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Heavy-ion collisions performed at the Large Hadron Collider and the Relativistic Heavy
Ion Collider have given us a tremendous insight into both the equilibrium and non-equilibrium
properties of strongly coupled nuclear matter. This thesis details two theoretical frameworks for
addressing particularly the non-equilibrium nature of such nuclear systems governed by quantum
chromodynamics.

Lattice QCD has offered non-perturbative access to observables in quantum chromodynamics.
However, not much progress has been made in non-equilibrium calculations via lattice QCD
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calculations naively require a computational resource that scales exponentially with the size of
the lattice. Quantum computing has the promise of performing first-principles simulations of the
time-evolution of nuclear systems without such an exponential cost. This thesis details quantum
algorithms for evaluating observables that are essential for understanding heavy-ion collisions:

the parton distribution functions and the hydrodynamic transport coefficients.



Quantum simulation of nuclear system naively requires a large-scale quantum computer
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Chapter 1: Introduction

1.1 Overview

Quantum chromodynamics (QCD) is the first-principles description of the strong interaction
governing the nature of quarks, hadrons and nuclei [1, 2]. Many aspects of nuclear matter have
been explained by QCD, and yet there remains more to be explored. For example, asymptotic
freedom of QCD [3, 4] is one of the characteristic features of QCD. It has justified the partonic
picture of hadrons in high-energy collisions [5], which has enabled us to study the structure of
hadrons from first-principles calculations in QCD. As another example, there have been numerous
efforts to explain confinement of quarks and gluons in the hardons in the low-temperature phase
of nuclear matter from QCD [6]. In the same vein, low-energy bound states of light nuclei have
been studied from their fundamental constituents and interactions among them in various ways,
e.g. [7, 8,9, 10], and we expect that QCD will explain the structure of even larger nuclei. QCD
is also expected to provide the equation of motion of nuclear matter. In particular, the time-
evolution of strongly coupled quark matter with temperature around the confinement temperature
T. = 200 MeV is of great interest as that has experimentally observed. In experiment, such
strongly interacting quark matter has been indirectly observed in heavy-ion collisions performed,
for example, at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC).

Theoretical frameworks, utilizing both first-principles calculations and effective theories of QCD,



have been studied extensively in the last couple of decades to explain results from these experiments,
e.g. [11, 12]. Particularly for strongly interacting nuclear matter observed at RHIC, it has been
suggested that relativistic hydrodynamics provides a good effective description of the system
theoretically. In all such frameworks, QCD serves as the guiding principle. Effective field
theories are established while respecting certain symmetries in QCD, and their low energy constants
(LECs) need to be derived from first-principles, i.e. quantum chromodynamics.

This thesis concerns the construction of first-principles calculations of QCD observables
numerically on the lattice in the path integral formalism and Hamiltonian formalism. To begin,
in the next section, I review the construction of QCD, its fundamental fields, symmetries, and
the Lagrangian which will serve as the guiding principles when we develop methods to study
strongly coupled QCD matter in the rest of this thesis. In Sec. 1.3, the “naive” QCD action in
continuum spacetime will be discretized — a lattice field theory of QCD is constructed such
that it will recover QCD in the continuum limit (i.e. in the limit of zero lattice spacing) after
a proper renormalization. The energy-momentum tensor of the bosonic part of QCD, i.e., the
SU(3) gauge theory will also be discretized to put on the lattice in Sec. 1.3.2, as a preparation
for the later chapters. In Sec. 1.4, relativistic hydrodynamics is briefly introduced. Relativistic
hydrodynamics serves as a powerful effective theory of QCD in the strongly coupled regime
of QCD scanned by heavy-ion collisions. The purpose of this section is to derive relations
between their LECs, the shear viscosity and bulk viscosity, and real-time correlators of the
energy momentum tensor. Such relations will guide us towards the first-principles calculations
of viscosities from QCD on the lattice as will be discussed in Sec. 2.5.

Quantum simulations of lattice gauge theories are discussed in Chapter 2. Quantum computers,
once built, promise to be very powerful tools for performing non-perturbative QCD calculations
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and revealing non-equilibrium aspects of QCD. After an overview of quantum simulations for
QCD is given in Sec. 2.1, general methods for simulating gauge theories are discussed in Sec. 2.2
and Sec.2.3 based on [13]. As an example of such quantum simulations, quantum algorithms for
computing important inputs to heavy-ion physics are discussed: the parton distribution functions
and the hadronic tensor in Sec. 2.4 based on [14] and hydrodynamic transport coefficients in
Sec. 2.5 based on [15].

Quantum algorithms discussed in Chapter 2 reveal the reality — a large-scale quantum
computer, which is not available at the moment, will be required to perform quantum simulations
which can give us insights into non-perturbative nature of QCD. While we wait for such a large-
enough quantum computer to be built, it is of practical importance to push the frontier of lattice
QCD calculations on classical computers. Lattice QCD calculations of the non-equilibrium
properties of QCD possess the so-called sign problem, which means that an exponentially scaling
(in the size of the lattice) computational resource is required for such lattice calculations. Chapter 3
is devoted to investigate methods for solving sign problems in QCD. Firstly, Sec. 3.1 introduces
and defines the real-time sign problem which appears in Minkowski lattice QCD calculations,
which is probably essential for studying aspects of QCD out of equilibrium. The so-called
manifold deformation method [16], a long-standing method to alleviate sign problems, is reviewed
in Sec. 3.2. In Sec. 3.3, we introduce another view of the manifold deformation method —
the complex normalizing flows [17]. The applicability of manifold deformation methods, and
equivalently complex normalizing flows to various sign problems, especially the real-time sign
problem, will be discussed in Sec. 3.4 with examples. Finally in Sec. 3.5, numerical methods
based on machine learning to address sign problems in the framework of complex normalizing

flows will be demonstrated.



To conclude this thesis, in Chapter 4, I will give an overview of future work that will follow

from projects described in Chapter 2 and Chapter 3.

1.2 Quantum chromodynamics

The degrees of freedom in QCD are, first of all, quarks. Let us denote a quark field at
spacetime x as ¢ (x). Each quark field has three indices: Dirac index, color index (which will
be denoted with a, b), and flavor index f. The naive kinetic Lagrangian of three Dirac fermions

L= chzl Yy (i7", — m) 1)y is invariant under a global SU(3) transformation:

Yo = Uy = U(@)apthy, Ula) = T (1.1)

where T% (i = 1, - - - , 8) denote eight generators of the SU (3) group in the fundamental representation

called Gell-Mann matrices. Generators 7" are orthonormalized as

Tr (T'T9) = 6, ,j=1,---,8. (1.2)

Each element U(d) € SU(3) is parameterized by the eight real numbers denoted as & =

We now proceed and impose a local gauge invariance on the Lagrangian of Dirac fermions.
In other words, the naive Lagrangian will be modified so that it will be invariant under a spacetime-

dependent rotation

Y(x) = () = Ula(z))i(x) (1.3)

Note that the parametrization of elements of the SU(3) group is now spacetime dependent, i.e.,

4



@(x). For the Lagrangian to achieve such a local symmetry, its kinetic term, v y* 0,1, needs a

“comparator” of fields at different points in spacetime called the Wilson line:

Wp(z,y) =P {exp (z’gS /1 dzt AL(Z)Ti)] . (1.4)

Y

Here the gauge fields A, = ALTZ' are introduced. The index p denotes the direction in spacetime.
In the rest of this thesis, when a gauge field is written without a superscript 7, that gauge field
is contracted with the Gell-Mann matrices. The strong coupling constant is denoted as g;. The
path-ordered operator P is inserted because the generators 7" at different points do not commute.

Under a local gauge transformation, the Wilson line transforms as
Welz,y) — W' (z,y) = U (@)Wp(z,y)U(y) = e @ @7 Wp(z, y)e™ ®T (1.5)

so that the covariant derivative

Di(z) = lim L&+ =W+ a)i()

a—0 a

(1.6)

transforms as D,y (z) — U(x)D, ¢ (x). The kinetic term of quarks, when constructed with the
covariant derivative as 1)(z) D1 (), is locally gauge invariant. The infinitesimal expansion of the

Wilson line gives the covariant derivative in terms of local gauge fields as

Dy =98, —igT" A, (1.7)



and thus the gauge fields should transform in the following way:
Al (r) = A, (z) + gﬁuoﬂ(m‘) + i fiika) (a:)Aﬁ(:c) ) (1.8)

Here the structure constants f** are defined as [T, T7] = i f*T*. The covariant derivative helps

us construct a Kinetic term of the gauge fields. Let us introduce the field strength tensor ], as

F=F,T'=—[D,, D)) = 8,A, — 0,A, +ig[A,, A)] (1.9)

1
g
which transforms in the adjoint representation as F),, (z) — U(z)F,, (z)U~*(z). To summarize,
with the kinetic term —; Tr [F},, F*], a locally SU(3) invariant Lagrangian density of quarks
and gluons is constructed as

3
1 . . _ .
L=—"F Fr' 4 Z Vo (i7" 0ubay + g7 Al Ty — Mbap) Uy (1.10)

4=
a,b=1

where the color indices a, b are explicitly written down. The corresponding Hamiltonian of
QCD can be derived by starting from the QCD Lagrangian above and employing the Legendre
transformation or the transfer matrix as will be discussed in Sec. 2.3. The Lagrangian and
Hamiltonian provide us with different formalisms to compute observables of our interests in
QCD. The path integral defined with the Lagrangian has been the major formalism to address
observables in the context of lattice QCD on a classical computer. In the next section, I introduce

the path integral formalism of QCD and its discretization on the lattice.



1.3 Lattice quantum chromodynamics

1.3.1 Path integral on the lattice

Path integrals [18] provide us a formalism to compute expectation values of observables
in a quantum theory by taking all the possible “paths” for the quantum fields in spacetime. To
build the most general form of the path integral, let us suppose that we would like to compute
the thermal expectation value (at an inverse temperature ) of a Hermitian observable O(t,) at
time ¢t = ¢y in QCD. Starting from the Hamiltonian formulation with the QCD Hamiltonian H ,

we derive the path integral as

(O(ty)) = Tr [e’ﬁﬁ(’)(to)} —Tr [efﬁffemtooe*im()] (1.11)

= /D [, 4, A] (z)e 2 O(4h(to), ¥(to), Alto))- (1.12)

Here the configuration of quark fields ¢/ and ¢ should be anti-periodic and the gauge fields A
should be periodic due to the trace in the first line. “Time” ¢ can be real (for the real-time
evolution) or imaginary to introduce the finite temperature 5. The contour that time ¢ takes in
its complex plane is called the Schwinger-Keldysh contour, and its shape depends on how one
orders the "time-evolution’ in the first line in Eq. (1.11). In the order of the equation above, the
contour is the “L contour” as is shown in Figure 1.1. Another contour shown in Figure 1.1 is the
“S contour”, which corresponds to ordering the time evolution as Tr e~ 3Hiflto =5 H g—iflto |

When on the imaginary time axis, the action .S should be the Euclidean action of QCD. When on

the real-time axis, the weight should be ¢*° instead with the Minkowski action of QCD.
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Figure 1.1: Schwinger-Keldysh L contour on the left and S contour on the right.

Lattice QCD is a non-perturbative numerical method to compute the path integral — a very
high-dimensional integral — without any perturbative expansions [6, 19, 20, 21]. To evaluate the
path integral numerically using a classical computer, we first need to regulate the theory to only
a finite number of degrees of freedom. Thus, we discretize space and time via a lattice. On the
lattice, quark fields live on lattice sites. Gauge fields, which connect quark fields to achieve local
gauge symmetry, are represented by links. In the rest of the thesis, I denote the gauge link starting

at site n and extending in the y direction as U, ,, and let it represent the Wilson line on the link:

Un,u = exp (igsA;,(n)T7) . (1.13)

Using gauge links and quark fields on sites, we construct the action of QCD on the lattice, which
becomes the naive continuum action in Eq. (1.10) in the continuum limit where we take the
lattice spacing to zero: a — 0. Thus the QCD action on the lattice should preserve the local

gauge symmetry. To construct such an action, it is useful to study the smallest local and gauge-



invariant object on the lattice. One such object that is constructed purely by gauge links is the

trace of a plaquette P, (n) shown in Figure 1.2:

Po(n) = U, Unian,Ul o UL (1.14)

n+o,u- n,v

To see what this plaquette represents, we express the plaquette in terms of gauge fields AL at the
center of the plaquette xy = n + 1/2 + /2. Gauge fields on lattice sites on the plaquette are

written via the Taylor expansion in lattice spacing a,, (the lattice spacing in /i direction) as
i i a i ay i
Al (n) = Al (o) — 7“3#/1“(:50) — 5@,4#(%) + O(a?) (1.15)

and so on. The plaquette is written in terms of the field A(z) at the center of the plaquette x

as [22]

P,,(n) = exp(igsAu(n))exp (igsA,(n + 1)) exp (—igsAu(n + D)) exp (—igs A, (n))

= exp (igsa,a, Fu(70) + O(a*)) (1.16)

By expanding with the lattice spacing a, the plaquette bocomes

2.2 2
. 9s a,uau 2 6
P, (n)=1+igsa,a,F,,(zo) — 5 Fu(z9)”+ O(a”) . (1.17)
Therefore, by taking the real part of the plaquette:
2
Tr [Fu(20)?] = v Re Tr[1 — P,,(n)] + O(a?), (1.18)



v t

L., oo L

o Ol [O[C

P., ® Cuv (@) Bio(®)

Figure 1.2: Plaquette, clover, and half-clover on the lattice.

we obtain the kinetic term of gauge fields in the naive continuum action Eq. (1.10) at the center

of the plaquette xy. Using Eq. (1.18), the Wilson gauge action [6] in Minkowski spacetime:

Sy = Zt:K(t)—l—V(t) (1.19)
K(t) = Zzg—aReTrl—Pol(n t)] (1.20)
V(t) = ZZ—ReTr Py(n,t)] (1.21)

approximates kinetic term of gauge fields in the continuum Lagrangian Eq. (1.10) up to O(a?)
discretization errors. Here a denotes spatial lattice spacing assuming that the lattice is spatially
isotropic. Lattice spacing in the time direction is denoted as ay. Note that the constant term,
the identity matrix in the trace of Eq. (1.18) was dropped for the potential term V" in the Wilson
gauge action.

The fermionic part of the Lagrangian Eq. (1.10) can also be naively written as

4

Sr =a’ayy_ d(n) (Z iy 20 4 1) = Uom)pln 2 1) mwm)) (1.22)

2
p=1 @

10



Therefore the Dirac matrix D(n|m) on the lattice is naively

PP o O
Zz Vi) Un()igonan = Uzp()isOn—, + M09 Onm (1.23)

n|m ai,fj — 2a

where lattice sites m, n, Dirac indices «, 3, and color indices a, b are explicitly written. This naive
Dirac matrix has the so-called fermion doubling problem [23] which means that the Dirac matrix
has unphysical poles. There are several well-established methods to get rid of such unphysical
modes such as Wilson fermions [6], Kogut-Susskind staggered fermions [24], and domain wall
fermions [25].

After the treatment of the fermion doubling problem, it is convenient for us to integrate out
fermions in the path integral using the Gaussian integral of Grassmann numbers to obtain a path

integral only in terms of gauge fields, for example for the partition function as
7 = / D [U]det [D] e~ 5wV, (1.24)

Here the matrix D is the Dirac matrix with a chosen method to treat the fermion doubling
problem. The size of the Dirac matrix scales linearly with the size of the lattice, making the
lattice QCD calculation much more expensive than that of pure Yang-Mills theory.

Having written down the path integral only in terms of gauge fields, we now proceed and
evaluate the path integral numerically. Since the integral is very high dimensional, it is practical
to utilize Monte Carlo methods with importance sampling. For a purely thermal calculation (no
real-time evolution), the weight e~ is always real and positive, and thus can be regarded as

the probability distribution function of the configuration of the gauge fields. One samples N

11



configurations of gauge links across the lattice from the distribution function e=° via Markov
chain Monte Carlo (MCMC) methods. Using the set of N, gauge configurations, we evaluate the
expectation value of the observable O by computing the observable with each configuration A,

and summing,

Ns
(0) = Ni > 0(A). (1.25)
S n=1

So far the lattice calculation is done on a lattice with a finite volume and a lattice spacing a for
which we do not know the physical number. In the end, the infinite volume and continuum limits
should be taken. In particular, the taking of the continuum limit @ — 0 plays the role of an
ultraviolet renormalization. An appropriate tuning of lattice parameters, such as the mass m and
the coupling constant g, should be performed to maintain the low-energy physics of lattice QCD
while taking the continuum limit.

Euclidean lattice QCD has successfully calculated many aspects of QCD such as the equation
of state at vanishing baryon chemical potential [26]. However, when we include the real-time
evolution, we encounter the factor e**, which will introduce the so-called real-time sign problem.
When the baryon chemical potential is finite, the Dirac determinant det D causes the finite-
density sign problem [27]. These sign problems have prevented lattice QCD from computing
the equation of state at large baryon chemical potential and non-equilibrium properties of QCD.

Chapter 3 is devoted to the discussion of potential solutions to the real-time sign problem.

1.3.2  Yang-Mills energy momentum tensor on the lattice

In this section, we introduce the energy-momentum tensor (EMT) of Yang-Mills theory on

the lattice [28]. As will be discussed in Sec. 1.4, the energy momentum tensor plays the central

12



role in the construction of hydrodynamics and so as the first-principles calculation of transport
coefficients in hydrodynamics. Therefore it is essential that one understands the discretization of
the EMT of QCD on the lattice. In the action formulation, the EMT is the Noether’s currents for
translational symmetry in space and time. For the Yang-Mills theory in the naive continuum, the
EMT takes the form

1

THV:Z—LgMVTI‘ [FaﬁFa’B} — Tr [F#QFI?]. (126)

up to the trace anomaly. The EMT is manifestly gauge-invariant and Hermitian.

On the lattice, each term in Eq. (1.26) should be discretized via a combination of plaquettes
to preserve the local gauge invariance. At the same time, lattice observables should be constructed
such that they approximate the EMT in the continuum on a site up to a desired discretization error
O(a™). Let us begin with the first term, which is identical to the terms in the Wilson gauge action
Eq (1.19). In the last section at Eq. (1.18), we saw that the plaquette, when taken the trace as
ReTr (1 — P, (n)], approximates the field strength at the center of the plaquette, Tr [F),, (x0)?],
up to O(a?) error. Therefore the local observable Tr [F),,(n)?] on a lattice site n is approximated

up to O(a) discretization errors by

ReTr[1 — P,,(n)] + O(a) (1.27)

To improve the approximation up to O(a?), we simply take the average of four plaquettes around

the site n:

— ReTr[l — P (n —zfp—yo)] + O(a®). (1.28)

TRGLED P) ppan

z=0,1 y=0,1 SRV
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In the context of quantum simulation, we have two lattice spacings: the spatial lattice spacing
a and the Trotterization step ay. As we traditionally take the Hamiltonian limit ay — 0 first
in quantum simulations, it is safe to leave the discretization error in time direction at the linear
order and improve the discretization only in the spacial lattice spacing a up to O(a?). Thus for
the terms involving gauge links in the time direction, we take the average of two plaquettes in the

following way:

Tr [Fi(n)?] = Z 5 12 5 ReTr[1 — P (n — 1)) + O(a?, ap). (1.29)

a=01 I5 4ty

This discretization scheme saves us from constructing time-non-local observables of the form

1 .
Tr [Fu(n)] = > > SEall Re Tr[1 — Py(n — xt — yi)] + O(a?). (1.30)

=0,1 y=0,1 i

whose corresponding operators are spatially non-local in the Hamiltonian formulation.
The disctretization of the second term in the energy-momentum tensor Eq. (1.26) requires
the disctretization of F),, itself, which can be done again by combining certain plaquettes. The

most naive discretization of F),, is

?

Fp(n) = (Puv(n) — Pl (1)) + O(a) (1.31)

_2g$a#al,

which is correct up to an O(a) error. An improvement of discretization to O(a?) order can be

done again by taking the average of four plaquettes and construct the so-called “clover”

1
Cour() = 7 [P + Pt P+ Pray] (). (1.32)
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as show in Figure 1.2. By combining clovers in the same way as Eq. (1.31) we obtain the lattice

expression for the second term in Eq. (1.26) as

1

F(n) = (Cow(n) — CI,(n)) . (1.33)

B 2gsa,a,

that approximates F),,(n) up to O(a?) discretization errors. Again in the context of quantum
simulation, it is convenient to ignore the discretization error from finite ay in the Hamiltonian
limit. This motivates us to define “half-clovers” B (shown in Figure 1.2), which is the average of

two plaquettes in the remaining spatial direction:

(Pio(n) + Po—y(n)) . (1.34)

By combining these half-clovers, we obtain the discretization of Fpy; which is correct up to

O(ag, a?) error as

Fyg(n) ~ (Bz-o(n) - Bjo(n)) : (1.35)

We can further improve the discretization scheme so that the lattice EMT observables approximate
theEMT in the continuum up to a higher-order O(a") discretization error, by combining larger

plaquettes as were constructed in [22].

1.4 Relativistic hydrodynamics

15



1.4.1 Hydrodynamics of ideal fluid

Since the first attempt to simulate the hot quark-gluon-plasma seen in heavy-ion collisions
with relativistic hydrodynamics [29, 30, 31, 32], its transport coefficients, the shear viscosity
and bulk viscosity, have been a key to understanding the non-equilibrium nature of dense quark-
gluon plasma. From the hydrodynamic simulation of heavy-ion collisions fit to the experimental
result, especially the elliptic flow [33], the ratio of the shear viscosity 7 to the entropy density s

1s estimated to be [34]

(\V]
ot

N for T,<T<2T,. (1.36)

» |3
5
3

S

47
The estimate is very close to the KSS bound /s = 1/4, a conjectured lower bound on the value
of n/s for a wide class of theories [35]. While their are still discussions on the applicability of the
KSS bound (see [36] and references therein), the strongly coupled quark-gluon plasma is called
one of the“most nearly perfect liquid” due to the smallness of 77/s. These transport coefficients
are the low energy constants of hydrodynamics, meaning that they are in principle derivable from
first-principles, i.e., QCD and be input to the hydrodynamic description of QCD.

The regime of QCD in which relativistic hydrodynamics serves as an effective theory is
the strongly coupled regime of QCD. Thus non-perturbative methods, such as lattice QCD,
are required to evaluate hydrodynamic transport coefficients. Unfortunately, at the moment,
there is no viable non-perturbative methods to address these LECs. The main theme of this
thesis in later chapters is the construction of lattice QCD methods for computing such non-
equilibrium properties of QCD. To prepare for those chapters, in this section, we briefly review

the basics of relativistic hydrodynamics as an effective theory, derive equations of motion for
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the effective fields: relativistic Euler equations and Navier-Stokes equations, and come to the
relations between LECs and correlators of the energy momentum tensor. Such relations will be
used in lattice QCD methods to evaluate transport coefficients as will be discussed in Section 2.5.
Almost entire discussion in this section is based on Chapter. 2 of the book “Relativistic Fluid
Dynamics In and Out of Equilibrium” by P. Romatschke and U. Romatschke [37]. Following
the convention chosen in the book, in this section, the metric tensor in Minkowski spacetime is
chosen to be mostly-plus:

g = diag(—1, 1, 1, 1), (1.37)

and we consider specifically 3 + 1-dimensions.

In a relativistic theory, Lorentz symmetry requires the following conservation laws:

v, T =0. (1.38)

Thus central steps in building relativistic hydrodynamics is to construct the energy momentum

tensor 7}, in terms of the hydrodynamic fields, yet to be chosen, while respecting Lorentz

symmetry. As we are interested in the long-wave-length behavior of the system, we construct the

EMT order by order in a derivative expansion (with respect to space and time) of the hydrodynamic
fields. In fact, in momentum space, these derivatives pull down factors of the momentum scale

k™ for nth order derivatives and the EMT will be written as the small k expansion. Let us denote

the nth order term in the EMT as T/, 7 such that the EMT will be constructed as

T = T+ T+ (1.39)
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When constructing the EMT, we should do so such that the symmetry in the original theory, i.e.,
Lorentz symmetry, is preserved at each order n. Thus, the task is, at each order, write down all
possible combinations of the hydrodynamic fields with the right number of derivatives. When
combining such terms to build T(‘:l l;, coefficients (LECs) need to be introduced. These are the
transport coefficients defined by the construction of relativistic hydrodynamics, and their physical
meaning will be given by solving the resulting equation of motion Eq. (1.38). In the following,

v

we work out the expressions for T(’f)')’ and T(‘;)

To start the costruction of the zeroth order EMT, let us introduce a Lorentz scalar ¢, Lorentz
vector u*, and the metric tensor g, in Eq. (1.37). We choose the Lorentz vector to be the time-

like eigenvector of the EMT, (7*), and Lorentz scalar be the corresponding eigenvalue:

(T Vu,, = —eu (1.40)

Here the expectation value of the EMT is that of the underlying quantum system in equilibrium
in Minkowski spacetime. The eigenvector is normalized to be ufu, = —1.
By writing down all possible terms with no derivatives while respecting Lorentz symmetry,

one finds that 7},, takes the following general form:

T = fi(e)uutty, + f2(€) g (1.41)

where fi(€) and f>(€) are scalar function of the Lorentz scalar €. So far none of coefficients
fi(€), f2(€) have been identified. Now let us perform a Lorentz boost and bring the EMT to the

local rest frame. The Lorentz vector is u* = (1,0, 0, 0) in the local rest frame and thus the EMT
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takes the form

T(l(L)l)/,LRF = diag (fi(€) — fa(e), fale), fale), fale)). (1.42)

In the local rest frame, the expectation value of the EMT is

(T,)1re = diag (¢, P, P, P) (1.43)

where € and P(e) are the equilibrium energy density and pressure to be computed from the
underlying quantum theory. The coefficients f(€) and f>(€) are identified by matching Eq. (1.42)
and Eq. (1.43). The result is fi(€) = € + P(¢), fa(e) = P(€). Thus the energy momentum tensor

of zeroth order relativistic hydrodynamics is

0) v v
T\ = (e + P)u'v” + P g" (1.44)

where the Lorentz scalar ¢ is identified as the local energy density. The Lorentz vector u, can
be identified as the local fluid velocity. In addition to these hydrodynamic fields, we introduced
another Lorentz scalar P which is identified as the equilibrium pressure. This equation of state
P(e) is not fixed in the framework of hydrodynamics. The equation of state is in fact the “zeroth
order transport coefficient”, which needs to be computed from the underlying quantum theory or
extracted from experiment and be input to the hydrodynamic description above.

The equation of motion for ideal fluid dynamics,

VIl =0, (1.45)
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is the relativistic Euler equation. To derive it, it is convenient to introduce the following tensor
AP = g"" + utu” (1.46)

which is orthogonal to the vector u,,. The vector u* and tensor A" project the equation of motion
Eq. (1.45) separately into time-like and space-like components. In fact, in the local rest frame,

ufre = (1,0,0,0) and Af'gr = diag(0, 1,1, 1). The time-like component of the Euler equation is
u,V, T\ = — (e + P) Vu' — u'V,e = 0. (1.47)
where u,V,u" = 0 was used. The space-like projection reads
NuoV T = (€ + P)u'V g + AoV, P =0 (1.48)
Let us introduce short-hand notations of the projection of the derivatives
Dy = u"V,, T =AY, . (1.49)

The second term in Eq. (1.48) can be written with the energy density using cs(e) = 4/ %—1: and

thus Eq. (1.47) and Eq. (1.48) become
(e+ P)V,u"+ Dre=0, (e+ P)Dpu*+c2Vie=0. (1.50)
In the non-relativistic limit: |¥| < 1and P < ¢, equations become the continuity equation for the
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time-like projection and non-relativistic Euler equation for the space-like projection respectively:

Oe+v0-0e+ed-v=0, €eOi+ev-00+0P=0. (1.51)

These equations govern the time evolution of the underlying quantum system in the ideal hydrodynamic

description.

1.4.2 Hydrodynamics of nearly ideal fluid
The goal of this section on relativistic hydrodynamics is to derive expressions for correlation

functions of the EMT evaluated on a thermal state such as

2
nk” 4

(T (t, k)T (0,k)) oce™ <t (1.52)

which tell us how one computes the first order hydrodynamic coefficients, the shear viscosity 7
and the bulk viscosity ¢, from the underlying quantum theory. This equation tells us about how
the fluid responds to a small perturbation by 7. To study such a linear response, we need to
consider the system slightly out of equilibrium. The energy momentum tensor should encode
the slight change in €, u* over space and time by including the next order EMT T(‘f)’ . Within the
first-order hydrodynamic effective theory, the hydrodynamic fields are again introduced as the

time-like eigenvector and its eigenvalue of the 7,

u, (T") = —eu” (1.53)
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where the expectation value of 7#” is now that of the underlying quantum theory slightly out of
equilibrium. Since T (A‘S 1s a symmetric tensor, we only need to list symmetric two-rank tensor as

candidate terms. These are

A, Vyu* and V(Luu,,) = % (Vju,, + Vyu,) . (1.54)
For later convenience, we introduce two linear combinations of these two terms:

A"Vyut  and 0" =2V THuYT — gAWvW (1.55)

The second term o, is traceless, i.e., g, 0" = 0. We now write down the first-order EMT with

these two terms while introducing new coefficients 7 and (:

THY = —no' — CAMVu (1.56)

This equation is the definition of the shear viscosity 77 and the bulk viscosity (. The expression for
EMT in the local rest frame again tells us what P(¢) is. The trace of the EMT should be compared
to the trace of the expectation value (7"") of the quantum system slightly off the equilibrium.

The trace of the EMT is
(T(;g + ng) G = —€ + 3 (P(e) — (V) (1.57)

which should match € — 3P of slightly out of equilibrium. So by convention, one can choose

to consider P(e) still as the equation of state for the quantum system in equilibrium, and put all
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non-equilibrium corrections to the contribution from T(‘i’)’, which is —(V3u*. When the system
of our interest is slightly-out-of-equilibrium, the correction from T(‘f)’ is small.

The conservation of the EMT of first-order relativistic hydrodynamics,
Vi (Tl + T ) =0, (1.58)
gives the relativistic Navier-Stokes equations. Again using projections, along u*, one obtains
Dpe + (¢ + P) (Vi) — o™ V,u, — ¢ (Vi) =0 (1.59)
where u#0,,, = 0 was used. For the projection A*®, we obtain
(e + P) Dpu® + 2V5e — ASV,, (no™” 4+ ¢A™ (Vyut)) = 0. (1.60)

In the non-relativistic limit || < 1 with the assumption that 7, ( are constant, the equations

become the continuity equation and non-relativistic Navier-Stokes equation:

Oe+v-0e+ed-v = 0 (1.61)

T+ €0- 0T+ 0P = nd’v+ <g+§n> 9(0-7) . (1.62)

First order hydrodynamics governed by the continuity equation and Navier-Stokes equation is
expected to give a good description of strongly coupled systems such as QCD at a finite temperature.
The inputs to this effective theory, the equation of state P(€) and viscosities 7(¢), ((€), can in

principle be computed from QCD. As these transport coefficients are defined within the framework
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of hydrodynamics, it is relativistic hydrodynamics which teaches us about useful correlation
functions from which one extracts those coefficients in first-principles calculations. The next

section detailes the derivation of such correlation functions.

1.4.3 Hydrodynamic collective modes

Now that we have obtained the equations of motion for the hydrodynamic fields in Sec. 1.4.2,
let us solve them and find the expressions for correlation functions of the energy momentum
tensor. I start with non-relativistic hydrodynamics as a warm-up [38]. Let us consider an
incompressible and homogeneous fluid governed by the Eq. (1.62). The pressure term 0P
vanishes because of homogeneity de = 0, and the last term is also not relevant because 0 - v = 0

for an incompressible fluid. As an initial condition, I consider a plane wave in x direction:

0(7,0) = (ug cos(kz),0,0). (1.63)

The y and z-component of the velocity field will remain zero, and only the x-component needs

to be considered:

0vz(z, 1) B n 0%v,(z,t)
BT =TT 02 (1.64)

The solution for v, (7, t) is

nk?

v (7, 1) =ug e < ' cos(kz) (1.65)

Thus, by applying a small perturbation to the velocity field and measuring the exponentially
decaying amplitude of the velocity field, the viscosity 1 with a specific momentum £ is extracted.

Ultimately we can take the infinite-volume limit £ — 0, where the viscosity 7 is defined.
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We would like to find correlators of the same kind in relativistic hydrodynamics as well. In
the following, we solve the relativistic Navier-stokes equations via the variational approach [39]
instead of adding fluctuation to the conserved quantities such as € and u* [40]. The variational
approach has an advantage of allowing us to access correlation functions of all components of
the EMT. In the canonical approach utilized above, components such as 72 cannot be addressed
due to the lack of the corresponding conserved quantity. In the variational approach, we add
perturbation to the metric tensor g"”, which is the source for the EMT. This means that the

retarded two-point correlator of the EMT in flat space can be derived as

oTH

G = -2
ogHv

(1.66)

9=9uv

Thus we consider adding a small fluctuation 6*” to the Minkowski metric g,,, and compute the
change in T" up to the linear order in the perturbation. In practice, it is convenient to add the

fluctuation in one special direction and work in momentum space:

Wi = gt 4 GHvemtthes (1.67)

The expression for 7" with the background metric h**, T""(h*"), should be derived up to the
first order in 0" to give an expression for 07" in Eq. (1.66). Note that not only the metric
but also the hydrodynamic fields ¢ and u* will have corrections due to 4", and they need to be

included while deriving the expression for 07*”. Now we follow Eq. (1.66) and come to the
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following correlation functions in momentum space [39]:

k?2 (60 —f- Po)
GO0y — _9 1.68
(w, k) o+t iyswk? + w? — 2k (1.68)
k) = g (1.69)
’ 0w — Yuk? '
G2 (w, k) = P—inw (1.70)
where 7y coefficients are
4
Yy = —] e = il < (1.71)

, +
60+P0 3<€0+P0) 60—|—P0

Here ¢; and F, are the equilibrium energy density and pressure respectively. The physical
meaning of ~ coefficients become clearer after Fourier transformation in time. For example,

by applying the Fourier transformation w — ¢ to G°1°!, one obtains
GO0 (t, k) oc e (1.72)

meaning that -, represents the damping length of shear modes. In the same manner -, is identified

as the damping length of sound modes. The Green-Kubo formula can be derived from Eq. (1.70):

12,02(, Jo —
lip 26 W E=0) (1.73)
w—0 (9w

These equations give prescriptions for evaluating the viscosity from first-principles, provided
that we can compute these correlation functions. Those correlators of 7" should be computed

in position space or momentum space, depending on the underlying theory of our interest and
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available methods. In the context of lattice field theories, numerical calculations of such correlators
are often done in position space. Therefore Eq. (1.68,1.69) are easier to evaluate — the Green-
Kubo relation in the position space becomes the delta function in time and it may not be practical
to compute such a singular function numerically on the lattice.

As is mentioned at the beginning of the section, the KSS conjecture provides a conjectured
lower bound on the ratio 17/s > +-. The bound is provided by the value of 7/s in the N = 4
SU(N) Supersymmetric Yang-Mills theory in the limit of N — oo and the coupling constant
g — oo. In this theory, the calculation of correlators Eq. (1.68,1.69,1.70) can be done via the
AdS/CFT correspondence [41] — one computes correlators in the bulk which is the classical

gravity in Anti de Sitter space, and uses the dictionary [42, 43] to obtain the corresponding

correlators for the N = 4 Supersymmetric Yang-Mills on the boundary. The results are [44, 45]

N2gT3k?

GOl’Ol(w,k) = ﬂ-—k2 (174)
8 (w} — m)
N2T?

G 2w, k) = — T (2inTw + k?) (1.75)

from which we find that /s = ﬁ. Conformal invariance guarantees that the trace of the EMT
vanishes, and thus so as the bulk viscosity, i.e. ¢ = 0.

We conclude the section by remarking that there are potential corrections to relations in
Eq. (1.68,1.69,1.70). Firstly, when we consider higher-order hydrodynamics T(‘;l)’ -+ -, there will
be polynomial corrections to the numerator and denominator of Eq. (1.68,1.69,1.70), and so as to
the exponent of Eq. (1.72). Secondly thermal fluctuations are believed to introduce polynomial

corrections ~ t" to the correlator in time in Eq. (1.72). When such corrections are present,

what we extract from a correlator of the EMT computed from the underlying quantum theory

27



represent the viscosity with finite volume effects or the effective viscosity in the presence of

thermal fluctuations.
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Chapter 2: Quantum simulation

2.1 Overview

Collider experiments have given us wealth of opportunities to observe rich phenomena
in high energy physics. It is of great theoretical interest to compute observables measured in
experiments and confirm whether the fundamental theories successfully explain experimental
results. For such tasks, a quantum computer has the promise of playing a unique role [46].
After all, a quantum computer, once built with sufficiently limited noises, can be thought of as a
very finely tuned laboratory to study the time-evolution of a quantum system. Thus in principle,
given an enormous quantum computer, one can simulate a whole scattering experiment on a
quantum computer [47] and compare the outcome — the measurement on the quantum computer
— to experimental results. To start an overview of such quantum simulations, it is helpful to
decompose a quantum simulation of a collision experiment or any other real-time dynamics of a

quantum system into the following five building blocks, as is also roughly sketched in Figure 2.1:

1. Representation of quantum system on qubits
The Hilbert space of a quantum system to be simulated needs to be mapped onto the Hilbert

space of qubits on a quantum computer. To start with the simplest example, the mapping
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Figure 2.1: A schematic view of the quantum simulation of a quantum system.

of the quantum Ising model is “one to one” — the Hilbert space of a spin is mapped on to
that of a qubit. Fermionic fields also have natural mappings to the qubits [48, 49, 50, 51].
For quantum fields with higher-dimensional local Hilbert space, one needs more number of
qubits per point in space to represent them. The dimension of the Hilbert space of /N qubits
is 2V, Therefore a minimum number of qubits required to fully represent a d-dimensional
Hilbert space is log, d. Bosonic fields have an infinite-dimensional Hilbert space on each
point in space. Such Hilbert space needs to be approximated to be mapped onto a finite
number of qubits. Ideas for such truncation includes: crystal-like subgroups [52, 53, 54,
55, 56], momentum space truncation [57, 58, 59], and the prepotential formalism [60, 61,

62, 63, 64, 65].

. Time evolution via local unitary gates

As our interest is in simulating the time-evolution of quantum systems, one needs to

implement the time-evolution operator e ~*#* via primitive quantum gates on the quantum

computer, most of which act on only 1 or 2 qubits. The time-evolution operator, when

30



applied to the qubits representing a quantum system, should (approximately) update the
wave function on those qubits following the Hamiltonian of the quantum system. Utilizing
the fact that quantum systems of our interest often possess only local interactions, the
time-evolution operator can be approximated by a sequence of local unitary operations via
the Suzuki-Trotter formula. Trotterized time-evolution circuits have been discussed for
Abelian theories in, e.g. [66, 67, 68, 69, 70, 71, 72, 73, 74] and non-Abelian gauge theory

in [75, 76, 77, 78].

. Initial state preparation

Before we apply the time-evolution operator to qubits, one needs to prepare an initial
state of our interest. In the context of lattice QCD simulation, the initial state can be, for
example, the ground state, a proton at rest, or a thermal state of QCD at a finite temperature.
A quantum circuit for preparing such a particular initial state needs to be designed and
applied to qubits prior to the time evolution. The state preparation circuit is likely to make
use of the time-evolution operator, and thus can be as costly as the time evolution itself.
Ideas for the ground state preparation include: variational algorithms [79, 80], Quantum-
Phase-Estimate [81, 82], Adiabatic algorithms [83], and spectral combing [84]. Thermal
state preparation methods include classical-quantum hybrid algorithms [85, 86] and the

quantum refrigerator [15].

. Measurement
After the time-evolution, expectation values of operators of our interest should be measured.
The construction of this building block involves several different tasks, depending on the

goal of one’s quantum simulation. Examples for tasks are finding useful operators to
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measure and building efficient methods to extract final results from the measurement. In
later sections, measurement algorithms for parton distribution functions [14] and hydrodynamic

coefficients [15] are detailed.

5. Error correction algorithms
In this thesis, those four building blocks above are built with the assumption that the
quantum computer is noiseless, which is not the case in reality. In actual quantum simulations,
error correction algorithms are necessary to obtain physically interesting results with a high
precision. Error correction algorithms can be general, or can target specific kinds of error
that are expected to be significant in lattice QCD, such as gauge-violating errors [87, 88,

89].

These are the five basic building of quantum simulations of quantum systems. Given one’s goal
of a quantum simulation, the map above lists a set of quantum algorithms needed to be built. For
example, if one’s interest is in the quantum simulation of an entire heavy-ion collision, then qubits
should represent the Hilbert space of lattice QCD or its effective theories. The time evolution
operator should be implemented via the Hamiltonian of lattice QCD or its effective description.
As the QCD Hamiltonian only consists of local interactions, the Suzuki-Trotter formula enables
us to implement the time-evolution as a sequence of local operations. The initial state should be
two well-separated large nuclei heading towards each other with a high momentum, and species
of freely streaming hadrons should be measured in the end. This observation makes it clear that
we will need an enormous volume of lattice QCD and thus an enormous number of qubits and
gates to simulate a heavy-ion collision on a quantum computer.

The state of art is that we do not have such a large-scale quantum computer. Still one can
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access important information about heavy-ion collisions without a full simulation of a heavy-ion
collision using less quantum resources. To do so, it is useful to describe a heavy-ion collision
stage by stage via effective theories. A heavy-ion collision can be thought of as a sequence of
stages, each of which has an effective description. Quantum simulations of each stage in a heavy-
ion collision with an appropriate effective theory is expected to require less quantum resources
— first of all, the quantum simulation does not need to collide a pair of well-separated nuclei, but
instead describes the nuclear matter of the size ~ 10fm®. Important information extracted from
such stage-by-stage quantum simulations will be combined to provide us to a better understanding
of heavy-ion collisions. Regarding heavy-ion collisions, two relevant effective descriptions are
parton distribution functions (PDFs) and relativistic hydrodynamics. PDFs help us describe the
initial high-energy collision of two large nuclei. Relativistic hydrodynamics provides a good
description of the middle stage of the collision, a dense quark gluon plasma, before the fireball
becomes a dilute gas of hadrons. The final stage of a collision, dilute gas of hadrons, is well
described by the kinetic theory for which we need no quantum simulations. In the quantum
simulation of the PDFs and the hydrodynamic coefficients, the same representation of lattice
QCD on qubits and time evolution operator via the QCD Hamiltonian can be utilized. On the
other hand, initial state preparation and measurement algorithms differ between the PDFs and the
transport cofficients. In the rest of the section, I first summarize the representation of lattice gauge
theories on qubits in Sec. 2.2 and time evolution in Sec. 2.3. Then I discuss state preparation
algorithms and measurement methods for PDFs in Sec. 2.4 and relativistic hydrodynamics in

Sec. 2.5.
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2.2 Representation of lattice gauge theory

To start a quantum simulation of a quantum system, qubits on a quantum computer should
represent the Hilbert space of the quantum system. When one’s interest is the first-principle
simulation of the time-evolution of nuclear matter, the quantum system to be simulated is ultimately
lattice QCD. In this section, I construct the Hamiltonian formulation of the bosonic part of lattice
QCD, which is lattice gauge theory [24, 90]. This section is based on [13], in which general
methods for simulating gauge theories together with scalar matter fields and fermionic fields are
detailed.

I consider a general lattice gauge theory with gauge group GG. The Hilbert space of a link
is the complex vector space H spanned by vectors |g) representing each element of the group
g € G. The entire Hilbert space of multiple gauge links is constructed by the tensor product of
He. The Hilbert space of L gauge links is simply H = %%L . Thus when mapping the Hilbert
space of a lattice gauge theory, it is natural to map each link H to a set of qubits (G-register) by
assigning each element g € G to the basis states in the G-register.

For discrete groups, it is rather straightforward to implement their G-registers — a finite
number of elements in G are each mapped to basis in a set of N, qubits which possesses 2V
dimensional Hilbert space. For example, to represent a Z, lattice gauge theory, one qubit is
enough per each link. For higher-dimensional gauge groups, the dimension of the Hilbert space of
G-register needs to be larger than the dimension of the group G. While satisfying this constraint,
an efficient way of mapping the local Hilbert space H¢ to qubits can be studied so that the
implementation of the time-evolution operator can be done as simply as possible.

How do we map the Hilbert space H of gauge groups with infinite number of elements
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such as SU(N) groups? There is no way to perfectly map such a Hilbert space onto qubits since
there are only finite number of them. Thus the Hilbert space of each gauge link needs to be
truncated to be mapped on to a finite number of qubits. As was mentioned in the last section,
there are several methods proposed to truncate the Hilbert space of gauge theories [52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65].

With a G-register implemented for each gauge link, qubits represent the entire Hilbert
space including both physical and unphysical subspaces. As our interest is only in physical
states, we shall discuss a gauge-symmetrization operator, which projects any states in the entire
Hilbert space onto the physical subspace Hp. On a lattice with N sites, there is an element
Vi € G assigned on each site. The transformation rule for a gauge link U;; from site i to
Jjis Uy — VjUijViT. Given a set V € G of elements on N sites, let us denote the gauge
transformation as ¢(V)|Uy; - ) = |V;Uy V- - -). All states connected by ¢(V') forall V € GV
are physically equivalent, and they together form the gauge orbit. The physical space is then
Hp = HE"/P(GEN). The projection of a state to the physical subspace is done by a gauge

symmetrization operator:

PlUjy---) = L/ dVl---/ dVx |V2U12V1T~--) = L/ AV p(V)|Upg---) (2.1)
GIM Ja a GV Jon
An implementation of the operator P for U(1) gauge theory is given in [91].
Since the entire Hilbert space is much larger than the physical subspace, it might seem
to be a waste of qubits to map the entire Hilbert space onto qubits. However, the efficiency
of representation methods of lattice gauge theories should not be discussed based only on the

qubit cost at first glance. The efficiency of representation methods should be investigated while
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considering other costs present in the entire quantum simulation. For example, the number
of qubits one needs to achieve a certain small lattice spacing and the complexity of the time
evolution circuit both depend on methods for representing lattice gauge theories. The search
for an efficient formalism for the quantum simulation of gauge theories is a very active area
of research. Regarding the gauge invariance of quantum simulations in the presence of the
unphysical subspace, states of our interest to measure observables for as well as observables
themselves are gauge-invariant. As the Hamiltonian for lattice gauge theories (which will be
constructed in Eq. (2.19) in the next section) and thus time-evolution operator are strictly gauge-
invariant, as long as one starts with an gauge-invariant initial state, the final state on a quantum
computer is guaranteed to be gauge invariant. Therefore one obtains physically meaningful
results by measuring gauge-invariant observables on the final state, even though the state in the
middle of unitary gate operations is not expected to be gauge invariant. With the presence of
noises in the middle of the quantum simulation, the final state is likely to contain gauge-violating
states. Such errors can be reduced by applying quantum error correction algorithms for taming

gauge-violating errors [87, 88, 89].

2.3 Time evolution

2.3.1 Hamiltonian of lattice gauge theories

Quantum simulations consists of the Hilbert space (qubits) and operators to act on it (unitary
gates). Now that the Hilbert space of a lattice gauge theory is mapped onto that of qubits, we
should construct the most important operation to these qubits — the time evolution operator

— via quantum gates. For that, we first need the expression for the Hamiltonian of lattice
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gauge theory. In the following, we focus on lattice SU(3) gauge theory, and generalize the
expression for its Hamiltonian to a general lattice gauge theory in the end. One way to obtain
lattice SU(3) Hamiltonian is to derive one from the action of lattice gauge theory, e.g. Wilson

action in Eq. (1.19):

Sy = Z K(t) +V(t) (2.2)
K(t) = Z Z P ReTr [l — Py(n,t)] (2.3)
V() = Z Z —~ ReTr [Py(n,t)] (2.4)

through the transfer matrix T =il [90] which is defined to act on the entire Hilbert space [13].
The Hamiltonian formulation and action formulation of a quantum theory are connected by the

Trotterization:
(U,|e 117, = /DU(Ut|}3T|Ut_1)---<U1|}3T|UO> = /DU e, (2.5)

Here DU means the all “paths” for spacial gauge links are taken while respecting the boundary
condition Uj and U, for the initial and final states respectively. For this equality to hold with the

lattice action for SU (3) gauge theory, the following must be true:

(U’|T|U> _ KOV _ eiz (qaao s, Re"[‘r[l Un.iU, ]+j§—0a o ReTf[Un,iU7L+;7jUi+37iU;J).

(2.6)
When one inserts this relation to Eq. (2.5) without the projection operator P at each time slice

in Eq. (2.1), one recovers the path integral with the Wilson action Eq. (2.2) where the temporal
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gauge links are set to the identity. To reproduce the Wilson gauge action with arbitrary temporal
gauge links, we insert the projection P at each time slice. To demontstrate, for the kinetic term

on a link U, from site a to site b, the transfer matrix’s matrix elements are

i—— Re — 't
(UL T|Uns) = o R T Vesil] o

which will yield a kinetic term with the identity on temporal gauge links in the action formulation.

By inserting the projection operator, the matrix elements become

WTPIVs) = [ dga [ dgy et tntil], 2.8)
a G

which now encodes the integral over the temporal gauge links as is usually seen in the path

integral in Eq. (1.24). Thus by inserting projection operators at each time slice, the resulting path

integal formalism obtains temporal gauge degrees of freedom.

The equation above, Eq. (2.6), in principle defines the Hamiltonian for the lattice SU(3)
gauge theory. To transfer the Hamiltonian to a useful form as an operator, I would like to find an
expression for H which acts on the Hilbert space (so either (U’| or |U)) and realizes the equality
Eq. (2.6). For this purpose, let us introduce two kinds of basic operators. One is the gauge link

operator U,, ; which is diagonal in the “position” basis:

Note that gauge link operators are defined only for gauge links in spatial direction (v = x,y, 2),

as gauge links in the temporal direction U, ; do not exist in the Hamiltonian formulation. The
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gauge link operators transform as

Uni =9, 5 Uni gn (2.10)

The second kind of operator is the conjugate operator of U, ; which we denote as 7, ;. They are

not diagonal in the position basis:

X lgUy,;) whenm =n and i = j
Roi(9)|Un,g) = 2.11)

|Unj) otherwise

with

R,i(g) = ™" i . (2.12)

Here, x* are eight real numbers parameterizing the group element ¢ € SU(3), and 7 are eight
Hermitian operators associated with z¢. Using these primitive operators, one finds an expression

for the transfer matrix operator T which satisfies the relation Eq. (2.6):

~ ~ 7 ReTr[1—gt ]+
7= / I] [dgm Rn,i(gn,i)] i S ReTe[1=g] 40 2.13)
geG

n,.

Here, V is simply the operator version of the potential term in Eq. (2.4) obtained by converting
all links in V/(¢), which are spatial, to the corresponding link operators U. Note that temporal
gauge links A, o are set to zero, and this is the convention I take in the rest of the thesis. Now
that the transfer matrix is written with operators, in principle, one can obtain the Hamiltonian by

taking H=- log(T). However, to obtain an even more useful expression for the Hamiltonian,
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one can further simplify the expression for 7" by taking the Hamiltonian limit aq — 0 before we

take the logarithm. For that purpose, let us rewrite g with real parameters ¢

A i w0 go 7 i ¥, ReTr[1—e i | 4iv
T= [ [ [dat, e"nifni] s =n : (2.14)
™

' ny,a

In the ap — O limit, the integral can be evaluated by the saddle point approximation. The
saddle point is x = 0 and its gauge-equivalent points that form the gauge orbit. Since the whole

expression of T is gauge invariant, we simply take the saddle point to be x = 0 and obtain
T~ / B e (2.15)

Here a compact notation for indices is introduced as p = (n,4,a). Now it is straightforward to
take the logarithm of T to obtain the Hamiltonian. The resulting Kogut-Susskind Hamiltonian [24]

is

2
2 9s ~a ~a 1 E »
ha i<j

By introducing the operator

Fopg = 70T (2.17)

which transform as

Foni = G Foni Gns (2.18)
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under the gauge transformation, the Hamiltonian can be written as

2
. gz . 1 Z ~
ha i<j

This is the Hamiltonian of lattice SU(3) gauge theory. Note that each term is gauge-invariant
under the transformation by Eq. (2.10) and Eq. (2.18), which will guarantee the gauge-invariance
of the time-evolution operator after Trotterization, as will be discussed in the next section. Hamiltonians
of general lattice gauge theories with gauge group G take the same form Eq. (2.19). The gauge
link operators are as defined in Eq. (2.9) so that they are diagonal in the position basis of the group
G. Operator 7, ; is the momentum operator conjugate to U,,; and 7r,2m is the Laplace-Beltrami

operator on the surface G.

2.3.2  Suzuki-Trotterization

In this section, I decompose the time evolution operator into local time evolution operators

via Trotterization and implement them using four primitive circuits [13]:

1. Inversion gate. This gate acts on a single G-register and changes the register to its inverse:

Ualg)=1]g71). (2.20)

2. Multiplication gate. This gate acts on two G-registers and multiplies the second register

by the first register:

Us |g) |h) = |g) lgh) . (2.21)
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3. Trace gate. This gate acts on a single GG-register and obtains the trace of the register

Une(0) |g) = PR g) . (2.22)

4. Fourier transformation gate. This gate acts on a single GG-register and transforms it into

the Fourier space:

e Y f(9)]9) =D F(p)islpiis i) (2.23)
pEG‘

geqG

These primitive gates allow us to construct the time evolution of the lattice gauge theory with its

Hamiltonian in Eq. (2.19).

The time-evolution operator U(t) = e~ i an operator that acts on the entire Hilbert
space, which cannot be implemented efficiently via primitive gates on a quantum computer —
usually they perform only 1, 2 or 3-qubit operations. To construct an approximate operator for
the time-evolution via primitive gates available on a quantum computer, we employ the Trotter-

Suzuki formula:

Urs(t) = [ e Mrdteiivar, (2.24)
t/At

Note that the Trotterization does not break gauge invariance at any orders in At since each term
in the Hamiltonian is gauge invariant. The Trotterization approximates the exact time evolution
operator up to O(At?) or O(At?), depending on the order of kinetic and potential terms in the
Trotterization. As the kinetic term Hg and the potential term Hy each consists of mutually

commuting operators, time-evolution via those terms can be written as a product of local time-
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Figure 2.2: A quantum circuit for the potential part of the time evolution operator Z/l‘(,l) (,7).

evolution:

o tHKAL _ Hu i), u}{”(@j) — e i %At (2.25)

and

.
o—iHVAL _ Hu ), U‘(/l)(p) — 'g%a ReTilPuv(n)lat (2.26)

—iH g At

Operators U [((1 ) (7, 7) can be applied in any order within e as they commute with each other;

likewise for operators U }; ) (i,7) in e"HIVAL

The potential part of the time evolution L{‘(/l) is constructed with the multiplication gate
and trace gate and the help of an ancillary register: we prepare the product of four links of the
plaquette and then apply the trace gate ilTr( —). The circuit is shown in Figure 2.3.2. Note that
the circuit in Figure 2.3.2 prepares the product of four links on one of those link instead on an
ancillary register.

The kinetic part U §§ ) is constructed via the Fourier transformation gate for to diagonalize

the operator and then a diagonal unitary:

Z/{I((l) (7’7 J) = L[Fi’lphaseif(;ﬂ- (227)
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The construction of the phase gate depends on the group G, its truncation if necessary, and how
one implements of the G-register. Once the G-register is designed, the phase gate should be
constructed so that it gives an appropriate phase to all eigenstates in the momentum basis.

The number of circuits needed to perform the time evolution of a lattice gauge theory with

Ny links and Np plaquettes are:

T T T

Uy s 6Npgo. Uk i6Npi Stnc Npo (2.28)
T T

Up = 2Nig, pne Ny - (2.29)

The remaining task is to implement these primitive circuits with the quantum gates available on
a quantum computer. In the next section, we construct these primitive circuits for the dihedral
D, gauge theory and demonstrate the time evolution of the system. For simulating lattice SU(3)
gauge theory, it is necessary to truncate the group. One truncation method is to approximate the
SU (3) group with its largest crystal-like subgroup called S(1080), which has 1080 elements [52,
53, 54, 55, 56]. The design of the S(1080) register and the construction of primitive circuits are
currently studied.

In the rest of the section, we describe methods for computing certain correlators given
the time-evolution circuit for a gauge theory: correlators of spatial plaquettes and a temporary
extended Wilson loop [13]. Algorithms described here will be applied to the measurements
of PDFs and transport coefficients in later sections. In both cases, measurements of a unitary
operator will be necessary. The expectation value of a unitary operator is computed by introducing
an ancillary qubit in the following way [92]. Firstly, given the state |P) for which we would

like to measure a unitary operator {/, we introduce an ancillary qubit and prepare the state
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|P) = \/% (|0)a|P) + |1)4| P)). Here the index a denotes the state on the ancillary qubit. Then

we apply the unitary operator I/ controlled on the ancillary qubit

U. = |0>aa<0| I+ |1>aa<1| U. (2.30)

Here I denotes the identity operator that acts on the original Hilbert space. The resulting state
is |P) = U | Py = \/% (10)o|P) +U|1)4|P)). The measurements of o, and o, on the ancillary

qubit give the real part and imaginary part of ( P|U|P) respectively:

(PIUIP) = (Py|o, @ I|By) + i{Pylo, @ I|P) (2.31)

With this algorithms in mind, let us transform correlators of our interest into a set of unitary
operators and apply the method above to measure such correlators.
The correlator of spatial Wilson plaquettes’s real part W, = Re Tr [P,, ] can be thought of

as the glueball propagator in QCD. The correlator of our interest here is of the form:

(U] U(—t) W () UE) W (z) |T). (2.32)

Utilizing the fact that the operators 1V, are Hermitian, one prepares a family of time-dependent

Hamiltonian parameterized by two small real numbers ¢; and €5:

H, (1) = Ho + &0(T — )Wy (2') + e10(T) W, () (2.33)

The measurement of the family of unitary operators C'(ey, €2) = (U|U(—t) U, e, (t) | V), with
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the time-evolution U,

€1,€2

via the Hamiltonian H, .,, can be performed via the method described
above. To obtain the plaquette correlator, one differentiates C'(ey, €2) with respect to the perturbation:

_ PC(e1, &)

e, 06, = (U(=t) W (") Ut) W () ) (2.34)

e1=e2=0

In practice, the derivative can be taken numerically after measuring the correlator C'(eq, €5) for
several small €; and e,. This method can be straightforwardly extended to the n-point correlators
of plaquettes with the requirement that the numerical differentiation will be taken n times.

The measurement of temporally-extended Wilson loops <Re Tr U;rj (t)Usj (O)> can be done
in the same way by the decomposition of the operator into unitary pieces. Note that the temporal
gauge A, ( is set to be zero as usual. As a gauge link U;; takes complex matrix values in general,
one decomposes the correlator into matrix elements as <Re([U3j (t)]b“[Uij(O)]“b)> and define a

family of perturbed Hamiltonian:

H(1) = Hy+ e20(1 — t) Re[U}]" + €16(7) Re[Uy]* + &0(r — ) Im[U]"* + &6 (7) Im[U;]*.

(2.35)
With the perturbed Hamiltonian, correlators C%(eq, €y, €9, €2) = (V| U(—1)U®(t) |¥) should be
measured by utilizing the method above for the measurement of unitary operators. By take a

numerical differentiation, one obtain

{ o 0?

. ab =z — _ T ba ~Jab 2
5o aaagioc (1,62, ,8) = Re (U(-O)UF U@ U]™") . 236)

The imaginary part of the correlator can be measured in a similar way. Now we sum over the
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indices a, b to obtain the trace of the correlator.

For many gauge groups, different matrix elements <Re([UJj (t)]b“[Uij(O)]ab)> are related
by gauge symmetry as it is the case for dihedral D, (simulated below) and SU(N) in the
fundamental representation. In such cases, the correlator needs to be evaluated for a particular
choice of a,b. Also note that perturbation by the link U;; is not gauge-invariant unlike the
spatial Wilson plaquette IW,,,,. As a consequence, the state during the time-evolution is not gauge
invariant but rather lie in the entire Hilbert space. Nevertheless, by summing over a, b and taking

the trace at the end, one obtains the desired invariant Wilson loop.

2.3.3 Demonstration

In this section I demonstrate the time-evolution of dihedral D, gauge theory [13] on a two-
plaquette lattice shown in Figure 2.3.3. The lattice is smallest non-trivial setting in the sense that
the lattice cannot be reduced to 1 spatial dimension. There are four link degrees of freedom,
and thus One needs four D, registers. Each link has the Hilbert space of dimension 8, which
can be represented by 3 qubits. In addition to that, two ancillary qubits are introduced for the

time-evolution and measurements and one ends up with a 14-qubit simulation. The action for the

Uy Us Us

U[) Ul

Figure 2.3: D4 gauge theory on a 2-plaquette lattice
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model is

5= - &% (R [l (000 + Re T [U 00 000001 0)] )
1
- ; Re Tr Pr. (2.37)

The last term is a sum over all temporal plaquettes on the lattice. The corresponding Hamiltonian

is

H = ReTr [Ug(t)Ug(t)Ug(t)Uo(t)]+ReTr [Ug(t)Uf(t)Ug(t)m(t)

— Y g T () (2.38)

i=0,1,2,3

where log T[((1 )(z) the kinetic term on link 7. Having the toy-model set up, the next step is to
design the D, register and implement the primitive circuits: ., 4, $hp., Up, and YUspae. The
details of the design of these circuits are discussed in the Appendix A.

As is discussed in Sec. 2.2, the initial state must be gauge-invariant. In the demonstration,
the initial state was chosen to be the gauge projection of the identity matrix on each link. The
system is time-evolved for ¢ = 10 with two different Trotter time steps, At = 0.2 and At = 0.5.
Figure 2.3.3 shows the expectation value of one of the plaquettes over time. The exact result
is shown in black, while those with Trotter step sizes of At = 0.2 and A = 0.5 are shown in
red and blue respectively. The source of errors in the simulation are the Trotterization and the
sampling when computing expectation values. For the larger trotter step of A = 0.5, the Trotter
error builds up and becomes noticeable at larger time.

With the same model, I demonstrate the measurement of temporal Wilson loop as shown in
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<ReTI'P1 >

Figure 2.4: The expectation value of one of the plaquettes over time. The black solid line
represents the exact result. Classical simulation of quantum calculation are done with Trotter
steps of A = 0.2 in red and A = 0.5 in blue. The difference between the exact result and
quantum calculation comes from the sampling in quantum calculation (estimated and shown in
error bars) and the Trotterization.

Figure 2.3.3. In the simulation, the time-evolution is performed with the Trotter step At = 0.2.
Choices of the es are (€1, €2) = (0.1,0.0), (0.0,0.1),(0.1,0.1) and the same for the parameters

€1, €2, and the numerical differentiation was taken.

2.4 Parton distribution functions

2.4.1 Overview

In this section, I discuss the state preparation and measurement algorithms for computing
parton distribution functions (PDFs) and the hadronic tensor [14]. They are non-perturbative
objects that capture the structure of hadrons in terms of fundamental degrees of freedom: quarks

and gluons. They provide non-perturbative inputs to high-energy scattering experiments such as
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(ReTrU, (t)Uy(0))

Figure 2.5: The expectation value of a temporal Wilson loop as a function of the time extent of
the loop. Total of 2 x 10° measurements were collected for each data point. In addition to errors
from the sampling, Trotterization and finite differencing introduce systematic errors.

a deep inelastic scattering’s cross section and the initial conditions of heavy-ion collisions. Thus
it is of both experimental and theoretical interest to determine PDFs and the hadronic teosor [93].
As PDFs and the hadronic tensors describe such properties of hadrons, non-perturbative calculation
via lattice QCD is necessary to theoretically evaluate them. Both PDFs and hadronic tensors are
defined in the context of high-energy scattering and thus involve correlators with a real-time
evolution. Although Minkowski lattice calculation of such correlators naively suffer from the
real-time sigh problem, there have been methods studied to circumvent the issue for PDFs such
as analytical continuation [94, 95], Compton amplitudes [96], quasi-PDFs [97] and similarly
pseudo-PDFs [98]. Computation of the hadronic tensor has also been studied [99]. The purpose
of this section is to propose yet another method to compute PDFs and the hadronic tensor via
quantum simulation. First-principles calculations of PDFs and the hadronic tensor on a quantum

computer can be done without sign problems, and are expected to be generalized to Generalized
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Parton Distributions straightforwardly. We start with PDFs and discuss state preparation algorithms
in Sec. 2.4.2. I discuss a measurement procedure in Sec. 2.4.3 and give a concrete example of a
quantum computation of PDFs of the Thirring model in 1 + 1-dimension. When the algorithm
is generalized to QCD, we encounter a technical difficulty arising from the Wilson line on the
light-cone. To circumvent the problem, an alternative object, the hadronic tensor, is considered
in Sec. 2.4.4.

To start, let us introduce the theoretical definition of PDFs and find the goal of each
building blocks in the map of the quantum simulation Figure 2.1. Parton distribution functions are
interpreted as the probability distribution function for finding a parton species p; (either quarks or
gluons) with momentum fraction z of the total momentum of proton P. Using such probability
distribution functions f;(z), the total cross section of a high-energy electron scattering off a

proton P in Figure 2.4.1 is expresse as

1
O Pye-Xx = Z/ dx fi(z)o (e_pi — e_X) (2.39)
—Jo

where o (e”p; — e~ X)) are scatting cross section of the electron and quarks or gluons. Here
X reprensents the final state of the scattering except the electron. Aymptotic freedom implies
that partons look free when the momentum transfer ¢ is high in Figure 2.4.1 except for QED
interaction. Thus the electron can only scatter from charged particles in the proton, which are
quarks. The cross section of an electron and a quark can be computed easily. Thus, once PDFs
fi(z) for quarks are obtained from lattice calculations, the total cross section can be computed by
Eq. (2.39).

In this section we particularly focus on PDFs on quarks f;(x) of flavor ¢ which can be
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electron

quark

proton

Figure 2.6: Deep inelastic scattering of an electron off a proton

computed from QCD as

filx) = / i g_;eﬁm(np)@ [i(tn)y "W (tn*; 0)1)4(0)|P) (2.40)

where vt = (7% ++') /v/2. The state |P) is the proton state to evaluate PDFs for. The
observable to measure consists of the quark operators ;(tn*) (n* = (1,7) is a light-like vector),
and 1);(0) on the light-cone. Those two quark operators need to be connected by a Wilson line on
the light cone to make the entire observable gauge-invariant.

The evaluation of quark distribution functions on a quantum computer thus involves computing

the expectation values of the following real-time correlator:
C(t) = (Plg(tn® )y W (tn"; 0)¢4(0)| P) . (2.41)

Therefore, we shall prepare a proton at rest as a initial state in the next section Sec. 2.4.2. Then
I discuss how to evaluate the correlator C'(t) in Eq. (2.41) once a proton state is prepared on the

quantum computer in Sec. 2.4.3. This quantum algorithm will be demonstrated with the 1 + 1-
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dimensional massive Thirring model.

2.4.2 State preparation

In this section, we discuss an quantum algorithm for preparing the state which we measure
PDFs for — a proton at rest on a 3-dimensional spatial lattice. The central method we employ

here is the adiabatic state preparation, which works as following.

1. We define a family of Hamiltonians H (g) which are smoothly connected by the change of
a parameter g of the Hamiltonian. In this family, the Hamiltonian of ones interest, [ s (g f),
and a Hamiltonian whose ground state is known and thus can be prepared, H;(g;), need to

be included.
2. We prepare the ground state of H;.

3. We perform the time-evolution of the system while slowly changing the parameter g from

g; to g7 until the Hamiltonian becomes H ¢.

4. The adiabatic theorem guarantees that the system remains to be in the ground state as long

as the Hamiltonian is changed slowly

H/AN? <1 (2.42)

where A is gap between the ground state and the first excited state. In particular, it is
important that the gap A does not vanish anytime on the path of ¢ taken in the adiabatic

time evolution.

The algorithm is naively sketched in Figure 2.4.2.

53



Hi > Hf
Smoothly change parameter g

Figure 2.7: A naive sketch of the adiabatic state preparation with a family of Hamiltonian
parameterized by a single parameter g.

A proton at rest is not the ground state of the entire QCD Hilbert space. However, one
can still apply the adiabatic state preparation method by restricting the simulation to a sector of
the Hilbert space which satisfies three conditions: gauge-invariant (in the context of Hamiltonian
formulation as was discussed in the last section), translationally invariant (and thus has zero-
momentum), and the baryon number 1. In this sector, the ground state is a proton at rest. Once
we put a state in this sector on qubits, the state on quantum computer remains in the sector under
the time-evolution via the family of QCD Hamiltonian. Thus the Adiabatic state preparation can

be done in the following way:

1. One prepares a family of Lattice QCD Hamiltonian parameterized by the lattice coupling

g.

2. The system starts with the free theory by setting g = 0, with which the ground state is three
zero-momentum quarks. At zero coupling, the ground state of gauge fields is that each link

being identity and quarks are free Gaussian wave functions. !

3. One slowly turns up the coupling g to a desired value while performing the time-evolution.

'A precise implementation of circuits to prepare such state should be worked out in future work.
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The time-evolution keeps the system in the designated sector because the time evolution is gauge-
invariant, conserves the momentum and the baryon number. As long as the change of g is done
slowly enough, the system remains to be in its ground state. Thus we end up with the proton at
rest at the end of the time evolution.

We shall estimate the cost of the state preparation algorithm described above. Along the
adiabatic time evolution while varying g, the time evolution per time step costs always number of
gates of order oc V' where V' is volume on the lattice (with a fixed lattice spacing). The remaining
factor that contributes to the cost is the gap A. Firstly, at the beginning of the time-evolution
with vanishing g, the massless gluon excitations need to be restricted by an appropriate boundary
condition or the use of S(1080) approximation to the SU(3) gauge theory. Then the gap is a pair
of fermions with back-to-back momentum, which is ~ 1/L where L? = V. Thus the number of
time steps required at the beginning scales as ~ L?. The situation is better at the end of the time-
evolution where the gap is the pion at rest ~ 135 MeV, so that the number of time steps needed in
this part of the time-evolution does not scale with V. Thus the state preparation algorithm naively

requires L? x V gate operations for a single state preparation.

2.4.3 Measurement of parton distribution functions

In this section, I discuss measurement algorithms of PDFs given that a proton state is
prepared. The computation of PDFs of a proton with QCD involve measuring the quark-anti
quark correlator on the light cone in Eq. (2.41). There are a couple of complications here. Firstly,
the operator is neither Hermitian nor unitary. Secondly, the Wilson line W (y;0) connecting

quark operators lies on the light-cone, making its measurement very costly as will be discussed

55



later. To address the first complication without having the second complication involved, we take
the massive Thirring model in 1 + 1-dimension to illustrate the algorithm. Then we address the
complication that arises from the Wilson line, which will lead us to considering a simpler object
— the hadronic tensor.

Let us first introduce the Hamiltonian of the Thirring model in 1 + 1D in the continuum:

Heons = ¥ (—iv' 01+ m) ¥ + ¢° (V") () (2.43)

Here ¢ and v are two-component spinor. We work in the Dirac basis so that 1 = o, and
y' = io,. As parameters of the Hamiltonian, we have mass m and the coupling constant g. As
the discretization scheme of fermions, we choose staggered fermions. The resulting Hamiltonian

on the lattice is

X (@)x(z + 1) + X (2 + Dx(a)]

— ¢x(@)x(@) X (= + D)x(z+ 1) (2.44)

where N, is the number of sites and , x' are one-component spinors. Here I took the lattice
spacing to be a = 1.

To write the Hamiltonian in terms of quantum gates available on the quantum computer,
we apply the Jordan-Wigner transformation [48]:

XT(x):g;®...®0-§—1®gf_®[§3+1®...®]§7&
(2.45)

X<x>:0—i®®U§_1®O{®I§3+l®®]évs
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Here, I,, are n x n identities, o, are Pauli matrices, and o = (o, + 0,))/2. The superscripts on
the operators denote lattice sites. The resulting Thirring model Hamiltonian is H = H, + H, +

H,+ H,, with

H, = 2 Upe(N)op(n)oz(n + 1)

g 9 S
H, = %0.(1) = o.(N,) + ;az(nm(n) (2.46)
Ns_1
sz - Z azz(n)UZ(n)UZ<n + 1)
n=1

Coefficients are determined from the Jordan-Wigner transformation: a,(n) = m(—1)"/2, a,, =
ayy(n) = (=1)"*1/4, and a,,(n) = ¢*/4.

The PDFs of the Thirring model in 1 4 1D in the continuum is given as

fr(z) = / T ) (P (1), (0)] P (2:47)

Coo 2T

Note that the Wilson line does not appear in the definition. For the purpose of a demonstration,
the state | P) can be any bound states such as that of two fermions. The corresponding “staggered

PDF” on the lattice is

Frowg(@) = (P ™02 e, i(=1)ey o] x 7072 (y)e =)y (2) [P) . (2.48)

y7Z

Here ¢;; = 1 when @ mod 2 = j mod 2 and ¢; ; = 0 otherwise. Thus the goal of quantum
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computing is to evaluate the real-time correlator of the form

Cly, z) = (P| @2\ I (y)e =2y (2) | P) (2.49)

As it is also the case with QCD, the operator to be measured is neither Hermitian nor unitary. The

measurement of such correlator can be done by decomposing the observable into unitary pieces:

ey (y)e oIz = Y Uy (2.50)
1,J=T,y
U, = eiH(y—z)Xi(y)e—iH(y—Z)Xj(Z) (2.51)

Here y and ' are decomposed into unitary operations x, = x + x' and Xy = 1@ (X — XT).
Coefficients are C,, = Cy, = 1/4,C,, = —i/4,C,, = i/4. The expectation value of each
unitary operator U;; can be measured by inserting an ancillary qubit as is discussed in Sec. 2.3.2.

This leaves us to implement a sequence of gates that give controlled U;; operations in

Eq. (2.50). Firstly, x,(n) and x,(n) in U;; operators simply become controlled o, and o, gates:

Coliyg) = 000 @ Ir + [1)(1]| ® 0, (2.52)

Cy(i,7) = [0)(0]@ I +[1){1| @0, (2.53)

The time evolution e~ needs to be Trotterized and written in terms of local operations first:

Ny
e—th -~ H e—szdte—zHydte—szdte—szzdt (254)

=1

with N; the number of Trotter steps and dt = ¢/N, is taken to be small. Now one can approximate
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each term by local time-evolution:

N1 N1
e—indt _ H e—iaxw(i)dtxax(n)®ag¢(n+1)’ e—iHydt _ H e—iayy(i)dtxay(n)®ay(n+l)
n=1 n=1
N, N1 (2.55)
e—indt _ H e—z’&z(i)dt><crz(n)7 e—inzdt _ H e—iazz(z’)dtxaz(n)@oz(n—l—l)
n=1 n=1
Here a are the modified coefficients a due to the boundary condition: a(1) = —m + ¢*/4 and

a(Ny) = (=1)Nem — g%/4.

The following controlled gates are required to perform the Trotterized time evolution Eq. (2.55):

C.(i,5) = [0){0]® I+ [1)(1| ® 0. (2.56)
Co.(0,i,5) = |0)(0] ® I + [1)(1| ® exp(ifo,) (2.57)
Craa(0,i,5,k) = [0)(0] ® Iy + |1){1| ® exp(ibo, @ 0,) (2.58)
Cryy(0,1,5,k) = [0)(0| ® I, + [1)(1]| ® exp(ifo, ® 0,,) (2.59)
Crzz(0,,5,k) = [0)(0] ® 4 + [1){1] ® exp(iflo. ® 02) . (2.60)

All these controlled gates are implemented with primitive gates in a simple manner. In Qiskit’s
notation [100, 101], two-qubit gates C..(7, 5), Cy (i, j), C.(i, j) and C, (1, j) are directly available
— they are called cxz(i,5), cy(i, ), cz(4,j) and crz(i,j) in Qiskit respectively. Three-qubit
controlled gate C,.,(i,j, k) can be implemented by a sequence of Toffoli gate, C,..(, k), and
Toffoli gate. This is because the operator ¢?7=()®7=(k) i5 implemented by a sequence of cx(j, k)
(j: control qubit, k: target qubit), 7z(6, k), and cx(j, k). So to implement Crzz), we simply let
these three gates controlled to ith qubit. The other three-qubit gates, C....,.(7, 7, k) and C,., (i, j, k),

are implemented by sandwiching C,.. (7, j, k) with basis-change operators z — = (Hadamart) or
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qi ® °
9 —H T Hi—
9. — H X—RZ(H)—X Hi—

Figure 2.8:  Quantum circuits for the three-qubit controlled gate C,.. (6,7, j, k) defined in
Eq. (2.58).

y — x respectively on jth and kth qubits. The circuit for C,.,, is shown in Figure 2.8.

Now that all necessary circuits for the computation of PDFs in 1 4 1-dimensional Thirring
model have been constructed via primitive gates on a quantum computer, let us move onto
compute a PDF for the Thirring model. For each U, ; in Eq. (2.50), I measure its expectation
value on the state |P) by applying the controlled U, ; (constructed from the controlled gates
above) to the controlled state |P’), and then measure o, o, on the ancillary qubit to obtain the
expectation value of U; ; on | P). Then I sum up those expectation values following Eq. (2.50) and
obtain the whole correlator C'(y, z) in Eq. (2.49). These correlators must be Fourier-transformed
according to Eq. (2.48) to be a parton distribution function. A naive Fourier transformation may
yield highly oscillatory artifacts, which can be suppressed by a Gaussian window with a width o

Frowe(z) = lim lim (P|x Y emPOa-w=2%0 [ 4 i(—1)%, . ]

c—0 L—o0
y?Z

XeiH(y—z)XT(y)e—iH(y—Z)X(z) | P) (2.61)

As a demonstration shown in Figure 2.4.3, we computed the staggered PDF for 1 + 1D Thirring
model on 10 sites with two sets of parameters: m = 1.5,g = 0.0 and m = 1.4,g = 0.4. The
Fourier transformation was taken with ¢ = 3 for the Gaussian window in Eq. (2.61).

Ultimately, we would like to compute PDFs of hadrons from lattice QCD. With QCD, the
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Figure 2.9: The fermion distribution of the lowest-lying fermion in the Thirring model with two
sets of parameters: m = 1.5,g = 0.0and m = 1.4, g = 0.4.

observable to be measured is the correlator of quark creation and annihilation operators connected

via a Wilson line on the light cone as in Eq. (2.41):

Cly) = (Pldg(tn" )y W (tn"; 0)1(0) | P) (2.62)

The Wilson line can be approximated on the lattice by a sequence of gauge links at each Trotter
step as

W(y;0) = Uyy—a(t =y —a)-Usa(t = a)U,o(t =0) . (2.63)

Note that Ay = 0 gauge is chosen for the temporal gauge links as usual. Following the method
for measuring temporally-extended Wilson loop in Sec. 2.3.2, one can n principle measure the
Wilson line on the light cone by perturbing the Hamiltonian via gauge links U at every time slices
in 0 < ¢ < y. The number of numerical differentiation taken is exactly the number of time slices

affected by the Wilson line. Such a high-order finite differencing is not practical as the Wilson

61



expends further in time and Hamiltonian limit a, is taken. This technical difficulty encourages us
to find an alternative operator which does not involve Wilson lines but still provides information
about the structure of hadrons. One of such objects is the Hadronic tensor, whose measurement

method will be discussed in the next section.

2.4.4 Measurement of the hadronic tensor

Hadronic tensor is closely related to the deep inelastic scattering cross section. Together
with the leptonic tensor

Ly =2 (kuky, + kK, — gk - K) (2.64)

the hadronic tensor is directly related the lepton-proton scattering cross section up to the leading

order in QED coupling «

Fo oty
dedy Q4

L,,WH. (2.65)
Here Q% = —¢?, ¢ is the transfer momentum, z = Q?/(2P - q),y = (P-q)/(P - k), and K’k — q.
As such, the quantum simulation of hadronic tensor is also simpler. The hadronic tensor can be

computed as

W (q) = Re / ddz % (P| T {J*(2)J"(0)}|P) (2.66)

where J# = 1)y*1) is the current, which is already gauge-invariant. Thus we need no Wilson lines
between the two currents. As J* is Hermitian, instead of decomposing J# into unitary matrices,
we follow the procedure for studying linear response [102] and simply measure the expectation
value of the operator

Ules, €g) = e'lte" @ millte =i 0o, (2.67)
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The second derivative of the expectation value gives the desired correlator:
— — (P|U(€s, €) |P) = (P| J*(x)J"(0) | P) (2.68)

Once such correlator is computed for multiple position z, the correrator should be Fourier transformed
with a regulator to obtain the hadronic tensor in Eq. (2.66). Alternatively, the entire Fourier

transformed operator can be measured on a quantum computer at once:
WH (q) = (P|T {J“(O) / d’z eiqx_xQ/eJ”(x)} P). (2.69)

with the Gaussian window e. In either case, the measurement of the hadronic tensor can be done
in a much simpler way compared to the PDFs due to the gauge-invariace and the Hermiticity of

the current J#. PDFs are in principle obtained from hadronic tensor as is discussed in [14].

2.5 Transport coefficients

2.5.1 Overview

Hydrodynamic transport coefficients, the shear viscosity and bulk viscosity, are shown to
be the central constants for our understanding of the non-equilibrium properties of a strongly
coupled quark gluon plasma. As is discussed in Sec. 1.4.3, to obtain hydrodynamic coefficients,

the following kinds of correlators should be evaluated:

C(t,T) = (Y (B)| [T (t, T), T (0, 0)] [W(53)) (2.70)
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with varying (¢, Z). Here T,, is the v component of the energy-momentum tensor of QCD, and
W () is the thermal state of QCD at an inverse temperature 3. Lattice QCD calculations of such
real-time correlators on a classical computer naively suffer from sign problems. Despite such
numerical difficulties, efforts are made to obtain transport coefficients [103, 104, 105, 106, 107].
In this section, as an alternative method to theoretically obtain the transport coefficients
from first-principles, we discuss quantum algorithms for computing the those transport coefficients
in hydrodynamics in gauge theories [15]. The mapping of lattice gauge theories onto qubits in
Sec. 2.2 and time evolution circuits in Sec. 2.3 can be used to accomplish the two building blocks
of the quantum simulation in Figure 2.1. This section is devoted to a detailed discussion of
state preparation algorithms and measurement procedures. As an initial state, a thermal state of
the gauge theory at finite temperature should be prepared. For the measurement, we shall find
operators 7}, for lattice gauge theories and build an algorithm to measure their correlators. Once
we obtain correlators, relations Egs. (1.68,1.69,1.70) will let us extract transport coefficients from

such correlation functions with a finite volume effect.

2.5.2 State preparation

The goal of the state preparation algorithm for transport coefficients in hydrodynamics is
very different from that for PDFs. An ideal initial state would be a thermal state at a finite
temperature in the regime of phase transition or crossover where the system is strongly coupled.
Nevertheless, the kinds of tools we can use for such state preparation is still an adiabatic state
preparation or other forms of time evolution circuits. In this section, we naively sketch ideas

for the state preparation of QCD thermal states. However, before we proceed, the meaning
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of a “thermal state” should be clarified, given that lattice QCD has only finite volume. In
the infinite volume limit of the lattice, the microcanonical approach (with the focus on energy
density) and the canonical approach (with focus on temperature) should agree. Thus if quantum
simulations are performed close to the thermodynamic limit, one can either prepare a pure state
with approximately correct energy density €(7") corresponding to the desired temperature 7', or
can prepare a density matrix state with the temperature 7. One expects that expectation values
computed on those state will approximate the thermal expectation values well. On a finite-volume
lattice, the finite-volume effects are expected to appear differently in those two approaches. In
general, density matrix are expected to have a smaller finite volume effect for thermal expectation
values. When our interest is on non-local observables or real-time correlators, the size of finite-
volume effects may be so large that taking of the limit close to the thermodynamic limit on the
lattice might be necessary. An efficient way, i.e. with a smaller finite volume effect, of taking the
thermodynamic limit should be studied in the context of quantum simulation. In the following,
we propose a couple of naive ideas for preparing thermal states, without specifying “which type”
of thermal states to prepare in these algorithms. Such details of thermal states preparation and
their finite volume effects should be studied in future work.

To design algorithms for preparing a thermal state at a finite temperature, it is useful to think
about how a QCD finite temperature system is created in heavy-ion collisions. In experiment,
we originally have a vacuum, in which we cause a high-energy collision of heavy nuclei. This
collision creates a hot dense plasma of quarks and gluons. The fireball then expands, cools, and
goes under the crossover or the phase transition, and becomes a low-temperature dilute gas of
hadrons. We would like to stop the process of heavy-ion collision in the middle stage where the

fireball is still strongly interacting. This can be done by simply putting the fireball in a finite-size
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box, so that the system does not expand too much. On quantum computer, one has a finite-size
system naturally by having a finite-size lattice. The remaining task is to start the collision. For
quantum algorithms, there are two possible starting points: the vacuum and high-energy plasma.
In the following, we first discuss the algorithm starting with a high-temperature state, and then
the algorithm starting with a vacuum.

A high-energy state can be easily prepared on a quantum computer due to the lattice
artifacts. One simply prepares a random gauge-invariant state and it will on average have an
energy density of oc 1/a®, which is large when the lattice spacing a is taken to be small. Now, to
prepare a state with lower energy density (or a lower temperature), one needs to extract energy
from the system. Just as the system cools down by expanding into the vacuum in heavy-ion
collisions, the cooling of the system can be done by attaching the vacuum of an appropriate size
to the system on a quantum computer. One can prepare an even large system with a desired
energy density, i.e. a heat bath, and attach the bath to the system. These ideas naively cost a lot
of qubits while they still require a long time-evolution circuit < V. One can at least reduce qubit
cost by performing an active cooling of the system via the “quantum refrigerator” (for a review
of quantum refrigerators, see [108, 109]) The idea of quantum refrigerators is that one attaches a
small vacuum to the system for an appropriate number of times. The quantum refrigerator may
be a quantum system of the similar size as the system. The only requirement on the quantum
refrigerator is that one needs to be able to set the refrigerator to the ground state. The quantum
refrigerator can actively cool down the system by applying the following cycle (as sketched in

Figure 2.5.2) many times:

1. One sets the refrigerator to the ground state.
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2. One couples the refrigerator to the system in such a way that symmetry of the system, in
particular gauge symmetry, is preserved. Then one performs the time evolution. As the
refrigerator is in the ground state, the energy should on average flow from the system to the

refrigerator.
3. The system is decoupled from the refrigerator.

The energy density is expected to decrease in each cycle, and the cycle should be repeated until

the system’s energy density decreases down to the desired energy density:
E;>E >FE,>--->FEn_s1 > En, = Ef (2.71)

If we are able to extract the same fraction of energy, (so keep E,,/F,_; fixed for all cycles), the
number of cycles required to cool the system down to the target energy density scales logarithmically

with the ratio of the initial energy density F; to the final density E/:

E
N,  log (E_l> . (2.72)
!

The proof or disproof of such scenarios should start by a more detailed construction of the
algorithm.

An alternative approach to prepare a finite-temperature state is to start from the vacuum and
add an appropriate amount of energy into the system (analogous to causing a heavy-ion collision
in experiment). For the preparation of the ground state with desired lattice coupling g, we can
again utilize the adiabatic state preparation described in Sec. 2.4.2. As an initial ground state of

the adiabatic state preparation, one can start either in the strong coupling limit ¢ — oo or the
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Set Pump to ground state
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Time evolve with H = Hgys + +Hpump
System Pump
Hsys Hpump

Figure 2.10: A schematic view of the quantum refrigerator.

weak coupling limit ¢ = 0. The strong coupling is expected to work better for the following
reasons. Firstly, the ground state at — oo is the equal super position of all elements in the gauge

group G for each link [110]:

Qstrong) = Qv (Z Ig>> (2.73)

geG
which is already gauge invariant. On the other hand, the ground state in the zero-coupling limit,

the ground state is the identity for all links, which is not gauge-invariant

|Qweak> = Qul|I) (2.74)

so the gauge-projection operator needs to be applied. In addition to that, when it comes to

truncating the gauge theory, the strong coupling ground state can be naturally implemented in

68



the same way for the S(1080) gauge theory truncation, whereas the weak-coupling ground state
for the S(1080) gauge theory is not trivial.

Once one prepares a ground state in either way, the adiabatic state preparation should be
performed — one applies the time-evolution while changing the lattice coupling constant g slowly
toward the desired value. The gap A is an important factor to determine the cost of the algorithm.
The gap A behaves differently at strong and week coupling limits. At a strong coupling, the gap
is basically the mass of lowest glueball mass and thus a realistic physical coupling can be reached
without encountering a small gap A. On the other hand, when one starts from the weak-coupling,
the physical lattice spacing is small compared to the confinement scale, and the gap is likely to
be very small. Thus additional treatments, such as explicit symmetry breaking, may be needed to
create a sufficiently large gap and perform the adiabatic state preparation from the weak coupling
limit.

Once we obtain the ground state with the physical coupling constant, one adds energy to
the system. Since the system is in the ground of state, any operation to the qubits will in principle
inject energy to the system. A more concrete approach is to employ the “quantum oven” (as
opposed to the quantum refrigerator) and attach a small system with random state (which likely
has a high energy density) to the system so that energy flows into the system. With any methods
for adding energy to the system, one needs to be careful not to add too much energy into the
system.

Finally, whether one starts from the high-energy state or the ground state to reach an
appropriate energy density (or the corresponding temperature), the system needs to equilibrate
by time evolving for an appropriate length of time. How long does it for a system to equilibrate?
The thermalization of Z, gauge theory is demonstrated in [111]. For QCD, once again, heavy-
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ion collisions give us a hope. A hot plasma of quarks and gluons seems to equilibrate within the
heavy-ion collision [11], suggesting that the thermalization of strongly coupled nuclear matter

occurs in ~ 10 fm, which is of the same scale as the size of the lattice.

2.5.3 Measurement

A measurement of retarded correlators of a Hermitian operator O on a state |¢) can be done
very simply without any ancillary qubits or the decomposition of operators. One first defines a
perturbed Hamiltonian by adding a small amount € of O locally at time ¢ = 0 to the Hamiltonian:
H' = H + €6(t)O. Then one time-evolves the initial state |¢) with the perturbed Hamiltonian

until time ¢ = #; to obtain |¢(t1)) = e~ te~"?|$). A measurement of O on |¢(t;)) yields
(0(11)]|0]d(t1)) = (@] C et O e 7O |g) (2.75)

By taking the derivative of the expectation value above with respect to ¢ and taking the limit

€ — 0, one obtains the desired correlator:

tim & (6(1)[0J6(0)) = ~i(0] [O(1), 0(0)] |6) 2.76)

In practice, we define the perturbed Hamiltonian with several different e, measure the expectation
values, and take the finite differencing.
This leaves us with deriving the expression for the energy-momentum tensor operators of

gauge theories and implementing them. In the action formulation, the expression for the energy-
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momentum tensor of gauge theories

1
T/“’ = ZLg'U'V TI‘ [FaﬁFa’B} - TI' [F,U«QFI?] . (277)

on the lattice is well studied as is reviewed in Sec. 1.3.2. In this section, the metric tensor in

Minkowski spacetime is chosen to be mostly-minus:
g, = diag(l,—-1,—-1,—1). (2.78)

In the context of quantum simulations, we need the corresponding energy momentum tensor
operators in the Hamiltonian formulation. To derive these operators, we simply follow the
prescription in [90] for deriving the lattice gauge Hamiltonian from the action as reviewed in
Sec. 2.3.1. A small modification is made to the derivation by perturbing the action with the
lattice function of the EMT to obtain the EMT operators. In the action formulation, one way to

obtain the expectation of an observable is to first define a generating functional:
Z. = / DU ¢!(So+e0lto)), (2.79)

By differentiating this perturbed partition function with respect to e,

. (07,
i(O(to)) = Zy* ( e )HO, (2.80)

one obtains the desired expectation value. One can define a corresponding Hamiltonian formulation
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(U'|em " e|U) = "5+, (2.81)

For the corresponding perturbed Hamiltonian, yet to be determined, to give the expectation value

(O(to)) in the same way, the perturbed Hamiltonian should satisfy

H. = Hy — €0 /ay. (2.82)

where H, is the original Hamiltonian of one’s quantum system. So what I do in the following
is to define the perturbed partition function Z,. with a component of the EMT, and find the
corresponding perturbed Hamiltonian H, which satisfies Eq. (2.81). Then I read off the operator
expression for the EMT using Eq. (2.82). The components of EMT are categorized into three:
diagonal components 7}, in Sec. 2.5.3.1, spatial off-diagonal components 7;; in Sec. 2.5.3.2,
and time-like off-diagonal components 7j; in Sec. 2.5.3.3. In each section, the operators that
are correct up to O(a?) discretization errors are derived. All results of EMT operators are
summarized in Table 2.5.3. Using lattice EMTs in the action formulation that are correct up
to higher-order errors [22], corresponding operators with better approximations can be derived.
When one uses such operators, improved lattice gauge Hamiltonian [112, 113, 114] must be used
to implement the time-evolution to obtain the final result to be correct up to the desired higher-

order discretization error.
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Table 2.1: All gauge-invariant lattice operators needed to construct the energy momentum tensor
operators in 3 + 1 dimensions. Operators are all gauge invariant and Hermitian, and are derived
to be correct up to O(a) and O(a?,a) discretization errors. Operators P, C, Fljjv , F are the
operator version of Eq. (1.14), Eq. (1.32), Eq. (1.31), and Eq. (1.33) respectively, given by
converting all links (spatial) to the link operators defined in Eq. (2.9).

Operator O(a) O(a?)
Tr Fo; Foi(n) §—§ Tr [7772”] Zx:m 2g54 Tr [Wi—zi z]

& (Tr [Fnifrn] + Tt [ﬁn,iUT 03U }

n—j,J nfj',j n*j:j

A~

Tr FOlFOJ(n) g—fi Tr [ﬂ'n,iﬂ'n,j] + Tr [UZ Lo U s 7%”7‘7]

—4,i Nt n—i

N
S LZAR N A AT N /Y

— 5k (Tr [frm- Im ézy(n)]

+ Tr [[7; T j

Tr FOJFU(n) _a_14 Tr |:ﬁn,] Im ]-C’U(n)}
533U

g Im C’Z](n)])

Tr Fi; Fj(n) 2 ReTr [1 — }32-]- (n)} szo,l Zy:O,l 292%“4 Re Tr [1 — P,J(n — i — yi)}

Tr Fj; Fy;(n) Tr[FY (n) B (n)] T[S (n) G (n)]

)

2.53.1 1T, in the Hamiltonian formulation

The diagonal components of the EMT has two kinds of terms, both of which are familiar
from the Wilson gauge action. There is F% which contains temporal plaquettes and FZ% which is
purely spatial. Without the loss of generality, let us consider adding the following two terms to

the action:

Se = Sw + eaga® Tr [Fo1(ng)* + Fia(no)?] . (2.83)
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The perturbed Hamiltonian H, and the perturbed action S, should be connected via transfer
matrix 7, = e~"e0He ag

(U'|T|U) = e = elFetVe) (2.84)
with

2a

2
gsQo

2
V(U U) = V+e=2ReTr[l — Pry(no)] (2.86)

s

KU, U) = K+e——ReTr|l— U, U,

no,l

(2.85)

This relation defines the perturbed Hamiltonian. Using the primitive operators UM- in Eq. (2.9)

and Rm in Eq. (2.11), the following operator serves as the transfer matrix satisfying Eq. (2.84):

N . . 2a _ T x>
Te _ / Dg ezK(g)-{—zs - ReTr[1 gno,l}'HVﬁ. (287)
Here we introduced some short-hand notation:

/s
K

(9)

/ 11 dgn.iRni(gns) (2.88)
geG n,i

QL Z Re [1 — g;r”} ) (2.839)

Qa
g5 2o n,i

The operator V. consists of the plaquette operators P which acts on the Hilbert space of a spatial
plaquette and return the value of the plaquette. The Hamiltonian H. canin principle be obtained

by taking the logarithm of 7.. However, as was done for the Yang-Mills Hamiltonian, one can
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simplify the expression by considering the limit a; — 0 and taking saddle-point approximation:

7. ~ / da e oto=moMpovatiVe (2.90)
. —1ia 1a
with Mpo- = mépo- — 6%(57”10(577171051’1(5]'15&[3.

Here a short-hand notation was introduced for indices: p = (n,i,a) and 0 = (m, j, b). Performing

the Gaussian integral, one obtains, up to the linear order,

. . 2 2 .
H = Hig—e (9_5 Tr [#2,,] + — ReTr [1 - Pu(no)D . 2.91)
a ' g2a

s

Now the operators for Tr [Fm (no)z} and Tr [Flg(no)z} can be read off from the perturbed
Hamiltonian. Note here that spatial plaquettes in V. (U’,U) were directly converted to their
operator forms, while temporal plaquettes in K (U’,U) needed to be converted to terms with
momentum operators 7. We will see the same pattern for the rest of the section. By generalizing

the result to other operators of the same kinds, one finds

A g2

T [Fu(no)?] = Har[az,)] (2.92)
. 2 A

T [Fy(no?] = i Re Ty 1= Py(no)| (2.93)
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Now by combining those operators above, we construct the TW operators that are correct up to

O(a) as
~ 1 o
Too(ng) = 2@4 Z Tr[72, ] i > ReTr[l — Py(no)] (2.94)
s 1<j
~ gS
ﬂl(no) = 2@4 Tr [ n01+7rn0] +7Tn0 k}
+ a4 Re Tr [ — By(no) — Pa(no) + Pr(no)] - (2.95)

A few remarks follow. Firstly, Tj is the Hamiltonian density of the Kogut-Susskind Hamiltonian
in Eq. (2.19) up to a constant term. The trace of the EMT operator vanishes as was the case with in
the action formulation Eq. (1.26). Finally, all these 7},,, operators are manifestly gauge-invariant
and Hermitian.

The improvement of Tr [Fm (no)ﬂ and Tr [Flg(no)ﬂ operators up to O(a?) discretization
errors can be achieved by simply taking the average of naive operators around the site in the plane
that F,,s lie:

Tr [Fol-(no)ﬂ - 95 gy [7%2 : ] (2.96)

2&4 no—xt,t
z=0,1

Tr[Aij(no)Q} = Z Z

4
=0,1 y=0,1 gsa

ReTr [1 — f’ij(ng — i — yj)] . (2.97)

Note that for Tr [FOZ-(nO)Q} the average of two plaquettes lying in the remaining ¢ direction was
taken as we do not need to improve the discretization error from ag up to O(a?). For the space-
like Tr [Fw (nO)Q} one needs to take the average of four plaquettes in both ¢ and j direction. These

improved operators let us construct 7}, operators that are correct up to O(a?, ag) discretization
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€ITors.

2.5.3.2 T;; in the Hamiltonian formulation

The spacial off-diagonal components of the energy momentum tensor reads
Ty = Tr [~ FioFjo + Fin ] - (2.98)

As was seen in the previous section, the first term consisting of temporal plaquettes needs to
be written with momentum operators 7 in the Hamiltonian formulation. On the other hand, the
second term will be converted simply to the spatial plaquette operators. For lattice operators,
we will first work with the naive discretization Eq. (1.31), and then use clovers Eq. (1.33) and
half-clovers Eq. (1.35) to improve operators up to O(a?) errors. To start, let us perturb the Wilson

action as

K. = K+ ead® Tr [FlyFy) (2.99)

Vo = V+eapa® Tr [F{yFyy] . (2.100)

The transfer matrix 7. is now defined via Eq. (2.84) with these appropriate perturbation KX, and

V. above. The operator 7. can be written with the primitive operators Eq. (2.9) and Eq. (2.11) as

7 = / Dg KOG, T6](9h.19n0:1) (91,2~ 9n0 2| +iVe. 2.101)
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In the Hamiltonian limit, saddle approximation at x = 0 gives

TE N /da: ez’xpfrpfxpMpgxgHVE :Aefiﬁ'pMp}lﬁ'ngiVE

—ia a
Opo + €——

M -
2g2ag gaap

po =

5nno 6mn0 51'1 (5]'2 6ab .

Up to the linear order in ¢, one obtains the perturbed Hamiltonian H. to be

2

A

The temporal part Tr [F{ iy | can be read off from the second term in 1, as
Tr [E]g@!g(%)} = = Tt [ftng it 5] -

Thus the operator 7};(ng) with the naive discretization is

2
. 95 e ; ;
TZ.]],V(nO) = Tr [Tng,iTng,;] + Tt EJIX(”O)RZIZ(W)] .

A, = Hics = % Telfrn,ng2) — ea” Tr | B (no) F (no)] -

(2.102)

(2.103)

(2.104)

(2.105)

Clovers defined in Eq. (1.32) and half-clovers defined in Eq. (1.34) allow us to improve the

operator Tij up to O(a?, ay) discretization errors. The spatial part F;, )y, is simply improved by

using the clover operator as

ot
!

kEji(n) = EZ(n)Ef(n) + O(a®).
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Figure 2.11: Half-clovers Byo(ng) and Bsg(ng) and short-hand notations for links involved.

For the rest of the section, I focus on the temporal part F;, [}, starting by the following perturbation
K (U, U) = K + eaoa® Tr [Ffj(no) Fag(no)] . (2.107)

Links around the site ny was denoted as shown in Figure 2.11 to simplify expressions. The

following transfer matrix operator satisfies the relation in Eq. (2.84) with the perturbation above:

(2
1693 ag

After the saddle-point approximation at x = 0, the expression for the transfer matrix simplifies:

Te -~ /daz eiwpfrpprMpgwg%»i\A/ :AefifrpMp}lﬁ'ngiV

1a 1€a
1) po

with M, = (M) s (2.109)

C2¢2a0 7 4g2aq
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where matrix elements of (M), are zero except

(M1>(n0,1,a)(n0,2,b) = Oap, (Ml)(n0,1,a)(n2,2,b) =Tr [/\aUzT)\bU2]
(2.110)

(Ml)(nl,l,a)(no,Z,b) =Tr [UJAaUO)\b] ) (Ml)(nl,l,a)(ng,Q,b) ="Tr [UJAaUQUg)\bUQ]
Sites n; and ny are as introduced in Figure 2.11. By expanding Eq. (2.109) up to the linear order

in ¢, I obtain

2

H, = Hygs— ej—s ( Tr [f17t] + T [7%10;@02} T [UgﬁoUoﬁ3] 4T [U'gﬁoUOUg 7%2(72] )
a

2.111)

The result can be generalized to general F}5 Fj% straightforwardly:

2
T | £ Ff (no)| —g—S(Tr[frnoﬁno,jHTr [ A

o 4014 no—j,J nO*jvj TLO*_}’,]’

KT (00 Fo O i 4T [OF O 0 7 5,0 D.

no—i,i no—1 no—t,i M0—hi " N0—bi ng—j3 5" N0=7,]  n0=7,J

(2.112)

With these operators and spatial clover operators in Eq. (2.106), operators for the off-diagonal

spatial components, Tij, are constructed to be correct up to O(a?, ay) discretization errors.

2.5.3.3 I{); in the Hamiltonian formulation

In this section, I derive operators for the off-diagonal time-like components of 7,,,. All
terms in 7; contain temporal plaquettes, and thus need to be converted to combinations of gauge

link operators U and momentum operators 7. We again work with the naive discretization (via
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Eq. (1.31)) first and then improve operators using clovers Eq. (1.33) and half-clovers Eq. (1.35).

Let us take 7j; as an example
Tor = Tr [FooFia + FozFis) = Tr [Fy Fly + Fs Fiy | + O(a). (2.113)

As both terms have the same form of Tr [Fp; F};], I focus on the first term for now and perturb the
action as

K (U, U) = K + ea’ao Tr [Fy Fiy ] . (2.114)

The perturbed transfer matrix T. is again defined via Eq. (2.84). The operator T. can be written

with the help of primitive operators Eq. (2.9) and Eq. (2.11) as
7 — / Dy K@= 35T (gng 290 ) (Pr2(n0) = Pl no)) [+ 2.115)

In the Hamiltonian limit ay — 0, saddle-point approximation around z = 0 simplifies the

integral:

Te - /dl’ 6729?’10 ac,,(spaaca-‘rimpfr’p-kif/ (2.116)
where 7?(; = ﬁp + %(57”10(512 Tr |:/\b Im plg (n0> .

Evaluating the Gaussian integral, one obtains, up to the linear order in €,

A

N 1 o
H. = Hys + e~ Tr [77”2 Im Pro(no)]| - 2.117)
a
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Figure 2.12: Clover C}5(ny), half-clover Bys(ng), and short-hand notations for links involved.

The operator for Tr [ F{y {3 | can be read off from the second term as

1

Tr [FggFg (no)] = - Ir [frno,z Im Pa(no)] - (2.118)

By generalizing the result to operators of the form Tr [Fj,; F};], one can construct To: operators

with the naive discretization as

i 1
To(no) = =Y = Tr [ T Py o) (2.119)
J#i

To improve operators up to O(a?, ag) discretization errors, one can use clovers in Eq. (1.32)

and half-clovers in Eq. (1.34). I again add F{; F, to the Wilson action as

K (U, U) = K+ ed®agTr [Fy3(no)Fi(no)] (2.120)

Here I introduce short-handed notations for relevant links around the site n¢ as denoted in Figure 2.12.

The corresponding transfer matrix can be written as
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Te _ /Dg eiK(g)—i@Tr[(gl—QI-&-UJ(90—9(];)00)(012(710)—01[2(”0))}+ﬂ7 2.121)

which can be simplified by the saddle-point approximation around x = 0 in the ag — 0 limit as

T ~ / du  e3day pleototizy TtV (2.122)
o=, + 2i925m05¢2 (Tr [)\“Imélg(no)}+Tr [UgAaUOImC*H(nO)]) (2.123)

Here C' is the clover operator. Up to the linear order in €, we obtain the perturbed Hamiltonian as
. . 1 . e .
I’I6 = HKS + 62— (Tr |:7AT1 Im 012(710)} -+ Tr |:U(-)r7AT0U0 Im 012<n0):|> . (2124)
a

We read off the expression for the general FiZFS as

A A~ 1 . .
o [Ffﬁﬂ?(no)} T 24t <Tr [W”O’J’ Im Cij(no)}
o [02073,3‘7%“0*3‘4071073,3' Im éij(”O)]) . (2.125)

All off-diagonal time-like components of T, Tp:, can be constructed from operators in Eq. (2.125)

ns

to be correct up to O(a?, ay) discretization error.
p )
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Chapter 3:  Sign Problems

3.1 The real-time sign problem

Lattice QCD calculations have successfully addressed many problems in QCD and have
given us a tremendous amount of insight into the theory of strong interactions. However, there
are still observables yet to be computed by lattice QCD, including ones of relevance to heavy-
ion collisions, in both Euclidean and Minkowski lattice calculations due to the so-called sign
problem. In this chapter, new ideas and insights into sign problems are discussed based on [17,
115]. Firstly, this section briefly reviews the origin of sign problems and some of the methods for
alleviating sign problems in QCD. In Sec. 3.2, one of such methods, the manifold deformation
method [16], is reviewed. The manifold deformation method is very closely related to yet another
approach to the sign problem, the complex normalizing flow [17], which will be introduced
in Sec. 3.3. For both manifold deformation methods and complex normalizing flows, their
applicability to lattice field theories of one’s interest is a central question to be addressed, as
will be discussed in Sec. 3.4. Finally in Sec. 3.5, numerical methods based on machine learning
to solve sign problems in the framework of the manifold deformation method and complex
normalizing flows will be explored.

To illustrate sign problems, let us introduce a generic notation for the action as S and its
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partition function as Z where

7 = /D[¢]e—5<¢>. (3.1)

Here, the path integral can be defined in Minkowski space, Euclidean space, or with Schwinger-
Keldysh contours as introduced in Sec. 1.3.1, with an appropriate choice of the action .S. The path
integral in Minkowski spacetime is often denoted with the weight e*™ (instead of e~°) where
Sy is the Minkowski action. In our convention above, Minkowski actions take complex values:
S = —iSy. Throughout the rest of the chapter, I refer to the weight e~ as the “Boltzmann
factor” no matter which part of the Schwinger-Keldysh contour the weight is associated with. In
the path integral above, ¢ represents all field degrees of freedom on the lattice, such as all gauge
links in lattice QCD path integral in Eq. (1.24). As introduced in Sec. 1.3.1, the Boltzmann factor
e~ for lattice QCD is defined with the action S = Sy —log det D where Sy is the Wilson gauge
action and D is the Dirac matrix as was introduced in Eq. (1.23). At a finite baryon chemical
potential, even in Euclidean lattice QCD calculations, the Boltzmann factor takes complex values
due to the Dirac determinant det D [116]. This is the so-called finite density sign problem. For
lattice QCD in Minkowski spacetime, the Boltzmann factor takes complex values due to the factor
“%” in front of the Wilson gauge action. This is the so-called real-time sign problem. In both
cases, the Boltzmann factor can no longer be regarded as the probability distribution function
for the fields ¢ on the lattice, and Monte Carlo samplings cannot be performed with the naive
Boltzmann factor. One way to define a probability distribution function within this path integral

formalism is to introduce a quenched distribution function e~ ®e¢5(%)

, which is real and positive
for all configurations of ¢. One can in principle perform Markov chain Monte Carlo (MCMC)

sampling with the quenched distribution function and compute observables in lattice QCD. The

85



introduction of the quenched distribution requires that the ratio of two expectation values be

taken:

) 1P 0@)/ [ Dlgl e ™5 (0 iins)g 52

| Dléle5/ [ Dg] e~ Res {e7t %)

Unfortunately, both the numerator and the denominator are numerically challenging to
compute on the lattice. As an example, let us examine what we expect to obtain for the denominator,

—iImS>

the so-called average sign (o) = (e ¢- In the presence of a sign problem, the average sign

is strictly smaller than 1, and it is expected to scale exponentially with the volume [110],

(o) ~a”, o] <1 (3.3)
when the action has only local interactions, which is often the case for lattice field theories of our
interest. When the action S has only local interactions, one can naively view the numerator and
the denominator of its average sign, the partition function Z and the quenched partition function

Zq respectively, as a product of the “local Z” and “local Z5”, i.e.,

Z(\V)~ Z(V)2)?2  Zo(V) ~ Zo(V/2)*. (3.4)

Here Z(V') and Zg (V') are the partition function and the quenched partition function of a lattice
with volume V respectively. Therefore, it follows that the resulting average sign with volume V/,

(0)(V), can be also written as

(@) (V) ~ (o) (V/2)? (3.5)

which leads one to the exponential scaling of the average sign in Eq. (3.3). On the other hand,
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sampled values of the average sign are always a complex number with the magnitude of 1 (on the
unit circle). Therefore, the number of samples required in MCMC sampling scales as ~ eV to
resolve the average sign from zero.

Sign problems exist not only in QCD but also in a wide range of fields in physics. Due
to its significance, extensive work has been done to explore methods for solving or alleviating
sign problems. As it is unlikely that a general solution to sign problems exists [117], solutions
to sign problems are expected to be more or less problem-dependent. For example, regarding
the finite-density sign problem (see, e.g. [118] for a review), explored ideas include reweighting
methods [119], the complex Langevin method [120], the density of states methods [121], canonical
methods [122, 123], the fermion bag approach [124], analytic continuation from imaginary
chemical potential [125], and perturbative removal of a sign problem [126]. The rest of the

section is devoted to discuss an extension of yet another method called the manifold deformation

method (see [16] for a review).

3.2 Manifold deformation methods

One long-standing method to alleviate sign problems is the manifold deformation method.
As will be described in detail in the following, the basic idea of the method is to deform the
contour of integration in the path integral to the “complex plane”, aiming for a milder sign
problem. There has been a family of ideas for the manifold deformation method starting with
the Lefschetz thimbles [127, 128, 129, 130]. The Lefschetz thimbles have been generalized
to the generalized thimble method [131], which has been applied to bosonic and fermionic

systems at finite density [132, 133, 134, 135, 136], real-time sign problems [137, 138], and
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gauge theory [139]. Due to the numerical cost in finding such generalized thimbles, a method
to machine-learn manifolds has been proposed [140]. More related to the topic of this chapter,
to overcome numerical issues with the generalized thimble method, the sign-optimized manifold
method was introduced in [141, 142]. The basic idea of the sign-optimized manifold is to prepare
a family of manifolds of integration parameterized by several parameters, and numerically optimize
the parameters (and thus the manifold of integration) within the family such that the average sign
is maximized. The method has been applied to fermionic systems in [143, 144]. This approach,
“the preparation a family of manifolds”, remains as the key concept in a new method, complex
normalizing flow, which will be introduced in Sec. 3.3. To start, in this section, I summarize the
basic idea of the manifold deformation method.

The idea of the manifold deformation method is simple. To illustrate the problem, let us
take an action S(¢) where the fields ¢ take real values. For example, for the lattice SU(3) gauge
theory, eight real values parameterizing elements g € SU(3) on each link can be regarded as
such ¢ fields. Therefore, the domain of real values ¢ take depends on the lattice field theory of
one’s interest. For example, ¢ takes ¢ € R for real scalar field theories with N real degrees of
freedom. Fields ¢ can also have a compact space, for example ¢ € [—m, ) for each degree
of freedom in U(1) gauge theory and the Thirring model [144]. Given the original domain
of integration of the path integral, the idea of the manifold deformation method is to deform
the contour of integration in the path integral from the original domain in R to a manifold M
in the corresponding complex plane C. As a consequence of such a smooth deformation, the
new manifold M is expected to be parameterizable by the same number of real variables as
the original integration domain has. The goal of the deformation is to find a new manifold of

integration which has a larger average sign and thus a milder sign problem.
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The equivalence of physics on the original integration domain and the deformed manifold
M is guaranteed by the multi-dimensional Cauchy’s theorem as is discussed in detail in [110].
To be more precise, the expectation value of an observable (lattice function) O(¢) is guaranteed
to be the same on the original domain of integration and M by the Cauchy’s integral theorem

when the following three conditions are met:

1. The manifold M is a continuous manifold, obtainable by a continuous deformation of the

original domain of integration.

2. The integrands, e=%® and O(¢)e~5(%), are holomorphic functions in the region between
the original integration domain and M, scanned by the deformation of the manifold from

the real plane to M.

3. The asymptotic behavior of the manifold remains the same. For example, for ¢ that takes
value from a compact space like on a unit circle, the manifold should be closed as shown
in Figure 3.1. For the contour with a gap as shown on the right panel of Figure 3.1 to be
allowed, the contribution from the gap in the dashed line to the path integral has to vanish,
which cannot be the case as the Boltzmann factor has to be a holomorphic function. For
theories where ¢ takes value from R”Y, manifolds need to be in the “asymptotically safe
region”, which R" also belongs to, at infinities |¢| — oco. An asymptotically safe region
is where the integrand e~(?) vanishes at || — oo such that the integration in this region
does not contribute to the path integral. For example, the action S(¢) = —¢* has two
disconnected asmptotically safe regions separated by borders arg ¢ = (1 + 2n)7/8 (for
integer n) as are sketched in Figure 3.2. Only contours in the safe region which includes
the real axis are allowed.
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Figure 3.1: Contour deformation on a cylinder. The blue contour on the left gives the correct
expectation values while the red contour with the gap does not.

When these conditions are met, Cauchy’s theorem guarantees that the integrals of e~*(® and

O(¢)e~5(9) on the union of the original domain of integration and M both vanish so that

/ D[] e ¥ = [ Dlg]e 5, (3.6)
M

RN

and the same holds for the integral of O(¢)e=5().

As is introduced at the beginning of the section, manifold deformation methods have been
applied to a variety of sign problems and alleviated them. However, it is fair to summarize that
no sign problem in QCD has been solved so far by manifold deformation methods or any other
methods. In other words, no manifold deformation methods have successfully found a manifold
of integration with the average sign of 1 in a scalable way in the presence of sign problems in
QCD. To solve a sign problem, the existence or non-existence of a perfect manifold, which has
the average sign of 1, for a given lattice field theory is a crucial question to be addressed before a

manifold deformation method is applied. The existence of perfect manifolds will be discussed in
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Figure 3.2: Contour deformation on the complex plane of ¢. Gray shaded regions are the
aymptotically safe regions when the Boltzmann factor is e~%". The blue contour gives the correct
expectation values while the red contours do not.

Sec.3.4.1.

3.3 Complex normalizing flows

In this section, I discuss another potential method for solving sign problems — the complex
normalizing flow [17, 115]. While the complex normalizing flow is conceptually equivalent to
the manifold deformation method introduced in the last section, it provides several important
mathematical and algorithmic consequences. The idea of the manifold deformation was to
deform the contour of integration so that the average sign increases. When one wants to completely
solve a sign problem, the ultimate goal is to find a perfect manifold which has the average sign
(o) = 1. The existence of such perfect manifolds is a very non-trivial but essential question to be
addressed for each lattice theory before a manifold deformation method is applied. Complex

normalizing flows give us a tool to address this question as will be discussed in Sec. 3.4.2.
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Complex normalizing flows also provide a way for us to find such perfect manifolds with the
aid of machine learning in a similar way as discussed in [140]. In addition to that, once a
complex normalizing flow is found, it accelerates Monte Carlo samplings for evaluating the path
integral, as will be discussed in this section and Sec. 3.5. In this section, I introduce the idea of
complex normalizing flows for reducing sign problems, starting by introducing the definition of
normalizing flows.

A normalizing flow for N dimensional probability distribution f(¢) : RY — R (normalized
to be 1) is a map from f(¢) to a trivial distribution such as the Gaussian distribution:

det (g—f) 7(6) = gn (7). 3.7)

Here function g,,(7) is the n-dimensional Gaussian distribution:

n

0@ =11 Jg_ﬂexpvx?/z). (3.8)

Such a normalizing flow exists for any normalizable distribution functions in any dimensions [145].

For 1-dimensional distributions f(¢) : R — R, their normalizing flows defined via

d¢

—1(0) = a () (3.9)

can be uniquely constructed via the cumulative distribution functions of f(¢) and g;(x)

¢ z
F(9) = / a6 (&), Glx) = / ar’ (). (3.10)

—00
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The cumulative distribution functions are the normalizing flows from f, g; to a uniform distribution
on the interval [0, 1]. Thus the map from g; () to f(¢) can be constructed a sequence of two maps
as

$(z) = F'oG. (3.11)

Normalizing flows for multi-dimensional distributions (/N > 1) are known to exist [145] but they
ceases to be unique, making it more challenging to find such maps. Finding normalizing flows
with desirable features is an active area of research [145].

The application of normalizing flows to lattice field theories without sign problems has
been studied intensely in recent years [146, 147, 148, 149, 150]. The advantage of the use of
normalizing flows is that Markov chain Monte Carlo (MCMC) methods can be accelerated by
generating an approximate normalizing flow ¢(z) for the Boltzmann factor and applying it to the

path integral:

Do 0() [ dE gy (@) O((F)

(0) = Do @~ [dign(@ (3.12)

Here, sampling of NV real variables Z from the Gaussian distribution can be done more efficiently
than performing MCMC samplings of ¢ from the original distribution e=%(?), Such normalizing
flows can also be used to create proposals for the lattice field configurations for a Markov chain.
In practice, searches for normalizing flows are often numerical and one obtains a map that
only approximates an exact normalizing flow. Such an approximate map induces an effective
action on ¢
99

— 2 -
Sina(@) = x(6)” + log det o (3.13)

Thus to compute correct expectation values with such an approximate normalizing flow, the
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following ratio must be computed:

<eSind*S(’)>
(o)

(0) = (3.14)

where the expectation values in the numerator and the denominator are evaluated with the induced
distribution e >4 using the approximate normalizing flow.

Normalizing flows cannot be applied to lattice field theories with a sign problem directly.
For a Boltzmann factor e~ which takes complex values to be mapped to the Gaussian distribution
as in Eq. (3.7), we must allow the mapped ¢ to be complex-valued. Thus the normalizing flow is
now a map ¢(x) : RV — CV from the real variables in the Gaussian distribution x in RY to the
complexified physical fields ¢ in C. We call such maps the complex normalizing flows. If such
a complex normalizing flow is found for a lattice field theory of one’s interest, the map can be
used in the same way as traditional normalizing flows. Instead of sampling from the Boltzmann
factor (or the quenched Boltzmann factor as we assumed the presence of a sign problem), one can
sample from the Gaussian distribution and apply the complex normalizing flow as in Eq. (3.12) to
compute expectation values. There are some conditions to be met for complex normalizing flows
as will be discussed shortly. The search for such maps is likely to be done numerically, and thus
one obtains only an approximate complex normalizing flow. In such a situation, an appropriate
reweighting should be performed as in Eq. (3.14).

The ideas of complex normalizing flows and manifold deformations are very tightly connected.
A complex normalizing flow ¢(z), starting from RY, maps each point z € R to a point in
the complex space C" and thus generates a manifold M,, in CV. In other words, a complex

normalizing flow provides a parametrization of the manifold M, by RY. When one uses a
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normalizing flow to compute expectation values, they are actually evaluated on such a generated

manifold M,, in the complex plane of physical fields ¢:

(0)

[ O0ls) _ S, DO € O) (3.15)

[ dZ gy (7 S, D pe=5@)

To guarantee that such complex normalizing flows give the correct expectation values (the expectation
values that are evaluated on the real plane RY), the complex normalizing flow ¢(%) needs to

be constructed such that the resulting manifold M, satisfies the three conditions discussed in
Sec. 3.2.

Given the connection between complex normalizing flows and deformed manifolds, it is
clear that a manifold M,, generated by an exact complex normalizing flow has the average sign
of 1 and thus has no sign problem. Therefore, for a complex normalizing flow to exist, a perfect
manifold must exist. The converse holds as well — when a perfect manifold exists, that implies
that a complex normalizing flow exists. This can be shown by the existence of normalizing flow
for any real and positive-valued distributions. On a perfect manifold patameterized by N real
parameters denoted as i/, the distribution e~*(®®) is real and positive in terms of 7. As there
are always normalizing flows /(%) between the Boltzmann factor ¢=*(®®) and the Gaussian

distribution gy (Z), the complex normalizing flow is constructed as

p(x) = poy(x). (3.16)

Thus the existence of perfect manifolds and complex normalizing flows are the equivalent statements.

In the next section, we discuss the existence of perfect manifolds in Sec. 3.4.1 and complex
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normalizing flows in Sec. 3.4.2. The possibility of the breakdown of such arguments for the
existence of complex normalizing flows, and equivalently perfect manifolds, are also discussed
based on our current understanding [17, 115]. In Sec. 3.4.3, the existence and non-existence of

perfect manifolds are demonstrated with 1-dimensional toy models.

3.4 Existence

In this section, the existence of locally perfect manifolds is discussed. On a locally perfect
manifold, the Boltzmann factor locally has a fixed phase but the manifold consists of segments
which have different phases. Therefore, such a manifold is locally perfect but still has a global
sign problem. In Sec. 3.4.1, I show how one can construct such a locally perfect manifold in the
context of manifold deformation methods. In Sec. 3.4.2, I discuss the existence of locally perfect

manifolds using normalizing flows.

3.4.1 Existence of perfect manifolds

In this section, we show how a locally perfect manifold can be constructed. The key tool

used here is the holomorphic gradient flow [131]:

dp 0S8

— = 3.17

dt  0¢ -17)
It is a first order differential equation to update each point ¢ in the manifold of integration and
thus let the manifold of integration “flow”. Here ¢ is the flow time of the manifold, which has
nothing to do with the time as in Minkowski spacetime. At each flow time ¢, we obtain a new

manifold. At ¢ — oo, the manifold flows into Lefschetz thimbles [127, 128, 129, 130]. The idea
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of the generalized thimble method [131] is to flow the manifold only for a finite flow time. As

one updates the manifold over flow time ¢, the real part of the action .S keeps increasing

2

a5 ‘85 : (3.18)

dt |99

Therefore the quenched partition function decreases, and one may expect that the average sign
will increase. In fact, at the infinite limit of the flow time, the imaginary part of the action stays
constant on the manifold as it is the case for Lefschetz thimbles. Unfortunately, the average sign is
still not guaranteed to increase. Thimbles are likely to have a sign problem due to the Jacobian at
larger flow time and thus are not optimal manifold of integration. Nevertheless, the holomorphic
gradient flow can still be used to construct a locally perfect manifold. The key feature of the
holomorphic gradient flow is that when a manifold starts to flow from the real plane R, for an
infinitesimal flow time ¢, the holomorphic gradient flow always improves the sign problem, as is
shown in the following.

To begin, let us note that the numerator of the average sign, the partition function Z, does
not change due to the holomorphic gradient flow as long as the three conditions discussed in
Sec. 3.2 are met on the resulting manifold of integration. On the other hand the denominator,
the quenched partition function Z; should change as the integrand e~ ¢S not a holomorphic
function. Thus, when the sign problem improves, we expect to see that Z, decreases while Z
remains the same. Let us demonstrate that Z always decreases at early flow time. The change

in the quenched partition function at the start, R", is given by

d d

Rl SN
dt7¢ T dt Jun

det %

D ¢ ReSI9(6)]

) (3.19)

97



where each point ¢ € RY is flowed to a point Qg(gb) € CV. The parameterization, (;;(gb) with
¢ € RY, of the new manifold was used to write Eq. (3.19), so the manifold of integration remains
to be R™V. Thus we can focus sorely on the change in its integrand. The derivative of the integrand

with respect to ¢ is

1dJ  dReS

d _Res ~ReS -
—e 7| det J| = °7| det T —_—
e |det J| =e |det J| |[ReTrJ pp P

T (3.20)

As is seen in Eq. (3.18), the change in the real part of the action is guaranteed to be non-negative:

dReS _ ‘ﬁ . Thus when the term with the Jacobian is smaller than the second term, the

2
dt dé ‘

quenched partition function Z; decreases and the sign problem is improved. This scenario is
not guaranteed to happen at ant flow time ¢. Indeed, at larger flow time ¢, the Jacobian tends to

be large and Z increases, worsening the sign problem. However, starting from the real plane,

at least at early flow time, it is guaranteed that the term is Jacobian is small enough for the

d¢;

quenched partition function to decrease. The Jacobian at the real plane is diagonal with 3 s for
each diagonal element, and therefore we find that
d 2
TYJ*LJ{:: Q;S. (3.21)
a2 o

As we evaluate Jacobian term on the real plane, its real part is simply » . 828%5 . Thus Eq. (3.20)

is simplified and becomes

d —ReS —ReS
¢ |detJ|:Ze

0’Re S B ’ 8_8
d¢? 0¢;

2
] . (3.22)

To further simplify Eq. (3.19), the following relation for the magnitude of the derivative of the
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action on the real plane is useful:

05
%,

2 OReS\? [/0ImS)\?
=<a¢i)+<a¢i). (3.23)

The first term can be written with a total derivative

0 aRe‘SefReS _ efReS
09 \ 0 -

9?ReS [OReS\>
ag; —( a;- )] (3.24)

Using these relations, Eq. (3.19) becomes

dZo & [(OReS _p. Cheg [OReS\?
=1 - /w;[a@(—a@ ’ Rs)+e Rs( R )
_-Res <aRes>2 _Res (aImS)]

L “Reg (O0Im S 2
- /D¢e ( 5 ) . (3.25)

The final expression above is clearly non-positive, and strictly negative when the imaginary part

of the action changes while e~ ReS

is non-vanishing. Thus we conclude that the quenched
partition function Zg always decreases after an infinitesimal flow from the real plane in the
presence of a sign problem.

This is the key result of the holomorphic gradient flow from the real plane RY: when a
sign problem exists on the real plane, an infinitesimal deformation of the manifold R" by the
holomorphic gradient flow Eq. (3.17) is guaranteed to improve the sign problem by making the

quenched partition smaller. At a larger flow time, this not true any more — the quenched partition

function can increase and worsen the sign problem due to the Jacobian. Another problem with
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the use of the holomorphic gradient flow for a large flow time is that the resulting manifold may
be a union of several thimbles which may have different phases and thus introduces a cancellation
between different thimbles. Local phase fluctuations due to the Jacobian are sometime referred
to as a local sign problem while cancellations between thimbles are called a global sign problem.
In the following, we show how one can in principle get rid of the local sign problem by applying
infinitesimal holomorphic gradient flows from the real plane. As will be discussed later, a
resulting locally perfect manifold may still have a global sign problem due to the cancellation
between segments of the manifold.

I start the construction of a locally perfect manifold by flowing the original manifold R
by the holomorphic gradient flow Eq. (3.17) until an infinitesimal flow time ¢ = €. All points

¢ € RY will be mapped to ¢; € CV according to the gradient flow (up to the linear order in €)

$1(¢) =@+ e % , (3.26)

and form a new manifold M. As an infinitesimal flow from the real plane makes the quenched
partition function smaller, the sign problem is improved on M/ compared to R¥.

To improve the manifold further, I would like to parameterize M, by R and flow the
manifold again with an effective action induced by the parameterization. One such parameterization

of the new manifold M, is the map ¢;(¢), which induces an effective action

S1(¢) = S[p1(9)] — log det (1 + E% g ¢) : (3.27)

This is an action defined on RY. We would like to apply the holomorphic gradient flow with this
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new action S; and improve the sign problem again. However, there is a technical complication
which is that the effective action S; is no longer a holomorphic function of ¢, most explicitly due
a5

to the anti-holomorphic term o)y

A way to circumvent the problem is to realize that the manifold flows from the real plane,
so that the flow equation Eq. (3.26) could be equivalently defined as
a8

$1(¢) =9 +e % (E. (3.28)

The last term means that one evaluates the complex conjugate of % at the complex conjugate ¢.
This map defines exactly the same manifold as M as ¢ = ¢ on RY, but at the same time offers

a holomorphic map in the complex plane. Thus using this map, we modify the induced action as

S1(¢) = S[p1(9)] — log det (1 + 6% g—i ¢) , (3.29)

which is holomorphic.
Given the effective action S; as a holomorphic function in the complex plane of ¢, we

apply the holomorphic gradient flow again by a small flow time ¢

$2(9) = ¢+ ¢ 56 . (3.30)

The map from the real plane to the resulting new manifold M5 is given by composing two flows,
¢1 and ¢, as ¢2(¢). The quenched partition function on M, is guaranteed to be strictly smaller
than that of M (unless the manifold M had no local sign problems) and thus the sign problem

is improved.
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The parameterization of manifolds M; at each flow step is not unique. Let us denote a
parameterization of manifold M; as p; : C¥ — R¥, and each flow map as ¢; : RY — CV.
(In the demonstration above, p; was taken to be the inverse of ¢,.) Then the manifold will be

improved as

My = {$1(0), 0 € RV}

M; = {¢i(piii(9)),d € M;_1} (3.31)

One can repeat the process of parameterization of manifolds by p; and flow ¢; via Eq. (3.17)
using the effective actions to keep improving the manifold of integration while reducing the sign
problem.

As we repeat the small flow, the quenched partition function Z, keeps decreasing. There
are two possible end results after a large number of flows. One possibility is that a manifold
reaches a “fixed point” where the manifold will not be moved by the holomorphic gradient flow
any more. The other possibility is that some singular behavior of the manifold is introduced and
the parameterization via the real plane R"Y becomes no longer possible. There is no formal proof
that such singular behavior does not occur. Examples where such behavior of the manifold is
observed are currently investigated.

The first scenario where small flows let the manifold of integration reach a fixed point M
is when we find a locally perfect manifold. When denoting the final effective action as Sy, at
the fixed point, the flow equation Eq. (3.26) does change the manifold, meaning that the flow

vectors % lie entirely in the real plane and thus the imaginary part of Sy does not vary with ¢.
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Equivalently, in Eq. (3.25), the quenched partition function does not change, meaning that

—Re S @ 2_
e (8(;51) =0 (3.32)

—ReS

for all . Therefore, unless the quenched Boltzmann factor e vanishes, the phase of the

Boltzmann factor e "™ is guaranteed to be constant. Thus the manifold M ; may be separated
to segments by the “zeros” of the Boltzmann factor, but each segment is guaranteed to have
a fixed phase. Nevertheless, segments may possess different phases and a cancellation may
occur between segments. We call such manifolds as locally perfect, but not globally perfect
manifolds — M may possess a global sign problem. Such a vanishing Boltzmann factor
is not a uncommon scenario. For example, the Boltzmann factor of QCD in the Schwinger-
Keldysh formalism at zero and finite chemical potential has zeros in the complex plane. To obtain
globally perfect manifolds for QCD, such zeros need to be avoided while drawing the manifold
of integration. There is no formal proof which guarantees the availability of such construction
of manifolds without zeros. On the other hand, the Boltzmann factor of bosonic lattice field
theories in the Schwinger-Keldysh formalism in general does not vanish except at infinities —
their actions consist only of the polynomials of bosonic fields. Thus, it is likely that globally
perfect manifolds exist for bosonic lattice field theories, such as the ¢* scalar field theory and
SU(N) gauge theories.

A similarity and a difference between the fixed-point manifold M, and the Lefschetz
thimbles should be emphasized. When a fixed point manifold is parameterized by the real plane,

the resulting effective action has no phase fluctuation in each segments separated by the zeros of

the Boltzmann factor. Similarly, when a Lefschetz thimble is parameterized by the real plane, it
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consists of several segments separated by the points with vanishing Boltzmann factor and may
introduce a global sign problem. The key difference between two kinds of manifolds is that, on a
Lefschetz thimbles, each segment has constant phase from the physical action but still possesses a
phase fluctuation in the effective action on the real plane due to the Jacobian. Thus the Lefschetz
thimbles can possess both local and global sign problems, in contrast to the fixed point manifold
having only global sign problems. The presence of a global sign problem in a Lefschetz thimble
does not guarantee the presence of a global sign problem on a fixed-point manifold as was shown

in an example in [17].

3.4.2 Existence of complex normalizing flows

Normalizing flows give an alternative framework to construct perfect manifolds, based on
the fact that complex normalizing flows always generate perfect manifolds. To illustrate the
construction of perfect manifolds via complex normalizing flows, let us consider a family of
actions S(¢; A) which are smoothly connected by the parameter A. In this family of actions,
we include an action S(¢; \g) which has no sign problems and S(¢; A;) which possesses a sign
problem. Our goal is to construct a perfect manifold, or equivalently a complex normalizing flow
for the action S(¢; \;).

Normalizing flows exist for the action S(¢; \g), which we denote as ¢ = fy(z; \g). To
further proceed and construct a complex normalizing flow for S(¢; \;), the key point of view is
to think of the action S(¢; \g) as the function of the parameter )\, and so as the normalizing flow,
defined by

X

det (M) e~ S(fo(zi)) — Ngn (Z). (3.33)
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Here the normalization of the Boltzmann factor was introduced as A/. When the normalizing flow
¢ = fo(x; Ag) is an analytic function of )\, then one can simply perform analytic continuation
of the normalizing flow fj(z; Ag) in the parameter space of A towards \; to obtain a normalizing
flow for S(¢; A¢), which I denote as ¢ = fi(z; \;). Now we use the map f(z; \;) to generate a
perfect manifold by mapping all points z € RY to ¢ € CV.

The analyticity of normalizing flows as a function of action’s parameters for sign-free
actions is not generically proven. To show one example where the normalizing flow is an analytic

function of action’s parameters, we take real scalar field theory with ¢* interaction
S = Z ¢iM;jd; + A Z Ay (3.34)
i %

Here 7, 7 denote lattice sites. The matrix M represents the mass terms and kinetic terms together,
A is the coupling strength. Here we leave the expression for the action generic so that with
one’s choice of M and A, the action represents real scalar field theory with arbitrary Schwinger-
Keldysh contours. In the following, we derive normalizing flows analytically up to the first order
in weak-coupling and then strong-coupling expansion while leaving M, A in such generic forms.

To start, for a general action Sy with a perturbing term O
S =5+ g0 (3.35)

let us consider a map ¢(¢) from e=5(®) to ¢=50(®);

det (%) e=SB(0)) — Are=50(@) (3.36)
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The map is ¢(¢) = ¢ when g = 0. For small g, we expand the map ¢(¢) as a power series in g
as ¢(¢) = ¢ + gAM(p) + - - -. By expanding Eq. (3.36) up to the first order in g, we obtain the

following differential equation for A™) ()
V- -AD AL v5, =0 —(0). (3.37)

Here the expectation value (O) is evaluated with the distribution e 0. The perturbed map A(!)
can be derived by solving Eq. (3.37), although the solution is in general not unique.

In the weak coupling limit of the action Eq. (3.34), the map gz~5(¢) defined in Eq. (3.36) is
well-approximated by a perturbative flow ¢(¢) = ¢+AA“()(¢) where A1) satisfies Eq. (3.37)

with O = 3", A;¢}. One of the simplest solutions is

(2

w,(1) _ Lo 3 S iyt
AT — 3 EMU MG+ DM MG A (3:38)
J
To construct a perturbative normalizing flow with A1), we additionally need a map ¢(z) from
e~%(9) to the Gaussian distribution g(z). Since the free action .Sy is already quadratic, such a map
is simply a linear rotation ¢(z) = Uz. The entire pertirbative map from e~5(¢) to the Gaussian

distribution is

o(z) = o(Ux) + AV (p(Ux)). (3.39)

The map U and A*(") are both analytic functions of A/ and A except when det M vanishes.
Therefore, in principle one can perform analytic continuation of the perturbative normalizing
flow at weak couplings from a sign-free action to Schwinger-Keldysh actions with a real-time

extent. However, such normalizing flows will not provide an induced manifold with a desired
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asymptotic behavior.

In the derivation of the normalizing flow above, I obtained the expression for perturbative
normalizing flows for arbitrary Schwinger-keldysh contours determined by M, A. One may think
of directly using the perturbative flow as a good approximation to the normalizing flows for
the Schwinger-Keldysh scalar action at weak coupling. It is unlikely that this will work — a
manifold generated by the perturbavative flow does not have the correct asymptotic behavior. For
manifolds to be in the asymptotically-safe region, we must study the behavior of normalizing
flows at large ¢, or in other words, the strong coupling limit of \.

To obtain a perturbative flow at a strong coupling, I first decompose the map ¢*(x) into
four pieces:

¢*(z) = [Fyo F30 Fy0 Fy](x). (3.40)

The first map F; : R — R maps the distribution e to e~ at each site i. Following the
prescription in Eq. (3.11), the map can be written by the sequence of two cumulative distribution

functions II and P as

Fi(z) = M 'o P, with (3.41)
(z) = % + % (1 — %) sgnx (3.42)
P(z) = % (1 + Erf(a:/\/é)) . (3.43)

The second map F5 : R — R rotates and scales the complex plane to map the distribution
e=%" to e=A¥". The map is simply

Fy(¢) = o/A;* (3.44)
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On most sites on a Schwinger-Keldysh contour, the map performs the rotation of a complex plane,
except an additional scaling by a factor of 2!/% at the corners of the Schwinger-Keldish contour.

The map F3 : RY — R maps the distribution e=*(®) with Sy = ", A¢? to e~ ) with
1
(W) =Y Ay} + ) > M, (3.45)

This is where we perform the strong coupling expansion and write the sth component of the
map as F3;(¢) = ¢; + \%\Af’(l)(qb). The perturbative part A*()(¢) satisfies Eq. (3.37) with
So = > ;A¢j and O = .. ¢ M;;¢;. Its expectation value (O) must be evaluated with Sy. By
introducing f; = Af’(l)(¢)6_/‘i¢’2JL and using the fact that (¢;¢;) vanishes when i # j, one can

choose for the each map f; to satisfy

afi oy’
%ew =Y Myidy = —M(e?). (3.46)
‘ j
The expectation value is analytically computed to be (gzﬁf) = %. The fact that only

diagonal and nearest-neighbor elements in M are non-zero simplifies the differential equation

further. The solution is

Asﬁ(l)(qﬁ) — Ml [_Cb?r[%aAigbﬂ <¢?>¢ir[i7/\i¢?]1

A T Ao

i VT
DI [Exf(v/Aig?) - C| Mo (3.47)

je{i—1,i+1}

Here, (-)'/* refers to the principle fourth root and a specific choice of C' = 1 gives a solution

which is oscillation-free and vanishes at v); — oo.
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The final map, F, : R — R, rescales the field by a factor of \/*

Fi(¢) = ¢/ NV (3.48)

to obtain the distribution with the desired action S in Eq. (3.34).

Given analytic expressions for all maps in Eq. (3.40), let us examine if the perturbative
normalizing flow ¢° is an analytic function of the parameters of the action M, A. Among four
maps, only F, and F3 depend on M, A. Both the map F; in Eq. (3.44) and F3 in Eq. (3.47) are
analytic functions of M and A except at vanishing A. Thus as long as we avoid A = 0, analytic
continuation of the normalizing flow of the Euclidean real scalar fields (S with real-valued M and
A in Eq. (3.34) gives the perturbtive normalizing flows for the action S for a Schwinger-Keldysh
contour with a real-time extent.

Although the purpose of the exercise above was to show the analyticity of the perturbative
normalizing flow for the lattice scalar field theory without a sign problem, a general expression for
a perturbative normalizing flow of an arbitrary Schwinger-Keldysh contour in the strong coupling
limit was derived in Eq. (3.40). The perturbative normalizing flow ¢° should approximate the full
normalizing flow ¢(z) defined as

det <?) e 5@ = gn(2) (3.49)

X

in the strong coupling regime. Now, let us use this perturbative map and test its performance by

measuring the average sign and real-time correlators on a 0 + 1-dimensional lattice. To be more
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precise, our action is

($s = buit1)’ N Go(t) +ao(t =1) | = (Dar = Gure)? m2, A
S = Z 2a0(t)t+1 +Zt: 0 20 Z Tt + Z (7 it + @Qbi,t)

t,x (zz') x

(3.50)

with the “S” contour in the Schwinger-Keldysh formalism, defined as

;

—i te[0,N)

aop(t) = . (3.51)

1 tG[Nt—FNIg/Z,QNt—f—Nﬁ/Q)

1 te[2Ny+ Ng/2,2N; + Np)

Here NV, and N denote the number of time steps in real-time and imaginary-time respectively. In
Figure 3.3, the average sign of the manifold generated from the perturbative map is plotted for a
12-sites (Ng = 2, Ny = 5) with m = 0.5 with varying coupling A. As expected, the average sign
is larger at strong couplings, meaning that manifolds of integration generated by the perturbative
flow almost remove the sign problem for large coupling. However at sufficiently small couplings,
the average sign is small, meaning that the perturbative flow cannot provide a sign-free manifold
of integration. Note that as the perturbative normalizing flow is only approximately correct, the
Boltzmann factor needed to be reweighted following Eq. (3.13) and Eq. (3.14).

To check the correctness of the normalizing flows, real-time correlators (¢(¢)$(0)) are
evaluated with the flow while fixing m = 0.5, A/24 = 0.33. The lattice has 14 sites with Ng = 2
and V; = 6. The simulated results are compared with the exact Hamiltonian calculations shown

in black dots to show a consistent agreement. The average sign was estimated to be (o) =
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Figure 3.3: The average sign of the manifold generated from the perturbative map for a 12-sites
(Ng = 2, N, = 5) with m = 0.5 with varying coupling .

0.096(5).

In this section, the construction of perfect manifolds by analytic continuation of normalizing
flows was discussed. As a study case, perturbative normalizing flows for the ¢* real scalar
field theory were derived for the weak and strong coupling limits. It was shown that except for
particular choices of the parameters of the action, the perturbative normalizing flows are analytic
functions of action’s parameters. As a byproduct, the perturbative flow in the strong coupling
limit was used to approximate the normalizing flow for ¢* scalar field theory, and the average
sign and real-time correlators were evaluated on a 0 + 1 dimensional lattice. The perturbative
evaluation of normalizing flows up to higher orders does not seem to be practical, and thus would
not be a solution to the real-time sign problem in ¢* scalar field theory. The same will be true
for other lattice field theories. Thus, in practice, another (potentially numerical) method will

be required for searching complex normalizing flows, or equivalently perfect manifolds. The
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Figure 3.4: Real-time correlators (¢(t)¢(0)) evaluated with the perturbative normalizing flow
while fixing m = 0.5,\/24 = 0.33, N3 = 2 and N, = 6.

application of tools from machine learning for searching normalizing flows will be explored in
Sec. 3.5.

When a global sign problem cannot be removed, a normalizing flow does not exist either.
One cause of such cases is, from the manifold deformation point of view, the zeros of the
Boltzmann factor as was discussed in the last section. When a locally perfect manifold intersects
with a point in the field space at which the Boltzmann factor vanishes, the manifold may possess
a global sign problem due to the change of the phase across the zero. In such a case, we should
also see the failure of the construction of a globally perfect manifold in the context of analytic

continuation of normalizing flows. Going back to the definition of the normalizing flow,

0
det (a—i) e = Ngy(z) (3.52)
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we see that one of the followings has to happen at the singularities ¢y = ¢(z¢) with e5(#) = 0:

1. The Jacobian diverges: det (42) = oo while z stays finite.

p—do

2. The normalizing flow ¢ will send the point x, to infinity, |xg|] — oo as the manifold

approaches ¢y.

In Sec. 3.4.3, a toy model is introduced to demonstrate the first case and resulting failure of the

construction of a normalizing flow.

3.4.3 Examples

The construction of perfect manifolds via analytic continuation of normalizing flows was
discussed in the previous section. In this section, firstly a one-dimensional model was employed
to demonstrate analytic continuation of normalizing flows and resulting construction of perfect
manifolds. Then I will introduce another toy model which does not have globally perfect manifolds,
and demonstrate how analytic continuation of normalizing flows fails to construct globally perfect

manifolds.

3.4.3.1 Analytic continuation of normalizing flows

The first one-dimensional model is

1

e Sia) — ’
V8(1l+2ai)y+1—4ia— 4a?

O<y<l1 (3.53)

where a can be any values in C. We choose to let the denominator take the second principle root.

When a takes any purely imaginary values, the Boltzmann factor does not cause sign problems
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Figure 3.5: The manifold of integration drawn by the normalizing flow Eq. (3.55) with a =
—1.0, —0.5, 0.3, 0.5, 1.0. Singularities for these values of a are in dots with the same color
scheme. The black line shows the location of the singular point for —1.1 < a < 1.1.

and we have a normalizing flow. The normalizing flow y(z) is the map from the Boltzmann factor

above to the uniform distribution:

dy(z;a) 1
dr \/8(1+2ai)y(z;a) +1—4ia— 4a?

=1. (3.54)

The normalizing flow can be simply written as

y(x;a) = (% + az’) 2 + (% — ai) x (3.55)

When « takes a general complex value, a sign problem arises. As the Boltzmann factor is

i(i+2a)?

16 manifold

a holomorphic function of y in its complex plane except at one singularity y =
deformation methods can be applied. When a perfect manifold is constructed while avoiding

the singularity, the manifold should give correctly expectation values. The normalizing flow
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Eq. (3.55) can be utilized to construct such perfect manifolds. Simply, we insert a complex-valued
a to the normalizing flow equation while varying z in [0, 1] to draw perfect manifolds, as is shown
in Figure 3.4.3.1. In Figure 3.4.3.1, manifolds are drawn for a = —1.0, —0.5,0.3,0.5,1.0. The
Black line shows the location of the singularity of the Boltzmann factor while varying —1.1 <
a < 1.1. For a = —0.5,0.3, 0.5, singularities are outside the area closed by their manifolds and
the real axis, and the manifolds give correct expectation values. However, for a = —1.0, 1.0,
the singular points are inside the area closed by their manifolds and the real axis, and thus the
manifolds give wrong answers. This issue comes from the original setting of the problem, which

is that the principle root is taken for the square root in the Boltzmann factor.

3.4.3.2 Zeros of the Boltzmann factor

The second toy model is the following Boltmann factor
e 5@ = cos(f) +¢, 6€]0,27) (3.56)

The domain of integration is the circle, and the corresponding complexified domain is the cylinder
S x R. The action possesses a sign problem when —1 < e < 1, and otherwise does not have a
sign problem, as one can see from the plot of the Boltzmann factor in Figure 3.4.3.2. The average
sign scales like € for small e.

In the presence of a sign problem, we complexify # to increase the average sign, which
turns out not to work. This can be shown by examining the behavior of the quenched partition

function on the cylinder

21
Zo = / | cos(6 + i6(0)) + (3.57)
0
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Figure 3.6: The Boltzmann factor Eq. (3.56) with ¢ = 0.5,1.0,1.5

where ¢(6) gives the shift of points ¢ into the complex plane. The magnitude of the Boltzmann

factor is

| cos(8 +ig(0)) + €|* = = (cos(26) + cosh(2¢) + € cos(f) cosh(¢)/2 + €?) (3.58)

ol =

which is minimum when ¢ = 0 for all . Therefore the circle at ¢ = 0 has the largest average
sign, and we conclude that there is no globally perfect manifold which gives the average sign of
I in the cylinder. The circle with ¢ = 0 is still a locally perfect manifold divided by “zeros” at
0 = cos™!(€). Segments divided by those zeros cancel with each other and cause a sign problem.

The failure of the construction of globally perfect manifolds due to the zeros can also
be observed from the point of view of the normalizing flow. As the manifold of integration is

compact, the normalizing flow is defined to be a map from the distribution in Eq. (3.56) to the
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uniform distribution in [0, 27). Thus the normalizing flow 6(z) satisfies

df(x) cos(f(x)) + €

dx €

=1 (3.59)

The inverse of the map, z(0) is

z(0) = (sin(0) + €0) /e (3.60)

which is invertible when ¢ > 1, as are plotted in Figure 3.4.3.2. Now we lower the parameter
e and get into the regime with the sign problem. As ¢ is lowered, the normalizing flow 0(x)
becomes a multi-value map, and thus can no longer work as a map. The cause of this issue can
be seen in the definition of the normalizing flow in Eq. (3.59). When € = 0, the Boltzmann factor
vanishes at = 7. For the equality Eq. (3.59) to still hold, the Jacobian %(;) needs to diverge,
as is seen in Figure 3.4.3.2. Now as we lower ¢, the slope of the inverse map z(f) becomes
negative at § = m, while the Jacobian diverges at § = + cos™!(¢) and the map 0(x) is forced to
be multi-valued. Therefore, the map 6(z) can no longer be used as a normalizing flow.

The study of the behavior of normalizing flows with a vanishing Boltzmann factor was
motivated by lattice QCD. The Boltzmann factor of QCD at finite density has vanishing Dirac
determinant. In [17], it was shown that a perfect manifold does not exist for the 0+ 1- dimensional
Thirring model in the mean-field approximation. However, neither the demonstration above nor
the Thirring model in the mean-field approximation serves as the proof of the non-existence of

perfect manifolds and normalizing flows for the finite-density sign problem. The existence of

perfect manifolds for the finite-density sign problem remains an important open question.
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Figure 3.7: The inverse of the normalizing flow, z(6) in Eq. (3.60), with ¢ = 0.5, 1.0, 1.5.

3.5 Numerical search of complex normalizing flows

Lattice field theories of our interest usually have a large number of degrees of freedom due
to the number of lattice sites and the number of degrees of freedom of fields on each site. As a
result, the search for complex normalizing flows amounts to solving the single equation defining

the map:

d
det (a—i) e 50 = Ngn(z) (3.61)

for a large number N. The differential equation above may be intractable via analytical approaches
— even perturbatively as done in Sec. 3.4.2, analytical calculations of the perturbative maps
for higher orders in the expansion parameter seem to be a tough exercise. Thus one is lead to
consider numerical searches for approximate normalizing flows or perfect manifolds. In either

case, perfect manifolds or normalizing flows, one robust way to numerically search them is to

118



start by preparing a large family of candidates. As was demonstrated in [141] the sign-optimized
manifold method starts by preparing a family of manifolds and optimizes the sign problem within
the family. To search for a perfect manifold, such manifolds without a sign problem has to be
included in the family to begin with. The search for normalizing flows [146, 147, 148, 149, 150]
is done with the same spirit. One prepares a neural network which represents the map, and trains
the neural network such that the it well-approximates the normalizing flow. This idea of “training
the map within a large family” can be directly applied to the search of complex normalizing
flows, although some technical difficulties arise as will be discussed later in the section.

As a demonstration of the search for normalizing flows via machine learning, I consider
a “perturbing flow” in the following [17]. Inspired by the derivation of the peturbative maps
in Sec. 3.4.2, I take the ¢* lattice scalar field theory in Eq. (3.50) and consider evaluating the
expectation value of an observable O. To formulate this into a problem of finding a normalizing
flow, I perturb the action S, with O as in Eq. (3.35) but now its Sy should be thought of as the
full action S in Eq. (3.50). The perturbing flow A is a map from the Boltzmann factor e~ with
S. = Sy + €O to e~ up to the linear order in the perturbation e. The perturbing flow should

satisfy the following differential equation:

V-A—A-VS;=0-(0). (3.62)

where the expectation value on the RHS is evaluated with S;, which is what I aim to estimate.
Thus, we regard (O) as a parameter and train it along with the perturbing flow A. The map A

is represented with a multi-layer Perceptron (MLP) with a set of parameters /. I train these
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Figure 3.8: The expectation values of ¢? in the scalar field theory Eq. (3.50) are estimated with
the perturbing flow on a lattice with Ng = 10, NV, = 0, m = 0.5 with varying coupling A\ and
shown in black dots. The exact expectation values are shown in the red solid line.

parameters W such that the cost function, the LHS minus RHS of Eq. (3.62)
COVE) = [ 62 x |V - u(6) ~ Bw(0) - T5,(0) ~ (0) + OO . G63)

is minimized. The cost function was estimated by a random sampling from the Gaussian distribution.

The demonstration with 0 4 1-dimensional scalar field theory with no time-evolution is
shown in Figure 3.8. Lattice parameters are N3 = 10, N; = 0, m = 0.5 with varying coupling A.
The expectation value of ¢ was estimated. A two-layer MLP was used with hyperbolic tangent
as an activation function. The expectation values estimated with the perturbing flow are seen to
have reasonable agreements with the exact answer across the wide range of couplings.

This method has several issues that should be mentioned. First of all, the errors in estimating
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the expectation values (¢?) come not only from insufficient statistics in training Ay but also from
the choice of the parameterization W itself. Thus a faithful estimate of errors on the expectation
values is impossible within a training of the perturbing flow. Secondly, as the perturbing map is

defined between S, and its perturbation via O, a natural cost function is
CW.E) = [ 465 x| Aw(d) - Awlo) - VSul0) - E+ O Giod

where the field values are sampled from e~¢ to estimate the cost function. This process itself
possesses a sign problem when the real-time evolution is present. The estimate of the naive cost
function in Eq. (3.63) can be done without a sign problem, but the estimated perturbing map
A is not necessarily a good approximation to the true perturbing map. In addition to that, as
we take the magnitude in these cost functions, we lose some information about the map in the
training process. In particular, the phase of the map Ay, is completely discarded while the cost
function is computed. This could be another cause of the mismatch between the estimated A
and the true perturbing map. To demonstrate these issues, we trained the perturbing flow as well
as the expectation value of the correlator as shown in Figure 3.9. Lattice parameters used are
Ng = 2,m = 0.5,\ = 0.2, and various time evolution /V;. Although the expectation values
estimated with the perturbing map capture some features of the exact answers in dots, it is fair
to conclude that the perturbing flow could not estimate them with the naive cost function in
Eq. (3.63).

Some of the lessons learned in the demonstration above can be utilized in the numerical
search for the normalizing flows. When searching for a normalizing flow, the honest cost function

is exactly Eq. (3.63). Thus unlike for the perturbing flow above, the estimate of the cost function

121



0.5 A

g 009
6 Exact, Real
= —0.5 - P Exact, Imag

e Learned, Real

104 @® Learned, Imag

2 4 6 8 10

Figure 3.9: The expectation values of ¢? in the scalar field theory Eq. (3.50) are estimated with
the perturbing flow on a lattice with N3 = 2, m = 0.5, A\ = 0.2, and various time evolution N,
and are shown in solid lines. Exact expectation values are shown in dots.

is done with the sampling from the Gaussian distribution function and yields no sign problems.
However, another issue seen here will appear in the search for normalizing flows as well. It comes
from the fact that the magnitude of the LHS minus RHS of Eq. (3.62) needs to be taken when
evaluating the cost function. While taking the magnitude, one loses information about the phase
of the normalizing flow. Thus it is probably necessary to train the neural network slowly enough
so that such phase information will not be missed too badly. Such technical details of the machine

learning based algorithms for searching normalizing flows are currently being investigated.
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Chapter 4: Summary

This thesis discusses algorithms for simulating real-time dynamics of quantum field theories
on the lattice. Both quantum algorithms described in Chapter 2 and classical algorithms in
Chapter 3 require further work until one obtains results from lattice QCD that can be compared
to experiments.

In Chapter 2, quantum algorithms for simulating general lattice gauge theories, including
the mapping of their Hilbert space onto qubits, the construction of time-evolution operators, and
algorithms for evaluating expectation values of Wilson loops, were discussed. As a demonstration,
the time evolution of D, (the dihedral group) gauge theory on a two-plaquette lattice was simulated
and the expectation values of a plaquette and a temporal Wilson loop were computed. The time-
evolution operator was constructed from the primitive D, register gates: the inversion gate, the
multiplication gate, the trace gate, the Fourier transform gate, and the phase gate in Appendix A.
To simulate other gauge theories on a lattice within the framework described in Chapter 2, these
primitive register gates need to be designed accordingly. For SU(N) gauge theories, the Hilbert
space on each gauge link needs to be truncated and a suitable time-evolution operator needs to be
constructed.

In Sec. 2.4, quantum algorithms for computing parton distribution functions (PDFs) were

discussed. Quantum computation of PDFs can be generalized to generalized PDFs, for which
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appropriate algorithms for initial state preparation and measurement of relevant correlators should
be developed. The quantum cost, i.e. the required number of qubits and depth of quantum circuit,
for such algorithms should be discussed.

In Sec. 2.5, quantum algorithms for computing the transport coefficients in relativistic
hydrodynamics were discussed. In this section, firstly, naive ideas for quantum algorithms for
the state preparation of a thermal state of QCD were described. The details of these algorithms
need to be filled in and the quantum cost of those algorithms should be estimated. Regarding
the measurement of the correlators of the energy-momentum tensor, from which one extracts the
transport coefficients, the finite-volume effects and the effects of thermal fluctuation in relativistic
hydrodynamics should be studied — these corrections are present in heavy-ion collisions.

In Chapter 3, the application of normalizing flows to sign problems in lattice QCD was
discussed. A normalizing flow, in the context of lattice field theories, is a map RN — RY which
transforms the NV-dimensional Gaussian distribution (or other trivial /V-dimensional distributions)
to the Boltzmann factor e=°. Here N is the number of degrees of freedom on the lattice taking
values in R. To apply normalizing flows to a lattice field theory with a sign problem, whose
Boltzmann factor takes negative or even complex values, a normalizing flow needs to map variables
in RY to complex values in C¥ — the space of complexified field variables on the lattice. We call
such a map a “complex normalizing flow”, which induces a deformed manifold of integration in
the complex plane of the original fields in the lattice field theory. Thus the complex normalizing
flow method is conceptually equivalent to the manifold deformation methods as was discussed in
Chapter 3. Moreover, the manifold of integration induced by a complex normalizing flow has no
sign problem, which I referred to as a “perfect manifold”.

Using both the manifold deformation methods and the complex normalizing flow, the
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existence of a perfect manifold of integration (which has no sign problem), and equivalently
an ideal complex normalizing flow, were discussed in Sec. 3.4. For bosonic lattice field theories,
such as ¢* real scalar field theory and SU(N) gauge theories, such perfect manifolds are likely to
exist, based on the construction of locally perfect manifolds using the holomorphic gradient flow
and analytic continuation of complex normalizing flows as were discussed in this section. As
the next step toward solving the real-time sign problem for bosonic field theories of our interest,
algorithms based on tools from machine learning for searching perfect manifolds or complex
normalizing flows are currently studied.

When the Boltzmann factor can vanishes in the complex plane of field variables, the
existence of a perfect manifold is no longer guaranteed as was discussed in Sec. 3.4. When a
deformed manifold of integration intersects with such a point with vanishing e~ in the complex
plane, a “global sign problem” may be introduced. In lattice QCD, the Boltzmann factor can
vanish in both Minkowski lattice QCD and Euclidean lattice QCD at finite density. When the
quark degrees of freedom are integrated out from the lattice QCD path integral, the path integral
obtains the fermion determinant, which can vanish in the complex plane. Nevertheless, contour
deformation methods and complex normalizing flows may be able to alleviate sign problems
enough and let us extract useful information about QCD from the lattice calculations. The
applicability of these methods to sign problems in lattice QCD should be explored. In parallel
with such numerical tests, one should explore other ways to treat fermions on the lattice in which
the Boltzmann factor does not vanish in the complex plane. If such a method is found, the

existence of a perfect manifold may be guaranteed, and thus sign problem may be solved.
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Appendix A: Primitive circuits for the D, gauge theory

The dihedral group D, is the symmetry group of the square. In a matrix representation, its
eight elements can be written as a combination of two matrices: the 7/2 rotation matrix and the
reflection matrix

i 0 0 1
O = and R = ) (A1)

0 — 10
respectively. Eight elements of the group are represented as g = My, M7, with n = 0,1 and

m = 0,1, 2, 3. Therefore on a quantum computer, the eight elements |abc) (a,b,c = 0, 1) can be

implemented using three qubits to represent matrices

a 2b+-c

(A.2)

Here, two qubits denoted by b and ¢ specify the amount of rotation (2b + ¢)7/2 and the qubit a
performs the reflection if @ = 1. This is our design of the D, register.

Having the D, register designed, the primitive gates to act on registers — the inversion
gate Eq. (2.20), the multiplication gate Eq. (2.21), the trace gate Eq. (2.22), and the Fourier

transformation gate Eq. (2.23) — need to be implemented. The inversion can be implemented
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Figure A.1: The inversion gate and multiplication gate for D, register.

simply as is shown in FIG. A.1. For the D, group, the inverse of each element is

I 1, O 0% 0°= 0% R+ R, RO+ RO, RO?> <+ RO?* RO?<+ RO (A3)

Therefore, with the D, register in Eq. (A.2), only when a = 0 and ¢ = 1, b needs to be flipped, and
otherwise no operation should happen. Such circuit can be implemented by three-qubit controlled
gate with a, c serving as control qubits and b being the target qubit. In the common convention,
the target qubit is flipped when the controlled gate is “1”. Thus a qubit needs to be flipped before
the controlled gate and then flipped back by Pauli-X gates. This construction leads to the circuit
on the left in FIG. A.1, where the three lines represent qubits in the order ¢, b, a from the top.
The multiplication gate is more complicated as is shown in the right panel of FIG. A.1.
Ultimately the circuit should perform operations on two registers following the multiplication
table of the group in Table. A.1. Let us denote three indices of two registers (ay, by, c;) and

(a9, b, c2), and the resulting multiple of the two register on the second register as (a, b, ¢):

Uy |arbyey)|agbacs) = |aibicy)|abe). (A4)

Thus the multiplication gate should be implemented such that (a1, b1, ¢;) which can be regarded
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(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
(0,0,0) | (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (L,1,1)
(0,0,1) | (0,0,1) (0,1,0) (0,1,1) (0,0,0) (1,1,1) (1,0,0) (1,0,1) (1,1,0)
(0,1,0) | (0,1,0) (0,1,1) (0,0,0) (0,0,1) (1,1,0) (1,1,1) (1,0,0) (1,0,1)
(0,1,1) | (0,1,1) (0,0,0) (0,0,1) (0,1,0) (1,0,1) (1,1,0) (1,1,1) (1,0,0)
(1,0,0) | (1,0,0) (1,0,1) (1,1,0) (1,1,1) (0,0,0) (0,0,1) (0,1,0) (0,1,1)
(1,0,1) | (1,0,1) (1,1,0) (1,1,1) (1,0,0) (0,1,1) (0,0,0) (0,0,1) (0,1,0)
(1,1,0) | (1,1,0) (1,1,1) (1,0,0) (1,0,1) (0,1,0) (0,1,1) (0,0,0) (0,0,1)
(1,1,1) | (1,1,1) (1,0,0) (1,0,1) (1,1,0) (0,0,1) (0,1,0) (0,1,1) (0,0,0)

Table A.1: Multiplication table for dihedral D, group. Each element are represented by the three
indices as in Eq. (A.2) in the form (a, b, ¢).

as the column and (ag, by, ¢3) as the row of Table. A.1 give the corresponding multiplication of
them to the resulting second register (a, b, ¢).

The largest structure which determines « is that when a; = 0, a = a9, and otherwise as
needs to be flipped. This can be simply achieved by two-qubit controlled gate on a; and ay with
a; serving as control qubit and a, being the target qubit.

Having a taken care of, I can now focus b and c. The next largest structure one can see in
Table. A.1 is the contrast between cases a; = 0 and a; = 1. The multiplication with a; = 1 cases
can be obtained by applying the following operation to the multiplication for a; = 0 cases but

with the same other aq, by, ¢1, ba, Cs:

flip by whenay =landc; =1

This operation can be achieved by a three-qubit controlled gate with as, ¢; controlled and b; being

the target qubit. Between cases as = 0, 1, c is the same as long as other as and bs are the same.
Now that I have implemented the difference between a; = 0 and as = 1 cases, I can focus

on as = 0 cases (the left half of Table. A.1) and investigate how b and ¢ are determined from

b1, b, c1 and co. We find that the relation between by, c1, by, 2, b, ¢ is a simple addition in the
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binary representation:

2b +c= 2b1 +c1 + 2b2 + Co (mod 4) (AS)

Thus, regarding b, b, should be flipped when b; = 1, and flipped again when ¢; = 1 and ¢, = 1.
Regarding ¢, ¢, should be flipped when ¢; = 1 but otherwise ¢ = c¢,. Thus, one should first apply
two controlled gates to change b to an appropriate b as this operation depends on c,: a two-qubit
gate with b, control and b, target, and a three-qubit gate with ¢y, ¢, control and b, target. Then one
changes c, to an appropriate ¢ by applying a two-qubit controlled gate with ¢; being the control
qubit and ¢, being the target qubit. The whole circuit consists of five controlled gates as shown
in FIG. A.1, where again the three lines represent qubits in the order c, b, a from the top for the
register U and V.

The trace gate 41, acts on a single register. The trace of 4 group elements are non-zero
only when @ = 0 and ¢ = 0, and r,(0)|000) = e~2“]000), thry(0)|010) = €**]010). Thus
the trace gate can be implemented with a controlled phase gate (a, c are the control and b is the
target).

The Fourier transform gate {{» which acts on a single register is given in the following

S 7 N —
T - EHEHEHE
L mmdmirie

Figure A.2: The Fourier transform gate for D, register.

LT
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matrix form

4 1 1 1 1 1 1 1
VSRRV SRV SRV SRV SV
T e L e e s R |
S OB VB VR VB VB VBB
4 0 0 1 1 1 1 1
YRV Y SV S SV AV
41 11 L _a 1
p_ |V TV VR TV TV VB TR (A6)
1 1 1 1
o Lo 1 0 -1 o0
1 1 1 1
o -1 0o L o L o I
1 1 1 1
o 1 o -1 o 1 o I
1 1 1 1
O R = S| B S

such that it diagonalizes the D, momentum operator. To find a circuit for this matrix, a classical
simulated annealing search was performed and the circuit in FIG. A.2 was found to exactly
implement the matrix operation above. The basic gates used are Hadamard gate, CNOT gate, and
5 gate (T). After the kinetic term of the Hamiltonian Eq. (2.38) is diagonalized, an appropriate
phase gate iy, should be applied. The phase gate can be simply implemented by two phase

gates: a phase gate on qubit a and a controlled phase on the state a = b = ¢ = O:

$pase|abc) = ¢1010a00000c0 61020 ) (A.7)

The constants 6, 6, are coupling dependent.
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