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Heavy-ion collisions performed at the Large Hadron Collider and the Relativistic Heavy

Ion Collider have given us a tremendous insight into both the equilibrium and non-equilibrium

properties of strongly coupled nuclear matter. This thesis details two theoretical frameworks for

addressing particularly the non-equilibrium nature of such nuclear systems governed by quantum

chromodynamics.

Lattice QCD has offered non-perturbative access to observables in quantum chromodynamics.

However, not much progress has been made in non-equilibrium calculations via lattice QCD

compared to lattice QCD in equilibrium due to the so-called sign problem, stating that such

calculations naively require a computational resource that scales exponentially with the size of

the lattice. Quantum computing has the promise of performing first-principles simulations of the

time-evolution of nuclear systems without such an exponential cost. This thesis details quantum

algorithms for evaluating observables that are essential for understanding heavy-ion collisions:

the parton distribution functions and the hydrodynamic transport coefficients.



Quantum simulation of nuclear system naively requires a large-scale quantum computer

which is not available at the moment. Thus it is of practical importance to pursue methods to solve

sign problems and expand the frontier of the classical lattice QCD calculation of non-equilibrium

observables. The second topic of this thesis is a novel approach to address sign problems, which

will be referred to as complex normalizing flows. This method belongs to a family of manifold

deformation methods, a long-standing approach to alleviate sign problems. The applicability of

complex normalizing flows to lattice calculations of our interest, non-equilibrium QCD, will be

discussed. Given that complex normalizing flows are likely to solve sign problems in bosonic

theories out of equilibrium, numerical algorithms based on machine learning to solve such sign

problems in the framework of complex normalizing flows will be discussed.
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Chapter 1: Introduction

1.1 Overview

Quantum chromodynamics (QCD) is the first-principles description of the strong interaction

governing the nature of quarks, hadrons and nuclei [1, 2]. Many aspects of nuclear matter have

been explained by QCD, and yet there remains more to be explored. For example, asymptotic

freedom of QCD [3, 4] is one of the characteristic features of QCD. It has justified the partonic

picture of hadrons in high-energy collisions [5], which has enabled us to study the structure of

hadrons from first-principles calculations in QCD. As another example, there have been numerous

efforts to explain confinement of quarks and gluons in the hardons in the low-temperature phase

of nuclear matter from QCD [6]. In the same vein, low-energy bound states of light nuclei have

been studied from their fundamental constituents and interactions among them in various ways,

e.g. [7, 8, 9, 10], and we expect that QCD will explain the structure of even larger nuclei. QCD

is also expected to provide the equation of motion of nuclear matter. In particular, the time-

evolution of strongly coupled quark matter with temperature around the confinement temperature

Tc = 200 MeV is of great interest as that has experimentally observed. In experiment, such

strongly interacting quark matter has been indirectly observed in heavy-ion collisions performed,

for example, at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC).

Theoretical frameworks, utilizing both first-principles calculations and effective theories of QCD,
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have been studied extensively in the last couple of decades to explain results from these experiments,

e.g. [11, 12]. Particularly for strongly interacting nuclear matter observed at RHIC, it has been

suggested that relativistic hydrodynamics provides a good effective description of the system

theoretically. In all such frameworks, QCD serves as the guiding principle. Effective field

theories are established while respecting certain symmetries in QCD, and their low energy constants

(LECs) need to be derived from first-principles, i.e. quantum chromodynamics.

This thesis concerns the construction of first-principles calculations of QCD observables

numerically on the lattice in the path integral formalism and Hamiltonian formalism. To begin,

in the next section, I review the construction of QCD, its fundamental fields, symmetries, and

the Lagrangian which will serve as the guiding principles when we develop methods to study

strongly coupled QCD matter in the rest of this thesis. In Sec. 1.3, the “naive” QCD action in

continuum spacetime will be discretized — a lattice field theory of QCD is constructed such

that it will recover QCD in the continuum limit (i.e. in the limit of zero lattice spacing) after

a proper renormalization. The energy-momentum tensor of the bosonic part of QCD, i.e., the

SU(3) gauge theory will also be discretized to put on the lattice in Sec. 1.3.2, as a preparation

for the later chapters. In Sec. 1.4, relativistic hydrodynamics is briefly introduced. Relativistic

hydrodynamics serves as a powerful effective theory of QCD in the strongly coupled regime

of QCD scanned by heavy-ion collisions. The purpose of this section is to derive relations

between their LECs, the shear viscosity and bulk viscosity, and real-time correlators of the

energy momentum tensor. Such relations will guide us towards the first-principles calculations

of viscosities from QCD on the lattice as will be discussed in Sec. 2.5.

Quantum simulations of lattice gauge theories are discussed in Chapter 2. Quantum computers,

once built, promise to be very powerful tools for performing non-perturbative QCD calculations
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and revealing non-equilibrium aspects of QCD. After an overview of quantum simulations for

QCD is given in Sec. 2.1, general methods for simulating gauge theories are discussed in Sec. 2.2

and Sec.2.3 based on [13]. As an example of such quantum simulations, quantum algorithms for

computing important inputs to heavy-ion physics are discussed: the parton distribution functions

and the hadronic tensor in Sec. 2.4 based on [14] and hydrodynamic transport coefficients in

Sec. 2.5 based on [15].

Quantum algorithms discussed in Chapter 2 reveal the reality — a large-scale quantum

computer, which is not available at the moment, will be required to perform quantum simulations

which can give us insights into non-perturbative nature of QCD. While we wait for such a large-

enough quantum computer to be built, it is of practical importance to push the frontier of lattice

QCD calculations on classical computers. Lattice QCD calculations of the non-equilibrium

properties of QCD possess the so-called sign problem, which means that an exponentially scaling

(in the size of the lattice) computational resource is required for such lattice calculations. Chapter 3

is devoted to investigate methods for solving sign problems in QCD. Firstly, Sec. 3.1 introduces

and defines the real-time sign problem which appears in Minkowski lattice QCD calculations,

which is probably essential for studying aspects of QCD out of equilibrium. The so-called

manifold deformation method [16], a long-standing method to alleviate sign problems, is reviewed

in Sec. 3.2. In Sec. 3.3, we introduce another view of the manifold deformation method —

the complex normalizing flows [17]. The applicability of manifold deformation methods, and

equivalently complex normalizing flows to various sign problems, especially the real-time sign

problem, will be discussed in Sec. 3.4 with examples. Finally in Sec. 3.5, numerical methods

based on machine learning to address sign problems in the framework of complex normalizing

flows will be demonstrated.
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To conclude this thesis, in Chapter 4, I will give an overview of future work that will follow

from projects described in Chapter 2 and Chapter 3.

1.2 Quantum chromodynamics

The degrees of freedom in QCD are, first of all, quarks. Let us denote a quark field at

spacetime x as ψ(x). Each quark field has three indices: Dirac index, color index (which will

be denoted with a, b), and flavor index f . The naive kinetic Lagrangian of three Dirac fermions

L =
∑3

f=1 ψ̄f (iγµ∂µ −m)ψf is invariant under a global SU(3) transformation:

ψa → ψ′a = U(~α)abψb, U(α) = eiα
iT i (1.1)

where T i (i = 1, · · · , 8) denote eight generators of the SU(3) group in the fundamental representation

called Gell-Mann matrices. Generators T i are orthonormalized as

Tr
(
T iT j

)
= δij, i, j = 1, · · · , 8 . (1.2)

Each element U(~α) ∈ SU(3) is parameterized by the eight real numbers denoted as ~α =

(α1, · · · , α8).

We now proceed and impose a local gauge invariance on the Lagrangian of Dirac fermions.

In other words, the naive Lagrangian will be modified so that it will be invariant under a spacetime-

dependent rotation

ψ(x)→ ψ′(x) = U(~α(x))ψ(x) (1.3)

Note that the parametrization of elements of the SU(3) group is now spacetime dependent, i.e.,
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~α(x). For the Lagrangian to achieve such a local symmetry, its kinetic term, ψ̄ γµ ∂µ ψ, needs a

“comparator” of fields at different points in spacetime called the Wilson line:

WP (x, y) = P

[
exp

(
igs

∫ x

y

dzµ Aiµ(z)T i
)]

. (1.4)

Here the gauge fields Aµ = AiµT
i are introduced. The index µ denotes the direction in spacetime.

In the rest of this thesis, when a gauge field is written without a superscript i, that gauge field

is contracted with the Gell-Mann matrices. The strong coupling constant is denoted as gs. The

path-ordered operator P is inserted because the generators T i at different points do not commute.

Under a local gauge transformation, the Wilson line transforms as

WP (x, y)→ W ′(x, y) = U−1(x)WP (x, y)U(y) = e−iα
i(x)T iWP (x, y)eiα

i(y)T i (1.5)

so that the covariant derivative

Dψ(x) = lim
a→0

ψ(x+ a)−W (x+ a)ψ(x)

a
(1.6)

transforms as Dµψ(x) → U(x)Dµψ(x). The kinetic term of quarks, when constructed with the

covariant derivative as ψ̄(x)Dψ(x), is locally gauge invariant. The infinitesimal expansion of the

Wilson line gives the covariant derivative in terms of local gauge fields as

Dµ = ∂µ − igT iAiµ. (1.7)
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and thus the gauge fields should transform in the following way:

Aiµ(x)→ Aiµ(x) +
1

g
∂µα

i(x) + if ijkαj(x)Akµ(x) . (1.8)

Here the structure constants f ijk are defined as [T i, T j] = if ijkT k. The covariant derivative helps

us construct a kinetic term of the gauge fields. Let us introduce the field strength tensor F a
µν as

Fµν = F i
µνT

i =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ + ig [Aµ, Aν ] (1.9)

which transforms in the adjoint representation as Fµν(x)→ U(x)Fµν(x)U−1(x). To summarize,

with the kinetic term −1
4

Tr [FµνF
µν ], a locally SU(3) invariant Lagrangian density of quarks

and gluons is constructed as

L = −1

4
F i
µνF

µν,i +
3∑

a,b=1

ψ̄a
(
iγµ∂µδab + gγµAiµT

i
ab −mδab

)
ψb (1.10)

where the color indices a, b are explicitly written down. The corresponding Hamiltonian of

QCD can be derived by starting from the QCD Lagrangian above and employing the Legendre

transformation or the transfer matrix as will be discussed in Sec. 2.3. The Lagrangian and

Hamiltonian provide us with different formalisms to compute observables of our interests in

QCD. The path integral defined with the Lagrangian has been the major formalism to address

observables in the context of lattice QCD on a classical computer. In the next section, I introduce

the path integral formalism of QCD and its discretization on the lattice.
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1.3 Lattice quantum chromodynamics

1.3.1 Path integral on the lattice

Path integrals [18] provide us a formalism to compute expectation values of observables

in a quantum theory by taking all the possible “paths” for the quantum fields in spacetime. To

build the most general form of the path integral, let us suppose that we would like to compute

the thermal expectation value (at an inverse temperature β) of a Hermitian observable O(t0) at

time t = t0 in QCD. Starting from the Hamiltonian formulation with the QCD Hamiltonian Ĥ ,

we derive the path integral as

〈O(t0)〉 = Tr
[
e−βĤO(t0)

]
= Tr

[
e−βĤeiĤt0Oe−iĤt0

]
(1.11)

=

∫
D
[
ψ̄, ψ, A

]
(x)e−SO(ψ̄(t0), ψ(t0), A(t0)). (1.12)

Here the configuration of quark fields ψ̄ and ψ should be anti-periodic and the gauge fields A

should be periodic due to the trace in the first line. “Time” t can be real (for the real-time

evolution) or imaginary to introduce the finite temperature β. The contour that time t takes in

its complex plane is called the Schwinger-Keldysh contour, and its shape depends on how one

orders the ’time-evolution’ in the first line in Eq. (1.11). In the order of the equation above, the

contour is the “L contour” as is shown in Figure 1.1. Another contour shown in Figure 1.1 is the

“S contour”, which corresponds to ordering the time evolution as Tr
[
e−

β
2
HeiĤt0Oe−β2He−iĤt0

]
.

When on the imaginary time axis, the action S should be the Euclidean action of QCD. When on

the real-time axis, the weight should be eiS instead with the Minkowski action of QCD.
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Figure 1.1: Schwinger-Keldysh L contour on the left and S contour on the right.

Lattice QCD is a non-perturbative numerical method to compute the path integral — a very

high-dimensional integral — without any perturbative expansions [6, 19, 20, 21]. To evaluate the

path integral numerically using a classical computer, we first need to regulate the theory to only

a finite number of degrees of freedom. Thus, we discretize space and time via a lattice. On the

lattice, quark fields live on lattice sites. Gauge fields, which connect quark fields to achieve local

gauge symmetry, are represented by links. In the rest of the thesis, I denote the gauge link starting

at site n and extending in the µ direction as Un,µ, and let it represent the Wilson line on the link:

Un,µ = exp
(
igsA

i
µ(n)T i

)
. (1.13)

Using gauge links and quark fields on sites, we construct the action of QCD on the lattice, which

becomes the naive continuum action in Eq. (1.10) in the continuum limit where we take the

lattice spacing to zero: a → 0. Thus the QCD action on the lattice should preserve the local

gauge symmetry. To construct such an action, it is useful to study the smallest local and gauge-
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invariant object on the lattice. One such object that is constructed purely by gauge links is the

trace of a plaquette Pµν(n) shown in Figure 1.2:

Pµν(n) = Un,µUn+µ̂,νU
†
n+ν̂,µU

†
n,ν . (1.14)

To see what this plaquette represents, we express the plaquette in terms of gauge fields Aiµ at the

center of the plaquette x0 = n + µ̂/2 + ν̂/2. Gauge fields on lattice sites on the plaquette are

written via the Taylor expansion in lattice spacing aµ (the lattice spacing in µ̂ direction) as

Aiµ(n) = Aiµ(x0)− aµ
2
∂µA

i
µ(x0)− aν

2
∂νA

i
µ(x0) +O(a2) (1.15)

and so on. The plaquette is written in terms of the field A(x0) at the center of the plaquette x0

as [22]

Pµν(n) = exp (igsAµ(n)) exp (igsAν(n+ µ̂)) exp (−igsAµ(n+ ν̂)) exp (−igsAν(n))

= exp
(
igsaµaνFµν(x0) +O(a4)

)
(1.16)

By expanding with the lattice spacing a, the plaquette bocomes

Pµν(n) = 1 + igsaµaνFµν(x0)−
g2
sa

2
µa

2
ν

2
Fµν(x0)2 +O(a6) . (1.17)

Therefore, by taking the real part of the plaquette:

Tr
[
Fµν(x0)2

]
=

2

g2
sa

2
µa

2
ν

Re Tr[1− Pµν(n)] +O(a2), (1.18)
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Figure 1.2: Plaquette, clover, and half-clover on the lattice.

we obtain the kinetic term of gauge fields in the naive continuum action Eq. (1.10) at the center

of the plaquette x0. Using Eq. (1.18), the Wilson gauge action [6] in Minkowski spacetime:

SW =
Nt∑
t=1

K(t) + V (t) (1.19)

K(t) =
∑
n

∑
i

a

g2
sa0

Re Tr [1− P0i(n, t)] (1.20)

V (t) =
∑
n

∑
i<j

a0

g2
sa

Re Tr [Pij(n, t)] (1.21)

approximates kinetic term of gauge fields in the continuum Lagrangian Eq. (1.10) up to O(a2)

discretization errors. Here a denotes spatial lattice spacing assuming that the lattice is spatially

isotropic. Lattice spacing in the time direction is denoted as a0. Note that the constant term,

the identity matrix in the trace of Eq. (1.18) was dropped for the potential term V in the Wilson

gauge action.

The fermionic part of the Lagrangian Eq. (1.10) can also be naively written as

SF = a3a0

∑
n

ψ̄(n)

(
4∑

µ=1

iγµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

)
(1.22)
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Therefore the Dirac matrix D(n|m) on the lattice is naively

D(n|m)αi,βj =
4∑

µ=1

i (γµ)αβ
Uµ(n)ijδn+µ̂,m − U−µ(n)ijδn−µ̂,m

2a
+mδαβδijδnm (1.23)

where lattice sitesm,n, Dirac indices α, β, and color indices a, b are explicitly written. This naive

Dirac matrix has the so-called fermion doubling problem [23] which means that the Dirac matrix

has unphysical poles. There are several well-established methods to get rid of such unphysical

modes such as Wilson fermions [6], Kogut-Susskind staggered fermions [24], and domain wall

fermions [25].

After the treatment of the fermion doubling problem, it is convenient for us to integrate out

fermions in the path integral using the Gaussian integral of Grassmann numbers to obtain a path

integral only in terms of gauge fields, for example for the partition function as

Z =

∫
D [U ] det [D] e−SW [U ] . (1.24)

Here the matrix D is the Dirac matrix with a chosen method to treat the fermion doubling

problem. The size of the Dirac matrix scales linearly with the size of the lattice, making the

lattice QCD calculation much more expensive than that of pure Yang-Mills theory.

Having written down the path integral only in terms of gauge fields, we now proceed and

evaluate the path integral numerically. Since the integral is very high dimensional, it is practical

to utilize Monte Carlo methods with importance sampling. For a purely thermal calculation (no

real-time evolution), the weight e−S is always real and positive, and thus can be regarded as

the probability distribution function of the configuration of the gauge fields. One samples Ns
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configurations of gauge links across the lattice from the distribution function e−S via Markov

chain Monte Carlo (MCMC) methods. Using the set of Ns gauge configurations, we evaluate the

expectation value of the observable O by computing the observable with each configuration An

and summing,

〈O〉 =
1

Ns

Ns∑
n=1

O(An) . (1.25)

So far the lattice calculation is done on a lattice with a finite volume and a lattice spacing a for

which we do not know the physical number. In the end, the infinite volume and continuum limits

should be taken. In particular, the taking of the continuum limit a → 0 plays the role of an

ultraviolet renormalization. An appropriate tuning of lattice parameters, such as the mass m and

the coupling constant g, should be performed to maintain the low-energy physics of lattice QCD

while taking the continuum limit.

Euclidean lattice QCD has successfully calculated many aspects of QCD such as the equation

of state at vanishing baryon chemical potential [26]. However, when we include the real-time

evolution, we encounter the factor eiS , which will introduce the so-called real-time sign problem.

When the baryon chemical potential is finite, the Dirac determinant detD causes the finite-

density sign problem [27]. These sign problems have prevented lattice QCD from computing

the equation of state at large baryon chemical potential and non-equilibrium properties of QCD.

Chapter 3 is devoted to the discussion of potential solutions to the real-time sign problem.

1.3.2 Yang-Mills energy momentum tensor on the lattice

In this section, we introduce the energy-momentum tensor (EMT) of Yang-Mills theory on

the lattice [28]. As will be discussed in Sec. 1.4, the energy momentum tensor plays the central

12



role in the construction of hydrodynamics and so as the first-principles calculation of transport

coefficients in hydrodynamics. Therefore it is essential that one understands the discretization of

the EMT of QCD on the lattice. In the action formulation, the EMT is the Noether’s currents for

translational symmetry in space and time. For the Yang-Mills theory in the naive continuum, the

EMT takes the form

Tµν =
1

4
gµν Tr

[
FαβF

αβ
]
− Tr [FµαF

α
ν ] . (1.26)

up to the trace anomaly. The EMT is manifestly gauge-invariant and Hermitian.

On the lattice, each term in Eq. (1.26) should be discretized via a combination of plaquettes

to preserve the local gauge invariance. At the same time, lattice observables should be constructed

such that they approximate the EMT in the continuum on a site up to a desired discretization error

O(an). Let us begin with the first term, which is identical to the terms in the Wilson gauge action

Eq (1.19). In the last section at Eq. (1.18), we saw that the plaquette, when taken the trace as

Re Tr [1− Pµν(n)], approximates the field strength at the center of the plaquette, Tr [Fµν(x0)2],

up to O(a2) error. Therefore the local observable Tr [Fµν(n)2] on a lattice site n is approximated

up to O(a) discretization errors by

Tr
[
Fµν(n)2

]
=

2

g2
sa

2
µa

2
ν

Re Tr[1− Pµν(n)] +O(a) (1.27)

To improve the approximation up to O(a2), we simply take the average of four plaquettes around

the site n:

Tr
[
Fµν(n)2

]
=
∑
x=0,1

∑
y=0,1

1

2g2
sa

2
µa

2
ν

Re Tr[1− Pµν(n− xµ̂− yν̂)] +O(a2). (1.28)
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In the context of quantum simulation, we have two lattice spacings: the spatial lattice spacing

a and the Trotterization step a0. As we traditionally take the Hamiltonian limit a0 → 0 first

in quantum simulations, it is safe to leave the discretization error in time direction at the linear

order and improve the discretization only in the spacial lattice spacing a up to O(a2). Thus for

the terms involving gauge links in the time direction, we take the average of two plaquettes in the

following way:

Tr
[
Foi(n)2

]
=
∑
x=0,1

1

g2
sa

2
µa

2
ν

Re Tr[1− Pµν(n− xî)] +O(a2, a0). (1.29)

This discretization scheme saves us from constructing time-non-local observables of the form

Tr
[
Fµν(n)2

]
=
∑
x=0,1

∑
y=0,1

1

2g2
sa

2
0a

2
i

Re Tr[1− P0i(n− xt̂− yî)] +O(a2). (1.30)

whose corresponding operators are spatially non-local in the Hamiltonian formulation.

The disctretization of the second term in the energy-momentum tensor Eq. (1.26) requires

the disctretization of Fµν itself, which can be done again by combining certain plaquettes. The

most naive discretization of Fµν is

FN
µν(n) = − i

2gsaµaν

(
Pµν(n)− P †µν(n)

)
+O(a) (1.31)

which is correct up to an O(a) error. An improvement of discretization to O(a2) order can be

done again by taking the average of four plaquettes and construct the so-called “clover”

Cµν(n) =
1

4
[Pµ,ν + Pν,−µ + P−µ,−ν + P−ν,µ] (n). (1.32)
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as show in Figure 1.2. By combining clovers in the same way as Eq. (1.31) we obtain the lattice

expression for the second term in Eq. (1.26) as

FC
µν(n) = − i

2gsaµaν

(
Cµν(n)− C†µν(n)

)
. (1.33)

that approximates Fµν(n) up to O(a2) discretization errors. Again in the context of quantum

simulation, it is convenient to ignore the discretization error from finite a0 in the Hamiltonian

limit. This motivates us to define “half-clovers” B (shown in Figure 1.2), which is the average of

two plaquettes in the remaining spatial direction:

Bi0(n) =
1

2

(
Pi0(n) + P0(−i)(n)

)
. (1.34)

By combining these half-clovers, we obtain the discretization of F0i which is correct up to

O(a0, a
2) error as

FB
i0 (n) =

−i
2gsa0a

(
Bi0(n)−B†i0(n)

)
. (1.35)

We can further improve the discretization scheme so that the lattice EMT observables approximate

theEMT in the continuum up to a higher-order O(an) discretization error, by combining larger

plaquettes as were constructed in [22].

1.4 Relativistic hydrodynamics
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1.4.1 Hydrodynamics of ideal fluid

Since the first attempt to simulate the hot quark-gluon-plasma seen in heavy-ion collisions

with relativistic hydrodynamics [29, 30, 31, 32], its transport coefficients, the shear viscosity

and bulk viscosity, have been a key to understanding the non-equilibrium nature of dense quark-

gluon plasma. From the hydrodynamic simulation of heavy-ion collisions fit to the experimental

result, especially the elliptic flow [33], the ratio of the shear viscosity η to the entropy density s

is estimated to be [34]

1

4π
.
η

s
.

2.5

4π
for Tc ≤ T ≤ 2Tc . (1.36)

The estimate is very close to the KSS bound η/s = 1/4π, a conjectured lower bound on the value

of η/s for a wide class of theories [35]. While their are still discussions on the applicability of the

KSS bound (see [36] and references therein), the strongly coupled quark-gluon plasma is called

one of the“most nearly perfect liquid” due to the smallness of η/s. These transport coefficients

are the low energy constants of hydrodynamics, meaning that they are in principle derivable from

first-principles, i.e., QCD and be input to the hydrodynamic description of QCD.

The regime of QCD in which relativistic hydrodynamics serves as an effective theory is

the strongly coupled regime of QCD. Thus non-perturbative methods, such as lattice QCD,

are required to evaluate hydrodynamic transport coefficients. Unfortunately, at the moment,

there is no viable non-perturbative methods to address these LECs. The main theme of this

thesis in later chapters is the construction of lattice QCD methods for computing such non-

equilibrium properties of QCD. To prepare for those chapters, in this section, we briefly review

the basics of relativistic hydrodynamics as an effective theory, derive equations of motion for
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the effective fields: relativistic Euler equations and Navier-Stokes equations, and come to the

relations between LECs and correlators of the energy momentum tensor. Such relations will be

used in lattice QCD methods to evaluate transport coefficients as will be discussed in Section 2.5.

Almost entire discussion in this section is based on Chapter. 2 of the book “Relativistic Fluid

Dynamics In and Out of Equilibrium” by P. Romatschke and U. Romatschke [37]. Following

the convention chosen in the book, in this section, the metric tensor in Minkowski spacetime is

chosen to be mostly-plus:

gµν = diag(−1, 1, 1, 1) , (1.37)

and we consider specifically 3 + 1-dimensions.

In a relativistic theory, Lorentz symmetry requires the following conservation laws:

∇µT
µν = 0 . (1.38)

Thus central steps in building relativistic hydrodynamics is to construct the energy momentum

tensor Tµν in terms of the hydrodynamic fields, yet to be chosen, while respecting Lorentz

symmetry. As we are interested in the long-wave-length behavior of the system, we construct the

EMT order by order in a derivative expansion (with respect to space and time) of the hydrodynamic

fields. In fact, in momentum space, these derivatives pull down factors of the momentum scale

kn for nth order derivatives and the EMT will be written as the small k expansion. Let us denote

the nth order term in the EMT as T µν(n) such that the EMT will be constructed as

T µν = T µν(0) + T µν(1) + · · · . (1.39)
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When constructing the EMT, we should do so such that the symmetry in the original theory, i.e.,

Lorentz symmetry, is preserved at each order n. Thus, the task is, at each order, write down all

possible combinations of the hydrodynamic fields with the right number of derivatives. When

combining such terms to build T µν(n), coefficients (LECs) need to be introduced. These are the

transport coefficients defined by the construction of relativistic hydrodynamics, and their physical

meaning will be given by solving the resulting equation of motion Eq. (1.38). In the following,

we work out the expressions for T µν(0) and T µν(1) .

To start the costruction of the zeroth order EMT, let us introduce a Lorentz scalar ε, Lorentz

vector uµ, and the metric tensor gµν in Eq. (1.37). We choose the Lorentz vector to be the time-

like eigenvector of the EMT, 〈T µν〉, and Lorentz scalar be the corresponding eigenvalue:

〈T µν〉uν = −εuµ (1.40)

Here the expectation value of the EMT is that of the underlying quantum system in equilibrium

in Minkowski spacetime. The eigenvector is normalized to be uµuµ = −1.

By writing down all possible terms with no derivatives while respecting Lorentz symmetry,

one finds that Tµν takes the following general form:

T (0)
µν = f1(ε)uµuν + f2(ε)gµν (1.41)

where f1(ε) and f2(ε) are scalar function of the Lorentz scalar ε. So far none of coefficients

f1(ε), f2(ε) have been identified. Now let us perform a Lorentz boost and bring the EMT to the

local rest frame. The Lorentz vector is uµ = (1, 0, 0, 0) in the local rest frame and thus the EMT
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takes the form

T µν(0),LRF = diag (f1(ε)− f2(ε), f2(ε), f2(ε), f2(ε)) . (1.42)

In the local rest frame, the expectation value of the EMT is

〈Tµν〉LRF = diag (ε, P, P, P ) (1.43)

where ε and P (ε) are the equilibrium energy density and pressure to be computed from the

underlying quantum theory. The coefficients f1(ε) and f2(ε) are identified by matching Eq. (1.42)

and Eq. (1.43). The result is f1(ε) = ε+ P (ε), f2(ε) = P (ε). Thus the energy momentum tensor

of zeroth order relativistic hydrodynamics is

T (0)
µν = (ε+ P )uµuν + P gµν (1.44)

where the Lorentz scalar ε is identified as the local energy density. The Lorentz vector uµ can

be identified as the local fluid velocity. In addition to these hydrodynamic fields, we introduced

another Lorentz scalar P which is identified as the equilibrium pressure. This equation of state

P (ε) is not fixed in the framework of hydrodynamics. The equation of state is in fact the “zeroth

order transport coefficient”, which needs to be computed from the underlying quantum theory or

extracted from experiment and be input to the hydrodynamic description above.

The equation of motion for ideal fluid dynamics,

∇µT
µν
(0) = 0 , (1.45)
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is the relativistic Euler equation. To derive it, it is convenient to introduce the following tensor

∆µν = gµν + uµuν (1.46)

which is orthogonal to the vector uµ. The vector uµ and tensor ∆µν project the equation of motion

Eq. (1.45) separately into time-like and space-like components. In fact, in the local rest frame,

uµLRF = (1, 0, 0, 0) and ∆µν
LRF = diag(0, 1, 1, 1). The time-like component of the Euler equation is

uν∇µT
(0)
µν = − (ε+ P )∇µu

µ − uµ∇µε = 0 . (1.47)

where uµ∇νu
µ = 0 was used. The space-like projection reads

∆µα∇µT
(0)
µν = (ε+ P )uµ∇µuα + ∆µα∇µP = 0 . (1.48)

Let us introduce short-hand notations of the projection of the derivatives

Dh ≡ uµ∇µ, ∇α
⊥ ≡ ∆µα∇µ . (1.49)

The second term in Eq. (1.48) can be written with the energy density using cs(ε) ≡
√

∂P
∂ε

and

thus Eq. (1.47) and Eq. (1.48) become

(ε+ P )∇µu
µ +Dhε = 0, (ε+ P )Dhu

α + c2
s∇α
⊥ε = 0 . (1.50)

In the non-relativistic limit: |~v| � 1 and P � ε, equations become the continuity equation for the
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time-like projection and non-relativistic Euler equation for the space-like projection respectively:

∂tε+ ~v · ∂ε+ ε∂ · ~v = 0, ε∂t~v + ε~v · ∂~v + ∂P = 0 . (1.51)

These equations govern the time evolution of the underlying quantum system in the ideal hydrodynamic

description.

1.4.2 Hydrodynamics of nearly ideal fluid

The goal of this section on relativistic hydrodynamics is to derive expressions for correlation

functions of the EMT evaluated on a thermal state such as

〈T 01(t, k)T 01(0, k)〉 ∝ e−
ηk2

ε
t , (1.52)

which tell us how one computes the first order hydrodynamic coefficients, the shear viscosity η

and the bulk viscosity ζ , from the underlying quantum theory. This equation tells us about how

the fluid responds to a small perturbation by T 01. To study such a linear response, we need to

consider the system slightly out of equilibrium. The energy momentum tensor should encode

the slight change in ε, uµ over space and time by including the next order EMT T µν(1) . Within the

first-order hydrodynamic effective theory, the hydrodynamic fields are again introduced as the

time-like eigenvector and its eigenvalue of the Tµν

uµ〈T µν〉 = −εuν (1.53)
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where the expectation value of T µν is now that of the underlying quantum theory slightly out of

equilibrium. Since T µν(1) is a symmetric tensor, we only need to list symmetric two-rank tensor as

candidate terms. These are

∆µν∇⊥λ uλ and ∇⊥(µuν) =
1

2

(
∇⊥µuν +∇⊥ν uµ

)
. (1.54)

For later convenience, we introduce two linear combinations of these two terms:

∆µν∇⊥λ uλ and σµν = 2∇<µ
⊥ uν> − 2

3
∆µν∇⊥λ uλ (1.55)

The second term σµν is traceless, i.e., gµνσµν = 0. We now write down the first-order EMT with

these two terms while introducing new coefficients η and ζ:

T µν(1) = −ησµν − ζ∆µν∇⊥λ uλ . (1.56)

This equation is the definition of the shear viscosity η and the bulk viscosity ζ . The expression for

EMT in the local rest frame again tells us what P (ε) is. The trace of the EMT should be compared

to the trace of the expectation value 〈T µν〉 of the quantum system slightly off the equilibrium.

The trace of the EMT is

(
T µν(0) + T µν(1)

)
gµν = −ε+ 3

(
P (ε)− ζ∇⊥λ uλ

)
(1.57)

which should match ε − 3P of slightly out of equilibrium. So by convention, one can choose

to consider P (ε) still as the equation of state for the quantum system in equilibrium, and put all
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non-equilibrium corrections to the contribution from T µν(1) , which is −ζ∇⊥λ uλ. When the system

of our interest is slightly-out-of-equilibrium, the correction from T µν(1) is small.

The conservation of the EMT of first-order relativistic hydrodynamics,

∇µ

(
T µν(0) + T µν(1)

)
= 0 , (1.58)

gives the relativistic Navier-Stokes equations. Again using projections, along uµ, one obtains

Dhε+ (ε+ P )
(
∇⊥λ uλ

)
− ησµν∇µuν − ζ

(
∇⊥µuµ

)2
= 0 (1.59)

where uµσµν = 0 was used. For the projection ∆µα, we obtain

(ε+ P )Dhu
α + c2

s∇α
⊥ε−∆α

ν∇µ

(
ησµν + ζ∆µν

(
∇⊥λ uλ

))
= 0. (1.60)

In the non-relativistic limit |~v| � 1 with the assumption that η, ζ are constant, the equations

become the continuity equation and non-relativistic Navier-Stokes equation:

∂tε+ ~v · ∂ε+ ε∂ · ~v = 0 (1.61)

ε∂t~v + ε~v · ∂~v + ∂P = η∂2~v +

(
ζ +

1

3
η

)
∂ (∂ · ~v) . (1.62)

First order hydrodynamics governed by the continuity equation and Navier-Stokes equation is

expected to give a good description of strongly coupled systems such as QCD at a finite temperature.

The inputs to this effective theory, the equation of state P (ε) and viscosities η(ε), ζ(ε), can in

principle be computed from QCD. As these transport coefficients are defined within the framework
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of hydrodynamics, it is relativistic hydrodynamics which teaches us about useful correlation

functions from which one extracts those coefficients in first-principles calculations. The next

section detailes the derivation of such correlation functions.

1.4.3 Hydrodynamic collective modes

Now that we have obtained the equations of motion for the hydrodynamic fields in Sec. 1.4.2,

let us solve them and find the expressions for correlation functions of the energy momentum

tensor. I start with non-relativistic hydrodynamics as a warm-up [38]. Let us consider an

incompressible and homogeneous fluid governed by the Eq. (1.62). The pressure term ∂P

vanishes because of homogeneity ∂ε = 0, and the last term is also not relevant because ∂ · ~v = 0

for an incompressible fluid. As an initial condition, I consider a plane wave in x direction:

~v(~r, 0) = (u0 cos(kz), 0, 0) . (1.63)

The y and z-component of the velocity field will remain zero, and only the x-component needs

to be considered:

∂vx(z, t)

∂t
=
η

ε

∂2vx(z, t)

∂z2
. (1.64)

The solution for vx(~r, t) is

vx(~r, t) = u0 e
− ηk

2

ε
t cos(kz) (1.65)

Thus, by applying a small perturbation to the velocity field and measuring the exponentially

decaying amplitude of the velocity field, the viscosity η with a specific momentum k is extracted.

Ultimately we can take the infinite-volume limit k → 0, where the viscosity η is defined.
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We would like to find correlators of the same kind in relativistic hydrodynamics as well. In

the following, we solve the relativistic Navier-stokes equations via the variational approach [39]

instead of adding fluctuation to the conserved quantities such as ε and uµ [40]. The variational

approach has an advantage of allowing us to access correlation functions of all components of

the EMT. In the canonical approach utilized above, components such as T 12 cannot be addressed

due to the lack of the corresponding conserved quantity. In the variational approach, we add

perturbation to the metric tensor gµν , which is the source for the EMT. This means that the

retarded two-point correlator of the EMT in flat space can be derived as

Gµν,µν = −2
δT µν

δgµν

∣∣∣∣
g=gµν

. (1.66)

Thus we consider adding a small fluctuation δµν to the Minkowski metric gµν and compute the

change in T µν up to the linear order in the perturbation. In practice, it is convenient to add the

fluctuation in one special direction and work in momentum space:

hµν = gµν + δµνe−iωt+kzz . (1.67)

The expression for T µν with the background metric hµν , T µν(hµν), should be derived up to the

first order in δµν to give an expression for δT µν in Eq. (1.66). Note that not only the metric

but also the hydrodynamic fields ε and uµ will have corrections due to δµν , and they need to be

included while deriving the expression for δT µν . Now we follow Eq. (1.66) and come to the
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following correlation functions in momentum space [39]:

G00,00(ω, k) = −2ε0 +
k2 (ε0 + P0)

iγsωk2 + ω2 − c2
sk

2
(1.68)

G01,01(ω, k) = ε0 +
ηk2

iω − γηk2
(1.69)

G12,12(ω, k) = P − iηω (1.70)

where γ coefficients are

γη =
η

ε0 + P0

, γs =
4η

3 (ε0 + P0)
+

ζ

ε0 + P0

(1.71)

Here ε0 and P0 are the equilibrium energy density and pressure respectively. The physical

meaning of γ coefficients become clearer after Fourier transformation in time. For example,

by applying the Fourier transformation ω → t to G01,01, one obtains

G01,01(t, k) ∝ e−γηk
2t , (1.72)

meaning that γη represents the damping length of shear modes. In the same manner γs is identified

as the damping length of sound modes. The Green-Kubo formula can be derived from Eq. (1.70):

lim
ω→0

∂G12,12(ω, k = 0)

∂ω
= −iη. (1.73)

These equations give prescriptions for evaluating the viscosity from first-principles, provided

that we can compute these correlation functions. Those correlators of T µν should be computed

in position space or momentum space, depending on the underlying theory of our interest and
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available methods. In the context of lattice field theories, numerical calculations of such correlators

are often done in position space. Therefore Eq. (1.68,1.69) are easier to evaluate — the Green-

Kubo relation in the position space becomes the delta function in time and it may not be practical

to compute such a singular function numerically on the lattice.

As is mentioned at the beginning of the section, the KSS conjecture provides a conjectured

lower bound on the ratio η/s ≥ 1
4π

. The bound is provided by the value of η/s in the N = 4

SU(N) Supersymmetric Yang-Mills theory in the limit of N → ∞ and the coupling constant

g → ∞. In this theory, the calculation of correlators Eq. (1.68,1.69,1.70) can be done via the

AdS/CFT correspondence [41] — one computes correlators in the bulk which is the classical

gravity in Anti de Sitter space, and uses the dictionary [42, 43] to obtain the corresponding

correlators for the N = 4 Supersymmetric Yang-Mills on the boundary. The results are [44, 45]

G01,01(ω, k) =
N2πT 3k2

8
(
iω − k2

4πT

) (1.74)

G12,12(ω, k) = −N
2T 2

16
(2iπTω + k2) (1.75)

from which we find that η/s = 1
4π

. Conformal invariance guarantees that the trace of the EMT

vanishes, and thus so as the bulk viscosity, i.e. ζ = 0.

We conclude the section by remarking that there are potential corrections to relations in

Eq. (1.68,1.69,1.70). Firstly, when we consider higher-order hydrodynamics T µν(2) · · · , there will

be polynomial corrections to the numerator and denominator of Eq. (1.68,1.69,1.70), and so as to

the exponent of Eq. (1.72). Secondly thermal fluctuations are believed to introduce polynomial

corrections ∼ tn to the correlator in time in Eq. (1.72). When such corrections are present,

what we extract from a correlator of the EMT computed from the underlying quantum theory
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represent the viscosity with finite volume effects or the effective viscosity in the presence of

thermal fluctuations.
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Chapter 2: Quantum simulation

2.1 Overview

Collider experiments have given us wealth of opportunities to observe rich phenomena

in high energy physics. It is of great theoretical interest to compute observables measured in

experiments and confirm whether the fundamental theories successfully explain experimental

results. For such tasks, a quantum computer has the promise of playing a unique role [46].

After all, a quantum computer, once built with sufficiently limited noises, can be thought of as a

very finely tuned laboratory to study the time-evolution of a quantum system. Thus in principle,

given an enormous quantum computer, one can simulate a whole scattering experiment on a

quantum computer [47] and compare the outcome — the measurement on the quantum computer

— to experimental results. To start an overview of such quantum simulations, it is helpful to

decompose a quantum simulation of a collision experiment or any other real-time dynamics of a

quantum system into the following five building blocks, as is also roughly sketched in Figure 2.1:

1. Representation of quantum system on qubits

The Hilbert space of a quantum system to be simulated needs to be mapped onto the Hilbert

space of qubits on a quantum computer. To start with the simplest example, the mapping
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Figure 2.1: A schematic view of the quantum simulation of a quantum system.

of the quantum Ising model is “one to one” — the Hilbert space of a spin is mapped on to

that of a qubit. Fermionic fields also have natural mappings to the qubits [48, 49, 50, 51].

For quantum fields with higher-dimensional local Hilbert space, one needs more number of

qubits per point in space to represent them. The dimension of the Hilbert space of N qubits

is 2N . Therefore a minimum number of qubits required to fully represent a d-dimensional

Hilbert space is log2 d. Bosonic fields have an infinite-dimensional Hilbert space on each

point in space. Such Hilbert space needs to be approximated to be mapped onto a finite

number of qubits. Ideas for such truncation includes: crystal-like subgroups [52, 53, 54,

55, 56], momentum space truncation [57, 58, 59], and the prepotential formalism [60, 61,

62, 63, 64, 65].

2. Time evolution via local unitary gates

As our interest is in simulating the time-evolution of quantum systems, one needs to

implement the time-evolution operator e−iHt via primitive quantum gates on the quantum

computer, most of which act on only 1 or 2 qubits. The time-evolution operator, when
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applied to the qubits representing a quantum system, should (approximately) update the

wave function on those qubits following the Hamiltonian of the quantum system. Utilizing

the fact that quantum systems of our interest often possess only local interactions, the

time-evolution operator can be approximated by a sequence of local unitary operations via

the Suzuki-Trotter formula. Trotterized time-evolution circuits have been discussed for

Abelian theories in, e.g. [66, 67, 68, 69, 70, 71, 72, 73, 74] and non-Abelian gauge theory

in [75, 76, 77, 78].

3. Initial state preparation

Before we apply the time-evolution operator to qubits, one needs to prepare an initial

state of our interest. In the context of lattice QCD simulation, the initial state can be, for

example, the ground state, a proton at rest, or a thermal state of QCD at a finite temperature.

A quantum circuit for preparing such a particular initial state needs to be designed and

applied to qubits prior to the time evolution. The state preparation circuit is likely to make

use of the time-evolution operator, and thus can be as costly as the time evolution itself.

Ideas for the ground state preparation include: variational algorithms [79, 80], Quantum-

Phase-Estimate [81, 82], Adiabatic algorithms [83], and spectral combing [84]. Thermal

state preparation methods include classical-quantum hybrid algorithms [85, 86] and the

quantum refrigerator [15].

4. Measurement

After the time-evolution, expectation values of operators of our interest should be measured.

The construction of this building block involves several different tasks, depending on the

goal of one’s quantum simulation. Examples for tasks are finding useful operators to
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measure and building efficient methods to extract final results from the measurement. In

later sections, measurement algorithms for parton distribution functions [14] and hydrodynamic

coefficients [15] are detailed.

5. Error correction algorithms

In this thesis, those four building blocks above are built with the assumption that the

quantum computer is noiseless, which is not the case in reality. In actual quantum simulations,

error correction algorithms are necessary to obtain physically interesting results with a high

precision. Error correction algorithms can be general, or can target specific kinds of error

that are expected to be significant in lattice QCD, such as gauge-violating errors [87, 88,

89].

These are the five basic building of quantum simulations of quantum systems. Given one’s goal

of a quantum simulation, the map above lists a set of quantum algorithms needed to be built. For

example, if one’s interest is in the quantum simulation of an entire heavy-ion collision, then qubits

should represent the Hilbert space of lattice QCD or its effective theories. The time evolution

operator should be implemented via the Hamiltonian of lattice QCD or its effective description.

As the QCD Hamiltonian only consists of local interactions, the Suzuki-Trotter formula enables

us to implement the time-evolution as a sequence of local operations. The initial state should be

two well-separated large nuclei heading towards each other with a high momentum, and species

of freely streaming hadrons should be measured in the end. This observation makes it clear that

we will need an enormous volume of lattice QCD and thus an enormous number of qubits and

gates to simulate a heavy-ion collision on a quantum computer.

The state of art is that we do not have such a large-scale quantum computer. Still one can
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access important information about heavy-ion collisions without a full simulation of a heavy-ion

collision using less quantum resources. To do so, it is useful to describe a heavy-ion collision

stage by stage via effective theories. A heavy-ion collision can be thought of as a sequence of

stages, each of which has an effective description. Quantum simulations of each stage in a heavy-

ion collision with an appropriate effective theory is expected to require less quantum resources

— first of all, the quantum simulation does not need to collide a pair of well-separated nuclei, but

instead describes the nuclear matter of the size ∼ 10fm3. Important information extracted from

such stage-by-stage quantum simulations will be combined to provide us to a better understanding

of heavy-ion collisions. Regarding heavy-ion collisions, two relevant effective descriptions are

parton distribution functions (PDFs) and relativistic hydrodynamics. PDFs help us describe the

initial high-energy collision of two large nuclei. Relativistic hydrodynamics provides a good

description of the middle stage of the collision, a dense quark gluon plasma, before the fireball

becomes a dilute gas of hadrons. The final stage of a collision, dilute gas of hadrons, is well

described by the kinetic theory for which we need no quantum simulations. In the quantum

simulation of the PDFs and the hydrodynamic coefficients, the same representation of lattice

QCD on qubits and time evolution operator via the QCD Hamiltonian can be utilized. On the

other hand, initial state preparation and measurement algorithms differ between the PDFs and the

transport cofficients. In the rest of the section, I first summarize the representation of lattice gauge

theories on qubits in Sec. 2.2 and time evolution in Sec. 2.3. Then I discuss state preparation

algorithms and measurement methods for PDFs in Sec. 2.4 and relativistic hydrodynamics in

Sec. 2.5.
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2.2 Representation of lattice gauge theory

To start a quantum simulation of a quantum system, qubits on a quantum computer should

represent the Hilbert space of the quantum system. When one’s interest is the first-principle

simulation of the time-evolution of nuclear matter, the quantum system to be simulated is ultimately

lattice QCD. In this section, I construct the Hamiltonian formulation of the bosonic part of lattice

QCD, which is lattice gauge theory [24, 90]. This section is based on [13], in which general

methods for simulating gauge theories together with scalar matter fields and fermionic fields are

detailed.

I consider a general lattice gauge theory with gauge group G. The Hilbert space of a link

is the complex vector space HG spanned by vectors |g〉 representing each element of the group

g ∈ G. The entire Hilbert space of multiple gauge links is constructed by the tensor product of

HG. The Hilbert space of L gauge links is simply H = H⊗LG . Thus when mapping the Hilbert

space of a lattice gauge theory, it is natural to map each linkHG to a set of qubits (G-register) by

assigning each element g ∈ G to the basis states in the G-register.

For discrete groups, it is rather straightforward to implement their G-registers — a finite

number of elements in G are each mapped to basis in a set of Nq qubits which possesses 2Nq

dimensional Hilbert space. For example, to represent a Z2 lattice gauge theory, one qubit is

enough per each link. For higher-dimensional gauge groups, the dimension of the Hilbert space of

G-register needs to be larger than the dimension of the group G. While satisfying this constraint,

an efficient way of mapping the local Hilbert space HG to qubits can be studied so that the

implementation of the time-evolution operator can be done as simply as possible.

How do we map the Hilbert space HG of gauge groups with infinite number of elements
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such as SU(N) groups? There is no way to perfectly map such a Hilbert space onto qubits since

there are only finite number of them. Thus the Hilbert space of each gauge link needs to be

truncated to be mapped on to a finite number of qubits. As was mentioned in the last section,

there are several methods proposed to truncate the Hilbert space of gauge theories [52, 53, 54,

55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65].

With a G-register implemented for each gauge link, qubits represent the entire Hilbert

space including both physical and unphysical subspaces. As our interest is only in physical

states, we shall discuss a gauge-symmetrization operator, which projects any states in the entire

Hilbert space onto the physical subspace HP . On a lattice with N sites, there is an element

Vi ∈ G assigned on each site. The transformation rule for a gauge link Uij from site i to

j is Uij → VjUijV
†
i . Given a set V ∈ GN of elements on N sites, let us denote the gauge

transformation as φ(V )|Uij · · · 〉 = |VjUijV †i · · · 〉. All states connected by φ(V ) for all V ∈ GN

are physically equivalent, and they together form the gauge orbit. The physical space is then

HP = H⊗LG /φ(G⊗N). The projection of a state to the physical subspace is done by a gauge

symmetrization operator:

P |U12 · · · 〉 =
1

|G|N

∫
G

dV1 · · ·
∫
G

dVN |V2U12V
†

1 · · · 〉 =
1

|G|N

∫
GN

dV φ(V )|U12 · · · 〉 (2.1)

An implementation of the operator P for U(1) gauge theory is given in [91].

Since the entire Hilbert space is much larger than the physical subspace, it might seem

to be a waste of qubits to map the entire Hilbert space onto qubits. However, the efficiency

of representation methods of lattice gauge theories should not be discussed based only on the

qubit cost at first glance. The efficiency of representation methods should be investigated while
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considering other costs present in the entire quantum simulation. For example, the number

of qubits one needs to achieve a certain small lattice spacing and the complexity of the time

evolution circuit both depend on methods for representing lattice gauge theories. The search

for an efficient formalism for the quantum simulation of gauge theories is a very active area

of research. Regarding the gauge invariance of quantum simulations in the presence of the

unphysical subspace, states of our interest to measure observables for as well as observables

themselves are gauge-invariant. As the Hamiltonian for lattice gauge theories (which will be

constructed in Eq. (2.19) in the next section) and thus time-evolution operator are strictly gauge-

invariant, as long as one starts with an gauge-invariant initial state, the final state on a quantum

computer is guaranteed to be gauge invariant. Therefore one obtains physically meaningful

results by measuring gauge-invariant observables on the final state, even though the state in the

middle of unitary gate operations is not expected to be gauge invariant. With the presence of

noises in the middle of the quantum simulation, the final state is likely to contain gauge-violating

states. Such errors can be reduced by applying quantum error correction algorithms for taming

gauge-violating errors [87, 88, 89].

2.3 Time evolution

2.3.1 Hamiltonian of lattice gauge theories

Quantum simulations consists of the Hilbert space (qubits) and operators to act on it (unitary

gates). Now that the Hilbert space of a lattice gauge theory is mapped onto that of qubits, we

should construct the most important operation to these qubits — the time evolution operator

— via quantum gates. For that, we first need the expression for the Hamiltonian of lattice
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gauge theory. In the following, we focus on lattice SU(3) gauge theory, and generalize the

expression for its Hamiltonian to a general lattice gauge theory in the end. One way to obtain

lattice SU(3) Hamiltonian is to derive one from the action of lattice gauge theory, e.g. Wilson

action in Eq. (1.19):

SW =
Nt∑
t=1

K(t) + V (t) (2.2)

K(t) =
∑
n

∑
i

a

g2
sa0

Re Tr [1− P0i(n, t)] (2.3)

V (t) =
∑
n

∑
i<j

a0

g2
sa

Re Tr [Pij(n, t)] (2.4)

through the transfer matrix T̂ = e−iĤ [90] which is defined to act on the entire Hilbert space [13].

The Hamiltonian formulation and action formulation of a quantum theory are connected by the

Trotterization:

〈Ut|e−iĤt|U0〉 =

∫
DU〈Ut|P̂ T̂ |Ut−1〉 · · · 〈U1|P̂ T̂ |U0〉 =

∫
DU eiS . (2.5)

Here DU means the all “paths” for spacial gauge links are taken while respecting the boundary

condition U0 and Ut for the initial and final states respectively. For this equality to hold with the

lattice action for SU(3) gauge theory, the following must be true:

〈U ′|T̂ |U〉 = ei(K(t)+V (t)) = e
i
∑
n

(
a

g2sa0

∑
i Re Tr

[
1−Un,iU

′†
n,i

]
+
a0
g2sa

∑
i,j Re Tr

[
Un,iUn+î,jU

†
n+ĵ,i

U†n,j

])
.

(2.6)

When one inserts this relation to Eq. (2.5) without the projection operator P at each time slice

in Eq. (2.1), one recovers the path integral with the Wilson action Eq. (2.2) where the temporal

37



gauge links are set to the identity. To reproduce the Wilson gauge action with arbitrary temporal

gauge links, we insert the projection P at each time slice. To demontstrate, for the kinetic term

on a link Uab from site a to site b, the transfer matrix’s matrix elements are

〈U ′ab|T |Uab〉 = e
i a

g2sa0
Re Tr

[
1−UabU

′†
ab

]
, (2.7)

which will yield a kinetic term with the identity on temporal gauge links in the action formulation.

By inserting the projection operator, the matrix elements become

〈U ′ab|TP |Uab〉 =

∫
G

dga

∫
G

dgb e
i a

g2sa0
Re Tr

[
1−g†a Uab gb U

′†
ab

]
, (2.8)

which now encodes the integral over the temporal gauge links as is usually seen in the path

integral in Eq. (1.24). Thus by inserting projection operators at each time slice, the resulting path

integal formalism obtains temporal gauge degrees of freedom.

The equation above, Eq. (2.6), in principle defines the Hamiltonian for the lattice SU(3)

gauge theory. To transfer the Hamiltonian to a useful form as an operator, I would like to find an

expression for Ĥ which acts on the Hilbert space (so either 〈U ′| or |U〉) and realizes the equality

Eq. (2.6). For this purpose, let us introduce two kinds of basic operators. One is the gauge link

operator Un,i which is diagonal in the “position” basis:

Ûn,i|Un,i〉 = Un,i|Un,i〉 (2.9)

Note that gauge link operators are defined only for gauge links in spatial direction (i = x, y, z),

as gauge links in the temporal direction Un,t do not exist in the Hamiltonian formulation. The
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gauge link operators transform as

Ûn,i → g−1

n+î
Ûn,i gn (2.10)

The second kind of operator is the conjugate operator of Un,i which we denote as πn,i. They are

not diagonal in the position basis:

R̂n,i(g)|Um,j〉 =


|g Um,j〉 when m = n and i = j

|Um,j〉 otherwise

(2.11)

with

R̂n,i(g) = eix
aπ̂an,i . (2.12)

Here, xa are eight real numbers parameterizing the group element g ∈ SU(3), and πa are eight

Hermitian operators associated with xa. Using these primitive operators, one finds an expression

for the transfer matrix operator T̂ which satisfies the relation Eq. (2.6):

T̂ =

∫
g∈G

∏
n,i

[
dgn,i R̂n,i(gn,i)

]
e
i a

g2sa0

∑
n,i Re Tr[1−g†n,i]+iV̂ . (2.13)

Here, V̂ is simply the operator version of the potential term in Eq. (2.4) obtained by converting

all links in V (t), which are spatial, to the corresponding link operators Û . Note that temporal

gauge links An,0 are set to zero, and this is the convention I take in the rest of the thesis. Now

that the transfer matrix is written with operators, in principle, one can obtain the Hamiltonian by

taking Ĥ = − log(T̂ ). However, to obtain an even more useful expression for the Hamiltonian,
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one can further simplify the expression for T̂ by taking the Hamiltonian limit a0 → 0 before we

take the logarithm. For that purpose, let us rewrite g with real parameters xa

T̂ =

∫ π

−π

∏
n,i,a

[
dxan,i e

ixan,iπ̂
a
n,i
]
e
i a

g2sa0

∑
n,i Re Tr

[
1−eix

a
n,iλ

a]
+iV̂

. (2.14)

In the a0 → 0 limit, the integral can be evaluated by the saddle point approximation. The

saddle point is x = 0 and its gauge-equivalent points that form the gauge orbit. Since the whole

expression of T̂ is gauge invariant, we simply take the saddle point to be x = 0 and obtain

T̂ ∼
∫
dx e

ixρπ̂ρ+ ia

2g2sa0
xρxρ+iV̂

= Ne−ia0
g2s
2a
π̂ρπ̂ρ+iV̂ . (2.15)

Here a compact notation for indices is introduced as ρ ≡ (n, i, a). Now it is straightforward to

take the logarithm of T̂ to obtain the Hamiltonian. The resulting Kogut-Susskind Hamiltonian [24]

is

ĤKS =
g2
s

2a

∑
n,i,a

π̂an,iπ̂
a
n,i −

1

g2
sa

∑
n
i<j

Re Tr
[
P̂ij(n)

]
. (2.16)

By introducing the operator

π̂n,i = π̂an,iT
a (2.17)

which transform as

π̂n,i → g−1
n π̂n,i gn, (2.18)
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under the gauge transformation, the Hamiltonian can be written as

ĤKS =
g2
s

2a

∑
n,i,a

Tr[π̂2
n,i]−

1

g2
sa

∑
n
i<j

Re Tr
[
P̂ij(n)

]
. (2.19)

This is the Hamiltonian of lattice SU(3) gauge theory. Note that each term is gauge-invariant

under the transformation by Eq. (2.10) and Eq. (2.18), which will guarantee the gauge-invariance

of the time-evolution operator after Trotterization, as will be discussed in the next section. Hamiltonians

of general lattice gauge theories with gauge group G take the same form Eq. (2.19). The gauge

link operators are as defined in Eq. (2.9) so that they are diagonal in the position basis of the group

G. Operator πn,i is the momentum operator conjugate to Un,i and π2
n,i is the Laplace-Beltrami

operator on the surface G.

2.3.2 Suzuki-Trotterization

In this section, I decompose the time evolution operator into local time evolution operators

via Trotterization and implement them using four primitive circuits [13]:

1. Inversion gate. This gate acts on a single G-register and changes the register to its inverse:

U−1 |g〉 =
∣∣g−1

〉
. (2.20)

2. Multiplication gate. This gate acts on two G-registers and multiplies the second register

by the first register:

U× |g〉 |h〉 = |g〉 |gh〉 . (2.21)
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3. Trace gate. This gate acts on a single G-register and obtains the trace of the register

UTr(θ) |g〉 = eiθRe Tr g |g〉 . (2.22)

4. Fourier transformation gate. This gate acts on a single G-register and transforms it into

the Fourier space:

UF
∑
g∈G

f(g) |g〉 =
∑
ρ∈Ĝ

f̂(ρ)ij |ρ, i, j〉 (2.23)

These primitive gates allow us to construct the time evolution of the lattice gauge theory with its

Hamiltonian in Eq. (2.19).

The time-evolution operator U(t) = e−iĤt is an operator that acts on the entire Hilbert

space, which cannot be implemented efficiently via primitive gates on a quantum computer —

usually they perform only 1, 2 or 3-qubit operations. To construct an approximate operator for

the time-evolution via primitive gates available on a quantum computer, we employ the Trotter-

Suzuki formula:

UTS(t) =
∏
t/∆t

e−iHK∆te−iHV ∆t. (2.24)

Note that the Trotterization does not break gauge invariance at any orders in ∆t since each term

in the Hamiltonian is gauge invariant. The Trotterization approximates the exact time evolution

operator up to O(∆t2) or O(∆t3), depending on the order of kinetic and potential terms in the

Trotterization. As the kinetic term HK and the potential term HV each consists of mutually

commuting operators, time-evolution via those terms can be written as a product of local time-
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Figure 2.2: A quantum circuit for the potential part of the time evolution operator U (1)
V (i, j).

evolution:

e−iHK∆t =
∏
〈ij〉

U (1)
K (i, j), U (1)

K (i, j) = e−i
g2

2a
π2
ij∆t (2.25)

and

e−iHV ∆t =
∏
p

U (1)
V (p), U (1)

V (p) = e
i 1
g2a

Re Tr[Pµν(n)]∆t. (2.26)

Operators U (1)
K (i, j) can be applied in any order within e−iHK∆t as they commute with each other;

likewise for operators U (1)
K (i, j) in e−iHV ∆t.

The potential part of the time evolution U (1)
V is constructed with the multiplication gate

and trace gate and the help of an ancillary register: we prepare the product of four links of the

plaquette and then apply the trace gate UTr(
1
g2a

). The circuit is shown in Figure 2.3.2. Note that

the circuit in Figure 2.3.2 prepares the product of four links on one of those link instead on an

ancillary register.

The kinetic part U (1)
K is constructed via the Fourier transformation gate for to diagonalize

the operator and then a diagonal unitary:

U (1)
K (i, j) = UFUphaseU

†
F . (2.27)
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The construction of the phase gate depends on the group G, its truncation if necessary, and how

one implements of the G-register. Once the G-register is designed, the phase gate should be

constructed so that it gives an appropriate phase to all eigenstates in the momentum basis.

The number of circuits needed to perform the time evolution of a lattice gauge theory with

NL links and NP plaquettes are:

U−1 : 6NP
T

∆t
, U× : 6NP

T

∆t
, UTr : NP

T

∆t
(2.28)

UF : 2NL
T

∆t
, Uphase : NL

T

∆t
. (2.29)

The remaining task is to implement these primitive circuits with the quantum gates available on

a quantum computer. In the next section, we construct these primitive circuits for the dihedral

D4 gauge theory and demonstrate the time evolution of the system. For simulating lattice SU(3)

gauge theory, it is necessary to truncate the group. One truncation method is to approximate the

SU(3) group with its largest crystal-like subgroup called S(1080), which has 1080 elements [52,

53, 54, 55, 56]. The design of the S(1080) register and the construction of primitive circuits are

currently studied.

In the rest of the section, we describe methods for computing certain correlators given

the time-evolution circuit for a gauge theory: correlators of spatial plaquettes and a temporary

extended Wilson loop [13]. Algorithms described here will be applied to the measurements

of PDFs and transport coefficients in later sections. In both cases, measurements of a unitary

operator will be necessary. The expectation value of a unitary operator is computed by introducing

an ancillary qubit in the following way [92]. Firstly, given the state |P 〉 for which we would

like to measure a unitary operator U , we introduce an ancillary qubit and prepare the state
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|P1〉 = 1√
2

(|0〉a|P 〉+ |1〉a|P 〉). Here the index a denotes the state on the ancillary qubit. Then

we apply the unitary operator U controlled on the ancillary qubit

Uc = |0〉aa〈0| I + |1〉aa〈1| U . (2.30)

Here I denotes the identity operator that acts on the original Hilbert space. The resulting state

is |P2〉 = Uc|P1〉 = 1√
2

(|0〉a|P 〉+ U|1〉a|P 〉). The measurements of σx and σy on the ancillary

qubit give the real part and imaginary part of 〈P |U|P 〉 respectively:

〈P |U|P 〉 = 〈P2|σx ⊗ I|P2〉+ i〈P2|σy ⊗ I|P2〉 (2.31)

With this algorithms in mind, let us transform correlators of our interest into a set of unitary

operators and apply the method above to measure such correlators.

The correlator of spatial Wilson plaquettes’s real part Wµν = Re Tr [Pµν ] can be thought of

as the glueball propagator in QCD. The correlator of our interest here is of the form:

〈Ψ| U(−t) Wµ′ν′(x
′) U(t) Wµν(x) |Ψ〉 . (2.32)

Utilizing the fact that the operators Wµν are Hermitian, one prepares a family of time-dependent

Hamiltonian parameterized by two small real numbers ε1 and ε2:

Hε1,ε2(τ) = H0 + ε2δ(τ − t)Wµ′ν′(x
′) + ε1δ(τ)Wµν(x) (2.33)

The measurement of the family of unitary operators C(ε1, ε2) ≡ 〈Ψ| U(−t)Uε1,ε2(t) |Ψ〉, with
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the time-evolution Uε1,ε2 via the Hamiltonian Hε1,ε2 , can be performed via the method described

above. To obtain the plaquette correlator, one differentiatesC(ε1, ε2) with respect to the perturbation:

− ∂2C(ε1, ε2)

∂ε1∂ε2

∣∣∣∣
ε1=ε2=0

= 〈 U(−t) Wµ′ν′(x
′) U(t) Wµν(x) 〉 (2.34)

In practice, the derivative can be taken numerically after measuring the correlator C(ε1, ε2) for

several small ε1 and ε2. This method can be straightforwardly extended to the n-point correlators

of plaquettes with the requirement that the numerical differentiation will be taken n times.

The measurement of temporally-extended Wilson loops
〈

Re TrU †ij(t)Uij(0)
〉

can be done

in the same way by the decomposition of the operator into unitary pieces. Note that the temporal

gauge An,0 is set to be zero as usual. As a gauge link Uij takes complex matrix values in general,

one decomposes the correlator into matrix elements as
〈

Re([U †ij(t)]
ba[Uij(0)]ab)

〉
and define a

family of perturbed Hamiltonian:

Hab
ε (τ) = H0 + ε2δ(τ − t) Re[U †ij]

ba + ε1δ(τ) Re[Uij]
ab + ε̃2δ(τ − t) Im[U †ij]

ba + ε̃1δ(τ) Im[Uij]
ab.

(2.35)

With the perturbed Hamiltonian, correlators Cab(ε1, ε̃1, ε2, ε̃2) ≡ 〈Ψ| U(−t)Uabε (t) |Ψ〉 should be

measured by utilizing the method above for the measurement of unitary operators. By take a

numerical differentiation, one obtain

−
[

∂2

∂ε1∂ε2
− ∂2

∂ε̃1∂ε̃2

]
ε=0

Cab(ε1, ε2, ε̃1, ε̃2) = Re
〈
U(−t)[U †ij]baU(t)[Uij]

ab
〉

. (2.36)

The imaginary part of the correlator can be measured in a similar way. Now we sum over the
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indices a, b to obtain the trace of the correlator.

For many gauge groups, different matrix elements
〈

Re([U †ij(t)]
ba[Uij(0)]ab)

〉
are related

by gauge symmetry as it is the case for dihedral D4 (simulated below) and SU(N) in the

fundamental representation. In such cases, the correlator needs to be evaluated for a particular

choice of a, b. Also note that perturbation by the link Uij is not gauge-invariant unlike the

spatial Wilson plaquette Wµν . As a consequence, the state during the time-evolution is not gauge

invariant but rather lie in the entire Hilbert space. Nevertheless, by summing over a, b and taking

the trace at the end, one obtains the desired invariant Wilson loop.

2.3.3 Demonstration

In this section I demonstrate the time-evolution of dihedral D4 gauge theory [13] on a two-

plaquette lattice shown in Figure 2.3.3. The lattice is smallest non-trivial setting in the sense that

the lattice cannot be reduced to 1 spatial dimension. There are four link degrees of freedom,

and thus One needs four D4 registers. Each link has the Hilbert space of dimension 8, which

can be represented by 3 qubits. In addition to that, two ancillary qubits are introduced for the

time-evolution and measurements and one ends up with a 14-qubit simulation. The action for the

U0

U0

U1

U1

U2 U3 U2

Figure 2.3: D4 gauge theory on a 2-plaquette lattice
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model is

S = − 1

g2

∑
t

(
Re Tr

[
U †2(t)U †0(t)U3(t)U0(t)

]
+ Re Tr

[
U †3(t)U †1(t)U2(t)U1(t)

])
− 1

g2

∑
PT

Re TrPT . (2.37)

The last term is a sum over all temporal plaquettes on the lattice. The corresponding Hamiltonian

is

H = Re Tr
[
U †2(t)U †0(t)U3(t)U0(t)

]
+ Re Tr

[
U †3(t)U †1(t)U2(t)U1(t)

]
−

∑
i=0,1,2,3

log T
(1)
K (i) (2.38)

where log T
(1)
K (i) the kinetic term on link i. Having the toy-model set up, the next step is to

design the D4 register and implement the primitive circuits: U×, U−, UTr, UF , and Uphase. The

details of the design of these circuits are discussed in the Appendix A.

As is discussed in Sec. 2.2, the initial state must be gauge-invariant. In the demonstration,

the initial state was chosen to be the gauge projection of the identity matrix on each link. The

system is time-evolved for t = 10 with two different Trotter time steps, ∆t = 0.2 and ∆t = 0.5.

Figure 2.3.3 shows the expectation value of one of the plaquettes over time. The exact result

is shown in black, while those with Trotter step sizes of ∆t = 0.2 and ∆ = 0.5 are shown in

red and blue respectively. The source of errors in the simulation are the Trotterization and the

sampling when computing expectation values. For the larger trotter step of ∆ = 0.5, the Trotter

error builds up and becomes noticeable at larger time.

With the same model, I demonstrate the measurement of temporal Wilson loop as shown in
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Figure 2.4: The expectation value of one of the plaquettes over time. The black solid line
represents the exact result. Classical simulation of quantum calculation are done with Trotter
steps of ∆ = 0.2 in red and ∆ = 0.5 in blue. The difference between the exact result and
quantum calculation comes from the sampling in quantum calculation (estimated and shown in
error bars) and the Trotterization.

Figure 2.3.3. In the simulation, the time-evolution is performed with the Trotter step ∆t = 0.2.

Choices of the εs are (ε1, ε2) = (0.1, 0.0), (0.0, 0.1), (0.1, 0.1) and the same for the parameters

ε̃1, ε̃2, and the numerical differentiation was taken.

2.4 Parton distribution functions

2.4.1 Overview

In this section, I discuss the state preparation and measurement algorithms for computing

parton distribution functions (PDFs) and the hadronic tensor [14]. They are non-perturbative

objects that capture the structure of hadrons in terms of fundamental degrees of freedom: quarks

and gluons. They provide non-perturbative inputs to high-energy scattering experiments such as
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Figure 2.5: The expectation value of a temporal Wilson loop as a function of the time extent of
the loop. Total of 2× 105 measurements were collected for each data point. In addition to errors
from the sampling, Trotterization and finite differencing introduce systematic errors.

a deep inelastic scattering’s cross section and the initial conditions of heavy-ion collisions. Thus

it is of both experimental and theoretical interest to determine PDFs and the hadronic teosor [93].

As PDFs and the hadronic tensors describe such properties of hadrons, non-perturbative calculation

via lattice QCD is necessary to theoretically evaluate them. Both PDFs and hadronic tensors are

defined in the context of high-energy scattering and thus involve correlators with a real-time

evolution. Although Minkowski lattice calculation of such correlators naively suffer from the

real-time sigh problem, there have been methods studied to circumvent the issue for PDFs such

as analytical continuation [94, 95], Compton amplitudes [96], quasi-PDFs [97] and similarly

pseudo-PDFs [98]. Computation of the hadronic tensor has also been studied [99]. The purpose

of this section is to propose yet another method to compute PDFs and the hadronic tensor via

quantum simulation. First-principles calculations of PDFs and the hadronic tensor on a quantum

computer can be done without sign problems, and are expected to be generalized to Generalized
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Parton Distributions straightforwardly. We start with PDFs and discuss state preparation algorithms

in Sec. 2.4.2. I discuss a measurement procedure in Sec. 2.4.3 and give a concrete example of a

quantum computation of PDFs of the Thirring model in 1 + 1-dimension. When the algorithm

is generalized to QCD, we encounter a technical difficulty arising from the Wilson line on the

light-cone. To circumvent the problem, an alternative object, the hadronic tensor, is considered

in Sec. 2.4.4.

To start, let us introduce the theoretical definition of PDFs and find the goal of each

building blocks in the map of the quantum simulation Figure 2.1. Parton distribution functions are

interpreted as the probability distribution function for finding a parton species pi (either quarks or

gluons) with momentum fraction x of the total momentum of proton P . Using such probability

distribution functions fi(x), the total cross section of a high-energy electron scattering off a

proton P in Figure 2.4.1 is expresse as

σe−P→e−X =
∑
i

∫ 1

0

dx fi(x)σ
(
e−pi → e−X

)
(2.39)

where σ (e−pi → e−X) are scatting cross section of the electron and quarks or gluons. Here

X reprensents the final state of the scattering except the electron. Aymptotic freedom implies

that partons look free when the momentum transfer q is high in Figure 2.4.1 except for QED

interaction. Thus the electron can only scatter from charged particles in the proton, which are

quarks. The cross section of an electron and a quark can be computed easily. Thus, once PDFs

fi(x) for quarks are obtained from lattice calculations, the total cross section can be computed by

Eq. (2.39).

In this section we particularly focus on PDFs on quarks fi(x) of flavor i which can be
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Figure 2.6: Deep inelastic scattering of an electron off a proton

computed from QCD as

fi(x) =

∫ ∞
−∞

dt

2π
e−itx(n·P )〈P |ψ̄i(tnµ)γ+W (tnµ; 0)ψi(0)|P 〉 (2.40)

where γ+ ≡ (γ0 + γ1) /
√

2. The state |P 〉 is the proton state to evaluate PDFs for. The

observable to measure consists of the quark operators ψi(tnµ) (nµ = (1, ~n) is a light-like vector),

and ψ̄i(0) on the light-cone. Those two quark operators need to be connected by a Wilson line on

the light cone to make the entire observable gauge-invariant.

The evaluation of quark distribution functions on a quantum computer thus involves computing

the expectation values of the following real-time correlator:

C(t) = 〈P |ψ̄q(tnµ)γ+W (tnµ; 0)ψq(0)|P 〉 . (2.41)

Therefore, we shall prepare a proton at rest as a initial state in the next section Sec. 2.4.2. Then

I discuss how to evaluate the correlator C(t) in Eq. (2.41) once a proton state is prepared on the

quantum computer in Sec. 2.4.3. This quantum algorithm will be demonstrated with the 1 + 1-
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dimensional massive Thirring model.

2.4.2 State preparation

In this section, we discuss an quantum algorithm for preparing the state which we measure

PDFs for — a proton at rest on a 3-dimensional spatial lattice. The central method we employ

here is the adiabatic state preparation, which works as following.

1. We define a family of Hamiltonians H(g) which are smoothly connected by the change of

a parameter g of the Hamiltonian. In this family, the Hamiltonian of ones interest, Hf (gf ),

and a Hamiltonian whose ground state is known and thus can be prepared, Hi(gi), need to

be included.

2. We prepare the ground state of Hi.

3. We perform the time-evolution of the system while slowly changing the parameter g from

gi to gf until the Hamiltonian becomes Hf .

4. The adiabatic theorem guarantees that the system remains to be in the ground state as long

as the Hamiltonian is changed slowly

Ḣ/∆2 � 1 (2.42)

where ∆ is gap between the ground state and the first excited state. In particular, it is

important that the gap ∆ does not vanish anytime on the path of g taken in the adiabatic

time evolution.

The algorithm is naively sketched in Figure 2.4.2.
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Figure 2.7: A naive sketch of the adiabatic state preparation with a family of Hamiltonian
parameterized by a single parameter g.

A proton at rest is not the ground state of the entire QCD Hilbert space. However, one

can still apply the adiabatic state preparation method by restricting the simulation to a sector of

the Hilbert space which satisfies three conditions: gauge-invariant (in the context of Hamiltonian

formulation as was discussed in the last section), translationally invariant (and thus has zero-

momentum), and the baryon number 1. In this sector, the ground state is a proton at rest. Once

we put a state in this sector on qubits, the state on quantum computer remains in the sector under

the time-evolution via the family of QCD Hamiltonian. Thus the Adiabatic state preparation can

be done in the following way:

1. One prepares a family of Lattice QCD Hamiltonian parameterized by the lattice coupling

g.

2. The system starts with the free theory by setting g = 0, with which the ground state is three

zero-momentum quarks. At zero coupling, the ground state of gauge fields is that each link

being identity and quarks are free Gaussian wave functions. 1

3. One slowly turns up the coupling g to a desired value while performing the time-evolution.

1A precise implementation of circuits to prepare such state should be worked out in future work.
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The time-evolution keeps the system in the designated sector because the time evolution is gauge-

invariant, conserves the momentum and the baryon number. As long as the change of g is done

slowly enough, the system remains to be in its ground state. Thus we end up with the proton at

rest at the end of the time evolution.

We shall estimate the cost of the state preparation algorithm described above. Along the

adiabatic time evolution while varying g, the time evolution per time step costs always number of

gates of order∝ V where V is volume on the lattice (with a fixed lattice spacing). The remaining

factor that contributes to the cost is the gap ∆. Firstly, at the beginning of the time-evolution

with vanishing g, the massless gluon excitations need to be restricted by an appropriate boundary

condition or the use of S(1080) approximation to the SU(3) gauge theory. Then the gap is a pair

of fermions with back-to-back momentum, which is ∼ 1/L where L3 = V . Thus the number of

time steps required at the beginning scales as ∼ L2. The situation is better at the end of the time-

evolution where the gap is the pion at rest∼ 135 MeV, so that the number of time steps needed in

this part of the time-evolution does not scale with V . Thus the state preparation algorithm naively

requires L2 × V gate operations for a single state preparation.

2.4.3 Measurement of parton distribution functions

In this section, I discuss measurement algorithms of PDFs given that a proton state is

prepared. The computation of PDFs of a proton with QCD involve measuring the quark-anti

quark correlator on the light cone in Eq. (2.41). There are a couple of complications here. Firstly,

the operator is neither Hermitian nor unitary. Secondly, the Wilson line W (y; 0) connecting

quark operators lies on the light-cone, making its measurement very costly as will be discussed
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later. To address the first complication without having the second complication involved, we take

the massive Thirring model in 1 + 1-dimension to illustrate the algorithm. Then we address the

complication that arises from the Wilson line, which will lead us to considering a simpler object

— the hadronic tensor.

Let us first introduce the Hamiltonian of the Thirring model in 1 + 1D in the continuum:

Hcont = ψ̄
(
−iγ1∂1 +m

)
ψ + g2

(
ψ̄γµψ

) (
ψ̄γµψ

)
(2.43)

Here ψ and ψ̄ are two-component spinor. We work in the Dirac basis so that γ0 = σx and

γ1 = iσy. As parameters of the Hamiltonian, we have mass m and the coupling constant g. As

the discretization scheme of fermions, we choose staggered fermions. The resulting Hamiltonian

on the lattice is

Hdis =
Ns∑
x=1

m (−1)x χ†(x)χ(x) +
(−1)x

2

[
χ†(x)χ(x+ 1) + χ†(x+ 1)χ(x)

]
− g2χ(x)χ(x)†χ†(x+ 1)χ(x+ 1) (2.44)

where Ns is the number of sites and χ, χ† are one-component spinors. Here I took the lattice

spacing to be a = 1.

To write the Hamiltonian in terms of quantum gates available on the quantum computer,

we apply the Jordan-Wigner transformation [48]:

χ†(x) = σ1
z ⊗ · · · ⊗ σx−1

z ⊗ σx+ ⊗ Ix+1
2 ⊗ · · · ⊗ INs2

χ(x) = σ1
z ⊗ · · · ⊗ σx−1

z ⊗ σx− ⊗ Ix+1
2 ⊗ · · · ⊗ INs2

(2.45)
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Here, In are n × n identities, σi are Pauli matrices, and σ± = (σx ± σy)/2. The superscripts on

the operators denote lattice sites. The resulting Thirring model Hamiltonian is H = Hx + Hy +

Hz +Hzz with

Hx =

Ns−1∑
n=1

axx(n)σx(n)σx(n+ 1)

Hz =
g2

4
σz(1)− g2

4
σz(Ns) +

Ns∑
n=1

az(n)σz(n)

Hzz =

Ns−1∑
n=1

azz(n)σz(n)σz(n+ 1)

(2.46)

Coefficients are determined from the Jordan-Wigner transformation: az(n) = m(−1)n/2, axx =

ayy(n) = (−1)n+1/4, and azz(n) = g2/4.

The PDFs of the Thirring model in 1 + 1D in the continuum is given as

fT(x) =

∫ ∞
−∞

dt

2π
e−itx(n·P )〈P |ψ̄q(tnµ)γ+ψq(0)|P 〉 (2.47)

Note that the Wilson line does not appear in the definition. For the purpose of a demonstration,

the state |P 〉 can be any bound states such as that of two fermions. The corresponding “staggered

PDF” on the lattice is

fT,stag(x) = 〈P |
∑
y,z

eixP (y−z) [εy,z + i(−1)zεy,z+1]× eiH(y−z)χ†(y)e−iH(y−z)χ(z) |P 〉 . (2.48)

Here εi,j = 1 when i mod 2 = j mod 2 and εi,j = 0 otherwise. Thus the goal of quantum
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computing is to evaluate the real-time correlator of the form

C(y, z) = 〈P | eiH(y−z)χ†(y)e−iH(y−z)χ(z) |P 〉 (2.49)

As it is also the case with QCD, the operator to be measured is neither Hermitian nor unitary. The

measurement of such correlator can be done by decomposing the observable into unitary pieces:

eiH(y−z)χ(y)e−iH(y−z)χ†(z) =
∑
i,j=x,y

CijUij (2.50)

Uij = eiH(y−z)χi(y)e−iH(y−z)χj(z) (2.51)

Here χ and χ† are decomposed into unitary operations χx = χ + χ† and χy = i
(
χ− χ†

)
.

Coefficients are Cxx = Cyy = 1/4, Cxy = −i/4, Cyx = i/4. The expectation value of each

unitary operator Uij can be measured by inserting an ancillary qubit as is discussed in Sec. 2.3.2.

This leaves us to implement a sequence of gates that give controlled Uij operations in

Eq. (2.50). Firstly, χx(n) and χy(n) in Uij operators simply become controlled σx and σy gates:

Cx(i, j) = |0〉〈0| ⊗ I2 + |1〉〈1| ⊗ σx (2.52)

Cy(i, j) = |0〉〈0| ⊗ I2 + |1〉〈1| ⊗ σy (2.53)

The time evolution e−iHt needs to be Trotterized and written in terms of local operations first:

e−iHt ∼
Nt∏
i=1

e−iHxdte−iHydte−iHzdte−iHzzdt (2.54)

withNt the number of Trotter steps and dt = t/Nt is taken to be small. Now one can approximate
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each term by local time-evolution:

e−iHxdt =
Ns−1∏
n=1

e−iaxx(i)dt×σx(n)⊗σx(n+1), e−iHydt =
Ns−1∏
n=1

e−iayy(i)dt×σy(n)⊗σy(n+1)

e−iHzdt =
Ns∏
n=1

e−iãz(i)dt×σz(n), e−iHzzdt =
Ns−1∏
n=1

e−iazz(i)dt×σz(n)⊗σz(n+1)

(2.55)

Here ã are the modified coefficients a due to the boundary condition: ã(1) = −m + g2/4 and

ã(Ns) = (−1)Nsm− g2/4.

The following controlled gates are required to perform the Trotterized time evolution Eq. (2.55):

Cz(i, j) = |0〉〈0| ⊗ I2 + |1〉〈1| ⊗ σz (2.56)

Crz(θ, i, j) = |0〉〈0| ⊗ I2 + |1〉〈1| ⊗ exp(iθσz) (2.57)

Crxx(θ, i, j, k) = |0〉〈0| ⊗ I4 + |1〉〈1| ⊗ exp(iθσx ⊗ σx) (2.58)

Cryy(θ, i, j, k) = |0〉〈0| ⊗ I4 + |1〉〈1| ⊗ exp(iθσy ⊗ σy) (2.59)

Crzz(θ, i, j, k) = |0〉〈0| ⊗ I4 + |1〉〈1| ⊗ exp(iθσz ⊗ σz) . (2.60)

All these controlled gates are implemented with primitive gates in a simple manner. In Qiskit’s

notation [100, 101], two-qubit gates Cx(i, j), Cy(i, j), Cz(i, j) and Crz(i, j) are directly available

— they are called cx(i, j), cy(i, j), cz(i, j) and crz(i, j) in Qiskit respectively. Three-qubit

controlled gate Crzz(i, j, k) can be implemented by a sequence of Toffoli gate, Crz(i, k), and

Toffoli gate. This is because the operator eiθσx(j)⊗σz(k) is implemented by a sequence of cx(j, k)

(j: control qubit, k: target qubit), rz(θ, k), and cx(j, k). So to implement C(rzz), we simply let

these three gates controlled to ith qubit. The other three-qubit gates,Crxx(i, j, k) andCryy(i, j, k),

are implemented by sandwiching Crzz(i, j, k) with basis-change operators z → x (Hadamart) or
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Figure 2.8: Quantum circuits for the three-qubit controlled gate Crxx(θ, i, j, k) defined in
Eq. (2.58).

y → x respectively on jth and kth qubits. The circuit for Crxx is shown in Figure 2.8.

Now that all necessary circuits for the computation of PDFs in 1 + 1-dimensional Thirring

model have been constructed via primitive gates on a quantum computer, let us move onto

compute a PDF for the Thirring model. For each Ui,j in Eq. (2.50), I measure its expectation

value on the state |P 〉 by applying the controlled Ui,j (constructed from the controlled gates

above) to the controlled state |P ′〉, and then measure σx, σy on the ancillary qubit to obtain the

expectation value of Ui,j on |P 〉. Then I sum up those expectation values following Eq. (2.50) and

obtain the whole correlator C(y, z) in Eq. (2.49). These correlators must be Fourier-transformed

according to Eq. (2.48) to be a parton distribution function. A naive Fourier transformation may

yield highly oscillatory artifacts, which can be suppressed by a Gaussian window with a width σ:

fT,stag(x) = lim
σ→0

lim
L→∞

〈P | ×
∑
y,z

eixP (y−z)−(y−z)2/σ2

[εy,z + i(−1)zεy,z+1]

×eiH(y−z)χ†(y)e−iH(y−z)χ(z) |P 〉 (2.61)

As a demonstration shown in Figure 2.4.3, we computed the staggered PDF for 1 + 1D Thirring

model on 10 sites with two sets of parameters: m = 1.5, g = 0.0 and m = 1.4, g = 0.4. The

Fourier transformation was taken with ε = 3 for the Gaussian window in Eq. (2.61).

Ultimately, we would like to compute PDFs of hadrons from lattice QCD. With QCD, the
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Figure 2.9: The fermion distribution of the lowest-lying fermion in the Thirring model with two
sets of parameters: m = 1.5, g = 0.0 and m = 1.4, g = 0.4.

observable to be measured is the correlator of quark creation and annihilation operators connected

via a Wilson line on the light cone as in Eq. (2.41):

C(y) = 〈P | ψ̄q(t nµ)γ+W (t nµ; 0)ψq(0) |P 〉 (2.62)

The Wilson line can be approximated on the lattice by a sequence of gauge links at each Trotter

step as

W (y; 0) ≈ Uy,y−a(t = y − a) · · ·U2a,a(t = a)Ua,0(t = 0) . (2.63)

Note that A0 = 0 gauge is chosen for the temporal gauge links as usual. Following the method

for measuring temporally-extended Wilson loop in Sec. 2.3.2, one can n principle measure the

Wilson line on the light cone by perturbing the Hamiltonian via gauge links U at every time slices

in 0 < t < y. The number of numerical differentiation taken is exactly the number of time slices

affected by the Wilson line. Such a high-order finite differencing is not practical as the Wilson
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expends further in time and Hamiltonian limit a0 is taken. This technical difficulty encourages us

to find an alternative operator which does not involve Wilson lines but still provides information

about the structure of hadrons. One of such objects is the Hadronic tensor, whose measurement

method will be discussed in the next section.

2.4.4 Measurement of the hadronic tensor

Hadronic tensor is closely related to the deep inelastic scattering cross section. Together

with the leptonic tensor

Lµν = 2
(
kµk

′
ν + kνk

′
µ − gµνk · k′

)
, (2.64)

the hadronic tensor is directly related the lepton-proton scattering cross section up to the leading

order in QED coupling α

d2σ

dxdy
=
α2y

Q4
LµνW

µν . (2.65)

Here Q2 = −q2, q is the transfer momentum, x = Q2/(2P · q), y = (P · q)/(P · k), and k′k− q.

As such, the quantum simulation of hadronic tensor is also simpler. The hadronic tensor can be

computed as

W µν(q) = Re
∫

ddx eiqx 〈P |T {Jµ(x)Jν(0)} |P 〉 (2.66)

where Jµ = ψ̄γµψ is the current, which is already gauge-invariant. Thus we need no Wilson lines

between the two currents. As Jµ is Hermitian, instead of decomposing Jµ into unitary matrices,

we follow the procedure for studying linear response [102] and simply measure the expectation

value of the operator

U(εx, ε0) = eiHteiJ
µ(~x)εxe−iHte−iJ

ν(~0)ε0 . (2.67)
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The second derivative of the expectation value gives the desired correlator:

d
dεx

d
dε0
〈P |U(εx, ε0) |P 〉 = 〈P | Jµ(x)Jν(0) |P 〉 (2.68)

Once such correlator is computed for multiple position x, the correrator should be Fourier transformed

with a regulator to obtain the hadronic tensor in Eq. (2.66). Alternatively, the entire Fourier

transformed operator can be measured on a quantum computer at once:

W µν(q) = 〈P |T
{
Jµ(0)

∫
ddx eiqx−x

2/εJν(x)

}
|P 〉 . (2.69)

with the Gaussian window ε. In either case, the measurement of the hadronic tensor can be done

in a much simpler way compared to the PDFs due to the gauge-invariace and the Hermiticity of

the current Jµ. PDFs are in principle obtained from hadronic tensor as is discussed in [14].

2.5 Transport coefficients

2.5.1 Overview

Hydrodynamic transport coefficients, the shear viscosity and bulk viscosity, are shown to

be the central constants for our understanding of the non-equilibrium properties of a strongly

coupled quark gluon plasma. As is discussed in Sec. 1.4.3, to obtain hydrodynamic coefficients,

the following kinds of correlators should be evaluated:

C(t, ~x) = 〈Ψ(β)| [Tµν(t, ~x), Tµν(0, 0)] |Ψ(β)〉 (2.70)
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with varying (t, ~x). Here Tµν is the µν component of the energy-momentum tensor of QCD, and

Ψ(β) is the thermal state of QCD at an inverse temperature β. Lattice QCD calculations of such

real-time correlators on a classical computer naively suffer from sign problems. Despite such

numerical difficulties, efforts are made to obtain transport coefficients [103, 104, 105, 106, 107].

In this section, as an alternative method to theoretically obtain the transport coefficients

from first-principles, we discuss quantum algorithms for computing the those transport coefficients

in hydrodynamics in gauge theories [15]. The mapping of lattice gauge theories onto qubits in

Sec. 2.2 and time evolution circuits in Sec. 2.3 can be used to accomplish the two building blocks

of the quantum simulation in Figure 2.1. This section is devoted to a detailed discussion of

state preparation algorithms and measurement procedures. As an initial state, a thermal state of

the gauge theory at finite temperature should be prepared. For the measurement, we shall find

operators Tµν for lattice gauge theories and build an algorithm to measure their correlators. Once

we obtain correlators, relations Eqs. (1.68,1.69,1.70) will let us extract transport coefficients from

such correlation functions with a finite volume effect.

2.5.2 State preparation

The goal of the state preparation algorithm for transport coefficients in hydrodynamics is

very different from that for PDFs. An ideal initial state would be a thermal state at a finite

temperature in the regime of phase transition or crossover where the system is strongly coupled.

Nevertheless, the kinds of tools we can use for such state preparation is still an adiabatic state

preparation or other forms of time evolution circuits. In this section, we naively sketch ideas

for the state preparation of QCD thermal states. However, before we proceed, the meaning
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of a “thermal state” should be clarified, given that lattice QCD has only finite volume. In

the infinite volume limit of the lattice, the microcanonical approach (with the focus on energy

density) and the canonical approach (with focus on temperature) should agree. Thus if quantum

simulations are performed close to the thermodynamic limit, one can either prepare a pure state

with approximately correct energy density ε(T ) corresponding to the desired temperature T , or

can prepare a density matrix state with the temperature T . One expects that expectation values

computed on those state will approximate the thermal expectation values well. On a finite-volume

lattice, the finite-volume effects are expected to appear differently in those two approaches. In

general, density matrix are expected to have a smaller finite volume effect for thermal expectation

values. When our interest is on non-local observables or real-time correlators, the size of finite-

volume effects may be so large that taking of the limit close to the thermodynamic limit on the

lattice might be necessary. An efficient way, i.e. with a smaller finite volume effect, of taking the

thermodynamic limit should be studied in the context of quantum simulation. In the following,

we propose a couple of naive ideas for preparing thermal states, without specifying “which type”

of thermal states to prepare in these algorithms. Such details of thermal states preparation and

their finite volume effects should be studied in future work.

To design algorithms for preparing a thermal state at a finite temperature, it is useful to think

about how a QCD finite temperature system is created in heavy-ion collisions. In experiment,

we originally have a vacuum, in which we cause a high-energy collision of heavy nuclei. This

collision creates a hot dense plasma of quarks and gluons. The fireball then expands, cools, and

goes under the crossover or the phase transition, and becomes a low-temperature dilute gas of

hadrons. We would like to stop the process of heavy-ion collision in the middle stage where the

fireball is still strongly interacting. This can be done by simply putting the fireball in a finite-size
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box, so that the system does not expand too much. On quantum computer, one has a finite-size

system naturally by having a finite-size lattice. The remaining task is to start the collision. For

quantum algorithms, there are two possible starting points: the vacuum and high-energy plasma.

In the following, we first discuss the algorithm starting with a high-temperature state, and then

the algorithm starting with a vacuum.

A high-energy state can be easily prepared on a quantum computer due to the lattice

artifacts. One simply prepares a random gauge-invariant state and it will on average have an

energy density of ∝ 1/a4, which is large when the lattice spacing a is taken to be small. Now, to

prepare a state with lower energy density (or a lower temperature), one needs to extract energy

from the system. Just as the system cools down by expanding into the vacuum in heavy-ion

collisions, the cooling of the system can be done by attaching the vacuum of an appropriate size

to the system on a quantum computer. One can prepare an even large system with a desired

energy density, i.e. a heat bath, and attach the bath to the system. These ideas naively cost a lot

of qubits while they still require a long time-evolution circuit ∝ V . One can at least reduce qubit

cost by performing an active cooling of the system via the “quantum refrigerator” (for a review

of quantum refrigerators, see [108, 109]) The idea of quantum refrigerators is that one attaches a

small vacuum to the system for an appropriate number of times. The quantum refrigerator may

be a quantum system of the similar size as the system. The only requirement on the quantum

refrigerator is that one needs to be able to set the refrigerator to the ground state. The quantum

refrigerator can actively cool down the system by applying the following cycle (as sketched in

Figure 2.5.2) many times:

1. One sets the refrigerator to the ground state.
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2. One couples the refrigerator to the system in such a way that symmetry of the system, in

particular gauge symmetry, is preserved. Then one performs the time evolution. As the

refrigerator is in the ground state, the energy should on average flow from the system to the

refrigerator.

3. The system is decoupled from the refrigerator.

The energy density is expected to decrease in each cycle, and the cycle should be repeated until

the system’s energy density decreases down to the desired energy density:

Ei > E1 ≥ E2 ≥ · · · ≥ EN−s−1 ≥ ENs = Ef (2.71)

If we are able to extract the same fraction of energy, (so keep En/En−1 fixed for all cycles), the

number of cycles required to cool the system down to the target energy density scales logarithmically

with the ratio of the initial energy density Ei to the final density Ef :

Ns ∝ log

(
Ei
Ef

)
. (2.72)

The proof or disproof of such scenarios should start by a more detailed construction of the

algorithm.

An alternative approach to prepare a finite-temperature state is to start from the vacuum and

add an appropriate amount of energy into the system (analogous to causing a heavy-ion collision

in experiment). For the preparation of the ground state with desired lattice coupling g, we can

again utilize the adiabatic state preparation described in Sec. 2.4.2. As an initial ground state of

the adiabatic state preparation, one can start either in the strong coupling limit g → ∞ or the
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Figure 2.10: A schematic view of the quantum refrigerator.

weak coupling limit g = 0. The strong coupling is expected to work better for the following

reasons. Firstly, the ground state at→∞ is the equal super position of all elements in the gauge

group G for each link [110]:

|Ωstrong〉 = ⊗U

(∑
g∈G

|g〉

)
(2.73)

which is already gauge invariant. On the other hand, the ground state in the zero-coupling limit,

the ground state is the identity for all links, which is not gauge-invariant

|Ωweak〉 = ⊗U |I〉 (2.74)

so the gauge-projection operator needs to be applied. In addition to that, when it comes to

truncating the gauge theory, the strong coupling ground state can be naturally implemented in
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the same way for the S(1080) gauge theory truncation, whereas the weak-coupling ground state

for the S(1080) gauge theory is not trivial.

Once one prepares a ground state in either way, the adiabatic state preparation should be

performed — one applies the time-evolution while changing the lattice coupling constant g slowly

toward the desired value. The gap ∆ is an important factor to determine the cost of the algorithm.

The gap ∆ behaves differently at strong and week coupling limits. At a strong coupling, the gap

is basically the mass of lowest glueball mass and thus a realistic physical coupling can be reached

without encountering a small gap ∆. On the other hand, when one starts from the weak-coupling,

the physical lattice spacing is small compared to the confinement scale, and the gap is likely to

be very small. Thus additional treatments, such as explicit symmetry breaking, may be needed to

create a sufficiently large gap and perform the adiabatic state preparation from the weak coupling

limit.

Once we obtain the ground state with the physical coupling constant, one adds energy to

the system. Since the system is in the ground of state, any operation to the qubits will in principle

inject energy to the system. A more concrete approach is to employ the “quantum oven” (as

opposed to the quantum refrigerator) and attach a small system with random state (which likely

has a high energy density) to the system so that energy flows into the system. With any methods

for adding energy to the system, one needs to be careful not to add too much energy into the

system.

Finally, whether one starts from the high-energy state or the ground state to reach an

appropriate energy density (or the corresponding temperature), the system needs to equilibrate

by time evolving for an appropriate length of time. How long does it for a system to equilibrate?

The thermalization of Z2 gauge theory is demonstrated in [111]. For QCD, once again, heavy-
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ion collisions give us a hope. A hot plasma of quarks and gluons seems to equilibrate within the

heavy-ion collision [11], suggesting that the thermalization of strongly coupled nuclear matter

occurs in ∼ 10 fm, which is of the same scale as the size of the lattice.

2.5.3 Measurement

A measurement of retarded correlators of a Hermitian operatorO on a state |φ〉 can be done

very simply without any ancillary qubits or the decomposition of operators. One first defines a

perturbed Hamiltonian by adding a small amount ε ofO locally at time t = 0 to the Hamiltonian:

H ′ = H + εδ(t)O. Then one time-evolves the initial state |ψ〉 with the perturbed Hamiltonian

until time t = t1 to obtain |φ(t1)〉 = e−iHte−iεO|φ〉. A measurement of O on |φ(t1)〉 yields

〈φ(t1)|O|φ(t1)〉 = 〈φ| eiεO eiHt O e−iHt e−iεO |φ〉 . (2.75)

By taking the derivative of the expectation value above with respect to ε and taking the limit

ε→ 0, one obtains the desired correlator:

lim
ε→0

∂

∂ε
〈φ(t1)|O|φ(t1)〉 = −i〈φ| [O(t),O(0)] |φ〉 . (2.76)

In practice, we define the perturbed Hamiltonian with several different ε, measure the expectation

values, and take the finite differencing.

This leaves us with deriving the expression for the energy-momentum tensor operators of

gauge theories and implementing them. In the action formulation, the expression for the energy-
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momentum tensor of gauge theories

Tµν =
1

4
gµν Tr

[
FαβF

αβ
]
− Tr [FµαF

α
ν ] . (2.77)

on the lattice is well studied as is reviewed in Sec. 1.3.2. In this section, the metric tensor in

Minkowski spacetime is chosen to be mostly-minus:

gµν = diag(1,−1,−1,−1). (2.78)

In the context of quantum simulations, we need the corresponding energy momentum tensor

operators in the Hamiltonian formulation. To derive these operators, we simply follow the

prescription in [90] for deriving the lattice gauge Hamiltonian from the action as reviewed in

Sec. 2.3.1. A small modification is made to the derivation by perturbing the action with the

lattice function of the EMT to obtain the EMT operators. In the action formulation, one way to

obtain the expectation of an observable is to first define a generating functional:

Zε =

∫
DU ei(S0+εO(t0)). (2.79)

By differentiating this perturbed partition function with respect to ε,

i〈O(t0)〉 = Z−1
0

(
∂Zε
∂ε

)
ε→0

, (2.80)

one obtains the desired expectation value. One can define a corresponding Hamiltonian formulation
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by

〈U ′|e−ia0Hε|U〉 = ei(S+εO). (2.81)

For the corresponding perturbed Hamiltonian, yet to be determined, to give the expectation value

〈O(t0)〉 in the same way, the perturbed Hamiltonian should satisfy

Ĥε = Ĥ0 − εÔ/a0. (2.82)

where H0 is the original Hamiltonian of one’s quantum system. So what I do in the following

is to define the perturbed partition function Zε with a component of the EMT, and find the

corresponding perturbed Hamiltonian Hε which satisfies Eq. (2.81). Then I read off the operator

expression for the EMT using Eq. (2.82). The components of EMT are categorized into three:

diagonal components Tµµ in Sec. 2.5.3.1, spatial off-diagonal components Tij in Sec. 2.5.3.2,

and time-like off-diagonal components T0i in Sec. 2.5.3.3. In each section, the operators that

are correct up to O(a2) discretization errors are derived. All results of EMT operators are

summarized in Table 2.5.3. Using lattice EMTs in the action formulation that are correct up

to higher-order errors [22], corresponding operators with better approximations can be derived.

When one uses such operators, improved lattice gauge Hamiltonian [112, 113, 114] must be used

to implement the time-evolution to obtain the final result to be correct up to the desired higher-

order discretization error.
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Table 2.1: All gauge-invariant lattice operators needed to construct the energy momentum tensor
operators in 3 + 1 dimensions. Operators are all gauge invariant and Hermitian, and are derived
to be correct up to O(a) and O(a2, a0) discretization errors. Operators P̂ , Ĉ, F̂N

ij , F
C
ij are the

operator version of Eq. (1.14), Eq. (1.32), Eq. (1.31), and Eq. (1.33) respectively, given by
converting all links (spatial) to the link operators defined in Eq. (2.9).

Operator O(a) O(a2)

TrF0iF0i(n) g2s
a4

Tr
[
π2
n,i

] ∑
x=0,1

g2s
2a4

Tr
[
π2
n−xî,i

]

TrF0iF0j(n) g2s
a4

Tr [πn,iπn,j]

g2s
4a4

(
Tr [π̂n,iπ̂n,j] + Tr

[
π̂n,iÛ

†
n−ĵ,jπ̂n−ĵ,jÛn−ĵ,j

]
+ Tr

[
Û †
n−î,iπ̂n−îÛn−î,iπ̂n,j

]
+ Tr

[
Û †
n−î,iπ̂n−î,iÛn−î,iÛ

†
n−ĵ,jπ̂n−ĵ,jÛn−ĵ,j

])

TrF0jFij(n) − 1
a4

Tr
[
π̂n,j Im P̂ij(n)

] − 1
2a4

(
Tr
[
π̂n,j Im Ĉij(n)

]
+ Tr

[
Û †
n−ĵ,jπ̂n−ĵ,jÛn−ĵ,j Im Ĉij(n)

])
TrFijFij(n) 2

g2sa
4 Re Tr

[
1− P̂ij(n)

] ∑
x=0,1

∑
y=0,1

1
2g2sa

4 Re Tr
[
1− P̂ij(n− xî− yĵ)

]

TrFijFkj(n) Tr[F̂N
ij (n)F̂N

kj (n)] Tr[F̂C
ij (n)F̂C

kj(n)]

2.5.3.1 Tµµ in the Hamiltonian formulation

The diagonal components of the EMT has two kinds of terms, both of which are familiar

from the Wilson gauge action. There is F 2
0i which contains temporal plaquettes and F 2

ij which is

purely spatial. Without the loss of generality, let us consider adding the following two terms to

the action:

Sε = SW + εa0a
3 Tr

[
F01(n0)2 + F12(n0)2

]
. (2.83)
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The perturbed Hamiltonian Hε and the perturbed action Sε should be connected via transfer

matrix Tε = e−ia0Hε as

〈U ′|Tε|U〉 = eiSε = ei(Kε+Vε) (2.84)

with

Kε(U
′, U) = K + ε

2a

g2
sa0

Re Tr
[
1− Un0,1U

′†
n0,1

]
(2.85)

Vε(U
′, U) = V + ε

2a0

g2
sa

Re Tr [1− P12(n0)] (2.86)

This relation defines the perturbed Hamiltonian. Using the primitive operators Ûn,i in Eq. (2.9)

and R̂n,i in Eq. (2.11), the following operator serves as the transfer matrix satisfying Eq. (2.84):

T̂ε =

∫
Dg eiK(g)+iε 2a

g2sa0
ReTr[1−g†n0,1]+iV̂ε . (2.87)

Here we introduced some short-hand notation:

∫
Dg ≡

∫
g∈G

∏
n,i

dgn,iR̂n,i(gn,i) (2.88)

K(g) ≡ a

g2
sa0

∑
n,i

Re
[
1− g†n,i

]
. (2.89)

The operator V̂ε consists of the plaquette operators P̂ which acts on the Hilbert space of a spatial

plaquette and return the value of the plaquette. The Hamiltonian Ĥε can in principle be obtained

by taking the logarithm of Tε. However, as was done for the Yang-Mills Hamiltonian, one can
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simplify the expression by considering the limit a0 → 0 and taking saddle-point approximation:

T̂ε ∼
∫
dx eixρπ̂ρ−xρMρσxσ+iV̂ε (2.90)

with Mρσ =
−ia

2g2
sa0

δρσ − ε
ia

g2
sa0

δnn0δmn0δi1δj1δab.

Here a short-hand notation was introduced for indices: ρ = (n, i, a) and σ = (m, j, b). Performing

the Gaussian integral, one obtains, up to the linear order,

Ĥε = ĤKS − ε
(
g2
s

a
Tr
[
π̂2
n0,1

]
+

2

g2
sa

Re Tr
[
1− P̂12(n0)

])
. (2.91)

Now the operators for Tr
[
F̂01(n0)2

]
and Tr

[
F̂12(n0)2

]
can be read off from the perturbed

Hamiltonian. Note here that spatial plaquettes in Vε(U
′, U) were directly converted to their

operator forms, while temporal plaquettes in Kε(U
′, U) needed to be converted to terms with

momentum operators π̂. We will see the same pattern for the rest of the section. By generalizing

the result to other operators of the same kinds, one finds

Tr
[
F̂0i(n0)2

]
=

g2
s

a4
Tr
[
π̂2
n0,i

]
(2.92)

Tr
[
F̂ij(n0)2

]
=

2

g2
sa

4
Re Tr

[
1− P̂ij(n0)

]
. (2.93)
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Now by combining those operators above, we construct the T̂µµ operators that are correct up to

O(a) as

T̂00(n0) =
g2
s

2a4

∑
i

Tr[π̂2
n0,i

] +
1

g2
sa

4

∑
i<j

Re Tr[1− P̂ij(n0)] (2.94)

T̂ii(n0) =
g2
s

2a4
Tr
[
−π̂2

n0,i
+ π̂2

n0,j
+ π̂2

n0,k

]
+

1

g2
sa

4
Re Tr

[
1− P̂ij(n0)− P̂ik(n0) + P̂jk(n0)

]
. (2.95)

A few remarks follow. Firstly, T00 is the Hamiltonian density of the Kogut-Susskind Hamiltonian

in Eq. (2.19) up to a constant term. The trace of the EMT operator vanishes as was the case with in

the action formulation Eq. (1.26). Finally, all these Tµµ operators are manifestly gauge-invariant

and Hermitian.

The improvement of Tr
[
F̂01(n0)2

]
and Tr

[
F̂12(n0)2

]
operators up to O(a2) discretization

errors can be achieved by simply taking the average of naive operators around the site in the plane

that Fµνs lie:

Tr
[
F̂0i(n0)2

]
=

∑
x=0,1

g2
s

2a4
Tr
[
π̂2
n0−xî,i

]
(2.96)

Tr
[
F̂ij(n0)2

]
=

∑
x=0,1

∑
y=0,1

1

2g2
sa

4
Re Tr

[
1− P̂ij(n0 − xî− yĵ)

]
. (2.97)

Note that for Tr
[
F̂0i(n0)2

]
the average of two plaquettes lying in the remaining i direction was

taken as we do not need to improve the discretization error from a0 up to O(a2
0). For the space-

like Tr
[
F̂ij(n0)2

]
one needs to take the average of four plaquettes in both i and j direction. These

improved operators let us construct Tµµ operators that are correct up to O(a2, a0) discretization
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errors.

2.5.3.2 Tij in the Hamiltonian formulation

The spacial off-diagonal components of the energy momentum tensor reads

Tij = Tr [−Fi0Fj0 + FikFjk] . (2.98)

As was seen in the previous section, the first term consisting of temporal plaquettes needs to

be written with momentum operators π in the Hamiltonian formulation. On the other hand, the

second term will be converted simply to the spatial plaquette operators. For lattice operators,

we will first work with the naive discretization Eq. (1.31), and then use clovers Eq. (1.33) and

half-clovers Eq. (1.35) to improve operators up toO(a2) errors. To start, let us perturb the Wilson

action as

Kε = K + εa0a
3 Tr

[
FN

10F
N
20

]
(2.99)

Vε = V + εa0a
3 Tr

[
FN

13F
N
23

]
. (2.100)

The transfer matrix T̂ε is now defined via Eq. (2.84) with these appropriate perturbation Kε and

Vε above. The operator T̂ε can be written with the primitive operators Eq. (2.9) and Eq. (2.11) as

T̂ε =

∫
Dg eiK(g)−iε a

4g2sa0
Tr[(g†n0,1−gn0,1)(g†n0,2

−gn0,2)]+iV̂ε . (2.101)
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In the Hamiltonian limit, saddle approximation at x = 0 gives

T̂ε ∼
∫
dx eixρπ̂ρ−xρMρσxσ+iV̂ε = Ae−

1
4
π̂ρM

−1
ρσ π̂σ+iV̂ε

Mρσ =
−ia

2g2
sa0

δρσ + ε
ia

g4
sa0

δnn0δmn0δi1δj2δab . (2.102)

Up to the linear order in ε, one obtains the perturbed Hamiltonian Ĥε to be

Ĥε = ĤKS − ε
g2
s

a
Tr[π̂n0,1π̂n0,2]− εa3 Tr

[
F̂N
ik (n0)F̂N

jk (n0)
]

. (2.103)

The temporal part Tr
[
FN

10F
N
20

]
can be read off from the second term in Ĥε as

Tr
[
F̂N
i0 F̂

N
j0 (n0)

]
=
g2
s

a4
Tr[π̂n0,iπ̂n0,j] . (2.104)

Thus the operator T̂ij(n0) with the naive discretization is

T̂Nij (n0) = −g
2
s

a4
Tr [π̂n0,iπ̂n0,j] + Tr

[
F̂N
ik (n0)F̂N

jk (n0)
]

. (2.105)

Clovers defined in Eq. (1.32) and half-clovers defined in Eq. (1.34) allow us to improve the

operator T̂ij up to O(a2, a0) discretization errors. The spatial part FikFjk is simply improved by

using the clover operator as

F̂ikF̂jk(n) = F̂C
ik (n)F̂C

jk(n) +O(a2). (2.106)

78



Figure 2.11: Half-clovers B10(n0) and B20(n0) and short-hand notations for links involved.

For the rest of the section, I focus on the temporal partFi0Fj0, starting by the following perturbation

Kε(U
′, U) = K + εa0a

3 Tr
[
FB

10(n0)FB
20(n0)

]
. (2.107)

Links around the site n0 was denoted as shown in Figure 2.11 to simplify expressions. The

following transfer matrix operator satisfies the relation in Eq. (2.84) with the perturbation above:

T̂ε =

∫
Dg eiK(g)−i εa

16g2sa0
Tr[(g†1−g1+Û†0 (g†0−g0)Û0)(g†3−g3+Û†2 (g†2−g2)Û2)]+iV̂ . (2.108)

After the saddle-point approximation at x = 0, the expression for the transfer matrix simplifies:

T̂ε ∼
∫
dx eixρπ̂ρ−xρMρσxσ+iV̂ = Ae−

1
4
π̂ρM

−1
ρσ π̂σ+iV̂

with Mρσ = − ia

2g2
sa0

δρσ −
iεa

4g2
sa0

(M1)ρσ (2.109)
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where matrix elements of (M1)ρσ are zero except

(M1)(n0,1,a)(n0,2,b)
= δab, (M1)(n0,1,a)(n2,2,b)

= Tr
[
λaÛ †2λ

bÛ2

]
(M1)(n1,1,a)(n0,2,b)

= Tr
[
Û †0λ

aÛ0λ
b
]
, (M1)(n1,1,a)(n2,2,b)

= Tr
[
Û †0λ

aÛ0Û
†
2λ

bÛ2

] (2.110)

Sites n1 and n2 are as introduced in Figure 2.11. By expanding Eq. (2.109) up to the linear order

in ε, I obtain

Hε = HK,S − ε
g2
s

4a

(
Tr [π̂1π̂3] + Tr

[
π̂1Û

†
2 π̂2Û2

]
+ Tr

[
Û †0 π̂0U0π̂3

]
+ Tr

[
Û †0 π̂0Û0Û

†
2 π̂2Û2

])
.

(2.111)

The result can be generalized to general FB
i0 F̂

B
j0 straightforwardly:

Tr
[
F̂B
i0 F̂

B
j0(n0)

]
=

g2
s

4a4

(
Tr [π̂n0,iπ̂n0,j] + Tr

[
π̂n0,iÛ

†
n0−ĵ,j

π̂n0−ĵ,jÛn0−ĵ,j

]
+ Tr

[
Û †
n0−î,i

π̂n0−îÛn0−î,iπ̂n0,j

]
+ Tr

[
Û †
n0−î,i

π̂n0−î,iÛn0−î,iÛ
†
n0−ĵ,j

π̂n0−ĵ,jÛn0−ĵ,j

])
.

(2.112)

With these operators and spatial clover operators in Eq. (2.106), operators for the off-diagonal

spatial components, T̂ij , are constructed to be correct up to O(a2, a0) discretization errors.

2.5.3.3 T0i in the Hamiltonian formulation

In this section, I derive operators for the off-diagonal time-like components of Tµν . All

terms in T0i contain temporal plaquettes, and thus need to be converted to combinations of gauge

link operators Û and momentum operators π̂. We again work with the naive discretization (via
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Eq. (1.31)) first and then improve operators using clovers Eq. (1.33) and half-clovers Eq. (1.35).

Let us take T01 as an example

T01 = Tr [F02F12 + F03F13] = Tr
[
FN

02F
N
12 + FN

03F
N
13

]
+O(a). (2.113)

As both terms have the same form of Tr [F0jFij], I focus on the first term for now and perturb the

action as

Kε(U
′, U) = K + εa3a0 Tr

[
FN

02F
N
12

]
. (2.114)

The perturbed transfer matrix T̂ε is again defined via Eq. (2.84). The operator T̂ε can be written

with the help of primitive operators Eq. (2.9) and Eq. (2.11) as

T̂ε =

∫
Dg eiK(g)− iε

4g2s
Tr[(gn0,2−g

†
n0,2

)(P̂12(n0)−P̂ †12(n0))]+iV̂ . (2.115)

In the Hamiltonian limit a0 → 0, saddle-point approximation around x = 0 simplifies the

integral:

T̂ε ∼
∫
dx e

ia

2g2sa0
xρδρσxσ+ixρπ̂′ρ+iV̂

(2.116)

where π̂′ρ = π̂ρ +
ε

g2
s

δnn0δi2 Tr
[
λb Im P̂12(n0)

]
.

Evaluating the Gaussian integral, one obtains, up to the linear order in ε,

Ĥε = ĤKS + ε
1

a
Tr
[
π̂n0,2 Im P̂12(n0)

]
. (2.117)
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Figure 2.12: Clover C12(n0), half-clover B02(n0), and short-hand notations for links involved.

The operator for Tr
[
FN

02F
N
12

]
can be read off from the second term as

Tr
[
F̂N

02 F̂
N
12(n0)

]
= − 1

a4
Tr
[
π̂n0,2 Im P̂12(n0)

]
. (2.118)

By generalizing the result to operators of the form Tr [F0jFij], one can construct T̂0i operators

with the naive discretization as

T̂0i(n0) = −
∑
j 6=i

1

a4
Tr
[
π̂n0,j Im P̂ij(n0)

]
. (2.119)

To improve operators up toO(a2, a0) discretization errors, one can use clovers in Eq. (1.32)

and half-clovers in Eq. (1.34). I again add F01F12 to the Wilson action as

Kε(U
′, U) = K + εa3a0 Tr

[
FB

02(n0)FC
12(n0)

]
(2.120)

Here I introduce short-handed notations for relevant links around the site n0 as denoted in Figure 2.12.

The corresponding transfer matrix can be written as
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T̂ε =

∫
Dg eiK(g)−i ε

8g2s
Tr[(g1−g†1+Û†0 (g0−g†0)Û0)(Ĉ12(n0)−Ĉ†12(n0))]+iV̂ (2.121)

which can be simplified by the saddle-point approximation around x = 0 in the a0 → 0 limit as

T̂ε ∼
∫

dx e
ia

2g2a0
xρδρσxσ+ixρπ̂′ρ+iV̂ (2.122)

π̂′ρ = π̂ρ +
ε

2g2
s

δnn0δi2

(
Tr
[
λa Im Ĉ12(n0)

]
+ Tr

[
Û †0λ

aÛ0 Im Ĉ12(n0)
])

(2.123)

Here Ĉ is the clover operator. Up to the linear order in ε, we obtain the perturbed Hamiltonian as

Ĥε = ĤKS + ε
1

2a

(
Tr
[
π̂1 Im Ĉ12(n0)

]
+ Tr

[
Û †0 π̂0Û0 Im Ĉ12(n0)

])
. (2.124)

We read off the expression for the general F̂B
0j F̂

C
ij as

Tr
[
F̂B

0j F̂
C
ij (n0)

]
= − 1

2a4

(
Tr
[
π̂n0,j Im Ĉij(n0)

]
+ Tr

[
Û †
n0−ĵ,j

π̂n0−ĵ,jÛn0−ĵ,j Im Ĉij(n0)
])

. (2.125)

All off-diagonal time-like components of T̂µν , T̂0i, can be constructed from operators in Eq. (2.125)

to be correct up to O(a2, a0) discretization error.
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Chapter 3: Sign Problems

3.1 The real-time sign problem

Lattice QCD calculations have successfully addressed many problems in QCD and have

given us a tremendous amount of insight into the theory of strong interactions. However, there

are still observables yet to be computed by lattice QCD, including ones of relevance to heavy-

ion collisions, in both Euclidean and Minkowski lattice calculations due to the so-called sign

problem. In this chapter, new ideas and insights into sign problems are discussed based on [17,

115]. Firstly, this section briefly reviews the origin of sign problems and some of the methods for

alleviating sign problems in QCD. In Sec. 3.2, one of such methods, the manifold deformation

method [16], is reviewed. The manifold deformation method is very closely related to yet another

approach to the sign problem, the complex normalizing flow [17], which will be introduced

in Sec. 3.3. For both manifold deformation methods and complex normalizing flows, their

applicability to lattice field theories of one’s interest is a central question to be addressed, as

will be discussed in Sec. 3.4. Finally in Sec. 3.5, numerical methods based on machine learning

to solve sign problems in the framework of the manifold deformation method and complex

normalizing flows will be explored.

To illustrate sign problems, let us introduce a generic notation for the action as S and its
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partition function as Z where

Z =

∫
D[φ]e−S(φ). (3.1)

Here, the path integral can be defined in Minkowski space, Euclidean space, or with Schwinger-

Keldysh contours as introduced in Sec. 1.3.1, with an appropriate choice of the action S. The path

integral in Minkowski spacetime is often denoted with the weight eiSM (instead of e−S) where

SM is the Minkowski action. In our convention above, Minkowski actions take complex values:

S = −iSM . Throughout the rest of the chapter, I refer to the weight e−S as the “Boltzmann

factor” no matter which part of the Schwinger-Keldysh contour the weight is associated with. In

the path integral above, φ represents all field degrees of freedom on the lattice, such as all gauge

links in lattice QCD path integral in Eq. (1.24). As introduced in Sec. 1.3.1, the Boltzmann factor

e−S for lattice QCD is defined with the action S = SW−log detD where SW is the Wilson gauge

action and D is the Dirac matrix as was introduced in Eq. (1.23). At a finite baryon chemical

potential, even in Euclidean lattice QCD calculations, the Boltzmann factor takes complex values

due to the Dirac determinant detD [116]. This is the so-called finite density sign problem. For

lattice QCD in Minkowski spacetime, the Boltzmann factor takes complex values due to the factor

“ i ” in front of the Wilson gauge action. This is the so-called real-time sign problem. In both

cases, the Boltzmann factor can no longer be regarded as the probability distribution function

for the fields φ on the lattice, and Monte Carlo samplings cannot be performed with the naive

Boltzmann factor. One way to define a probability distribution function within this path integral

formalism is to introduce a quenched distribution function e−ReS(φ), which is real and positive

for all configurations of φ. One can in principle perform Markov chain Monte Carlo (MCMC)

sampling with the quenched distribution function and compute observables in lattice QCD. The
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introduction of the quenched distribution requires that the ratio of two expectation values be

taken:

〈O〉 =

∫
D[φ] e−S O(φ)/

∫
D[φ] e−ReS∫

D[φ] e−S/
∫
D[φ] e−ReS

=
〈O e−i ImS〉Q
〈e−i ImS〉Q

. (3.2)

Unfortunately, both the numerator and the denominator are numerically challenging to

compute on the lattice. As an example, let us examine what we expect to obtain for the denominator,

the so-called average sign 〈σ〉 = 〈e−i ImS〉Q. In the presence of a sign problem, the average sign

is strictly smaller than 1, and it is expected to scale exponentially with the volume [110],

〈σ〉 ∼ aV , |a| < 1 (3.3)

when the action has only local interactions, which is often the case for lattice field theories of our

interest. When the action S has only local interactions, one can naively view the numerator and

the denominator of its average sign, the partition function Z and the quenched partition function

ZQ respectively, as a product of the “local Z” and “local ZQ”, i.e.,

Z(V ) ∼ Z(V/2)2, ZQ(V ) ∼ ZQ(V/2)2 . (3.4)

Here Z(V ) and ZQ(V ) are the partition function and the quenched partition function of a lattice

with volume V respectively. Therefore, it follows that the resulting average sign with volume V ,

〈σ〉(V ), can be also written as

〈σ〉(V ) ∼ 〈σ〉(V/2)2 (3.5)

which leads one to the exponential scaling of the average sign in Eq. (3.3). On the other hand,
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sampled values of the average sign are always a complex number with the magnitude of 1 (on the

unit circle). Therefore, the number of samples required in MCMC sampling scales as ∼ e2V to

resolve the average sign from zero.

Sign problems exist not only in QCD but also in a wide range of fields in physics. Due

to its significance, extensive work has been done to explore methods for solving or alleviating

sign problems. As it is unlikely that a general solution to sign problems exists [117], solutions

to sign problems are expected to be more or less problem-dependent. For example, regarding

the finite-density sign problem (see, e.g. [118] for a review), explored ideas include reweighting

methods [119], the complex Langevin method [120], the density of states methods [121], canonical

methods [122, 123], the fermion bag approach [124], analytic continuation from imaginary

chemical potential [125], and perturbative removal of a sign problem [126]. The rest of the

section is devoted to discuss an extension of yet another method called the manifold deformation

method (see [16] for a review).

3.2 Manifold deformation methods

One long-standing method to alleviate sign problems is the manifold deformation method.

As will be described in detail in the following, the basic idea of the method is to deform the

contour of integration in the path integral to the “complex plane”, aiming for a milder sign

problem. There has been a family of ideas for the manifold deformation method starting with

the Lefschetz thimbles [127, 128, 129, 130]. The Lefschetz thimbles have been generalized

to the generalized thimble method [131], which has been applied to bosonic and fermionic

systems at finite density [132, 133, 134, 135, 136], real-time sign problems [137, 138], and

87



gauge theory [139]. Due to the numerical cost in finding such generalized thimbles, a method

to machine-learn manifolds has been proposed [140]. More related to the topic of this chapter,

to overcome numerical issues with the generalized thimble method, the sign-optimized manifold

method was introduced in [141, 142]. The basic idea of the sign-optimized manifold is to prepare

a family of manifolds of integration parameterized by several parameters, and numerically optimize

the parameters (and thus the manifold of integration) within the family such that the average sign

is maximized. The method has been applied to fermionic systems in [143, 144]. This approach,

“the preparation a family of manifolds”, remains as the key concept in a new method, complex

normalizing flow, which will be introduced in Sec. 3.3. To start, in this section, I summarize the

basic idea of the manifold deformation method.

The idea of the manifold deformation method is simple. To illustrate the problem, let us

take an action S(φ) where the fields φ take real values. For example, for the lattice SU(3) gauge

theory, eight real values parameterizing elements g ∈ SU(3) on each link can be regarded as

such φ fields. Therefore, the domain of real values φ take depends on the lattice field theory of

one’s interest. For example, φ takes φ ∈ RN for real scalar field theories with N real degrees of

freedom. Fields φ can also have a compact space, for example φ ∈ [−π, π) for each degree

of freedom in U(1) gauge theory and the Thirring model [144]. Given the original domain

of integration of the path integral, the idea of the manifold deformation method is to deform

the contour of integration in the path integral from the original domain in R to a manifold M

in the corresponding complex plane C. As a consequence of such a smooth deformation, the

new manifold M is expected to be parameterizable by the same number of real variables as

the original integration domain has. The goal of the deformation is to find a new manifold of

integration which has a larger average sign and thus a milder sign problem.
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The equivalence of physics on the original integration domain and the deformed manifold

M is guaranteed by the multi-dimensional Cauchy’s theorem as is discussed in detail in [110].

To be more precise, the expectation value of an observable (lattice function) O(φ) is guaranteed

to be the same on the original domain of integration and M by the Cauchy’s integral theorem

when the following three conditions are met:

1. The manifoldM is a continuous manifold, obtainable by a continuous deformation of the

original domain of integration.

2. The integrands, e−S(φ) and O(φ)e−S(φ), are holomorphic functions in the region between

the original integration domain andM, scanned by the deformation of the manifold from

the real plane toM.

3. The asymptotic behavior of the manifold remains the same. For example, for φ that takes

value from a compact space like on a unit circle, the manifold should be closed as shown

in Figure 3.1. For the contour with a gap as shown on the right panel of Figure 3.1 to be

allowed, the contribution from the gap in the dashed line to the path integral has to vanish,

which cannot be the case as the Boltzmann factor has to be a holomorphic function. For

theories where φ takes value from RN , manifolds need to be in the “asymptotically safe

region”, which RN also belongs to, at infinities |φ| → ∞. An asymptotically safe region

is where the integrand e−S(φ) vanishes at |φ| → ∞ such that the integration in this region

does not contribute to the path integral. For example, the action S(φ) = −φ4 has two

disconnected asmptotically safe regions separated by borders arg φ = (1 + 2n)π/8 (for

integer n) as are sketched in Figure 3.2. Only contours in the safe region which includes

the real axis are allowed.
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Figure 3.1: Contour deformation on a cylinder. The blue contour on the left gives the correct
expectation values while the red contour with the gap does not.

When these conditions are met, Cauchy’s theorem guarantees that the integrals of e−S(~φ) and

O(φ)e−S(φ) on the union of the original domain of integration andM both vanish so that

∫
M
D[φ] e−S(φ) =

∫
RN
D[φ] e−S(φ) , (3.6)

and the same holds for the integral of O(φ)e−S(φ).

As is introduced at the beginning of the section, manifold deformation methods have been

applied to a variety of sign problems and alleviated them. However, it is fair to summarize that

no sign problem in QCD has been solved so far by manifold deformation methods or any other

methods. In other words, no manifold deformation methods have successfully found a manifold

of integration with the average sign of 1 in a scalable way in the presence of sign problems in

QCD. To solve a sign problem, the existence or non-existence of a perfect manifold, which has

the average sign of 1, for a given lattice field theory is a crucial question to be addressed before a

manifold deformation method is applied. The existence of perfect manifolds will be discussed in
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Figure 3.2: Contour deformation on the complex plane of φ. Gray shaded regions are the
aymptotically safe regions when the Boltzmann factor is e−φ4 . The blue contour gives the correct
expectation values while the red contours do not.

Sec.3.4.1.

3.3 Complex normalizing flows

In this section, I discuss another potential method for solving sign problems — the complex

normalizing flow [17, 115]. While the complex normalizing flow is conceptually equivalent to

the manifold deformation method introduced in the last section, it provides several important

mathematical and algorithmic consequences. The idea of the manifold deformation was to

deform the contour of integration so that the average sign increases. When one wants to completely

solve a sign problem, the ultimate goal is to find a perfect manifold which has the average sign

〈σ〉 = 1. The existence of such perfect manifolds is a very non-trivial but essential question to be

addressed for each lattice theory before a manifold deformation method is applied. Complex

normalizing flows give us a tool to address this question as will be discussed in Sec. 3.4.2.
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Complex normalizing flows also provide a way for us to find such perfect manifolds with the

aid of machine learning in a similar way as discussed in [140]. In addition to that, once a

complex normalizing flow is found, it accelerates Monte Carlo samplings for evaluating the path

integral, as will be discussed in this section and Sec. 3.5. In this section, I introduce the idea of

complex normalizing flows for reducing sign problems, starting by introducing the definition of

normalizing flows.

A normalizing flow forN dimensional probability distribution f(φ) : RN → R (normalized

to be 1) is a map from f(φ) to a trivial distribution such as the Gaussian distribution:

det

(
∂φ

∂x

)
f(φ) = gN(~x) . (3.7)

Here function gn(~x) is the n-dimensional Gaussian distribution:

gn(~x) =
n∏
i=1

1√
2π

exp(−x2
i /2). (3.8)

Such a normalizing flow exists for any normalizable distribution functions in any dimensions [145].

For 1-dimensional distributions f(φ) : R→ R, their normalizing flows defined via

dφ

dx
f(φ) = g1(x) (3.9)

can be uniquely constructed via the cumulative distribution functions of f(φ) and g1(x)

F (φ) =

∫ φ

−∞
dφ′ f(φ′), G(x) =

∫ x

−∞
dx′ g1(x). (3.10)
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The cumulative distribution functions are the normalizing flows from f, g1 to a uniform distribution

on the interval [0, 1]. Thus the map from g1(x) to f(φ) can be constructed a sequence of two maps

as

φ(x) = F−1 ◦G. (3.11)

Normalizing flows for multi-dimensional distributions (N > 1) are known to exist [145] but they

ceases to be unique, making it more challenging to find such maps. Finding normalizing flows

with desirable features is an active area of research [145].

The application of normalizing flows to lattice field theories without sign problems has

been studied intensely in recent years [146, 147, 148, 149, 150]. The advantage of the use of

normalizing flows is that Markov chain Monte Carlo (MCMC) methods can be accelerated by

generating an approximate normalizing flow φ(x) for the Boltzmann factor and applying it to the

path integral:

〈O〉 =

∫
Dφ e−S(φ) O(φ)∫
Dφ e−S(φ)

=

∫
d~x gN(~x) O(φ(~x))∫

d~x gN(~x)
. (3.12)

Here, sampling of N real variables ~x from the Gaussian distribution can be done more efficiently

than performing MCMC samplings of φ from the original distribution e−S(φ). Such normalizing

flows can also be used to create proposals for the lattice field configurations for a Markov chain.

In practice, searches for normalizing flows are often numerical and one obtains a map that

only approximates an exact normalizing flow. Such an approximate map induces an effective

action on φ

Sind(φ) = x(φ)2 + log det
∂φ

∂x
. (3.13)

Thus to compute correct expectation values with such an approximate normalizing flow, the

93



following ratio must be computed:

〈O〉 =
〈eSind−SO〉
〈eSind−S〉

(3.14)

where the expectation values in the numerator and the denominator are evaluated with the induced

distribution e−Sind using the approximate normalizing flow.

Normalizing flows cannot be applied to lattice field theories with a sign problem directly.

For a Boltzmann factor e−S which takes complex values to be mapped to the Gaussian distribution

as in Eq. (3.7), we must allow the mapped φ to be complex-valued. Thus the normalizing flow is

now a map φ(x) : RN → CN from the real variables in the Gaussian distribution x in RN to the

complexified physical fields φ in CN . We call such maps the complex normalizing flows. If such

a complex normalizing flow is found for a lattice field theory of one’s interest, the map can be

used in the same way as traditional normalizing flows. Instead of sampling from the Boltzmann

factor (or the quenched Boltzmann factor as we assumed the presence of a sign problem), one can

sample from the Gaussian distribution and apply the complex normalizing flow as in Eq. (3.12) to

compute expectation values. There are some conditions to be met for complex normalizing flows

as will be discussed shortly. The search for such maps is likely to be done numerically, and thus

one obtains only an approximate complex normalizing flow. In such a situation, an appropriate

reweighting should be performed as in Eq. (3.14).

The ideas of complex normalizing flows and manifold deformations are very tightly connected.

A complex normalizing flow φ(x), starting from RN , maps each point x ∈ RN to a point in

the complex space CN and thus generates a manifold Mn in CN . In other words, a complex

normalizing flow provides a parametrization of the manifold Mn by RN . When one uses a
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normalizing flow to compute expectation values, they are actually evaluated on such a generated

manifoldMn in the complex plane of physical fields φ:

〈O〉 =

∫
d~x gN(~x) O(φ(x))∫

d~x gN(~x)
=

∫
Mn
Dφ e−S(φ) O(φ)∫
Mn
D φe−S(φ)

. (3.15)

To guarantee that such complex normalizing flows give the correct expectation values (the expectation

values that are evaluated on the real plane RN ), the complex normalizing flow φ(~x) needs to

be constructed such that the resulting manifold Mn satisfies the three conditions discussed in

Sec. 3.2.

Given the connection between complex normalizing flows and deformed manifolds, it is

clear that a manifoldMn generated by an exact complex normalizing flow has the average sign

of 1 and thus has no sign problem. Therefore, for a complex normalizing flow to exist, a perfect

manifold must exist. The converse holds as well — when a perfect manifold exists, that implies

that a complex normalizing flow exists. This can be shown by the existence of normalizing flow

for any real and positive-valued distributions. On a perfect manifold patameterized by N real

parameters denoted as ~y, the distribution e−S(φ(~y)) is real and positive in terms of ~y. As there

are always normalizing flows ~y(~x) between the Boltzmann factor e−S(φ(y)) and the Gaussian

distribution gN(~x), the complex normalizing flow is constructed as

φ(x) = φ ◦ y(x). (3.16)

Thus the existence of perfect manifolds and complex normalizing flows are the equivalent statements.

In the next section, we discuss the existence of perfect manifolds in Sec. 3.4.1 and complex
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normalizing flows in Sec. 3.4.2. The possibility of the breakdown of such arguments for the

existence of complex normalizing flows, and equivalently perfect manifolds, are also discussed

based on our current understanding [17, 115]. In Sec. 3.4.3, the existence and non-existence of

perfect manifolds are demonstrated with 1-dimensional toy models.

3.4 Existence

In this section, the existence of locally perfect manifolds is discussed. On a locally perfect

manifold, the Boltzmann factor locally has a fixed phase but the manifold consists of segments

which have different phases. Therefore, such a manifold is locally perfect but still has a global

sign problem. In Sec. 3.4.1, I show how one can construct such a locally perfect manifold in the

context of manifold deformation methods. In Sec. 3.4.2, I discuss the existence of locally perfect

manifolds using normalizing flows.

3.4.1 Existence of perfect manifolds

In this section, we show how a locally perfect manifold can be constructed. The key tool

used here is the holomorphic gradient flow [131]:

dφ

dt
=
∂S

∂φ
. (3.17)

It is a first order differential equation to update each point φ in the manifold of integration and

thus let the manifold of integration “flow”. Here t is the flow time of the manifold, which has

nothing to do with the time as in Minkowski spacetime. At each flow time t, we obtain a new

manifold. At t→∞, the manifold flows into Lefschetz thimbles [127, 128, 129, 130]. The idea
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of the generalized thimble method [131] is to flow the manifold only for a finite flow time. As

one updates the manifold over flow time t, the real part of the action S keeps increasing

dS

dt
=

∣∣∣∣∂S∂φ
∣∣∣∣2 . (3.18)

Therefore the quenched partition function decreases, and one may expect that the average sign

will increase. In fact, at the infinite limit of the flow time, the imaginary part of the action stays

constant on the manifold as it is the case for Lefschetz thimbles. Unfortunately, the average sign is

still not guaranteed to increase. Thimbles are likely to have a sign problem due to the Jacobian at

larger flow time and thus are not optimal manifold of integration. Nevertheless, the holomorphic

gradient flow can still be used to construct a locally perfect manifold. The key feature of the

holomorphic gradient flow is that when a manifold starts to flow from the real plane RN , for an

infinitesimal flow time t, the holomorphic gradient flow always improves the sign problem, as is

shown in the following.

To begin, let us note that the numerator of the average sign, the partition function Z, does

not change due to the holomorphic gradient flow as long as the three conditions discussed in

Sec. 3.2 are met on the resulting manifold of integration. On the other hand the denominator,

the quenched partition function ZQ should change as the integrand e−ReS not a holomorphic

function. Thus, when the sign problem improves, we expect to see that ZQ decreases while Z

remains the same. Let us demonstrate that ZQ always decreases at early flow time. The change

in the quenched partition function at the start, RN , is given by

d

dt
ZQ =

d

dt

∫
RN
Dφ e−ReS[φ̃(φ)]

∣∣∣∣∣det
∂φ̃

∂φ

∣∣∣∣∣ , (3.19)

97



where each point φ ∈ RN is flowed to a point φ̃(φ) ∈ CN . The parameterization, φ̃(φ) with

φ ∈ RN , of the new manifold was used to write Eq. (3.19), so the manifold of integration remains

to be RN . Thus we can focus sorely on the change in its integrand. The derivative of the integrand

with respect to t is

d

dt
e−ReS| det J | = e−ReS| det J |

[
Re Tr J−1 dJ

dt
− d ReS

dt

]
. (3.20)

As is seen in Eq. (3.18), the change in the real part of the action is guaranteed to be non-negative:

d ReS
dt

=
∣∣∣dS

dφ̃

∣∣∣2. Thus when the term with the Jacobian is smaller than the second term, the

quenched partition function ZQ decreases and the sign problem is improved. This scenario is

not guaranteed to happen at ant flow time t. Indeed, at larger flow time t, the Jacobian tends to

be large and ZQ increases, worsening the sign problem. However, starting from the real plane,

at least at early flow time, it is guaranteed that the term is Jacobian is small enough for the

quenched partition function to decrease. The Jacobian at the real plane is diagonal with dφ̃i
dφi

for

each diagonal element, and therefore we find that

Tr J−1 dJ

dt
=
∑
i

∂2S

∂φ̃2
i

. (3.21)

As we evaluate Jacobian term on the real plane, its real part is simply
∑

i
∂2 ReS
∂φ2i

. Thus Eq. (3.20)

is simplified and becomes

d

dt
e−ReS| det J | =

∑
i

e−ReS

[
∂2 ReS

∂φ2
i

−
∣∣∣∣ ∂S∂φ̃i

∣∣∣∣2
]

. (3.22)

To further simplify Eq. (3.19), the following relation for the magnitude of the derivative of the
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action on the real plane is useful:

∣∣∣∣ ∂S∂φ̃i
∣∣∣∣2 =

(
∂ ReS

∂φi

)2

+

(
∂ ImS

∂φi

)2

. (3.23)

The first term can be written with a total derivative

∂

∂φi

(
∂ ReS

∂φi
e−ReS

)
= e−ReS

[
∂2 ReS

∂φ2
i

−
(
∂ ReS

∂φi

)2
]

. (3.24)

Using these relations, Eq. (3.19) becomes

dZQ
dt

=

∫
Dφ

∑
i

[
∂

∂φi

(
∂ ReS

∂φi
e−ReS

)
+ e−ReS

(
∂ ReS

∂φi

)2

−e−ReS

(
∂ ReS

∂φi

)2

− e−ReS

(
∂ ImS

∂φi

)]

= −
∫
Dφ e−ReS

(
∂ ImS

∂φi

)2

. (3.25)

The final expression above is clearly non-positive, and strictly negative when the imaginary part

of the action changes while e−ReS is non-vanishing. Thus we conclude that the quenched

partition function ZQ always decreases after an infinitesimal flow from the real plane in the

presence of a sign problem.

This is the key result of the holomorphic gradient flow from the real plane RN : when a

sign problem exists on the real plane, an infinitesimal deformation of the manifold RN by the

holomorphic gradient flow Eq. (3.17) is guaranteed to improve the sign problem by making the

quenched partition smaller. At a larger flow time, this not true any more — the quenched partition

function can increase and worsen the sign problem due to the Jacobian. Another problem with
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the use of the holomorphic gradient flow for a large flow time is that the resulting manifold may

be a union of several thimbles which may have different phases and thus introduces a cancellation

between different thimbles. Local phase fluctuations due to the Jacobian are sometime referred

to as a local sign problem while cancellations between thimbles are called a global sign problem.

In the following, we show how one can in principle get rid of the local sign problem by applying

infinitesimal holomorphic gradient flows from the real plane. As will be discussed later, a

resulting locally perfect manifold may still have a global sign problem due to the cancellation

between segments of the manifold.

I start the construction of a locally perfect manifold by flowing the original manifold RN

by the holomorphic gradient flow Eq. (3.17) until an infinitesimal flow time t = ε. All points

φ ∈ RN will be mapped to φ1 ∈ CN according to the gradient flow (up to the linear order in ε)

φ1(φ) = φ+ ε
∂S

∂φ

∣∣∣∣
φ

. (3.26)

and form a new manifoldM1. As an infinitesimal flow from the real plane makes the quenched

partition function smaller, the sign problem is improved onM1 compared to RN .

To improve the manifold further, I would like to parameterize M1 by RN and flow the

manifold again with an effective action induced by the parameterization. One such parameterization

of the new manifoldM1 is the map φ1(φ), which induces an effective action

S1(φ) = S[φ1(φ)]− log det

(
1 + ε

∂

∂φ

∂S

∂φ

∣∣∣∣
φ

)
. (3.27)

This is an action defined on RN . We would like to apply the holomorphic gradient flow with this

100



new action S1 and improve the sign problem again. However, there is a technical complication

which is that the effective action S1 is no longer a holomorphic function of φ, most explicitly due

to the anti-holomorphic term ∂S
∂φ

∣∣∣
φ
.

A way to circumvent the problem is to realize that the manifold flows from the real plane,

so that the flow equation Eq. (3.26) could be equivalently defined as

φ1(φ) = φ+ ε
∂S

∂φ

∣∣∣∣
φ̄

. (3.28)

The last term means that one evaluates the complex conjugate of ∂S
∂φ

at the complex conjugate φ̄.

This map defines exactly the same manifold asM1 as φ = φ̄ on RN , but at the same time offers

a holomorphic map in the complex plane. Thus using this map, we modify the induced action as

S1(φ) = S[φ1(φ)]− log det

(
1 + ε

∂

∂φ

∂S

∂φ

∣∣∣∣
φ̄

)
, (3.29)

which is holomorphic.

Given the effective action S1 as a holomorphic function in the complex plane of φ, we

apply the holomorphic gradient flow again by a small flow time ε

φ2(φ) = φ+ ε
∂S1

∂φ

∣∣∣∣
φ̄

. (3.30)

The map from the real plane to the resulting new manifoldM2 is given by composing two flows,

φ1 and φ2, as φ2(φ). The quenched partition function onM2 is guaranteed to be strictly smaller

than that ofM1 (unless the manifoldM1 had no local sign problems) and thus the sign problem

is improved.
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The parameterization of manifolds Mi at each flow step is not unique. Let us denote a

parameterization of manifold Mi as pi : CN → RN , and each flow map as φi : RN → CN .

(In the demonstration above, p1 was taken to be the inverse of φ1.) Then the manifold will be

improved as

M1 = {φ1(φ), φ ∈ RN}

Mi = {φi(pi−1(φ̃)), φ̃ ∈Mi−1} (3.31)

One can repeat the process of parameterization of manifolds by pi and flow φi via Eq. (3.17)

using the effective actions to keep improving the manifold of integration while reducing the sign

problem.

As we repeat the small flow, the quenched partition function ZQ keeps decreasing. There

are two possible end results after a large number of flows. One possibility is that a manifold

reaches a “fixed point” where the manifold will not be moved by the holomorphic gradient flow

any more. The other possibility is that some singular behavior of the manifold is introduced and

the parameterization via the real plane RN becomes no longer possible. There is no formal proof

that such singular behavior does not occur. Examples where such behavior of the manifold is

observed are currently investigated.

The first scenario where small flows let the manifold of integration reach a fixed pointMf

is when we find a locally perfect manifold. When denoting the final effective action as Sf , at

the fixed point, the flow equation Eq. (3.26) does change the manifold, meaning that the flow

vectors ∂Sf
∂φ

lie entirely in the real plane and thus the imaginary part of Sf does not vary with φ.
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Equivalently, in Eq. (3.25), the quenched partition function does not change, meaning that

e−ReS

(
ImS

∂φi

)2

= 0 (3.32)

for all i. Therefore, unless the quenched Boltzmann factor e−ReS vanishes, the phase of the

Boltzmann factor e−i ImS is guaranteed to be constant. Thus the manifoldMf may be separated

to segments by the “zeros” of the Boltzmann factor, but each segment is guaranteed to have

a fixed phase. Nevertheless, segments may possess different phases and a cancellation may

occur between segments. We call such manifolds as locally perfect, but not globally perfect

manifolds — Mf may possess a global sign problem. Such a vanishing Boltzmann factor

is not a uncommon scenario. For example, the Boltzmann factor of QCD in the Schwinger-

Keldysh formalism at zero and finite chemical potential has zeros in the complex plane. To obtain

globally perfect manifolds for QCD, such zeros need to be avoided while drawing the manifold

of integration. There is no formal proof which guarantees the availability of such construction

of manifolds without zeros. On the other hand, the Boltzmann factor of bosonic lattice field

theories in the Schwinger-Keldysh formalism in general does not vanish except at infinities —

their actions consist only of the polynomials of bosonic fields. Thus, it is likely that globally

perfect manifolds exist for bosonic lattice field theories, such as the φ4 scalar field theory and

SU(N) gauge theories.

A similarity and a difference between the fixed-point manifold Mf and the Lefschetz

thimbles should be emphasized. When a fixed point manifold is parameterized by the real plane,

the resulting effective action has no phase fluctuation in each segments separated by the zeros of

the Boltzmann factor. Similarly, when a Lefschetz thimble is parameterized by the real plane, it
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consists of several segments separated by the points with vanishing Boltzmann factor and may

introduce a global sign problem. The key difference between two kinds of manifolds is that, on a

Lefschetz thimbles, each segment has constant phase from the physical action but still possesses a

phase fluctuation in the effective action on the real plane due to the Jacobian. Thus the Lefschetz

thimbles can possess both local and global sign problems, in contrast to the fixed point manifold

having only global sign problems. The presence of a global sign problem in a Lefschetz thimble

does not guarantee the presence of a global sign problem on a fixed-point manifold as was shown

in an example in [17].

3.4.2 Existence of complex normalizing flows

Normalizing flows give an alternative framework to construct perfect manifolds, based on

the fact that complex normalizing flows always generate perfect manifolds. To illustrate the

construction of perfect manifolds via complex normalizing flows, let us consider a family of

actions S(φ;λ) which are smoothly connected by the parameter λ. In this family of actions,

we include an action S(φ;λ0) which has no sign problems and S(φ;λt) which possesses a sign

problem. Our goal is to construct a perfect manifold, or equivalently a complex normalizing flow

for the action S(φ;λt).

Normalizing flows exist for the action S(φ;λ0), which we denote as φ = f0(x;λ0). To

further proceed and construct a complex normalizing flow for S(φ;λt), the key point of view is

to think of the action S(φ;λ0) as the function of the parameter λ0, and so as the normalizing flow,

defined by

det

(
∂f0(x;λ0)

∂x

)
e−S(f0(x;λ0)) = N gN(~x). (3.33)

104



Here the normalization of the Boltzmann factor was introduced asN . When the normalizing flow

φ = f0(x;λ0) is an analytic function of λ0, then one can simply perform analytic continuation

of the normalizing flow f0(x;λ0) in the parameter space of λ towards λt to obtain a normalizing

flow for S(φ;λt), which I denote as φ = ft(x;λt). Now we use the map f(x;λt) to generate a

perfect manifold by mapping all points x ∈ RN to φ ∈ CN .

The analyticity of normalizing flows as a function of action’s parameters for sign-free

actions is not generically proven. To show one example where the normalizing flow is an analytic

function of action’s parameters, we take real scalar field theory with φ4 interaction

S =
∑
ij

φiMijφj + λ
∑
i

Λiφ
4
i . (3.34)

Here i, j denote lattice sites. The matrix M represents the mass terms and kinetic terms together,

λ is the coupling strength. Here we leave the expression for the action generic so that with

one’s choice of M and Λ, the action represents real scalar field theory with arbitrary Schwinger-

Keldysh contours. In the following, we derive normalizing flows analytically up to the first order

in weak-coupling and then strong-coupling expansion while leaving M,Λ in such generic forms.

To start, for a general action S0 with a perturbing term O

S = S0 + gO (3.35)

let us consider a map φ̃(φ) from e−S(φ̃) to e−S0(φ):

det

(
∂φ̃

∂φ

)
e−S(φ̃(φ)) = N e−S0(φ) (3.36)
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The map is φ̃(φ) = φ when g = 0. For small g, we expand the map φ̃(φ) as a power series in g

as φ̃(φ) = φ + g∆(1)(φ) + · · · . By expanding Eq. (3.36) up to the first order in g, we obtain the

following differential equation for ∆(1)(φ)

∇ ·∆(1) −∆(1) · ∇S0 = O − 〈O〉. (3.37)

Here the expectation value 〈O〉 is evaluated with the distribution e−S0 . The perturbed map ∆(1)

can be derived by solving Eq. (3.37), although the solution is in general not unique.

In the weak coupling limit of the action Eq. (3.34), the map φ̃(φ) defined in Eq. (3.36) is

well-approximated by a perturbative flow φ̃(φ) = φ+λ∆w,(1)(φ) where ∆w,(1) satisfies Eq. (3.37)

with O =
∑

i Λiφ
4
i . One of the simplest solutions is

∆
w,(1)
i = −

∑
j

[
1

2
M−1

ij Λjφ
3
j +

3

4
M−1

ij M
−1
jj Λjφj

]
. (3.38)

To construct a perturbative normalizing flow with ∆w,(1), we additionally need a map φ(x) from

e−S0(φ) to the Gaussian distribution g(x). Since the free action S0 is already quadratic, such a map

is simply a linear rotation φ(x) = Ux. The entire pertirbative map from e−S(φ̃) to the Gaussian

distribution is

φ̃(x) = φ(Ux) + ∆w,(1)(φ(Ux)). (3.39)

The map U and ∆w,(1) are both analytic functions of M and Λ except when detM vanishes.

Therefore, in principle one can perform analytic continuation of the perturbative normalizing

flow at weak couplings from a sign-free action to Schwinger-Keldysh actions with a real-time

extent. However, such normalizing flows will not provide an induced manifold with a desired
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asymptotic behavior.

In the derivation of the normalizing flow above, I obtained the expression for perturbative

normalizing flows for arbitrary Schwinger-keldysh contours determined byM,Λ. One may think

of directly using the perturbative flow as a good approximation to the normalizing flows for

the Schwinger-Keldysh scalar action at weak coupling. It is unlikely that this will work — a

manifold generated by the perturbavative flow does not have the correct asymptotic behavior. For

manifolds to be in the asymptotically-safe region, we must study the behavior of normalizing

flows at large φ, or in other words, the strong coupling limit of λ.

To obtain a perturbative flow at a strong coupling, I first decompose the map φs(x) into

four pieces:

φs(x) = [F4 ◦ F3 ◦ F2 ◦ F1] (x). (3.40)

The first map F1 : R → R maps the distribution e−x
2 to e−φ

4 at each site i. Following the

prescription in Eq. (3.11), the map can be written by the sequence of two cumulative distribution

functions Π and P as

F1(x) = Π−1 ◦ P , with (3.41)

Π(x) =
1

2
+

1

2

(
1− Γ [1/4, x4]

Γ(1/4)

)
sgnx (3.42)

P (x) =
1

2

(
1 + Erf(x/

√
2)
)

. (3.43)

The second map F2 : R → R rotates and scales the complex plane to map the distribution

e−φ
4 to e−Λψ4 . The map is simply

F2(φ) = φ/Λ
1/4
i (3.44)
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On most sites on a Schwinger-Keldysh contour, the map performs the rotation of a complex plane,

except an additional scaling by a factor of 21/8 at the corners of the Schwinger-Keldish contour.

The map F3 : RN → RN maps the distribution e−S0(φ) with S0 =
∑

i Λφ
4
i to e−S′(ψ) with

S ′(ψ) =
∑
i

Λiψ
4
i +

1√
λ

∑
ij

ψiMijψj (3.45)

This is where we perform the strong coupling expansion and write the ith component of the

map as F3,i(φ) = φi + 1√
λ
∆
s,(1)
i (φ). The perturbative part ∆s,(1)(φ) satisfies Eq. (3.37) with

S0 =
∑

i Λφ
4
i and O =

∑
ij φiMijφj . Its expectation value 〈O〉 must be evaluated with S0. By

introducing fi = ∆
s,(1)
i (φ)e−Λiφ

4
i and using the fact that 〈φiφj〉 vanishes when i 6= j, one can

choose for the each map fi to satisfy

∂fi
∂φi

eΛiφ
4
i −

∑
j

Mijφiφj = −Mii〈φ2
i 〉. (3.46)

The expectation value is analytically computed to be 〈φ2
i 〉 = Γ(3/4)

4Γ(5/4)
√

Λi
. The fact that only

diagonal and nearest-neighbor elements in M are non-zero simplifies the differential equation

further. The solution is

∆
s,(1)
i (φ) = eΛiφ

4
iMii

[
−
φ3
iΓ[3

4
,Λiφ

4
i ]

4(Λiφ4
i )

3/4
+
〈φ2

i 〉φiΓ[1
4
,Λiφ

4
i ]

4(Λiφ4
i )

1/4

]
+

∑
j∈{i−1,i+1}

eΛiφ
4
i

√
π

4
√

Λi

[
Erf(

√
Λiφ

2
i )− C

]
Mijφj . (3.47)

Here, (·)1/4 refers to the principle fourth root and a specific choice of C = 1 gives a solution

which is oscillation-free and vanishes at ψi →∞.
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The final map, F4 : R→ R, rescales the field by a factor of λ1/4

F4(φ) = φ/λ1/4. (3.48)

to obtain the distribution with the desired action S in Eq. (3.34).

Given analytic expressions for all maps in Eq. (3.40), let us examine if the perturbative

normalizing flow φs is an analytic function of the parameters of the action M,Λ. Among four

maps, only F2 and F3 depend on M,Λ. Both the map F2 in Eq. (3.44) and F3 in Eq. (3.47) are

analytic functions of M and Λ except at vanishing Λ. Thus as long as we avoid Λ = 0, analytic

continuation of the normalizing flow of the Euclidean real scalar fields (S with real-valuedM and

Λ in Eq. (3.34) gives the perturbtive normalizing flows for the action S for a Schwinger-Keldysh

contour with a real-time extent.

Although the purpose of the exercise above was to show the analyticity of the perturbative

normalizing flow for the lattice scalar field theory without a sign problem, a general expression for

a perturbative normalizing flow of an arbitrary Schwinger-Keldysh contour in the strong coupling

limit was derived in Eq. (3.40). The perturbative normalizing flow φs should approximate the full

normalizing flow φ(x) defined as

det

(
∂φ

∂x

)
e−S(φ) = gN(x) (3.49)

in the strong coupling regime. Now, let us use this perturbative map and test its performance by

measuring the average sign and real-time correlators on a 0 + 1-dimensional lattice. To be more
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precise, our action is

Sφ =
∑
t,x

(φx,t − φx,t+1)2

2a0(t)
+
∑
t

a0(t) + a0(t− 1)

2

∑
〈xx′〉

(φx,t − φx′,t)2

2a2
x

+
∑
x

(
m2

2
φ2
x,t +

λ

4!
φ4
x,t

) .

(3.50)

with the “S” contour in the Schwinger-Keldysh formalism, defined as

a0(t) =



−i t ∈ [0, Nt)

1 t ∈ [Nt, Nt +Nβ/2)

i t ∈ [Nt +Nβ/2, 2Nt +Nβ/2)

1 t ∈ [2Nt +Nβ/2, 2Nt +Nβ)

. (3.51)

Here Nt and Nβ denote the number of time steps in real-time and imaginary-time respectively. In

Figure 3.3, the average sign of the manifold generated from the perturbative map is plotted for a

12-sites (Nβ = 2, Nt = 5) with m = 0.5 with varying coupling λ. As expected, the average sign

is larger at strong couplings, meaning that manifolds of integration generated by the perturbative

flow almost remove the sign problem for large coupling. However at sufficiently small couplings,

the average sign is small, meaning that the perturbative flow cannot provide a sign-free manifold

of integration. Note that as the perturbative normalizing flow is only approximately correct, the

Boltzmann factor needed to be reweighted following Eq. (3.13) and Eq. (3.14).

To check the correctness of the normalizing flows, real-time correlators 〈φ(t)φ(0)〉 are

evaluated with the flow while fixing m = 0.5, λ/24 = 0.33. The lattice has 14 sites with Nβ = 2

and Nt = 6. The simulated results are compared with the exact Hamiltonian calculations shown

in black dots to show a consistent agreement. The average sign was estimated to be 〈σ〉 =
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Figure 3.3: The average sign of the manifold generated from the perturbative map for a 12-sites
(Nβ = 2, Nt = 5) with m = 0.5 with varying coupling λ.

0.096(5).

In this section, the construction of perfect manifolds by analytic continuation of normalizing

flows was discussed. As a study case, perturbative normalizing flows for the φ4 real scalar

field theory were derived for the weak and strong coupling limits. It was shown that except for

particular choices of the parameters of the action, the perturbative normalizing flows are analytic

functions of action’s parameters. As a byproduct, the perturbative flow in the strong coupling

limit was used to approximate the normalizing flow for φ4 scalar field theory, and the average

sign and real-time correlators were evaluated on a 0 + 1 dimensional lattice. The perturbative

evaluation of normalizing flows up to higher orders does not seem to be practical, and thus would

not be a solution to the real-time sign problem in φ4 scalar field theory. The same will be true

for other lattice field theories. Thus, in practice, another (potentially numerical) method will

be required for searching complex normalizing flows, or equivalently perfect manifolds. The
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Figure 3.4: Real-time correlators 〈φ(t)φ(0)〉 evaluated with the perturbative normalizing flow
while fixing m = 0.5, λ/24 = 0.33, Nβ = 2 and Nt = 6.

application of tools from machine learning for searching normalizing flows will be explored in

Sec. 3.5.

When a global sign problem cannot be removed, a normalizing flow does not exist either.

One cause of such cases is, from the manifold deformation point of view, the zeros of the

Boltzmann factor as was discussed in the last section. When a locally perfect manifold intersects

with a point in the field space at which the Boltzmann factor vanishes, the manifold may possess

a global sign problem due to the change of the phase across the zero. In such a case, we should

also see the failure of the construction of a globally perfect manifold in the context of analytic

continuation of normalizing flows. Going back to the definition of the normalizing flow,

det

(
∂φ

∂x

)
e−S(φ) = N gN(x) (3.52)
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we see that one of the followings has to happen at the singularities φ0 = φ(x0) with e−S(φ0) = 0:

1. The Jacobian diverges: det
(
∂φ
∂x

)
φ→φ0

=∞ while x0 stays finite.

2. The normalizing flow φ will send the point x0 to infinity, |x0| → ∞ as the manifold

approaches φ0.

In Sec. 3.4.3, a toy model is introduced to demonstrate the first case and resulting failure of the

construction of a normalizing flow.

3.4.3 Examples

The construction of perfect manifolds via analytic continuation of normalizing flows was

discussed in the previous section. In this section, firstly a one-dimensional model was employed

to demonstrate analytic continuation of normalizing flows and resulting construction of perfect

manifolds. Then I will introduce another toy model which does not have globally perfect manifolds,

and demonstrate how analytic continuation of normalizing flows fails to construct globally perfect

manifolds.

3.4.3.1 Analytic continuation of normalizing flows

The first one-dimensional model is

e−S(y;a) =
1√

8 (1 + 2 a i) y + 1− 4 i a− 4a2
, 0 < y < 1 (3.53)

where a can be any values in C. We choose to let the denominator take the second principle root.

When a takes any purely imaginary values, the Boltzmann factor does not cause sign problems
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Figure 3.5: The manifold of integration drawn by the normalizing flow Eq. (3.55) with a =
−1.0, −0.5, 0.3, 0.5, 1.0. Singularities for these values of a are in dots with the same color
scheme. The black line shows the location of the singular point for −1.1 < a < 1.1.

and we have a normalizing flow. The normalizing flow y(x) is the map from the Boltzmann factor

above to the uniform distribution:

dy(x; a)

dx

1√
8 (1 + 2 a i) y(x; a) + 1− 4 i a− 4a2

= 1. (3.54)

The normalizing flow can be simply written as

y(x; a) =

(
1

2
+ a i

)
x2 +

(
1

2
− a i

)
x (3.55)

When a takes a general complex value, a sign problem arises. As the Boltzmann factor is

a holomorphic function of y in its complex plane except at one singularity y = i(i+2a)2

8i−16
, manifold

deformation methods can be applied. When a perfect manifold is constructed while avoiding

the singularity, the manifold should give correctly expectation values. The normalizing flow
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Eq. (3.55) can be utilized to construct such perfect manifolds. Simply, we insert a complex-valued

a to the normalizing flow equation while varying x in [0, 1] to draw perfect manifolds, as is shown

in Figure 3.4.3.1. In Figure 3.4.3.1, manifolds are drawn for a = −1.0,−0.5, 0.3, 0.5, 1.0. The

Black line shows the location of the singularity of the Boltzmann factor while varying −1.1 <

a < 1.1. For a = −0.5, 0.3, 0.5, singularities are outside the area closed by their manifolds and

the real axis, and the manifolds give correct expectation values. However, for a = −1.0, 1.0,

the singular points are inside the area closed by their manifolds and the real axis, and thus the

manifolds give wrong answers. This issue comes from the original setting of the problem, which

is that the principle root is taken for the square root in the Boltzmann factor.

3.4.3.2 Zeros of the Boltzmann factor

The second toy model is the following Boltmann factor

e−Sε(θ) = cos(θ) + ε, θ ∈ [0, 2π) (3.56)

The domain of integration is the circle, and the corresponding complexified domain is the cylinder

S1 × R. The action possesses a sign problem when −1 ≤ ε ≤ 1, and otherwise does not have a

sign problem, as one can see from the plot of the Boltzmann factor in Figure 3.4.3.2. The average

sign scales like ε for small ε.

In the presence of a sign problem, we complexify θ to increase the average sign, which

turns out not to work. This can be shown by examining the behavior of the quenched partition

function on the cylinder

ZQ =

∫ 2π

0

| cos(θ + iφ(θ)) + ε| (3.57)
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Figure 3.6: The Boltzmann factor Eq. (3.56) with ε = 0.5, 1.0, 1.5

where φ(θ) gives the shift of points φ into the complex plane. The magnitude of the Boltzmann

factor is

| cos(θ + iφ(θ)) + ε|2 =
1

8

(
cos(2θ) + cosh(2φ) + ε cos(θ) cosh(φ)/2 + ε2

)
(3.58)

which is minimum when φ = 0 for all θ. Therefore the circle at φ = 0 has the largest average

sign, and we conclude that there is no globally perfect manifold which gives the average sign of

1 in the cylinder. The circle with φ = 0 is still a locally perfect manifold divided by “zeros” at

θ = cos−1(ε). Segments divided by those zeros cancel with each other and cause a sign problem.

The failure of the construction of globally perfect manifolds due to the zeros can also

be observed from the point of view of the normalizing flow. As the manifold of integration is

compact, the normalizing flow is defined to be a map from the distribution in Eq. (3.56) to the
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uniform distribution in [0, 2π). Thus the normalizing flow θ(x) satisfies

dθ(x)

dx

cos(θ(x)) + ε

ε
= 1. (3.59)

The inverse of the map, x(θ) is

x(θ) = (sin(θ) + εθ) /ε (3.60)

which is invertible when ε ≥ 1, as are plotted in Figure 3.4.3.2. Now we lower the parameter

ε and get into the regime with the sign problem. As ε is lowered, the normalizing flow θ(x)

becomes a multi-value map, and thus can no longer work as a map. The cause of this issue can

be seen in the definition of the normalizing flow in Eq. (3.59). When ε = 0, the Boltzmann factor

vanishes at θ = π. For the equality Eq. (3.59) to still hold, the Jacobian dθ(x)
dx

needs to diverge,

as is seen in Figure 3.4.3.2. Now as we lower ε, the slope of the inverse map x(θ) becomes

negative at θ = π, while the Jacobian diverges at θ = ± cos−1(ε) and the map θ(x) is forced to

be multi-valued. Therefore, the map θ(x) can no longer be used as a normalizing flow.

The study of the behavior of normalizing flows with a vanishing Boltzmann factor was

motivated by lattice QCD. The Boltzmann factor of QCD at finite density has vanishing Dirac

determinant. In [17], it was shown that a perfect manifold does not exist for the 0+1- dimensional

Thirring model in the mean-field approximation. However, neither the demonstration above nor

the Thirring model in the mean-field approximation serves as the proof of the non-existence of

perfect manifolds and normalizing flows for the finite-density sign problem. The existence of

perfect manifolds for the finite-density sign problem remains an important open question.
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Figure 3.7: The inverse of the normalizing flow, x(θ) in Eq. (3.60), with ε = 0.5, 1.0, 1.5.

3.5 Numerical search of complex normalizing flows

Lattice field theories of our interest usually have a large number of degrees of freedom due

to the number of lattice sites and the number of degrees of freedom of fields on each site. As a

result, the search for complex normalizing flows amounts to solving the single equation defining

the map:

det

(
∂φ

∂x

)
e−S(φ) = N gN(x) (3.61)

for a large numberN . The differential equation above may be intractable via analytical approaches

— even perturbatively as done in Sec. 3.4.2, analytical calculations of the perturbative maps

for higher orders in the expansion parameter seem to be a tough exercise. Thus one is lead to

consider numerical searches for approximate normalizing flows or perfect manifolds. In either

case, perfect manifolds or normalizing flows, one robust way to numerically search them is to
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start by preparing a large family of candidates. As was demonstrated in [141] the sign-optimized

manifold method starts by preparing a family of manifolds and optimizes the sign problem within

the family. To search for a perfect manifold, such manifolds without a sign problem has to be

included in the family to begin with. The search for normalizing flows [146, 147, 148, 149, 150]

is done with the same spirit. One prepares a neural network which represents the map, and trains

the neural network such that the it well-approximates the normalizing flow. This idea of “training

the map within a large family” can be directly applied to the search of complex normalizing

flows, although some technical difficulties arise as will be discussed later in the section.

As a demonstration of the search for normalizing flows via machine learning, I consider

a “perturbing flow” in the following [17]. Inspired by the derivation of the peturbative maps

in Sec. 3.4.2, I take the φ4 lattice scalar field theory in Eq. (3.50) and consider evaluating the

expectation value of an observable O. To formulate this into a problem of finding a normalizing

flow, I perturb the action Sφ with O as in Eq. (3.35) but now its S0 should be thought of as the

full action Sφ in Eq. (3.50). The perturbing flow ∆ is a map from the Boltzmann factor e−Sε with

Sε = Sφ + εO to e−Sφ up to the linear order in the perturbation ε. The perturbing flow should

satisfy the following differential equation:

∇ ·∆−∆ · ∇Sφ = O − 〈O〉. (3.62)

where the expectation value on the RHS is evaluated with Sφ, which is what I aim to estimate.

Thus, we regard 〈O〉 as a parameter and train it along with the perturbing flow ∆. The map ∆

is represented with a multi-layer Perceptron (MLP) with a set of parameters W . I train these
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Figure 3.8: The expectation values of φ2 in the scalar field theory Eq. (3.50) are estimated with
the perturbing flow on a lattice with Nβ = 10, Nt = 0, m = 0.5 with varying coupling λ and
shown in black dots. The exact expectation values are shown in the red solid line.

parameters W such that the cost function, the LHS minus RHS of Eq. (3.62)

C(W,E) =

∫
dφ e−φ

2/2 × |∇ ·∆W (φ)−∆W (φ) · ∇Sφ(φ)− 〈O〉+O(φ)|2 . (3.63)

is minimized. The cost function was estimated by a random sampling from the Gaussian distribution.

The demonstration with 0 + 1-dimensional scalar field theory with no time-evolution is

shown in Figure 3.8. Lattice parameters are Nβ = 10, Nt = 0, m = 0.5 with varying coupling λ.

The expectation value of φ2 was estimated. A two-layer MLP was used with hyperbolic tangent

as an activation function. The expectation values estimated with the perturbing flow are seen to

have reasonable agreements with the exact answer across the wide range of couplings.

This method has several issues that should be mentioned. First of all, the errors in estimating
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the expectation values 〈φ2〉 come not only from insufficient statistics in training ∆W but also from

the choice of the parameterization W itself. Thus a faithful estimate of errors on the expectation

values is impossible within a training of the perturbing flow. Secondly, as the perturbing map is

defined between Sφ and its perturbation via O, a natural cost function is

C ′(W,E) =

∫
dφ e−Sφ × |∇ ·∆W (φ)−∆W (φ) · ∇Sφ(φ)− E +O(φ)|2 (3.64)

where the field values are sampled from e−Sφ to estimate the cost function. This process itself

possesses a sign problem when the real-time evolution is present. The estimate of the naive cost

function in Eq. (3.63) can be done without a sign problem, but the estimated perturbing map

∆ is not necessarily a good approximation to the true perturbing map. In addition to that, as

we take the magnitude in these cost functions, we lose some information about the map in the

training process. In particular, the phase of the map ∆W is completely discarded while the cost

function is computed. This could be another cause of the mismatch between the estimated ∆

and the true perturbing map. To demonstrate these issues, we trained the perturbing flow as well

as the expectation value of the correlator as shown in Figure 3.9. Lattice parameters used are

Nβ = 2,m = 0.5, λ = 0.2, and various time evolution Nt. Although the expectation values

estimated with the perturbing map capture some features of the exact answers in dots, it is fair

to conclude that the perturbing flow could not estimate them with the naive cost function in

Eq. (3.63).

Some of the lessons learned in the demonstration above can be utilized in the numerical

search for the normalizing flows. When searching for a normalizing flow, the honest cost function

is exactly Eq. (3.63). Thus unlike for the perturbing flow above, the estimate of the cost function
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Figure 3.9: The expectation values of φ2 in the scalar field theory Eq. (3.50) are estimated with
the perturbing flow on a lattice with Nβ = 2,m = 0.5, λ = 0.2, and various time evolution Nt

and are shown in solid lines. Exact expectation values are shown in dots.

is done with the sampling from the Gaussian distribution function and yields no sign problems.

However, another issue seen here will appear in the search for normalizing flows as well. It comes

from the fact that the magnitude of the LHS minus RHS of Eq. (3.62) needs to be taken when

evaluating the cost function. While taking the magnitude, one loses information about the phase

of the normalizing flow. Thus it is probably necessary to train the neural network slowly enough

so that such phase information will not be missed too badly. Such technical details of the machine

learning based algorithms for searching normalizing flows are currently being investigated.
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Chapter 4: Summary

This thesis discusses algorithms for simulating real-time dynamics of quantum field theories

on the lattice. Both quantum algorithms described in Chapter 2 and classical algorithms in

Chapter 3 require further work until one obtains results from lattice QCD that can be compared

to experiments.

In Chapter 2, quantum algorithms for simulating general lattice gauge theories, including

the mapping of their Hilbert space onto qubits, the construction of time-evolution operators, and

algorithms for evaluating expectation values of Wilson loops, were discussed. As a demonstration,

the time evolution ofD4 (the dihedral group) gauge theory on a two-plaquette lattice was simulated

and the expectation values of a plaquette and a temporal Wilson loop were computed. The time-

evolution operator was constructed from the primitive D4 register gates: the inversion gate, the

multiplication gate, the trace gate, the Fourier transform gate, and the phase gate in Appendix A.

To simulate other gauge theories on a lattice within the framework described in Chapter 2, these

primitive register gates need to be designed accordingly. For SU(N) gauge theories, the Hilbert

space on each gauge link needs to be truncated and a suitable time-evolution operator needs to be

constructed.

In Sec. 2.4, quantum algorithms for computing parton distribution functions (PDFs) were

discussed. Quantum computation of PDFs can be generalized to generalized PDFs, for which
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appropriate algorithms for initial state preparation and measurement of relevant correlators should

be developed. The quantum cost, i.e. the required number of qubits and depth of quantum circuit,

for such algorithms should be discussed.

In Sec. 2.5, quantum algorithms for computing the transport coefficients in relativistic

hydrodynamics were discussed. In this section, firstly, naive ideas for quantum algorithms for

the state preparation of a thermal state of QCD were described. The details of these algorithms

need to be filled in and the quantum cost of those algorithms should be estimated. Regarding

the measurement of the correlators of the energy-momentum tensor, from which one extracts the

transport coefficients, the finite-volume effects and the effects of thermal fluctuation in relativistic

hydrodynamics should be studied — these corrections are present in heavy-ion collisions.

In Chapter 3, the application of normalizing flows to sign problems in lattice QCD was

discussed. A normalizing flow, in the context of lattice field theories, is a map RN → RN which

transforms theN -dimensional Gaussian distribution (or other trivialN -dimensional distributions)

to the Boltzmann factor e−S . Here N is the number of degrees of freedom on the lattice taking

values in R. To apply normalizing flows to a lattice field theory with a sign problem, whose

Boltzmann factor takes negative or even complex values, a normalizing flow needs to map variables

in RN to complex values in CN — the space of complexified field variables on the lattice. We call

such a map a “complex normalizing flow”, which induces a deformed manifold of integration in

the complex plane of the original fields in the lattice field theory. Thus the complex normalizing

flow method is conceptually equivalent to the manifold deformation methods as was discussed in

Chapter 3. Moreover, the manifold of integration induced by a complex normalizing flow has no

sign problem, which I referred to as a “perfect manifold”.

Using both the manifold deformation methods and the complex normalizing flow, the
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existence of a perfect manifold of integration (which has no sign problem), and equivalently

an ideal complex normalizing flow, were discussed in Sec. 3.4. For bosonic lattice field theories,

such as φ4 real scalar field theory and SU(N) gauge theories, such perfect manifolds are likely to

exist, based on the construction of locally perfect manifolds using the holomorphic gradient flow

and analytic continuation of complex normalizing flows as were discussed in this section. As

the next step toward solving the real-time sign problem for bosonic field theories of our interest,

algorithms based on tools from machine learning for searching perfect manifolds or complex

normalizing flows are currently studied.

When the Boltzmann factor can vanishes in the complex plane of field variables, the

existence of a perfect manifold is no longer guaranteed as was discussed in Sec. 3.4. When a

deformed manifold of integration intersects with such a point with vanishing e−S in the complex

plane, a “global sign problem” may be introduced. In lattice QCD, the Boltzmann factor can

vanish in both Minkowski lattice QCD and Euclidean lattice QCD at finite density. When the

quark degrees of freedom are integrated out from the lattice QCD path integral, the path integral

obtains the fermion determinant, which can vanish in the complex plane. Nevertheless, contour

deformation methods and complex normalizing flows may be able to alleviate sign problems

enough and let us extract useful information about QCD from the lattice calculations. The

applicability of these methods to sign problems in lattice QCD should be explored. In parallel

with such numerical tests, one should explore other ways to treat fermions on the lattice in which

the Boltzmann factor does not vanish in the complex plane. If such a method is found, the

existence of a perfect manifold may be guaranteed, and thus sign problem may be solved.
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Appendix A: Primitive circuits for the D4 gauge theory

The dihedral group D4 is the symmetry group of the square. In a matrix representation, its

eight elements can be written as a combination of two matrices: the π/2 rotation matrix and the

reflection matrix

O =

i 0

0 −i

 and R =

0 1

1 0

 . (A.1)

respectively. Eight elements of the group are represented as g = Mn
rotM

m
ref with n = 0, 1 and

m = 0, 1, 2, 3. Therefore on a quantum computer, the eight elements |abc〉 (a, b, c = 0, 1) can be

implemented using three qubits to represent matrices


0 1

1 0



a 
i 0

0 −i




2b+c

. (A.2)

Here, two qubits denoted by b and c specify the amount of rotation (2b + c)π/2 and the qubit a

performs the reflection if a = 1. This is our design of the D4 register.

Having the D4 register designed, the primitive gates to act on registers — the inversion

gate Eq. (2.20), the multiplication gate Eq. (2.21), the trace gate Eq. (2.22), and the Fourier

transformation gate Eq. (2.23) — need to be implemented. The inversion can be implemented
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Figure A.1: The inversion gate and multiplication gate for D4 register.

simply as is shown in FIG. A.1. For the D4 group, the inverse of each element is

I ↔ I, O ↔ O3, O2 → O2, R↔ R, RO ↔ RO, RO2 ↔ RO2, RO3 ↔ RO3. (A.3)

Therefore, with theD4 register in Eq. (A.2), only when a = 0 and c = 1, b needs to be flipped, and

otherwise no operation should happen. Such circuit can be implemented by three-qubit controlled

gate with a, c serving as control qubits and b being the target qubit. In the common convention,

the target qubit is flipped when the controlled gate is “1”. Thus a qubit needs to be flipped before

the controlled gate and then flipped back by Pauli-X gates. This construction leads to the circuit

on the left in FIG. A.1, where the three lines represent qubits in the order c, b, a from the top.

The multiplication gate is more complicated as is shown in the right panel of FIG. A.1.

Ultimately the circuit should perform operations on two registers following the multiplication

table of the group in Table. A.1. Let us denote three indices of two registers (a1, b1, c1) and

(a2, b2, c2), and the resulting multiple of the two register on the second register as (a, b, c):

U×|a1b1c1〉|a2b2c2〉 = |a1b1c1〉|abc〉. (A.4)

Thus the multiplication gate should be implemented such that (a1, b1, c1) which can be regarded
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(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
(0, 0, 0) (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
(0, 0, 1) (0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 0, 0) (1, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0)
(0, 1, 0) (0, 1, 0) (0, 1, 1) (0, 0, 0) (0, 0, 1) (1, 1, 0) (1, 1, 1) (1, 0, 0) (1, 0, 1)
(0, 1, 1) (0, 1, 1) (0, 0, 0) (0, 0, 1) (0, 1, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1) (1, 0, 0)
(1, 0, 0) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1) (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)
(1, 0, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1) (1, 0, 0) (0, 1, 1) (0, 0, 0) (0, 0, 1) (0, 1, 0)
(1, 1, 0) (1, 1, 0) (1, 1, 1) (1, 0, 0) (1, 0, 1) (0, 1, 0) (0, 1, 1) (0, 0, 0) (0, 0, 1)
(1, 1, 1) (1, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 0, 0)

Table A.1: Multiplication table for dihedral D4 group. Each element are represented by the three
indices as in Eq. (A.2) in the form (a, b, c).

as the column and (a2, b2, c2) as the row of Table. A.1 give the corresponding multiplication of

them to the resulting second register (a, b, c).

The largest structure which determines a is that when a1 = 0, a = a2, and otherwise a2

needs to be flipped. This can be simply achieved by two-qubit controlled gate on a1 and a2 with

a1 serving as control qubit and a2 being the target qubit.

Having a taken care of, I can now focus b and c. The next largest structure one can see in

Table. A.1 is the contrast between cases a2 = 0 and a2 = 1. The multiplication with a2 = 1 cases

can be obtained by applying the following operation to the multiplication for a2 = 0 cases but

with the same other a1, b1, c1, b2, c2:

flip b1 when a2 = 1 and c1 = 1

This operation can be achieved by a three-qubit controlled gate with a2, c1 controlled and b1 being

the target qubit. Between cases a2 = 0, 1, c is the same as long as other as and bs are the same.

Now that I have implemented the difference between a2 = 0 and a2 = 1 cases, I can focus

on a2 = 0 cases (the left half of Table. A.1) and investigate how b and c are determined from

b1, b2, c1 and c2. We find that the relation between b1, c1, b2, c2, b, c is a simple addition in the
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binary representation:

2b+ c = 2b1 + c1 + 2b2 + c2 (mod 4) (A.5)

Thus, regarding b, b2 should be flipped when b1 = 1, and flipped again when c1 = 1 and c2 = 1.

Regarding c, c2 should be flipped when c1 = 1 but otherwise c = c2. Thus, one should first apply

two controlled gates to change b2 to an appropriate b as this operation depends on c2: a two-qubit

gate with b1 control and b2 target, and a three-qubit gate with c1, c2 control and b2 target. Then one

changes c2 to an appropriate c by applying a two-qubit controlled gate with c1 being the control

qubit and c2 being the target qubit. The whole circuit consists of five controlled gates as shown

in FIG. A.1, where again the three lines represent qubits in the order c, b, a from the top for the

register U and V .

The trace gate UTr acts on a single register. The trace of D4 group elements are non-zero

only when a = 0 and c = 0, and UTr(θ)|000〉 = e−2iθ|000〉, UTr(θ)|010〉 = e2iθ|010〉. Thus

the trace gate can be implemented with a controlled phase gate (a, c are the control and b is the

target).

The Fourier transform gate UF which acts on a single register is given in the following

Figure A.2: The Fourier transform gate for D4 register.
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matrix form

F =



1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

−1√
8

−1√
8

−1√
8

−1√
8

1√
8
− 1√

8
1√
8
− 1√

8
1√
8
− 1√

8
1√
8
− 1√

8

1√
8
− 1√

8
1√
8
− 1√

8
− 1√

8
1√
8
− 1√

8
1√
8

1
2

0 −1
2

0 1
2

0 −1
2

0

0 −1
2

0 1
2

0 1
2

0 −1
2

0 1
2

0 −1
2

0 1
2

0 −1
2

1
2

0 −1
2

0 −1
2

0 1
2

0



. (A.6)

such that it diagonalizes the D4 momentum operator. To find a circuit for this matrix, a classical

simulated annealing search was performed and the circuit in FIG. A.2 was found to exactly

implement the matrix operation above. The basic gates used are Hadamard gate, CNOT gate, and

π
8

gate (T). After the kinetic term of the Hamiltonian Eq. (2.38) is diagonalized, an appropriate

phase gate Uphase should be applied. The phase gate can be simply implemented by two phase

gates: a phase gate on qubit a and a controlled phase on the state a = b = c = 0:

Uphase|abc〉 = eiθ1δa0δb0δc0eiθ2a|abc〉 . (A.7)

The constants θ1, θ2 are coupling dependent.
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[51] James D. Whitfield, Vojtěch Havlı́ček, and Matthias Troyer. Local spin operators for
fermion simulations. Physical Review A, 94:030301, September 2016.

[52] Daniel C. Hackett, Kiel Howe, Ciaran Hughes, William Jay, Ethan T. Neil, and James N.
Simone. Digitizing Gauge Fields: Lattice Monte Carlo Results for Future Quantum
Computers. Phys. Rev. A, 99(6):062341, 2019.

[53] Andrei Alexandru, Paulo F. Bedaque, Siddhartha Harmalkar, Henry Lamm, Scott
Lawrence, and Neill C. Warrington. Gluon Field Digitization for Quantum Computers.
Phys. Rev. D, 100(11):114501, 2019.

[54] Yao Ji, Henry Lamm, and Shuchen Zhu. Gluon Field Digitization via Group Space
Decimation for Quantum Computers. Phys. Rev. D, 102(11):114513, 2020.

[55] Andrei Alexandru, Paulo F. Bedaque, Ruairı́ Brett, and Henry Lamm. The spectrum of
qubitized QCD: glueballs in a S(1080) gauge theory. arXiv preprint arXiv:2112.08482
[hep-lat], 2021.

[56] Yao Ji, Henry Lamm, and Shuchen Zhu. Gluon Digitization via Character Expansion for
Quantum Computers. arXiv preprint arXiv:2203.02330 [hep-lat], 2022.

[57] Natalie Klco and Martin J. Savage. Digitization of scalar fields for quantum computing.
Phys. Rev. A, 99(5):052335, 2019.

[58] Natalie Klco, Jesse R. Stryker, and Martin J. Savage. SU(2) non-Abelian gauge field theory
in one dimension on digital quantum computers. Phys. Rev. D, 101(7):074512, 2020.

[59] Anthony Ciavarella, Natalie Klco, and Martin J. Savage. Trailhead for quantum simulation
of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis. Phys. Rev. D,
103(9):094501, 2021.

134

https://www.snowmass21.org/docs/files/summaries/TF/SNOWMASS21-TF10_TF0-CompF6_CompF0_Hank_Lamm-077.pdf


[60] Ramesh Anishetty, Manu Mathur, and Indrakshi Raychowdhury. Prepotential formulation
of SU(3) lattice gauge theory. J. Phys. A, 43:035403, 2010.

[61] Indrakshi Raychowdhury. Prepotential Formulation of Lattice Gauge Theories. PhD
thesis, Calcutta U., 2013.

[62] Indrakshi Raychowdhury. Low energy spectrum of SU(2) lattice gauge theory: An
alternate proposal via loop formulation. Eur. Phys. J. C, 79(3):235, 2019.

[63] Indrakshi Raychowdhury and Jesse R. Stryker. Solving Gauss’s Law on Digital Quantum
Computers with Loop-String-Hadron Digitization. Phys. Rev. Res., 2(3):033039, 2020.

[64] Indrakshi Raychowdhury and Jesse R. Stryker. Loop, string, and hadron dynamics in
SU(2) Hamiltonian lattice gauge theories. Phys. Rev. D, 101(11):114502, 2020.

[65] Zohreh Davoudi, Indrakshi Raychowdhury, and Andrew Shaw. Search for efficient
formulations for Hamiltonian simulation of non-Abelian lattice gauge theories. Phys. Rev.
D, 104(7):074505, 2021.

[66] E. A. Martinez et al. Real-time dynamics of lattice gauge theories with a few-qubit
quantum computer. Nature, 534:516–519, 2016.

[67] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano,
P. Lougovski, and M. J. Savage. Quantum-classical computation of Schwinger model
dynamics using quantum computers. Phys. Rev., A98(3):032331, 2018.

[68] Alexei Bazavov, Yannick Meurice, Shan-Wen Tsai, Judah Unmuth-Yockey, and Jin Zhang.
Gauge-invariant implementation of the Abelian Higgs model on optical lattices. Phys. Rev.,
D92(7):076003, 2015.

[69] Jin Zhang, J. Unmuth-Yockey, J. Zeiher, A. Bazavov, S. W. Tsai, and Y. Meurice. Quantum
simulation of the universal features of the Polyakov loop. Phys. Rev. Lett., 121(22):223201,
2018.

[70] Judah F. Unmuth-Yockey. A gauge-invariant, rotor Hamiltonian from dual variables of 3D
U(1) gauge theory. 2018.

[71] Judah Unmuth-Yockey, Jin Zhang, Alexei Bazavov, Yannick Meurice, and Shan-Wen
Tsai. Universal features of the Abelian Polyakov loop in 1+1 dimensions. Phys. Rev.,
D98(9):094511, 2018.

[72] T. V. Zache, F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler, J. Berges, and P. Hauke.
Quantum simulation of lattice gauge theories using Wilson fermions. Sci. Technol.,
3:034010, 2018.

[73] Christine Muschik, Markus Heyl, Esteban Martinez, Thomas Monz, Philipp Schindler,
Berit Vogell, Marcello Dalmonte, Philipp Hauke, Rainer Blatt, and Peter Zoller. U(1)
Wilson lattice gauge theories in digital quantum simulators. New J. Phys., 19(10):103020,
2017.

135



[74] Yoshihito Kuno, Kenichi Kasamatsu, Yoshiro Takahashi, Ikuo Ichinose, and Tetsuo
Matsui. Real-time dynamics and proposal for feasible experiments of lattice gauge–Higgs
model simulated by cold atoms. New J. Phys., 17(6):063005, 2015.

[75] Tim Byrnes and Yoshihisa Yamamoto. Simulating lattice gauge theories on a quantum
computer. Phys. Rev., A73:022328, 2006.
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