
Multi-threaded Object Streaming

Salvatore Di Guida1,3, Giacomo Govi2, Miguel Ojeda3, Andreas
Pfeiffer3, Roland Sipos4,3 on behalf of the CMS collaboration
1 Università degli Studi “G. Marconi”, Via Plinio 44, Roma, Italy and INFN Sezione di Napoli
2 Fermi National Accelerator Laboratory, Batavia, IL 60510-5011, USA
3 CERN, CH-1211 Geneve 23, Switzerland
4 Eötvös Loránd University, Faculty of Informatics, H-1117 Budapest, Hungary

E-mail: andreas.pfeiffer@cern.ch

Abstract. The CMS experiment at the Large Hadron Collider (LHC) at CERN, Geneva,
Switzerland, is made of many detectors which in total sum up to more than 75 million channels.
The detector monitoring information of all channels (temperatures, voltages, etc.), detector
quality, beam conditions, and other data crucial for the reconstruction and analysis of the
experiment’s recorded collision events is stored in an online database. A subset of that
information, the “conditions data”, is copied out to another database from where it is used
in the offline reconstruction and analysis processing, together with alignment data for the
various detectors. Conditions data sets are accessed by a tag and an interval of validity through
the offline reconstruction program CMSSW, written in C++. About 400 different types of
calibration and alignment exist for the various CMS sub-detectors.

With the CMS software framework moving to a multi-threaded execution model, and
profiting from the experience gained during the data taking in Run-1, a major re-design of the
CMS conditions software was done. During this work, a study was done to look into possible
gains by using multi-threaded handling of the conditions. In this paper, we present the results
of that study.

1. Introduction
The primary goal of the Compact Muon Solenoid (CMS) experiment [1] is to explore physics at
the TeV energy scale, exploiting the collisions delivered by the Large Hadron Collider (LHC) at
the European Organisation for Nuclear Research (CERN) in Geneva, Switzerland. The central
feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, delivering
a field of 3.8 Tesla. Within the field volume are the silicon pixel and strip tracker, the crystal
electromagnetic calorimeter (ECAL) and the brass-scintillator hadronic calorimeter (HCAL).
Muons are measured in drift tube chambers (DT), resistive plate chambers (RPC), and cathode
strip chambers (CSC) embedded in the steel return yoke. All detectors combined comprise more
than 75 million channels, most of them to be found in the tracker system. A detailed description
of the experimental apparatus can be found elsewhere [1].

Calibration and alignment data are fundamental to maintain the design performance of the
experiment. Dedicated, very fast, workflows have been put in place to compute and validate
the alignment and calibration sets and insert them in the conditions database before the
reconstruction process starts. Some of these sets are produced by analysing and summarising
the parameters stored in the online database. Others are computed using event data through a
special express workflow.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042044 doi:10.1088/1742-6596/664/4/042044

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



2. Conditions Data in CMS experiments
During Run 1 of the Large Hadron Collider (LHC) at CERN (2009-2013), the CMS experiment
recorded and analysed hundreds of petabytes of data, resulting in the discovery and publication
of many new physics results including the discovery of the Higgs boson in July 2012.

Achieving these results required extensive processing and analysis of massive datasets in a
largely distributed computing environment. In addition to event data stored in distributed file
systems, other (non-event) data (so-called “conditions data”) related to the detector state and
data taking process are essential at nearly every stage of data processing and analysis. These
conditions data are stored in an Oracle RDBMS, provided and administered by CERN IT. A
REST based, hierarchical access layer (Frontier [2]) which, by caching the results of the queries,
allows an efficient access to the conditions data from the thousands of jobs processing the data
on the LCH Computing Grid [9].

The CMS conditions data are logically grouped in Tags, containing related conditions data
from (parts of a) detector subsystem. A conditions payload is valid for a specific IOV, the
“Intervals of Validity” (an interval in time, run-number or a combination of run- and luminosity-
number). A Tag contains the relations between the payloads and the various IOVs for which
they are valid. A coherent set of unique Tags is called a Global Tag, these are the central
“entry-points” for the reconstruction and analysis code when accessing the conditions.

3. Payloads in the Re-designed Conditions Code
After a review of the scalability and use cases and with a desire to simplify the architecture,
CMS re-designed and re-implemented the handling of the conditions data [3]. One of the main
changes in the new design was the move away from the structured way the payloads were stored
(using object-relational mappings) to an opaque storage of payloads. These are now serialised
into a “BLOB” object in the C++ code and the new conditions handling code treats them as
“opaque” objects, easing the handling of the conditions significantly.

3.1. Automatic generation of serialisation code
Recent developments in compiler related tools, libclang and its Python binding pyclang, allowed
the creation of a small (about 500 lines of code overall) script which automatically generates
the (de-)serialisation code from the C++ header files of the user-defined payloads. This script
is called by the CMS code configuration and build tool (SCRAM).

A simplified example of a user-defined payload is given here:

#ifndef CondFormats_PhysicsToolsObjects_Histogram_h

#define CondFormats_PhysicsToolsObjects_Histogram_h

#include "CondFormats/Serialization/interface/Serializable.h"

template <typename Value_t , typename Axis_t = Value_t > class Histogram {

// persistent members

std::vector <int > bins;

// others ...

// transient cache variables

mutable Value_t total COND_TRANSIENT; //CMS -THREADING

mutable bool totalValid COND_TRANSIENT;

COND_SERIALIZABLE;

}; // end class <> Histogram

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042044 doi:10.1088/1742-6596/664/4/042044

2



The user adds the inclusion of the “Serializable.h” header from the CondFormats/Se-
rialization package and flags the class to be considered for serialisation by adding the
“COND SERIALIZABLE” macro to the end of the class(es) to be serialised. The script then
parses all header files from all packages, extracts the information on which classes should be se-
rialised and generates the actual code for the serialisation on a per-package basis, which in turn
is compiles by the CMS code configuration and build tool (SCRAM) when processing the pack-
age. The user can declare any class-members which should not be serialised with the keyword
“COND TRANSIENT”, so they will be ignored when parsing the file.

4. Performance study
An initial study to use Boost serialisation package [6], together with a third-party product for
the “Archive” [7], showed promising results to store CMS Conditions payloads as “BLOB”s in
the database. Single-threaded performance was found to be comparable to (de-)serialisation
with ROOT (version 5) [8].

The performance study was done by comparing parallel, multi-threaded loading of the
conditions from the DB, followed by parallel, multi-threaded deserialisation of the payload
“BLOBs” into the corresponding C++ objects. The comparison was done against the same
code in a serial access pattern, both for loading from the DB and deserialisation of the payloads.
Write (serialisation) performance of the payloads was not measured as this is a one-time event
and not time-critical.

4.1. Single-threaded Payload Deserialisation
In a first step, the performance of the loading of conditions from the Oracle database was studied.
Fig. 1 shows the time to load the payloads for all tags of a given Global Tag as a function of
the size of the payload. No significant difference is found between the two serialisation types, as
expected. The constant time for payloads smaller than about 100 kB suggest that the loading
is dominated by overheads in the database and/or network communication.

In a second step, after loading all payloads from the database into memory, the payload
data was de-serialised in a single thread. The time to de-serialise each payload as a function
of payload size is shown in Fig. 2, where the boost serialisation shows a smooth behaviour
as a function of size, exhibiting an about linear correlation between time and size. Towards
very small sizes (less than about a few hundred bytes) a flattening of the data is observed,
indicating memory allocation overheads. The corresponding data for root deserialisation is less
smooth; looking into some of the involved classes it seems as if some optimisation for specific
data types are causing the large differences for payload sizes less than about 100 kB. As the
overall time of the payload deserialisation is dominated by the larger payloads, the differences
in the shape at smaller payloads can be neglected. A simple parameterisation of the boost data
(f = 1.856 × 10−5 ∗ x + 0.035) is included, though given the locally big deviations, caused by
more complex object types, it should be used with caution.

4.2. Multi-threaded Payload Deserialisation
The runs were then repeated with the deserialisation step running in multiple threads where each
thread was handling only the deserialisation of one single payload at a time. On the same 24 core
machine as for the single-threaded steps, the number of threads handling the deserialisation was
successively increased and each run for a given number of threads was repeated three times.
Before and after the runs, the environment on the machine was checked to make sure that no
significant load was running in parallel on the machine and the database. The average time of
the three runs for the deserialisation of all payloads is shown in Fig. 3 as a function of the number
of threads used. The small variations are likely due to the limited statistics and fluctuations in
network transfer speeds and load on the database.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042044 doi:10.1088/1742-6596/664/4/042044

3



100 101 102 103 104 105 106 107 108

size [byte]

100

101

102

103

104

105

ti
m
e
 [
m
s]

boost

root

Figure 1. Time (msec) to load conditions from the database as a function of the size of the
payload (bytes)

100 101 102 103 104 105 106 107 108

size [byte]

10-2

10-1

100

101

102

103

ti
m
e
 [
m
s]

boost

root

Figure 2. Time (msec) to de-serialise the payloads as a function of the payload size (bytes). A
simple linear parameterisation (f = 1.856 × 10−5 ∗ x + 0.035) for boost is included.

In Fig. 4 the calculated gain (or speedup) factor is given as a function of the number of
threads used. While an almost linear gain (as indicated by the green line) is visible for a very
small number of threads, a clear levelling out of performance can be observed from about five

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042044 doi:10.1088/1742-6596/664/4/042044

4



100 101 102

nr of threads

0

1000

2000

3000

4000

5000

6000

ti
m
e
 [
m
s]

root/single thread

boost

Figure 3. Time (msec) for the (parallel) deserialisation of all payloads as a function of the
number of threads used.

Nr. of threads 1 8 16 100 gain 8 gain 16 gain 100
loading from DB 25409 10737 7173 5862 2.4 3.5 4.3

deserialisation 4233 1190 1134 648 3.6 3.7 6.5
overall elapsed 32366 14485 9122 9122 2.2 3.0 3.5

Table 1. Time (msec) and gain/speedup factor of the loading and deserialisation steps for
various number of threads. The elapsed time also contains about 2.5-3 sec overhead from other
activities (like loading the IOVs).

parallel threads. Still, even at a number of threads larger than the actual number of cores on the
machine, a small increase can be observed. The less than linear behaviour is likely due to code
and/or memory limitations, as all payloads reside already in memory before the deserialisation
is started, excluding any I/O limitations.

Similar to the deserialisation, another run was performed to measure the gain for parallel
loading of the payloads from the database. Table 1 summarises the times for loading.
deserialising the payloads and the sum of these times for different numbers of threads used.
An overall speedup factor of about 3-4 can be achieved for about 8-10 parallel threads.

5. Summary
A performance study done in the context of the new CMS conditions software shows that multi-
threaded loading and deserialisation of payloads can achieve a speedup of about a factor of 3-4
for about 8-10 threads, both in loading payloads from the database and in deserialisation.

With the help of compiler related tools which became recently available, a simple script can
be used to effectively automate the creation of the (de-)serialisation code, reaching a level of
“user-friendliness” at least comparable to the “streamer code” available in ROOT (version 5).

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042044 doi:10.1088/1742-6596/664/4/042044

5



0 5 10 15 20 25 30
nr of threads

0

2

4

6

8

10

sp
e
e
d
u
p
 f
a
ct
o
r

root/single thread

boost

linear

Figure 4. Gain/speedup factor for the (parallel) deserialisation of all payloads as a function of
the number of threads used.

6. Acknowledgments
We would like to thank the team of database administrators in the CERN IT department for
their excellent work in keeping the performance of the CMS databases at a very high level and
for their continued support for the developers of the CMS applications.

References
[1] CMS Collaboration “The CMS experiment at the CERN LHC” (2008) JINST 3 S08004, doi:10.1088/1748-

0221/3/08/S08004
[2] Dykstra D “Scaling HEP to Web size with RESTful protocols: The frontier example” (2011) J. Phys.: Conf.

Series 331 042008.
http://iopscience.iop.org/1742-6596/331/4/042008/pdf/1742-6596_331_4_042008.pdf.

[3] Govi G, Di Guida S, Pfeiffer A, Ojeda M “The CMS Condition Database system” (2015) this conference.
https://indico.cern.ch/event/304944/session/10/contribution/130.

[4] clang: a C language family frontend for LLVM
http://clang.llvm.org.

[5] Python bindings for Clang
https://github.com/llvm-mirror/clang/tree/master/bindings/python

[6] Abrahams D and Gurtovoy A “C++ Template Metaprogramming: Concepts, Tools, and Techniques from
Boost and Beyond.” (2004) Addison-Wesley, November, 2004. ISBN: 0-321-22725-5.
http://boost.org

[7] “EOS Portable Archive” (2006)
https://epa.codeplex.com.

[8] Brun R and Rademakers F “ROOT - An Object Oriented Data Analysis Framework” (1997) Proceedings
AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. and Meth. in Phys. Res. A 389 (1997) 81-86.
http://root.cern.ch/

[9] The LCG TDR Editorial Board “LHC Computing Grid: Technical Design Report” (2011) LCG-TDR-001,
CERN-LHCC-2005-024 ISBN 92-9083-253-3
http://wlcg.web.cern.ch/.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 042044 doi:10.1088/1742-6596/664/4/042044

6

http://iopscience.iop.org/1742-6596/331/4/042008/pdf/1742-6596_331_4_042008.pdf
https://indico.cern.ch/event/304944/session/10/contribution/130
http://clang.llvm.org
https://github.com/llvm-mirror/clang/tree/master/bindings/python
http://boost.org
https://epa.codeplex.com
http://root.cern.ch/
http://wlcg.web.cern.ch/



