Zajvj =20 + Vipa mit a = [y, ..., o] € C™.
j=1
e Finde «a, welches die Bedingung J(«a) < J(a) := ||b — A(xg + Vina)||2 fiir alle a € C™
erfiillt.

Unter Zuhilfenahme folgender Eigenschaften kann o explizit berechnet werden:
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(hyy oo o o him |
ha1

(i) Hyp= VAV mit Hn= | o . - e
L 0 Ce. O hm7m—1 hmm_

(ii) AV, = m+1ﬁm mit Fm c (C(m-‘rl)xm-

Hy,
0...0 hnsim

Mit e1, dem ersten Einheitsvektor in C™*1 ist folgende Gleichungskette wesentlich:

W@ = b AGe+ Vaalh
’V‘OZZ’:_AxO ”TO — AVmaHQ
v1::r0:/||7"0“2 HH'FOHQUl — AvmaHQ

QWi (lrollzer — Hma)|),

= lirollzer = Hiall,,

wobei im letzten Schritt die Spaltenorthonormalitdt von V,,,4; ausgenutzt wurde. Um das Mini-
mum der letzten Zeile explizit zu berechnen, wird eine QR-Zerlegung' der erweiterten HESSEN-
BERG-Matrix H,, berechnet, was in modernen GMRES-Implementierungen mittels GI1VENS!E-
Rotationen realisiert wird. Diese Rotationen sind unitdre Matrizen (;, welche im Wesentlichen
Diagonalmatrizen mit einem 2 x 2-Block auf der Diagonalen sind. Je eine dieser Rotationen wird
explizit in jeder GMRES-Iteration berechnet. Q,, := G, - - - G € CH)X(m+1) ist dann ebenfalls

eine unitare Matrix, fur die

QmH, = Ry, (3.1)
mit
™M1 -« .- Tim
0
Rm - = Rm € (C(m+1)><m
0...0
777”fL’V7’L
[0 0 |
gilt, wobei R,, regulir ist!. Unter nochmaliger Verwendung von e; = [1,0,...,0]7 ¢ C™*!

definieren wir den (FehlergréBen-)Vektor

T = llroll2@mer =2 (™, ., A, Yt]T =2 g8, Ama]T € CHL

"H = Q" R mit unitirer Matrix Q (d.h. Q¥ = Q') und R einer rechten oberen Dreiecksmatrix.
1Beweis per Induktion iiber m, vorausgesetzt das ARNOLDI-Verfahren terminiert nicht vorzeitig.
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und es folgt

pin e = i [l ~ Tl

= min [|Qu(lroll2er = Hma),

(GRS T —
=" min ||g,, — Rmall2
aeCm
= min \/|’Ym+1’2 + ||gm - RmaH%
acCm
> "Ym+1| = J(Rgllgm)'

Insbesondere erhalten wir das Minimum « durch einfaches Riickwartseinsetzen der Gleichung
Ry« = g, und die Norm des Residuum r,, := b — Az, der aktuellen Iterierten ist gegeben
durch

Irmll2 = [Ym+1]-

Algorithmus 2: GMRES-Verfahren (vereinfachte Darstellung)
Eingabe: Startvektor x, lterationsanzahal mmax

Ausgabe: Niherunglésung .,
1 form=1,...,Mmax do
2 Berechne V,, und H,, mit dem Arnoldi-Verfahren
3 Berechne QR-Zerlegung von H,,
4 a<+ R lgn /* Rickwdrtseinsetzen */
5 end for

6 return x,,, = z9 + V,«

Falls im ArRNOLDI-Verfahren v;11 = 0 auftritt und der Algorithmus vorzeitig abbricht, so
terminiert auch das GMRES-Verfahren. Es bricht aber in diesem Fall nicht etwa zusammen (wie

diverse andere Bi-CG-Verfahren), sondern liefert die exakte Ldsung.

Dariiber hinaus haben Saad und Schultz erkannt, dass der Rechenaufwand je lteration (nur)
linear mit m waéchst, wenn die Rechenschritte in Zeile 2 und 3 geeignet in die Schleife des
ARNOLDI-Verfahrens integriert werden.

Da alle Berechneten Vektoren v; gespeichert werden miissen und das ARNOLDI-Verfahren
mit wachsendem m immer aufwandiger wird, wird das GMRES-Verfahren in der Praxis nur in einer
Variante mit Neustarts genutzt, d. h, die GroBe des KRYLOV-Raum wird limitiert. Genauer startet
das Verfahren nach mmax-Iterationen mit der aktuellen Naherung x,,,... als neuen Startwert xg
erneut. Es werden dann solange Neustarts vollzogen bis eine gewiinschte Toleranz erreicht ist.
Falls das Spektrum von A in der rechten Halbebene liegt und exakte Arithmetik vorliegt, ist
die Konvergenz selbst fiir mmax = 2 zwar noch garantiert (allerdings nicht mehr zwingend nach
m lterationen), in der Praxis kommt es aber bei zu kleinen KRYLOV-Raumen zur Stagnation im
Residuenverlauf. Wir verwenden bei den im Verlauf der Arbeit vorgestellten Ergebnissen KRYLOV-

Unterrdaume mit hochstens Dimension 25. Ebenso verwenden wir sog. ,deflated “-Neustarts, vgl.
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[70]. Hierbei wird bei einem Neustart nicht der gesamte KRYLOV-Unterraum verworfen, sondern es
werden nach dem RAYLEIGHY-R1TZ%-Prinzip [93] Informationen iiber das System beibehalten.

Hierfiir werden einige wenige Eigenwerte der (kleinen) Matrix

B:=VH Av

Mmax MMmax

berechnet und die zugehorigen Eigenvekoren in den neuen KRYLOV-Unterraum iibernommen.

3.2 Flexibles GMRES

Bekanntlich hat die Kondition des zu I6senden Systems erheblichen Einfluss auf die Konvergenz
von KRyLOV-Unterraumverfahren. Deshalb ist es iiberaus sinnvoll, die Kondition des Systems

durch Anwenden von (links-)Prakonditionierung (wie zu Beginn des Kapitels gesehen)
Ar=b < MAx=Mb

zu reduzieren. Fiir dieses Vorgehen ist das GMRES-Verfahren besonders gut geeignet, da es
moglich ist, den KrRYLOV-Unterraum derart zu modifizieren, dass jede lteration mit einem eigenen
Prakonditionierer M versehen werden kann. Das Verfahren arbeitet dann mit dem modifizierten

KRyLOV-Unterraum

’Cm(A, To) = Spann{ro, M1AT(), MQAMlATo, ‘e ,Mm_1AMm_2A s MQAMlAT()}.

Hierbei kann M insbesondere selbst wieder aus einem iterativen Verfahren resultieren. Dieses
Verfahren ist als flexibles GMRES-Verfahren (FMGRES) bekannt [92, 71]. Der (algorithmisch)
einzige Nachteil gegeniiber statischem Prakonditionieren ist der doppelte Speicheraufwand, da ne-
ben den v; auch die prakonditionierten Vektoren M ;v; gespeichert werden miissen. Dies stellt aber
bei relativ kleinen KRYLOV-Unterraum-Dimensionen kein groBeres Problem dar. Die auBerordent-
liche Robustheit (d. h. die numerische Stabilitdt) von FMGRES qualifiziert es, als duBerer Loser
in Kombination mit den, im Verlauf der Arbeit vorgestellten, algebraischen Mehrgitterverfahren,

zu wirken.
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Anmerkungen®

10" Arthur Cayley (* 16. August 1821 in Richmond upon Thames, Surrey; 1 26. Januar 1895
in Cambridge) war ein englischer Mathematiker. Er befasste sich mit sehr vielen Gebieten der
Mathematik von der Analysis, Algebra, Geometrie bis zur Astronomie und Mechanik, ist aber vor
allem fiir seine Rolle bei der Einfiihrung des abstrakten Gruppenkonzepts bekannt.

11 Sir William Rowan Hamilton (* 4. August 1805 in Dublin; 2. September 1865 in Dunsink
bei Dublin) war ein irischer Mathematiker und Physiker, der vor allem fiir seine Beitrage zur Me-
chanik und fiir seine Einfiihrung und Untersuchung der Quaternionen bekannt ist.

12 Alexei Nikolajewitsch Krylow (* 3. (jul.)/ 15. August 1863 (greg.) in Wisjaga, Gouvernement
Simbirsk (heute Oblast Uljanowsk); 1 26. Oktober 1945 in Leningrad (heute St. Petersburg), So-
wjetunion) war ein russischer Schiffbau-Ingenieur und Mathematiker.

13 Magnus Hestenes (* 1906 in Bricelyn, Minnesota; t 31. Mai 1991) war ein US-amerikanischer
Mathematiker.

14 Eduard Ludwig Stiefel (* 21. April 1909 in Ziirich; + 25. November 1978 ebenda) war ein
Schweizer Mathematiker.

15 Boris Grigorjewitsch Galjorkin (wiss. Transliteration Boris Grigor'evi¢ Galérkin, hiufig als
Galerkin transkribiert; * 20. Februar (jul.)/ 4. Marz 1871 (greg.) in Polozk, heute WeiBrussland;
T 12. Juli 1945 in Leningrad) war ein sowjetischer Ingenieur und Mathematiker.

16 \Walter Edwin Arnoldi (* 14. Dezember 1917 in New York City; T 5. Oktober 1995) war
ein US-amerikanischer Maschinenbau-Ingenieur, bekannt fiir eine Arbeit zur numerischen linearen
Algebra.

17 Karl Adolf Hessenberg (* 8. September 1904 in Frankfurt am Main;  22. Februar 1959
ebenda) war ein deutscher Elektrotechnik-Ingenieur und Mathematiker.

18 James Wallace Givens, Jr. (* 14. Dezember 1910 in Alberene bei Charlottesville; 1 5. Marz
1993) war Mathematiker und Pionier der Informatik.

19" John William Strutt, 3. Baron Rayleigh (* 12. November 1842 in Langford Grove, Maldon,
England; 1 30. Juni 1919 in Terlins Place bei Witham, England), war ein englischer Physiker. Er
erhielt 1904 den Nobelpreis fiir Physik.

20 Walter Ritz (oder Walther Ritz, * 22. Februar 1878 in Sion (Sitten); 7. Juli 1909 in
Gottingen) war ein Schweizer Mathematiker und Physiker. Er war ein bedeutender Schweizer

Wissenschaftler und Forscher, obwohl er nach einer kurzen Karriere bereits mit 31 Jahren starb.

SAlle Angaben aus der deutschen Wikipedia, stand 2017
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4. Gebietszerlegungsmethoden

Wie in Kapitel 3 betrachten wir das Raumzeitgitter £ mit normierter Gitterweite a = 1
L={x=(r1,22,23,24) : 1 <1 < Ny, 1 < z9,23,24 < N, }.

Gebietszerlegungsmethoden sind in der Gitter-QCD weit verbreitet und als zuverldssige
Prakonditionierung bekannt, siehe z. B. [60, 65, 64]. Wir wollen uns im Folgenden die Grund-
idee der Blockzerlegung des Gitters anschauen und die SCHWARZ?!

Dieses Kapitel orientiert sich an [35], siehe auch [89, 99].

schen Algorithmen einfiihren.

4.1 Blockzerlegung des Gitters
4.1.1 Definition

Es sei {7{',..., 7,1} eine Partition von {1,...,N;} in [; Blocke zusammenhangender Punkte in

der ersten Dimension, d. h. auf der Zeitachse, gilt:
7}1::{t]‘,1—|—1,...,tj}, j=1,...1, O0=tyo<ti - <t =DNg

Analog zerlegen wir die Raumdimensionen in Blécke {7/, ... ,7;:‘}, w=2,3,4. Eine Blockzerle-

gung des gesamten Gitters £ in | = [1l5l3ly Gitterblocke £; hat nun die Form
_ 1 2 3 4
Li= 7;'1(1') X 732@) x 7;3(1') X 7;'4(i)'

Dariiber hinaus kdnnen nun alle 12n, Variablen aus V = £ xC x § in [ Variablenblocke V; zerlegt

werden, indem wir alle zugehérigen Spin- und Farbkomponenten des Gitterblocks £; hinzunehmen:

Vi=L;ixCxS. (4.1)

Eine Vergréberung des Gitters liegt vor, wenn fiir eine weitere Blockzerlegung {£] : i =1,...,1'}
gilt: fiir jedes L] existiert ein £; mit

ﬁ; C ﬁj. O

Zu den groBten Herausforderungen im Bereich der Gitter-QCD gehort das wiederholte Lésen
der diskretisierten DIRAC-Gleichung (siehe Abschnitt 2.2):

Dy =n. (4.2)

Die Systeme, die in Gitter-QCD-relevanten Berechnungen auftreten, haben hunderte von Millionen

Unbekannte und sind daher in Computersimulationen nur mittels Parallelisierung in realistischer
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Rechenzeit durchfiihrbar. Hier spielt die Blockzerlegung eine entscheidende Rolle; jeder Prozess
behandelt dabei einen Variablenblock V; der Blockzerlegung des zugrundeliegenden Gitters und
fiihrt dort Berechnungen durch. Danach teilt er die relevanten Ergebnisse den Nachbarprozessen
mit, denken wir hier beispielsweise an eine Matrix-Vektor-Operation, d. h., die Anwendung des
Operators D auf einen Vektor 1. Dieses Konzept ist auch erweiterbar auf das Invertieren des
Operators. Effiziente Kommunikation zwischen den Prozessen vorausgesetzt, sind Gebietszerle-

gungsmethoden auf natiirliche Weise kompatibel mit Parallelisierungsarchitekturen im Computer.

4.2 Additive und multiplikative Alternierende Verfahren von Schwarz

4.2.1 Definition

Sei V; C V ein Variablenblock. Wir definieren die triviale Einbettung
Iy, : Vi =V
als die Restriktion der ldentitdt von V auf V;, d. h.,
Iy, == (idy) |y,
Hiermit sind die korrespondierenden Block-Inversen formal definiert durch

B;:==1Ty,D; "Iyl mit D; =T} DIy, O

4.2.2 Lemma

Wir betrachten die Iteration

YD) = Hy® 4 Ly mit  H,L e C™" und v e C”, k € No.

(i) Ist ¢»* ein Fixpunkt der Iteration, d.h., ¢* erfiillt v* = Hy* 4+ Ly, dann gilt fiir die Fehler
e(k) .= o — k),
e(k+1) — fre(k).

Die Matrix H nennen wir den Fehlerpropagator.

(i) Mit dem Startvektor 1/(*) = 0 ist die k-te Iterierte gegeben durch
k=1
p® =N "H'Ly.
i=0

Beweis. (i) Es gilt

e — g — ™) = (Hy* + L) — (HY™ + L) = H(y* — ™) = He®.
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(ii) Esist () = Hy© 4+ Ly = HOLy und damit induktiv

k—1 k k
D) = g (Z HiLn> +Ln=> H'Ly+H'Lyp=> H'Ly. -
=0 i=1 =0

In unserem Kontext besteht eine Invertierung von D, bzw. das Losen des Systems (4.2), aus

dem Losen aller Blocksysteme

Die; = T, (4.3)
mit dem Residuum des Ausgangsystems r = 17 — D), und korrigieren von
VY + Bir mit Bir =TIye; firi=1,...,L (4.4)
Das Residuum kann nach Bedarf zwischen den lterationen via
r 41— Dy (4.5)

aktualisiert werden.

Im Falle, dass die Residuenberechnung (4.5) nur einmal vor dem L&sen aller Blocksysteme
durchgefiihrt wird, werden alle Iterationen (4.4) mit demselben Residuum 7 abgearbeitet und eine

Iteration der Gebietszerlegungsmethode ist durch
Y+ M(n—Dy)=(I—-MD)y+ Mn

gegeben, wobei die Abkiirzung

Andernfalls, wenn wir das Residuum (4.5) in jeder lteration aktualisieren, hat der Fehler-

propagator die Form
l

H=]]U-BiD).

i=1
Diese einfachsten Anwendungen von Gebietszerlegungsmethoden wurden im Rahmen der analyti-
schen Theorie von partiellen Differentialgleichungen bereits im Jahre 1870 von SCHWARZ [94, 95]
vorgeschlagen. Sie sind heutzutage unter den Namen additive- oder multiplikative Alternierende
Verfahren von SCHWARZ (siehe Algorithmus 3 und 4) bekannt. Fiir eine tiefer gehende Ausein-

andersetzung mit diesem Themenkomplex verweisen wir exemplarisch auf [99].
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Algorithmus 3: Additives Alternierendes Verfahren
Eingabe: ¢, n
Ausgabe:

17n—Dy

2 fori=1,...,ldo

3 Y <Y+ Bir

4 end for

Offenbar ist fiir Algorithmus 3 eine sehr einfache Parallelisierung méglich, da alle Blocksys-

teme unabhangig voneinander und gleichzeitig gelost werden konnen.

Ganz anders in Algorithmus 4, welcher inharent sequentiell ist, d. h., jeder folgende Schlei-

fendurchlauf benétigt Information aus dem vorhergehenden Durchlauf.

Algorithmus 4: Multiplikatives Alternierendes Verfahren
Eingabe: ¢, n
Ausgabe:

1fori=1,...,1do

2 r<n—Dy
¢<—¢+Bﬂ‘

end for

w

=

4.3 Rot-Schwarz-Ordnung und das multiplikative Alternierende Verfahren

Der Publikation [35] folgend, welche sich in diesem Teil auf [60] bezieht, stellen wir die multiplika-
tive Alternierende Verfahren fiir die Rot-Schwarz-Ordnung (siehe Kapitel 2.3) vor, die im weiteren
kurz SAP (Schwarz Alternating Procedure, vgl. [99]) genannt wird. Der Sinn ist, die ausschlieBli-
chen Nichste-Nachbar-Beziehungen des WILSON-DIRAC-Operators auszunutzen. Hierfiir werden
die benachbarten Variablen Schachbrettartig abwechselnd mit zwei unterschiedlichen Farben ko-

loriert. Algorithmus 5 zur Lésung von (4.2) fasst das Vorgehen zusammen.
Eine Iteration (d. h., v = 1) von Algorithmus 5 kann zusammengefasst notiert werden durch
Y (I —-KD)yp+ Kn

mit der Abkiirzung BFarbe = ) _;cFarbe Bi UNd

K= Bschwarz(I - DBrot) + Brot'
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Algorithmus 5: Rot-Schwarz Multiplikatives Alternierendes Verfahren (SAP)
Eingabe: ¢, n, v
Ausgabe:

1fork=1,...,vdo

2 r<n—Dy

3 for all i € rot do

4 ‘ P <+ Br

5 end for

6 r<n—Dy

7 for all i € schwarz do
8 ‘ Y <Y+ Br

9 end for

10 end for

Nach Lemma 4.2.2 ist der Fehlerpropagator der SAP-Methode gegeben durch
ESAP =1—-KD= (I - BschwarzD)(I - BrotD)

und fiir den Startwert v = 0 erhalten wir nach v lterationen

v—1

M= S0 KDyK
1=0

Offenbar ist K = Msap := MLxp und somit Esap = I — MsapD.

[ Esapuill/[vill

0 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Index des Eigenwerts \;
Abbildung 4.1: Fehlerreduktion von SAP beziiglich der Eigenmoden auf einem 4%-Gitter mit
Blocken der GroBe 24.
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Die Losungen der lokalen Blocksysteme (4.3), welche benétigt werden um B;r zu berechnen,
sollten approximativ mit wenigen lterationen eines KRYLOV-Unterraumverfahren bestimmt wer-
den. Dies hat zur Folge, dass die SAP-Methode zu ein nicht-stationdren iterativen Prozess wird.
Wenn also diese nicht-stationdre SAP-Methode als Prakonditionierer fungieren soll, dann miissen
flexible KrRYLOV-Unterraumverfahren verwendet werden, vgl. Abschnitt 3.2 sowie [38, 60, 90].

Untersucht man die SAP-Methode als Prakonditionierer genauer, stellt man fest, dass sie
nicht in der Lage ist, die Defizite, welche KRYLOV-Unterraumverfahren bei steigender GittergroBe
oder abnehmenden Quarkmassen zeigen, auszugleichen. Dies lasst sich darauf zuriickfiihren, dass
die SAP-Methode Fehler, korrespondierend zu groBen Eigenmoden, sehr gut reduziert, aber Feh-
ler zu eher kleinen Eigenmoden praktisch unberiihrt Iasst. Abbildung 4.1 illustriert den Umstand,
wobei die horizontale Achse die Eigenvektoren v von D in aufsteigender Reihenfolge des Be-
trags des zugehorigen Eigenwertes reprasentiert. Die vertikale Achse beschreibt den Quotienten
||Esapv]|/||v||. Dieser ist klein fiir die meisten (groBeren) Eigenwerte, wird aber signifikant groBer
fiir betragsmiBig kleine Eigenwerte. Im Kontext von Glattern fiir Mehrgitterverfahren ist dies
ein typisches Verhalten, was die Motivation begriindet, SAP als Glatter fiir unser algebraisches

Mehrgitterverfahren zu verwenden.
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Anmerkungen*

21 Hermann Amandus Schwarz (* 25. Januar 1843 in Hermsdorf, Schlesien;  30. November
1921 in Berlin) war ein deutscher Mathematiker in Berlin. Unter Einfluss von Karl WeierstraB

promovierte er 1864 bei Ernst Eduard Kummer.

*Alle Angaben aus der deutschen Wikipedia, stand 2017
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5. Algebraische Mehrgitterverfahren

Mehrgitterverfahren bestehen immer aus zwei wesentlichen Komponenten: einem Glatter und einer
Grobgitterkorrektur. Der Glatter ist meist ein Relaxierungsschema wie die JACOBI- oder GAUSS-
SEIDEL-Verfahren sowie ihre Blockvarianten, welche dquivalent zu den in Kapitel 4 vorgestellten
additiven und multiplikativen Alternierenden Verfahren von SCHWARZ sind. Ebenso kann auch ein
KRryLov-Unterraumverfahren verwendet werden. Vorerst fixieren wir als Glatter die im vorherigen
Kapitel vorgestellte SAP-Methode.

Dieses Kapitel orientiert sich weiter an [35] (bzw. [89]) und konzentriert sich auf die Grob-

gitterkorrektur unseres Mehrgitterverfahrens.

Die Grobgitterkorrektur hat die Aufgabe, Fehlerkomponenten (auf einem gréberen Gitter,
mit wenigen n. Variablen) zu reduzieren, welche der Glatter schlecht oder gar nicht reduziert. Im
Falle der Wahl von SAP als Glatter sind dies die Fehler, die zu betragsmaBig kleinen Eigenwerten
korrespondieren. D. h., im Fokus stehen sog. Nah-Kern-Vektoren, also Eigenmoden, die von Eigen-
vektoren, zu betragsmaBig kleinen Eigenwerten, aufgespannt werden. Mit anderen Worten arbeitet
die Grobgitterkorrektur mit einem Operator D., der D auf einem Unterraum repradsentiert und
sowoh| besonders im Nah-Kern-Bereich eine gute Approximation an D darstellt sowie gleichzeitig
Eigenschaften wie Diinnbesetztheit und im besten Falle auch weitere Eigenschaften des Operators
D (wie z. B. die I's-Symmetrie) erhilt. Letzteres ist besonders wichtig, wenn ein rekursiver Ansatz
verfolgt wird, der es ermoglicht, nicht nur Zweigitter-, sondern auch echte Mehrgitterverfahren

(mit mehr als 2 Gitterebenen) zu verwenden.

Um D, zu konstruieren sind zwei wichtige Operatoren notig.

5.0.1 Definition

Mit n = 12n,, n. < n und den Restriktions- und Prolongationsoperatoren*

R:C" — Cle,
P:C" - C"

definieren wir eine PETROV?2-G ALERKIN-Projektion von D bzw. den Grobgitteroperator
D.:= RDP
sowie die korrespondierende Grobgitterkorrektur

Y « 1+ PD.;'Rr

*D. h., R ist surjektiv und P ist injektiv. Konkreteres folgt in Kapitel 5.3.
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mit dem Residuum r =n — D1. O

Die Abbildung R restringiert Informationen des urspriinglichen Raumes in einen , groberen*
Unterraum und P transportiert (meist durch Interpolation) Informationen zuriick in den ur-
spriinglichen Raum. Die Grobgitterkorrektur zur aktuellen lterierten ) restringiert das aktuelle

Residuum iber R in den Unterraum, um dort
D.e. = Rr (5.1)

zu l6sen. Der Grobgitterfehler e. wird dann via P zuriick zum urspriinglichen Raum transportiert,
um die Grobgitterkorrektur zu vollziehen. Eine Iteration der Grobgitterkorrektur kann zusammen-

gefasst werden als
Y < (I — PD;'RD)y + PD_'Ry.

Der zugehérige Fehlerpropagator ist gegeben durch
I - PD.'RD.

Vorausgesetzt D, ist bekannt, besteht ein Zweigitterverfahren aus wechselnder Anwendung

des Glatters und der Grobgitterkorrektur:

Algorithmus 6: Zweigitterverfahren (V-Zykel mit Nachglattung)

Eingabe: v, n, v
Ausgabe:
17r+n—Dy
2 <+ PD'Rr
3r<n—Dy
4 )+ MS(Z)PT

Algorithmus 6 zeigt die Vorgehensweise eines Zweigitterverfahrens mit v-Schritten Nachglatt-
ung, in der Literatur auch V-Zykel genannt. Vorglatten ist ebenso moglich, resultiert aber wegen

der Spektralgleichung
o((I — MsapD)(I — PD;'RD)) = o((I — PD;'RD)(I — MsppD))
in keinem Vorteil (aber auch keinem Nachteil).

Dieses Zweigitterverfahren kann ebenso als Prakonditionierer fiir ein flexibles GMRES-Verfahr-

en verwendet werden, wie die SAP-Methode (siehe Ende des vorherigen Kapitels).

Das Update der aktuellen Iterierten 1) ist in obigem Fall ein multiplikatives Update, da die
Grobgitterkorrektur und die Anwendung des Glatters nacheinander mit dem jeweils aktuellsten
Residuum r = 1 — D1 vollzogen wird. Wird andererseits auf Zeile 3 in Algorithmus 6 verzichtet
und beide Schritte mit demselben Residuum durchgefiihrt, so spricht man von einem additiven

Update. Eine Iteration des Verfahrens ist dann gegeben durch

W — P+ (PDglR n Méj&,) (n — D).
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Diese additive Vorgehensweise erlaubt es, Glatter und Grobgitterkorrektur nebeneinander
parallel ablaufen zu lassen, allerdings fiihrt dies zu Effizienzeinbriichen im FGMRES-Verfahren.

Fiir mehr Details verweisen wir auf [99].

Algorithmus 6 kdnnen wir rekursiv zu einem echten Mehrgitterverfahren umwandeln, indem
wir in Zeile 2 wiederum ein Zweigitterverfahren desselben Typs solange aufrufen, bis die Gleichung

(5.1) aufgrund der kleinen GroBe des Systems direkt gelost werden kann.

Damit das gesamte Verfahren effizient ist, muss das Ldsen von (5.1) wesentlich giinstiger
im Rechenaufwand sein, als die Originalgleichung D1 = 7. Insbesondere heiBt das, dass D,
diinnbesetzt sein sollte. Um dies zu gewahrleisten, miissen die Matrizen P und R, neben der
Fahigkeit Links- und Rechtseigenvektoren von D mdoglichst gut zu approximieren, ebenfalls diinn-

besetzt sein.

5.1 Aggregat-basierte Interpolation
Wir betrachten eine Blockzerlegung {£; : ¢ = 1,...,l} des Gitters £ (vgl. Definition 4.1.1).

In einer Arbeit von Liischer [61] beobachtete er, dass Eigenvektoren von D, die zu betragsméaBig
kleinen Eigenwerten gehdren, dazu tendieren, auf einer groBen Anzahl von Gitterblécken £; nahezu
konstant zu sein. Dieses Phdnomen nannte er lokale Kohidrenz (engl. local coherence). Lokale
Koharenz bedeutet insbesondere, dass viele Eigenvektoren zu kleinen Eigenmoden durch einige
wenige dieser Vektoren darstellbar sind, indem sie iiber verschiedene Gitterblocke zerlegt werden.
Fiir eine tiefergehende quantitative Analyse der Beobachtung siehe [61]. Lokale Koharenz ist der
Kerngedanke hinter Aggregat-basierten Transferoperatoren in allgemeineren Problemstellungen,
siehe z. B. [13, 18] und speziell fiir Gitter-QCD-Anwendungen [4, 17, 81].

Ahnlich zur Blockzerlegung definieren wir die Aggregate folgendermaBen.

5.1.1 Definition

Eine Aggregation {Ai,..., As} ist eine Partition der Variablenmenge V = £ x C x S (vgl.
Definition 4.1.1). Wir bezeichnen sie als Gitterblock-Aggregation, falls jedes Aggregat A; von der
Form

.Ai = Ej(i) X WZ'

ist, wobei L;(;) ein Gitterblock einer Blockzerlegung des Gitters £ sowie W; C C X S ist. %

Aggregate fiir den WILSON-DIRAC-Operator (2.7) werden typischerweise als Gitterblock-
Aggregate realisiert. Im Unterschied zu einer , puren” Blockzerlegung {V; : ¢ = 1,...,l} des
Gitters (wie z. B. bei der SAP-Methode) miissen Aggregate nicht alle Spin- und Farbvariablen ent-
halten. Dariiber hinaus kdnnen mehrere Aggregate denselben Gitterblock £; enthalten. Insbeson-
dere miissen der SAP-Glatter und die Aggregat-basierten Transferoperatoren nicht auf derselben

Blockzerlegung L basieren.
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5.1.2 Definition

Wir betrachten eine gewisse Anzahl von Testvektoren vy,...,uvy € C" (welche moglichst den
Nah-Kern von D reprasentieren, N < n) und eine Aggregation {A;,..., As} (s < n). Der
Aggregat-basierte Prolongations- oder Interpolationsoperator P ist dann anschaulich definiert
durch das Zerlegen der Testvektoren iiber die verschiedenen Aggregate:

| A

uﬂu 4

(v1]...Joy) = — P = ) C (5.2)

nxN L ﬂ”ﬂ_ nx(N-s) As

Formal induziert jedes Aggregat A; N Variablen mit den Indizes (i — 1)N + 1,...,iN in das

grobe Gitter und wir definieren zeilenweise
Peiynyy =TaTHv;, fir i=1,...,s,j=1,...,N, (5.3)

wobei e(;_1)n4; den ((z —1)N +j)—ten Einheitsvektor in CV'¢ bezeichnet. O

Es wurden hierfiir die trivialen Einbettungen aus Definition 4.2.1 verwendet, d. h., IAiIivj
lasst alle Komponenten von v;, welche zu A; gehdren, unverdndert und setzt alle anderen auf
Null (M.a. W,, IAZ.Ii ist eine Orthogonalprojektion auf A;). Aus Stabilitatsgriinden werden die
Testvektoren lokal orthonormalisiert, d. h., fiir jedes i ersetzen wir Z{ v; in (5.3) durch den j-ten
Basisvektor der Orthonormalbasis von Spann{Iﬁivl, . ,IZ’UN}. Dies dndert weder das Bild von
P noch den Grobgitteroperator I — P(RDP)~'RD, garantiert aber, dass PHP = 1.

Die Restriktion R wird analog zu P konstruiert: eine Menge von Testvektoren {01,...0x}

muss gewahlt werden, die Aggregate von P konnen wieder verwendet werden.

Abbildung 5.1 zeigt eine auf Gitterblocken basierte Aggregation beziiglich eines Raumzeit-
Gitterknotens (reduziert auf zwei Dimensionen). Hierbei wurde fiir jedes Aggregat A; als W,
die gesamte Variablenmenge C x S verwendet. Anschaulich formt die Aggregation ein neues,
groberes Gitter, wobei die Diinnbesetztheit und Kopplungsstruktur von D, = RDP die von D
widerspiegeln, d. h., insbesondere haben wir wieder nur nachste-Nachbar-Beziehungen der einzel-
nen Gitterknoten. Jeder Gitterpunkt des groben Gitters (bzw. des Aggregats) fasst N Variablen

Zusammen.

5.2 Galerkin und Petrov-Galerkin Ansaitze

Um die Struktur- und Spektraleigenschaften (sieche Lemma 2.2.13) des WILSON-DIRAC-Operators
D auf das grobe Gitter zu iibertragen, bedarf es einer expliziten Abhangigkeit zwischen der Re-

striktion R und der Interpolation P. Die folgende Konstruktion von P (und damit auch von R)
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D D.
Ay As

./42 A4

W

Abbildung 5.1: Aggregat-basierte Interpolation (Ansicht auf zwei Dimensionen reduziert).

ist dhnlich zu den Konstruktionen in [17, 81, 61, 4] mit einem Unterschied im Bereich der zu

wahlenden Testvektoren.
Der PETROV-GALERKIN Ansatz ist
R:= (I'sP)H.
Wenn hierbei P aus den Testvektoren vy, ..., vy konstruiert wurde, die die Rechtseigenvektoren zu

betragsmiBig kleinen Eigenwerten von D approximieren, so liegen R = (I's; P)" die Testvektoren

0; = I'sv; zugrunde, welche die Linkseigenvektoren zu kleinen Eigenwerten approximieren.

In [61] wird unter anderem festgestellt, dass es moglich ist, R = P! zu erreichen, solange

Aggregate gewisse Regeln fiir Spin-Variablen einhalten, was auf folgende Definition fiihrt.

5.2.1 Definition
Eine Aggregation {4; : i = 1,...,s} heiBt I's-kompatibel, falls jedes Aggregat A; Raumzeit-
Variablen ausschlieBlich entweder mit Spin-Variablen mit Index Null und Eins des feinen Gitters

oder Spin-Variablen mit Index Zwei und Drei des feinen Gitters gruppiert. %

Angenommen, wir haben eine I's-kompatible Aggregation und betrachten den Interpola-
tionsoperator (5.2). Dann sehen wir, da I'5 trivial auf die Spins mit Index Null und Eins, und
als Vorzeichenwechsel auf die Spins Zwei und Drei wirkt (vgl. (2.10) bzw. Lemma 2.2.7), dass
beim Ubergang von P zu I's P jeder Block eines speziellen Aggregats entweder mit +1 oder —1

multipliziert wird. Mit anderen Worten
I'sP = PT%,

wobei I't alle Spin-Null und -Eins Aggregate unverdndert ldsst und die Spin-Zwei und -Drei

Aggregate mit —1 multipliziert.

5.2.2 Lemma
Gegeben sei eine I's-kompatible Aggregation und P eine Aggregat-basierte Interpolation wie in
(5.2) mit R = (I'sP)". Wir unterscheiden die beiden Grobgitteroperatoren

DP*=RDP und D.=PHDP.
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Dann gelten

(i) D, =TgDFS.
(i) I - PD;'PED =1~ P(DF®)~'RD.
(i) DFS ist hermitesch, D, ist T'¢-symmetrisch.
(iv) Fiir den Wertebereich (siehe Definition 2.4.2) gilt (D) C F(D).
Beweis. Zunachst ist klar, dass I's genau wie I'5 eine Diagonalmatrix mit Eintragen +1 oder —1
ist, d.h., T¢ = (T¢)H = (T'¢)~L. Teil (i) folgt nun aus
DP¢ = RDP = (IsP)!DP = (PTE)EDP =T¢PEDP =TED.,.
Daraus folgt ebenfalls unmittelbar
P(DP®)"RD = P(T¢D.)"Y(IsP)!D = PD;'T¢PATsD = PDITETEPE D = PDTPED,
was Behauptung (i) zeigt. Fiir Teil (iii) gilt wegen DFT's = T's D (vgl. Lemma 2.2.13):
(DPSYH = pHpHRH — pEpHP p — PHT;DP = RDP = DF°.

Also ist DPC hermitesch, was dquivalent dazu ist, dass D, = I'¢ DPC eine T'¢-Symmetrie aufweist.
SchlieBlich gilt, da P eine Isometrie ist (vgl. Definition 5.1.2 ff.), d.h., PTP = I:

F(De) = {¢¥ Dt : e =1} = {(PY) " D(Pie) : (Pipe)” (Pi)) =1}
C {p"Dy : Ty =1} = F(D).

Dies zeigt Teil (iv) der Behauptung. O

Lemma 5.2.2 hat einige tiefgreifende Konsequenzen. Zunichst besagt Teil (ii), dass un-
abhingig davon, ob wir den PETROV-GALERKIN-Ansatz DP¢ mit R = (I's P)!, oder den Ga-
LERKIN-Ansatz D, mit R = P wihlen, bei derselben Grobgitterkorrektur landen. Letzterer
Ansatz erhdlt die I's-Symmetrie von D auf dem groberen Gitter und somit die Symmetrie des
Spektrums (sieche nochmals Lemma 2.2.13). Falls F(D) in der rechten Halbebene liegt (wo-
von i.d.R. ausgegangen wird), befindet sich nach (iv) auch F(D.) in der rechten Halbebene
und somit auch das Spektrum von D.. Betrachten wir den ,symmetrisierten” WILSON-DIRAC-
Operator () :=I's.D, so wissen wir aus Kapitel 2, dass dieser anndhernd maximal indefinit ist und
wiinschenswerter Weise ergeben sich dhnliche Beobachtungen bei numerischer Untersuchung des
Operators T¢D, = DFC.

Die I's-Symmetrie impliziert eine weitere bemerkenswerte Eigenschaft, wenn es um Eigen-

systeme von @ und die Singularwertzerlegung von D geht:
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5.2.3 Proposition

Sei eine Eigendekomposition
Q=VAVH A diagonal, VAV =1,

des hermiteschen Operators (Q = I's D gegeben. Dann ist

D = (T5V Sign(A))|A|VH = UzVH (5.4)
eine Singuldrwertzerlegung von D mit unitirem U := T'5V Sign(A) und der Diagonalmatrix
Y= A O

In Publikationen zum Thema algebraische Mehrgitterverfahren wie [18] wird vorgeschlagen,
Restriktion und Interpolation mittels Links- und Rechtssingularvektoren (von zugehdrigen kleinen
Singuldrwerten) zu konstruieren, anstelle von Eigenvektoren, um dann die obige Relation auszu-
nutzen. Allerdings sind gute Approximationen an jene Singularvektoren in der Praxis bei unserem
Problem @ schwerer zu berechnen als Eigenvektoren zum Problem D. Dies liegt (vermutlich)
letztendlich an der Spektralstruktur der Operatoren, da es beim Operator () schwieriger ist an
kleine Eigenwerte heran zu kommen, weil diese im Zentrum des Spektrums liegen. Im Falle von D,
wo die kleinen Eigenwerte am Rand des Spektrums liegen und dariiber hinaus in der rechten Halb-
ebene C* liegen (falls F(D) C C"), ist deren Beschaffung einfacher. Verschiedene numerische
Tests ergaben keinen Mehrwert im Verfolgen des Singuldrwert-Ansatzes, sodass wir auf ein auf
Eigenvektoren basierendes Mehrgitterverfahren setzen, was auch motiviert, D, gegeniiber DF¢
als , korrekten" Grobgitteroperator anzusehen, insbesondere um ein echtes Mehrgitterverfahren

rekursiv auf D, (mit identischen Attributen wie D) anwenden zu kénnen.

Um dies moglichst universell machen zu kdnnen, verwenden wir eine spezielle I's-kompatible

Gitterblock-Aggregation:

5.2.4 Definition

Sei eine Blockzerlegung {£; : i =1,...,n¢.} des Gitters £ gegeben. Dann ist die Standard-
Aggregation {A; - : i=1,...,ng,, 7 =0,1} beziiglich dieser Blockzerlegung gegeben durch

Aig:=L; {0,1} xC und Ai1:=L; x {2,3} x C. O

Diese Standard-Aggregation kombiniert immer zwei Spin-Freiheitsgrade in ['5-kompatibler
Weise (vgl. Definition 5.2.1) mit allen drei Farb-Freiheitsgraden. Zu jedem i sind die Aggregate
A;o und A;; die einzigen beiden Aggregate, die mit dem Gitterblock L; assoziiert sind. Die
Standard-Aggregation induziert hier ein grobes Gitter £. mit nz, Punkten, wobei jeder Grobgit-
terpunkt zu einem Gitterblock L£; korrespondiert und 2N Variablen umfasst, mit N der Anzahl
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der Testvektoren. Jeweils N Variablen gehdren zu den Spin-Indizes Null und Eins (bzw. dem Ag-
gregat A; o) und weitere N zu den Spin-Indizes Zwei und Drei (bzw. dem Aggregat A; ;). Daraus
ergibt sich eine GesamtgroBe des Grobgittersystems von n. = 2Nn,_. Standard-Aggregation und
Konsequenzen aus Lemma 5.2.2, d.h., D, = PYDP, erhalten die Eigenschaften der Nichste-
Nachbar-Kopplung, I's-Kompatibilitdt, Spektraleigenschaften sowie Diinnbesetztheit.

Nun wenden wir uns den Testvektoren zu.

5.3 Adaptive Testvektorberechnung

Solange keine a priori Informationen iiber den Nah-Kern vorhanden ist, werden die Testvektoren
v1,...,vn fir unser auf Aggregation basierendes Mehrgitterverfahren in einer sog. Setup-Phase
berechnet. Weiter [35] folgend, welches sich hierbei stark auf [18] bezieht, gehen wir folgender-
maBen vor. Wir legen uns auf den GALERKIN-Ansatz fest, d. h.,

R=PH,

Die fundamentale Idee von Mehrgitterverfahren ist es, Fehlerkomponenten zu finden, die vom
Glatter nicht effektiv reduziert werden konnen, in unserem Kontext also den Nah-Kern. Dem-
nach liefert ein Glatter nach einigen wenigen lterationsschritten, angewendet auf die homogene

Testgleichung

Du=20

mit einem zufalligen Startvektor u, eine Niherung ¥ mit hohen Fehleranteilen in Eigenmoden,
welche vom Glatter schlecht reduziert werden kénnen. Nun kdnnten wir immer weitere Zufallsvek-
toren generieren und die homogene Gleichung 16sen bis die gewiinschte Anzahl von Testvektoren
erreicht ist. Die nach (5.3) konstruierte Interpolation garantiert dann, dass auf dem groben Git-
ter genau diese Eigenmoden betont werden. Diese (vorldufige) Konstruktion von D, kann dann
verwendet werden, um die homogene Gleichung mittels eines Mehrgitterverfahrens zu I6sen, was
ein neueres, verbessertes Set an Testvektoren produziert mit hohen Fehleranteilen, welche vom
Mehrgitterverfahren schlecht reduziert werden kdnnen. Damit wird wiederum ein verbesserter
Grobgitteroperator D, konstruiert, der sich immer spezieller auf jene Eigenmoden konzentriert.
Das lterieren dieses Prozesses fiihrt ultimativ zu einem schnell konvergierenden Verfahren, aller-
dings mit womdglich unverhaltnismaBig groBem Aufwand, abhingig davon, wie oft der Prozess

iterieren und wie viele Testvektoren verwendet werden sollen.

Den Aufwand, immer das gesamte Mehrgitterverfahren auf die homogene Gleichung anzu-
wenden, um eventuelle Mangel aufzuzeigen und diese dann zu beheben, gilt es im Zaum zu halten.
Wir wollen uns eine Methode anschauen, die ihren Ursprung in den Arbeiten [14, 15] hat — den

sog. ,,Bootstrap “-Ansatz. Der Ansatz beruht auf der folgenden fundamentalen Beobachtung.
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5.3.1 Lemma

Gegeben ein Eigenpaar (A, v.) des Eigenwertproblems auf dem groben Gitter
Deve = Acve,
so l6st das Paar (A, Pv.) das bedingte Eigenwertproblem
finde (\,v) mit v € Bild(P) so, dass P (Dv — \v) =0

auf dem feinen Gitter.

Beweis.
PH(DPv, — A\.Pv.) = Deve — A\ePH P, =0,

wobei wegen PH P = I die Behauptung folgt. O

Es ist natiirlich einfacher, Eigenvektoren zu betragsmiaBig kleinen Eigenwerten auf dem
groben Gitter zu berechnen, als auf dem feinen, und die Information des Grobgitteroperators wird
so optimal genutzt. Einige Iterationen des Glatters angewandt auf Pu, liefern dann brauchbare
Testvektoren mit hohen Anteilen im Nah-Kern-Bereich des feinen Gitters. Der Ansatz in Liischers
Arbeit [61], d. h., der ,,inexakt deflation “-Ansatz, beruht ebenfalls auf dieser Idee, wobei das grobe

Eigenwertproblem dort approximativ mit relativ grober Fehlertoleranz geldst wird.

5.4 DD-cAMG

Wir haben nun alle Zutaten zur Beschreibung des auf Gebietszerlegung und Aggregation beruhen-
den adaptiven (die adaptive Komponente des Verfahrens liegt in der Generierung der Testvektoren,
der Setup-Phase) algebraischen Mehrgitterverfahrens DD-oAMGT [35] zum Lésen der diskreti-
sierten DIRAC-Gleichung mittels des WILSON-DIRAC-Operators mit Clover-Term (2.7).

Der Glatter ist standardmaBig M&)P, in spateren Anwendungen aber auch ein mit SCHUR-
Komplement (siehe Abschnitt 2.3) prékonditioniertes FGMRES mit Neustarts (wie in der Imple-
mentierung des Verfahrens in der QOPQDP Software-Bibliothek, [82]).

Das verwendete Grobgittersystem ist D, = P¥ DP, wobei P der auf Aggregation basierende
Interpolationsoperator ist, welcher in einer adaptiven Setup-Phase generiert wird. Algorithmus 7
gibt eine Ubersicht des Vorgehens in Pseudocode. Die Konstruktionsphase in Zeile 6 wird, wie in
Definition 5.1.2 beschrieben, vollzogen, inklusive lokaler Orthonormalisierung. Der Operator C'*)
in Zeile 8 ist ein Platzhalter fiir entweder eine iterative Methode, um ein Eigenpaar (A;, Pv.)
des Grobgitteroperators D. zu generieren und den , gelifteten” Vektor Pv. mit v Schritten zu
glatten, oder aber einen V-Zykel des gesamten Losers (ebenfalls mit v Glattungsschritten). Bei

letzterem gibt es wieder eine Wahl zwischen Anwendung des Losers auf die homogene Gleichung

TEngl.: Domain Decomposition-adaptive Algebraic MultiGrid
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mit Startvektor v; oder Lésen der Gleichung Dvpey = v; mit dem Nullvektor als Startvektor, wie
in Liischers Arbeit [61] vorgeschlagen. Wir werden im folgenden den ersten Ansatz verwenden.
Fiir weitere Details und Vergleiche, sowohl analytischer als auch numerischer Natur, der beiden
Methoden DD-AMG und Liischers ,,inexact deflation “-Methode verweisen wir auf [35].

Algorithmus 7: Zweigitter-Setup-Phase
Eingabe: n;.,,n, v

Ausgabe: vy,...,v,, P, D,

1 Generiere vy,...,vy € C" Zufallsvektoren
2 fori=1,...,N do

v; MS(Z)PUZ'
end for
for j=1,...,ni do

(Re-)Konstruiere P und D. aus aktuellen vq,...,vnN

fori=1,...,N do

v; + CW)

end for

© 00 N oo g &, W

10 end for

Zur Veranschaulichung zeigt Abbildung 5.2 die Wirkung der Grobgitterkorrektur auf die
aufsteigend sortierten Eigenmoden. Die erhoffte Fehlerreduktion in den kleinen Eigenmoden tritt
(zumindest in diesem kleinen Beispiel, nj,, = 10, n = v = 3) deutlich ein. Mit dem Fehlerpropa-

gator der Zweigitterverfahren (mit Nachglattung)

FEog := (I — MsppD)(I — PD;1PH D)

1 - .
E
=
S
&
: o I
0.2} - 0.2F i
O 1 1 1 1 1 1 0 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Index des Eigenwerts \; Index des Eigenwerts \;
Abbildung 5.2: Fehlerreduktion der Abbildung 5.3: Fehlerreduktion der
Grobgitterkorrektur beziiglich der Eigen- Zweigitterverfahrens beziiglich der Eigen-

moden (4*-Gitter). moden (4*-Gitter).
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zeigt Abbildung 5.3 die Wirkung des gesamten DD-aAMG-Verfahrens auf Fehlerreduktion in
aufsteigend sortierten Eigenmoden am Beispiel eines Zweigitter-V-Zykels. Eine Fehlerreduktion

entlang aller Eigenmoden ist zu beobachten.

Generell gibt es fiir ein (echtes) Mehrgitterverfahren verschiedene Zykel-Strategien, so wie
den bereits angesprochenen V-Zykel (Algorithmus 6) oder den W-Zykel (ab drei Gitter). Als
numerisch besonders stabil hat sich der sog. K-Zykel [79] erwiesen (K wie KRYLOV). Um diesen

zu skizzieren, definieren wir Notationen im Zusammenhang mit echten Mehrgitterverfahren:

5.4.1 Definition

Sei L die Anzahl der Gitter, wobei das feinste Gitter das Erste ist, d.h., D := D. Mit ny,
l=1,...,L, sei die Dimension des jeweils zugrundeliegenden Vektorraums auf jeder Gitterebene

[ bezeichnet. Die verschiedenen Interpolationen notieren wir dann mit
p:.Cwvt -C% [=1,...,L—1.

Sie transportieren Informationen von Gitterebene [+ 1 nach Ebene [. Entsprechend transportieren
die Operatoren P Informationen von Gitterebene [ nach Ebene [ + 1. Die Grobgitteroperatoren

sind rekursiv gegeben durch
D :C" —»C™ Dy :=P! D_ P,

fiir l = 2,..., L. Die Glatter auf den verschiedenen Ebenen schreiben wir kurz als

Analog kennzeichnet 1, dass der Vektor zur Gitterebene [ bzw. zum Vektorraum C™ gehort. ¢

Das Vorgehen bei der K-Zykel-Strategie ist in Algorithmus 8 skizziert. Zum Verstindnis
muss betont werden, dass FGMRES stets selbst mit einem K-Zykel prakonditioniert wird, daher
ist der Aufruf in Zeile 9 tatsachlich eine Rekursion, da eine neue Instanz von FGMRES mit Matrix

Dyt und rechter Seite 751 auf der nachst tieferen Gitterebene alsbald einen K-Zykel aufruft.

Die Setup-Phase fiir ein echtes Mehrgitterverfahren besteht nun dhnlich wie Algorithmus 7

aus zwei wesentlichen Phasen:

1. Eine Anfangsphase, gegeben durch Algorithmus 9, welche ausschlieBlich den Glatter benutzt

um eine hierarchische Mehrgitterstruktur aufzubauen.

2. Eine iterative Phase, in der die Testvektoren der verschiedenen Gitterebenen durch An-
wendung des aktuell verfiigbaren Mehrgitterverfahrens verbessert werden. Algorithmus 10

skizziert hier das Vorgehen in Pseudocode.
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Algorithmus 8: K-Zykel
Eingabe: [, n;
Ausgabe:
1 if [ = L then
2 | e Dy
3 else
4 P+ 0
fori=1,...,u do
6 ‘ Wi <= Mi(m — D) /* Vorglétten */
7 end for
8 | my1 < Py — Duy)
9 Y141 < FGMRES(Dj41,m141) /* Erlduterung siehe Text */
10 | < Y+ P
11 fori=1,...,v do
12 ‘ Yy < Py + My(m — D) /* Nachgldtten */
13 end for
14 end if

Algorithmus 9: Anfangs-Mehrgitter-Setup-Phase

S A W N

10

Eingabe: [, N, 7
Ausgabe: vj(-l), .. .,U§N), Pj, Djq fir j=1,...,L -1
if [ =1 then
‘ Generiere N Zufallstestvektoren vgl), ce, v%N)
else
forj=1,...,N do
‘ vl(j) — Pfflvl@l /* Restringiere Vektoren von feinerem Gitter */
end for
end if
g forj=1,...,N do
vl(j) +— Ml(n)(vl(j)) /* 1 Glittungsschritte angewendet auf das homo-
gene System D;xr =0 mit Startvektor vl(j) */
end for
Konstruiere P, und setze Dy := PZHDZPZ

11
12
13
14

if | <L —1 then
‘ Rekursiver Aufruf von Algorithmus 9 auf Gitterebene 1+1

end if

Es ist durchaus moglich, auf verschiedenen Gitterebenen eine unterschiedliche Anzahl von

Testvektoren IN; zu verwenden. Aufgrund des verminderten Rechenaufwandes auf groberen Gittern
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Algorithmus 10: lterative Mehrgitter-Setup-Phase
(1) (N)

Eingabe: [, N, njny, v; yees U P;,Djq firj=1,...,L -1
Ausgabe: Verbesserte vj(.l), . ,v](.Nl), Pj, Djq fir j=1,...,L—1

1 if [ < L then

2 fori=1,...,n;, do

3 forj=1,...,N do

4 form=1,...,L—1do /* Loéser anw. auf allen Gitterebenen */

Y — K-Zykel(1, 1)

6 o) Y/ [

7 end for

8 end for

9 form=1...,L—1do

10 aktualisiere P, D41

1 end for

12 end for

13 Rekursiver Aufruf von Algorithmus 10 auf Gitterebene [+ 1

14 end if

konnte eine wachsende Folge N; < Njy; verwendet werden, aber die Auswirkungen sind wenig

signifikant. Fiir weitere Details siehe [89].

DD-aAMG (Dreigitter)
Setup-Schritte n;,, Setup-Zeit Loser-Zeit Gesamtzeit

1 2.08s 6.42s 8.5s
2 3.06s 3.42s 6.48s
3 4.69s 2.37s 7.06s
4 7.39s 1.95s 9.34s
) 10.8s 1.82s 12.6s
6 14.1s 1.89s 16.0s
8 19.5s 2.02s 21.5s
10 24.3s 2.31s 21.6s

Tabelle 5.1: Vergleich Setup- und Loser-Zeiten, 48* Gitter, = 5.}

Bei der Setup-Phase gilt es generell, eine gute Balance zwischen Setup-Zeit und Loser-Zeit
zu finden. Eine optimale Wahl fiir die Inversion von D beziiglich einer einzigen rechten Seite kann
in Tabelle 5.1 bei n;,, = 2 ausgemacht werden. Soll dasselbe System mehrfach fiir verschiedene

rechte Seiten gel6st werden, sind Setups im Bereich n;,, = 5 effizienter.

¥Daten aus [35]. Berechnung auf Juropa, Jiilich Supercomputing Center (JSC).
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Das Performancepotential des DD-aAMG-Verfahrens auf gréBeren Konfigurationen wird
eindrucksvoll durch Abbildung 5.4 beschrieben. Die Abkiirzung ,,mp oe" steht hierbei fiir ,, mixed
precision" und ,,odd-even preconditioned”. Es beschreibt einen , state-of-the-art" KRYLOV-LGoser,
welcher aufgebaut ist auf FGMRES(25) mit doppelter Maschinengenauigkeit, prakonditioniert
mit 50 Iterationen BiCGStab in einfacher Maschinengenauigkeit. Das System ist dariiber hinaus
statisch prakonditioniert mit SCHUR-Komplement. myq = —0.05294 bezeichnet den physikali-
schen Massenparameter, der den thermischen Zustand der genutzten Konfiguration beschreibt
und meir = —0.05419 bezeichnet die kritische Masse (Details dazu in [27, 28]; hieraus stammt
auch die benutzte 64*-BMW-c Konfiguration). Insbesondere wird hier zwischen den Massen des
Up- und Down-Quark unterschieden. Weitere Details zu der Vielzahl an Parametern innerhalb der
Loser, siehe [89, 35].

Mud
10000F T ' " mp oe BiCGStab —— 1
[ Zweigitter DD-cAMG
Dreigitter DD-aAMG
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Abbildung 5.4: Skalierung von BiCGStab und DD-cAMG beziiglich des Massenparameters my
(64%-Gitter, 128 Prozesse).}

Abbildung 5.5 zeigt einen Vergleich des DD-aAMG-Verfahrens mit dem (durch [35] in-
spirierten) aktuellen ,inexact deflation“-Methode von Liischer mit ,inaccurate projection”, im-
plementiert in der Programmbibliothek Open-QCD [62]. Sein Vorgehen unterscheidet sich von
(Zweigitter-) DD-cAMG insbesondere durch die Konstruktion des Grobgitteroperators, welche
die I's-Symmetrie nicht erhalt. Dariiber hinaus konstruiert die , inexact deflation“-Methode den
Prolongationsoperator so, dass nur halb so viele Variablen ins Grobgitter iibernommen werden und
konsequenterweise hat der Grobgitteroperator in Matrixdarstellung dann viermal weniger nicht-
Null Eintrage gegeniiber unserem Verfahren, falls dieselbe Anzahl von Testvektoren verwendet

wurde. In Tests stellte sich allerdings heraus, dass 30 Testvektoren (gegeniiber 20 in DD-cAMG)

SDaten aus [35]. Berechnung auf Juropa, Jiilich Supercomputing Center (JSC).
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Abbildung 5.5: Skalierung der Liischer-Methoden und DD-aAMG beziiglich des Massenparame-
ters mg (64-Gitter, 128 Prozesse).¥

in den Liischer-Methoden die beste Performance liefert. Obwohl mehr Testvektoren verwendet
wurden, ist die Arbeit auf dem zweiten Gitter geringer im Vergleich zum Zweigitterverfahren.
Sobald aber drei Gitter verwendet werden, sinkt die bendtigte Arbeit um auf dem zweiten Gitter

zu iterieren erheblich, was die Uberlegenheit des Dreigitterverfahrens erklart.

Die , Inexact deflation “~-Methode mit ,,inaccurate projection” ist der Zweigitter-DD-cAMG
bis zum Massenparameter mgq in Sachen Rechenzeiten unterlegen, die Skalierung von ersterem
ist aber etwas besser. Ab Massenparametern kleiner als my ist die Skalierung des Zweigitter-
verfahren dhnlich zum (insgesamt schlechtestem) , inexact deflation “-Ansatz. Die Verbesserung
der ,inexact deflation “-Methode durch die Verwendung von inakkuraten Projektionen, fiihrt zu
einem verbesserten Skalierungsverhalten, dhnlich zum Verhalten des Dreigitterverfahrens. Insge-
samt fiihrt der Ansatz mehr Testvektoren zu nutzen (aber damit hoheren Setup-Aufwand in Kauf
zu nehmen), um dafiir giinstiger zu I6sende Grobgittersysteme zu erhalten, generell zu einem
ganzlich anderen Skalierungsverhalten als der des DD-aAMG-Ansatzes. Die insgesamt beste Per-
formance (sowohl in Rechenzeit als auch Skalierung) wird durch Dreigitter-DD-oAMG erreicht.
DreigitterDD-aAMG lohnt sich sogar wenn schwerere Massen als mg verwendet werden. Voraus-
sichtlich wird der Loser in Zukunft stark von seiner rekursiven Struktur profitieren, wenn immer

groBere Gitterkonfigurationen verwendet werden.

Ein Nachteil des robusten FGMRES-Verfahrens, welches als duBerer Loser fiir DD-aAMG
dient, ist der sehr hohe Speicherbedarf (vgl. Abschnitt 3.2). Hier kénnte dieses durch andere

TDaten aus [89]. Berechnung auf Juropa, Jiilich Supercomputing Center (JSC).
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Verfahren ersetzt werden, wie zum Beispiel dem zu GMRES-dhnlichen FQMR-Verfahren (Flexible
Quasi-Minimal Residual) von Szyld und Vogel [104] aus dem Jahre 2001. Das QMR-Verfahren
basiert auf der , look-ahead “-Bi-LANCz0OS-Methode, welcher ,,Breakdowns", also Verfahrensab-
briiche ohne verwendbares Ergebnis, verhindert, an denen andere Bi-CG-Verfahren kridnkeln.
QMR benétigt, genau wie alle anderen Bi-CG-Verfahren und anders als GMRES, zwei Operator-
Anwendungen pro Iteration. Es verfiigt aber {iber kurze Rekursionen, kann also mit geringem Spei-
cheraufwand betrieben werden. Praxistests zeigten beim vorliegenden Problem aber leider keine
ernsthaften Verbesserungen beziiglich Konvergenzverhalten und Rechenzeit gegeniiber FGMRES.
Ebenfalls konnte DD-cAMG mit FQMRIDR ( Flexible QMR- Induced Dimension Reduction) [107]
und mit FBi-CGSTAB (Flexible Bi-Conjugated Gradient STABilized) [108] (Bi-CGSTAB wurde
urspriinglich von van der Vorst [106], 1992 entwickelt) kombiniert werden. Beide Verfahren leiden
bei vorliegendem Problem an stagnierenden Residuenverldufen. FGMRES ist also weiterhin die
bessere Wahl.
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Anmerkungen!

22 Georgi lwanowitsch Petrow (wiss. Transliteration Georgij lvanovi¢ Petrov; * 18. Mai (jul.)
/ 31. Mai 1912 (greg.) in Pinega;  13. Mai 1987) war ein sowjetischer Ingenieur. Von 1965 bis
1973 war Petrow Direktor des Instituts fiir Weltraumforschung der Akademie der Wissenschaften
der UdSSR.

IAlle Angaben aus der deutschen Wikipedia, stand 2017
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6. Eigenl6éser und eine physikalische Anwendung

In dem nun folgenden Hauptteil der Arbeit soll aufgezeigt werden, wie die Methoden aus dem
vorherigen Kapitel angewendet werden kdnnen, um ein neues Verfahren zur einfacheren Berech-
nung von Eigenmoden des Operators ) := I's D zu erhalten. Eine Variante der hier vorgestellten
Methodik wurde gemeinsam mit der Arbeitsgruppe um A. Frommer an der Universitat Wuppertal

implementiert und in [7] publiziert.

Generell gibt es innerhalb der Gitter-QCD neben Losungen der DIRAC-Gleichung auch groBen
Bedarf an Informationen iiber das Spektrum des WILSON-DIRAC-Operators D. Viele physikali-
sche Eigenschaften sind insbesondere in betragsmaBig kleinen Eigenwerten und deren zugehdrigen
Eigenmoden dieses Operators kodiert und deshalb begehrt. Das komplexe Spektrum von D (vgl.
Abbildung 2.5) ist vergleichsweise schwer zu fassen, weshalb in der Gitter-QCD eher die Eigen-
moden des positiv definiten Operators D D (reelles Spektrum) betrachtet werden, zum Beispiel
um stochastisches Rauschen bei KenngroBen wie den unverbundenen Fermionenschleifen [73] zu
reduzieren. Neben diesen spielen in der Gitter-QCD die kleinen Eigenmoden des hermiteschen,
maximal indefiniten, Operators @ (ebenfalls reelles Spektrum) fiir Anwendungen wie , low-mode

averaging" und andere [23, 10, 17] eine wohl noch gréBere Rolle.

Trotz erhdhter Symmetrieeigenschaft und reellem Spektrum gegeniiber D ist die Eigenwert-
berechnung noch immer duBerst aufwendig. Nach Liischer [61, 58] skaliert das Problem etwa mit
VINZg.
kleinen Eigenmoden entspricht. Die Anzahl der gesuchten kleinen Eigenmoden Ngj, steigt dabei

wobei V' dem Volumen des 4D-Raumzeitgitters und Ngjg der Anzahl der zu berechnenden

etwa in demselben MaBe wie das Volumen V. Es gibt im Wesentlichen zwei Herangehenswei-
sen, um dem Eigenwertproblem numerisch gegeniiber zu treten: Zum einen sind das KRYLOV-
Unterraumverfahren wie das ARNOLDI-Verfahren oder aber Verfahren die auf Shift-Invertierung
des vorliegenden Operators basieren wie die RAYLEIGH?3-Quotienten-lteration. Im besten Fall
kann beides kombiniert werden. Generell liegt es nahe, die hermitesche Struktur von () auszunut-
zen, was fiir das ARNOLDI-Verfahren sehr einfach ist, denn dieses ist fiir hermitesche Operatoren
dquivalent zum wesentlich weniger aufwendigen LANCZ0s?*-Algorithmus. Beim Einsatz der Shift-
Invertierung bzw. des GleichungsysstemlGsers ist beispielsweise MINRES eines der bekanntesten

Verfahren die fiir (und nur fiir) hermitesche Operatoren ausgelegt sind.

Um die Symmetrie des hermiteschen Operators auszunutzen, konnte DD-aAMG fiir den
Operator @) derart angepasst werden, dass die Glattung via der SAP-Methode (vgl. Kapitel 4.3)
symmetrisiert wird (durch entsprechendes Vor- und Nachglatten; da nicht-stationire Verfahren
vorliegen, ist dies nicht trivial). Ebenso muss der Grobgitteroperator (). hermitesch sein (dies ist

vergleichsweise einfach zu realisieren), damit die Grobgittersysteme mit MINRES geldst werden

69
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konnen. Dariiber hinaus ist es auch kein Problem die Schurkomplement-Prikonditionierung zu
symmetrisieren. Erste vielversprechende Ergebnisse fiir kleinere Konfigurationen konnten leider im
GroBeren nicht bestatigt werden. Dies liegt nachweisbar daran, dass die Hermitizitdt der auftre-
tenden Systeme sehr anfillig gegeniiber Storungen ist, insbesondere sind die Grobgittersysteme
aufgrund von Rundungsfehlern niemals hundertprozentig hermitesch. Weiter konvergiert auch
die SAP-Methode nur sehr schlecht fiir (), unabhingig davon, ob zum Lésen der Blocksysteme
MINRES oder GMRES verwendet wird. Demnach miissen wir uns leider vorerst vom Gedanken

verabschieden, die Hermitizitdt von () ausnutzen zu wollen.

Wie bereits erwdhnt, zeigten viele Tests, dass SAP nicht, oder nur unzureichend, als Glatter
fiir @@ funktioniert, selbst wenn Uberrelaxationsvarianten verwendet werden. Das GMRES-Verfahren
konvergiert bekanntlich fiir jedes eindeutig |6sbare Gleichungssystem und mit passend gew3hlten
Neustarts produziert das Verfahren auch fiir () stabile Glattungsresultate (vgl. auch Abbildung
6.6). Durch diese Anpassung dhnelt DD-aAMG fiir @ (im Folgenden mit AMG bezeichnet) den
in [4, 17, 81] vorgeschlagenen Mehrgitterverfahren fiir D und wird dariiber hinaus etwa um den
Faktor 2.5 langsamer als DD-aAMG fiir D. Da das adaptive Mehrgitterverfahren darauf basiert,
kleine Eigenmoden von () auf den groberen Gittern zu behandeln, funktioniert dies auch fiir
Q@ — ol, solange o betragsmiBig hinreichend klein ist. Demnach erlaubt dieses Vorgehen Shift-
Invertier-EigenlGser mit Mehrgitterverfahren zu beschleunigen. In aller Regel sind die Shifts o
innerhalb solcher Verfahren nahe an Eigenwerten A von @, daher wird () — ol noch sehr viel
schlechter konditioniert sein als bereits ohnehin. Dennoch werden wir zeigen, dass wenn wir auf
Eigenloser-Strategien setzen, die auf einer Invertierung des geshifteten Systems ) — o beruhen,
wir das in der Gitter-QCD verbreitete ARNOLDI-Verfahren (Programmbibliothek ARPACK und
seine parallelisierte Variante PARPACK [100]) in Sachen Effizienz iibertreffen kénnen.

Eine der am weit verbreitetsten Shift-Invertier-Eigenlser ist die RAYLEIGH?®-Quotienten-

Iteration, auf die wir uns nun konzentrieren.

6.1 Rayleigh-Quotienten-Iteration

Zum leichteren Verstindnis der RAYLEIGH-Quotienten-lteration betrachten wir zunichst die Po-
tenzmethode nach voN Mises?® (vgl. auch [44, 73, 93]). Sei hierfiir im Beispiel A € R™ "
eine invertierbare Matrix mit reellen Eigenwerten, welche o. E. betragsmaBig aufsteigend geordnet

werden kdnnen:

0 <[] < [Aof <o <Al

Angenommen wir haben zu jedem ); den zugehdrigen Eigenvektor v;, i = 1,...,n, mit ||v;]|3 :=
H

vi'v; = 1, so kdnnen wir jeden Vektor x € R" in die Eigenbasis von A,

n
T = § QU4
i=1
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entwickeln. Hieraus erhalten wir
n
Arg = Z/\faw,-, keN,
i=1

und stellen fest, dass sich fiir groBe k auf der rechten Seite der Summand durchsetzt mit dem

dominanten Eigenwert \,, (0. E. o, # 0, sonst wahle anderes x). Wir kénnen also mittels
Akg ~ )\]flanvn

aus A¥z den Eigenvektor zum betragsmiBig groBten Eigenwert von A berechnen. ||A*xz|| konver-
giert demnach gegen |\, | (unabhangig von der gewéhlten Norm). Das bestimmen des Vorzeichens
des Eigenwerts bendtigt einige Tricks, im komplexen Fall ist die Berechnung des Eigenwerts via
v Av, mit v := A¥z, k hinreichend groB, aber sehr einfach, zumindest wenn keine vielfachen
Eigenwerte auftreten (die Diagonalisierbarkeit von A spielt hier eine Rolle). Algorithmus 11 be-
schreibt das Verfahren (auch fiir komplexe Matrizen, ohne vielfache Eigenwerte), wobei die Nor-

mierung in jeder Iteration aus Stabilitdtsgriinden erfolgt.

Algorithmus 11: Potenzmethode nach VON MISES (bzgl. der EUKLID-Norm)
Eingabe: Startvektor v(9) mit |||y = 1

Ausgabe: Approximatives Eigenpaar ()\(k),v(k)) zum betragsgroBten Eigenwert von A
for k=1,2,... do

o) Ap(k=1)

v®) — ) /)| 5H) ||

AE) o (pk=1))H (k)

-

A W N

end for

[&,]

In der vorliegenden Form kann die Potenzmethode nur verwendet werden um den be-
tragsmaBig groBten Eigenwert und den zugehdrigen Eigenvektor zu bestimmen. Zur Berechnung

anderer Eigenwerte kann die Matrix aber passend transformiert werden:

(i) Ersetzten wir Zeile 2 von Algorithmus 11 durch 5*) « A=1v(*=1 so konvergiert das Ver-
fahren gegen den Eigenvektor zum kleinsten Eigenwert \;. Insbesondere hat A~! dieselben

Eigenvektoren wie A.

(ii) Falls X eine Ndherung an einen beliebigen Eigenwert von A ist, selbst aber nicht im Spektrum
o(A) liegt, so konvergiert Algorithmus 11 mit (A — X\I)~! gegen einen Eigenvektor zum
Eigenwert nahe an ), denn (A—AI)~! besitzt die Eigenwerte (A\;—A)~!, i =1,...,n. Diese
Variante des Algorithmus 11 ist bekannt als die gebrochene Iteration von WIELANDT?7,

(iii) Passen wir schlieBlich in jeder lteration A durch die aktuelle Eigenwertndherung AE) an,
so fiihrt dies auf die RAYLEIGH-Quotienten-Iteration (RQI), welche lokal quadratisch, fiir

hermitesche Matrizen sogar lokal kubisch konvergiert (fiir einen Beweis siehe z. B. [83]).
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Beste Voraussetzungen also fiir das Eigenwertproblem mit hermiteschem (), wobei statt
einer echten Invertierung (Q — oI)~! selbstverstindlich unser Mehrgitterverfahren angewendet

auf (@ — ol)x = v zum Einsatz kommt.

Wir verbinden RQI auf folgende Weise mit dem Mehrgitterverfahren: Initial werden Ngig
orthonormale Startvektoren Vs UNgg korrespondierend zu Eigenwertstartwerten A\ = --- =
AnNeig = O fixiert. Unter Verwendung des Mehrgitterverfahrens werden alle Vektoren v; durch eine
Shift-Inversion v; « (Q — )\Z-I)_lvi aktualisiert. AnschlieBend werden die Vektoren vy, ... s UN,ig
re-orthonormalisiert und die Eigenwertapproximationen mittels \; = vZHQvi angepasst. Diesen
Prozess wiederholen wir solange, bis die Norm des Eigenvektorresiduums ||Qu; — A\;v;l|2 kleiner

als eine vorgegebene Fehlertoleranz ¢ ist.

Das beschriebene Vorgehen ist im Algorithmus 12 zusammengefasst. In der Praxis starten
wir mit den Testvektoren v1,...,vn,,, die in der Setup-Phase des Mehrgitterverfahrens generiert
wurden, welche approximativ schon Eigenvektoren zu kleinen Eigenwerten darstellen. In diversen
Tests stellte sich heraus, dass nicht immer alle Nejg kleinsten Eigenpaare ()\;, v;) berechnet werden.
Zwar sind diejenigen );, die sehr nahe an Null liegen immer dabei, bei groBerem Abstand zum
Ursprung fehlen jedoch einige der iibrigen kleinsten Eigenwerte. Dies passiert insbesondere dann,
wenn der zufillige Startvektor nur wenig mit der Richtung des gewiinschten neuen Eigenvektors
gemein hat oder wenn die aktuelle Eigenwert-lterierte zu groB wird. Um die Haufigkeit dieses
Effekts zu reduzieren, wurde in Zeile 4 eine Dampfung eingebaut, welche die Reichweite der
Shifts begrenzt.

Fiir die folgenden numerischen Ergebnisse mit Ngjz = 20 wurde AMG mit der in Algorith-

mus 12 beschriebenen RAYLEIGH-Quotienten-Iteration kombiniert. Dabei wurden alle Berechnun-

Algorithmus 12: Rayleigh-Quotienten lteration + AMG
Eingabe: Orthonormale Startvektoren vy, ..., vn,,, Fehlertoleranz ¢

Ausgabe: Eigenpaare (A1,v1), ..., (AN UNgg)
1 Setze \j =0, g;=1,Vi=1,..., Neg

2 while J¢; : ¢; > e do

3 forall i =1,..., Neg mit &; > ¢ do

4 o+ A -max(1l —¢g;,0)

5 v + (Q — o) oy /* GLS 18sen via Mehrgitterverfahren */
6 Vi v — Z;;ll (vai)vj

7 (% %vi/Hvng

8 Aktualisiere v; in Interpolation P

9 A — UZ-HQUi

10 g < ||QUZ — )\Z"UZ'HQ

1 end for

12 end for
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Abbildung 6.1: Vergleich zwischen PARPACK und RQI4+-AMG, bendtigte Zeit um Neg = 20

kleinste Eigenvektoren zu berechnen.

gen innerhalb der RQI bis auf die Invertierung mit doppelter Maschinengenauigkeit durchgefiihrt.
Jede Shift-Inversion wurde mit FGMRES in doppelter Maschinengenauigkeit ausgefiihrt, welches
wiederum flexibel mit dem algebraischen Mehrgitterverfahren (AMG) in einfacher Maschinenge-
nauigkeit prakonditioniert wurde. Alle Ergebnisse wurden auf dem Juropa Rechencluster des Jiilich
Supercomputing Center (JSC) berechnet. Dieser Rechner besitzt 2208 Nodes, jeweils mit zwei
Intel Xeon X5570 (Nehalem-EP) Quad-Core-Prozessoren. Er ldsst ein Maximum von 8192 Ker-
nen pro Job zu und der verwendete ICC-Compiler benutzte die Optimierungs-Flags -03, -ipo,

-axSSE4.2 und -m64.

In Abbildung 6.1 ist ein Vergleich zwischen der RAYLEIGH-Quotienten-Iteration, kombiniert
mit dem algebraischen Mehrgitterverfahren (RQI+AMG) und dem PARPACK [100] dargestellt.
Letzteres ist die parallelisierte Implementierung der Open-Source-Programmbibliothek ARPACK,
basierend auf dem implicit restarted-ARNOLDI-Algorithmus, welcher (nicht nur*) in der Gitter-
QCD verbreitet ist. Das Verfahren (vgl. Algorithmus 1) baut zunichst einen KRYLOV-Unterraum
mit fest gewahlter Dimension Ny, (die GroBe, bei der neu gestartet wird) auf und approximiert
dort Njg Eigenpaare von () durch die der HESSENBERG-Matrix Hy;, . Der Neustart innerhalb des
Verfahrens behilt die Nejg berechneten Eigenpaarapproximationen und verbessert diese mit einem
neuen KRYLOV-Unterraum, bestehend aus Nejg alten Vektoren und Ny, — Nejg neuen Eigen-
vektoren aus neuerlichen ARNOLDI-Iterationen. Mit der Neustartlinge von N, = 100 wurden
hier die besten Resultate erzielt. Wir stellen fest, RQI+AMG schligt PARPACK beziiglich der
Rechenzeit bereits bei kleineren 48 x 243-Konfigurationen um eine Zehnerpotenz. Fiir Gitter mit
Volumen 64 x 403 iiberschreitet PARPACK bereits das 24-Stunden Job-Limit bei 1024 Kernen,

*Die Matlab-Funktion eigs basiert ebenfalls auf ARPACK.
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Abbildung 6.2: Vergleich zwischen PARPACK und RQI4+AMG, Skalierung beziigl. der Anzahl

kleinster Eigenmoden Ngjg.

dennoch lasst sich an den Kurven ablesen, dass die Skalierung beziiglich der GittergréBe bei RQI
wesentlich besser ist als bei PARPACK. Dies ist ein groBer Vorteil, wenn es um aktuelle groBvolu-
mige Gittersimulationen geht. Die betrachteten Konfigurationen sind zwei-Flavour-Simulationen
mit myuq ~ 290 MeV und Gitterabstand a ~ 0.071 fm (weitere Details zu den verwendeten

Konfigurationen sind in [8] zu finden).

Etwas anders ist die Situation leider, wenn wir die Skalierung beziiglich Nz untersuchen.
In den Rechnungen fiir Abbildung 6.2 verwenden wir konstante Ny, = 200, da Tests gezeigt
haben, dass es kaum Einfluss auf die Laufzeit hat Ny, in Abhdngigkeit zu Nz zu setzen. Wir
merken an, dass bei allen diesbeziiglichen Tests immer Nz < %Nkw eingehalten wurde. Die Re-
chenzeit fiir RQI+AMG wiéchst rapide je mehr Eigenwerte berechnet werden sollen. PARPACK
hingegen weiBt nahezu konstante Laufzeiten bei wachsendem Nz auf. Grundsatzlich skaliert der
Orthogonalisierungsprozess des ARNOLDI-Verfahrens in der GroBenordnung (’)(Nfig). In den vor-
liegenden Berechnungen dominieren aber, wegen der Neustarts, eher die Matrix-Vektor-Produkte
und nicht der Orthogonalisierungsprozess. RQI+-AMG andererseits verwendet alle Nejg berechne-
ten Eigenvektorapproximationen fiir den Interpolationsoperator P des Mehrgitterverfahrens. Der
Grobgitteroperator Q. = P QP hat dann die Komplexitit O(Ne%g), da jeder Grobgitterknoten
2Neig Variablen hilt, die alle benachbarten Grobgitterknoten iiber eine (weniger diinnbesetzte)
2Neig X 2Neig-Matrix koppelt. Das Losen des Grobgittersystems skaliert dadurch mindestens mit
O(NZg)-

Abbildung 6.3 zeigt schlieBlich den Einfluss von Fluktuationen in acht verschiedenen, sto-
chastisch unabhingigen Konfigurationen fiir zwei verschiedene GittergroBen. Die Einfliisse sind

wenig signifikant.
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Abbildung 6.3: Vergleich zwischen PARPACK und RQI+AMG, Fluktuation iiber 2 x 8 stochas-

tisch unabhangige Konfigurationen.

Um die Probleme bei der Skalierung beziiglich N¢jg in den Griff zu bekommen, kdame ein
Ansatz in Frage, der nicht immer alle Eigenvektorapproximationen verwendet, um die Interpolation
P zu verbessern. Tatsichlich ist es moglich, die Shift-Inversionen beziiglich @) durch Systeme mit
dem Operator D zu ersetzen, um die Schwichen des algebraischen Mehrgitterverfahrens beziiglich

@ zu umgehen. Genauer gilt aufgrund der I's-Symmetrie des WILSON-DIRAC-Operators
(Q—0ol)™" = (D—0ols)"'Ts (6.1)
und numerische Tests zeigen, dass eine Anpassung in Zeile fiinf von Algorithmus 12 zu
v; (D — 0F5)_1F5vi
den verloren gegangenen Laufzeitfaktor von 2.5 wieder nahezu gutmacht, auch weil es wieder

moglich wird, SAP sinnvoll als Glatter zu verwenden.

Um die Skalierung beziiglich Nejz bei RQI+-AMG weiter zu verbessern, soll im Folgenden
ein neuer, alternativer Ansatz vorgestellt werden, der RQI durch ein Verfahren ersetzt, das auf
Shift-Invertierung und Unterraumprojektionen basiert und zwar zusitzlich und anders zu den

KRryLOV-Unterraumprojektionen und den Projektionen innerhalb des Mehrgitterverfahrens.

6.2 Jacobi-Davidson

Das JAcoBi?8-Davidson-Verfahren (JD) wurde 1996 von Sleijpen und van der Vorst [97] vorge-
schlagen. Es kombiniert Ideen des Davidson-Verfahrens von Ernest R. Davidson [22] aus dem Jahre

1975 und des JACOBI-Verfahrens [49, 50] von 1845 (!). Urspriinglich fiir nur reell-symmetrische
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Matrizen konzipiert, gibt es auch Versionen fiir hermitesche Operatoren [3] wie unser Q. Ver-
einfacht konnen wir uns das JD-Verfahren als ein Unterraumverfahren in Kombination mit RQI
vorstellen, daher funktioniert der , I's-Trick " hier ebenso (vgl. Gleichung (6.1) und (6.2)).

Das Verfahren teilt sich im Wesentlichen in zwei Schritte, erstens einen Informationsgewinn
aus dem aktuellen Ansatzraum und zweitens eine Erweiterung dieses Raumes. Ersteres wird durch
ein Standard-RAYLEIGH-RITZ-Verfahren oder mittels harmonischer- (z. B. [98]) bzw. , refined *-
RAYLEIGH-RITZ-Vektoren [31] realisiert. Zweiteres, die Erweiterung des Ansatzraumes, erfolgt

durch approximatives Losen der sog. Korrekturgleichung
(I—uuH) (Q—01I) (I—uuH)v: —7. (6.2)
Um das JD-Verfahren im Detail zu verstehen, beginnen wir mit einem kurzen Uberblick zum

Davidson-Verfahren. Sei dazu A € R™*" regulir und Uy, := [uy, ..., ux] € R"*F eine Matrix mit

orthonormalen Spalten. Sei weiter (6, w) ein Eigenpaar der projizierten Eigenwertgleichung
UR AUw = 6w.
Davidson schlug nun vor den Ansatzraum Spann{uy,...,ux} mit der Suchrichtung
t:=(Dx— 0[)_17"

zu erweitern, wobei 7 := Au — Gu das Residuum beziiglich des sog. RiTz-Paares (0, u) mit u :=
Urw und D4 die Diagonale von A bezeichnet. ug.; ist dann festgelegt durch Orthonormalisieren

von t gegen Spann{ui,...,ux}. Algorithmus 13 beschreibt das Vorgehen in Pseudocode.

Algorithmus 13: Davidson-Verfahren
Eingabe: A, u;

Ausgabe: Uy
1forj=1,...,kdo
2 | B+« UMTAU;
3 Berechne Eigenpaar (¢,w) von B
4 u <+ Ujw
r < Au—6u
6 | t+ (Da—0I)"r
7 Orthogonalisiere ¢ gegen uq,...,u;
8 | wujyr < t/]E]2
0 | Ujt1 < [Uj,ujt1]

10 end for

Bemerkenswert ist die Tatsache, dass das Davidson-Verfahren scheitert, falls A selbst eine Dia-

gonalmatrix ist, denn dann gilt

t=(Da—0I)"'r = u € Spann{uy, ..., u},
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d. h., der Ansatzraum wird nicht erweitert.

JACOBIs Ansatz (vgl. [97]), approximative Eigenpaare von diagonaldominanten Matrizen zu
berechnen beruht auf folgender Uberlegung: Ist o := ay; das gréBte Diagonalelement, dann ist
« ein approximativer Eigenwert zum approximativen Eigenvektor e1 := [1,0,...,0]T = [1, 2{]T.

Um diese Approximationen zu verbessern, kénnen wir die Gleichung

o

nach dem unbekannten (verbesserten) Eigenvektorteil z und dem unbekannten (verbesserten)

OéCT

b F

1

z

1

z

A

Eigenwert ) l6sen®. Dies ist dquivalent zum Losen des Gleichungssystems

A=a+clz,

(F— M)z = —b. (6.3)
JACOBI schlug hier vor, dieses Gleichungssystem iterativ zu I6sen:

O, =a+ cTz(k),

(Dp = 0 1)2*) = (Dp — F)2*) b,

mit Dg der Diagonalen von F.

Tatsichlich kénnen die Eigenwertverbesserungen z(**t1) des JacoBI-Verfahrens auch der-
art interpretiert werden, dass sie einer Orthogonalitdtsbedingung geniigen, d.h., das JACOBI-
Verfahren kann als Projektionsmethode angesehen werden. Betrachten wir hierfiir einen simpleren

Fall mit Az = b (vgl. Gleichung (6.3)), dann gilt fiir die Iterierten komponentenweise

)

1 n
R L > a7
=1

@i ,
J
J#i
Dies ist mit L := Spann{e;} und zy := [zgk), - ,zi(f)l,O, zg_lf_)l, . ,zgk)]T dquivalent zu

b; — (Az(kﬂ))i =0 mit kD¢ z0+ L
s b— AD mit 2%t e 2o+ L.

Sleijpen und van der Vorst kombinierten nun das Davidson-Verfahren und die Projektions-
Idee von JACOBI zu einer neuen iterativen Projektionsmethode (vgl. [97]). Genauer soll zu einem
gegebenen RiTz-Paar (0, u) der gegebene Ansatzraum U um eine Suchrichtung erweitert werden,

die orthogonal zu u steht und approximativ die Korrekturgleichung (6.2) erfiillt.

Sei u eine Approximation an einen Eigenvektor von A und sei 6 ein RiTz-Wert beziiglich u.

Ahnlich zum JACOBI-Ansatz bestimmen wir eine Verbesserung des approximativen Eigenvektors u

T Jeder Eigenvektor v (der nicht orthogonal zu e; ist) lasst sich durch entsprechende Skalierung auf die Gestalt

v=(1,%)7 bringen.
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durch einen Anteil, der orthogonal zu u steht. Falls ||u||2 = 1 ist, sieht eine Orthogonalprojektion

von A an ut (= Spann{u}') folgendermaBen aus:
B = (I —uu™)A(I — uu').

Wegen 6 = uf Au gilt
A= B+ Auu® +uu A — Guut’. (6.4)

Sei (A, z) ein Eigenpaar von A mit x = u + v, wobei v unbekannt mit der Eigenschaft v_Lu.
Diese Darstellung ist méglich solange = # au, o € C, und = ¢ u™*. Falls 2 = au haben wir einen
Eigenvektor gefunden und sind fertig. Der Fall 2 € u’ hat Wahrscheinlichkeit Null. Fiir dieses
Eigenpaar gilt

A(u+v) = NMu+v).

Mit Bu = 0 und u_Lv folgt mit Hilfe von Gleichung (6.4)
A(u+v) = Bv+ Au+ Au — fu

und demnach
(B—M)v=—r,

wobei 7 = Au — Ou. Da X unbekannt ist, ersetzen wir den Wert durch den RiTz-Wert 6 (oder
falls vorhanden, durch eine andere Approximation an einen gesuchten Eigenwert) und erhalten die
Korrekturgleichung

(I—uuH) (A—0I) (I—uuH) v=—r.

Die Losbarkeit der Korrekturgleichung mit v € u' ist dquivalent zur Existenz eines o € C mit
(A—60)v=—r+ au.
Dabei geht ein, dass uf’r = 0. Sofern 6 ¢ o(A) gilt folgende Rechnung

v=—(A—0I)"r+a(A—-0I)" u
= —u+a(A—-00)"tu

und « lasst sich so bestimmten, dass v_Lu, auBer wenn (A — 0])_1u € ut, was mit Wahrschein-
lichkeit Null eintritt.

Dariiber hinaus heiBt das, dass der Ansatzraum, welcher um v erweitert wird und u bereits
enthilt, auch den Vektor t := (A—6I)~'u enthilt. Mit anderen Worten: ¢ ist eine Verbesserung des
Ri1TZ-Paares (6, u) generiert durch einen Schritt RQI mit Shift # und Startvektor . Demnach kann
das JD-Verfahren als eine Variante der RQI angesehen werden, und wir kdnnen Konvergenzraten
erwarten, die mindestens so hoch sind wie die der RQI, d. h. quadratisch oder im hermiteschen
Fall sogar kubisch [1].

Nachdem die Korrekturgleichung approximativ nach v geldost wurde, wird v AnschlieBend

gegen den Ansatzraum U orthonormalisiert und um diesen Vektor erweitert. Dann bestimmen wir
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Algorithmus 14: Jacobi-Davidson-Verfahren (vereinfachte Darstellung)

Eingabe: Startvektor u
Ausgabe: Eigenwerte von A auf Diagonale von U AU

-

for j=1,...do

2 Berechne Eigenpaare (f,w) von U (A — 01U

3 Wahle RiTz-Paar (0,u:=Uw)

4 Residuum 7 < Au — 6u /* Abbruch, wenn |r|2 klein genug */
5 Lose Korrekturgleichung mit Mehrgitterverfahren:

6 (I —wuf)(A—6I) (I —wu)v=—r

7 Orthonormalisiere v gegen bisherigen Ansatzraum

8 Erwveitere Ansatzraum U < [U,v]

9 end for

darin das nachste RiTz-Paar. Diesen Prozess iterieren wir solange bis ein Abbruchkriterium erfiillt

wird (d. h., die berechnete Eigenpaarapproximation ist hinreichend gut).

Damit ist das JD-Verfahren von Sleijpen und van der Vorst im Groben beschrieben. Algorith-
mus 14 beschreibt das Vorgehen (vereinfacht) im Pseudocode. Fiir die konkrete C-Implementierung
des JD-Verfahrens verwenden wir Neustarts [109], harmonische RiTz-Werte [98] und optionale

Polynomfilterung [114].

Fiir weiterfiihrende Details und Analysen des JD-Verfahrens siehe [80] oder [109]. Tatsachlich

T T

"PARPACK A
Jacobi-Davidson - @
:g 10000 3 A 2\
o} [ D
1 A WL
o LA A
é Ao PN
=4 A
21000 F
5 ; ‘.‘.O_‘_‘_..o
N Wea
_; e
(O] O
N @
100 f @~ -
o

50 100 150 200 250 300 350 400
Anzahl Eigenvektoren Ngg

Abbildung 6.4: Vergleich zwischen PARPACK und JAcoOBI-Davidson, Skalierung bzgl. Anzahl

kleinster Eigenmoden Nejg.
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wird in den Quellen auch gezeigt, dass die Ansatzraumerweiterung im JD-Verfahren auf die ro-
busteste Art geschieht, in dem Sinne, dass die Erweiterung moglichst unempfindlich gegeniiber

dem Fehler der approximativen Losung der Korrekturgleichung ist.

Abbildung 6.4 zeigt das Ergebnis erster Tests mit bis zu 400 kleinsten Eigenvektoren eines
48 x 243 Gitters bei my = 350 MeV. Das resultierende Verfahren ist iiber zehn Mal schneller als
PARPACK.

PARPACK, bzw. bereits das zugrundeliegende ARNOLDI-Verfahren (im hermiteschen Fall
das LANCzOs-Verfahren), kann bei vorliegenden Problem durch Polynomfilterung teilweise we-
sentlich beschleunigt werden [23], auch wenn z. B. die MATLAB-Funktion eigs entgegen friiherer
Versionen [88] stattdessen vorschligt, mit A~1 oder (A —oI)~! zu arbeiten. Zu diesem Vorschlag

konnte in zahlreichen Tests keine Laufzeitverbesserungen festgestellt werden (ganz im Gegenteil).

6.3 Polynomfilter

Polynomfilterung ist in der Gitter-QCD eine verbreitete Methode und erméglicht es, Bereiche
des Spektrums hervorzuheben und gleichzeitig weniger gewiinschte Bereiche zu dampfen. Abbil-
dung 6.5 und 6.6 veranschaulichen den Sachverhalt mit TSCHEBYSCHEFF2’-Polynomen der Grade
acht und zehn, sowie Polynomen konstruiert von Zhou und Saad [114]. Ausgenutzt wird bei der
Polynomfilterung insbesondere, dass die Eigenvektoren einer Matrix () identisch sind mit den Ei-
genvektoren von p(Q), wobei p(z) ein beliebiges nicht-konstantes Polynom ist. Die Eigenwerte von
@ erhalten wir leicht aus den Eigenvektoren von p(Q) zuriick, indem vQu¥ fiir jeden Eigenvektor

v von p(Q) berechnet wird. Durch die rekursive Definition der TSCHEBYSCHEFF-Polynome
To(x) =1, Ti(x):=z, Tgyi(x)=2T(z)x—Tr_1(x), k=2,3,...,

konnen die entsprechenden Matrixpolynome durch diverse weitere Matrix-Vektor-Operationen aus-
gerechnet werden. Mittels a-priori-Informationen iiber das Spektrum von @ via kleineren Konfigu-
rationen (vgl. Kapitel 2.2), liefert z. B. T,,,(Q —10I)T,,,(Q+101) via Algorithmus 15 teils deutliche
Beschleunigung im ARNOLDI-Verfahren, vgl. [23]. Es gibt auch Varianten der Rekursion, sodass

Algorithmus 15: TSCHEBYCHEFF-Polynomfilter
Eingabe: Matrix (), Vektor v, Shift o und Polynomgrad m > 2

Ausgabe: v + T,,,(Q + o)v
1 Vg < v

v1 ¢ QU+ ov
fork=2,...,m do
v 2Qu] — g

Vo < V1

S g B W N

V1 <V

7 end for




p(z)
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sl (x) das Spektrum auf einem beliebigen Intervall [a, b] (statt auf[—1,1]) dampft, vgl. [115].
Verbreitet ist auch T, (Q?) fiir m bis zu 20 zu verwenden. Der Clou ist nun aber, dass auch das

JD-Verfahren mit Polynomfiltern beschleunigt werden kann [114].

300 1.0 ‘ ‘ ‘ ‘
— Tx(z) —Poly. Grad 64
250 | - To(2) | —Poly. Grad 96
| ‘ 0.8 —Poly. Grad 1281
200 | i
! X 0.6 Gesuchter Eigenwertbereich
150 n .
| | % 0.4 | Zu dampfender Bereich
100
\\ 1’ 02 I
50 A\ Iy
0 L \ — — —. / i 00 V\_/
50 ‘ ‘ ‘ ‘ : —0.2 ‘ ‘ ‘ ‘
—-1.0 —0.5 0.0 0.5 1.0 0.00 0.05 0.10 0.15 0.20 0.25
xX
Abbildung 6.5: Zwei TSCHEBYCHEFF- Abbildung 6.6: Polynome von Zhou und
Polynome. Saad [114].

Als Ausblick ist das JD-basierte PRIMME-Verfahren ( PReconditioned Iterative MultiMethod
Eigensolver) von Stathopoulos et al. [113] von 2016 interessant. Dariiber hinaus arbeitet auch
der FEAST-Algorithmus von Polizzi et al. [105] von 2014 mit approximativen Inversionen, die mit

unserem hochperformanten DD-aAMG-L&ser harmonieren kdnnten.

Zum Abschluss der Arbeit betrachten wir im folgenden Abschnitt eine physikalische Anwen-

dung von Eigenlosern fiir die Gitter-QCD, das approximative , low-mode averaging“.

6.4 Approximative Eigenmoden und deren physikalische Anwendung

Wir wollen die beschriebenen Eigenlser fiir das ,low-mode averaging" benutzen, welches ver-
wendet wird um stochastisches Rauschen in zusammenhangenden (engl. connected) [25, 40] und
unzusammenhangenden (engl. disconnected) [73, 10, 32, 9] Hadron-Observablen zu reduzieren.

Dabei konzentrieren wir uns auf sog. Pion- und n-Meson-Korrelatoren.

Diese Art Rauschunterdriickungstechniken sind besonders wichtig bei fermionischen n-Punkt-
Funktionen von sog. Flavour-Singulett-GréBen. Fiir n-Mesonen der Zwei-Flavour-Theorie, ist bei-

spielsweise ein Interpolator gegeben durch

Og = \}i (ﬁxr5ua; + CZJ:FE)dx) )

wobei iy, Uy, dy, d, Spinore der verschiedenen Pion-Flavours beziiglich des Raumzeitpunkts x

bezeichnen. Fiir weitere Details zur Notation siehe [39]. Mittels WicKk30-Rotationen angewandt
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auf Zwei-Punkt-Funktionen erhalten wir fiir den Fall von entarteten Quarkmassen den 7-Korrelator
Cy = <OgOg> o Spur (D;éljg,D;iI’g,) -2 Spur(D;’iFg)) Spur(D;:}/Fg}), (6.5)

mit verschiedenen Quarkpropagatoren. Bspw. transportiert D;; einen Up- oder Down-Quark von
Raumzeitpunkt x nach y (insbesondere unterscheiden wir nicht zwischen D,, und Dy, d.h., wir
betrachten eine sog. exakte Isospin-Geometrie). Der erste Term auf der rechten Seite von Glei-
chung (6.5), dem zusammenhangenden Anteil, ist auf einer einzelnen Quelle yy unter Verwendung
der I's-Symmetrie und der Translationsinvarianz giinstig zu berechnen:

Spur (D_1 I'sD;* F5) = Spur (D_1 (DL )H) ,

T,Y0 Y0, T,Y0 Z,Y0

wobei sich die Spur wie oben auf die Spin- und Farbindizes bezieht. Fiir den komplizierteren,
unzusammenhangenden Anteil startet und endet der Propagator an demselben Raumzeitknoten
und die Berechnung der ,Schleife" D;ﬂlcfg wiirde die Inversion der vollen Matrix D benétigen,
was viel zu aufwindig wéare. Stattdessen werden stochastische Methoden verwendet (vgl. [9]),

d.h,
Nstoch

1 o 1
st + O () 6.6
Nstoch Z 7 Nstoch ( )

=1

Q'=D7'Ts =

mit hinreichend groBem Ngioch und einer approximativen Lésung des linearen Gleichungssystems

Qs; = i, (6.7)

wobei 7; ein zufillig verrauschter Vektor mit Eigenschaften

1 Nstoch 1 1 Nstoch 1
H
ni = O <> und nin; =1+0 ()
Nstoch ZZ; ’ Nstoch Nstoch ZZ; o Nstoch

ist. Eine verbreitete Wahl, welche wir hier auch verwenden, ist die Eintrage von 7; mit zufalligen
Werten aus Z/2Z + iZ/27Z zu fiillen.

In Gleichung (6.6) akkumulieren sich mehrere Quellen stochastischen Rauschens, die sich zu
dem inh&renten stochastischen Verhalten der Eichfelder aufaddieren. Genauer heit das, Ngioch
muss so groB gewahlt werden, dass das stochastische Rauschen der Eichfelder im gesamten Feh-
lerrauschen dominiert. Dies benétigt weitere Losungen der Gleichung (6.7) und wird bei kleinen
Pionmassen und groBem Gittervolumen schnell sehr rechenintensiv, selbst wenn moderne Mehr-

gitterverfahren verwendet werden.

Um das stochastische Rauschen zu reduzieren, gibt es eine Fiille an Techniken wie z. B. die
Partitionierung [32, 11, 108], die , truncated solver “-Methode [9] oder das ,,low-mode averaging*
(in diesem Zusammenhang bekannt als , truncated eigenmode acceleration” [10, 32]), und viele
mehr. Welche Kombination dieser Methoden am besten funktioniert, hangt im Allgemeinen nicht
nur von der Effizienz der benutzten Loser ab, sondern auch von der betrachteten Observable. Der
n-Korrelator ist bekannt dafiir, dominant in den kleinen Eigenmoden zu sein [73], daher ist er eine

ideale GroBe, um die von unserem EigenlGser generierten, approximativen Eigenpaare zu testen.
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6.4.1 Low-Mode Averaging

Die Grundidee des , low-mode averaging” (LMA) ist es, die inverse des Operators ) additiv in

zwei Teile zu trennen:
-1 -1 —1
Q7 = Qiow t Qhighs
wobei ngvlv den Beitrag der N kleinsten Eigenmoden von @) enthalt:

Neig

_ 1
Qiow = Z XUWZH- (6.8)

i=1
Entsprechend ist Qr;éh =Q ' - Qg&/ vgl. (6.6).

Fiir den n-Korrelator (vgl. Gleichung 6.5) wenden wir LMA sowohl auf den verbundenen

(Pion-) Korrelator
Ceon (95, y) = Spur (Q;,;Qg;glc)

als auch auf den unverbundenen Beitrag

Cais(z,y) = Spur (Q5 1) Spur (Q; 1)

an, jeweils wiederum durch Aufteilen der Terme. Fiir den ersteren, verbundenen Teil mitteln wir

tiber die Raumdimensionen und dampfen liber die EUKLIDische Zeitdimension ¢, d. h.,
Ceanlt) = CI20(t) + CHEN (1) = Clon(r) + (CER (1) — Cloe® (1) (6.9)

wobei die einzelnen Terme mit = = (Z,ty + t), y = (¥, to), Yo = (Yo, to) gegeben sind durch

1
Cean®) =37 D Spur ((Qiou)ey(Qigwluz)

j’gzto

Cl%\?\l'pza(t) = Z Spur ((QB\}V)I,Z/O (QB\}V)yo,x) )

CP22(t) = > Spur (D Naye(DHE ) .

Die konkrete Berechnung ist wie folgt: Zuerst berechnen wir die kleinen Eigenmoden von Cé%"r‘,’
welcher die gesamte (, all-to-all") Information des Operators ) bendtigt. Die Korrektur iiber die
restlichen, hohen Eigenmoden (die Terme in der Klammer von Gleichung (6.9)) wird aus den

Eigenmoden der ,, point-to-all “-Zweipunkt-Funktionen Cczc',),? und Cé%\',f’pza am Punkt yo gewonnen.

Fir den unzusammenhiangenden Teil korrelieren wir zwei Schleifen zu den Zeitpunkten tg
und o + ¢ .
Cyis(t) = — L(t t)L(tg),
au(t) = 7 X L+ OL(1)
0

wobei die Information zu den kleinen Eigenmoden aus wiederum aufgeteilten Einzelschleifen

stammt:

L(t) = Z Spur (Q, 1) = L'"(t) + L"&"(¢).
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Entsprechend Gleichung (6.8) werden die kleinen Eigenmoden via
L'(t) = Z Spur ((QE&,)ME)
i

berechnet. Um die restlichen Eigenmoden von @) in diesem Fall zu extrahieren benutzen wir den

Orthogonalprojektor
Neig
P=1I- Z UiUZ-H,
i=1

und mitteln

L& (1) =3 " Spur ((PQ)s) -
Wir merken an, dass in diesem Fall PQ = QP gilt.

Wenn nun, wie im Fall des n-Korrelators, die kleinen Eigenmoden dominieren, so ist die
Berechnung von Qﬁéh sehr giinstig. Die groBte Rechenzeit liegt indes beim Berechnen der Ei-
genmoden von (@, weshalb sich LMA umso mehr lohnt, desto &fter die Eigenmoden verwendet

werden konnen.

6.4.2 Approximatives LMA

Neben dem Verbessern der Eigenldser konnen auch die Rechenkosten fiir LMA selbst reduziert
werden, indem die Fehlertoleranz der einzelnen Eigenmoden heruntergeschraubt wird und da-
nach mit eben dieser Fehlertoleranz auftretendes Rauschen reduziert wird. Sei dazu mit (5\1,61)
i =1,..., Neg, das i-te approximative Eigenpaar zum exakten Eigenpaar (\;, v;) von @ bezeich-

net. Dann ist die Eigenmoden-Fehlertoleranz durch
gi = || Qv — N\i¥i]|2,
gegeben, wobei wir annehmen, dass die 9; orthonormalisiert sind. Seien weiter
A.,._*HQ*, =1 N..
ij =Y Uy L) =41 elg

die Eintrage einer Matrix A, die wir zum Messen der Inexaktheit der Eigenmoden verwenden
konnen: Mit

V; = v; + ’U?
und dem KRONECKER-Delta 9;; konnen wir die Eintrage A;; schreiben als

Aij = Xjbig + Aol o] 4 X () Tv; + (09) 7 Q.

Insbesondere ist A eine Diagonalmatrix, fiir den Fall, dass alle Eigenpaare exakt waren, d.h.,
v? = 0,7 = 1,..., Neig. Wenn wir nun in Gleichung (6.8) alle inversen Eigenwerte durch die
Eintrdge der Inverse von A ersetzen, ergibt sich

Neig

Qiow = Z (A_l)ijﬁwf[, (6.10)

1,j=1
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Abbildung 6.7: Jeweils 30 kleinste Eigenwerte von @) zu 64 Konfigurationen mit 64 x 403 Knoten,
mug =~ 290 MeV. Der untere Bereich zeigt das , exakte" Spektrum (¢ < 10~®). Die Eigenwerte

im oberen Bereich sind mittels der Testvektoren der Setup-Phase berechnet mit dem relativen
Fehler

I/\\
wobei Q;\}v = ngvlv fiir exakte Eigenpaare gilt. Ersetzen aller Q;\}v im vorherigen Abschnitt 6.4.1
durch nglv bewirkt eine gleichmaBige Einflussnahme aller inexakten Eigenmoden und wir erhalten

trotz geringerer Fehlertoleranzen dhnliche, stochastisch unverzerrte Resultate.

6.4.3 Verwenden von Testvektoren fiir LMA

Um weitere Rechenkosten fiir LMA einzusparen, kénnen wir noch einen Schritt weitergehen und
die Testvektoren, die in der Setup-Phase des Mehrgitterverfahrens anfallen, als approximative
Eigenvektoren verwenden, da diese bereits ebenfalls kleine Eigenmoden approximieren. Tatsachlich
hat sich in numerischen Tests bei vorliegender Gitter-Konfiguration gezeigt, dass sich nach 30
Setup-Iterationen und Fehlern der GréBenordnung € ~ 10~ durchaus gute Ergebnisse mit LMA

erzielen lassen.

Da innerhalb der Setup-Phase die Testvektoren als Zufallsvektoren initialisiert werden und
der Mittelwert iiber alle 77 Qr verschwindet (wobei  hier einen Zufallsvektor bezeichnet), hat dies
den Effekt, dass einige Eigenwerte unterreprisentiert sind und die Eigenapproximationen spiegeln

die sog. Massenliicke nicht wider. Dies hat stérenden Einfluss auf die Qualitdt von nglv

Gliicklicherweise konnen solche Abweichungen durch Untersuchen der relativen Toleranz

¢/|\| der Eigenmoden erkannt werden, vgl. Abbildung 6.7.

Es stellt sich heraus, dass die Eigenmoden, welche die Massenliicke nicht widerspiegeln,
genau die sind mit groBem &/|A|. Fiir unsere Berechnungen schneiden wir daher die Menge der

verwendeten Eigenpaare ab:
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Abbildung 6.8: Der pseudoskalare verbundene Zwei-Punkt-Korrelator zum Zeitpunkt ¢ = N;/2,
berechnet mit den abgeschnittenen Eigenmoden beziiglich C'. Die Kastchen zeigen den Beitrag
der inexakten kleinen Eigenmoden, die Kreise zeigen den vollen Beitrag der Zwei-Punkt-Funktion.
Zum Vergleich zeigt der rote Streifen die berechneten Werte unter Verwendung von 20 exakten

Eigenmoden (¢ < 107%), sowie der gelbe Streifen die konventionellen , point-to-all “ Resultate.

Zu beachten ist, dass nach gefundener Schranke C, diese unabhingig vom Gittervolumen oder

der Pionmasse ist, da sich jede Normalisierung herauskiirzt.

Ein guter Test zur Bestimmung der Schranke C' ist es, den Beitrag der kleinen Eigenmoden
der unverbundenen Zweipunkt-Funktion zu untersuchen, da diese ohne stochastische Abschatzung
berechnet werden kann. Abbildung 6.8 zeigt das Verhalten von C!9¥ in Abhingigkeit von C. Die
Daten stammen aus einer zentralen Zeitebene, wo die relativen Beitrdge der kleinen Eigenmoden
am groBten sind und demnach der Effekt der inexakten Eigenmoden am besten gesehen werden
kann. Falls C' zu groB gewihlt wird, treten groBe Fehler in den Funktionen C!9% und Cful auf,
denn viele irrelevante Richtungen dominieren die Eigenmoden. Wird C' zu klein gewahlt, kdnnen
wir vom Effekt von LMA nicht mehr profitieren. Nachdem die Korrektur beziiglich der groBen
Eigenmoden (vgl. Gleichung (6.9)) vollzogen wird, sind die Ergebnisse unabhangig von C' beziiglich
der Fehlertoleranz korrekt, wie an den horizontalen Streifen im Fall des , point-to-all* und dem

LMA-Fall zu erkennen ist. Tatsdchlich scheint C' = 0.75 ein guter Kompromiss zu sein.

Wir betonen, dass, obwohl ngvlv sowohl von der Anzahl als auch der Genauigkeit der Eigen-
moden beeinflusst ist, die Korrektur der groBeren Eigenmoden stabil und stochastisch unverzerrt

ist. Variieren des Abschneideparameters C' zeigt dies empirisch.

6.4.4 Numerische Ergebnisse

Fiir den ersten Praxistest benutzen wir dieselbe Gitterkonfiguration wie im vorhergehenden Ab-
schnitt: ein moderat groBes Gitter mit Volumen V' = 64 x 402 mit zwei Seequark-Flavours generiert
von QCDSF [8] bei Pionmasse mq =~ 290 MeV und Invers-Kopplung 3 = 5.29, d. h. Gitterab-
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stand a =~ 0.071 fm. Um die Beitrdge angeregter Zustidnde zu reduzieren, verwenden wir 400

Schritte Wuppertal-Smearing [42] mit Parameter 6 = 0.25 fiir die Quark-Quellen und -Senken

sowie fiir die Eigenvektoren. Fiir die Eichfelder verwenden wir APE-Smearing [30] mit Gewichtung

a = 0.25.

Insgesamt wurden 64 stochastisch unabhangige Konfigurationen verwendet. Fiir jede werden

30 approximative Eigenmoden mit Hilfe der Setup-Phase des DD-aAMG-Losers fiir () berechnet.

Die Inexaktheit belduft sich bei diesen Eigenmoden auf etwa ¢ ~ 10~!. Im Mittel werden durch

C = 0.75 etwa drei der 30 Eigenmoden verworfen. Zum Vergleich und Verifizierung wurden eben-
falls die 20 kleinsten Eigenmoden mittels RQI4+-AMG (siehe Abschnitt 6.1) mit einer Fehlertoleranz

e = 10~8 berechnet. Wir bezeichnen diese als , exakt“.

Abbildung 6.9 zeigt den verbundenen (Pion-) Korrelator und seinen relativen Fehler. Auf-
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Abbildung 6.9: Der pseudoskalare verbundene (Pion-) Korrelator (links) und sein relativer Fehler

zu jeder Zeitebene (rechts), berechnet mit exaktem (rote Dreiecke), approximativem (orangene

Kreise) und ganz ohne (blaue Boxen) LMA.
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Abbildung 6.10: Der unverbundene Beitrag (links) und der volle n-Korrelator (rechts), berechnet

mit exakten (rote Dreiecke), approximativen (orangene Kreise) und ohne (blaue Boxen) LMA. Fiir

alle Berechnungen wurde Ngoch = 20 verwendet. (Die Datenpunkte sind zur besseren Lesbarkeit

geringfiigig horizontal verschoben.)
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Abbildung 6.11: Der durchschnittliche quadratische Fehler der ersten zehn Zeitebenen des 7-
Korrelators berechnet mit exaktem (rote Dreiecke), approximativem (orangene Kreise) und ohne
(blaue Boxen) LMA. Der linke Plot zeigt wie viele stochastische Schatzer Ngoch gebraucht werden,
um eine gewisse Fehlerschranke zu erreichen (gemittelt iiber 64 stoch. unabh. Konfigurationen).

Der rechte Plot vergleicht die tatsdchlich anfallenden gesamt Rechenkosten.

grund der Mittelung (iber die Raumkoordinaten funktioniert LMA in diesem Fall sehr gut. Der
verbundene Beitrag liefert erste Hinweise darauf, dass unsere Verbesserungen funktionieren: Die
Fehler fiir das approximative LMA sind fast gleich wie bei der Verwendung von exakten Eigenmo-
den. Fiir den unverbundenen Anteil wurde in allen Féllen , time dilution* [108, 81, 6] verwendet
mit At = 4a. Wie in Abbildung 6.10 zu sehen, stimmen die Datenpunkte des approximativen
LMA sowie exakten LMA mit denen liberein, fiir die kein LMA verwendet wurde. Die blauen Wer-
te in der Mitte der beiden Plots schwanken etwas starker, hier scheint LMA glattend zu wirken.
Um beim Kombinieren der verbundenen und unverbundenen Korrelator-Anteile den n-Korrelator
(), zu erhalten, akkumulieren sich die Fehler bei groBeren Zeiteinheiten und die Daten zeigen
nicht das zu erwartende exponentielle Abfallverhalten. Dies beruht vermutlich auf den zu kleinen

Stichproben der gewdhlten Konfigurationen (vgl. auch [6]).

An den Plots erkennen wir, dass sowohl exaktes als auch approximatives LMA tendenzi-
ell Fehler reduzieren. Alternativ fiihrt sicherlich das Erhohen der Anzahl stochastischer Vektoren
Nstoch zu dhnlichen Fehlertoleranzen ohne LMA zu benutzen. Die linke Abbildung 6.11 zeigt hier-
zu den quadratischen Fehler gemittelt iiber die ersten zehn Zeitabschnitte (danach erhoht sich das
Rauschen rapide) in Abhangigkeit von Ngoch. Dieser Vergleich verdeutlicht den positiven Effekt
von LMA: In allen Fillen sind ohne LMA knapp doppelt so viele Inversionen notig um dieselbe
Fehlertoleranz zu erreichen. Exaktes und approximatives LMA zeigen nahezu gleiches Verhalten.
SchlieBlich zeigt der rechte Plot von Abbildung 6.11 den wohl interessantesten Teil: Berechnungs-
zeit des n-Korrelators in Abhangigkeit zu gewissen Fehlerschranken. Hier zeigt sich, die bendtigte
Rechenzeit kann mit approximativem LMA um etwa einen Faktor zehn gegeniiber exaktem LMA
reduziert werden. Insbesondere ist approximatives LMA kosteneffizient und zuverldssig anwend-
bar bei groBeren Gitterkonfigurationen, sogar dann, wenn nur eine kleine Anzahl verschiedener

n-Punkt-Funktionen berechnet werden miissen. Es bleibt zu betonen, dass die Moglichkeiten des
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LMA sowie die bendtigte Anzahl an Eigenmoden stark von der untersuchten Observable, sowie

noch starker vom Volumen der Gitterkonfiguration und der Pionmasse abhangt.

Die Berechnungen in diesem Abschnitt wurden gemeinsam mit der Arbeitsgruppe G. Bali
an der Universitdt Regensburg auf SuperMUC im Leibniz-Rechenzentrum in Garching ausgefiihrt

und in [7] publiziert.
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Anmerkungen?

23 John William Strutt, 3. Baron Rayleigh (* 12. November 1842 in Langford Grove, Maldon,
England; f 30. Juni 1919 in Terlins Place bei Witham, England), war ein englischer Physiker. Er
erhielt 1904 den Nobelpreis fiir Physik.

24 Carl Gustav Jacob Jacobi (eigentlich Jacques Simon; * 10. Dezember 1804 in Potsdam; t
18. Februar 1851 in Berlin) war ein deutscher Mathematiker.

25 Cornelius Lanczos (auch Kornél Léwy, Kornél Lanczos; * 2. Februar 1893 in Székesfehérvir,
Osterreich-Ungarn; t 25. Juni 1974 in Budapest) war ein ungarischer Mathematiker und Physiker.

26 Richard Edler von Mises (* 19. April 1883 in Lemberg, Galizien, Osterreich-Ungarn; 1 14.
Juli 1953 in Boston, Massachusetts, Vereinigte Staaten) war ein Osterreichischer Mathematiker.
Er ist der Bruder des Wirtschaftswissenschaftlers Ludwig von Mises.

27 Helmut Wielandt (* 19. Dezember 1910 in Niedereggenen; 1 14. Februar 2001 in Schliersee)
war ein deutscher Mathematiker. Sein Hauptarbeitsgebiet war die Gruppentheorie, speziell die
Theorie der Permutationsgruppen.

28 Pafnuti Lwowitsch Tschebyscheff (wiss. Transliteration Pafnutij L'vovi¢ Cebysév; * 4. (jul.)/
16. Mai 1821 (greg.) in Okatowo im Kreis Borowsk (heute in der Oblast Kaluga); t am 26. No-
vember (jul.)/ 8. Dezember 1894 (greg.) in Sankt Petersburg) war ein russischer Mathematiker.
Tschebyscheff gilt zusammen mit Nikolai lwanowitsch Lobatschewski als der bedeutendste russi-
sche Mathematiker des 19. Jahrhunderts.

29 Gian-Carlo Wick (* 15. Oktober 1909 in Turin;  20. April 1992 ebenda) war ein italienischer

Physiker, der wichtige Beitrage zur Quantenfeldtheorie leistete.

Alle Angaben aus der deutschen Wikipedia, Stand 2017
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