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Abstract

The main objects of investigation in this thesis are two Yang-Baxter integrable lattice mod-

els of statistical mechanics in two dimensions: nonunitary RSOS models and dimers. At

criticality they admit continuum descriptions with nonunitary conformal field theories

(CFTs) in (1+1) dimensions. CFTs are quantum field theory invariant under conformal

transformations. They play a major role in the theory of phase transition and critical phe-

nomena. In quantum field theory unitarity is the requirement that the probability is con-

served, hence realistic physical problems are associated with unitary quantum field the-

ories. Nevertheless, in statistical mechanics this property loses a physical meaning and

statistical systems like polymers and percolations, which model physical problems with

long-range interactions, in the continuum scaling limit give rise to nonunitary conformal

field theories.

Both the nonunitary RSOS models and dimers are defined on a two-dimensional square

lattice. Restricted solid-on-solid (RSOS) models are so called because their degrees of free-

dom are in the form of a finite (therefore restricted) set of heights which live on the sites

of the lattice and their interactions take place between the four sites around each face of

the lattice (solid-on-solid). Each allowed configuration of heights maps to a specific Boltz-

mann weight. RSOS are integrable in the sense that their Boltzmann weights and transfer

matrices satisfy the Yang-Baxter equation. The CFTs associated to critical RSOS models are

minimal models, the simplest family of rational conformal field theories. The process of

fusion on elementary RSOS models has a different outcome on the CFT side depending

on both the level of fusion and the value of their crossing parameter λ. Precisely, in the

interval 0 ≤ λ ≤ π/2, the 2 × 2 fused RSOS models correspond to higher-level conformal

cosets with integer level of fusion equal to two. Instead in the complementary interval
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π/n ≤ λ ≤ π the 2 × 2 fused RSOS models are related to minimal models with inte-

ger level of fusion equal to one. To prove this conjecture one-dimensional sums, deriving

from the well-known Yang-Baxter corner transfer matrix method, have been calculated, ex-

tended in the continuum limit and ultimately compared to the conformal characters of the

related minimal models.

The dimer model has been for a long time object of various scientific studies, firstly as

simple prototype of diatomic molecules and then as equivalent formulation to the well-

known domino tilings problem of statistical mechanics. However, only more recently it

has attracted attention as conformal field theory thanks to its relation with another famous

integrable lattice model, the six-vertex model. What is particularly interesting of dimers is

the property of being a free-fermion model and at the same time showing non-local proper-

ties due to the long-range steric effects propagating from the boundaries. This non-locality

translates then in the dependance of their bulk free energy on the boundary conditions. We

formulate the dimer model as a Yang-Baxter integrable free-fermion six-vertex model. This

model is integrable in different geometries (cylinder, torus and strip) and with a variety

of different integrable boundary conditions. The exact solution for the partition function

arises from the complete spectra of eigenvalues of the transfer matrix. This is obtained by

solving some functional equations, in the form of inversion identities, usually associated to

the transfer matrix of the free-fermion six-vertex model, and using the physical combina-

torics of the pattern of zeros of the transfer matrix eigenvalues to classify the eigenvalues

according to their degeneracies. In the case of the cylinder and torus, the transfer matrix

can be diagonalized, while, in the other cases, we observe that in a certain representation

the double row transfer matrix exhibits non trivial Jordan-cells. Remarkably, the spectrum

of eigenvalues of dimers and critical dense polymers agree sectors by sectors. The simi-

larity with critical dense polymers, which is a logarithmic field theory, raises the question

whether also the free-fermion dimer model manifests a logarithmic behaviour in the con-

tinuum scaling limit. The debate is still open. However, in our papers we provide a final

answer and argue that the type of conformal field theory which best describe dimers is a

logarithmic field theory, as it results by looking at the numerically estimate of the finite

size corrections to the critical free energy of the free-fermion six-vertex-equivalent dimer
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model.

The thesis is organized as follows. The first chapter is an introduction which has the

purpose to inform the reader about the basics of statistical mechanics, from one side, and

CFTs, on the other side, with a specific focus on the two lattice models that have been

studied (nonunitary RSOS and dimers) and the theories associated to the their continuum

description at criticality (minimal models and logarithmic CFTs). The second chapter con-

siders the family of non-unitary RSOS models with π/n ≤ λ ≤ π and brings forward the

discussion around the one-dimensional sums of the elementary and fused models, and the

associated conformal characters in the continuum scaling limit. The third and fourth chap-

ters are dedicated to dimers, starting with periodic conditions on a cylinder and torus, and

then more general integrable boundary conditions on a strip. In each case, a combinatorial

analysis of the pattern of zeros of the transfer matrix eigenvalues is presented and exten-

sively treated. It follows then the analysis of the finite-size corrections to the critical free

energy. Finally, the central charges and minimal conformal dimensions of critical dimers

are discussed in depth with concluding remarks about the logarithmic hypothesis. Next,

there is a conclusion where the main results of these studies are summarized and put into

perspective with possible future research goals.
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Chapter 1

Introduction

1.1 Statistical Mechanics

Statistical mechanics is the theory which defines and justifies the connection between the

microscopic description provided by classical mechanics and the macroscopic description

of theories such as thermodynamics and fluid dynamics [1–3].

A classical physical system, such as a gas, can be defined in first approximation as a

collection of N point-like particles, or molecules, subject to the laws of classical mechan-

ics. Its time evolution is then determined by the Hamiltonian equations of motion and is

described by a set of canonical coordinates (q,p) where each component qi and pi refers

to coordinates and momenta of the ith particle of this system in a 6N-dimensional phase

space. This method offers a solution which is in principle exact and complete, in the sense

that it is not approximated, and contains all the possible information relative to the system

under study. However, it does not work efficiently when the number of particles becomes

extremely large. This is often the case in real life since physical systems typically contain a

number of particles as large as Avagadro’s number, 6.02×1023.

Theormodynamics and fluid dynamics look at the problem from a different perspec-

tive. In fact they base their description on macroscopic quantities such as density, pressure,

temperature etc. If the state variables (usually temperature, pressure, volume and num-

ber of particles) don’t change in time, a physical system is said to be in thermodynamic

equilibrium with its surroundings and a thermodynamic approach is used in this case. If,

instead, there are some macroscopic movements involved in it (such as flux of material,

heat transfer, propagation of sounds waves etc.) a fluid dynamic description is required.
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2 Introduction

Statistical mechanics is able to connect the macroscopic and microscopic formulations

by using a probabilistic approach. Within this approach, the macroscopic variables are

computed as expectation values of certain functions of the microscopic states (microstates)

of the system with respect to a probability density function in a suitable statistical ensem-

bles. The determination of this density function and the associated partition function con-

stitute an important aspect of the theory of statistical mechanics.

The fundamental statistical ensembles are: microcanonical, canonical and grand canon-

ical. Each of them depends on a few observable parameters which are in statistical equi-

librium. The canonical ensemble applies when the mechanical system is in thermal equi-

librium with the external environment at fixed temperature T. In this case, the probability

that a microstate s with energy E(s) occurs is

P(s) =
1

Z
exp

− E(s)
kBT (1.1.1)

where kB denotes the Boltzmann’s constant and the exponential term exp
− E(s)

kBT is known as

the Boltzmann factor. The canonical partition function is then defined as the normalization

factor of this probability distribution and in a discrete setting is given by

Z = ∑
{s}

exp
− E(s)

kBT (1.1.2)

If O is a generic observable of this system, with values O(s) on each microstate s, then

we calculate its expectation value as follows

〈O〉 = 1

Z ∑
{s}

O(s) exp
− E(s)

kBT (1.1.3)

The importance of the partition function goes beyond the normalization of the probability

distribution. In fact, the expectation values of many physical properties of interest (such

as total energy, entropy, pressure) can be expressed in terms of the partition function or its

derivatives. For example, the internal energy U in the canonical ensemble is defined as

〈U〉 = 1

Z ∑
{s}

E(s) exp
− E(s)

kBT = kBT2 ∂

∂T
log Z (1.1.4)
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In this manner, we see the importance of the partition function Z as a thermodynamic po-

tential from which a set of thermodynamic quantities defining a statistical model in ther-

modynamic equilibrium can be obtained by differentiation.

1.1.1 Phase transition

The theory of statistical mechanics is often used in the context of phase transitions [4, 5].

A phase transition describes the situation where a particular state of matter changes to

a different one in response to a variation of external conditions such as temperature, pres-

sure, chemical potential, magnetic or electric field and others. The fundamental (classical)

states of matter are four: solid, liquid, gas and plasma. Yet, a comprehensive list of states

of matter is very long. It includes forms of matter which show hybrid properties compared

to the classical phases, and also others which only exist under extreme conditions. Typical

examples of the former case are glass, liquid crystal and magnetically ordered materials,

and of the latter case Bose-Einstein condensates and neutron-degenerate matter which are,

respectively, low temperature and high density states of matter. Finally, in this list there are

some non-classical states of matter, such as fermionic condensate or quark-gluon plasma,

which are not even composed by molecules.

A phase transition usually manifests itself with a sudden appearance of order in an

otherwise disordered system. As examples, it could be a liquid (disordered phase) which

freezes into a solid (ordered phase), or a material characterized by permanent magnetisa-

tion (ferromagnetic or ordered phase) which loses its magnetic property above a critical

temperature, the so called Curie temperature, to enter into a paramagnetic phase (disor-

dered phase) where magnetization can only be induced by an external magnetic field.

Two different types of phase transitions are distinguished: first order (discontinuous)

and second order (continuous). This classification relies on the concept of correlation length

( ξ), the characteristic distance over which the system’s microscopic properties are corre-

lated. ξ is an intrinsic length scale of a physical system, and it depends on thermodynamic

variables, such as temperature, pressure, external magnetic field and others, therefore it

can be experimentally measured. It behaves differently in the two types of phase transi-

tion. Since first order phase transitions are characterized by phase coexistence, ξ, which is
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of the order of the size of the correlated clusters, remains finite while the transition is tak-

ing place. Differently, in second order phase transitions, correlations among microscopic

variables extend to the whole system and in proximity of the transition ξ becomes infinite.

This exceptional behaviour, with the loss of a natural length scale, accounts for an impor-

tant symmetry of continuous phase transitions, known as scale invariance: the physics of

the system remains invariant under any change of length scale.

Second order phase transitions are typically defined in one specific point (critical point)

of the so called phase diagram, the graph which displays the thermodynamic conditions

under which different phases occur and coexist in equilibrium. In the proximity of the crit-

ical point, ξ, as well as other thermodynamic quantities, exhibit a power law behaviour.

Remarkably, it is observed that the critical exponents characterizing these power law be-

haviours depend not on the microscopic details of the model under study but only on its

fundamental symmetries. This interesting phenomenon is called universality, and it finds a

formal theoretical explanation in the renormalization group theory [6–16].

1.1.2 Critical phenomena

Various classes of critical phenomena [4, 5, 15–18] are characterized by divergence of some

physical quantities of interest as the system approaches the critical point. This behaviour

is mathematically expressed with power law functions of the form |t|−r , where t is the

reduced temperature, (T − Tc)/Tc, measuring the departure from criticality and r is the

critical exponent [11, 12, 19]. A set of critical exponents {α, β, γ, ...} rigorously describes the

singular behaviour in the vicinity of a continuous phase transition. A simple example is

the ferromagnetic transition of the two-dimensional Ising model.

The Ising ferromagnet model

In the classical description of the two-dimensional Ising model [20], elementary spin vari-

ables σi = ±1 are located at each node (site) i of a two-dimensional square lattice, as shown

in figure 1.1. Each spin interacts with the four closest neighbours and, in principle, also

with an external magnetic field. The contribution of each single vertex to the total energy
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of the system is given by a Hamiltonian function of this type

H = −J ∑
<i,j>

σiσj − h ∑
j

σj (1.1.5)

where < i, j > indicates that the sum is over every nearest neighbour pair of nodes and

h is the strength of the magnetic field. The first term in this sum is the interaction be-

tween neighbouring spins, while the second term measures the interaction between each

individual spin and the external field. In the ferromagnetic model the exchange energy pa-

rameter J is positive, so the configuration with parallel alignment of adjacent spins lowers

the energy which means that is energetically favoured (1.1.5). This is the case that we are

interested to discuss. On the other hand, when J is negative, the anti-alignment of spins is

favoured. The system then is classified as anti-ferromagnetic.

The Ising ferromagnet model describes a simple magnet in two dimensions. For an

infinitely large system with no external magnetic field (h = 0) it exhibits a continuous

phase transition at the Curie temperature Tc. More precisely, the net magnetic moment,

either induced or spontaneous, is

m = 〈∑
j

σj〉 (1.1.6)

and the transition is between a paramagnetic phase with m = 0 and a ferromagnetic phase

where the alignment of spins results in m > 0. For T < Tc, instead, there is a first or-

der phase transition characterized by the coexistence of paramagnetic and ferromagnetic

phases. In addition to the magnetization (or net magnetic moment), the susceptibility and

heat capacity are two other observables of interest in this case. The critical exponents [15]

of these physical quantities in the Ising ferromagnet model are listed in Table 1.1 (here the

critical exponent β differs from the factor β = 1/(kBT) which appears in the definition of

the partition function).
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Physical quantity Exponent Relationship

Specific heat α C0 ∼ |t|−α, t → 0, h = 0

Spontaneous magnetisation β m0 ∼ |t|β, t → 0−, h = 0

Zero field susceptibility γ χ0 ∼ |t|−γ, t → 0, h = 0

Magnetisation δ m ∼ h1/δ, t = 0, h → 0

Table 1.1: Critical exponents for the Ising ferromagnet model.
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Figure 1.1: Ising ferromagnet on the square lattice

Since these physical quantities are connected through various thermodynamic rela-

tions, the critical exponents are not completely independent of each other. In fact, the

scaling relations [14]

α + 2β + γ = 2

γ = β(δ − 1) (1.1.7)

show that only two of the exponents listed in Table 1.1 are independent.

1.1.3 Renormalization group theory

The renormalization group (RG) theory offers a suitable mathematical framework to ex-

plain critical exponents and universality classes of systems showing a second order phase

transition [7–10, 15, 16]. The first crucial assumptions of this theory is that ξ is the most

important length scale of a critical system. The second assumption is that ξ is solely re-

sponsible for the singular contributions to thermodynamic quantities around the critical
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point. These assumptions are grounded on the fundamental principle of scaling invari-

ance, which states that the properties of a critical system don’t change under different

length scales provided that ξ diverges in the proximity of a critical point. As the tem-

perature approaches the critical temperature Tc, the rate of divergence of ξ is controlled by

the critical exponent ν

ξ ∼ |t|−ν, t → 0 h = 0 (1.1.8)

In the example of the Ising ferromagnet, ξ is the characteristic distance over which two

spins at different locations are statistically correlated. More explicitly, away from criticality,

the two-spin correlation function G is asymptotically given by

G(r1 − r2) ∼ |r1 − r2|2−d−η exp
(
− |r1 − r2|

ξ

)
, |r1 − r2| ≫ 1, 2 − d − η < 0 (1.1.9)

here d is the dimension of the system. At criticality, the critical exponent η describes the

power law decay of G

G(r1 − r2) ∼ |r1 − r2|2−d−η, t = 0, ξ → ∞, |r1 − r2| ≫ 1, 2 − d − η < 0 (1.1.10)

We can generalise the result above (1.1.10) to a generic physical observable φ, whose lead-

ing singularities near a critical point are described by a set of relevant scaling variables ui [14],

so that

〈φi(r1)φi(r2)〉 ∼ |r1 − r2|−2xi , ξ → ∞, |r1 − r2| ≫ 1 (1.1.11)

The quantity xi is the scaling dimension of the physical observable φi associated to ui. For

the Ising ferromagnet and other examples of interest, the relevant scaling variables are t

and h.

The RG theory introduces further relations among the critical exponents. Indeed, the

critical exponents are related to the renormalisation group eigenvalues yi associated with
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the scaling variables ui. These relations read as follows

2 − α = d/yt , β = (d − yh)/yt, γ = (2yh − d)/yt , δ = yh/(d − yh) (1.1.12)

ν = 1/yt, η = d + 2 − 2yh

After the due substitutions, the scaling relations (1.1.10) become

α = 2 − dν

γ = ν(2 − η) (1.1.13)

The critical exponents of the two dimensional Ising’s ferromagnet model have been exactly

calculated by Onsager and others [4, 18, 21–24]

α = 0 (log divergence), β = 1/8, γ = 7/4, δ = 15, η = 1/4, ν = 1 (1.1.14)

and this result agree with the predictions [7, 9, 13] of the RG theory: yt = 1, yh = 15/8.

It is a fundamental result of statistical mechanics that critical theories of two-dimensional

lattice models in the continuum scaling limit are equivalent to conformally invariant quan-

tum field theories. In this correspondence, scaling dimensions are precisely linked to con-

formal dimensions. This point will be addressed in subsection 1.2 with the help of a well-

studied, illustrative example. Here, we simply anticipate a result [14], without the details

of its derivations, that will be used later

xi = d − yi (1.1.15)

This equation, which relates renormalisation group eigenvalues to scaling dimensions, is

one of the most fundamental and general results of the RG theory.

The corresponding values for the two-dimensional Ising’s ferromagnet model are xt =

1 and xh = 1/8.



1.1 Statistical Mechanics 9

1.1.4 Integrable systems

Classical theory

The foundations of classical integrability have been established mainly through the pio-

neering works of Kawalewskaya, Fuchs, Painlevé, Liuoville more than a century ago, and

some other contempories [25]. There are many definitions of integrability but this topic

goes far beyond the purpose of this thesis. Among these definitions the most referred to,

in the classical theory of Hamiltonian systems, is the Liouville one where integrability is

strictly tied to the existence of action-angle variables.

To explain this concept we introduce a Hamiltonian system on a 2n-dimensional phase

space Ω with total energy H(q(x, t), p(x, t)). Its time evolution in terms of the canonical

coordinates (q, p) is described by a set of nonlinear equations, the Hamilton’s equations,

which read as follows

ṗ = −∂H

∂q
, q̇ =

∂H

∂p
(q, p) ∈ R

2n (1.1.16)

Using the Poisson brackets, {A(q, p), B(q, p)} = ∂A
∂q

∂B
∂p − ∂A

∂p
∂B
∂q for functions A and B on

phase space Ω, we call I a conserved quantity of this system (or else first integral) if

{I, H} = 0. Such a system is said to be integrable if there exist additional functions

H1(q, p), . . . , Hn(q, p) (referred to as Hamiltonians) such that they are independent and all

Poisson brackets {Hj, Hk} vanish. The Hamiltonian formalism is invariant under canoni-

cal transformations, (q, p) → (q′, p′), Ω → Ω′, which preserve Hamilton’s equations. The

Liouville-Arnold theorem ensures that in integrable systems it is possible to find a canon-

ical transformation that leads from the old set of coordinates to a system of action-angle

variables, (a(λ), b(λ, t)), and it is such that the new Hamiltonian becomes dependent only

on the action coordinates, explicitly H = H(a). In this case the dynamical equations

ȧ = −∂H

∂b
= 0, ḃ =

∂H

∂a
= ω (1.1.17)

can be trivially solved and, moreover, we get a(λ) as the generator of the conserved quan-

tities ( one of these conserved quantities is the total energy). The number of such indepen-
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dent conserved quantities in integrable systems coincides with the number of degrees of

freedom of the system and in interacting quantum models it becomes infinite.

The notion of action-angle variables originates from the theory of the inverse scatter-

ing method (ISM) [26, 27]. This method is used in non-linear partial differential equations

and it works by solving an equivalent linear scattering problem where the scattering ma-

trix data are action-angle variables and the scattering potential is the inverse action-angle

map. The exact solution to the original nonlinear problem is then obtained by finding the

canonical mapping from the action-angle variables to the original coordinate fields. This is

an inverse method for the reason that it retrieves the scattering potential from the scattering

matrix as opposed to the usual problem of recovering some scattering data from a given

potential.

Quantum theory

The scattering description generalises also to the quantum case [28] and the well-known

Algebraic Bethe-Ansatz (ABA) construction [29] (details will be given in the next section)

provides an effective way to solve for the spectrum of eigenvalues and eigenvectors of

the Hamiltonian matrix and the conserved quantities. Hence, infinite quantum systems

which exhibit a scattering behaviour can be solved and they are said to be integrable sys-

tems. A finite-dimensional integrable system with Poisson commuting Hamiltonians ad-

mits a quantization such that the quantum Hamiltonians commute and the resulting quan-

tum system is also integrable. However, the general notion of integrability is quite broad

and it usually depends on the model on hand. Also, it must be noted that often the term

exactly solved or soluble are used interchangeably with the term integrable.

1.1.5 Lattice models

Two-dimensional lattice models constitute an important category of discrete models in sta-

tistical mechanics, which attract interest not only for their versatility in describing physical

problems of various types (spin chains, phase transitions, polymers and percolation, just

to name few) but also because they have the potential to offer exact solutions to non trivial
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problems. In regards to critical behaviour, the current state of knowledge provides power-

ful insight into the relation between two-dimensional critical lattice models and established

quantum field theory in (1+1) dimensions.

Two-dimensional lattice models are defined on a finite two-dimensional lattice graph

and the lattice space is organized through the repetition of a fundamental unit (less fre-

quently there are more than one) with regular geometric shape, the most common of which

are square, triangular and rhomboid. The degrees of freedom are discrete or continu-

ous variables, assigned to regular positions in the lattice which usually are lattice sites

(in face type models) or bonds between those sites (in vertex type models). These variables

are often interpreted either as particles or spins, borrowing the terminology from physics,

even though the underlying physical context is not always evident. The discrete setting al-

lows many simplifications in the study of a real physical problem and then the connection

with the continuum description is established once the so called continuum scaling limit is

performed. This limit corresponds to extending the lattice size to infinity, N → ∞, while re-

ducing the lattice spacing to zero, a → 0, in such a way that the continuum space is restored

provided that Na → x. In some contexts it is also used the so called thermodynamic limit,

which simply implies that the system size is increased to infinity to match the situation of

real physical systems with a large number of particles.

The square lattice: face and vertex type models.

We will present here a general overview of face and vertex type models defined on the

square lattice since these are the main focus of this thesis.

These two types of lattice models are illustrated in figure 1.2. For face type models each

unit square, or face of the lattice, is surrounded by a configuration of four heights. Face

models are also referred to as interaction-round-a-face (IRF) models, since the interactions

involve the four sites sharing a common face. For vertex type models, each vertex, formed

by the four edges incident on a given site, is associated to a configuration of four arrow (or

particle occupation) states. Each allowed configuration of heights/arrow states is assigned

to a Boltzmann weight function, which depends not only on the height/arrow state vari-

ables but also on an extra parameter, u, called the spectral parameter. Formally, we use the
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following notation to indicate the Boltzmann weight of face and vertex models

W
(b1 b2

a1 a2

∣∣∣u
)

W
( γ′

1σ1 σ2
γ1

∣∣∣u
)

face type vertex type

(1.1.18)

The local configurations {a1, a2, b2, b1} and {σ1, γ1, σ2, γ′
1} are ordered, by convention, us-

ing the marked corner which is shown in figure 1.2 with a red arc. The first entries in these

configurations are, for the face type model, the height state of the marked corner and, for

vertex models, the arrow state to the left of the marked corner. The next entries are then

listed in a counterclockwise order.

•

•

•

•

u

u

•
u

u

• •
u

u

u u u

•

•

•

•

•

•

•

•

•

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

(a) Face type

u

u

u

u

u

u

u

u

u

σ1 σ2 σ3 σ4
γ1 γ2 γ3

σ′
1 σ′

2 σ′
3 σ′

4
γ′

1 γ′
2 γ′

3

σ′′
1 σ′′

2 σ′′
3 σ′′

4
γ′′

1 γ′′
2 γ′′

3

γ′′′
1

γ′′′
2 γ′′′

3

(b) Vertex type

Figure 1.2: Two dimensional square lattice models: face and vertex type.

The real spectral parameter u controls the spatial anisotropy of the Boltzmann weights

through the anisotropy angle (ϑ) which is defined as

ϑ

u

ϑ =
πu

λ
(1.1.19)

Here λ is the crossing parameter, a model-dependent parameter that we will introduce later.

The spectral parameter plays a fundamental role in the integrability of lattice models and

is often treated as a complex variable.
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Integrability and Bethe ansatz

To explain integrability in the context of two-dimensional lattice models, we introduce the

single row transfer matrix.

Let’s consider a face model on a M × N square lattice with periodic boundary configu-

rations on the vertical edges. The entries of the single row transfer matrix are

T(u)a,b =

=

•

•

b1

a1

u

•
a2

u

• •
a3 a4

u

•
b2 • •

b3 b4

. . . u

• •

• •

aN aN+1

bN bN+1

= W
(b1 b2

a1 a2

∣∣∣u
)

W
(b2 b3

a2 a3

∣∣∣u
)

. . . W
(bN b1

aN a1

∣∣∣u
)

(1.1.20)

here the periodic boundaries (aN+1 = a1, bN+1 = b1) are indicated by dashed lines. Let’s

consider now a vertex model on a M × N square lattice and periodic boundary conditions

on the horizontal rows. The entries of the single row transfer matrix are

T(u)γ,γ′ =

= . . .u u u u u
σ1 σ2 σ3 σ4 σ5 σN σN+1

γ1

γ′
1

γ2

γ′
2

γ3

γ′
3

γ4

γ′
4

γN

γ′
N

= ∑
σ1

∑
σ2

· · ·∑
σN

W
( γ′

1σ1 σ2
γ1

∣∣∣u
)

W
( γ′

2σ2 σ3
γ2

∣∣∣u
)

. . . W
( γN ′

σN σ1
γN

∣∣∣u
)

(1.1.21)

here the periodic boundaries (σN+1 = σ1) are indicated by dashed lines and in (1.1.21) the

sum runs over all arrow states (occupation numbers). If the local vertex is not allowed, the

Boltzmann weight is zero. Thus, the single row transfer matrix encodes the probability of

transition from a particular height/arrow state configuration along a horizontal line of the

lattice to the height/arrow state configuration of the next line.
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M single rows are necessary to build the whole square lattice and the probability of

occurrence of any allowed configurations is obtained by multiplying M single rows transfer

matrices. Tracing out this product yields the partition function on a torus as

ZMN = Tr T M =
N

∑
i=1

ΛM
i (1.1.22)

where the trace glues together the top and bottom edges of the cylinder in the shape of a

torus. In the presence of non-periodic boundary conditions it is more useful to act with a

double row transfer matrix which propagates across two single rows of the lattice.

For both periodic and non-periodic boundary conditions, the partition function is given

by the sum of the eigenvalues of the transfer matrix, Λi, raised to the power of M. If Λ1

is the largest eigenvalue of the transfer matrix, by the Perron-Frobenius theorem, it is a

positive real number such that

Λ1 > |Λ2| ≥ |Λ3| ≥ . . . |ΛN | (1.1.23)

It is also the leading term in the continuum scaling limit

ZMN =
N

∑
i=1

ΛM
i = ΛM

1 (1 +
(Λ2

Λ1

)M
+ . . . ) ∼ ΛM

1 , M, N → ∞ (1.1.24)

Integrable systems are associated with an infinite family of mutually commuting trans-

fer matrices which can then be simultaneously diagonalized

[T(u), T(v)] = 0 (1.1.25)

Members of this family are identified by their value of the spectral parameter and they

share the same set of eigenvectors which, consequently, do not depend on the spectral

parameter.

The task of diagonalising the transfer matrix and finding the eigenvalues and eigen-

vectors can be addressed using the Bethe ansatz approach. This is an important method in

quantum integrability, originally proposed by Hans Bethe [30] to solve the XXX spin chain
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problem (1.1.27) and nowadays applied to many different integrable systems [28, 29]. The

key point of this method is that it solves the problem by regarding it as a two-body scat-

tering process with conserved particles and momenta (even if they can be redistributed

among particles). It is indeed the quantum equivalent of the inverse scattering method in

classical theory, with the difference that the interaction is between virtual particles which

belong to an unphysical space, called auxiliary space. The transfer matrix corresponds then

to the product of those scattering matrices, which act on both the physical and unphysical

spaces, summing over the degrees of freedom in the auxiliary space so that only the phys-

ical variables enter into its definition. In this setting the eigenvectors are constructed as

elementary excitation of a pseudo-vacuum. The consistency conditions for the existence of

such a solution for the eigenstates is precisely expressed by the Yang-Baxter equation, which

will be the topic of section 1.1.6.

Examples of two-dimensional lattice models

The first formulation of a two-dimensional lattice model is the Ising model [20, 31]. This

model represents the physics of elementary spins (up or down) located at the sites of a

square lattice with only nearest-neighbour interaction in an external magnetic field. It is

also the simplest example of a two dimensional lattice model whose partition function

can be calculated and solved explicitly on the square lattice [21]. The Ising model can be

further generalized in the Q-state Potts model [32] where the lattice sites are occupied by

scalar spins which can assume one of the Q values and the nearest-neighbour interaction

is given by a Kronecker delta. Another Ising-type model is the n-vector model, introduced

by Stanley in 1968 [33] also known as the O(n) model since the spins have the symmetry of

the orthogonal group. In this model, each spin is a unit vector with n components.

Similarly to the Ising model, the six-vertex models have been known for a long time.

It was first introduced by Linus Pauling [34] in the 1935 to describe the two-dimensional

structure of water ice. In fact, in this model an edge between two vertices of the square lat-

tice corresponds to an oxygen-hydrogen bond and is visualized on the lattice by an arrow

associated with a double-valued degree of freedom ( spin + or −). Its name accounts for

the number of allowed configurations of vertices. Thirty years later, the six-vertex model
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was reformulated and solved by Lieb [35–38] and then Sutherland [39] in presence of an

external electric field, both using a transfer matrix approach. Interestingly, the six-vertex

and Ising models can be considered as special cases of a more general model, the zero-field

eight-vertex model [40, 41]. From a purely physical point of view, the eight-vertex model

describes a ferroelectric material in absence of external electrical field whose polarization,

corresponding to the average over the microscopic electric dipoles, represented in the lat-

tice in the form of arrows.

An important feature of the eight-vertex model is that, in the continuum scaling limit,

it exactly reproduces the one-dimensional XYZ spin chain quantum integrable system [31,

42]. The XYZ spin chain model is the quantum mechanical model of ferromagnetism and

it is represented by the following Hamiltonian

H = −1

2

N

∑
j=1

(Jxσx
j σx

j+1 + Jyσ
y
j σ

y
j+1 + Jzσz

j σz
j+1) (1.1.26)

Here Jx, Jy, Jz are constants associated with the interactions between nearest neighbouring

spins along, respectively, the x, y, z directions. σx, σy, σz are Pauli matrices. The partition

function of this model is

Z = Tr exp(−H/kBT) (1.1.27)

If Jx = Jy = Jz, this is the well-known Heisenberg or XXX model [43–45]. Considering

more specific cases, Jx = Jy = 0 reproduces the nearest-neighbour one-dimensional Ising

model where spins are aligned in the z direction, Jz = 0 is known as the XY model (it is

related to the Ising ferromagnet model), Jx = Jy is the XXZ model. It can be proven that

the Hamiltonian in (1.1.26) corresponds to the logarithmic derivative of the eight-vertex

transfer matrix [46, 47]. This result is valid for any values of Jx, Jy, Jz. In a similar way

the XY spin chain is related to the Ising model and the XXZ spin chain to the six-vertex

model. These facts highlight, indeed, a well-proven correspondence between the transfer

matrix of 2-dimensional vertex models and the Hamiltonian of 1-dimensional spin chains

of quantum mechanics [28, 31] .

Regarding face type models, the hard hexagon problem (the triangular lattice gas with
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nearest-neighbour exclusion) was the first to be exactly solved [48, 49]. However, few year

later it was pointed out that it belongs to a larger class of models, the so called restricted

Solid-on-Solid models discovered by Andrews, Baxter and Forrester [50] (detailes will be

given in section 1.1.8) which in turn is related to the eight-vertex model.

From these considerations it appears clear that there must exist a remarkable equiv-

alence between the two-dimensional lattice models mentioned so far. Technically, this

equivalence relies on the fact that certain elementary matrices, whose product makes up

the transfer matrices and so indirectly are related to the partition function, lie in the same

algebra, known as the Temperley-Lieb algebra, for each model (details about this algebra in

section 1.1.7).

1.1.6 Yang-Baxter integrability

The Yang-Baxter equation is the cornerstone of classical and quantum integrability in two

dimensions [29,31]. In particular, it provides the consistency condition for the integrability

of two-dimensional lattice models on a torus. The validity of this equation ensures that

there exist an infinite family of commuting transfer matrices which can be simultaneously

diagonalized. Then, if the spectrum of eigenvalues is known, the model under study is

solved because we can calculate the partition function and derive from it other thermody-

namic variables of interest. It is not always obvious that the spectrum of eigenvalues is

analytically soluble. However, since ultimately we are interested in the thermodynamic

limit, the solution for the partition function reduces to the problem of finding its dominant

term for N >> 1 where N is the size of the finite system.

In the following we elucidate the meaning and fundamental implications of the Yang-

Baxter equation. For clarity we decide to use the symbolic language of face models as we

have introduced in the previous section. We formulate the Yang-Baxter equation in the

planar algebra notation [51] as

u

u+v
v =

u+v

u
v (1.1.28)
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where each plaquette corresponds to a Boltzmann face weight and it’s implied that all

external degrees of freedom are fixed while the internal degrees of freedom are summed

over. When the limiting value u = 0 is reached, the Boltzmann weights are subject to this

condition

a

b

c

d

= δa,c (1.1.29)

This is also known as initial condition. The plaquette on the left side of (1.1.29) is a collapsed

face where the nodes linked by the dashed line are identified, and it represents a Kronecker

delta function so, in the operator language, is an identity. The Boltzmann face weights of

the lattice models studied in this thesis satisfy also another important local equation, the

so called inversion relation [52]

u −u = A(u)A(−u) (1.1.30)

where A(u) is a function which depends on the type of model under study.

The Yang-Baxter equation and inversion relation have also an interpretation in the oper-

ator formalism, where the elementary face operator, X j(u), reproduces the action of adding

a single face to the lattice in the position indexed by j

X j(u) = u

j

(1.1.31)

More appropriately, we shall refer to (1.1.31) as face transfer operator [31, 53]. The direction

of action is fixed, by convention, along the diagonal that connects the site with the marked
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corner to the one opposite to it. In the operator form, (1.1.28) and (1.1.30) then become

X j(u)X j+1(u + v)X j(v) = X j+1(v)X j(u + v)X j+1(u) (1.1.32)

X j(u)X j(−u) = A(u)A(−u)I (1.1.33)

where I is the identity operator. Often these equations are expressed in the diagrammatic

form

v

u + v

u

j j+1

=

u

u + v

v

j j+1

(1.1.34)

u

−u

= A(u)A(−u) (1.1.35)

In this notation the plaquettes represent the Boltzmann face operators and the collapsed

face on the right-hand side of the inversion relation is the identity operator.

Using the local face operators we can construct the periodic single row transfer matrix

of size N

T(u) = u u u. . .

︸ ︷︷ ︸
N

(1.1.36)

The symbolic representation is identical to the one introduced before (1.1.20). The periodic

boundary conditions, indicated by dashed lines, make the right and left edges of the single

row identical. The importance of the Yang-Baxter equation and inversion relation resides
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in the fact that they imply the commutativity of single row transfer matrices for generic

values of the spectral parameter which means

[T(u), T(v)] = 0 (1.1.37)
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In the following we illustrate the proof of this fact

T(u)T(v) =
u u u

v v v

. . .

. . .

︸ ︷︷ ︸
N

(1.1.38)

= A(v−u)−1A(u−v)−1

u u u

v v v

. . .

. . .

︸ ︷︷ ︸
N

v − u u − v (1.1.39)

= A(v−u)−1A(u−v)−1

u u u

v v v

. . .

. . .

︸ ︷︷ ︸
N − 1

v − u
v

u

u − v (1.1.40)

= A(v−u)−1A(u−v)−1 v − u
v v v

u u u

. . .

. . .

︸ ︷︷ ︸
N

u − v (1.1.41)

= A(u−v)−1A(v−u)−1

v v v

u u u

. . .

. . .

︸ ︷︷ ︸
N

u − v v − u (1.1.42)

=
v v v

u u u

. . .

. . .

︸ ︷︷ ︸
N

= T(v)T(u) (1.1.43)

In (1.1.39) the identity operator is inserted at the right side of the double row and is then

replaced by the inversion relation. Thanks to the Yang-Baxter equation the face operator

immediately attached to the right end of the double row can be pushed backwards (1.1.40),
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till it reaches the left end (1.1.41) where it connects to the face operator at the right end by

virtue of the periodicity (1.1.42). Finally, we recognise that, by following these steps, we

have reconstructed the inversion relation again, so at the end we are left with the product

of the two initial transfer matrices (1.1.38) but reversed (1.1.43).

Typically the spectral parameter is a continuous variable, so it means that there exists

an infinite family of transfer matrices which commute and, provided that they are diago-

nalizable, the transfer matrices in this family can be simultaneously diagonalized. In the

simplest case the transfer matrix is a normal matrix and hence diagonalizable by standard

techniques. Other times, the transfer matrix satisfy additional functional equations and

because the eigenvalues (but not the eigenvectors) are function of the spectral parameter,

we can write down similar equations for the eigenvalues. The spectrum of eigenvalues

can then be found by solving these functional equations. The ultimate problem concerning

integrable models, is thus related to the solution of the spectrum of eigenvalues of their

transfer matrix. From its solution the partition function can be calculated and the model in

question is technically considered exactly solved.

The lattice models that will be considered in this thesis belong to two different classes

of Yang-Baxter integrable models: the Restricted Solid-on-Solid models and dimers (free-

fermion model). They will be reviewed carefully in two separate sections of this introduc-

tion.

1.1.7 Temperley-Lieb algebra

Solutions to the Yang-Baxter equation can be constructed through representations of the

Temperley-Lieb (TL) algebra. TLN is an associative algebra generated by the unimodular

complex number q ∈ C and operators I and ej (j = 1, 2, . . . , N) which satisfy the following
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relations

Ig = gI = g (1.1.44)

e2
j = (q + q−1)ej (1.1.45)

ejej±1ej = ej (1.1.46)

eiej = ejei, |i − j| ≥ 2 (1.1.47)

where g can be any element of the TLN algebra and β = (q + q−1) is often referred to

as loop fugacity and is a real number. In the case of the models considered in this thesis,

we choose q = eiλ (λ is the crossing parameter and will be introduced later) and, hence,

β = 2 cos(λ). In the diagrammatic language, TLN algebra is represented by monoids ej

acting on N strings

I =

1 2

· · ·
j − 1

· · ·
j j + 1 j + 2 N − 1 N

(1.1.48)

ej =

1 2

· · ·
j − 1

· · ·
j j + 1 j + 2 N − 1 N

(1.1.49)
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Thus, the defining relations of TL algebra (1.1.45) - (1.1.47) translate in the following dia-

grammatic relations

Iej =

j j + 1

=

j j + 1

= ej (1.1.50)

e2
j =

j j + 1

= (q + q−1)

j j + 1

= (q + q−1)ej (1.1.51)

ejej+1ej =

j j + 1 j + 2

=

j j + 1 j + 2

= ej (1.1.52)

eiej = · · ·

i i + 1 j j + 1

= · · ·

i i + 1 j j + 1

= ejei, j − i ≥ 2 (1.1.53)

From (1.1.51) it is made clear that β is associated with the weight of the loop. In the planar

algebra, the monoids I and ej become

I = ej = (1.1.54)
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and hence the diagrammatic relations (1.1.50)-(1.1.53) take this form

=
(1.1.55)

= β

(1.1.56)

=
(1.1.57)

...
=

. . .

(1.1.58)

where the dashed lines indicate that the corners and internal edges are identified.

1.1.8 Restricted solid-on-solid model

Critical models

The restricted solid-on-solid (RSOS) models form a class of two-dimensional exactly solv-

able models defined on a square lattice. They were introduced by Andrews, Baxter and

Forrester in 1984 and are described in these two seminal papers [50, 54]. They belong to

face type models, the dynamic variables are therefore called heights and are assigned to
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each lattice face with the requirement that adjacent heights must differ by ±1.

ai
• aj

•

an• am•

|ai − aj| = |aj − am| = |am − an| = |an − ai| = 1

Figure 1.3: RSOS model: heights arrangements round a face of a square lattice.

Any arrangement of four heights around the corners of the square face, compatible with

these restrictions, corresponds to a specific Boltzmann weight (1.1.18). Two coprime inte-

gers m, m′ with 2 ≤ m < m′ completely identify any RSOS model. In fact, they specify the

crossing parameter λ = (m′ − m)π/m′ and also impose a restriction on heights which are

integer numbers in the range a = 1, 2, . . . , m′−1. Exactly six types of of face configurations

respect the height restrictions described above, and their Boltzmann weights in the critical

regime read

W
(

a ± 1 a
a a ∓ 1

∣∣∣u
)
=

a a∓1

aa±1

u = s(λ − u) (1.1.59)

W
(

a a ± 1
a ∓ 1 a

∣∣∣u
)
=

a∓1 a

a±1a

u =
ga∓1

ga±1

s((a ± 1)λ)

s(aλ)
s(u) (1.1.60)

W
(

a a ± 1
a ± 1 a

∣∣∣u
)
=

a±1 a

a±1a

u =
s(aλ ± u)

s(aλ)
(1.1.61)

Here s(u) = sin u/sin λ, u is the spectral parameter (0 < u < λ) and ga are arbitrary gauge

factors. The initial condition applies

W
(

d c
a b

∣∣∣0
)
= δ(a, c), (1.1.62)

These Boltzmann weights satisfy two important local relations, the Yang-Baxter equation
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(1.1.28)

∑
g

W
(

f g
a b

∣∣∣u
)

W
(

e d
f g

∣∣∣u + v
)
W
(

d c
g b

∣∣∣v
)
= ∑

g

W
(

e g
f a

∣∣∣v
)

W
(

g c
a b

∣∣∣u + v
)

W
(

e d
g c

∣∣∣u
)

(1.1.63)

and the inversion relation (1.1.30)

∑
g

W
(

d g
a b

∣∣∣u
)

W
(

d c
g b

∣∣∣− u
)
= s(λ − u)s(λ + u) δa,c (1.1.64)

The Boltzmann weights of the RSOS models also show some interesting symmetries. The

first is the invariance under height reflection about the leading diagonal, the second is the

invariance under height reversal

W
(

d c
a b

∣∣∣u
)
= W

(
b c
a d

∣∣∣u
)

, W
(

d c
a b

∣∣∣u
)
= W

(
m′ − d m′ − c
m′ − a m′ − b

∣∣∣u
)

(1.1.65)

In the principal series (m=m′−1) of RSOS models, also known as unitary models, where

all weights are positive, the gauge for the transfer matrices is commonly chosen to be

gk =
√

s(kλ) (k = a, b, c, d) (symmetric gauge). The Boltzmann weights in this gauge can

be rewritten as

W
(

d c
a b

∣∣∣u
)
= s(λ − u)δa,c Aa,bAa,d +

√
s(aλ)s(cλ)

s(bλ)s(dλ)
s(u)δb,dAa,b Ab,c (1.1.66)

where Ai,j are entries of the (m′ − 1) × (m′ − 1) adjacency matrix. In the non-principal

series models (m < m′ − 1), so called non-unitary models, some weights are not positive,

therefore a non-symmetric gauge must be chosen in order to avoid square roots of negative

numbers. A convenient choice of the gauge is gk = 1 if k = b, d (heights along the principal

diagonal), and gk = ǫk = (−1)⌊ k−1
2 ⌋, if k = a, c (heights along the non-principal diagonal).

The last factor is either positive or negative according to





ǫiǫj = +1, |i − j| = 1

ǫiǫj = −1, |i − j| = 2

(1.1.67)
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In this gauge, the Boltzmann weights become

W
(

d c
a b

∣∣∣u
)
= s(λ − u)δa,c Aa,bAa,d +

ǫa

ǫc

s(cλ)

s(dλ)
s(u)δb,d Aa,bAb,c (1.1.68)

Let’s consider a square lattice wound around a cylinder. Then the boundary conditions

are periodic because the last column is glued to the first one. Given a M × N lattice under

these conditions, we define the single row transfer matrix T with the lower and upper row

height sequences given respectively by a = {a1, . . . , aN} and a′ = {a′1, . . . , a′N} as

T(u)a,a′ =
N

∏
j=1

W
(a′j a′j+1

aj aj+1

∣∣∣u
)

, aj+N = aj, a′j+N = a′j (1.1.69)

In conclusion, the RSOS models are Yang-Baxter integrable models, which means that

their transfer matrices with different spectral parameters commute and if they are also di-

agonalizable they share a common set of u-independent eigenvectors and the whole family

of commuting matrices can be simultaneously diagonalized.

Off-critical RSOS models

Off-criticality, the sine functions in (1.1.59), (1.1.60) and (1.1.61) are replaced by elliptic theta

functions ϑ1(u, t) depending on u and an extra variable t = e−ǫ, the elliptic nome, which

measures the perturbation from criticality

ϑ1(u, t) = 2t1/4 sin u
∞

∏
n=1

(1 − 2t2n cos 2u + t4n)(1 − t2n) (1.1.70)

It is easily shown that, when t = 0, quotients of theta functions simplify to quotients of

trigonometric functions and the theory becomes critical. For the purpose of this thesis, we

are concerned with RSOS models in the so called regime III: 0 < u < λ and 0 < t < 1. The

initial condition and the local relations (Yang-Baxter equation and inversion relation) still

hold.

An important quantity associated with off-critical RSOS models is the one-dimensional

configurational sum. It derives from the corner transfer matrix formalism introduced by

Baxter [55,56] and enables the calculation of local one-point functions (fundamental objects
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in theoretical physics). Let σ = {σ1, ..., σN} and σ′ = {σ′
1, ..., σ′

N} denote the heights at the

edges of the region in figure 1.1.71 with boundaries (σN , σN+1) = (b, c).

σ1
σ′

1
σ2 . . .

σ′
2

σ′
3

...

σ′
N = b

b

b

b

b

c

c

c

c

c

c

c

σN =b

(1.1.71)

The corner transfer matrix A(u) is defined as

A(u)σ,σ′ = ∑ ∏ W
(

σn σm
σi σj

∣∣∣u
)

if σ1 = σ′
1 (1.1.72)

= 0 if σ1 6= σ′
1 (1.1.73)

where the product is over the 1
2 N(N + 1) faces in (1.1.71) and the sum is over all spins

on sites denoted by solid circles. The concept of one-dimensional sums relates to the local

height probability Pa′ [50] which is defined as the probability to find a center site with

height a′ in the square lattice divided into 4 quadrants as shown in figure 1.4. Formally

this probability reads as follow

Pa′ = Z−1 ∑ δ(σ1, a′)∏ W
(

σn σm
σi σj

∣∣∣u
)

(1.1.74)

= Tr(δ(σ1,a′)A(u)B(u)C(u)D(u))

Tr(A(u)B(u)C(u)D(u))
(1.1.75)

where Z is the partition function and the sum is over all heights 1 ≤ σi ≤ m′ − 1 and the

product over all faces of the square lattice having a′ as height of the center site σ1.
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σ1 = a′

b

b

b

b

b

c

c

c

c

c

b

c

c

c

c

c

b

b

b

b

c

c

c

c

c

b

b

b

b

b

b

b

b

b

b

c

c

c

c

c

C(u) D(u)

A(u)B(u)

σ
′′′

σ

σ
′

σ
′′

Figure 1.4: Corner transfer matrices A(u), B(u), C(u), D(u) build up each quadrant of the
square lattice.
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One finds that the local height probability in regime III can be rewritten as

Pa′ =
E(xa′ , xm′

)XN(a
′, b, c; q)

∑1≤a≤m′−1 E(xa, xm′)XN(a, b, c; q)
, x = e−4π2/(m′ǫ) (1.1.76)

XN(a
′, b, c; q) = q−E0 ∑

σ2 ,σ3...σN−1

q∑
N
j=1 jH(σj−1,σj,σj+1) = ∑

σ

qE(σ)−E0 (1.1.77)

where E(w, p) is related to the elliptic theta function as defined in appendix A.1. The new

function XN is the one-dimensional configurational sum. The sum is over the sequence of

heights σ = (σ1, σ2, . . . , σN , σN+1) of length N subject to the restriction that |σj − σj+1| = 1

with boundaries σ1 = a′, σN = b and σN+1 = c.

We can interpret the one-dimensional sum as weighted sum of the energies E(σ) asso-

ciated to the lattice path σ which starts off at height a′ and terminates at height c following

height b as shown in figure 1.5. The energy E0 = min
σ

E(σ) is the energy of the groundstate

path.

1

2

3

4

0 1 2 3 4 5 6

Figure 1.5: An example of lattice path σ = {1, 2, 3, 2, 3, 2, 3} in model (m, m′) = (2, 5) with
boundary conditions (a, b, c) = (1, 2, 3) and N = 5 steps from a = 1 to c = 3.

The importance of the one-dimensional sum goes beyond its statistical interpretation

as generating function for the lattice path configurations. In fact, it is well known that it

generates the conformal characters of the associated CFT in the thermodynamic limit [57–

60]. The one-dimensional sums have proven very helpful for studying characters in CFT,

not only because they represent a finitized version of their conformal counterparts but

also because the recurrence relations between one-dimensional sums are easier to handle

mathematically than the equations of the conformal algebra.
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1.1.9 Six-vertex model

The six-vertex model is an important lattice model of statistical mechanics in two dimen-

sions. It is a vertex type model defined on a square lattice and the spin variables take the

form of arrows placed on the bonds connecting neighbouring lattice points. The spins con-

figurations are in agreement with the ice-rule [34], so at each lattice point (vertex) there

are exactly two ingoing and two outgoing spins regardless of the order in which they are

sorted. Only six types of vertices satisfy this condition as shown in the figure below

w1 w2 w3 w4 w5 w6

Figure 1.6: Allowed arrow configurations in the six-vertex model.

Each vertex is assigned a Boltzamnn weight wi. In the symmetric case, these weights

are invariant under simultaneous reversal of all arrows, that means w1 = w2 = a, w3 =

w4 = b, w5 = w6 = c. We are interested, however, in a different case where the last two

configurations in figure 1.6 cannot be identified under arrow reversal and therefore they

are mapped to different weights, w5 = c1 and w6 = c2. The most general parametrization

of the Boltzmann weights of the integrable six-vertex model is

a(u) = ρ
sin(λ − u)

sin λ
, b(u) = ρ

sin u

sin λ
, c1(u) = ρg, c2(u) =

ρ

g
(1.1.78)

∆ = (a2 + b2 − c1c2)/(2ab) (1.1.79)

where λ ∈ (0, π) is the crossing parameter, g a gauge factor and ρ ∈ R a normalization

constant. Under different choices of λ, g and ρ, the six-vertex model exhibits different

behaviours, according to the value of the parameter ∆. In particular, when λ = π
2 , which

implies ∆ = 0, this is the free-fermion model and it is well known its relation to dimers and

domino tilings [41, 61].
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1.1.10 Dimers

The term ”dimer” refers to a specific arrangement of units ( often referred to as tiles) on

a regular lattice whose peculiarity is that they can be decomposed into two elementary

subunits. The classical example is on a square lattice where horizontal and vertical dimers

are viewed as dominos (see figure 1.8). Originally the model was formulated to address a

simple enumeration problem, the problem of counting the number of ways the sites of a

finite regular lattice can be covered by tiles (dimers) such that two adjacent sites are covered

by exactly one tile and no single site is left uncovered [62], as shown in figure 1.8. This is the

also known as the close-packed limit and, if not otherwise stated, it is implicitly assumed

to hold when we talk about dimers. There are also variations to this problem in which

additional vacancies are taken into account [63–68] but it won’t be covered in this thesis.

As mentioned in section 1.1.9, dimers can be considered as a special case of the six-vertex

model at the free fermion point. The mapping between vertex and dimer configurations is

well known [61,69] and it is shown in Figure 1.7. It is clear that this mapping is not bijective

since the vertex w5 relates to two possible dimer arrangements. Moreover, dimers exhibit

a 45◦ orientation, differently from the classical model where they can only have horizontal

and vertical orientation.

w1 w2 w3 w4 w5 w6

Figure 1.7: Mapping between vertex and dimer configurations

The problem of counting dimer configurations is equivalent to calculating the parti-

tion function of the free-fermion six-vertex model with the proper choice of Boltzmann

weights (1.1.78). Indeed, thanks to a freedom of gauge, it is always possible to find the

special gauge transformation that, given a suitable choice of the normalization constant

and spectral parameter, sets the weights to one and two (only for the doubly degenerated

configuration). Under these conditions, the partition function, which sums the Boltzmann
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weights over all possible dimer configurations compatible with the boundary conditions,

exactly counts the number of dimer tilings on a square lattice.

In the thermodynamic limit the dimer model exhibits interesting properties from the

point of view of its critical behaviour. The relation between dimers and its conformal field

theory limit will be discussed in section 1.2.4.

Figure 1.8: Domino tiling of a square lattice.

In tracing back the history of the dimer model, we find out that it was first introduced in

the 1937 by Fowler and Rushbrook [70] as model for the adsorption of diatomic molecules

on a two-dimensional substrate. Yet quickly it became a general problem studied in vari-

ous scientific communities. The first important results regarding the statistical properties of

dimers were obtained in the sixties. It was initially exactly solved in one dimension [71,72],

then in two dimensions the solution on the square lattice with free boundary conditions

was independently calculated by Kasteleyn 1961 [73] and Temperley and Fisher 1961 [74]

using a combinatorial method involving Pfaffians. Kasteleyn also studied dimers with

toroidal boundary conditions. Later in the sixties Lieb [75] reformulated and calculated

the partition function of the dimer model using a particular transfer matrix method which

doesn’t involve Yang-Baxter integrability. Lieb’s approach is based on a map from dimer

configurations to spin configurations and thus sets the ground for a more recent applica-

tion of this method linked to a particular spin chain representation of the Temperley-Lieb

algebra [76]. Afterwards, almost no significant progress has been made to further explore

the statistical properties of dimers, until the late 80’s when the discover of high tempera-

ture superconductors promoted new interest in this topic. In fact, the new superconductive

materials were described as a quantum hard-core dimer gas on a two-dimensional square

lattice [77]. In the 1996 a paper by Cohn et al. [78] on the domino tilings of an Aztec
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diamond raised a crucial issue about dimers: small changes in the boundary conditions

can have a dramatic effect on the bulk free energy as it is evident from the behaviour of

domino tilings of a typical planar region under such conditions. Since then, there have

been great efforts to gain a better understanding of the finite-size effects of the boundary

conditions under the influence of infinitely repulsive hard-core local interactions. Finally,

in the last two decades the interest in the dimer model has moved towards its properties as

critical system and the connection with conformal field theories in the continuum scaling

limit [69, 79–90].

1.2 Conformal Field Theories

Conformal field theories (CFTs) [91,92] are quantum field theories invariant under conformal

transformations, i.e. coordinates transformations which preserve angles between vectors.

Let’s consider a generic manifold endowed with a flat metric gµν, then, by definition, the

coordinates transformation x → x′ is conformal if it leaves the metric invariant up to a

change of scale

gµν(x) → g′µν(x′) = Ω(x)gµν(x), Ω(x) = |∂x′/∂x|2 (1.2.1)

CFTs play a major role in classical and quantum statistical mechanics since they are able

to effectively describe second order phase transitions of critical phenomena. As we al-

ready mentioned in (1.1.3), critical lattice models in the continuum scaling limit show scale

invariance. In fact, near the critical point the correlation length diverges, consequently cor-

relations of all sizes are equally important and this also means that any change of scale

doesn’t affect the physics of the model. While in dimensions greater or equal to three con-

formal invariance is simply equivalent to ordinary scale invariance, two dimensions is a

rather special case because there is an infinite family of analytic transformations which are

conformal (they constitute the conformal algebra in two dimensions) but they only apply

locally so they are not always globally defined. These transformations may look compli-

cated in first instance and yet understanding their nature is crucial because sometimes it

leads to the exact solution and ultimately a classification of possible two-dimensional crit-
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ical phenomena. A subset of these local transformations are conformal analytic functions

which are invertible and globally well defined in two dimensions. They form a group

known as the global conformal group represented by

Poincaré group Ω(x) = 1

dilatations Ω(x) = λ−2

special conformal transformations Ω(x) = (1 + 2bµxµ + b2x2)2

The next sections are devoted to a deeper analysis of two-dimensional CFTs and, in

particular, the minimal and logarithmic theories will be studied in more details given their

relevance to the topic of this thesis.

1.2.1 Two-dimensional CFTs

At the classical level, a field theory has conformal symmetry if its action is invariant un-

der conformal transformations. Without entering in details of the quantization process, we

start with the flat Euclidean time and space coordinates (x1, x2), then we construct a set

of complex coordinates composed of the holomorphic ζ = x1 + ix2 and anti-holomorphic

ζ̄ = x1 − ix2 part, where the spatial component is compactified on a cylinder, so x1 =

x1 + 2π. These are the Euclidean analogs of the standard light-cone coordinates x1 ± ix2 in

the Minkowski space and describe the geometry of an infinite cylinder. Through the confor-

mal map f (ζ) = exp(ζ) = z1 ± z2 we finally study the theory on the complex z-plane. This

procedure is particularly advantageous because it allows the use of well-known methods

of complex analysis to compute conserved charges, operator expansions and other charac-

teristic quantities of a quantum conformal field theory in the Euclidean regime.

Concerning local conformal transformations we are interested to define the algebra of

their generators. We look for infinitesimal transformations which act on the coordinate

components as xν → x′ν = xν + εν(x) and satisfy the conformal constraint in two dimen-

sions

∂̄ε = ∂ε̄ = 0 (1.2.2)
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Here, ∂ and ∂̄ denote partial derivatives with respect to z and z̄ respectively. Consequen-

tially, any holomorphic infinitesimal transformation in two dimensions may be expressed

as

z′ = z + ε(z), ε(z) =
∞

∑
n=−∞

cnzn+1 (1.2.3)

where, by hypothesis, the infinitesimal mapping admits a Laurent expansion around z = 0.

Similar expressions apply to the anti-holomorphic component.

A spinless dimensionless field φ(z, z̄) under such a transformation changes in the fol-

lowing way

φ′(z′, z̄′) = φ(z, z̄) = φ(z′, z̄′)− ε(z′)∂′φ(z′, z̄′)− ε̄(z̄′)∂̄′φ(z′, z̄′) (1.2.4)

where the first equality expresses the invariance of φ at any point under change of the

coordinate system. Therefore, the infinitesimal change in the field is

δφ = −ε(z′)∂′φ(z′, z̄′)− ε̄(z̄′)∂̄′φ(z′, z̄′) = ∑
n

[cnℓnφ(z, z̄) + c̄n ℓ̄nφ(z, z̄)] (1.2.5)

where the differential operators ℓn = −zn+1∂, ℓ̄n = −z̄n+1∂̄ generate a Lie algebra called

the conformal algebra, defined by these commutation relations

[ℓn, ℓm] = (n − m)ℓn+m

[ℓ̄n, ℓ̄m] = (n − m)ℓ̄n+m

[ℓn, ℓ̄n] = 0 (1.2.6)

with n, m ∈ Z. This algebra is two commuting copies of the Witt algebra. Its generators are

ℓ−1, ℓ0 and ℓ1 (and their antiholomorphic counterparts). They correspond to translations

(l−1 and l̄−1), dilatations (l0 + l̄0), rotations (i(l0 − l̄0)) and special conformal transformations

(l1 and l̄−1).

The Witt algebra contains a subalgebra associated with the global conformal group,

the group of transformations which are invertible and well defined everywhere on the
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Riemann sphere (i.e., the complex plane plus the point at infinity). The conformal transfor-

mations in this group are mappings of this kind:

f (z) =
az + b

cz + d
with ad − cd = 1 (1.2.7)

where a, b, c, and d are complex numbers. These are projective transformations and to each

of them we can associate the matrix

A =


a b

c d


 (1.2.8)

It is easily verified that the composition of two maps f1 ◦ f2 corresponds to the matrix mul-

tiplication A2A1. Therefore, the global conformal group in two dimensions is isomorphic

to the group of complex invertible 2 × 2 matrices with unit determinant, SL(2, C), which

in turn is isomorphic to the Lorentz group in four dimensions SO(3, 1).

Quantum generators obey an algebra similar to the Witt algebra (1.2.6) defined just

above, but differ from it by the presence of the central extension c

[Ln, Lm] = (n − m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[L̄n, L̄m] = (n − m)L̄n+m +
c

12
n(n2 − 1)δn+m,0

[Ln, L̄n] = [Ln, c] = [L̄n, c] = 0 (1.2.9)

with n, m ∈ Z. These relations define the so called Virasoro algebra. The quantum operators

Ln, L̄n are the generators of the local conformal transformations on the Hilbert space, in

the same way ℓn, ℓ̄n are the generators of conformal mappings on the space of functions.

The operator c commutes with all other Virasoro generators and hence it can be thought

of as a constant known as the central charge. From the point of view of physics, the central

charge turns out to be proportional to the Casimir energy, the change in the vacuum energy

density that arises from the periodic boundary conditions on the cylinder. For example,

c = 1 corresponds to the case of the free boson, c = 1/2 to the free fermion.

Because the holomorphic and anti-holomorphic part of this algebra are independent
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and they satisfy the same relations, for simplicity of exposition, we will continue the dis-

cussion considering only the holomorphic sector, keeping in mind that same considerations

apply to the anti-holomorphic counterpart.

In the quantization process dilations (z, z̄) → λ(z, z̄) become time translations. Thus,

the generator of these transformations, L0, is proportional to the Hamiltonian of the system

and the basis of eigenstates of this operator can be chosen as basis of states of the Hilbert

space of the theory. An important remark here is that in the Hilbert space of conformal field

theories the vacuum state |0〉 must be invariant under global conformal transformations.

Hence, if the ground state energy is set to zero, |0〉 must be annihilated by L−1, L0 and L1

and their anti-holomorphic counterparts.

Ln|0〉 = 0, n > −1 〈0|Ln = 0, n < −1 (1.2.10)

We are interested to construct an irreducible finite-dimensional representation of the

Virasoro algebra. This task is addressed by first finding a universal representation with a

given highest-weight and then quotient from it to obtain a representation with the desired

properties. In the highest-weight representation of the Virasoro algebra, otherwise known

as the Verma module, the dilatation operator L0 is chosen to be diagonal. Also, an inner

product is assumed to exist on the representation space such that L†
n = L−n and this condi-

tion implies that the dilatation operator is Hermitian with a real spectrum of eigenvalues.

The highest-weight state |∆〉 is an eigenstate of L0 with eigenvalue ∆

L0|∆〉 = ∆|∆〉 (1.2.11)

From the commutation relation (1.2.9) it follows that

[L0, Ln] = −nLn, L0(Ln|∆〉) = Ln(L0|∆〉)− nLn|∆〉 = (∆ − n)Ln|∆〉 (1.2.12)

This suggests that Ln>0 and Ln<0 can be viewed as lowering and raising operators respec-

tively and, thanks to this fact, excited states are obtained by successive applications of the
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last operators

|∆′〉 = L−k1
L−k2

. . . L−kn
|∆〉, 1 ≤ k1 ≤ . . . ≤ kn (1.2.13)

The resulting state, called descendant, is an eigenstate of the L0 operator with eigenvalue

∆′ = ∆ + k1 + k2 + . . . kn = ∆ + N (1.2.14)

By convention, the sequence of operators Lk appears with an increasing order of the kj

and a different ordering can always be converted into a linear combination of the well

ordered states by applying the commutation rules. Through all possible combinations of

raising operators applied to the highest weight state, we obtain a basis of states in this

representation and the integer N is called the level of the descendant. The number of

distinct, linearly independent states at level N is simply the number p(N) of partitions of

the integer N. By Taylor expanding, it is easy to prove that the generating function of the

partition numbers is

∞

∑
n=0

p(n)qn =
1

(q)∞

, (q)∞ =
∞

∏
k=1

(1 − qk) (1.2.15)

Let Vc,∆ and Vc,∆̄ denote the Verma modules generated respectively by the holomorphic

and anti-holomorphic Virasoro generators {Ln} and {L̄n} with central charge c and highest

weights ∆ and ∆̄. The full Hilbert space is a direct sum over all values of the highest weights

of the tensor product of the holomorphic and anti-holomorphic Verma modules

∑
∆,∆̄

Vc,∆ ⊗ Vc,∆̄ (1.2.16)

The character χc,∆(q) of a Verma module Vc,∆ is the generating function for the number

of linearly independent states at each level N, denoted by dim V
(N)
c,∆ , and is defined as

follows

χc,∆(q) = Tr qL0−c/24 =
∞

∑
N=0

dim V
(∆+N)
c,∆ q∆+N−c/24 (1.2.17)
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This formula can be easily explained. Since the trace term Tr qL0 corresponds to the sum of

the eigenvalues of L0 and the multiplicity of each eigenvalue is equal to the dimension of

its corresponding eigenspace V
(λ)
c,∆ , it follows that

Tr qL0 = ∑
λ

dim V
(λ)
c,∆ qλ (1.2.18)

After making the substitution λ = ∆+N and multiplying by the constant factor q−c/24 in

(1.2.18), we retrieve the expression above (1.2.17) for the character of a generic Verma mod-

ule Vc,∆. Noticing that the dimension of V
(λ)
c,∆ is precisely the partition number p(N), we

use the definition given in (1.2.15) and finally write the expression of a Virasoro character

for a generic Verma module as

χc,∆(q) = q−c/24+∆ 1

(q)∞

(1.2.19)

1.2.2 Minimal models

The simplest CFTs are rational CFTs which admit a finite number of irreducible representa-

tions of the Virasoro Algebra which close under fusion. From the reducible Verma module

it is possible to construct a rational CFT with irreducible representations whose spectrum

consists of a finite number of conformal dimensions. These representations form the build-

ing blocks of the so called minimal models [93, 94]. A pair of coprime integers m, m′, satis-

fying 2 ≤ m < m′, uniquely identifies each minimal model M(m, m′) with central charge

given by

c = cm,m′
= 1 − 6(m − m′)2

mm′ , 2 ≤ m < m′, gcd(m, m′) = 1 (1.2.20)

All admissible conformal weights of the primary fields are derived from the Kac ’s deter-

minant formula [95]

∆m,m′
r,s =

(rm′ − sm)2 − (m − m′)2

4mm′ , 1 ≤ r ≤ m − 1, 1 ≤ s ≤ m′ − 1 (1.2.21)
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and given this symmetry ∆
m,m′
m−r,m′−s = ∆

m,m′
r,s there are (m − 1)(m′ − 1)/2 distinct primary

fields in the model. The corresponding Virasoro characters [96] are

chm,m′
r,s (q) =

q−c/24+∆
m,m′
r,s

(q)∞

∞

∑
k=−∞

[
qk(kmm′+rm′−sm) − q(km+r)(km′+s)

]
(1.2.22)

In this formula q is the modular nome and the above series is uniformly convergent since

|q| < 1. Because we are working on the infinite plane the holomorphic and anti-holomorphic

sectors can be treated independently. For clarity of exposition we decide to use only the

holomorphic coordinates, q, knowing that same equations also apply identically to the

anti-holomorphic counterpart, q̄. The set of all possible conformal dimensions for each

pair of quantum numbers (r, s), as it appears in (1.2.21), are systematically arranged in a

two-dimensional table, called Kac table.

A representation of the Virasoro Algebra is called unitary if every non-zero vector has a

positive norm. When m = m′ − 1 in (1.2.20) and (1.2.21), we obtain the sequence of unitary

highest weight representations of the Virasoro algebra with 0 < c < 1. These models are of

particular interest because they provide a complete set of possible two-dimensional critical

behaviours which find realization in well-known models of statistical mechanics [92, 97].

The unitary condition in field theories is the statement that the probability is conserved

and hence it can describe a quantum mechanical system. However, in statistical mechanics

it shouldn’t be interpreted as a physical condition. In fact, many examples of physical sys-

tems, such as the so called hard objects (i.e. bulky objects that cannot overlap and are sub-

ject to simple enough interactions) or polymers in two dimensions, have phases described

by non-unitary minimal models. In the non-unitary representation, some negative confor-

mal dimensions appear but the spectrum of eigenvalues is still real. The central charges

and conformal dimensions of a non-unitary CFT are given by the previous formula (1.2.20)

and (1.2.21) for m′ 6= m + 1, where, differently from the unitary case, negative values are

also allowed.

Historical background

check it out The discovery of rational CFTs and their identification with known statis-
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tical models mark an important breakthrough in understanding the principle of confor-

mal invariance and its application to physics . In 1984 Belavin-Polyakov-Zamolodchikov

(BPZ) [93] formulated the theory of minimal models, and at the same time Andrews-

Forrester-Baxter (ABF) [50] introduced exactly solvable RSOS models on the square lattice

that exhibit generic Z2 multicriticality. Remarkably, by analyzing the multicritical expo-

nents, Huse [98] observed that in the continuum scaling limit, the critical RSOS models, in

regime III and IV (respectively low-temperature and high-temperature regions), are pre-

cisely realized by the minimal models of BPZ, which are unitary theories. Nonunitary

RSOS lattice models, although they lack of a clear probabilistic interpretation, are nev-

ertheless associated with well-defined minimal models in the continuum scaling limit in

the same regimes III and IV [99–101]. The consequences of conformal invariance of lat-

tice models in unitary and non-unitary theories were studied in depth by Cardy [97, 102].

Itzykson, Saleur and Zuber [103] discussed the general application of conformal invari-

ance to nonunitary two-dimensional models, and in particular they analyzed the case of

the Lee-Yang edge singularity. It is essentially a non-unitary critical point and is associated

with the critical behaviour of an Ising-type model, a ferromagnet in a purely imaginary

non-zero magnetic field, above the critical temperature.

Riggs [104] pointed out that the finitized conformal characters of the nonunitary min-

imal models can be interpreted in terms of the one-dimensional configurational sums of the

nonunitary RSOS models. Next, Foda and Welsh [105] explored this relation more in detail

and provided a useful combinatorial interpretation of the fermionic expressions of these

finitized characters. Interestingly, this interpretation can also be applied to describe pat-

terns of zeros of the eigenvalues of the transfer matrix of the associated RSOS lattice mod-

els [106].

Through lattice fusion is it possible to construct a hierarchy of solid-on-solid lattice

models [107, 108], in a similar way as higher spins representations can be generated in

vertex lattice models [109]. When fusion is implemented on elementary RSOS models, it

results in new Yang-Baxter integrable RSOS lattice models [110–112]. It was shown that

fused RSOS models in the unitary case are identified in the thermodynamic limit with

higher fusion level minimal models [112–117]. Tartaglia and Pearce [118] worked further
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on the CFT classification of fused RSOS models in the non-unitary case and particularly

they found an exact correspondence between models whose crossing parameter ranges in

the interval 0 ≥ λ ≥ π/n ( n level of fusion) and higher-level cosets theories of CFT.

Recently, in a joint publication, Fehér et al. argue that in the complementary interval of the

crossing parameter, for n = 2, the fused RSOS models converge to the elementary minimal

models in the thermodynamic limit.

The Ising CFT

To complete the discussion around minimal theories we use an example, the simplest uni-

tary minimal model, M(3, 4), which describes the critical behaviour of the two-dimensional

Ising ferromagnet model of statistical mechanics (1.1.2). Central charge and conformal di-

mensions are respectively

c =
1

2
, ∆3,4

r,s =
(4r − 3s)2 − 1

48
, r = 1, 2, s = 1, 2, 3 (1.2.23)

As consequence of the Kac table symmetry ∆
3,4
3−r,4−s = ∆

3,4
r,s , the conformal dimensions can

be collected in pairs

∆
3,4
2,3 = ∆

3,4
1,1 = 0, ∆

3,4
2,2 = ∆

3,4
1,2 = 1

16 , ∆
3,4
2,1 = ∆

3,4
1,3 = 1

2 (1.2.24)

The Kac table of M(3, 4) is explicitly shown in table (1.2).

1
2 0

1
16

1
16

0 1
2

1 2 r

1

2

3

s

Table 1.2: Kac table for the Ising model M(3, 4).

The critical behaviour of two-dimensional statistical models is defined in terms of a set
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of critical exponents as explained in (1.1.3). In the case of the Ising model, this set includes

the critical exponents η and ν which are associated, respectively, to the spatial correlation

of spins, G, and the temperature dependence of the correlation length ξ

G(i − j) ∼ |i − j|−η , ξ ∼ |T − Tc|−ν, t → 0, |i − j| ≫ 1 (1.2.25)

The critical exponents of two-dimensional critical systems are related to the spectrum of

their associated conformal field theory. Precisely, scaling dimensions are related to confor-

mal dimensions through this relation

x = ∆ + ∆̄ (1.2.26)

where ∆ = ∆̄ for spinless operators. For the Ising model this becomes

xt = ∆t + ∆̄t = 1, xh = ∆h + ∆̄h = 1
8 (1.2.27)

which agrees with the prediction of the RG theory (1.1.15). Here the conformal dimensions

have been labelled in terms of temperature t and applied magnetic field h (as usual in

the statistical mechanics description) and in the CFT operator formalism they correspond

to the energy density ε and magnetisation σ respectively. In a complete CFT description,

there is also a third operator, the identity I, which is always dimensionless. So, the set of

conformal dimensions for the critical Ising model are explicitly

∆I = 0, ∆σ = 1
16 , ∆ε =

1
2 (1.2.28)

Operators, corresponding to the scaling fields, are realized in a boundary setting by apply-

ing the appropriate conjugate boundary conditions for the associated critical lattice model.

In this particular example, the possible boundary configurations are all spins up (identity),

all spins down (energy density), fixed spins or free boundary (magnetisation).

∆I ↔ +, ∆σ ↔ free , ∆ε ↔ − (1.2.29)
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1.2.3 Logarithmic minimal models

Minimal models describe the critical behaviour of lattice models with local degrees of free-

dom, such as the Ising, 3-state Potts and ABF RSOS models, whose Boltzmann weights are

locally defined and are not subject to global constraints. In contrast, there are models of sta-

tistical mechanics with non-local degrees of freedom. This is the case of polymers (dense

or dilute) which are made of connected subunits and percolation with the formation of

long-range connectivities. In the continuum scaling limit at criticality they are associated

with logarithmic CFTs (LCFTs).

The Virasoro minimal models described in the previous section (1.2.2) are rational CFTs

meaning that they admit a finite number of irreducible representations. An irreducible

representation cannot be the direct sum of any two non-zero subrepresentations. Any irre-

ducible representation is also indecomposable.

Logarithmic theories form another class of CFTs characterized by some reducible yet

indecomposable representations. The distinction between rational and logarithmic CFTs is

made clear by looking at certain matrix representations of the dilatation Virasoro generator

L0. If the matrix can be diagonalized, the representation is the direct sum of irreducible

subrepresentations. If not, it has reducible but indecomposable subrepresentations. This

latter one entails the appearance of non trivial Jordan cells.

A rational CFT [93] is fully characterised by its conformal data which means conformal

dimensions, scaling dimensions, central charge and operator product expansion coeffi-

cients (three-point correlators) of the primary operators. The same does not apply to the

LCFT. In fact, it can be the case that two distinct LCFTs share the same conformal data but

they exhibit different Jordan cell structure.

The simplest and most studied LCFTs are the logarithmic minimal models [119–125]

LM(p, p′), also known as logarithmic minimal CFTs. The first few members of the principal

series LM(p, p + 1) are critical dense polymers (p=1), critical percolation (p=2), Logarith-

mic Ising model (p=3). The conformal data of the logarithmic minimal CFTs is related to

the one of rational minimal models. The relationship between them can be understood in
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terms of the logarithmic limit [122] which is symbolically expressed by

lim
m,m′→∞, m′

m → p′
p +

M(m, m′) = LM(p, p′), 1 ≤ p < p′, gcd(p, p′) = 1 (1.2.30)

where the one-sided limit is taken through coprime pairs (m, m′) with 2 ≤ m < m′ and

m′
m >

p′

p to ensure the correct limiting ground states. The equality indicates that taking the

limit of the conformal data for the rational minimal models M(m, m′) yields the conformal

data of the logarithmic minimal models LM(p, p′). The logarithmic limit is taken in the

continuum scaling limit, after the thermodynamic limit 1.1.5. The resulting CFT is not

rational nor unitary and the conformal data are explicitly given by

cp,p′ = 1 − 6(p′ − p)2

pp′
, 1 ≤ p < p′, gcd(p, p′) = 1 (1.2.31)

∆
p,p′
r,s =

(rp′ − sp)2 − (p′ − p)2

4pp′
, r, s = 1, 2, . . . (1.2.32)

For each value of the central charge, the set of conformal dimensions of logarithmic mini-

mal models yields an infinitely extended Kac table. Similarly, the logarithmic limit for the

conformal characters yields

χ
p,p′
r,s (q) = q−

c
24+∆

p,p′
r,s

(1−qrs)

(q)∞

(1.2.33)

Through the continuum scaling limit of well-defined integrable lattice models, the so

called logarithmic lattice minimal models [123], we can study the properties of logarithmic

minimal CFTs.

Hamiltonian limit

In the context of lattice models, the transfer matrix commute with the integrals of motions

of the theory and particularly with the Hamiltonian. In fact, the Hamiltonian (H), which

is proportional to the Virasoro operator L0, is the first order term in the Taylor expansion

of the single row transfer matrix about the spectral parameter. The Hamiltonian limit is
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defined, up to a factor α > 0, as

T(u) = I − αuH+O(u2) (1.2.34)

where T(u) is the normalized single row transfer matrix. If we choose the eigenstates of

L0 as basis of the Hilbert space of states of a LCFT, from (1.2.34) it is clear that the Jordan

block structure of L0 is then reflected into the transfer matrix.

1.2.4 The dimer CFT

It is widely accepted that the close-packed dimer model on the square lattice is confor-

mally invariant [65, 81–83, 126]. From the point of view of statistical mechanics, dimers are

classically studied in the framework of free fermion models. However, differently from the

statistics of free fermions, the lattice structure and boundary conditions strongly influences

the dimers free energy, and not only the geometry, also the parity of the dimensions of the

lattice grid has non negligible effect. This fact has been known for a long time [127]. In

the last two decades, universality, scaling, finite-size corrections to the free energy of crit-

ical systems have been dominating the research area of integrable lattice models. In this

context, the interest for the dimer model has shifted towards a major question: the central

charge of dimers as conformal field theory. This question has opened a crucial debate that

nowdays is still on. Briefly, the discussion moves around two alternatives, c = −2, logarith-

mic CFT, and c = 1, Gaussian free field theory. Arguments based on the equivalence with

spanning trees (rectangular geometry or cylinder) support the c = −2 theory [83, 88, 128].

On the other side, the ones that uses the height function to define dimers configurations

claim the consistency of the the c = 1 description [80, 89, 129]. Due to the appearance of

the Temperly-Lieb algebra with zero loop fugacity in the formulation of the transfer matrix

of dimers on the square lattice [76], it has been observed a connection with critical dense

polymers, which is a logarithmic field theory [130], and this reinforces the logarithmic in-

terpretation. The strong argument in favour of the second alternative is the proof that the

fluctuations of the height functions are precisely described in the scaling limit by a massless

free scalar field which is consistent with c = 1. Studies about the correlation functions in
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the dimer model support the dual interpretation [131]. Using the Lieb’s transfer matrix ap-

proach, Morin-Duchesne and others [87], present further evidence in favour of the c = −2

description of the close-packed planar dimer model. Their conclusion is not definitive yet,

since it doesn’t exclude that a transfer matrix built upon different degrees of freedom may

bring to a conformal description consistent with c = 1. More recently, Izmailian [90] pub-

lished a work where finite-size corrections to the critical free energy and boundary effects

have been analyzed for the dimer model on a square lattice under free, periodical, toroidal,

Möbius and Klein bottle boundary conditions. In this paper they compute the exact asymp-

totic expansion of the free energy and they found that there is a dependance on the type of

boundaries as well as the parity of the number of lattice sites along the lattice axes: such

peculiar behaviour can be fully understood in the framework of the c = −2 universality

class. In our paper about dimers with periodic boundary conditions [132], we provide fur-

ther proof that dimers can be classified unambiguously as a logarithmic CFT with central

charge c = −2.





Chapter 2

One-Dimensional Sums and Finitized
Characters of 2 × 2 Fused RSOS Models

The nonunitary n × n fused Forrester-Baxter RSOS(m, m′) models are described, in the continuum

scaling limit, by the minimal models M(M, M′, n) constructed as the higher-level conformal cosets

(A
(1)
1 )k ⊗ (A

(1)
1 )n/(A

(1)
1 )k+n at integer fusion level n ≥ 1 and fractional level k = nM/(M′−M)− 2

with (M, M′) =
(
nm − (n−1)m′, m′). These results rely on Yang-Baxter integrability and are valid

in Regime III for models determined by the crossing parameter λ = (m′−m)π/m′ in the interval

0 < λ < π/n. Combinatorially, Baxter’s one-dimensional sums generate the finitized branching

functions as weighted walks on the Am′−1 Dynkin diagram. The ground state walks terminate within

shaded n-bands, consisting of n contiguous shaded 1-bands. The shaded 1-bands occur between heights

(ρ, ρ + 1) where ρ = ρ(r) =
⌊

rm′
m

⌋
, r − 1, 2, . . . , m − 1. These results do not extend to the interval

π/n < λ < π since, for these models, there are no shaded n bands to support the ground states. Here

we consider the 2 × 2 RSOS(m, m′) models in the interval π
2 < λ < π and investigate the associated

one-dimensional sums. In this interval, we verify that the one-dimensional sums produce new finitized

Virasoro characters ch
(N)
r,s (q) of the minimal models M(m, m′, 1) with m′ > 2m. We further conjecture

finitized bosonic forms and check that these agree with the ground state one-dimensional sums out to

system sizes N = 12. The 2 × 2 RSOS(m, m′) models thus realize new Yang-Baxter integrable models

in the universality classes of the minimal models M(m, m′, 1). For the series M(m, 2m + 1, 1) with

m ≥ 2, the spin-1 one-dimensional sums were previously analysed by Jacob and Mathieu without the

underlying Yang-Baxter structure. Finitized Kac characters χ
m,m′;(N)
r,s (q) for the logarithmic minimal

models LM(p, p′, 1) are also obtained for p′ ≥ 2p by taking the logarithmic limit m, m′ → ∞ with

m′/m → p′/p+.

51
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2.1 Introduction

The RSOS(m, m′) lattice models [50, 54] are Yang-Baxter integrable [31] both at criticality

and off-criticality. In the continuum scaling limit, the off-critical RSOS(m, m′) lattice models

realize the integrable ϕ1,3 thermally perturbed minimal models of Zamolodchikov [133–

135]. Further Yang-Baxter integrable models, denoted by RSOS(m, m′)n×n, are constructed

by using fusion [109] to build face weights from n × n blocks of elementary face weights of

the RSOS(m, m′) lattice models. On the CFT side, the related minimal models M(M, M′, n)

are constructed [136] as the higher-level Goddard-Kent-Olive (GKO) cosets

COSET(k, n) :
(A

(1)
1 )k ⊕ (A

(1)
1 )n

(A
(1)
1 )k+n

, k =
nM

M′ − M
− 2, gcd

(M′ − M

n
, M′

)
(2.1.1)

where n = 1, 2, 3, . . . is an integer fusion level and k is a fractional fusion level. The central

charges of these coset CFTs are given by

c = ck + cn − ck+n =
3kn(k + n + 4)

(k + 2)(n + 2)(k + n + 2)
, ck =

3k

k + 2
(2.1.2)

where ck is the central charge of the affine current algebra (A
(1)
1 )k and M(m, m′, 1) ≡

M(m, m′). Recently, it was argued [118] that the minimal cosets M(M, M′, n) are given

by the continuum scaling limit of the RSOS(m, m′)n×n lattice models with

(M, M′) = (nm − (n−1)m′, m′), nm > (n−1)m′ (2.1.3)

The extended family of RSOS lattice models and their related minimal CFTs, particularly

the unitary theories (M, M′) = (m′−n, m′), have been extensively studied and form a cor-

nerstone of our understanding of statistical mechanics and its interrelation with conformal

and quantum field theory.

Continuing the investigation initiated in [118] we address the question of what can

happen if nm < (n−1)m′. In these cases, it was argued in [118] that the structure of the

RSOS lattice models lacks the required “shaded n-bands” needed to support the ground

states of the level-n coset CFTs. The expectation is that the continuum scaling limit of
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these RSOS theories therefore defaults to a level-n′ coset CFT with n′ < n. Here we use

the one-dimensional sums [31, 55, 56] associated with Baxter’s off-critical Corner Transfer

Matrices (CTMs) to argue that, at least for n = 2 and m′ > 2m, the continuum scaling limit

of the RSOS(m, m′)2×2 lattice models is given by the level n′ = 1 coset CFTs M(m, m′).

Essentially, our arguments are based on Physical Combinatorics [59, 60, 105, 137–146].

The layout of this chapter is as follows. In Section 2.2.1, we introduce the RSOS(m, m′)

lattice models of Forrester and Baxter. From the known elliptic face weights for the n × n

fused models for n = 1, 2, 3 we extract the local energies with a suitable choice of gauge.

We also set up Baxter’s one-dimensional sums and discuss the ground states for n = 2 and

m′ > 2m. In Section 2.3, we consider the sequence m′ = 2m + 1 with n = 2. For these cases,

we show that the one-dimensional sums agree with those of Jacob and Mathieu [139] based

on half-integer RSOS paths. The simplest models in this sequence, namely RSOS(2, 5) and

RSOS(3, 7), are analyzed. The conformal data of the nonunitary minimal models M(m, m′)

is presented in Section 2.4. In particular, for m′ > 2m, we conjecture bosonic forms for the

RSOS(m, m′)2×2 finitized characters. For modest system sizes N, these agree with the one-

dimensional sums and give the standard Virasoro characters of nonunitary minimal model

M(m, m′) in the limit N → ∞. Taking the logarithmic limit leads to conjectured bosonic

forms for the the finitized characters for the logarithmic minimal models LM(p, p′)2×2

with p′ ≥ 2p. We finish with some concluding remarks. We finish with some conjectures

for the case of n > 2.

2.2 Forrester-Baxter RSOS(m, m′) Models

2.2.1 RSOS(m, m′) lattice models

The RSOS(m, m′) lattice model is a Restricted Solid-On-Solid (RSOS) model [50,54] defined

on a square lattice with heights a = 1, 2, . . . , m′ − 1 restricted so that nearest neighbour

heights differ by ±1. The heights thus live on the Am′−1 Dynkin diagram. The nonzero

Boltzmann face weights are
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W
(

a ± 1 a
a a ∓ 1

∣∣∣u
)
=

a a∓1

aa±1

u = s(λ − u) (2.2.1a)

W
(

a a ± 1
a ∓ 1 a

∣∣∣u
)
=

a∓1 a

a±1a

u = − ga±1

ga∓1

s((a ± 1)λ)

s(aλ)
s(u) (2.2.1b)

W
(

a a ± 1
a ± 1 a

∣∣∣u
)
=

a±1 a

a±1a

u =
s(aλ ± u)

s(aλ)
(2.2.1c)

where s(u) = ϑ1(u, t)/ϑ1(λ, t) is a quotient of the standard elliptic theta functions [147]

ϑ1(u, t) = 2t1/4 sin u
∞

∏
n=1

(1 − 2t2n cos 2u + t4n)(1 − t2n), 0 < u < λ, 0 < t < 1

(2.2.2)

u is the spectral parameter and ga are arbitrary gauge factors. Unless stated otherwise, we

work in the gauge ga = 1. The elliptic nome t = e−ε is a temperature-like variable, with

t2 measuring the departure from criticality corresponding to the ϕ1,3 integrable perturba-

tion [133–135]. The crossing parameter is

λ =
(m′ − m)π

m′ , 2 ≤ m < m′, m, m′ coprime (2.2.3)

The relevant properties of the elliptic functions are given in Appendix A.1. The restrictions

on u and t mean that we are working in Regime III of [50, 54].

It was shown in [50, 54] that the off-critical face weights (2.2.1) satisfy the Yang-Baxter

equations. The RSOS(m, m′) lattice models are therefore exactly solvable. At the critical

point t = 0, the Boltzmann face weights reduce to trigonometric functions. The algebraic

structure of the solution to the Yang-Baxter equation for the critical RSOS(m, m′)2×2 models

is discussed in Appendix A.2.



2.2 Forrester-Baxter RSOS(m, m′) Models 55

2.2.2 RSOS(m, m′)2×2 face weights

The normalized 2 × 2 fused RSOS are

W2,2
(

d c
a b

∣∣∣u
)
=

1

η2,2(u) u−λ u

u+λu

a b

cd

×

×

η2,2(u) = s(2λ)s(u)s(u − λ) (2.2.4)

The black dots indicate sums over all allowed heights at the site. The crosses indicate that

the weight is independent of the allowed heights on these sites. The fused weights all

have a common factor η2,2(u) which is removed so that the normalized weights are entire

functions of u.

The explicit formulas for the 19 normalised weights are

W2,2
(

a ± 2 a
a a ∓ 2

∣∣∣u
)
=

s(λ − u)s(2λ − u)

s(2λ)
(2.2.5a)

W2,2
(

a a
a a ± 2

∣∣∣u
)
= W2,2

(
a ± 2 a

a a

∣∣∣u
)
=

s(λ − u)s((a ± 1)λ ∓ u)

s((a ± 1)λ)
(2.2.5b)

W2,2
(

a a
a ± 2 a

∣∣∣u
)
= − s((a ∓ 1)λ)s(u)s(aλ ± u)

s(2λ)s(aλ)s((a ± 1)λ)
(2.2.5c)

W2,2
(

a a ± 2
a a

∣∣∣u
)
= − s(2λ)s((a ± 2)λ)s(u)s(aλ ± u)

s((a − 1)λ)s((a + 1)λ)
(2.2.5d)

W2,2
(

a a ∓ 2
a ± 2 a

∣∣∣u
)
=

s((a ∓ 2)λ)s((a ∓ 1)λ)s(u)s(λ + u)

s(2λ)s(aλ)s((a ± 1)λ)
(2.2.5e)

W2,2
(

a a ± 2
a ± 2 a

∣∣∣u
)
=

s(aλ ± u)s((a ± 1)λ ± u)

s(aλ)s((a ± 1)λ)
(2.2.5f)

W2,2
(

a a ± 2
a a ± 2

∣∣∣u
)
= W2,2

(
a ± 2 a ± 2

a a

∣∣∣u
)
=

s((a ± 3)λ)s(u)s(u − λ)

s(2λ)s((a ± 1)λ)
(2.2.5g)

W2,2
(

a a
a a

∣∣∣u
)
=

s(aλ ± u)s((a ± 1)λ ∓ u)

s(aλ)s((a ± 1)λ)
+

s((a ± 1)λ)s((a ∓ 2)λ)s(u)s(u − λ)

s(2λ)s(aλ)s((a ∓ 1)λ)

(2.2.5h)

In contrast to the other equations, in the last equation, the choice of upper or lower signs

gives two equivalent expressions for the same weight.
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2.2.3 RSOS(m, m′)2×2 paths and shaded bands

A 2 × 2 fused RSOS lattice path σ = {σ0, σ1, . . . , σN , σN+1} is defined as a sequence of

integer heights σj ∈ Am′−1, j = 0, 1, . . . , N + 1 which satisfy the same adjacency rules

as neighbouring heights on the corners of the 2 × 2 fused face weights. Explicitly, these

adjacency conditions are

σj+1 − σj = 0,±2, σj+1 + σj = 4, 6, . . . , 2m′ − 4, j = 0, 1, 2, . . . , N (2.2.6)

The boundary conditions are fixed by

(σ0, σN , σN+1) = (s, ρ, ρ′), ρ′ − ρ = 0,±2 (2.2.7)

The 2 × 2 fused RSOS lattice paths are used to define Baxter’s one-dimensional configura-

tional sum in Section 2.2.5.

The 2 × 2 fused RSOS lattice paths on a square lattice are interpreted as (N+1)-step

walks that start at height s and then take N steps, respecting the 2 × 2 adjacency condition,

until height ρ is reached. The last step is from height ρ to height ρ′. Each step consists of

staying at the same height or moving up or down by 2 in height. Since the heights always

change by an even number, paths have a definite parity — the heights are either all odd or

all even. An example of such a path, represented as a walk on the Am′−1 diagram, is given

in Figure 2.1. In this figure some bands are shaded as we now explain.

Let us define the sequence

ρ = ρ(r) =
⌊

rm′
m

⌋
, r = 1, 2, 3, . . . , m − 1 (2.2.8)

Following [105], we shade the bands in walk diagrams (such as Figure 2.1) between the

heights ρ(r) and ρ(r) + 1 for r = 1, 2, . . . , m − 1. The shaded and unshaded bands inter-

change under the duality m ↔ m′. An n-band consists of n contiguous bands, which can be

all shaded, all unshaded or mixed. An n-band is called a shaded n-band if all its 1-bands

are shaded. An n-band is called an unshaded n-band if all its 1-bands are unshaded. In
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1
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0 1 2 3 4 5 6 7 8

r = 1

r = 2

r = 3

r = 4

Figure 2.1: An example path σ = {3, 5, 7, 5, 5, 3, 5, 3, 3} in model (m, m′) = (5, 13) with
boundary conditions (s, ρ, ρ′) = (3, 3, 3) and N = 7 steps from s = 3 to ρ = 3. The shaded
1-bands are labelled by r = 1, 2, 3, . . . from the bottom.

[118] it is shown that, for 0 < λ <
π
n , the number of shaded n-bands is

#shaded n-bands := M − 1 =





nm − (n − 1)m′ − 1, 0 < λ < π
n

0, π
n < λ < π

(2.2.9)

For π
n < λ < π there are no shaded n-bands. In the unitary cases, with λ = π

m′ and

m = m′ − 1, all of the 1-bands are shaded. For nonunitary cases, with 2 ≤ m < m′ − 1,

there are both shaded and unshaded bands.

For the case of π
2 < λ < π of primary interest here, we note that there are only shaded 1-

bands and no shaded n-bands for n > 1. The shaded 1-bands are separated by contiguous

unshaded 1-bands as in Figure 2.1. We also note that s and ρ have the same parity. For later

use, it is convenient to consider the union of the two sequences ρ(r) and ρ(r) + 1 and to

separate these into the union of two new sequences ρ0(r) and ρ1(r) consisting of the even

and the odd members respectively. For the example in Figure 2.1, the two new sequences
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are

ρ0(r) = 2, 6, 8, 10, ρ1(r) = 3, 5, 7, 11, r = 1, 2, 3, 4 (2.2.10)

It follows that, if we wish to end a 2 × 2 fused RSOS lattice path on the edge of a shaded

1-band, we must have

ρ = ρ′ = ρµ(r), µ = s mod 2 (2.2.11)

for some r = 1, 2, . . . , m − 1.

2.2.4 Local energy functions

The local energy functions H(d, a, b) are extracted from the low temperature limit t =

e−ε → 1 of the Boltzmann weights (2.2.5) in a suitable normalization. Explicitly, with

gauge factors ga,

Wn,n
(

d c
a b

∣∣∣u
)
∼ gagc

gbgd
wH(d,a,b)δa,c, w = e−2πu/ε, ε → 0, u → 0, u

ε fixed (2.2.12)

In the following subsections, we consider the cases n = 1, 2, 3 separately. In each case, the

local energies possess the reflection and height reversal symmetries

H(d, a, b) = H(b, a, d) = H(m′−d, m′−a, m′−b) (2.2.13)

These are inherited from the properties of the Boltzmann face weights.

1 × 1 local energies

Working in the gauge ga = 1 for n = 1, the local energy functions obtained by Forrester-

Baxter [54] are

HFB(a, a ∓ 1, a) = ±
⌊

aλ
π

⌋
(2.2.14a)

HFB(a±1, a, a∓1) = 1
2 (2.2.14b)
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= = 0 = = 1
2

= = 1
2 = = 0

= = 1
4 = = 1

4

Figure 2.2: The gauged local energies of the 1 × 1 RSOS models in the interval 0 < λ < π.
In this gauge, the local energies take the values 0, 1

4 , 1
2 .

Changing to a more suitable gauge [118], the local energies for the 1 × 1 models are given

by

H(a + 1, a, a + 1) = 1
2(ha+1 − ha) (2.2.15a)

H(a − 1, a, a − 1) = 1
2(ha − ha−1) (2.2.15b)

H(a ± 1, a, a ∓ 1) = 1
2 − 1

4(ha+1 − ha−1) (2.2.15c)

These are all positive with values 0, 1
4 , 1

2 as shown in Figure 2.2. The sequences

ha =
⌊ a(m′ − m)

m′
⌋
=
⌊ aλ

π

⌋
(2.2.16)

count the number of unshaded 1-bands below the height a. The value of ha remains un-

changed within any shaded n-band. Observing the duality

m ↔ m′−m, λ ↔ π−λ, shaded 1-bands ↔ unshaded 1-bands, ha ↔ a−1−ha

(2.2.17)

it follows that the n = 1 local energies satisfy

Hm,m′,1(a, b, c) = 1
2 − Hm′−m,m′,1(a, b, c) (2.2.18)
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2 × 2 local energies

To obtain the low temperature limit of the 2 × 2 fuesd RSOS face weights, it is convenient

to first perform a conjugate modulus transformation

ϑ1(u, e−ε) = ie−ε/4e−iuE(e2iu, e−2ε) =

√
π

ε
e−(u−π/2)2/εE(e−2πu/ε, e−2π2/ε) (2.2.19)

from nome t = e−ε to the conjugate nome p = e−π2/ε where

E(w) = E(w, p) =
∞

∑
k=−∞

(−1)n pn(n−1)/2wn =
∞

∏
n=1

(1 − pn−1w)(1 − pnw−1)(1 − pn) (2.2.20)

We introduce the variable x = e−2πλ/ε = pλ/π so that p = e−2π2/ε = xπ/λ. The diagonal

fused weights then become

W2,2
(

a ± 2 a
a a ∓ 2

)
=

g2
a

ga−2ga+2

wE(x2w−1)E(w−1x)

E(x2)E(x)
(2.2.21a)

W2,2
(

a a
a a ± 2

)
= W2,2

(
a ± 2 a

a a

)
=

ga

ga±2

E(xw−1)E(xa±1w∓1)

E(x)E(xa±1)
(2.2.21b)

W2,2
(

a a ± 2
a ± 2 a

)
=

g2
a±2

g2
a

E(xaw±1)E(xa±1w±1)

E(xa)E(xa±1)
(2.2.21c)

W2,2
(

a a
a a

)
=

xwE(w−1)E(xw−1)E(xa−1)E(xa+2)

E(x)E(x2)E(xa)E(xa+1)
+

E(xa−1)E(xaw−1)

E(xa−1)E(xa)
(2.2.21d)

where the gauge factors ga are arbitrary.

The low-temperature limit is now given by x → 0 or p → 0 with w fixed. The E-

functions satisfy the following properties

E(w, p) = E(pw−1, p) = −wE(w−1, p) (2.2.22a)

E(pnw, p) = p−n(n−1)/2(−w)−nE(w, p) (2.2.22b)

lim
p→0

E(paw, pb) =





1, 0 < a < b

1 − w, a = 0

(2.2.22c)
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where n is an integer. Another useful property is

lim
x→0

E(xaw−1)

xa
= w⌊aλ/π⌋ (2.2.23)

These relations are used to derive the low temperature limit separately for the two intervals

0 < λ < π
2 and π

2 < λ < π.

Fixing the choice of gauge ga = wa(aλ−π)/4π and removing the overall scale factor

exp(−2u(λ − u)/ε), the local energy functions are

0 < λ < π
2 : H(a ± 2, a, a ∓ 2) = 1 (2.2.24a)

H(a ± 2, a, a) = H(a, a, a ± 2) = 1
2 ± ha±1 (2.2.24b)

H(a, a ± 2, a) = ∓
(
ha + ha±1

)
(2.2.24c)

H(a, a, a) =





0, ha−1 = ha = ha+1

1, otherwise
(2.2.24d)

π
2 < λ < π : H(a ± 2, a, a ∓ 2) = 2 (2.2.25a)

H(a ± 2, a, a) = H(a, a, a ± 2) = 1
2 ± ha±1 (2.2.25b)

H(a, a ± 2, a) = ∓(ha + ha±1) (2.2.25c)

H(a, a, a) =





0, ha−1 = ha or ha = ha+1

1, otherwise
(2.2.25d)

The above expressions for the local energy functions take both positive and negative

values. This is not desirable because we would like nonnegative local energy functions. To

achieve this we use another gauge g′a = wGa such that the new local energies H′(a, b, c) are

H′(a, b, c) = H(a, b, c) + 2Gb − Ga − Gc ≥ 0 (2.2.26)
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A gauge transformation that satisfies this is

Ga =





h1 + h3 + . . . ha−1, a even

h2 + h4 + . . . ha−1, a odd

Ga+1 − Ga−1 = ha (2.2.27)

This transformation is performed more neatly by defining G(a, b) = Gb − Ga so that

H′(a, b, c) = H(a, b, c) + G(a, b)− G(b, c) ≥ 0, G(a, b) = 1
2(b − a)h a+b

2
(2.2.28)

The new expressions for local energies in this gauge, omitting the prime, are

0 < λ <
π
2 : H(a ± 2, a, a ∓ 2) = 1 − (ha+1 − ha−1) (2.2.29a)

H(a ± 2, a, a) = H(a, a, a ± 2) = 1
2 (2.2.29b)

H(a, a ± 2, a) = ±
(
ha±1 − ha

)
(2.2.29c)

H(a, a, a) =





0, ha−1 = ha = ha+1

1, otherwise
(2.2.29d)

π
2 < λ < π : H(a ± 2, a, a ∓ 2) = 2 − (ha+1 − ha−1) (2.2.30a)

H(a ± 2, a, a) = H(a, a, a ± 2) = 1
2 (2.2.30b)

H(a, a ± 2, a) = ±(ha±1 − ha) (2.2.30c)

H(a, a, a) =





0, ha−1 = ha or ha = ha+1

1, otherwise
(2.2.30d)

These are shown in Figures 2.3 and 2.4.

The local energy functions are now nonnegative H(a, b, c) ≥ 0 and take only the values

0, 1
2 , 1, which is consistent with a spin-1 interpretation. The local energies only depend on
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= = = = = = = = 0

= = = = = = = = 1

= = = = = =

= = = = = = 1
2

= = = = 0 = = 1

= 0 = = 1

Figure 2.3: Local energies for 2 × 2 fused RSOS models in the interval 0 < λ <
π
2 .
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= = = = = = = = 0

= = = = = = = = 1

= = = = = =

= = = = = = 1
2

= = = = 1 = = 0

= 1 = = 0

Figure 2.4: Local energies for 2 × 2 fused RSOS models in the interval π
2 < λ < π.
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the heights a through the shading of the 1-bands since they depend only on the differences

δa = ha+1 − ha =





0, the 1-band (a, a + 1) is shaded

1, the 1-band (a, a + 1) is unshaded

(2.2.31)

The shaded and unshaded 1-bands for the two intervals 0 < λ <
π
2 and π

2 < λ < π

are interchanged under duality (2.2.17) with δa ↔ 1−δa. For 0 < λ <
π
2 , there are no

unshaded 2-bands and the local energies are shown in Figure 2.3. By contrast, in the dual

interval π
2 < λ < π, there are no shaded 2-bands and the local energies are shown in

Figure 2.4. Under duality (2.2.17), the local energies are related by

Hm,m′,2(a, b, c) = 1 − Hm′−m,m′,2(a, b, c) (2.2.32)

3 × 3 local energies

Starting with the 3 × 3 local energies for 0 < λ <
π
3 in [118], the local energies for 2π

3 <

λ < π can be obtained by applying, for n = 3, the conjectured duality relation

Hm,m′
(a, b, c) = n

2 − Hm′−m,m′
(a, b, c), n = 1, 2, 3, . . . (2.2.33)

2.2.5 Energy statistic and one-dimensional sums

Following Baxter [31, 55, 56], the energy statistic of RSOS paths is

E(σ) =
N

∑
j=1

jH(σj−1, σj, σj+1) (2.2.34)

The associated one-dimensional sums are defined as

X
(N)
abc (q) = ∑

σ

qE(σ), σ0 = a, σN = b, σN+1 = c (2.2.35)



66 One-Dimensional Sums and Finitized Characters of 2 × 2 Fused RSOS Models

where the sum is over all RSOS paths σ = {σ0, σ1, . . . , σN , σN+1} at the given fusion level n.

These sums satisfy the recursion

X
(N)
abc (q) = ∑

d∼b

qNH(d,b,c)X
(N−1)
adb (q) (2.2.36)

subject to the boundary conditions

X
(N)
a0c (q) = X

(N)
am′c(q) = 0, X

(0)
abc(q) = δa,b (2.2.37)

where d ∼ b denotes that the heights d and b are adjacent at fusion level n.

2.2.6 Ground states and sectors for n = 2 and m′ > 2m

For the interval 0 < λ <
π
2 , there are shaded 2-bands and the associated ground states

relate to the superconformal minimal models in the Neveu-Schwarz and Ramond sectors

as discussed in [118]. In contrast, for π
2 < λ < π, there are no shaded 2-bands only

shaded 1-bands. So, for these models, the superconformal groundstates are not supported

and we find that the ground states are associated to shaded 1-bands. A comparison of

ground states in the two different intervals is shown in Figure 2.5. Since the local energies

are nonnegative H(a, b, c) ≥ 0, any one-dimensional RSOS path σ with E(σ) = 0 is a

ground state. The only RSOS paths with energy E(σ) = 0 are the 2(m − 1) flat paths

σ = {ρ, ρ, . . . , ρ} with ρ = ρ0(r) or ρ = ρ1(r) for some r.

Generically, for suitable choices of (a, b, c), the one-dimensional sums (2.2.35) are inter-

preted as finitized conformal characters

χ
(N)
∆

(q) = q−c/24+∆X
(N)
abc (q) = q−c/24+∆ ∑

σ

qE(σ) (2.2.38)

where E(σ) are conformal energies of the infinite system. These are the spectrum generat-

ing functions for a finite truncated set of conformal energy levels in a given sector labelled

by (a, b, c). The connection with characters is made by choosing the last step (b, c) of the

one-dimensional walks to agree with a ground state RSOS path labelled by r. Restricting

to models with π
2 < λ < π, the precise connection between (a, b, c) and the conformal Kac
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(a) Flat and alternating ground
states for 0 < λ < π/2.

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6

ρ0(1)
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(b) Flat ground states for π/2 < λ < π.

Figure 2.5: A comparison of ground state RSOS paths for dual RSOS(m, m′)2×2 models with
(a) (m, m′) = (7, 11) and (b) (m, m′) = (4, 11): (a) For (m, m′) = (7, 11), the shaded 1-bands
occur at heights

⌊
11r
7

⌋
= 1, 3, 4, 6, 7, 9 for r = 1, 2, . . . , 6. The 6 ground state (shaded) 2-bands

occur centered at heights a = 4, 7. The ground states are either flat of the form {a, a, . . . , a}
or alternating of the form {a ± 1, a ∓ 1, a ± 1, a ∓ 1, . . .}. (b) For (m, m′) = (4, 11), there are
no shaded 2-bands. The ground state (shaded) 1-bands occur at heights

⌊
11r
4

⌋
= 2, 5, 8 for

r = 1, 2, 3. The 6 ground states are flat of the form {a, a, . . . , a} with a belonging to the even
or odd sequences ρ0(r) = 2, 6, 8 or ρ1(r) = 3, 5, 9. (a) Flat and alternating ground states for
0 < λ < π/2. (b) Flat ground states for π/2 < λ < π.

quantum numbers (r, s) is given by

a = s, b = c = ρµ(r), µ = s mod 2 (2.2.39)

2.3 RSOS(m, 2m + 1)2×2 One-Dimensional Sums

In [139,144–146], a study has been carried out of the one-dimensional sums associated with

a particular choice of local energy functions for RSOS lattice paths with half-integer steps.

We call these half-integer RSOS paths JM paths. In these papers, the local energy functions

of JM paths were not related to integrable lattice models. However, in the thermodynamic

limit, these one-dimensional sums quite remarkably reproduce the Virasoro characters of
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the sequences of nonunitary minimal models M(m, 2m + 1) with m = 2, 3, 4, . . . . In this

section, we show that that there exists an energy-preserving bijection between the JM paths

and RSOS(m, 2m + 1)2×2 paths. More precisely, we present a one-to-one mapping of RSOS

spin-1 paths into equivalent spin-1
2 JM paths with equivalent local energies. We conclude

that the JM paths are described by the RSOS(m, 2m + 1)2×2 Yang-Baxter integrable lat-

tice models. This explains the remarkable observed properties of the JM one-dimensional

sums.

We observe that when m′ = 2m + 1, the sequence of integers (2.2.8) defining the shaded

bands simplifies to

ρ =
⌊

r(2m+1)
m

⌋
=
⌊
2r + r

m

⌋
= 2r r = 1, 2, . . . , m − 1 (2.3.1)

This means that every second band starting from the lowest height a = 1 is shaded and

δa =





0 a even

1 a odd

a = 1, . . . , m′ − 2 (2.3.2)

Since the adjacency graph decomposes for the 2 × 2 fused models, it suffices to restrict

a, b, c to be odd in these cases.

In the next two subsections, we consider the two simplest nonunitary RSOS(m, m′)

models with crossing parameter in the interval π
2 < λ < π, namely, the RSOS(2,5) (Yang-

Lee model) and RSOS(3,7). The heights a = 1, 2, . . . ..., m′ − 1 live on the Am′−1 Dynkin di-

agrams which possess a Z2 symmetry. Specifically, the Boltzmann face weights are invari-

ant under the height reversal σ ↔ m′ − σ. As a consequence of this symmetry the Dynkin

diagrams, which encode the adjacency rules among heights, can be folded into tadpole di-

agrams. Example foldings are shown in Figures 2.6a and 2.6c for the n = 1 adjacency. For

RSOS(2, 5)1×1, the nodes of the tadpole are interpreted as particles • or vacancies ◦ with

nearest neighbour particle exclusion. Specifically, a particle • = 1 = 4 is allowed next to a

vacancy ◦ = 2 = 3 but not allowed next to another particle. For RSOS(3, 7)1×1, there are

two types of particles • = 1 = 6 and • = 2 = 5 in addition to the vacancy ◦ = 3 = 4. At

fusion level n = 2, the RSOS(2, 5)2×2 model is equivalent to two independent folded copies
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of the original unfused model RSOS(2, 5)1×1 as indicated in Figure 2.6b. The situation is

different for the RSOS(3, 7)2×2 fused model. The new tadpole diagram T
(n=2)
3 , shown in

Figure 2.6d, acquires an additional loop corresponding to the particle ◦ = 3 and ◦ = 4.

2.3.1 RSOS(2, 5)

The Yang-Lee (YL) model [148] is associated with the exactly solvable RSOS(2,5) model. It

is defined on a square lattice and its heights live on a A4 Dynkin diagram. There is a single

shaded 1-band between heights 2 and 3, and ground state configurations are alternating

paths inside it as shown in Figure 2.7a. Identifying the heights related by this Z2 symmetry

and using the notation • = 1, 4, ◦ = 2, 3, the face weights (2.2.1) with ga = 1 become

W
(◦ ◦
◦ •
∣∣∣u
)
= W

(• ◦
◦ ◦
∣∣∣u
)
= s(λ − u) (2.3.3a)

W
(◦ ◦
• ◦
∣∣∣u
)
= −s(u) (2.3.3b)

W
(◦ •
◦ ◦
∣∣∣u
)
= − s(u)

s(2λ)
(2.3.3c)

W
(◦ •
• ◦
∣∣∣u
)
=

s(2λ − u)

s(2λ)
(2.3.3d)

W
(• ◦
◦ •
∣∣∣u
)
= s(λ + u) (2.3.3e)

W
(◦ ◦
◦ ◦
∣∣∣u
)
=

s(2λ + u)

s(2λ)
(2.3.3f)

In particle notation for RSOS(2, 5), • = 1 is used for an occupied site and ◦ = 0 for an

unoccupied site. In this notation, the adjacency graph is the tadpole T2. The local energy

functions can be taken to be

H(a, b, c) =





1, (a, b, c) = (◦, •, ◦)

0, other allowed triples

(2.3.4)

Implementing the 2 × 2 fusion as in (2.2.4) with a gauge yields the following face
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Z2

1

2

3

4

1=4

2=3

(a) RSOS(2, 5)1×1: folding of the A4 = A
(n=1)
4 and

the corresponding T2 tadpole.

1

3

4

2 =
1

3

4

2

⊗

(b) RSOS(2, 5)2×2: decomposition of A
(n=2)
4 into the

tensor product of two T2 tadpoles.

Z2

1

2

3

4

5

6

1=6

2=5

3=4

(c) RSOS(3, 7)1×1: folding of the A6 = A
(n=1)
6 and

the corresponding T
(n=1)
3 tadpole.

1

3

5

2

4

6

=

1

3

5

6

4

2

⊗

(d) RSOS(3, 7)2×2: decomposition of A
(n=2)
6 into the

tensor product of two T
(n=2)
3 tadpoles.

Figure 2.6: The RSOS(2, 5) and RSOS(3, 7) lattice models are identified with tadpole
diagrams which encode the adjacency rules between heights. The RSOS(2, 5)1×1 (a)
and RSOS(2, 5)2×2 (b) models share the same tadpole diagram. This results from the
fact that the 2 × 2 lattice fusion gives back the original lattice model. In contrast, the
RSOS(3, 7)1×1(c) and RSOS(3, 7)2×2 (d) models show different tadpole diagrams because
the 2 × 2 lattice fusion produces a new lattice model. (a) RSOS(2, 5)1×1: folding of the

A4 = A
(n=1)
4 and the corresponding T

(n=1)
2 tadpole. (b) RSOS(2, 5)2×2: decomposition of

A
(n=2)
4 into the tensor product of two T

(n=2)
2 tadpoles. (c) RSOS(3, 7)1×1: folding of the

A6 = A
(n=1)
6 and the corresponding T

(n=1)
3 tadpole. (d) RSOS(3, 7)2×2: decomposition of

A
(n=2)
6 into the tensor product of two T

(n=2)
3 tadpoles.
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weights for the RSOS(2,5)2×2 model

W2,2
(◦ ◦
◦ •
∣∣∣u
)
= W2,2

(• ◦
◦ ◦
∣∣∣u
)
=

s(λ − u)s(2λ + u)

s(2λ)
(2.3.5a)

W2,2
(◦ ◦
• ◦
∣∣∣u
)
= − g0

g1

s(u)s(2λ + u)

s(2λ)3
(2.3.5b)

W2,2
(◦ •
◦ ◦
∣∣∣u
)
= − g1

g0
s(u)s(2λ + u) (2.3.5c)

W2,2
(◦ •
• ◦
∣∣∣u
)
=

s(2λ − u)s(2λ + u)

s(2λ)2
(2.3.5d)

W2,2
(• ◦
◦ •
∣∣∣u
)
=

s(λ + u)s(2λ + u)

s(2λ)
(2.3.5e)

W2,2
(◦ ◦
◦ ◦
∣∣∣u
)
=

s(2λ + u)2

s(2λ)2
(2.3.5f)

Fixing the gauge to be g0/g1 = s(2λ)2 and removing the overall scale factor s(2λ+ u)/s(2λ),

these weights coincide with the 1 × 1 weights above (2.3.7). Consequently RSOS(2, 5)1×1

and RSOS(2, 5)2×2 coincide as lattice models.

The new local energies for the 2 × 2 fused model are

H(◦, •, ◦) = H(◦, ◦, ◦) = 0, H(◦, ◦, •) = H(•, ◦, ◦) = 1
2 , H(•, ◦, •) = 1 (2.3.6)

The ground state configurations for the fused model are flat paths corresponding to the

lower and upper height of the single shaded 1-band as seen in Figure 2.7b.

0 1 2 3 4 5 6
1

2

3

4

•

•

(a) RSOS(2, 5)1×1 has a single
shaded 1-band and the 2 ground
states corresponds to alternating
paths inside it.

0 1 2 3 4 5 6

ρ0(1)

ρ1(1)

1

2

3

4

•

•

(b) RSOS(2, 5)2×2 has a single
shaded 1-band and 2 flat ground
states corresponding to the lower
and upper height of this band.

Figure 2.7: Ground state configurations of RSOS(2, 5)1×1 and RSOS(2, 5)2×2 lattice mod-
els.(a) RSOS(2, 5)1×1 has a single shaded 1-band and the 2 ground states corresponds to
alternating paths inside it. (b) RSOS(2, 5)2×2 has a single shaded 1-band and 2 flat ground
states corresponding to the lower and upper height of this band.
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2.3.2 RSOS(3, 7)

The second simplest example of nonunitary RSOS model is RSOS(3,7), with heights living

on the A6 Dynkin diagram. Identifying the heights related by the Z2 symmetry and using

the notation • = 1, 6, ◦ = 3, 4, • = 5, 2, the face weights (2.2.1) with ga = 1 become

W
(◦ •
• •
∣∣∣u
)
= W

(• •
• ◦
∣∣∣u
)
= W

(• ◦
◦ ◦
∣∣∣u
)
= W

(◦ ◦
◦ •
∣∣∣u
)
= s(λ − u) (2.3.7a)

W
(• ◦
• •
∣∣∣u
)
= − s(3λ)s(u)

s(2λ)
(2.3.7b)

W
(• •
◦ •
∣∣∣u
)
= − s(u)

s(2λ)
(2.3.7c)

W
(◦ ◦
• ◦
∣∣∣u
)
= −s(u) (2.3.7d)

W
(◦ •
◦ ◦
∣∣∣u
)
= − s(2λ)s(u)

s(3λ)
(2.3.7e)

W
(• •
• •
∣∣∣u
)
=

s(2λ − u)

s(2λ)
(2.3.7f)

W
(• •
• •
∣∣∣u
)
= s(λ + u) (2.3.7g)

W
(◦ •
• ◦
∣∣∣u
)
=

s(3λ − u)

s(3λ)
(2.3.7h)

W
(• ◦
◦ •
∣∣∣u
)
=

s(2λ + u)

s(2λ)
(2.3.7i)

W
(◦ ◦
◦ ◦
∣∣∣u
)
=

s(3λ + u)

s(3λ)
(2.3.7j)

In particle notation • = 1, ◦ = 3 and • = 5 are used for the three different occupation

states. In this notation, the adjacency graph is the tadpole T3. The RSOS(3, 7)1×1 local

energy functions are

H(•, ◦, •) = H(◦, •, ◦) = 0 (2.3.8a)

H(◦, ◦, •) = H(•, ◦, ◦) = H(◦, •, •) = H(•, •, ◦) = 1
4 (2.3.8b)

H(◦, ◦, ◦) = H(•, •, •) = H(•, •, •) = 1
2 (2.3.8c)

There are two shaded 1-bands, one between heights 2 and 3, the other between heights 4

and 5. The ground state configurations are alternating paths inside each shaded 1-band as
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shown in Figure 2.8a.

Implementing the 2 × 2 fusion as in (2.2.4) and allowing gauge factors yields the fol-
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lowing face weights for the RSOS(3,7)2×2 model

W2,2
(• ◦
◦ •
∣∣∣u
)
= W2,2

(• ◦
◦ •
∣∣∣u
)
=

s(λ − u)s(2λ − u)

s(2λ)
(2.3.9a)

W2,2
(◦ ◦
◦ •
∣∣∣u
)
= W2,2

(• ◦
◦ ◦
∣∣∣u
)
=

s(λ − u)s(2λ + u)

s(2λ)
(2.3.9b)

W2,2
(◦ ◦
◦ •
∣∣∣u
)
= W2,2

(• ◦
◦ ◦
∣∣∣u
)
=

s(λ − u)s(3λ + u)

s(3λ)
(2.3.9c)

W2,2
(• •
• ◦
∣∣∣u
)
= W2,2

(◦ •
• •
∣∣∣u
)
=

s(λ − u)s(3λ − u)

s(3λ)
(2.3.9d)

W2,2
(◦ ◦
• ◦
∣∣∣u
)
= − g2

g1

s(u)s(3λ − u)

s(2λ)2
(2.3.9e)

W2,2
(◦ ◦
• ◦
∣∣∣u
)
= − g2

g3

s(u)s(3λ + u)

s(3λ)2
(2.3.9f)

W2,2
(• •
◦ •
∣∣∣u
)
= − g3

g2

s(u)s(2λ + u)

s(2λ)s(3λ)
(2.3.9g)

W2,2
(◦ •
◦ ◦
∣∣∣u
)
= − g1

g2

s(u)s(3λ − u)

s(3λ)
(2.3.9h)

W2,2
(◦ •
◦ ◦
∣∣∣u
)
= − g3

g2

s(u)s(3λ + u)s(2λ)

s(3λ)
(2.3.9i)

W2,2
(• ◦
• •
∣∣∣u
)
= − g2

g3
s(u)s(2λ + u)s(2λ) (2.3.9j)

W2,2
(◦ •
• ◦
∣∣∣u
)
=

g1

g3

s(u)s(λ + u)

s(3λ)2
(2.3.9k)

W2,2
(◦ •
• ◦
∣∣∣u
)
=

g3

g1

s(u)s(λ + u)

s(2λ)
(2.3.9l)

W2,2
(• ◦
◦ •
∣∣∣u
)
=

s(λ + u)s(2λ + u)

s(2λ)
(2.3.9m)

W2,2
(◦ •
• ◦
∣∣∣u
)
=

s(2λ − u)s(3λ − u)

s(2λ)s(3λ)
(2.3.9n)

W2,2
(• ◦
◦ •
∣∣∣u
)
=

s(2λ + u)s(3λ + u)

s(2λ)s(3λ)
(2.3.9o)

W2,2
(◦ •
• ◦
∣∣∣u
)
=

s(3λ + u)s(3λ − u)

s(3λ)2
(2.3.9p)

W2,2
(◦ •
◦ •
∣∣∣u
)
= W2,2

(• •
◦ ◦
∣∣∣u
)
=

g3

g2

s(u)s(u − λ)

s(2λ)s(3λ)
(2.3.9q)

W2,2
(• ◦
• ◦
∣∣∣u
)
= W2,2

(◦ ◦
• •
∣∣∣u
)
=

g2

g3

s(u)s(u − λ)

s(3λ)
(2.3.9r)

W2,2
(◦ ◦
◦ ◦
∣∣∣u
)
=

s(2λ + u)s(3λ − u)

s(2λ)s(3λ)
+

s(2λ)s(u)s(u − λ)

s(3λ)2
(2.3.9s)

W2,2
(• •
• •
∣∣∣u
)
=

s(2λ + u)s(3λ − u)

s(2λ)s(3λ)
(2.3.9t)
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In contrast to the Yang-Lee case, no choice of gauge factors can map the fused weights

onto the unfused ones. This implies that the RSOS(3, 7)1×1 and RSOS(3, 7)2×2 models are

distinct Yang-Baxter integrable lattice models even though we will argue that they lie in

the same universality class.

The local energies for the RSOS(3, 7)2×2 model are

H(•, ◦, •) = H(•, ◦, •) = H(•, ◦, •) = H(◦, •, ◦) = 1 (2.3.10a)

H(•, ◦, ◦) = H(◦, ◦, •) = H(◦, ◦, •) = H(•, ◦, ◦) = H(◦, •, •) = H(•, •, ◦) = 1
2 (2.3.10b)

H(◦, •, ◦) = H(•, ◦, •) = H(◦, ◦, ◦) = H(•, •, •) = 0 (2.3.10c)

The ground state configurations for this model are flat paths corresponding to the lower

and upper height of each shaded 1-band as seen in Figure 2.8b.

0 1 2 3 4 5 6
1

2

3

4

5

6

•

•

(a) RSOS(3, 7)1×1 has two shaded
1-bands and the 4 ground states cor-
responds to alternating paths inside
them.

0 1 2 3 4 5 6

ρ0(1)

ρ1(1)

ρ0(2)

ρ1(2)

1

2

3

4

5

6

•

•

(b) RSOS(3, 7)2×2 has two shaded
1-bands and 4 flat ground states cor-
responding to the lower and upper
height of these bands.

Figure 2.8: Ground state configurations for the 1 × 1 unfused and 2 × 2 fused A6 RSOS
models. (a) RSOS(3, 7)1×1 has two shaded 1-bands and the 4 ground states corresponds to
alternating paths inside them. (b) RSOS(3, 7)2×2 has two shaded 1-bands and 4 flat ground
states corresponding to the lower and upper height of these bands.

2.3.3 RSOS(m, 2m + 1) and JM(m, 2m + 1)

Fix k ∈ N≥1 with k = m − 1. A JM(k + 1, 2k + 3) path [139]

σ = {σ0, σ1
2
, σ1, . . . , σN , σN+ 1

2
}, σj ∈ {1, 3

2 , 2, . . . , k + 1
2 , k + 1} (2.3.11)
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1

2
σ

1 2 3 4 5 6 7 8 . . . . . . N j

(a) JM(2,5) and RSOS(2, 5)2×2 paths with k = 1 and N = 17 integer steps: σ = 1, 2 corresponds to 1 = • and

2 = ◦ in the T
(n=2)
2 tadpole description of RSOS models.

1

2

3

σ

1 2 3 4 5 6 . . .7 8 . . . N j

(b) JM(3,7) and RSOS(3, 7)2×2 paths with k = 2 and N = 17 integer steps: σj = 1, 2, 3 corresponds to 1 = •,

2 = • and 3 = ◦ in the T
(n=2)
3 tadpole description of RSOS models.

Figure 2.9: Two examples of the bijection between JM and RSOS paths. The edges of JM
paths are black while their equivalent in the RSOS description are purple. The shared
path is shown in blue. The bijection between JM and RSOS paths preserves the contour of
the path except at local minima at half-integer heights where two consecutive half-integer
steps in the JM path are replaced with a single horizontal step in the RSOS path. The last
half-integer step of a JM path must be down and we add an additional half-integer up step
shown dashed. The last RSOS step is therefore flat in the tadpole representation. (a) JM(2,5)
and RSOS(2, 5)2×2 paths with k = 1 and N = 7 integer steps: σ = 1, 2 corresponds to 1 = •
and 2 = ◦ in the T

(n=2)
2 tadpole description of RSOS models. (b) JM(3,7) and RSOS(3, 7)2×2

paths with k = 2 and N = 17 integer steps: σ = 1, 2, 3 corresponds to 1 = •, 2 = •, and

3 = ◦ in the T
(n=2)
3 tadpole description of RSOS model.

is then a sequence of heights σj ∈ 1
2N subject to the constraints

σ0, σN ∈ N, σN+ 1
2
= σN − 1

2 , σN = σN+1, σj+ 1
2
− σj = ± 1

2 , j = 0, 1
2 , 1, 3

2 , . . . , N

(2.3.12a)

(j, σj) ∈ N
2 at all local peaks

Examples are shown in Figure 2.9 for k = 1, 2. The JM paths are thus defined on lattices

with half-integer spacing and half-integer heights, while in the RSOS description, only

integer values of steps and heights are considered. Therefore, to map the energy of JM

paths into the local energy functions of the RSOS paths with integer heights, we need to

sum out (decimate) the half odd integer heights.
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The energy of a JM path is given by

E(σ) =
N

∑
j= 1

2 , j∈ 1
2 N

jw(j), w(j) = 1
2

∣∣σj+ 1
2
− σj− 1

2

∣∣ (2.3.13)

Using w(N + 1
2) = 0, this is gauge equivalent to the energy of the corresponding RSOS

path with local energies (2.2.30)

E(σ) =
N+ 1

2

∑
j= 1

2 , j∈ 1
2 N

jw(j) = 1
4 w( 1

2) +
1
2

N

∑
j=1

[
(j− 1

2)w(j− 1
2) + 2jw(j) + (j + 1

2)w(j+ 1
2 )
]

= 1
4 w( 1

2) +
1
2

N

∑
j=1

j
[
w(j− 1

2) + 2w(j) + w(j+ 1
2)
]
+ 1

4

N

∑
j=1

[
w(j+ 1

2)− w(j− 1
2)
]

= 1
2

N

∑
j=1

j
[
w(j− 1

2 ) + 2w(j) + w(j+ 1
2)
]

=
N

∑
j=1

j
[
H̃(σj−1, σj, σj+1)+Gj−1−2Gj+Gj+1]−G0+GN (2.3.14)

Here Gj = g(σj) =
1
4 σj and GN+1 = GN is a suitable gauge such that

H̃(σj−1, σj, σj+1) =
1
2

[
w(j − 1

2) + 2w(j) + w(j + 1
2)
]
− Gj−1 + 2Gj − Gj+1 (2.3.15)

and the constant shift of energy by G0 − GN is irrelevant. Explicitly,

H̃(a ± 1, a, a ∓ 1) = 1 − g(a − 1) + 2g(a) − g(a + 1) = 1 (2.3.16a)

H̃(a + 1, a, a) = H̃(a, a, a + 1) = 3
4 + g(a) − g(a + 1) = 1

2 (2.3.16b)

H̃(a − 1, a, a) = H̃(a, a, a − 1) = 1
4 + g(a) − g(a − 1) = 1

2 (2.3.16c)

H̃(a − 1, a, a − 1) = 1
2 + 2g(a) − 2g(a − 1) = 1 (2.3.16d)

H̃(a + 1, a, a + 1) = 1
2 + 2g(a) − 2g(a + 1) = 0 (2.3.16e)

H̃(a, a, a) = 0 (2.3.16f)

The intermediate half-integer heights a ± 1
2 needed in (2.3.15) are uniquely determined

by the adjacent integer heights. The local energies H̃(ã, b̃, c̃) are related to the local energies
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(2.2.30) by

H̃(ã, b̃, c̃) = 1
2 H(a, b, c), a = 2ã − 1 = 1, 3, 5, . . . , 2k + 1 (2.3.17)

The factor of 1
2 arises because the fused weights leading to (2.3.15) are calculated with

integer fundamental steps rather than the half-integer fundamental steps of the JM paths,

that is, a − b = 0,±2 compared with ã − b̃ = 0,±1.

2.4 Nonunitary Minimal Models M(m, m′)

2.4.1 Conformal data and characters

In the continuum scaling limit, the RSOS lattice models are described by the rational min-

imal models. The central charges of the n = 1 minimal models M(m, m′), with m < m′

and m, m′ coprime, are given by (1.2.20). The conformal weights and associated Virasoro

characters are

∆m,m′
r,s =

(rm′ − sm)2 − (m − m′)2

4mm′ , 1 ≤ r ≤ m − 1, 1 ≤ s ≤ m′ − 1 (2.4.1)

chm,m′
r,s (q) =

q−c/24+∆
m,m′
r,s

(q)∞

∞

∑
k=−∞

[
qk(kmm′+m′r−ms) − q(km+r)(km′+s)

]
(2.4.2)

where the q-factorials are defined by

(q)n =
n

∏
k=1

(1 − qk), (q)∞ =
∞

∏
k=1

(1 − qk) (2.4.3)

The minimal models are unitary if m = m′ − 1 and nonunitary if m < m′ − 1. In this section

we consider the finitized characters of the 2 × 2 fused minimal models with m <
1
2 m′.
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2.4.2 Finitized bosonic characters

From extensive numerics, we find empirically that the normalized finitized characters as-

sociated with the RSOS(m, m′)2×2 lattice models admit a bosonic form

ĉh
m,m′;(N)

r,s (q) = X
m,m′;(N)
abc (q) =

∞

∑
k=−∞

[
qk(kmm′+m′r−ms)T

(N)

km′+ b−a
2

(q)− q(km+r)(km′+s)T
(N)

km′+ b+a
2

(q)
]

(2.4.4)

where

a = s, b = c = ρµ(r), µ = s mod 2 (2.4.5)

The q-trinomial coefficients [149] are

T
(N)
k (q) = T

(N)
−k (q) =

[
N

k

](0)

2

=
N

∑
j=0

qj(j+k)

[
N

j, j+k

]

q

(2.4.6)

where the q-multinomial coefficients are defined in terms of q-factorials by

[
n

ℓ, m

]

q

=





(q)n

(q)ℓ(q)m(q)n−ℓ−m
ℓ, m, n−ℓ−m ∈ Z≥0

0, otherwise

(2.4.7)

In the limit q → 1, the q-multinomials reduce to multinomial coefficients

lim
q→1

[
n

ℓ, m

]

q

=

[
n

ℓ, m

]
(2.4.8)

which ensures the correct counting of states.

To arrive at the bosonic forms (2.4.4), we used the fact that the q-trinomial coefficient

T
(N)
k (q) is a q-deformed counting of weighted N step 2 × 2 fused paths on the A∞ Dynkin

diagram. This counting only respects the constraints σi+1 − σi = 0,±2, with 2k height

difference between the initial and final state σN − σ0 = 2k. This ensures correct count-

ing, as j + k is the number of up steps, j is the number of down steps, and N − 2j − k is

the number of flat steps. Thus, given that the local energy functions are periodically ex-
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tended, T
(N)
k (q) gives the correct one-dimensional sums (without restricting to the fused

Am′). The required bosonic form of the one-dimensional sum on Am′ is then obtained by

summing and subtracting the respective generalized paths. These bosonic forms (2.4.4)

were checked against the ground state one-dimensional sums with b = c for all values of

r, s using Mathematica [150] out to size N = 12 for (m, m′) = (2, 5), (2, 7), (3, 7), (3, 8), size

N = 11 for (m, m′) = (2, 9), (4, 9), size N = 10 for (m, m′) = (3, 10) and size N = 9 for

(m, m′) = (2, 11), (3, 11), (4, 11), (5, 11). It would be of interest to obtain the bosonic expres-

sions for X
(N)
abc (q) more generally for c = b, b ± 2 and to prove that these expressions satisfy

the CTM recursions (2.2.36).

Using (2.4.6), it is straightforward to show that the finitized characters also satisfy the

Kac symmetry

X̂
m,m′;(N)
abc (q) = X̂

m,m′;(N)
m′−a,m′−b,m′−c(q) (2.4.9)

Since the shaded band structure is symmetric, the Kac labels on the right are (r, s) = (m −
r, m′ − s).

2.4.3 N → ∞ limit

The finitized characters also agree with the full characters in the thermodynamic limit N →
∞. For fixed k ∈ Z, the modified q-trinomials satisfy

lim
N→∞

T
(N)
k (q) = lim

N→∞

∞

∑
j=0

qj(j+k)

[
N

j, j + k

]

q

=
1

(q)∞

(2.4.10)

To establish this we take the limit inside the sum and use the elementary result

lim
N→∞

[
N

j, j + k

]

q

= lim
N→∞

(q)N

(q)j (q)j+k (q)N−2j−k
=

1

(q)j (q)j+k
(2.4.11)

to obtain

lim
N→∞

∞

∑
j=0

qj(j+k)

[
N

j, j + k

]

q

=
∞

∑
j=0

qj(j+k)

(q)j (q)j+k
=

1

(q)∞

(2.4.12)
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The last equality follows by setting z = qk+1 in the q-analogue of Kummer’s theorem (see

(2.2.8) of [151])

∞

∑
j=0

qj(j−1)zj

(1 − q) . . . (1 − qj)(1 − z)(1 − zq) . . . (1 − zqj−1)
=

∞

∏
j=0

1

1 − zqj
(2.4.13)

It follows that the limit of the finitized characters (2.4.4) precisely reproduces the n = 1

Virasoro characters

lim
N→∞

q−
c

24+∆r,s ĉh
m,m′;(N)

r,s (q) = chm,m′
r,s (q) (2.4.14)

2.4.4 Logarithmic limit

Following [122,152] and [153], the Kac characters of the logarithmic minimal modelsLM(p, p′) [123]

and their n × n fusion hierarchies [154] are given by taking the logarithmic limit. Symboli-

cally,

lim
m,m′→∞, m′

m → p′
p +

M(m, m′)2×2 = LM(p, p′), 1 ≤ p <
1
2 p′, p, p′ coprime (2.4.15)

The (one-sided) limit is taken through coprime pairs (m, m′) with m′
m >

p′

p and
p′

p ≥ 2. The

one-sided limit is needed to ensure the sequences of minimal model ground states converge

to the correct logarithmic minimal model ground states. Formally, the logarithmic limit is

taken in the continuum scaling limit after the thermodynamic limit. The equality indicates

the identification of the spectra of the chiral CFTs. In principle, the Jordan cells appearing

in the reducible yet indecomposable representations of the logarithmic minimal models

should emerge in this limit but there are subtleties [122, 152].

Since finitized characters give the spectrum generating functions for finite truncated

sets of conformal energies, the logarithmic limit can be applied directly to finitized char-

acters. Assuming m <
1
2 m′, 0 < |q| < 1 and taking the logarithmic limit of the finitized
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characters (2.4.4) gives the finitized characters of LM(p, p′)2×2 for p < 1
2 p′.

χ̂
p,p′,(N)
r,s (q) = lim

m,m′→∞, m′
m → p′

p +

ĉh
m,m′;(N)

r,s (q) = T
(N)
b−a

2

(q)− qrs T
(N)
b+a

2

(q) (2.4.16)

where r, s, a, b, c are related by (2.4.5). Taking the thermodynamic limit, using (2.4.10), gives

lim
N→∞

q−
c

24+∆r,s χ̂
p,p′,(N)
r,s (q) = q−

c
24+∆r,s

1 − qrs

(q)∞

= χ
p,p′
r,s (q) (2.4.17)

which agrees with the Kac characters of the logarithmic minimal models LM(p, p′).

2.5 Conclusion

Using the one-dimensional sums arising from Baxter’s off-critical Corner Transfer Matrix

(CTM) formalism, we have argued that, for m′ > 2m, the RSOS(m, m′)1×1 and RSOS(m, m′)2×2

lattice models lie in the same universality class described by the nonunitary minimal CFT

M(m, m′). This result holds even though, in general, RSOS(m, m′)1×1 and RSOS(m, m′)2×2

are distinct lattice models. More specifically, we have conjectured the explicit bosonic form

of the finitized characters and, for modest system sizes N, checked that these agree with

the ground state one-dimensional sums. In the case m′ = 2m + 1, we have further shown

that the ground state one-dimensional sums of RSOS(m, m′)2×2 agree with those of Jacob

and Mathieu [139] based on half-integer RSOS paths. This connection with a Yang-Baxter

integrable lattice model nicely explains the remarkable observed properties of these half-

integer one-dimensional sums. The more general methods used here allow these observa-

tions to be extended to all RSOS(m, m′)2×2 lattice models.



Chapter 3

Yang-Baxter Solution of Dimers as a
Free-Fermion Six-Vertex Model

The dimer model is formulated as a Yang-Baxter integrable free-fermion six-vertex model. At the free-

fermion point the spectral parameter is λ = π
2 . A one-to-many mapping of six-vertex configurations

onto dimer configurations allows the free-fermion solutions to be applied to the anisotropic dimer model

on a square lattice where the dimers are rotated by 45◦ compared to their usual orientation. This dimer

model is exactly solvable in geometries of arbitrary finite size. In the present chapter, we establish and

solve inversion identities for dimers with periodic boundary conditions on the cylinder. In the particle

representation, the local face tile operators give a representation of the fermion algebra and the fermion

particle trajectories play the role of nonlocal (logarithmic) degrees of freedom. In a suitable gauge, the

dimer model is described by the Temperley-Lieb algebra with loop fugacity β = 2 cos λ = 0. At the

isotropic point, u = λ
2 = π

4 , the exact solution allows for the explicit counting of 45◦ rotated dimer

configurations on a periodic M × N square lattice. We show that the modular invariant partition

function on the torus is the same as symplectic fermions and critical dense polymers.

3.1 Introduction

The dimer (domino tiling) model [70, 155] captures the molecular freedom in densely ar-

ranging (adsorbing) non-overlapping diatomic molecules (dimers) on a lattice substrate.

In 1961, the dimer model on the square lattice was solved exactly [73,74,156,157] by Pfaffi-

ans. While the original solutions were by Pfaffians, the idea of using a transfer matrix and

free fermions was initiated in [75]. After more than 50 years, the dimer model continues

to be the subject of extensive study [76, 82–87, 89] primarily to understand the finite-size

effects of boundary conditions and steric effects under the influence of infinitely repulsive

hard-core local interactions. These effects are manifest in the related problems of Aztec dia-

83
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monds [158,159] and the six-vertex model with domain wall boundary conditions [69,160].

For these systems, even the thermodynamic limit can fail to exist. Although such boundary

conditions clearly break conformal invariance in the continuum scaling limit there are other

boundary conditions, such as periodic and free boundary conditions, which are confor-

mally invariant. For dimers with the latter boundary conditions it has been argued [83,84]

that the system is best described as a logarithmic Conformal Field Theory (CFT) with cen-

tral charge c = −2 rather than the c = 1 Gaussian free field usually associated [62, 79, 80]

with dimers and the six-vertex model at the free fermion point.

The six-vertex model [34–39, 161] is a ferroelectric model on the square lattice that is

Yang-Baxter integrable [31]. Provided that the free-fermion condition (3.2.2) is satisfied,

the six-vertex model reduces to a non-interacting free-fermion model [40, 41, 162]. It is

well-known that the six-vertex free-fermion and dimer models are related, at least at the

level of configurations. In fact, a one-to-many mapping exists [46, 61, 69] from six-vertex

configurations to dimer configurations, where the dimers are rotated by 45◦ compared to

their usual orientation parallel to the bonds of the square lattice. As shown in Figure 3.3,

in this orientation, each dimer covers two sites of the medial lattice whose sites consist of

midpoints of the bonds of the original square lattice. For an M × N square lattice with

periodic boundary conditions, there are thus 2MN sites on the medial lattice covered by

MN dimers.

In this chapter, we provide the exact solution of the anisotropic dimer model on the

square lattice for dimers with the 45◦ rotated orientation. This is achieved by considering

the dimer model as a free-fermion Yang-Baxter integrable six-vertex model and solving the

associated inversion identity [31, 162, 163] satisfied by the transfer matrices. In this set-

ting, we calculate the partition function at the isotropic point to obtain explicit formulas

for the counting of dimer configurations on a finite M × N periodic square lattice. By using

periodic boundary conditions on the cylinder which folds into a torus after taking a ma-

trix trace, we calculate the modular invariant partition function (MIPF). Notably, the MIPF

of dimers precisely agrees with symplectic fermions [121,164–166] and critical dense poly-

mers [124,167–170]. The latter is nontrivial because, as a special six-vertex model, the usual

matrix trace is used to close the cylinder to a torus for the dimer model whereas a modi-
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fied trace [170] is needed for critical dense polymers. Remarkably, we find that the spectra

of dimers agrees sector-by-sector with the spectra of critical dense polymers. However,

an important difference with periodic boundary conditions is that the transfer matrix of

critical dense polymers exhibits Jordan cells [169, 171] on the cylinder whereas the transfer

matrix of dimers (six-vertex free-fermion model) is normal and diagonalizable so it does

not exhibit Jordan cells. The similarity of the conformal spectra of these two models is a

crucial observation because it hints to a possible logarithmic behaviour of dimers in the

continuum scaling limit. This problem will be addressed more fully in the next chapter.

The layout of this chapter is as follows. In Section 3.2 we describe the dimer model, with

dimers rotated by 45◦, as a free-fermion six-vertex model and give the equivalence of the

face tiles in the vertex, particle and dimer representations. We also describe the relations

between the free-fermion algebra, the Temperley-Lieb algebra and the Yang-Baxter equa-

tion. We end this section by showing that the residual entropy is not changed by rotating

the orientation of the dimers and agrees with the known result [157]. In Section 3.3, we in-

troduce the periodic row transfer matrices and show that the associated dimer Hamiltonian

reduces to the usual free-fermion hopping Hamiltonian. In this section, we also obtain the

exact eigenvalues of the transfer matrices on finite cylinders. Following closely [169], we

calculate the finite-size spectra in the Z4, Ramond and Neveu-Schwarz sectors. The N even

sectors are combined to show that the MIPF is that of symplectic fermions [121, 164–166].

This completes the CFT description of dimers on the torus. Next, in Section 3.4, we con-

sider the isotropic point and obtain explicit formulas for the counting of rotated dimer

configurations on a periodic M × N square lattice. Although it displays the same asymp-

totic growth, the precise counting of these configurations differs from the counting in the

usual orientation [73, 82, 156].

3.2 Dimers as a Free-Fermion Six-Vertex Model

3.2.1 Face tiles and equivalence of vertex, particle and dimer representations

The allowed six-vertex (arrow conserving) face configurations and the equivalent tiles in

the particle (even and odd rows) and dimer [69] representations are shown in Figure 3.1.
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For N columns, the vertex (arrow) degrees of freedom σj = ±1 and the particle occupation

numbers aj =
1
2(1− σj) = 0, 1 live on the medial lattice with j = 1, 2, . . . , N. The Boltzmann

weights of the six-vertex tiles are

a(u) = ρ
sin(λ − u)

sin λ
, b(u) = ρ

sin u

sin λ
, c1(u) = ρg, c2(u) =

ρ

g
, λ ∈ (0, π), ρ ∈ R

(3.2.1)

The spectral parameter u plays the role of spatial anisotropy with u = λ
2 being the isotropic

point. Geometrically [172], varying u effectively distorts a square tile into a rhombus with

an opening anisotropy angle ϑ = πu
λ . The arbitrary parameter ρ is an overall normalization.

Assuming boundary conditions such that there are an equal number of sources and sinks

of horizontal arrows (vertices c1 and c2) along any row, the transfer matrix entries (3.3.1)

are all independent of the gauge factor g.

At the free-fermion point (λ = π
2 ), the six-vertex face weights reduce to

a(u) = ρ cos u, b(u) = ρ sin u, c1(u) = ρg, c2(u) =
ρ

g
, ρ ∈ R (3.2.2)

These weights satisfy the free-fermion condition

a(u)2 + b(u)2 = c1(u)c2(u) (3.2.3)

As shown in Section 3.2.2, with the special choice of gauge g = z = eiu, the tiles give

a representation of the free-fermion algebra with generators { f j, f †
j } and, consequently,

also a representation of the Temperley-Lieb algebra with generators {ej} and loop fugacity

β = 2 cos λ = 0. Explicitly, the face transfer operators are

Xj(u) = ρ(cos u I + sin u ej), j = 1, 2, . . . , N (3.2.4)

This Temperley-Lieb model is directly equivalent to an anisotropic dimer model as shown

in Figures 3.1, 3.3 and 3.4. A dimer weight is assigned to the unique square face which

is half-covered by the dimer as shown in Figure 3.4. The statistical weights assigned to
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“horizontal” and “vertical” dimers are

ζh(u) = a(u) = ρ cos u, ζv(u) = b(u) = ρ sin u (3.2.5)

Setting g = ρ, and allowing for the facts that (i) the c1 face has two allowed configurations

and (ii) no dimer covers the c2 face, it follows that

c1(u) = ζh(u)
2 + ζv(u)

2 = ρ2(cos2 u + sin2 u) = ρ2, c2(u) = 1 (3.2.6)

Alternatively, fixing ρ = g =
√

2 at the isotropic point (u = λ
2 = π

4 ) gives

a(π
4 ) = 1, b(π

4 ) = 1, c1(
π
4 ) = 2, c2(

π
4 ) = 1 (3.2.7)

It follows that, with this normalization and any gauge g, the partition function at the

isotropic point gives the correct counting of distinct dimer configurations.

In addition to the vertex and dimer representations, the six-vertex free-fermion model

admits a particle representation as shown in Figure 3.3. A reference state on the cylinder

and strip is fixed as in Figure 3.2. An edge of a given vertex is a segment of a particle

trajectory (and has particle occupation number aj = 1) if its arrow points in the opposite

direction to that of the reference state. Otherwise, if the edge arrow points in the same

direction as the reference state, the edge is not a segment of a particle trajectory (and the

particle occupation is aj = 0). The segments of particle trajectories live on the medial lat-

tice and are indicated with heavy lines in Figure 3.2. The number of particles is conserved

and their trajectories are non-intersecting. On the cylinder (which is glued at the top and

bottom to form the torus), the particle trajectories are constrained to move up and to the

right through the lattice. The particle representation is the simplest of the three represen-

tations and is convenient for coding in Mathematica [150] and for manipulations in the

diagrammatic planar algebra so we usually work in the particle representation.

With suitable face weights, the mapping between the six-vertex model, particle rep-

resentation and dimers also holds for λ 6= π
2 and the model is still Yang-Baxter inte-

grable. The difference is that, in the free-fermion case λ = π
2 , the particles are non-
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or

︸ ︷︷ ︸
a(u)

︸ ︷︷ ︸
b(u)

︸ ︷︷ ︸
c1(u)

︸ ︷︷ ︸
c2(u)

Figure 3.1: Equivalent face tiles of the six-vertex model in the vertex, particle and dimer
representations.The heavy particle lines are drawn whenever the arrows disagree with the
reference state as shown in Figure 3.2. The particles move up and to the right.

Figure 3.2: Reference states for the single row transfer matrix for mapping onto the particle
representation. The reference arrows point up and to the right.
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Figure 3.3: Typical periodic arrow configuration on a 6 × 4 rectangle corresponding to
four applications of the single row transfer matrix. The associated particle and (one of the
23 = 8) possible periodic dimer configurations are also shown. The boundary conditions
are periodic such that the left/right edges and top/bottom edges are identified. The excess
of up arrows over down arrows (2 in this case) is conserved. Particles travel up and to the
right. They can wind around the torus but do not cross. An M × N square lattice is covered
by MN dimers. Each dimer covers two adjacent sites of the medial lattice.
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or

Figure 3.4: Face configurations showing (in light yellow) the one or two dimers associated
with each face. No dimers are associated with the last face.

Figure 3.5: The 24 periodic configurations of rotated dimers on 2 × 2 square lattice. Each
of the apricot shaded blocks of two dimers can occur in 2 local configurations related by a
rotation through 90◦.
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interacting whereas, for λ 6= π
2 , the particles interact. In terms of dimers, for λ 6= π

2 , there

are anisotropic 3-dimer interactions for the faces of vertices 1 through 4. In general, for

λ = (p′−p)π
p′ with p, p′ coprime, the (non-intersecting) fermion particle trajectories play the

role of nonlocal degrees of freedom in these logarithmic Conformal Field Theories (CFTs).

The Z2 arrow reversal symmetry of the vertex model implies a particle-hole duality in the

particle representation.

3.2.2 Free-fermion, Temperley-Lieb algebras and Yang-Baxter equation

In this section, we consider the free-fermion model (3.2.2) with λ = π
2 and set g = z = eiu

and ρ = 1. The overall normalization ρ =
√

2 is easily reinstated, as needed, to count

dimer configurations at the isotropic point (u = π
4 ).

Free-fermion algebra

As elements of a planar algebra [173], the face operators of the free-fermion six-vertex

model decompose [174] in the particle representation into a sum of contributions from six

elementary tiles

Xj(u) = u
j j+1

= a(u)

(
+

)
+ b(u)

(
+

)
+ c1(u) + c2(u) (3.2.8)

Multiplication of the tiles in the planar algebra is given by local tensor contraction of in-

dices (a, b, c, . . . = 0, 1) specifying the particle occupation numbers on the centers of the tile

edges. Regarding the elementary tiles as operators acting on an upper (zigzag) row par-

ticle configuration to produce a lower (zigzag) row particle configuration, we write them

respectively as

Ej = n00
j , n11

j , f †
j f j+1, f †

j+1 f j, n10
j , n01

j , n00
j + n11

j + n10
j + n01

j = I (3.2.9)
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The four operators nab
j are (diagonal) orthogonal projection operators which factorize into

single-site orthogonal projectors corresponding to left and right half (triangular) tiles

nab
j = na

j nb
j+1, na

j nb
j = δab na

j , n0
j + n1

j = I, a, b = 0, 1 (3.2.10)

Here nj = n1
j is the number operator counting single-site occupancy at position j and n0

j is

the dual number operator counting the single-site vacancies at position j. The operators f j

and f †
j are single-site particle annihilation and creation operators respectively which satisfy

the Canonical Anticommutation Relations (CAR) for fermions

{ f j, fk} = { f †
j , f †

k } = 0, { f j, f †
k } = δjk, n1

j = f †
j f j, n0

j = f j f †
j = 1 − f †

j f j

(3.2.11)

It follows that all of the elementary tile operators can be written as combinations of

bilinears in the fermion operators f j and f †
j . Diagrammatically, the particle hopping terms

f †
j f j+1 and f †

j+1 f j factorize into left and right half (triangular) tiles

f †
j f j+1 =

j j+1
f †
j+1 f j =

j j+1
(3.2.12)

so that the fermion generators are represented by half (triangular) tiles

f †
j =

j
=

j
, f j =

j
=

j
(3.2.13)

The action of the fermion operators (3.2.13) on states is given by

f †
j

∣∣ · · · , nj−1, nj, nj+1, · · ·
〉
= (−1)∑1≤k<j nk(1 − nj)

∣∣ · · · , nj−1, (1 − nj), nj+1, · · ·
〉

(3.2.14)

f j

∣∣ · · · , nj−1, nj, nj+1, · · · 〉 = (−1)∑1≤k<j nk nj

∣∣ · · · , nj−1, (1 − nj), nj+1, · · · 〉 (3.2.15)

The presence of the “Jordan-Wigner string” (−1)∑1≤k<j nk ensures the complete antisymme-

try of the states and reflects the non-locality of the fermion operators. Notice that a particle
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can only hop into a site that is vacant and that the action of the hopping terms on states is

f †
j f j+1

∣∣ · · · , nj−1, 0, 1, nj+2, · · ·
〉
=
∣∣ · · · , nj−1, 1, 0, nj+2, · · ·

〉
(3.2.16)

f †
j+1 f j

∣∣ · · · , nj−1, 1, 0, nj+2, · · ·
〉
=
∣∣ · · · , nj−1, 0, 1, nj+2, · · ·

〉
(3.2.17)

since the contributions from the Jordan-Wigner strings cancel. This action applies for both

open and periodic boundary conditions with the cyclic boundary condition f j+N = f j on

the fermions. Although the Jordan-Wigner strings seem to break translation invariance for

periodic boundary conditions, this invariance is restored [162] for operators composed of

an even number of fermion operators.

Temperley-Lieb algebra

To realise a Temperley-Lieb algebra, let us introduce x = eiλ = i and the generators

ej = x + x−1 + + (3.2.18a)

= x f †
j f j(1 − f †

j+1 f j+1) + x−1(1 − f †
j f j) f †

j+1 f j+1 + f †
j f j+1 + f †

j+1 f j (3.2.18b)

= x f †
j f j + x−1 f †

j+1 f j+1 + f †
j f j+1 + f †

j+1 f j (3.2.18c)

The quartic (interacting) terms vanish, since β = x + x−1 = 0, leaving bilinears in fermion

operators. Using the planar algebra of tiles, it is easily shown that these operators yield a

representation of the Temperley-Lieb algebra [175]

e2
j = βej = 0, ejej±1ej = ej, β = 2 cos λ = x + x−1 = 0 (3.2.19)

Equivalently this follows, purely from fermionic algebra, by writing the generators in terms

of the fermionic operators f j and f †
j as in (3.2.18c).
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Yang-Baxter equation

Using the above algebra, it is straightforward to confirm that, in the gauge with g = z = eiu,

the face transfer operators (4.3.2) of the free-fermion six vertex model now take the form

Xj(u) = u = cos u I + sin u ej (3.2.20)

It immediately follows, from standard arguments [52], that they satisfy the Yang-Baxter

Equation (YBE)

Xj(u)Xj+1(u + v)Xj(v) = Xj+1(v)Xj(u + v)Xj+1(u) (3.2.21a)

a b

u

ef

v

c

d

u+v =

de

u

b c

v
a

f

u+v (3.2.21b)

The initial condition and inversion relation are

Xj(0) = I, Xj(u)Xj(−u) = cos2 u I (3.2.22)

In the usual vertex model terminology, Xj(u) is the Ř-matrix and not the R-matrix.

3.2.3 Free energy and residual entropy

Since the free-fermion six-vertex model is Yang-Baxter integrable, its partition function per

site

ρ κ(u) = ρ exp(− fbulk(u)) (3.2.23)

can be obtained by solving [52] the inversion relation κ(u)κ(−u) = cos2 u or by using

Euler-Maclaurin approach as in [124]. The two equivalent integrals for the bulk free energy
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are

fbulk(u) = −
∫ ∞

−∞

sinh ut sinh(π
2 − u)t

t sinh πt cosh πt
2

dt = 1
2 log 2 − 1

π

∫ π/2

0
log(cosec t + sin 2u)dt

(3.2.24)

Setting ρ =
√

2 and u = π
4 gives the known [157] molecular freedom W and residual

entropy S of dimers on the square lattice as

W = eS =
√

2 exp(− fbulk(
π
4 )) = exp( 2G

π ) = 1.791 622 812 . . . , S = 2G
π = .583 121 808 . . .

(3.2.25)

where the molecular freedom W and Catalan’s constant G are given by

W =
√

2 κ(π
4 ) = lim

M,N→∞
(ZM×N)

1
MN , G = 1

2

∫ π/2

0
log(1 + cosec t)dt = .915 965 594 . . .

(3.2.26)

3.3 Solution on a Cylinder and Torus and Finite-Size Spectra

3.3.1 Commuting single row transfer matrices

The single row transfer matrix of the free-fermion model in the particle representation is

defined by

T(u) = u u u u u u

a1 a2 · · · aN

b1 b2 · · · bN

(3.3.1)

where there are N columns and the left and right edges are identified. The occupation

numbers on the vertical edges (auxiliary space) are summed out. The quantum space con-

sists of 2N row configurations a = {a1, a2, . . . , aN} of particle occupation numbers. The

Yang-Baxter equation (4.3.18) implies [31] that the single row transfer matrices commute

[T(u), T(v)] = 0 (3.3.2)
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From the crossing relation and commutation, it follows that the transfer matrices are nor-

mal

T(u)T = T(λ − u) ⇒ [T(u), T(u)T] = 0 (3.3.3)

The transfer matrices are therefore simultaneously diagonalizable by a similarity transfor-

mation with a matrix S whose columns are the common u-independent right eigenvectors

of T(u).

In the six-vertex arrow (or spin) representation, the total magnetization

Sz =
N

∑
j=1

σj = −N,−N + 2, . . . , N − 2, N (3.3.4)

is conserved under the action of the transfer matrix. The magnetization Sz is thus a good

quantum number separating the spectrum into sectors. For dimers, it therefore plays the

role of the variation index in [76,85,87]. By the Z2 up-down symmetry, the spectrum for the

sectors Sz = m and Sz = −m coincide for m > 0. So all these eigenvalues are exactly doubly

degenerate. We will see that, for N even, the lowest energy (ground) state is unique and

occurs in the sector Sz = 0 so that there are 1
2 N up arrows (spins) and 1

2 N down arrows

(spins). More generally, the number of down spins is d = 1
2(N − Sz), the number of up

spins is thus N − d = 1
2(N + Sz) and the counting of states in the Sz sector is given by the

binomial (N
d ) with Sz = N mod 2. The number of particles d = ∑

N
j=1 aj coincides with the

number of down arrows and is also conserved. The transfer matrix and vector space of

states thus decompose as

T(u) =
N⊕

d=0

Td(u), dimV (N) =
N

∑
d=0

dimV (N)
d =

N

∑
d=0

(
N

d

)
= 2N = dim (C2)⊗N (3.3.5)

Comparing the spectra sector-by-sector with critical dense polymers [169] gives a precise

matching if the number of defects ℓ is identified as

ℓ = |N − 2d| = |Sz| =





0, 2, 4, . . . , N, N even

1, 3, 5, . . . , N, N odd

(3.3.6)
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Taking the logarithmic derivative of the single row transfer matrix (3.3.1) gives the Her-

mitian free-fermion Hamilitonian

H = −
N

∑
j=1

ej = −
N

∑
j=1

(x f †
j f j + x−1 f †

j+1 f j+1 + f †
j f j+1 + f †

j+1 f j) (3.3.7a)

= −
N

∑
j=1

( f †
j f j+1 + f †

j+1 f j) (3.3.7b)

Using β = x + x−1 = 0 and cyclic symmetry, the first two fermionic terms cancel leav-

ing the expected free-fermion hopping Hamiltonian. Since the Hamiltonian is a quadratic

form in fermi operators it can be diagonalized by standard free-fermion techniques. Here

we diagonalize the transfer matrices using inversion identities to make clear the relation

to critical dense polymers. The methods we use, based on Yang-Baxter integrability, func-

tional equations and physical combinatorics, are more general and can also be applied to

percolation [176] and to the six-vertex model at other roots of unity.

3.3.2 Inversion identities on the cylinder

The inversion identities for the single row transfer matrix of the free-fermion six vertex

model with periodic boundary conditions are

T(u)T(u + λ) =
(

cos2N u − sin2N u
)

I, N odd (3.3.8a)

Td(u)Td(u + λ) =
(

cos2N u + sin2N u + 2(−1)d sinN u cosN u
)

I

= (cosN u + (−1)(N−ℓ)/2 sinN u)2 I, N even (3.3.8b)

These are specializations of the elliptic inversion identities [162] of the eight-vertex free-

fermion model. The derivation following [162] is given in Appendix B.1. For N even, the

inversion identity is different in the sectors with even and odd parity for d. Alternatively,

these inversion identities can be written as

T(u)T(u + λ) =
(

cos2N u + (−1)N sin2N u
)

I + (sin u cos u)N J (3.3.9)
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where J = 0 for N odd and, for N even, J is a diagonal matrix with entries ±2 alternating

in the different d sectors. The commuting transfer matrices T(u) admit a common set of

right eigenvectors independent of u. They can therefore be simultaneously diagonalized

by a similarity transformation. It therefore follows that the inversion identities are satisfied

by the individual eigenvalues.

As in the case of critical dense polymers, J is related to the braid transfer matrices B+

and its inverse B− by

B± = lim
u→±i∞

T(u)

sinN(u + λ/2)
, (B±)2 =





2I + (−1)N/2 J, N even

2I, N odd

(3.3.10)

3.3.3 Exact eigenvalues

The inversion identities (3.3.8a) and (3.3.8b), for N odd and N even, precisely coincide with

the N odd and N even inversion identities of critical dense polymers [169]. In the rest of

Section 3, we summarize the solution of these inversion identities and the relevant results

of [169]. From the Temperley-Lieb equivalence, it is expected that the spectra of the free-

fermion six-vertex model and critical dense polymers agree up to the possibility of different

degeneracies. The new content of the following subsections is that we find empirically

that the spectra of these two models precisely coincide sector-by-sector as matched by the

identification (3.3.6) of the number of defects ℓ of critical dense polymers with |Sz|. In

particular, the central charge c = −2 and conformal weights ∆ = − 1
8 , 0, 3

8 of dimers are

given by the same calculations using the Euler-Maclaurin formula carried out previously

for critical dense polymers so we do not repeat these calculations.

For N and ℓ = |Sz| even, the transfer matrix eigenvalue spectra breaks up into Ramond

and Neveu-Schwarz sectors according to the even or odd parity of ℓ/2 = |Sz|/2. As in

(5.24) and (5.25) of [169], the eigenvalues T(u) factor into elementary contributions arising

from zeros in the complex u-plane in the form of single or double 1-strings on the line
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Re u = π
4 at ordinates

yj =





− 1
2 log tan

1
2 (j− 1

2 )π

N , Z4: N, ℓ odd, j = 1, 2, . . . , N

− 1
2 log tan

(j− 1
2)π

N
, R: N, ℓ/2 even, j = 1, 2, . . . , N/2

− 1
2 log tan

jπ

N
, NS: N even, ℓ/2 odd, j = 1, 2, . . . , N/2 − 1

(3.3.11)

A typical pattern of zeros is shown in Figure 3.6. From [169], the elementary excitation

energy of a single 1-string at position j in the upper or lower half plane is

Ej =





1
2 (j − 1

2), Z4: N, ℓ odd

j − 1
2 , R: N, ℓ/2 even

j, NS: N even, ℓ/2 odd

(3.3.12)

For N odd, the contributions from 1-strings in each half-plane are encoded in one-column

diagrams as shown in Figures 3.7 and 3.8. For N even, the contributions from the single

or double 1-strings in each half-plane are encoded in double-column diagrams as shown

in Figures 3.9–3.12. Each column of a two-column diagram has a 0- or 1-string at a given

position or height, labelled by j. These combine to encode no 1-string, a single 1-string or a

double 1-string at each height j or position (3.3.11) in the pattern of zeros. By convention,

zeros on the real u-axis are regarded as being in the upper half plane.

Explicitly, as shown in [169, 170], the solution of the inversion identity (3.3.8b) by fac-

torization of the eigenvalues yields

T(u) = ǫ
(−i)N/2e−Niu

2N−1/2

N

∏
j=1

(
e2iu + iǫj tan

(2j − 1)π

4N

)
, Z4: N, ℓ odd (3.3.13a)

T(u) =
ǫ(−i)

N
2 e−Niu

2N−1

N

∏
j=1

(
e2iu + iǫj tan

(2j−1)π

2N

)
, R: N, ℓ/2 even (3.3.13b)

T(u) =
ǫ(−i)

N
2 Ne−Niu

2N−1

N

∏
j=1

j 6=N/2

(
e2iu + iǫj tan

jπ

N

)
, NS: N even, ℓ/2 odd (3.3.13c)

where ǫj = ±1. The overall sign ǫ = ±1 of each eigenvalue is not fixed by the inversion
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−π
4

π
4

π
2

3π
4

y5

y4

y3

y2

y1

−y5

−y4

−y3

−y2

−y1

Figure 3.6: A typical pattern of zeros in the complex u-plane for the ℓ even sectors.
Here, N = 12 and ℓ = |Sz| = 2. The ordinates of the locations of the zeros uj are

yj = − 1
2 log tan

jπ
N , j = 1, 2, . . . , N/2 − 1. At each position j, there is either two 1-strings

with Re uj = π/4, two 2-strings with real parts Re uj = −π/4, 3π/4 or one 1-string and
one 2-string. A double zero is indicated by a black circle, a single zero by a grey circle and
an unoccupied position by an open circle.

relation. These sign factors ǫ are fixed by [170]

ǫ = (−1)
N−s

4 , ǫR = ǫNS = (−1)

⌊ |s|+2
4

⌋
, s = Sz (3.3.14)
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Separating the zeros in the upper and lower half planes leads to

T(u) =
µ (−i)N/2

2N−1/2eNiu

N+1
2

∏
j=1

(
e2iu + iǫj tan

(2j − 1)π

4N

) N−1
2

∏
j=1

(
ǭje

2iu + i cot
(2j − 1)π

4N

)
, Z4: N, ℓ odd

(3.3.15a)

T(u) =
µ(−i)

N
2 e−Niu

2N−1

⌊(N+2)/4⌋
∏
j=1

(
e2iu + iǫj tan

(2j − 1)π

2N

)(
ǭje

2iu + i cot
(2j − 1)π

2N

)

×
⌊N/4⌋
∏
j=1

(
e2iu + iµj tan

(2j − 1)π

2N

)(
µ̄je

2iu + i cot
(2j − 1)π

2N

)
, R: N, ℓ/2 even

(3.3.15b)

T(u) =
µ(−i)

N−2
2 Ne(2−N)iu

2N−1

⌊N/4⌋
∏
j=1

(
e2iu + iǫj tan

jπ

N

)(
ǭje

2iu + i cot
jπ

N

)

×
⌊(N−2)/4⌋

∏
j=1

(
e2iu + iµj tan

jπ

N

)(
µ̄je

2iu + i cot
jπ

N

)
, NS: N even, ℓ/2 odd

(3.3.15c)

where µ, ǫj, ǭj, µj, µ̄j = ±1. Up to the overall choice of sign µ, there are either 2N or 2N−2

possible eigenvalues allowing for all excitations but they are not all physical and are subject

to selection rules. The number of 1-strings mj plus the number of 2-strings nj at any given

position is

mj + nj =





1, Z4

2, R, NS

(3.3.16)
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σ 3 2 1 0 −1 −2 −3 −4

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

Figure 3.7: Z4 sectors (N, ℓ odd): Minimal configurations of single-columns with energy
E(σ) = 1

2 σ(σ + 1
2). The quantum number σ = ⌊n/2⌋ − m is given by the excess of blue

(even j) over red (odd j) 1-strings. At each empty position j, there is a 2-string. This an-
alyticity strip is in the upper-half complex u-plane rotated by 180◦so that position j = 1
(furthest from the real axis) is at the bottom.

3.3.4 Patterns of zeros and selection rules

The combinatorial description of the spectra follows precisely as in [169]. The building

blocks of the spectra in the upper half-plane consist of the “symplectic” q-binomials

[
n

m

]

q

=

[
n

⌊n/2⌋ − σ

]

q

=





q−
1
2 σ(σ+ 1

2 ) ∑
σ-single
columns

q∑j m jEj , Z4: N, ℓ odd

q−
1
2 σ2

∑
σ-double
columns

q∑j m jEj , R: N, ℓ/2 even

q−
1
2 σ(σ+1) ∑

σ-double
columns

q∑j m jEj , NS: N even, ℓ/2 odd

(3.3.17)

as shown in Figures 3.8, 3.10 and 3.12. For the one-column diagrams in the Z4 sectors, the

excess σ of the number meven of even 1-strings over the number modd of odd 1-strings is

σ = meven − modd =
⌊n/2⌋
∑
k=1

m2k −
⌊(n+1)/2⌋

∑
k=1

m2k−1, Z4: N, ℓ odd (3.3.18)

For R, NS sectors, the excess σ = ⌊n/2⌋ − m of the number of 1-strings in the right column

minus the number of 1-strings in the left column of the double-column diagram is given
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[75]q = + + + + + + + + + +1 q 2q2 2q3 3q4 3q5 3q6 2q7 2q8 q9 q10

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

Figure 3.8: Z4 sectors (N, ℓ odd): Combinatorial enumeration by single-columns of the q-
binomial [n

m]q = [75]q = q−3/2 ∑ q∑j m jEj . The excess of blue (even j) over red (odd j) 1-strings

is given by the quantum number σ = ⌊n/2⌋ − m = −2. The elementary excitation energy
of a 1-string at position j is Ej = 1

2(j − 1
2). The lowest energy configuration has energy

E(σ) = 1/4 + 5/4 = 3/2 = 1
2 σ(σ + 1

2). At each empty position j, there is a 2-string. This
analyticity strip is in the upper-half complex u-plane rotated by 180◦so that position j = 1
(furthest from the real axis) is at the bottom. The elementary excitations (of energy 1) are
generated by either inserting two 1-strings at positions j = 1 and j = 2 or promoting a
1-string at position j to position j + 2. Notice that [n

m]q = [ n
n−m]q as q-polynomials but they

have different combinatorial interpretations because they have different quantum numbers
σ. In the lower half-plane, q is replaced with q̄ and no rotation is required. In this example,
ℓ = 7 and the value σ̄ = −2 of the quantum number in the lower half-plane is related to
σ = −2 in the upper half-plane by the selection rules σ+ σ̄ = −(ℓ+ 1)/2 and 1

2(σ− σ̄) ∈ Z.
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σ −3 −2 −1 0 1 2 3

j = 1

j = 2

j = 3

Figure 3.9: Ramond sectors (N even, ℓ/2 even): Minimal configurations of double-columns
with energy E(σ) = 1

2 σ2. The quantum number σ = ⌊n/2⌋ − m is given by the excess of
blue (right) over red (left) 1-strings. At each position j, the number of 1-strings mj plus
the number of 2-strings nj is 2. This analyticity strip is in the upper-half complex u-plane
rotated by 180◦so that position j = 1 (furthest from the real axis) is at the bottom.

[62]q = + + + + + + + +1 q 2q2 2q3 3q4 2q5 2q6 q7 q8

j = 1

j = 2

j = 3

Figure 3.10: Ramond sectors (N even, ℓ/2 even): Combinatorial enumeration by double-
columns of the q-binomial [n

m]q = [62]q = q−1/2 ∑ q∑j m jEj . The excess of blue (right) over red

(left) 1-strings is given by the quantum number σ = ⌊n/2⌋ − m = 1. The elementary exci-
tation energy of a 1-string at position j is Ej = (j − 1

2). The lowest energy configuration has

energy E(σ) = 1
2 σ2 = 1

2 . At each position j, there are mj 1-strings and nj = 2− mj 2-strings.
This analyticity strip is in the upper-half complex u-plane rotated by 180◦so that position
j = 1 (furthest from the real axis) is at the bottom. The elementary excitations (of energy 1)
are generated by either inserting a left-right pair of 1-strings at position j = 1 or promoting
a 1-string at position j to position j + 1. Notice that [n

m]q = [ n
n−m]q as q-polynomials but they

admit different combinatorial interpretations because they have different quantum num-
bers σ. In the lower half-plane, q is replaced with q̄ and no rotation is required. The value
σ̄ of the quantum number in the lower half-plane is related to σ in the upper half-plane by
the selection rules σ + σ̄ = ℓ/2 and 1

2(σ − σ̄) ∈ Z.
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[77]q [76]q [75]q [74]q [73]q [72]q [71]q [70]q

σ −4 −3 −2 −1 0 1 2 3
σmin −3 −2 −1 0 0 1 2 3

j = 1

j = 2

j = 3

Figure 3.11: Neveu-Schwarz sectors (N even, ℓ/2 odd): Minimal configurations of double-
columns within the binomials [n

m]q = [ 7
m]q. The energy is E(σ) = 1

2 σ(σ + 1) where the

quantum number is σ = ⌊n/2⌋ − m. The excess of blue (right) over red (left) 1-strings in
these minimal configurations is σmin as given in (3.3.20). At each position j, the number of
1-strings mj plus the number of 2-strings nj is 2. This analyticity strip is in the upper-half
complex u-plane rotated by 180◦so that position j = 1 (furthest from the real axis) is at the
bottom.

[72]q = + + + + + + + + + +1 q 2q2 2q3 3q4 3q5 3q6 2q7 2q8 q9 q10

j = 1

j = 2

j = 3

Figure 3.12: Neveu-Schwarz sectors (N even, ℓ/2 odd): Combinatorial enumeration by
double-columns of the q-binomial [n

m]q = [72]q = q−1 ∑ q∑j m jEj . The number of positions is

(n − 1)/2 = 3. The quantum number is σ = ⌊n/2⌋ −m = 1. The excess of blue (right) over
red (left) 1-strings is σ = 1 or σ + 1 = 2. The elementary excitation energy of a 1-string at
position j is Ej = j. The lowest energy configuration has energy E(σ) = 1

2 σ(σ + 1) = 1.
At each position j, there are mj 1-strings and nj = 2 − mj 2-strings. This analyticity strip
is in the upper-half complex u-plane rotated by 180◦so that position j = 1 (furthest from
the real axis) is at the bottom. The elementary excitations (of energy 1) are generated by
either inserting a left or right 1-string at position j = 1 or promoting a 1-string at position
j to position j + 1. Notice that [n

m]q = [ n
n−m]q as q-polynomials but they admit different

combinatorial interpretations because they have different quantum numbers σ and σ′ =
−σ − 1. In calculating σ′, we have used the fact that n in (3.3.27) is odd. In the lower
half-plane, q is replaced with q̄ and no rotation is required. The value σ̄ of the quantum
number in the lower half-plane is related to σ in the upper half-plane by the selection rules
σ + σ̄ = (ℓ− 2)/2 and 1

2(σ − σ̄) ∈ Z.
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by

mright − mleft =





σ, R: ℓ/2 even

σ or σ + 1, NS: ℓ/2 odd

(3.3.19)

The minimal configurations in the upper half-plane with energy E(σ) are as shown in Fig-

ures 3.7, 3.9 and 3.11.

There are similar building blocks in the lower half-plane with σ replaced by σ̄. In each

half-plane, the minimum energy configurations satisfy

mright − mleft = σmin =





σ, σ ≥ 0

σ + 1, σ < 0

(3.3.20)

By convention, any zeros on the real u axis are pushed into the upper half plane. Em-

pirically determined selection rules dictate that, in a sector with ℓ defects, the quantum

numbers of the groundstate satisfy

σ = σ̄ =





(ℓ− 1)/4, ℓ = 1 mod 4, Z4: N odd

−(ℓ+ 1)/4, ℓ = 3 mod 4, Z4: N odd

ℓ/4, R: ℓ/2 even

(ℓ− 2)/4, NS: ℓ/2 odd

(3.3.21)

with ℓ = |4σ + 1| = 1, 3, 5, 7, . . . in the Z4 sectors. Similarly, it is found that all excitations

satisfy the selection rules

σ + σ̄ =





1
2(ℓ− 1), ℓ = 1 mod 4

− 1
2(ℓ+ 1), ℓ = 3 mod 4

Z4: N odd 1
2(σ − σ̄) ∈ Z (3.3.22)

σ + σ̄ =




ℓ/2, R: ℓ/2 even

(ℓ− 2)/2, NS: ℓ/2 odd

1
2(σ − σ̄) ∈ Z (3.3.23)
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These selection rules hold [170] equally for critical dense polymers and the free-fermion

six-vertex model.

3.3.5 Modular invariant partition function

Using the q-binomial building blocks and empirical selection rules for N odd or even, gives

the finitized partition functions as in [169]. In the Z4 sectors with N, ℓ odd

Z
(N)
ℓ

(q)=





(qq̄)−c/24 ∑
k∈Z

q∆2k+ℓ/2

[
N+1

2

N−ℓ

4 − k

]

q

q̄∆2k−ℓ/2

[
N−1

2

N−ℓ

4 + k

]

q̄

(qq̄)−c/24 ∑
k∈Z

q∆2k+ℓ/2

[
N+1

2

N+ℓ+2
4 +k

]

q

q̄∆2k−ℓ/2

[
N−1

2

N+ℓ−2
4 −k

]

q̄

N−ℓ = 0 mod 4(3.3.24)

Z
(N)
ℓ

(q)=





(qq̄)−c/24 ∑
k∈Z

q∆2k+ℓ/2

[
N+1

2

N−ℓ+2
4 −k

]

q

q̄∆2k−ℓ/2

[
N−1

2

N−ℓ−2
4 +k

]

q̄

(qq̄)−c/24 ∑
k∈Z

q∆2k+ℓ/2

[
N+1

2

N+ℓ

4 + k

]

q

q̄∆2k−ℓ/2

[
N−1

2

N+ℓ

4 − k

]

q̄

N−ℓ = 2 mod 4(3.3.25)

For given mod 4 parities of N − ℓ, these expressions are equivalent as partition functions

but, in each case, the first form is used for the combinatorial interpretation when ℓ = 1

mod 4 and the second form when ℓ = 3 mod 4. As in [169], this leads to

ℓ≤N

∑
ℓ∈2N−1

Z
(N)
ℓ

(q) = 1
2 (qq̄)−

c
24− 3

32

[ N+1
2

∏
n=1

(1+q
2n−1

4 )

N−1
2

∏
n=1

(1+q̄
2n−1

4 ) +

N+1
2

∏
n=1

(1−q
2n−1

4 )

N−1
2

∏
n=1

(1−q̄
2n−1

4 )

]

(3.3.26)

In the R and NS sectors with N even

Z
(N)
ℓ

(q) =





(qq̄)−c/24 ∑
k∈Z

q∆2k+ℓ/2

[
2
⌊

N+2
4

⌋
⌊

N+2−ℓ

4

⌋
−k

]

q

q̄∆2k−ℓ/2

[
2
⌊

N
4

⌋
⌊

N−ℓ

4

⌋
+k

]

q̄

, R: ℓ/2 even

(qq̄)−c/24 ∑
k∈Z

q∆2k+ℓ/2

[
2
⌊

N
4

⌋
+ 1⌊

N+2−ℓ

4

⌋
−k

]

q

q̄∆2k−ℓ/2

[
2
⌊

N+2
4

⌋− 1⌊
N−ℓ

4

⌋
+k

]

q̄

, NS: ℓ/2 odd

(3.3.27)
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In these formulas the central charge and conformal weights, given by the Euler-Maclaurin

formula, are

c = −2, ∆ = ∆̄ = ∆j = −1

8
, 0,

3

8
, j = 0, 1, 2, ∆j =

j2 − 1

8
(3.3.28)

The modular invariant partition function Z(q) of the free-fermion six-vertex model is

given by taking the trace over all Sz sectors with N even. Using the explicit expressions in

terms of products, as in [169], and summing over the ℓ sectors with multiplicities 2 arising

from Sz = ±ℓ yields the finitized partition function of the free-fermion six-vertex model

ZN(q) = Z
(N)
0 + 2

ℓ≤N

∑
ℓ∈4N

Z
(N)
ℓ

(q) + 2
ℓ≤N

∑
ℓ∈4N−2

Z
(N)
ℓ

(q) (3.3.29a)

= 1
2 (qq̄)−

c
24− 1

8

[ ⌊ N+2
4 ⌋

∏
n=1

(1 + qn− 1
2 )2

⌊ N
4 ⌋

∏
n=1

(1 + q̄n− 1
2 )2 +

⌊ N+2
4 ⌋

∏
n=1

(1 − qn− 1
2 )2

⌊ N
4 ⌋

∏
n=1

(1 − q̄n− 1
2 )2

]

+ 2(qq̄)−
c

24

⌊ N
4 ⌋

∏
n=1

(1 + qn)2
⌊ N−2

4 ⌋
∏
n=1

(1 + q̄n)2 (3.3.29b)

It is easily checked that the counting of states ZN(1) = 2N is correct at q = q̄ = 1.

Taking the thermodynamic limit N → ∞ gives the conformal modular invariant parti-

tion function

Z0(q)+2 ∑
ℓ∈4N

Zℓ(q)=
|ϑ0,2(q)|2 + |ϑ2,2(q)|2

|η(q)|2 = |χ̂−1/8(q)|2 + |χ̂3/8(q)|2

2 ∑
ℓ∈4N−2

Zℓ(q)=
|ϑ1,2(q)|2 + |ϑ3,2(q)|2

|η(q)|2 =
2|ϑ1,2(q)|2
|η(q)|2 = 2|χ̂0(q) + χ̂1(q)|2

Z(q) = Z0(q)+2 ∑
ℓ∈2N

Zℓ(q)=
1

|η(q)|2
3

∑
j=0

|ϑj,2(q)|2 = |χ̂−1/8(q)|2 + 2|χ̂0(q)+χ̂1(q)|2 + |χ̂3/8(q)|2

= |κ2
0(q)|2 + 2|κ2

1(q)|2 + |κ2
2(q)|2

(3.3.30)

where the u(1) and W -irreducible characters are

κ
n
j (q) =

1

η(q)
ϑj,n(q),

χ̂−1/8(q)=
1

η(q)
ϑ0,2(q), χ̂0(q)=

1

2η(q)
[ϑ1,2(q) + η(q)3]

χ̂3/8(q)=
1

η(q)
ϑ2,2(q), χ̂1(q)=

1

2η(q)
[ϑ1,2(q)− η(q)3]

(3.3.31)
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and the Dedekind eta and theta functions are

η(q) = q1/24
∞

∏
n=1

(1 − qn), ϑj,n(q) = ∑
k∈Z

q
(j+2kn)2

4n (3.3.32)

The MIPF Z(q) of the free-fermion six-vertex model thus precisely agrees with the MIPF

of dimers in the usual orientation [83] and critical dense polymers [170]. The latter coin-

cidence is nontrivial as a modified trace is needed to close the cylinder to a torus for this

lattice loop model. Although the MIPF agrees with symplectic fermions [121, 164–166],

which is a logarithmic theory, there are no Jordan cells and no indication of logarithmic

behaviour for dimers on the cylinder. Indeed, viewing the free-fermion model as the criti-

cal eight-vertex model at the decoupling point [177], the MIPF reduces to the square of the

Ising model MIPF with central charge c = 1
2

Z(q) = ZIsing(q)
2 (3.3.33)

Comparing (3.3.29b) with [163] shows that this relation also holds at the level of the fini-

tized MIPFs. To see Jordan cells for dimers, we consider the vacuum boundary condition

on the strip in the next chapter 4.

3.4 Periodic Dimers on a Finite M × N square Lattice

The problem of counting of periodic dimers on a finite M × N square lattice, in the usual

orientation, has been solved exactly [73, 82, 156]. The number of periodic dimer configura-

tions is given by

Z̃M×N = 1
2

(
Z̃1/2,1/2

M×N + Z̃0,1/2
M×N + Z̃1/2,0

M×N

)
(3.4.1)

where

Z̃
α,β
M×N =

N/2−1

∏
n=0

M/2−1

∏
m=0

4
(

sin2 2π(n + α)

N
+ sin2 2π(m + β)

M

)
, M, N = 2, 4, 6, . . .(3.4.2)
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Explicitly, arranging the entries in a symmetric matrix gives

(Z̃M×N) =




8 36 200 1156 · · ·
36 272 3,108 39,952 · · ·
200 3,108 90,176 3,113,860 · · ·

1,156 39,952 3,113,860 311,853,312 · · ·
...

...
...

...
. . .




, M, N = 2, 4, 6, . . . (3.4.3)

The exact counting of periodic dimer configurations on a finite M × N square lattice, in

the 45 degree rotated orientation, is given by taking the trace of the Mth power of the trans-

fer matrix (3.3.1) with eigenvalues (3.3.13). The expressions, however, are more involved

than for the usual orientation. Explicitly, setting ρ =
√

2 at the isotropic point u = π/4

with ǫj = ±1, the number of periodic dimer configurations with the rotated orientation is

ZM×N =





2MN+1
N

∑
s=−N+2;4

∑
∑

N
j=1 ǫj=s

(−1)
M(N−s)

4

N

∏
j=1

cosM
(
ǫjtj − π

4

)
, N odd

2MN
N

∑
s=−N

s = 0 mod 4

∑
∑

N
j=1 ǫj=−|s|

(−1)
M(2N+s)

4

N

∏
j=1

cosM
(
ǫjt

R
j − π

4

)

+ 2MN
N

∑
s=−N

s = 2 mod 4

∑
∑

N
j=1 ǫj=−|s|

(−1)
M(2N+|s|+2)

4

N

∏
j=1

cosM
(
ǫjt

NS
j − π

4

)
, N even

(3.4.4)

where s = Sz in the sums increments in steps of 4 as indicated and

tj =
(2j − 1)π

4N
, tR

j =
(2j − 1)π

2N
, tNS

j =





jπ
N , j 6= N/2

0, j = N/2

(3.4.5)

The restrictions on s are compatible with the selection rules and the signs ǫ in (3.3.14) en-

sure that the eigenvalues contribute with the correct overall sign. The trigonometric iden-
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tities [178]

N

∏
j=1

cos tj = 21/2−N ,
N

∏
j=1

cos tR
j = (−1)N/2 21−N ,

N

∏
j=1,j 6=N/2

cos tNS
j = (−1)N/2N 21−N

(3.4.6)

are used to evaluate the products in the denominators arising from the simplification

1 + ǫj tan tj =
cos tj + ǫj sin tj

cos tj
=

√
2

cos(ǫjtj − π
4 )

cos tj
, ǫj = ±1 (3.4.7)

For N even, precisely half the eigenvalues in (3.4.4) come from the Ramond sectors and

half from the Neveu-Schwarz sectors in accord with the binomial identity

N

∑
s=−N;4

(
N

N−s
2

)
=

N−2

∑
s=−N+2;4

(
N

N−s
2

)
= 2N−1, s = Sz (3.4.8)

Arranging the entries in a symmetric matrix, the number of periodic dimer configura-

tions for the rotated orientation is

(ZM×N) =




4 8 16 32 64 . . .

8 24 80 288 1,088 . . .

16 80 448 2,624 15,616 . . .

32 288 2,624 26,752 280,832 . . .

64 1,088 15,616 280,832 5,080,064 . . .
...

...
...

...
...

. . .




, M, N = 1, 2, 3, . . . (3.4.9)

It is easy to recognize the integer sequences [179] in the first 3 rows. The formulas (3.4.4)

look unwieldy but are straightforward to code in Mathematica [150]. In particular, for

comparison, the number of periodic dimer configurations Z̃8×8 on an 8 × 8 square lattice

in the usual orientation and the number Z8×8 in the rotated orientation are

Z̃8×8 = 311,853,312, Z8×8 = 38,735,278,017,380,352 (3.4.10)

The difference in magnitude observed here is due to the difference in the unit cells by a
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linear factor
√

2 on each edge of the rectangle. This is in accord with the fact that an M × N

rectangle in the original orientation has MN/2 dimers compared to MN dimers in the

rotated orientation. While the precise counting of dimer configurations differs in the two

orientations, the asymptotic growth (3.2.26) per dimer coincide

(Z̃2M,N)
1

MN ∼ (Z̃M,2N)
1

MN ∼ (ZM,N)
1

MN ∼ exp( 2G
π ) (3.4.11)

3.5 Conclusion

It is often stated that two-dimensional lattice models are exactly solvable if their Boltzmann

weights satisfy the local Yang-Baxter equation so that they admit a family of commuting

transfer matrices with an infinite number of conserved quantities. In a sense, Yang-Baxter

integrability is the gold standard for solvability on the lattice. Until now, dimers has been

solved exactly by Pfaffian and other techniques but not by Yang-Baxter methods. Now,

dimers is brought firmly into the framework of Yang-Baxter integrability. For periodic

transfer matrices, through the special inversion identity, this has enabled the detailed cal-

culation of the dimer model spectra on the cylinder in the Z4, Ramond and Neveu-Schwarz

sectors for arbitrary finite sizes. Taking a trace to form a torus and combining these sectors

at the isotropic point u = λ
2 = π

4 yields explicit formulas for the counting of dimer config-

urations on arbitrary periodic M × N square lattices. Because the orientation of the dimers

is rotated by 45◦, the precise counting of these states differs from the counting of config-

urations for the usual orientation on the square lattice even though the residual entropies

coincide.

The inclusion of a spatial anisotropy in the form of a spectral parameter u enables the

analytic calculation of the complete finite-size spectra of dimers yielding the central charge

c = −2 and conformal weights ∆ = − 1
8 , 0, 3

8 . Remarkably, the modular invariant parti-

tion function precisely coincides with that of critical dense polymers sector-by-sector even

though in critical dense polymers it is required the implementation of a modified trace.

Since the bulk CFTs appear to be the same, at least in terms of spectra, it is tempting to

argue that dimers and critical dense polymers lie in the same universality class. However, to
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reach a definitive answer it is necessary to research further if the Virasoro dilatation opera-

tor L0 for the dimer model manifests a non-trivial Jordan cell structure in other geometries

iwith different boundary conditions. This question motivated a successive investigation,

presented and explained in the third chapter of my thesis, where the the anisotropic dimer

model is studied on a strip with certain types of Kac boundary conditions.





Chapter 4

Yang-Baxter Integrable Dimers on a
Strip

Using the theory of the Yang-Baxter integrable free-fermion dimer model, as it has been outlined in

the previous chapter, we can now study dimers on the strip geometry. We establish and solve inversion

identities for the dimer model on a strip of arbitrary finite size N with vacuum boundary conditions

and r-type seam of width w = 1. In the continuum scaling limit, in sectors with magnetization Sz,

we obtain the conformal weights ∆s =
(
(2 − s)2 − 1

)
/8 where s = |Sz| + 1 = 1, 2, 3, . . .. We

further show that the corresponding finitized characters χ(N)
s (q) decompose into sums of q-Narayana

numbers or, equivalently, skew q-binomials. In the particle representation, the local face tile operators

give a representation of the fermion algebra and the fermion particle trajectories play the role of nonlocal

(logarithmic) degrees of freedom. We argue that, in the continuum scaling limit, there exists nontrivial

Jordan cells in the Virasoro dilatation operator L0. This confirms that the dimer model gives rise to a

logarithmic conformal field theory with central charge c = −2, minimal conformal weight ∆min = − 1
8

and effective central charge ceff = 1.

4.1 Introduction

The dimer model [70, 155] was solved exactly [73–75, 157] in the early sixties. After more

than 50 years, the dimer model continues to be the subject of extensive study [76, 82–87,

89]. The current interest is twofold: (i) to understand the finite-size effects of boundary

conditions and steric effects [69, 158–160] under the influence of infinitely repulsive hard-

core local interactions and (ii) to understand the conformal description of dimers in the

continuum scaling limit. Traditionally, it is asserted that dimers is described [62, 79, 80] by

a c = 1 Gaussian free field and a number of authors [83, 84] have suggested that dimers is

115
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described by a logarithmic Conformal Field Theory (CFT). However, without full access to

various sectors and boundary conditions on the strip, it is difficult to distinguish between

a c = 1. Recently, the dimer model was shown [132] to be Yang-Baxter integrable [31] by

mapping [46, 61, 69] it onto the free-fermion six-vertex model [34, 36–40, 161]. Notably, this

maps six-vertex configurations onto dimer configurations where the dimers are rotated by

45◦, as shown in Figures 4.2, 3.4 and 4.4, compared to their usual orientation parallel to the

bonds of the square lattice. This technique combined with inversion identities [31,162,163]

enables dimers to be solved exactly for finite lattices with various boundary conditions and

topologies. The conformal properties can therefore be readily extracted from the finite-

size scaling behaviour. On this basis, it was argued in [132] that dimers is best described

as a logarithmic CFT with effective central charge ceff = 1 but central charge c = −2 in

agreement with the findings of [83, 84]. The primary characterization of logarithmic CFTs

is the appearance of nontrivial Jordan cells in the Virasoro dilation operator L0. Indeed

for simple boundary conditions on the strip, corresponding to the Uq(sl(2))-invariant XX

Hamiltonian H of the free-fermion six-vertex model, it was shown [132] that H admits

nontrivial Jordan cells for finite systems. Since the appearance of these cells is stable as the

system size increases these cells are expected to persist for large sizes and appear in the

Virasoro dilation operator L0.

In this chapter, we solve exactly the anisotropic square lattice dimer model with the

45◦ rotated orientation on the strip in sectors labelled by the magnetization Sz of the re-

lated free-fermion six-vertex model. This is achieved, using Yang-Baxter integrability, by

mapping the dimer model with given boundary conditions onto a free-fermion six-vertex

model and solving the associated inversion [31, 162, 163] identities satisfied by the double

row transfer matrices. The solution of the inversion identities allows to obtain the exact

finite spectra in the various sectors. Finite-size scaling then yields the central charge and

the conformal weights. In addition, combinatorial analysis of the patterns of zeros, in the

complex spectral parameter plane, of the double row transfer matrix eigenvalues allows

us to obtain finitized characters. We confirm the central charge c = −2 and the conformal

weights ∆s =
(
(2 − s)2 − 1

)
/8 with s = 1, 2, 3, . . .. Remarkably, although the characters

are different, the conformal weights coincide with those in the first column of the infinitely
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Figure 4.1: Kac table of conformal weights ∆r,s of critical dense polymers taken from [168].
The conformal weights of dimers coincide with the conformal weights in the first (r = 1)
column of this Kac table. Both theories are described by CFTs with c = −2 although their
conformal characters are different.

extended Kac table of critical dense polymers [124, 167–170, 180] as shown in Figure 4.1.

The layout of the chapter is as follows. In Section 4.2, we recall the rotated dimer

model on the square lattice and review its relation to the free-fermion six-vertex model.

We also describe the underlying free-fermion and Temperley-Lieb algebras. In Section 4.3,

we present the local Yang-Baxter relations of the six-vertex model using the particle repre-

sentation of the planar algebra and establish the commutation of the double row transfer

matrices. In Section 4.4, we specialize to the dimer model and solve the associated in-

version identities on the strip for the finite size-spectra. This involves the combinatorial

analysis of the patterns of zeros of the eigenvalues and the empirical determination of se-

lection rules to fix the eigenvalue degeneracies which are not fixed by the functional equa-
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tions alone. Jordan decompositions of the isotropic double row transfer matrices and their

quantum Hamiltonians, for some small system sizes, are presented in Section 4.5 to reveal

the existence of nontrivial Jordan cells of rank 2 . Assuming the stability of these Jordan

cells for large system sizes N, the persistence of these Jordan cells in the continuum scal-

ing limit implies that the CFT describing the dimer model is logarithmic. We finish with

some concluding remarks in Section 4.6 comparing dimers with critical dense polymers.

Details of the proof of the inversion identities and the properties of the skew q-binomials

appearing in the selection rules are relegated to Appendices.

4.2 Dimers as a Free-Fermion Six-Vertex Model

4.2.1 Face tiles and equivalence of vertex, particle and dimer representations

The mapping between the free-fermion six-vertex model and dimer configurations was

given in [132]. The allowed six-vertex (arrow conserving) face configurations and the

equivalent tiles in the particle (even and odd rows) and dimer [69] representations are

shown in Figure 4.2. The vertex (arrow) degrees of freedom σj = ±1 and the particle occu-

pation numbers aj =
1
2(1 − σj) = 0, 1 live on the medial lattice. The Boltzmann weights of

the six-vertex tiles are

a(u) = ρ
sin(λ − u)

sin λ
, b(u) = ρ

sin u

sin λ
, c1(u) = ρg, c2(u) =

ρ

g
, λ ∈ (0, π), ρ ∈ R

(4.2.1)

The spectral parameter u plays the role of spatial anisotropy with u = λ
2 being the isotropic

point. Geometrically [172], varying u effectively distorts a square tile into a rhombus with

an opening anisotropy angle ϑ = πu
λ . The arbitrary parameter ρ is an overall normalization.

Assuming boundary conditions such that there are an equal number of sources and sinks

of horizontal arrows (vertices c1 and c2) along any row, the transfer matrix entries are all

independent of the gauge factor g.



4.2 Dimers as a Free-Fermion Six-Vertex Model 119

or

︸ ︷︷ ︸
a(u)

︸ ︷︷ ︸
b(u)

︸ ︷︷ ︸
c1(u)

︸ ︷︷ ︸
c2(u)

Figure 4.2: Equivalent face tiles of the six-vertex model in the vertex, particle (even and odd
rows) and dimer representations. On the strip, the odd and even rows alternate. For peri-
odic boundary conditions, all rows are odd. The heavy particle lines are drawn whenever
the arrows disagree with the reference state as shown in Figure 4.3. The particles move up
and to the right on odd rows and up and to the left on even rows.

Figure 4.3: Reference states for the single and double row transfer matrices for mapping
onto the particle representation. The reference arrows point up and to the right for the
single row transfer matrices. For the double row transfer matrices, the reference arrows
point up and right on odd rows and up and left on even rows.
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At the free-fermion point (λ = π
2 ), the six-vertex face weights reduce to

a(u) = ρ cos u, b(u) = ρ sin u, c1(u) = ρg, c2(u) =
ρ

g
, ρ ∈ R (4.2.2)

These weights satisfy the free-fermion condition

a(u)2 + b(u)2 = c1(u)c2(u) (4.2.3)

As shown in Section 3.2.2, with the special choice of gauge g = z = eiu, the tiles give a

representation of the free-fermion algebra with generators { f j, f †
j } and, consequently, also

a representation of the Temperley-Lieb algebra [175] with generators {ej} and loop fugacity

β = 2 cos λ = 0. Explicitly, the face transfer operators are

Xj(u) = ρ(cos u I + sin u ej) (4.2.4)

This Temperley-Lieb model is directly equivalent to an anisotropic dimer model as shown

in Figures 4.2, 3.4 and 4.4. A dimer weight is assigned to the unique square face which

is half-covered by the dimer as shown in Figure 3.4. The statistical weights assigned to

“horizontal” and “vertical” dimers are

ζh(u) = a(u) = ρ cos u, ζv(u) = b(u) = ρ sin u (4.2.5)

Setting g = ρ, and allowing for the facts that (i) the c1 face has two allowed configurations

and (ii) no dimer covers the c2 face, it follows that

c1(u) = ζh(u)
2 + ζv(u)

2 = ρ2(cos2 u + sin2 u) = ρ2, c2(u) = 1 (4.2.6)

Additionally, fixing ρ =
√

2 at the isotropic point (u = λ
2 = π

4 ) gives

a(π
4 ) = 1, b(π

4 ) = 1, c1(
π
4 ) = 2, c2(

π
4 ) = 1 (4.2.7)

It follows that, with this gauge and normalization, the partition function at the isotropic

point gives the correct counting of distinct dimer configurations.
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xx−1 1 1

Figure 4.4: Typical dimer configuration on a 6 × 4 strip with vacuum boundary conditions
in the vertex, particle and dimer representations. For the vertex representation, the bound-
ary arrows can be in either one of the two possible directions (corresponding to a particle
or vacancy in the particle representation). Particles move up and right on odd rows and up
and left on even rows. The number of particles/down arrows inside the strip is conserved
from double row to double row but not necessarily in intermediate rows. For dimers, there
are two different zigzag edges allowed independently on the left and right edges of each
double row. The left boundary zigzags have weights x, x−1 as shown. The right boundary
zigzags have weight 1.
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In addition to the vertex and dimer representations, the six-vertex free-fermion model

admits a particle representation as shown in Figures 4.2 and 4.4. A reference state on the

strip is fixed as in Figure 4.3. An edge of a given vertex is a segment of a particle trajectory

(and has particle occupation number aj = 1) if its arrow points in the opposite direction

to that of the reference state. Otherwise, if the edge arrow points in the same direction

as the reference state, the edge is not a segment of a particle trajectory (and the particle

occupation is aj = 0). The segments of particle trajectories live on the medial lattice and

are indicated with heavy lines in Figure 4.3. The number of particles is conserved and their

trajectories are non-intersecting. The particle representation is the simplest of the three

representations and is convenient for coding in Mathematica [150] and for manipulations

in the diagrammatic planar algebra [51] so we usually work in the particle representation.

The Z2 arrow reversal symmetry of the vertex model implies a particle-hole duality in the

particle representation.

4.2.2 Free-fermion and Temperley-Lieb algebras

In this section we refer to the previous chapter (section 3.2.2), where the fermionic and

Temperley-Lieb algebras of the free-fermion model (4.3) with λ = π
2 and ρ = 1 in the

specific gauge g = z = eiu have been exhaustively treated.

4.3 Six Vertex Model on the Strip

The commuting double row transfer matrices of the six-vertex model were constructed

algebraically by Sklyanin [181]. In this section, we develop a diagrammatic construction of

the commuting double row transfer matrices of the six-vertex model by generalizing the

methods of [182] and using planar algebras [183].

4.3.1 Local relations

We describe the local relations satisfied by the six-vertex face operators in the planar and

linear algebra settings. Because it has local degrees of freedom, in the form of particle oc-
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cupation numbers, the planar algebra of the six vertex model just involves local tensor con-

tractions of the indices giving the particle numbers. By fixing the planar algebra operators

to act in an arbitrary fixed direction, the local relations presented in this section are eas-

ily established concretely using matrix representations (for example in Mathematica [150]).

Alternatively, a local relation can be established diagrammatically directly in the planar

algebra setting. It then follows that the local relation holds for all matrix representations

and for all choices of the direction of action.

Face operators, symmetries and face weights

As elements of a planar algebra [183], the face operators of the six-vertex model in the

particle representation decompose [174] into a sum of contributions from six elementary

tiles

u, g = s1(−u)

(
+

)
+ s0(u)

(
+

)
+ g + g−1

(4.3.1)

where sk(u) = sin(u+kλ)
sin λ and g is a gauge factor. Multiplication of the tiles in the planar

algebra is given [132,174] by local tensor contraction of indices a, b, c, d, . . . = 0, 1 specifying

the particle occupation numbers on the centers of the tile edges. The face operators are

invariant under reflection about the principal (vertical) diagonal indicated by the marked

corner. Rotating the face operator by 90◦ gives

u, g = s1(−u)

(
+

)
+ s0(u)

(
+

)
+ g + g−1

(4.3.2)

Further rotations by 90◦ give

u, g = u,g−1 , u, g = u,g−1 (4.3.3)
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Only the occupation numbers a, b, c, d = 0, 1 of the edges are important. The colors of the

face operators (indicating their relative orientation) and the internal particle trajectories are

just for easy visual identification so that

= = (4.3.4)

Later, we work in the fixed gauge g = z = eiu with x = eiλ

u = u, z (4.3.5)

Specializing with this gauge gives the generators of the planar Temperley-Lieb algebra

0 = + + + (4.3.6a)

λ = + + x + x−1 (4.3.6b)

where, acting vertically, the first operator acts as the identity and the second acting at po-

sition j acts as the Temperley-Lieb generator ej. Moreover,

u = s1(−u) 0 + s0(u) λ (4.3.7)

More conventionally, the bulk 1 × 1 face weights of the six-vertex model are
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W
( 0

0 0

0

∣∣∣z, g
)
= 0

0

0

0

= 0

0

0

0

= s1(−u)

W
( 1

0 0

1

∣∣∣z, g
)
= 0

1

0

1

= 0

1

0

1

= s0(u)

W
( 0

0 1

1

∣∣∣z, g
)
= 0

1

1

0

= 0

0

1

1

= g−1 (4.3.8)

W
( 1

1 0

0

∣∣∣z, g
)
= 1

0

0

1

= 1

1

0

0

= g

W
( 0

1 1

0

∣∣∣z, g
)
= 1

0

1

0

= 1

0

1

0

= s0(u)

W
( 1

1 1

1

∣∣∣z, g
)
= 1

1

1

1

= 1

1

1

1

= s1(−u)

The set of six allowed (blue) faces is not invariant under rotations through 90◦. There is

therefore no crossing symmetry. Instead, we distinguish the set of six rotated faces (pink)

by the position of the corner marked by the (red) arc. In the blue faces the particles move

up and to the right and in the pink faces they move up and to the left. The face weights

are unchanged under rotations if both the face configurations and the marked corner are

rotated together. Again, the colour of the faces is just for easy visual identification.

The six-vertex face weights can be organized into an Ř-matrices. Explicitly, choosing
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the particular basis {(0, 0), (0, 1), (1, 0), (1, 1)} gives

W
( d

a c

b

∣∣∣z, g
)
= X(u, g)ab

dc, X(u, g) =




s1(−u) 0 0 0

0 g−1 s0(u) 0

0 s0(u) g 0

0 0 0 s1(−u)




(4.3.9a)

W
( d

a c

b

∣∣∣z, g
)
= X̃(u, g)da

cb, X̃(u, g) =




s1(−u) 0 0 g−1

0 0 s0(u) 0

0 s0(u) 0 0

g 0 0 s1(−u)




(4.3.9b)

Let us define

Xj(u, g) = I ⊗ I ⊗ · · · I ⊗ X(u, g)⊗ I · · · ⊗ I ⊗ I (4.3.10)

acting on (C2)⊗N where X(u, g) acts in the slots j and j+ 1 and similarly for X̃(u, g). Setting

X(u) = X(u, z) the generators of the linear Temperley-Lieb algebra are then

Xj(0) = I, Xj(λ) = ej, j = 1, 2, . . . , N (4.3.11)

satisfying

e2
j = βej, ejej±1ej = ej, j = 1, 2, . . . , N, β = x + x−1 (4.3.12)

This corresponds to the linear vertical action of the planar algebra. In particular, defining

the local face operator

Xj(u) = Xj(u, z) = s1(−u) I + s0(u) ej (4.3.13)

leads to the Yang-Baxter equation

Xj(u)Xj+1(u + v)Xj(v) = Xj+1(v)Xj(u + v)Xj+1(u) (4.3.14)
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Inversion relations

The elementary 1 × 1 face weights satisfy two distinct inversion relations. In the planar

algebra they are

Inv1 : u, g −u, 1
g = η1(u) 0 , η1(u) = s1(u)s1(−u) (4.3.15a)

Inv2 : 2λ−u, g u, g = η2(u) 0 , η2(u) = s0(u)s2(−u) (4.3.15b)

In the linear algebra acting from left to right, these become

Xj(u, g)Xj(−u, 1/g) = s1(u)s1(−u) I (4.3.16a)

X̃j(2λ − u, g)X̃j(u, g) = s0(u)s2(−u) I (4.3.16b)

Up to the scalar on the right side, the face X̃j(2λ − u, g) (shown in yellow) is the inverse of

the face X̃j(u, g). We observe the commutation relations

[Xj(u), Xj(v)] = 0, X̃j(u, g), X̃j(v, g)] = 0 (4.3.17)

Yang-Baxter equations

The fundamental Yang-Baxter Equation [31] (YBE) in the planar and linear algebra is

u

v

u+v =

de
u

v

u+v (4.3.18a)

Xj(u)Xj+1(u + v)Xj(v) = Xj+1(v)Xj(u + v)Xj+1(u) (4.3.18b)
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Distorting the faces into rhombi leads to the alternative representation of the YBE as the

equality, for all values of the indices a, b, c, d, e, f = 0, 1, of the two partition functions

u

v

v + u

a

b

c

d

e

f

= v + u

v

u

a

b

c

d

e

f

(4.3.19)

To establish commuting transfer matrices with Kac boundary conditions, we need three

independent YBEs. In the planar algebra, these are

YBE1 :

v−ξ

u+ξ

u+v =

u+ξ

v−ξ

u+v =

u+ξ

v−ξ

u+v =

v−ξ

u+ξ

u+v (4.3.20)

YBE2 :

u−ξ

v−ξ

v−u =

v−ξ

u−ξ

v−u =

v−ξ

u−ξ

v−u =

u−ξ

v−ξ

v−u (4.3.21)

YBE3 :

u+ξ

v+ξ

u−v =

v+ξ

u+ξ

u−v =

v+ξ

u+ξ

u−v =

u+ξ

v+ξ

u−v (4.3.22)

Here ξ is an arbitrary boundary field and the faces with two bold edges are the n × 1
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boundary seams.

Boundary Yang-Baxter equations

In the presence of a boundary, there are addtional local relations in the form of boundary

Yang-Baxter or reflection equations [181, 182, 184]. The nonzero left and right boundary

triangle weights and the corresponding planar operators are independent of u and given

by

KL
(

b
a

)
= x1−2aδ(a, b), KR

(
b
a

)
= δ(a, b) (4.3.23a)

u = x + x−1 , u = + (4.3.23b)

The general right boundary Yang-Baxter equation is

Xj(u − v)KR
j+1(u)Xj(u + v)KR

j+1(v) = KR
j+1(v)Xj(u + v)KR

j+1(u)Xj(u − v) (4.3.24a)

RBYBE:

u − v

u + v

v

u

= u + v

u − v

v

u

= u + v

u − v u

v

=

u + v

u − v

u

v

(4.3.24b)

After removing the right boundary triangles KR
j (u) = I, this reduces to the commutation

relation [Xj(u − v), Xj(u + v)] = 0.

With z = eiu, w = eiv, the general left boundary Yang-Baxter equation is

Xj+1(v−u,
z

w
)KL

j (u)X̃j+1(2λ−u−v, zw)KL
j (v) = KL

j (v)X̃j+1(2λ−u−v, zw)KL
j (u)Xj+1(v−u,

z

w
)

(4.3.25a)
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LBYBE: 2λ−u−v

v − u

v

u

= 2λ−u−v

v − u

v

u

=

v − u

2λ−u−v

u

v

=

2λ−u−v

v − u

u

v

(4.3.25b)

where the gauge factors have been omitted in the diagrams. For the dimer models under

consideration, the boundary triangles are independent of the spectral parameters.

4.3.2 Commuting double row transfer matrices

The general double row transfer matrices are defined by

D(u) = u

u u u − ξ

u u u + ξ

u

. . .

. . .

(4.3.26)

where ξ is an arbitrary boundary field. There are a total of N columns in the bulk and

w = 0, 1 columns in the boundary. We are primarily interested in two cases (i) w = 0 in

which case there is no boundary column and the system is homogeneous and (ii) w = 1

for which the boundary consists of the right-most column with ξ = λ
2 . The specialization

ξ = λ
2 has nice properties compared to other nonzero values of ξ. In particular the inversion

identity can be solved exactly for ξ = λ
2 .

In the six-vertex arrow (or spin) representation, the total magnetization

Sz =
N
∑
j=1

σj = −N ,−N + 2, . . . ,N − 2,N , N = N + w (4.3.27)

is conserved under the action of the transfer matrix. By the Z2 up-down symmetry, the

spectrum for the sectors Sz = ±m coincide for m > 0. More generally, the number of down



4.3 Six Vertex Model on the Strip 131

spins is d = 1
2(N − Sz). The number of up spins is thus N − d = 1

2(N + Sz) and the

counting of states in the Sz sector is given by the binomial (Nd ) with Sz = N mod 2. In

the particle representation, a particle configuration along a row of the double row transfer

matrix takes the form

a = {a, a2, . . . , aN−1, aN }, aj = 0, 1 for j = 1, 2, . . . ,N (4.3.28)

The total number of particles d = ∑
N
j=1 aj coincides with the number of down arrows and

is also conserved. The transfer matrix and vector space of states thus decompose as

D(u) =
N⊕

d=0

Dd(u), dimV (N ) =
N
∑
d=0

dimV (N )
d =

N
∑
d=0

(N
d

)
= 2N = dim (C2)⊗N

(4.3.29)

For comparing the spectra sector-by-sector with critical dense polymers [169] it is useful to

define

ℓ = |N − 2d| = |Sz| =





0, 2, 4, . . . ,N , N even

1, 3, 5, . . . ,N , N odd

(4.3.30)

In the context of critical dense polymers, ℓ is the number of defects.

Setting η1 = η1(u− v), η2 = η2(u+ v) as in (4.3.15), the commutation of the double row

transfer matrices is established diagrammatically

D(u)D(v) =

u u

v v

u u u u − ξ

u u u u + ξ

v v v v − ξ

v v v v + ξ

. . .

· · ·

· · ·

. . .

(4.3.31a)
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Inv2
=

1

η2

u u

v v

u u u u − ξ

u u u u + ξ

v v v v − ξ

v v v v + ξ

. . .

· · ·

· · ·

. . .

2λ−u−v u + v

YBE1
=

1

η2

u u

v v

2λ−u−v u + v

u u u u − ξ

v v v v − ξ

u u u u + ξ

v v v v + ξ

· · ·

· · ·

· · ·

· · ·

Inv1
=

1

η1η2

u u

v v

u u u − ξ

v v v − ξ

u u u + ξ

v v v + ξ

· · ·

· · ·

· · ·

· · ·
v − u u − v

2λ−u−v u + v

YBE2
=

1

η1η2

u u

v v

2λ−u−v u + v

v − u u − v

v v v v − ξ

u u u u − ξ

u u u v + ξ

v v v v + ξ

· · ·

· · ·

· · ·

· · ·
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BYBE
=

1

η1η2

v v

u u

2λ−u−v u + v

v − u u − v

v v v v − ξ

u u u u − ξ

u u u u + ξ

v v v v + ξ

· · ·

· · ·

· · ·

· · ·

YBE3
=

1

η1η2

v v

u u

2λ−u−v u + v

v − u u − v

v v v v − ξ

u u u u − ξ

v v v v + ξ

u u u u + ξ

· · ·

· · ·

· · ·

· · ·

Inv1
=

1

η2

v v

u u

2λ−u−v u + v

v v v v − ξ

u u u u − ξ

v v v v + ξ

u u u u + ξ

· · ·

· · ·

· · ·

· · ·

YBE1
=

1

η2

v v

u u

v v v v − ξ

v v v v + ξ

u u u u − ξ

u u u u + ξ

. . .

· · ·

· · ·

. . .

2λ−u−v u + v
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Inv2
=

v v

u u

v v v v − ξ

v v v v + ξ

u u u u − ξ

u u u u + ξ

. . .

· · ·

· · ·

. . .

= D(v)D(u)

4.4 Solution of Dimers on a Strip and Finite-Size Spectra

In this section, we specialize to the six-vertex model at the free-fermion point with λ = π
2

and x = i corresponding to dimers.

4.4.1 Inversion identities on the strip

In Appendix A, we show that the double row transfer matrices (4.3.26) satisfy the inversion

identities

w = 0 : D(u)D(u+λ) = − tan2 2u
[

cos2Nu − sin2Nu
]2

I (4.4.1)

w = 1 : D(u)D(u+λ) = − tan2 2u
[

sin(u+ξ) sin(u−ξ) cos2Nu − cos(u+ξ) cos(u−ξ) sin2Nu
]2

I

(4.4.2)

The first inversion identity is obtained from the second by dividing both sides by cos4 ξ and

taking the braid limit ξ → i∞. Remarkably, after suitable normalization and specialization,

the commuting double row transfer matrices (4.3.26) satisfy precisely the same inversion

identities as critical dense polymers [124, 168]. Specifically, we find

w = 0 : d(u) =
D(u)

sin 2u
, d(u)d(u + λ) =

(cos2Nu − sin2Nu

cos2u − sin2u

)2
I (4.4.3a)

w = 1, ξ =
λ

2
: d(u) =

2D(u)

sin 2u
, d(u)d(u + λ) =

(
cos2Nu + sin2Nu

)2
I (4.4.3b)
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Using standard inversion identity techniques [31, 162, 163], the last two functional equa-

tions can be solved, for arbitrary finite sizes N, for the eigenvalues d(u) of d(u) subject to

the initial condition and crossing symmetry

d(0) = 1, d(λ − u) = d(u) (4.4.4)

The calculation of the eigenvalues by solving the functional equations (4.4.3a) and

(4.4.3b) follows exactly the same path as in [168]. So let us just summarize the salient

facts. The eigenvalues d(u) are Laurent polynomials in z = eiu. Consequently, they are de-

termined by their complex zeros in the analyticity strip −π
4 ≤ Re u ≤ 3π

4 . Following [168],

these zeros occur as 1-strings in the center of the analyticity strip or as “2-strings” with one

zero on the boundary Re u = −π
4 of the analyticity strip and its periodic image on the other

boundary Re u = 3π
4 . The ordinates of the 1- and 2-strings are quantized and given by

yj = − i

2
ln tan

Ejπ

2N
, Ej =





j, N + w even

j − 1
2 , N + w odd

j ∈ Z (4.4.5)

At each allowed ordinate, there is either two 1-strings, two 2-strings or one 1-string and

one 2-string. The fact that double zeros occur has its origins in the relation between critical

dense polymers and symplectic fermions [121, 164, 165]. Due to complex conjugation sym-

metry, the pattern of zeros in the upper and lower half-planes is the same. We can therefore

focus solely on the lower half-plane. A typical pattern of zeros is shown in Figure 4.5.

A pattern of zeros is completely determined by specifying the location of the 1-strings.

A 1-string at position j is a local elementary excitation with associated conformal energy

Ej. In the ground state, with energy E0, there are no 1-strings. The conformal excitation

energy above the ground state is given by

E = E0 + ∑
j

Ej, j = position of 1-strings (4.4.6)

The lowest state energy is E0 = − c
24 + ∆s where c is the central charge and ∆s is the

conformal weight associated with the particular sector labelled by s = |Sz|+ 1. The lowest
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−π
4

π
4

π
2

3π
4

y5

y4

y3

y2

y1

−y5

−y4

−y3

−y2

−y1

Figure 4.5: A typical pattern of zeros in the complex u-plane associated to a transfer matrix
eigenvalue. Single zeros are shown by grey disks, double zeros are shown by black disks
and the absence of zeros is shown by white disks. The upper and lower half-planes are
related under the Z2 complex conjugation symmetry.
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j = 1

j = 2

...

j = 1

j = 2

...

j = 1

j = 2

...

j = 1

j = 2

...

∆ = 0 ∆ = 1 ∆ = 3 ∆ = 6

∆ = −1/8 ∆ = 3/8 ∆ = 15/8 ∆ = 35/8

∆ = 0 ∆ = 0 ∆ = 1 ∆ = 3

∆ = 3/8 ∆ = −1/8 ∆ = 3/8 ∆ = 15/8

s = 1

s = 2

s = 3

s = 4

r = 1 r = 2 r = 3 r = 4

Ej = j

Ej = j− 1
2

Ej = j

Ej = j− 1
2

Figure 4.6: Lowest or groundstate double-column configurations arranged by sectors in a
Kac table for r, s = 1, 2, 3, 4 for critical dense polymers. The continuation of the pattern for
larger values of r and s is clear. Only the first column with r = 1 relates to dimers. The
solid grey dots represent single 1-strings in the center of the analyticity strip. There are
no double zeros in the center of the analyticity strip for these groundstates. The vacuum
sector with ∆ = 0 lies at (r, s) = (1, 1).

states in each sector exactly coincide with those of critical dense polymers for arbitrary fi-

nite sizes. The zero patterns for these lowest states are encoded as double column diagrams

in Figure 4.6. On the strip, the only difference between dimers and critical dense polymers

with (r, s) = (1, 1) boundary conditions resides in the degeneracy of energy levels and the

counting of states. The finite-size corrections therefore also coincide and the central charge

c = −2 and conformal weights ∆s =
(
(2 − s)2 − 1

)
/8 with s = |Sz|+ 1 = 1, 2, 3, . . . follow

from the same calculation based on Euler-Maclaurin methods.

It follows that the finitized characters take the form

χ(N)
s (q) = q−c/24+∆s ∑

E

qE, E = eigenvalue excitation energy (4.4.7)
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This is a truncated set of conformal eigenenergies of the infinite system. The finitized char-

acters are the spectrum generating functions for the finite set of conformal energies. The

parameter q is the modular nome and arises through the finite-size calculation as

q = exp(−2π
N′

N
sin 2u) (4.4.8)

where N′/N is the lattice aspect ratio. The remaining problem is thus to classify the al-

lowed patterns of zeros and their degeneracies. This is a combinatorial problem and, since

not all patterns of zeros occur, it entails certain selection rules. We determine the classi-

fication of zero patterns empirically based on examining the patterns of zeros for modest

sizes N. For critical dense polymers on the strip the empirical selection rules obtained were

shown rigorously to be correct [185].

4.4.2 Combinatorial analysis of patterns of zeros

Combinatorially, the key building blocks are q-Narayana numbers (or equivalently skew

q-binomials) enumerated by double-column diagrams with dominance.

The information in a zero pattern is simply encoded in a double-column diagram. A

double-column configuration S = (L, R) is called admissible if L � R with respect to the

partial ordering

L � R if Lj ≤ Rj, j = 1, . . . , m (4.4.9)

which presupposes that

0 ≤ m ≤ n ≤ M (4.4.10)
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Admissibility is characterized diagrammatically as in the following example

(4.4.11)

One draws line segments between the occupied sites of greatest height in the two columns,

then between the occupied sites of second-to-greatest height and so on. The double-column

configuration is now admissible if it does not involve line segments with a strictly negative

slope. Thus, in an admissible double-column configuration, there are either no line seg-

ments (m = 0) or each line segment appears with a non-negative slope. Such admissible

diagrams are said to satisfy dominance. At each position or height j, there is zero, one or

two occupied sites corresponding to zero, one or two 1-strings in the lower half-plane.

Combinatorially, the (generalized) q-Narayana numbers
〈 M

m, n

〉
q

are defined as the sum

of the monomials associated to all admissible double-column configurations of height M

with exactly m and n occupied sites in the left and right columns respectively

〈 M

m, n

〉
q
= ∑

S: |L|=m,|R|=n

qE(S) (4.4.12)

These are the basic building blocks to describe the allowed patterns of zeros in each sector.

Physically, these are the generating functions for the spectrum encoded in a double column

diagram with conformal energies Ej = j. The monomials qE(S) need to be scaled by the

factor q−
1
2 (m+n) in sectors with Ej = j − 1

2 . The q-Narayana numbers admit the closed-form
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expressions

〈 M

m, n

〉
q
= q

1
2 m(m+1)+ 1

2 n(n+1)





M

m, n





q

(4.4.13)

= q
1
2 m(m+1)+ 1

2 n(n+1)

(
M

m




q


M

n




q

− qn−m+1


 M

m − 1




q


 M

n + 1




q

)
(4.4.14)

where
[M
m

]
q

is a q-binomial (Gaussian polynomial) and





M

m, n





q

are skew q-binomials, as

in Appendix D.1. The (generalized) q-Narayana numbers coincide with q-Narayana num-

bers [186, 187] when m = n.

4.4.3 Empirical selection rules

In this Section we consider the empirical classification of patterns of zeros for the cases w =

0, 1. Empirically, using Mathematica [150] to examine the spectra out to N = N + w = 8,

we find that the finitized characters are classified in terms of patterns of zeros, double

column diagrams and q-Narayana numbers by

χ(N)
s (q) =





q−c/24+∆1

⌊N−1
2 ⌋

∑
m,n=0

A
(s)
m,n

〈⌊N−1
2

⌋

m, n

〉
q
, s odd, ∆1 = 0

q−c/24+∆2

⌊N−1
2 ⌋

∑
m,n=0

B
(s)
m,n q−

1
2 (m+n)

〈⌊N−1
2

⌋

m, n

〉
q
, s even, ∆2 = − 1

8

(4.4.15)
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The
⌊N+1

2

⌋ × ⌊N+1
2

⌋
matrices A(s) and B(s) have a simple structure as indicated in the

following examples

N = 8 : A(1)=




2 2 2 2

0 2 2 2

0 0 2 2

0 0 0 2



, A(3)=




1 2 2 2

0 1 2 2

0 0 1 2

0 0 0 1



, A(5)=




0 1 2 2

0 0 1 2

0 0 0 1

0 0 0 0



, . . . , A(9)=




0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0




(4.4.16)

N = 7 : B(2)=




1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1



, B(4)=




0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0



, B(6)=




0 0 1 1

0 0 0 1

0 0 0 0

0 0 0 0



, B(8)=




0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0




(4.4.17)

For w = 0, 1 and s odd or even, the finitized characters can be written in terms of q-

binomials

χ(N)
s (q) = q−c/24+∆s

1 + q(s−1)/2

1 + qN /2


 N

1
2 (N + s − 1)




q

, N = N + w (4.4.18)

where

∆s =
(2 − s)2 − 1

8
(4.4.19)

Setting q = 1 gives the correct counting of states χ(N)
s (1) = ( N

1
2 (N+s−1)). Observing that

|q| < 1 and using the result

lim
M→∞


M

m




q

=
1

(q)m
, (q)m =

m

∏
k=1

(1 − qk) (4.4.20)

it follows that in the thermodynamic limit

χs(q) = lim
N→∞

χ(N)
s (q) =

q−c/24+∆s

(q)∞

(1 + q(s−1)/2) (4.4.21)

Notice that, for s = 1, all states are doubly degenerate and that, for s even, the characters

involve half-integer powers of q.
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4.5 Jordan Decompositions

4.5.1 Isotropic double row transfer matrices

It is easy to verify that, at the isotropic point u = λ
2 , the double row transfer matrix D(u) is

not Hermitian. Remarkably, it has real eigenvalues but the Jordan decomposition admits

nontrivial Jordan cells of rank 2:

N = 2, s = 1 :


1 1

0 1


 (4.5.1)

N = 4, s = 1 : 1
2 ⊕




3
2 −

√
2 1

0 3
2 −

√
2


⊕




3
2 +

√
2 1

0 3
2 +

√
2


⊕ 1

2 (4.5.2)

4.5.2 Quantum Hamiltonians

As pointed out in [132], the quantum Hamiltonian

H = − 1
2

d

du
log D(u)

∣∣∣
u=0

(4.5.3)

for dimers on the strip with w = 0 precisely coincides with the Uq(sl(2))-invariant XX

Hamiltonian of the free-fermion six-vertex model

H = −
N−1

∑
j=1

ej = − 1
2

N−1

∑
j=1

(σx
j σx

j+1 + σ
y
j σ

y
j+1)− 1

2 i(σz
1 − σz

N) (4.5.4)

= −
N−1

∑
j=1

( f †
j f j+1 + f †

j+1 f j)− i( f †
1 f1 − f †

N fN) (4.5.5)

where σ
x,y,z
j are Pauli matrices and f j = σx

j − iσ
y
j , f †

j = σx
j + iσ

y
j . This Hamiltonian is mani-

festly not Hermitian. Nevertheless, the spectra of this Hamiltonian is real [188]. Including

all Sz sectors, the Jordan canonical forms for N = 2 and N = 4 respectively are

N = 2 : 0 ⊕

0 1

0 0


⊕ 0 (4.5.6)

N = 4 : 0 ⊕

0 1

0 0


⊕ 0 ⊕ 0 ⊕


0 1

0 0


⊕ 0 ⊕ (−

√
2)⊕


−

√
2 1

0 −
√

2


⊕ (−

√
2)⊕

√
2 ⊕



√

2 1

0
√

2


⊕

√
2

(4.5.7)
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Such Jordan cells for the quantum group invariant XX Hamiltonian were observed in [189].

By comparison, the transfer matrices and Hamiltonians of the (r, s) sectors of critical dense

polymers are diagonalizable [124] and do not exhibit Jordan cells.

In the continuum scaling limit, the Hamiltonian gives the Virasoro dilatation operator

L0. Assuming that the Jordan cells persist in this scaling limit, we see that dimers admits

reducible yet indecomposable representations and so we conclude that, as a CFT, dimers is

logarithmic.

4.6 Conclusion

Although dimers was first solved many years ago, there remain a number of unanswered

questions concerning the Conformal Field Theory (CFT) description of the dimer model

on the square lattice. In a previous paper [132], the dimer model on a cylinder, with 45◦

rotated dimers, was solved exactly. Moreover, the modular invariant conformal partition

function was obtained from finite-size corrections and shown to precisely agree with the

modular invariant partition function of critical dense polymers.

In this thesis, we solved exactly the dimer model on a strip by viewing it as a free-

fermion six-vertex model and using Yang-Baxter techniques. The key is to show that the

commuting double row transfer matrices satisfy special functional equations in the form of

inversion identities. Due to a common underlying Temperley-Lieb algebra, these inversion

identities precisely coincide with those of critical dense polymers. This implies, essentially

through the Temperley-Lieb equivalence, that the two models have eigenvalues exactly in

common but the degeneracy and counting of states differ. Indeed, the lowest eigenvalues

in each sector (labelled by (r, s) = (1, s)) coincide and so the two models share the same

central charge and a common infinite set of conformal weights

c = −2, ∆s = ∆1,s =
(2 − s)2 − 1

8
, s = 1, 2, 3, . . . (4.6.1)

The common negative conformal weight

∆2 = −1

8
(4.6.2)



144 Yang-Baxter Integrable Dimers on a Strip

implies that both CFTs are nonunitary. However, despite these similarities, combinato-

rial analysis of the patterns of zeros of the transfer matrix eigenvalues of dimers leads to

finitized and conformal characters (4.4.18) and (4.4.21) that are distinct from those of crit-

ical dense polymers. So clearly, the dimer model must be regarded as lying in a different

“universality class” to critical dense polymers.

Finally, it is shown that the Jordan canonical form of the isotropic double row trans-

fer matrices and quantum Hamiltonians of dimers on the strip both exhibit Jordan cells.

Assuming that these Jordan cells persist in the scaling limit, this implies that the Virasoro

dilatation operator L0 admits reducible yet indecomposable representations. All this con-

firms that the dimer model is not a rational CFT, rather, we argue that it is described by a

logarithmic CFT with central charge c = −2, minimal conformal weight ∆min = − 1
8 and

effective central charge ceff = 1.



Chapter 5

Conclusion

Yang-Baxter integrability in two-dimensions is the reference test for solvability on the

lattice: if the Yang-Baxter equation is locally satisfied, there exists a family of commut-

ing transfer matrices with an infinite number of conserved quantities, and so the two-

dimensional lattice model under consideration is exactly solvable.

RSOS models form a class of well-known Yang-Baxter integrable lattice models of sta-

tistical mechanics. Although their first formulation dates back to 1984, they continue to be

subject of intensive studies due to the fact that the critical models give rise to a particular

type of conformal field theories, minimal models, which finds many important applica-

tions in condensed matter physics, string theory and statistical mechanics.

In the nonunitary cases, RSOS lattice models are still integrable in the Yang-Baxter

sense. Using the one-dimensional sums arising from Baxter’s off-critical corner transfer

matrix formalism, we have argued that, for m′ > 2m, the nonunitary RSOS(m, m′)1×1 and

RSOS(m, m′)2×2 lattice models lie in the same universality class described by the nonuni-

tary minimal CFT M(m, m′). This result holds even though, in general, RSOS(m, m′)1×1

and RSOS(m, m′)2×2 are distinct lattice models. More specifically, we have conjectured the

explicit bosonic form of the finitized characters and, for modest system sizes N, checked

that these agree with the ground state one-dimensional sums.

In the case m′ = 2m + 1, we have further shown that the ground state one-dimensional

sums of RSOS(m, m′)2×2 agree with those of Jacob and Mathieu [139] based on half-integer

RSOS paths. This connection with a Yang-Baxter integrable lattice model nicely explains

the remarkable observed properties of these half-integer one-dimensional sums. The more

general methods used here allow these observations to be extended to a larger family of

145
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RSOS(m, m′)2×2 lattice models( or possibly all of them). Understanding the connection

between these two different formulations of RSOS paths, which lead to either bosonic or

fermionic forms of the finitized characters, could be an interesting subject of further inves-

tigations.

Until now dimers has been solved exactly by Pfaffian and other techniques but not

by Yang-Baxter methods. The study shown in this thesis brings dimers firmly into the

framework of Yang-Baxter integrability. For periodic transfer matrices, through the special

inversion identity, this has enabled the detailed calculation of the dimer model spectra

on the cylinder in the Z4, Ramond and Neveu-Schwarz sectors for arbitrary finite sizes.

Taking a trace to form a torus and combining these sectors at the isotropic point u = λ
2 =

π
4 yields explicit formulas for the counting of dimer configurations on arbitrary periodic

M × N square lattices. Because the orientation of the dimers is rotated by 45◦, the precise

counting of these states differs from the counting of configurations for the usual orientation

on the square lattice even though the residual entropies coincide.

The inclusion of a spatial anisotropy in the form of a spectral parameter u enables the

analytic calculation of the complete finite-size spectra of dimers yielding the central charge

c = −2 and conformal weights ∆ = − 1
8 , 0, 3

8 . Remarkably, the modular invariant parti-

tion function precisely coincides with that of critical dense polymers sector-by-sector even

though critical dense polymers requires the implementation of a modified trace.

Thanks to the mapping to the six-vertex model at the free fermion point and Yang-

Baxter integrability, the dimer model can be also solved on a strip geometry of arbitrary

finite size. The key point is that the commuting double row transfer matrices satisfy spe-

cial functional equations in the form of inversion identities. Due to a common underlying

Temperley-Lieb algebra, these inversion identities precisely coincide with those of critical

dense polymers. This implies, essentially through the Temperley-Lieb equivalence, that

the two models have eigenvalues exactly in common but the degeneracy and counting of

states differs. Indeed, the combinatorial analysis of the pattern of zeros of the transfer ma-

trix eigenvalues results in finitized characters that are distinct from those of critical dense

polymers. In the continuum scaling limit, as expected, the expressions for the conformal

characters of dimers and critical dense polymers are also different. However, despite the
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dissimilarities, the two models share the same central charge and a common infinite set of

conformal weights corresponding to sectors with r = 1 and s = 1, 2, 3, . . . . The presence of

a common negative conformal weight ∆min = − 1
8 implies that both CFTs are nonunitary.

Finally, it is shown that the Jordan canonical form of the isotropic double row trans-

fer matrices and quantum Hamiltonians of dimers on the strip both exhibit Jordan cells.

Assuming that these Jordan cells persist in the scaling limit, this implies that the Virasoro

dilatation operator L0 admits reducible yet indecomposable representations. All this con-

firms that the dimer model is not a rational CFT, rather, we argue that it is described by a

logarithmic CFT with central charge c = −2, minimal conformal weight ∆min = − 1
8 and

effective central charge ceff = 1.

Looking at future perspectives of research on dimers, we could take advantage of the

Yang-Baxter integrability and use commuting double row transfer matrices and inversion

identities to extend our study to other boundary conditions on the strip or other geome-

tries. These are expected to include boundary conditions analogous to the ”current” (hori-

zontal boundary arrows point to the right) and domain wall (horizontal boundary arrows

point outwards and vertical boundary arrows point inwards) boundaries on the square lat-

tice. Besides, an extensive study of Kac and Robin (r, s) type boundary conditions on the

strip of the square lattice may help to gain a deeper insight into the conformal properties

of dimers. Regarding different lattice geometries, it would be interesting to investigate the

integrability of the dimer model on the checkerboard lattice with periodic boundary condi-

tions using a more general form of the Yang-Baxter equation [190], and compare this result

with a known solution by the Pfaffian method [191]. As a final remark, it is known that

the inversion identity methods extend off criticality to the elliptic eight-vertex free-fermion

model [162]. It would be of interest to study the off-critical dimer model given by the free-

fermion eight-vertex model at λ = π
2 . An extension of the mapping of [69] (Figure 4.2)

suggests that this should involve horizontal and vertical dimers in addition to their 45◦

rotated counterparts.





Appendix A

One-Dimensional Sums and Finitized
Characters of 2 × 2 Fused RSOS Models

A.1 Elliptic Functions

We summarize the definitions and properties of the elliptic functions used throughout this

paper. The standard elliptic theta function ϑ1(u, t) [192] is

ϑ1(u, t) = 2t1/4 sin u
∞

∏
n=1

(1 − 2t2n cos 2u + t4n)(1 − t2n) (A.1.1)

Its conjugate modulus transformation is

ϑ1(u, e−ε) =

√
π

ε
e−(u−π/2)2/εE(e−2πu/ε, e−2π2/ε) (A.1.2)

where

E(w, p) =
∞

∑
k=−∞

(−1)k pk(k−1)/2wk =
∞

∏
n=1

(1 − pn−1w)(1 − pnw−1)(1 − pn) (A.1.3)

The elliptic ϑ1(u) = ϑ1(u, t) function satisfies the fundamental identity

ϑ1(u + x)ϑ1(u − x)ϑ1(v + y)ϑ1(v − y)− ϑ1(u + y)ϑ1(u − y)ϑ1(v + x)ϑ1(v − x)

= ϑ1(x − y)ϑ1(x + y)ϑ1(u + v)ϑ1(u − v) (A.1.4)
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A.2 Yang-Baxter Equation of Critical Fused RSOS(m, m′)2×2 Mod-

els

In this Appendix we discuss the algebraic structure of the solution to the Yang-Baxter equa-

tions for the critical 2 × 2 RSOS models. Following [154], the face transfer operators can be

written as

X j(u) =
s(λ − u)s(2λ − u)

s(2λ)
I + s(u)s(λ − u)Xj +

s(u)s(u + λ)

s(2λ)
Ej, s(u) =

sin u

sin λ

(A.2.1)

where the identity I and the generalized monoids Ej and Xj

I = = Ej = = Xj = =

(A.2.2)

generate the 2 × 2 fused Temperley-Lieb (TL) algebra. This algebra is a one-parameter

specialization of the two-parameter BMW algebra. The properties of the generator Xj were

studied by a number of authors [193–196]. Here it is useful to replace the generator Xj with

the generator

Ξj = = = Xj − β−1Ej, ΞjEj = XjEj − β−1E2
j = 0 (A.2.3)

where

β = β1 = = x + x−1 = 2 cos λ, x = eiλ, βn−1 = [x]n =
xn − x−n

x − x−1
=

sin nλ

sin λ

(A.2.4)
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The generator Ξj is obtained by cabling the two central strings of Xj by decomposing the

identity into orthogonal projectors

I = = + β−1 = pj + β−1ej (A.2.5)

The face transfer operator can now be written as

X j(u) =
s(λ − u)s(2λ − u)

s(2λ)
I + s(u)s(λ − u)Ξj +

s(2u)

s(2λ)
Ej (A.2.6)

In the RSOS representation, the matrices representing Ej and β Ξj admit the following

non-zero rank-1 factorized blocks

Ej :

b

a

c

a

j j+1

= eT
b,a,aẽa,a,c (A.2.7)

β Ξj :

b

a

c

a

j j+1

= xT
b,a,ax̃a,a,c,

b

a−1

c

a+1

j j+1

=

b

a+1

c

a−1

j j+1

= yT
b,a,aỹa,a,c (A.2.8)

Here T denotes the transpose and the triangle weights are given by the row vectors

eb,a,a =
1

Sa−1Sa+1
(Sa−1, Sa, Sa+1), ẽa,a,c =

1

Sa
(Sa+1Sa+2, Sa−1Sa+1, Sa−2Sa−1)

(A.2.9a)

xb,a,a =
1

Sa−1Sa+1
(−S2

a−1, S2a, S2
a+1), x̃a,a,c =

1

S2
a

(−SaSa+2, S2a, Sa−2Sa) (A.2.9b)

yb,a,a = (1, 1), ỹa,a,c =
1

Sa
(Sa+2, Sa−2) (A.2.9c)

where, for fixed a, the vector entries are labelled by b, c = a+ 2, a, a− 2 and b, c = a+ 1, a−
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1 respectively. Using the relations

ẽa,a,b · eb,a,a =

a a

a a

b =
Sa+2 + Sa + Sa−2

Sa
= x2 + 1 + x−2 = β2 (A.2.10a)

x̃a,a,b · xb,a,a =

a a

a a

b =
S2

a−1SaSa+2 + S2
2a + Sa−2SaS2

a+1

Sa−1S2
aSa+1

= x2 + x−2 =
β3

β
(A.2.10b)

ỹa,a,b · yb,a,a =

a+1 a−1

a+1 a−1

b =

a−1 a+1

a−1 a+1

b =
Sa+2 + Sa−2

Sa
= x2 + x−2 =

β3

β
(A.2.10c)

ẽa,a,b · xb,a,a =

a a

a a

b =
−Sa−1Sa+2 + S2a + Sa−2Sa+1

Sa
= 0 (A.2.10d)

x̃a,a,b · eb,a,a =

a a

a a

b =
−Sa−1Sa+2 + S2a + Sa−2Sa+1

Sa−1SaSa+1
= 0 (A.2.10e)

it follows that, after suitable normalization, Ej and Ξj are commuting orthogonal idempo-

tents. This is seen graphically as

E2
j =

j j+1

b

a a

d

a a

c

= β2

b

a

c

a

j j+1

= β2Ej, β2Ξ2
j =

j j+1

b

a a′

d

a a′

c

=
β3

β

b

a′

c

a

j j+1

=
β3

β
Ξj

(A.2.11)
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Similarly, the relations EjEj±1Ej = Ej and Ej Ξj±1Ej = Ej follows graphically as

EjEj+1Ej =

j j+1 j+2

b

aa

a a

d d

c

=

b

a

c

a

j j+1 j+2

= Ej,

a a

d d

a a

= 1 (A.2.12)

βEj Ξj±1Ej =

j j+1 j+2

b

aa

a a

e d

c

=
β3

β

b

a

c

a

j j+1 j+2

=
β3

β
Ej,

a a

e d

a a

=
β3

β

(A.2.13)

In addition, setting Yj = βΞj, the generators satisfy the following cubic relations in

accord with (3.34) of [118]

EjYj±1Ej =
β3

β Ej (A.2.14a)

YjEj±1Ej = (Yj±1 + Ej±1 − 1)Ej (A.2.14b)

YjYj±1Ej =
( β3

β − 1
)
(Yj±1 + Ej±1 − 1)Ej (A.2.14c)

(Yj + Ej)Ej±1(Yj + Ej) = (Yj±1 + Ej±1)Ej(Yj±1 + Ej±1) (A.2.14d)

YjYj±1Yj −Yj±1YjYj±1 = β2(Ej±1Yj − EjYj±1 +YjEj±1 −Yj±1Ej + Ej − Ej±1) + Yj −Yj±1

(A.2.14e)
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Let Zj = Yj + Ej, then

EjZj±1Ej = β2 Ej (A.2.15a)

ZjEj±1Ej = Zj±1 Ej (A.2.15b)

ZjZj±1Ej = ((β2 − 1)Zj±1 + 1)Ej (A.2.15c)

Zj Ej±1Zj = Zj±1 Ej Zj±1 (A.2.15d)

YjYj±1Yj − Yj±1YjYj±1 = β2(Ej±1Yj − EjYj±1 +YjEj±1 −Yj±1Ej + Ej − Ej±1) +Yj − Yj±1

(A.2.15e)

Expanding the Yang-Baxter equation

X j(u)X j±1(u + v)X j(v) = X ±1(v)X j(u + v)X j±1(u) (A.2.16)

in terms of the face operators (A.2.6) as a multivariable Laurent polynomial in z = eiu

and w = eiv, equating coefficients and using these cubic relations, it follows that the Yang-

Baxter equations is satisfied.



Appendix B

Yang-Baxter Solution of Dimers as a
Free-Fermion Six-Vertex Model

B.1 Proof of Inversion Identities on the Cylinder

For completeness, in this appendix, we present the derivation following Felderhof [162] of

the inversion identities (3.3.8) for periodic boundary conditions on the cylinder

Td(u)Td(u + λ) =
(

cos2N u − sin2N u
)

I, N odd (B.1.1a)

Td(u)Td(u + λ) =
(

cos2N u + sin2N u + 2(−1)d sinN u cosN u
)

I, N even (B.1.1b)

For simplicity, since the transfer matrix is independent of the gauge, we work in the gauge

g = ρ = 1.

For a 2-column at position j with fixed aj, bj, let us define the following four 4 × 4 ma-

trices

R


bj

aj


 =

u

u+λ

aj

bj

c

c′

d

d′
(B.1.2)

Ordering the four intermediate basis states as


c′

c


 =


0

0


 ,


1

0


 ,


0

1


 ,


1

1


 (B.1.3)
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the explicit form of these R matrices is

R


0

0


 =




− sin u cos u 0 0 0

0 cos2 u 0 0

0 1 − sin2 u 0

0 0 0 sin u cos u




, R


1

1


 =




sin u cos u 0 0 0

0 − sin2 u 1 0

0 0 cos2 u 0

0 0 0 − sin u cos u




R


1

0


 =




0 0 0 0

cos u 0 0 0

cos u 0 0 0

0 − sin u sin u 0




, R


0

1


 =




0 sin u − sin u 0

0 0 0 cos u

0 0 0 cos u

0 0 0 0




(B.1.4)

It follows that the matrix entries of the left-side of the inversion identity are given by the

trace of an ordered matrix product

[Td(u)Td(u + λ)]a,b = Tr
N

∏
j=1

R


bj

aj


 , aj, bj = 0, 1 (B.1.5)

where the lower and upper row configurations are a = {a1, a2, . . . , aN}, b = {b1, b2, . . . , bN}.

Carrying out a similarity transformation with the matrices

S =




0 x1 x2 0

x3 0 0 x4

x5 0 0 x6

0 x7 x8 0



=




0 0 1 0

0 0 0 −1

1 0 0 0

0 1 −1 0




, x1 = x3 = x6 = 0, x2 = x5 = x7 = 1, x4 = x8 = −1

(B.1.6)

S−1 =




0 y1 y2 0

y3 0 0 y4

y5 0 0 y6

0 y7 y8 0



=




0 0 1 0

1 0 0 1

1 0 0 0

0 −1 0 0




, y1 = y6 = y8 = 0, y2 = y3 = y4 = y5 = 1, y7 = −1

(B.1.7)
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brings the four “diagonal” R matrices simultaneously to upper triangular form

SR


0

0


S−1 =




cos2 u 0 0 1

0 sin u cos u 0 0

0 0 − sin u cos u 0

0 0 0 − sin2 u




(B.1.8a)

SR


1

1


S−1 =




cos2 u 0 0 0

0 − sin u cos u 0 0

0 0 sin u cos u 0

0 0 0 − sin2 u




(B.1.8b)

SR


1

0


S−1 =




0 0 cos u 0

0 0 0 sin u

0 0 0 0

0 0 0 0




(B.1.8c)

SR


0

1


S−1 =




0 − cos u 0 0

0 0 0 0

0 0 0 sin u

0 0 0 0




(B.1.8d)

The required inversion identities (B.1.1) then follow immediately

Td(u)Td(u + λ) =
[
(cos2 u)N + (− sin2 u)N + (−1)N−d(sin u cos u)N + (−1)d(sin u cos u)N

]
I(B.1.9)





Appendix C

Yang-Baxter Integrable Dimers on a
Strip

C.1 Proof of Inversion Identities on the Strip

In this appendix, we prove the inversion identity (4.4.1) for dimers on the strip

D(u)D(u + λ) =
(

cos2N u − sin2N u
)2

I, w = 0 (C.1.1)

where D(u) is the double row transfer matrix (4.3.26). The inversion identity (4.4.2) is

proved similarly. Throughout this section, we work in the Temperley-Lieb representation

with the gauge g = z = eiu.

For a column at position j with fixed aj, bj = 0, 1, let us define the four 16 × 16 matrices

R


aj

bj


 =

u

u

u+λ

u+λ

bj

aj

f

e

d

c

f ′

e′

d′

c′

(C.1.2)

The matrix elements of the product of double row transfer matrices, with upper and lower
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particle state configurations a = {a1, a2, . . . , aN} and b = {b1, b2, . . . , bN}, are then given

by

[
D(u)D(u + λ)

]
b,a

= 〈left|
N

∏
j=1

R


aj

bj


 |right〉, aj, bj = 0, 1 (C.1.3)

where the left and right boundary vectors are

〈left| = (−1, 1, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ V6 (C.1.4)

|right〉 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ∈ V6 (C.1.5)

Setting

s = sin u, c = cos u, z = eiu, x = i (C.1.6)

and ordering the sixteen intermediate basis states as




0

0

0

0


,




0

0

1

1


,




1

1

0

0


,




1

1

1

1


,




0

1

1

0


,




1

0

0

1


;




0

0

0

1


,




0

0

1

0


,




0

1

0

0


,




0

1

0

1


,




0

1

1

1


,




1

0

0

0


,




1

0

1

0


,




1

0

1

1


,




1

1

0

1


,




1

1

1

0




(C.1.7)



C.1 Proof of Inversion Identities on the Strip 161

the four R


aj

bj


 matrices are given explicitly by

R


0

0


 =




c2s2 0 0 0 ics
z2 0 0 0 0 0 0 0 0 0 0 0

s2z2 s4 0 0 ics 0 0 0 0 0 0 0 0 0 0 0

−c2z2 0 c4 0 −ics 0 0 0 0 0 0 0 0 0 0 0

−z4 −s2z2 c2z2 c2s2 −icsz2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −c2s2 0 0 0 0 0 0 0 0 0 0 0

icsz2 ics −ics − ics
z2 0 −c2s2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 cs3 0 is2 0 is2

z2 0 0 0 0 0

0 0 0 0 0 0 0 cs3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −c3s 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −c2s2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −csz2 0 −cs3 0 0 0 0 0

0 0 0 0 0 0 0 ic2 0 0 0 −c3s 0 0 0 − ic2

z2

0 0 0 0 0 0 0 0 0 0 0 0 −c2s2 0 0 0

0 0 0 0 0 0 0 ic2z2 0 0 0 −csz2 0 −cs3 0 −ic2

0 0 0 0 0 0 −csz2 0 −is2z2 0 −is2 0 0 0 c3s 0

0 0 0 0 0 0 0 −csz2 0 0 0 0 0 0 0 c3s




(C.1.8)

R


1

1


 =




c2s2 c2

z2 − s2

z2 − 1
z4 0 ics

z2 0 0 0 0 0 0 0 0 0 0

0 c4 0 − c2

z2 0 ics 0 0 0 0 0 0 0 0 0 0

0 0 s4 s2

z2 0 −ics 0 0 0 0 0 0 0 0 0 0

0 0 0 c2s2 0 −icsz2 0 0 0 0 0 0 0 0 0 0

icsz2 ics −ics − ics
z2 −c2s2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −c2s2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 c3s 0 0 0 0 0 0 0 − cs
z2 0

0 0 0 0 0 0 0 c3s 0 0 0 is2 0 is2

z2 0 − cs
z2

0 0 0 0 0 0 ic2 0 −cs3 0 − cs
z2 0 0 0 − ic2

z2 0

0 0 0 0 0 0 0 0 0 −c2s2 0 0 0 0 0 0

0 0 0 0 0 0 ic2z2 0 0 0 −c3s 0 0 0 −ic2 0

0 0 0 0 0 0 0 0 0 0 0 −cs3 0 − cs
z2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −c2s2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −c3s 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 cs3 0

0 0 0 0 0 0 0 0 0 0 0 −is2z2 0 −is2 0 cs3




(C.1.9)
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R


0

1


 =




0 0 0 0 0 0 cs2

z 0 is3

z 0 is
z3 0 0 0 0 0

0 0 0 0 0 0 cs2z 0 0 0 ic2s
z 0 0 0 0 0

0 0 0 0 0 0 −cz 0 −is3z 0 − is
z 0 0 0 c3

z 0

0 0 0 0 0 0 −cz3 0 0 0 −ic2sz 0 0 0 c3z 0

0 0 0 0 0 0 0 0 −cs2z 0 − cs2

z 0 0 0 0 0

0 0 0 0 0 0 ic2sz 0 0 0 0 0 0 0 − ic2s
z 0

0 0 0 0 0 0 0 0 0 ics2

z 0 0 0 0 0 0

s3z s3

z 0 0 ics2

z 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 − c2s
z 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −c2sz 0 0 0 0 0 0

ics2z ic
z − ics2

z − ic
z3 0 − c2s

z 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ic2sz 0 0 0 −cs2z 0 − cs2

z 0 − ic2s
z

0 ic3z 0 − ic3

z 0 −c2sz 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −ics2z 0 0 0 0 0 0

−sz3 −sz c2sz c2s
z −ics2z 0 0 0 0 0 0 0 0 0 0 0




(C.1.10)

R


1

0


 =




0 0 0 0 0 0 0 c3

z 0 0 0 ic2s
z 0 0 0 − c

z3

0 0 0 0 0 0 0 c3z 0 0 0 isz 0 is3

z 0 − c
z

0 0 0 0 0 0 0 0 0 0 0 −ic2sz 0 0 0 cs2

z

0 0 0 0 0 0 0 0 0 0 0 −isz3 0 −is3z 0 cs2z

0 0 0 0 0 0 0 ic2sz 0 0 0 0 0 0 0 − ic2s
z

0 0 0 0 0 0 0 0 0 0 0 −cs2z 0 − cs2

z 0 0

c2sz c2s
z − s

z − s
z3 0 ics2

z 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ics2

z 0 0 0

ic3z 0 − ic3

z 0 − c2s
z 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ic2sz 0 −cs2z 0 − cs2

z 0 0 0 − ic2s
z 0

icz3 ics2z −icz − ics2

z −c2sz 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 − c2s
z 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −c2sz 0 0 0

0 0 s3z s3

z 0 −ics2z 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −ics2z 0 0 0




(C.1.11)

The matrices R


0

0


 and R


1

1


 are block diagonal under a direct sum decomposition of
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the intermediate basis of states

V = V6 ⊕ V10 (C.1.12)

so that

R


a

a


 : V6 7→ V6, V10 7→ V10 (C.1.13)

We show that non-diagonal matrix elements with a 6= b vanish. In this case, the states

on the left and right in (C.1.3) are built up by the action of R


a

b


 on the left and right

boundaries 〈left| and |right〉 with the occurrence of at least one R


 a

1−a


matrix. We begin

building up the states by acting with R


a

a


 on the left and right states. We find that

vleft = 〈left|
n

∏
j=0

R


aj

aj


 ∈ Vleft, vright =

n

∏
j=0

R


aj

aj


 |right〉 ∈ Vright, n ≥ 0(C.1.14)

where the vector spaces Vleft,Vright are given by the linear spans

Vleft =
〈{

〈left|, 〈left|R

0

0


, 〈left|R


1

1


, 〈left|R


0

0




2}〉
(C.1.15)

Vright =
〈{

|right〉, R


0

0


|right〉, R


1

1


|right〉, R


0

0




2

|right〉
}〉

(C.1.16)

These spaces are stable under the action of further R


a

a


 matrices. The linear indepen-

dence of vectors is easily checked by calculating the rank of suitable matrices in Mathe-

matica [150]. Since

vleftR


 a

1−a


 vright = 0 (C.1.17)
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let assume next that there are at least two R


 a

1−a


matrices. In this case, we similarly find

that

v′left = vleftR


 a

1−a




n

∏
j=0

R


aj

aj


 ∈

〈{
〈left|R


 a

1−a


 , 〈left|R


0

0


 R


 a

1−a



}〉

= V ′
left, n ≥ 0

(C.1.18)

v′right=
n

∏
j=0

R


aj

aj


 R


 a

1−a


 vright ∈

〈{
R


 a

1−a


 |right〉, R


 a

1−a


 R


0

0


 |right〉

}〉
= V ′

right, n ≥ 0

(C.1.19)

where the vector spaces are orthogonal. So next suppose that there are three or more

R


 a

1−a


 matrices. In this case, we observe that

vleftR


 a

1−a




n

∏
j=0

R


aj

aj


 R


 a

1−a


 = R


 a

1−a




n

∏
j=0

R


aj

aj


 R


 a

1−a


 vright = 0 (C.1.20)

so that the occurrence of the matrices R


0

1


 and R


1

0


 must alternate along the segment.

Moreover, we observe that

v
eig
left = v′leftR


 a

1−a


 R


1−a

a


 , v′left ∈ V ′

left, v
eig
right = R


 a

1−a


 R


1−a

a


 v′right, v′right ∈ V ′

right

(C.1.21)

are simultaneous (respectively left and right) eigenvectors of R


0

0


 and R


1

1


 satisfying

the orthogonality

v
eig
left · v

eig
right = 0, v

eig
leftR


 a

1−a


 = 0, R


 a

1−a


 v

eig
right = 0 (C.1.22)
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It follows that the only nonzero matrix elements in (C.1.3) are diagonal with a = b and

[
D(u)D(u + λ)

]
a,a

= 6〈left|
N

∏
j=1

R


aj

aj




6

|right〉6, aj = 0, 1. (C.1.23)

where R


a

a




6

denotes the 6 × 6 diagonal block of R


a

a


 and

6〈left| = (−1, 1, 1,−1, 0, 0), |right〉6 = (1, 1, 1, 1, 0, 0)T (C.1.24)

Let us now suppose that a = b = (0, 0, 0, . . . , 0, 0) and observe that R


0

0


 can be

diagonalized by a similarity transformation

S−1R


0

0


S=




s4 0 0 0 0 0

0 c4 0 0 0 0

0 0 s2c2 0 0 0

0 0 0 s2c2 0 0

0 0 0 0 −s2c2 0

0 0 0 0 0 −s2c2




, S=




0 0 − (z4−1)
2
(z4+1)

4z8
z8−1
2z8 0 z4+1

z4

− (z4+1)
2

2z4 0 − (z4−1)
2

2z4
z4−1

z4 0
(z4+1)

2

2z4

0 − (z4+1)
2

2z4 − (z4−1)
2

2z4
z4−1

z4 0
(z4+1)

2

2z4

−z4 − 1 −z4 − 1 0 z8−1
2z4 0 z4 + 1

0 0 0 0 0 z8−1
2z4

z8−1
2z4

z8−1
2z4

z8−1
2z4 0 z8−1

2z4 0




(C.1.25)

with

6〈left|S =
{

z8−1
2z4 , z8−1

2z4 ,− (z4−1)
2
(3z4−1)

4z8 ,− (z4−1)
3

2z8 , 0, 0

}
(C.1.26)

S−1|right〉6 =
{

2z4(z4−1)

(z4+1)
3 ,

2z4(z4−1)

(z4+1)
3 ,− 4z4(z4−1)

(z4+1)
3 ,

2z4(5z8−2z4+1)

(z4−1)(z4+1)
3 , 0, 0

}
(C.1.27)

Putting everything together, it follows that

6〈left| R


0

0




N

6

|right〉6 = − tan2 2u
[
c4N − 2(sc)2N + s4N

]
= − tan2 2u [c2N − s2N ]2(C.1.28)

The last step is to extend this result to all the other diagonal segments. To do this let us
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define

∆R =
2z2

1 − z4

[
R


0

0


− R


1

1



]

(C.1.29)

We then find, by induction on N, that

N−1

∏
j=1

R


aj

aj


 ∆R |right〉6 = (−s2c2)N−1(z−2, cos 2u, cos 2u, z2, i sin 2u, i sin 2u)T, aj = 0, 1(C.1.30)

It follows that

6〈left|
N−1

∏
j=1

R


aj

aj


 ∆R |right〉6 = 0 (C.1.31)

So the weight of the diagonal matrix elements with b = a are independent of a

[
D(u)D(u + λ)

]
a,a

= 6〈left|
N

∏
j=1

R


aj

aj




6

|right〉6 = − tan2 2u [c2N − s2N ]2 (C.1.32)



Appendix D

Yang-Baxter Integrable Dimers on a
Strip

D.1 Skew q-Binomials

The skew q-binomials, related to generalized q-Narayana numbers (4.4.13), are [124, 180]





M

m, n





q

=


M

m




q


M

n




q

− qn−m+1


 M

m − 1




q


 M

n + 1




q

= q−M+n
(

M

m




q


M + 1

n + 1




q

−

M + 1

m




q


 M

n + 1




q

)
, 0 ≤ m ≤ n ≤ M

(D.1.1)

At q = 1, the skew binomials





M

m, m





q=1

are determinants of ordinary binomials

Binomials

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Skew Binomials (n = m)

1

1 1

1 3 1

1 6 6 1

1 10 20 10 1

1 15 50 50 15 1

Catalan

1

2

5

14

42

132

(D.1.2)

The skew q-binomials are enumerated by double column diagrams with dominance
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+ + + +1 2q 2q2 2q3 q4 =





3

1, 2





q

(D.1.3)

A partition λ is equivalent to a Young diagram Y. A skew Young diagram Y2/Y1 is

equivalent to the pair (Y1, Y2) with Y1 ⊆ Y2. Let us define

E(Y) = Energy = {# of boxes in the Young digram Y}

Ym,n = {m × n rectangular Young diagram}
(D.1.4)

A skew q-binomial can be written as an energy weighted sum over skew Young diagrams

{ M

m, n

}
q
= q(m−n)n ∑

Y1⊆Y2
∅⊆Y1⊆YM−m,m

Yn−m,n⊆Y2⊆YM−m,n

qE(Y1)+E(Y2), 0 ≤ m ≤ n ≤ M (D.1.5)

The bijection is implemented by interpreting the left and right column (particle) configu-

rations in the double column diagrams as Maya diagrams and using the standard bijection

between Maya diagrams and Young diagrams. For example, shading Y1, gives

{ 3

1, 2

}
q
= q−2





 ,

∅ ⊆ Y1 ⊆ Y2,1

Y1,2 ⊆ Y2 ⊆ Y2,2

(D.1.6)

1 + 2q + 2q2 + 2q3 + q4
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