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ABSTRACT OF THE DISSERTATION

Phenomenology of Axion Fields and Topological Defects

by

Chia-Feng Chang

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, September 2023

Dr. Yanou Cui, Chairperson

In the conventional misalignment mechanism, the axion field is assumed to start with zero

initial velocity. However, we introduce an alternative scenario in which the axion field

possesses a nonzero initial velocity, potentially due to the breaking of the Peccei–Quinn (PQ)

symmetry during the early Universe. Depending on the initial velocity and the sequence

of events between PQ symmetry breaking and inflation, this novel scenario can amplify

or diminish the expected axion relic abundance compared to the conventional prediction.

Consequently, this opens up new parameter regions for axion dark matter models.

Global cosmic strings, anticipated in various non-standard models, generate pri-

mordial gravitational waves detectable by instruments. We refine the analytical Velocity-

dependent One-Scale (VOS) model through recent simulation outcomes, revealing the grav-

itational wave spectrum produced by global string networks, including Goldstone emission.

Our findings present a technique to detect signals from the early universe before Big Bang

nucleosynthesis, impacted by the non-standard pre-BBN equation of state and new rela-

tivistic particles.
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Early dark energy, relieving the Hubble tension, imprints discernible character-

istics on the primordial stochastic gravitational wave background originating from cosmic

string networks. This signal stands out in planned gravitational wave experiments, dis-

tinctly separate from other cosmological and astrophysical signals in the gravitational wave

frequency spectrum.

In the context of axion-like particle (ALP) dark matter theories, we explore en-

hanced early galaxy formation through the kinetic misalignment mechanism. This has

potential relevance to the excess observed by the James Webb Space Telescope (JWST)

while adhering to constraints. Viable parameter space is identified for ALP mass within

the range of 10−22eV < ma < 10−19eV. Additionally, ALP parameter regions offer com-

plementary insights into the small-scale structure of dark matter halos and ongoing ALP

searches.

Through advanced simulations and analytical modeling, we conduct an updated

analysis of long-lived axion domain wall (DW) networks. By scrutinizing energy loss mech-

anisms and calculating axion emissions from the DW network, we determine their contri-

bution to axion dark matter density. While our results are consistent with prior research,

disparities arise, particularly in predicting DM abundance. These disparities could pro-

foundly impact axion phenomenology on a larger scale.
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Chapter 1

A Review of Axion Physics

As the Φ4 theory, the green part is the potential at high energy, it carried the

U(1)PQ symmetry Φ → Φeiα. Then the symmetry is broken at ⟨ϕ⟩ ∼ fa (the yellow part),

and an associated Goldstone-boson-axion shows up. Finally, the instanton provides a non-

perturbative vacuum ⟨a⟩ ≃ ΛQCD (the red circle) to break the shift symmetry i.e. the red

circle, it is an example for NDW = 2 (two minima in the red circle), this plot is cited from

[32].
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1.1 The U(1)A Problem and Its Resolution

• The QCD Lagrangian for N flavors in the limit of vanishing quark masses mf → 0

has a large global symmetry: U(N)V ×U(N)A. Since at a scale Λ ≫ {mu, md, ms · · · }, at

least for these quarks, the limit of sending the quark masses to zero is sensible. Therefore

we have an approximately symmetry U(3)V × U(3)A invariant under u, d, and s quarks if

Λ ≃ ΛQCD.1

• Since the vector part U(3)V = SU(3)I × U(1)B, where SU(3)I is isospin-like

under {u, d, s}, U(1)B is baryon number. They are good approximate symmetry on the

hadron spectrum.

• However, since the quark condensates ⟨ūu⟩ = ⟨d̄d⟩ = ⟨s̄s⟩ ≡ −V 3 ̸= 02 at Λ ≤

ΛQCD, it breaking the axial symmetry U(3)A down spontaneously by QCD confinement.

• Since the d.o.f. of U(3)A is 33 = 9, there should have nine Nambu-Goldstone

bosons associated with the breakdown of U(3)A. They would be {π0, π±, K0, K̄0, K±, η,

η′}. But Weinberg proved that the mass mη′ <
√

3mπ, it is not consistent to experiment.

1.2 Calculation of U(1) Problem

This section is mainly following [34]. We have the flavor symmetries in the standard

model fermion framework as

G = U(3)V × U(3)A = SU(3)V × SU(3)A × U(1)V × U(1)A. (1.1)

1It is not good if we only consider the U(2)V × U(2)A under u, d as [33], then we only need 22 = 4

Goldstone i.e. π0, π+, π− and η. Because the η has a mixing with η′ from the experiment result, the η′ is

not ignorable. On the other hand, the η cannot be Goldstone, because its mass mη = 497MeV >
√
3mπ.

2The minus at font of V 3 is used to makes the sign of Goldstone mass correctly, see Eq.(1.9).
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In order to break the U(3)V × U(3)A one can consider the linear sigma model [35]

L = |∂µΣ|2 +m2|Σ|2 − λ

4
|Σ|4, (1.2)

where Σ transformation under G, i.e.

Σ → gLΣg†R, Σ → gRΣg†L, (1.3)

and |Σ|2 = ΣijΣ
†
ji, with3

Σ(x) =
v + σ(x)√

2
exp

(
2i
πa(x)λa

Fπ

)
≡ v + σ(x)√

2
U(x), (1.4)

where the Fπ = 130MeV =
√

2fπ =
√

2 × 92MeV is decay constant,

πaλa =
√

2



1√
2
π0 + 1√

6
η0 π+ K+

π− − 1√
2
π0 + 1√

6
η0 K0

K̄− K̄0 −
√

2
3η

0


+
√

2
Fπ
Fη′



1√
3
η′ 0 0

0 1√
3
η′ 0

0 0 1√
3
η′


.

(1.5)

where since the SU(3)V × SU(3)A/SU(3) generators are corresponding to {π0, π±, K0,

K̄0, K±, η}, except η′. Therefore we have additional decay constant Fη′ for the U(1)A

with Goldstone η′, see more detils [36, 34]. Substitute Eq.(1.4) back to Lagrangian then

expanding ex → 1 + x+ x2

2! + · would get full interaction terms.

3There should have an additional factor 2 in exponential, it is not trivial, see Eq.(19.7.8) in [34])
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To sum, the quarks transformation under U(3)V × U(3)A/U(3)V i.e. the broken

part U(3)A is

q(x) ≡


u(x)

d(x)

s(x)


= exp (−iγ5πaλa/Fπ) q̃, (1.6)

where q̃ is the state after symmetry breaking, then of course the U(3)A phase is fixed to be

πaλa after that. The Fπ makes the dimension correctly, similar to ϕI/vh in SM. Then we

have the mass term as

Lmass = −q̄Mqq = −¯̃qe−iγ5π
aλa/FπMqe

−iγ5πaλa/Fπ q̃ (1.7)

where we used {γ5, γ0} = 0 at q̄ → ¯̃q transformation, and

Mq =



mu 0 0

0 md 0

0 0 ms


. (1.8)

The Eq.(1.7) contains a purely bosonic part, obtained by replacing the quark bilinear with

its vacuum expectation value,

⟨¯̃qiγ5q̃j⟩ = 0, ⟨¯̃qiq̃j⟩ = −V 3δij . (1.9)
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The Goldstone boson mass term in the Lagrangian is (define B ≡ πaλa), from Eq.(1.7) we

obtain

−1

2

V 3

F 2
π

Tr{B, {B,Mq}} = − V 3

F 2
π

[
4mu

(
1√
2
π0 +

1√
6
η0 +

Fπ√
3Fη′

η′

)2

+ 4(mu +md)π
+π− + 4(mu +ms)K

+K̄−

+ 4md

(
− 1√

2
π0 +

1√
6
η0 +

Fπ√
3Fη′

η′

)2

+ 4(md +ms)K
0K̄0 + 4ms

(
−
√

2

3
η0 +

Fπ√
3Fη′

η′

)2 ]

where we used Baker-Hausdorff lemma4, and the δij in Eq.(1.9) require a trace. Now the

neutral mesons have a mass matrix

M2
0 = 8V 3

(
π0 η η′

)


mu+md
2F 2

π

mu−md

2
√
3F 2

π

mu−md√
6FπFη′

mu−md

2
√
3F 2

π

mu+md+4ms

6F 2
π

mu+md−2ms

3
√
2FπFη′

mu−md√
6FπFη′

mu+md−2ms

3
√
2FπFη′

mu+md+ms

3F 2
η′





π0

η

η′


. (1.10)

In the light quarks limit, ms ≫ {mu,md} → 0, we have two eigenvectors with zero eigen-

masses,

ua =



1

0

0


, ub =

1√
F 2
π + 2F 2

η′



0

Fπ

√
2Fη′


, (1.11)

4eABeA = B + {A,B}+ 1
2!
{A, {A,B}}+ 1

3
{{A, {A,B}}}+ · · · .
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with masses

m2
aa =

4V 3(mu +md)

F 2
π

, m2
bb =

12V 3(mu +md)

F 2
π + 2F 2

η′
, (1.12)

its off-diagonal term provide a negligible mixing angle θ ∼ (mu −md)
2/64(mu + md)

2. If

we assume another mass eigenstate is the heaviest state, the second heavier state mass will

be m2
bb. Furthermore, if the lightest state is π0, i.e. m2

aa = m2
π, then we obtain

mb ≃
√
m2
bb ≃

√
3mπFπ√
F 2
π + 2F 2

η′

≤
√

3mπ. (1.13)

It provides a theoretical upper bond for η or η′, however, no one of them well fits in this

bond, this so-called U(1)A problem. See section 23.5 of [34] or [37], this problem was

eventually solved by a non-perturbative effect that violates the U(1)A symmetry, in effect,

makes U(1)A not a true symmetry of QCD. So the η′ is not THE Goldstone who breaks

the symmetry.
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1.3 Strong CP problem

Under the SU(3)2QCDU(1)A anomaly, it provide the strong CP phase term as

L ⊃ θQCD
g2s

32π
ϵµναβF aµνF

a
αβ, (1.14)

where F aµν is QCD field. We have two situations:

• If U(1)A exists, the anomaly θ term should be removed by the U(1)A chiral rotations on

the quarks mass matrix5, i.e. θ̄ = 0 at high energy. But at lower energy, the U(1)A should

be broken by ⟨q̄q⟩, it consequently provide a strong CP phase[38, 39]:

θ̄ = θQCD − argdet (YdYu) < 0.7 × 10−11. (1.15)

It has no reason to be small. The question is that Why this phase is super small? or say

Why is CP not badly broken in QCD? [33].

• If we have no U(1)A even at high energy, the θ̄ will be a constant, we still ask

the strong CP problem.

5It is worth to mention that in SM case, since the U(1)Y is broken, it is not a symmetry! They cannot

cancel the anomaly by rotating the phase term, they should consider the anomaly cancellation.
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1.3.1 Kazuo Fujikawa’s Chiral Anomaly from path-integral (massless case)

Mainly follow [40], [41], [42]. It is worth mentioning that the fermions in this

section, which can be chiral or non-chiral, don’t affect the result. A gauge invariant operator

in path-integral is

⟨O(x1, · · · , xn)⟩ =
1

Z[0]

∫
Dψ̄Dψ exp

[
i

∫
d4xiψ̄ /∂ψ

]
O(x1, · · · , xn). (1.16)

Under the global/gauge symmetry ψ(x) → eiα(x)ψ(x), i.e. ψ̄ /∂ψ → ψ̄ /∂ψ+ i ¯ψγµψ∂µα. Since

the path-integral should be invariant, the α term should have vanished. First, we obtain

the first order in α

1

Z[0]

∫
Dψ̄Dψ exp

[
i

∫
d4xiψ̄ /∂ψ

](∫
d4xψ̄γµψ∂µα

)
O(x1, · · · , xn)

=
1

Z[0]

∫
Dψ̄Dψ exp

[
i

∫
d4xiψ̄ /∂ψ

](∫
d4zψ̄(z)γµψ(z)∂µα(z)

)
O(x1, · · · , xn),

where the two parts of the integral are independent, so we replace the x→ z. Then integral

by part,

1

Z[0]

∫
d4zα(z)

∫
Dψ̄Dψ exp

[
i

∫
d4xiψ̄ /∂ψ

]
∂

∂zµ
(
ψ̄(z)γµψ(z)

)
O(x1, · · · , xn), (1.17)

where the currents are defined as

Jµ5 = Jµa = ψ̄γµγ5ψ, J5 = Ja = ψ̄γ5ψ. (1.18)
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Since this should be vanished with any α(z), in other word, we have

∂µ⟨Jµ(x)O(x1, · · · , xn)⟩ = 0. (1.19)

In fact, we missed the gauge transformation on the path-integral Dψ̄Dψ above. Second, let

us consider a general linear transformation

ψ(x) → ∆(x)ψ(x) and ψ̄(x) → ∆†(x)ψ(x) (1.20)

which generates a Jacobian factor (see, Eq.(2.11) in [40])

Dψ̄Dψ → |J |−2Dψ̄Dψ . (1.21)

This Jacobian

J = det∆ = exp [tr ln∆] . (1.22)

The negative power is because the transformed variables are fermionic [40]. For the non-

chiral rotation, i.e. ∆(x) = eiα(x),

J = exp

(
i

∫
d4xα(x)

)
→ |J |2 = 1. (1.23)
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On the other hand, the chiral rotation would be ∆(x) = eiβ(x)γ5 , 6

J = exp

(
i

∫
d4xβ(x)tr[γ5]

)
. (1.24)

Since tr[γ5] = 0, it looks like we got a singular on that rotation. But it would not be the

case, we add an U(1) gauge with gauge boson Aµ invariant form (mainly follow Eq.(2.15)

[40]),

∫
Dψ̄DψDA exp

[
i

∫
d4x

(
−1

4
F 2
µν + iψ̄ /Dψ

)]
. (1.25)

The gauge boson Aµ do not carry any global symmetries charges, therefore the transform

is the same as Eq.(1.17). We then consider a one-particle Hilbert space as

J = exp

(
i

∫
d4xTr [⟨x|β(x̂)γ5|x⟩]

)
. (1.26)

A key point is considering an exponential regulator term

exp

(
− /̂Π

2
/Λ2

)
, with /̂Π = /̂p− e /A(x̂), (1.27)

6The β(x)can be a constant, i.e. the axial transformation is a global symmetry, this wouldn’t affect the
result, see example in section 30.5 of [43]. The baryon and lepton number global symmetry introduce the
anomaly is a good example of global anomalous.
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then

/̂Π
2

=
(
i/∂ − e /A

) (
i/∂ − e /A

)
=(i∂µ − eAµ)(i∂ν − eAν)γµγν

=

(
1

4
{i∂µ − eAµ, i∂ν − eAν}{γµ, γν} +

1

4
[i∂µ − eAµ, i∂ν − eAν ] [γµ, γν ]

)
=

(
(i∂µ − eAµ)2 +

1

2
(−eFµν)σµν

)
= Π̂2 − e

2
Fµνσ

µν ,

where we used {γµ, γν} = 2gµν and σµν = i
2 [γµ, γν ],

[i∂µ − eAµ, i∂ν − eAν ] = −e [i∂µAν − i∂νAµ] = −i eFµν . (1.28)

So that

Tr
[
⟨x|β(x̂)γ5|x⟩

]
= lim

Λ→∞
Tr

[
⟨x|β(x̂)γ5e /̂Π

2
/Λ2 |x⟩

]
= lim

Λ→∞
β(x)⟨x|Tr

[
γ5 exp

(
Π̂2 − e

2σµνF
µν

Λ2

)]
|x⟩. (1.29)

The next step is expanding this exponential, we only expend the σµνF
µν term. However,

we only need to focus on (γ5)
2 term, since tr[γ5] = 0. In addition, we use the identity

1

2
{σµν , σα,β} = gµαgνβ − gναgµβ + iγ5ϵµναβ , (1.30)
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then the squared term can be read

(σµνF
µν)2 = 2F 2

µν + iγ5ϵµναβFµνFαβ. (1.31)

The Eq.(1.29) only leaves

iTr
[
⟨x|β(x̂)γ5|x⟩

]
= −e

2

2
β(x)ϵµναβFµν(x)Fαβ(x) lim

Λ→∞

[
1

Λ4
⟨x|eΠ2/Λ2 |x⟩

]
. (1.32)

In order to extract the finite term, we need 7

1

Λ4
⟨x|ep̂2/Λ2 |x⟩ =

1

Λ4
⟨x|
∫

d4k

(2π)4
ep̂

2/Λ2 |k⟩⟨k|x⟩

=
1

Λ4

∫
d4k

(2π)4
ek

2/Λ2

=
i

Λ4

∫
d4kE
(2π)4

e−k
2
E/Λ

2

=
i

Λ4

∫
Ω4

∫
k3EdkE
(2π)4

e−k
2
E/Λ

2

= − i

Λ4
2π2

1

(2π)4
1

2
Λ4 =

−i
16π2

,

where
∫
dΩ4 = 2π2. The Eq.(1.29) become

Tr
[
⟨x|β(x̂)γ5|x⟩

]
=

e2

32π2
β(x)ϵµναβFµν(x)Fαβ(x). (1.33)

7same calculation in Eq.(2.21-25) of [40]
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So the Eq.(1.26) would be

J = exp

[
i

∫
d4x

(
e2

32π2
β(x)ϵµναβFµν(x)Fαβ(x)

)]
. (1.34)

In the final, we turn Eq.(1.21) back to Eq.(1.17) and using Eq.(1.34), we have 8

∫
Dψ̄DψDA exp

[
i

∫
d4xL

]
→
∫

Dψ̄DψDA exp

[
i

∫
d4x

(
L − J5

µ∂µβ − β
e2

16π2
ϵµναβFµνFαβ

)]

where the J5
µ∂β term is from (Eq.(5) of [40])

L ⊃ iψ̄γµ∂µψ → iψ̄(e+iβ(x)γ5)γµ∂µ(eiβ(x)γ5ψ)

= iψ̄(e+iβ(x)γ5)γµeiβ(x)γ5∂µψ + iψ̄(e+iβ(x)γ5)γµeiβ(x)γ5(i∂β(x)γ5)ψ

= iψ̄γµ∂µψ + iψ̄γµ(i∂β(x)γ5)ψ

= iψ̄γµ∂µψ − J5
µ∂

µβ, (1.35)

where {γ5, γµ} = 0, and don’t forget a γ0 in ψ̄ = ψ†γ0 with γ†5 = γ5 makes +. By the way,

if there has a fermion mass term, the transformation gives

mψ̄ψ → mψ̄ψ − 2miβ(x)ψ̄γ5ψ, (1.36)

8massive fermion case is only adding a mass term as in Eq.(2.9) of [40].
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which is Eq.(5) of [40]. Again, since the gauge invariant, the addition terms should have

vanished, i.e. expanding the exponential terms in the first order of β,

∂µ⟨J5µ(x)O(x1, · · · , xn)⟩ =
e2

16π2
⟨ϵµναβFµνFαβO(x1, · · · , xn)⟩, (1.37)

where we used integral by part on J5
µ∂µβ again. In short, the result is, under chiral trans-

formation on fermion e.g. ψ → eiγ5βψ, the Lagrangian will transform as9

δL = β∂µJ5
µ − β

e2

16π2
ϵµναβFµνFαβ , (1.38)

where β(x) can be either constant or a local function, this wouldn’t change the result.

For the non-Abelian, there should be times additional factor C from their Lie algebra e.g.

Eq.(1.93) and Eq.(1.41) for details. As we can see the β terms always be canceled out in

the Lagrangian level. In addition, this result means the U(1)A symmetry is broken, because

if we require it isn’t broken i.e. δL = 0, then we have10

∂µJ5
µ =

e2

16π2
ϵµναβFµνFαβ ̸= 0. (1.39)

9Another form is the Chern-Simons current, ϵµναβFµνFαβ = ∂µKµ, with Kµ =
ϵµναβ

(
Aa

νF
a
αβ − g

3
fabcAa

νA
b
αA

c
β

)
.

10This is massless anomalous Ward Takahashi identity, see also Eq.(21) of [44] or his lecture [45] Eq.(2.11)

for massive one.
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Since ∂µJ5
µ ̸= 0 → U(1)A current is not conserved, the symmetry should be broken. The

important thing is that we considered the boundary condition on the axial current as

∫
d4xJ5

µ∂µβ(x) =
����������:0∫

d4x∂µ
(
J5
µβ(x)

)
−
∫
d4x

(
∂µJ

5
µ

)
β(x), (1.40)

where if the transformation is global, namely, β(x) = constant, the LHS term is zero. There-

fore this anomaly requires that the topological term (1st term on RHS) is non-zero. That’s

why people call the global anomalous is non-perturbative anomalies [46]. In addition, the

total derivatives never contribute to perturbation theory, since the momenta is conserved

at every vertex in the Feynman rule. However, this can NOT be true if only if the theory

includes any non-perturbation effects. Therefore, we can conclude that the U(1)A is not

served in perturbation theory11.

It is worth mentioning that if we consider the non-Abelian gauge fields, Eq.(1.38)

has to rewrite as (see, Eq.(12) in [5] or Eq.(221) in [44]),

δL = β∂µJ5
µ − C β e2

16π2
ϵµνσρFµνFσρ , (1.41)

(This β can be either local or global) where

1

2
ϵµνσρFµν ≡ F̃ , (1.42)

11As shown in Eq.(1.41), this symmetry is exact symmetry at the classical level, but it is intrinsically
broken by QCD anomalies, as Wilczek once put it ”It is a quasi-symmetry expect for instanton effects”.
Unlike the chiral symmetry, the PQ invariance is not even an approximate symmetry exhibited by Nature
since instanton effects cannot be treated as a small perturbation. This discussion is cited from Page 20 of
[47].
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with (below Eq.(221) of [44])

C = 2Tr [QaxialTaTb] = 2 × 1

2
δabTrQaxial = δabTrQaxial, (1.43)

where Ta,b are color generates, an example for the Qaxial is at Eq.(1.120), and the U(1)axial

transformation under fermions is

ψi → e±iQaxial,iβψi, (1.44)

with i = {R,L}, the R and L hand fermions should carried opposite sign on that ±. An

example can be found in Eq.(1.117). If the U(1)axial is global symmetry, we can absorb

C into β, on the other hand, if it carried a goldstone e.g. U(1)PQ, the factor C becomes

important. Furthermore, if the Fµν corresponds to SU(3)c, the C is called colour anomaly

or domain wall number i.e. C = NDW . This factor is model dependent, see details in

Sec.1.4.4. An example of C can be found in Eqs.(222-226) of [44], the C ≃ 1.

The Eq.(1.41) is perturbative axial Ward identity (adding fermion mass)

∂µJ5
µ = 2imψ̄γ5ψ +

e2

16π2
ϵµναβFµνFαβ. (1.45)

This work on both gauge and global symmetries.
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1.3.2 Connect to QCD axion

This subsection is combination of the calculations in Page73-75 of [44], Page16-20

of [47], and page4 of [2]. See also a comparison between two different bases β(x) = 0 and

β(x) = a(x)/fa in Eqs.(5-22) of [1], and Kim’s review [48].

Suppose we have the Lagrange12

L = −λiψ̄L,iHψR,i + h.c.+ Lθ, (1.46)

with wind number (QCD anomaly term)

Lθ = θi
g2

16π2
GµνG̃µν ̸= 0, (1.47)

where λi are complex Yukawa couplings, ψi = ψ1, ψ2, ψ3 · · · are a set of Dirac fermion

spinor, and the PQ scalar H and axion a is given

H =
1√
2

(fa + h) eia/fa , (1.48)

with U(1)PQ global chiral symmetry 13

H → eiαH, ψL → eiα/2ψL, ψR → e−iα/2ψR, (1.49)

12We have to emphasize that the following calculations are considering the Lagrange Eq.(1.46), but in

some cases, an aG̃G is initially(before rotation) gave by exotic fermion loop, and the phase of H isn’t axion,

see [2, 44]. In these cases, we need to add an aG̃G into Eq.(1.46). But all the calculations are the same.
13(Important concept) As shown in 1.41, this symmetry is exact symmetry at the classical level, but it is

intrinsically broken by QCD anomalies, as Wilczek once put it ”It is a quasi-symmetry expect for instanton
effects”. Unlike the chiral symmetry, the PQ invariance is not even an approximate symmetry exhibited by
Nature since instanton effects cannot be treated as a small perturbation [This part is from Page 20 of [47]].
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where α ∈ [0, 2π). This U(1)PQ can be decomposed by

U(1)PQ → U(1)vector × U(1)axial = U(1)V × U(1)A. (1.50)

The U(1)axial gives a global chiral transformation as Eq.(1.41) which can easily remove/change

the θi in Eq.(1.47), then solve the strong CP problem, see section 2 of [47]. We leave the

detail of the calculation in Sec.1.3.2. Before we study the details, we should first introduce

Changing Variable in Path Integral.

The U(1)A transformation isn’t symmetry - Changing variable in Path integral

Before we start to apply the technique changing a variable in Path integral into

axion [49, 50]. We should first introduce the concern:

Physics

ℒ1
ℒ2 ℒ3

ℒ4

ℒ5

𝓞1
𝓞2

𝓞3

𝓞4

One Physics phenomenon can be described by many different Lagrangians, and

those Lagrangians can be transformed to each other by different methods. For example, we

initially use L1 to describe the Physics, then we can do a symmetry transformation, e.g.

gauge/global transformation or any to have

L1 → L2. (1.51)
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In definition, we call the transformation as symmetry, it is because of that the Lagrangian

are identical after/before the transformation, so we have

L1 = L2. (1.52)

On the other hand, we can also be changing the variable as in Eq.(1.21),

L2 → L3, but L2 ̸= L3, (1.53)

to change the Lagrangian. This changing variable in path integral is unphysical [50], it is

mathematically changing the integration variable, without affecting the integration target.

Furthermore, as we use the symmetry transformation on Lagrangian, the changing variable

is doing a similar transformation. But it does change the Lagrangian. So we would say:

Changing Variable in Path Integral ⊃ Symmetry Transformation . (1.54)

The symmetry transformation is a subset of Changing Variable in Path Integral. We can

separate all of transformations O into three parts:

Changing Physics

Changing Lagrangian

without Changing Physics

Symmetry 

Transformation
Changing Variable

in Path Integral
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The Blue part shows all of the possible transformation operators O, the Yellow is

Changing variable, and the Green is for symmetry transformation.

When physics has this property, we can ask a question that Usually we define

a symmetry which introduces some conversation law, however, in this case, we still see a

conversation law but it isn’t a symmetry?

A: The symmetries we defined is that its transformation isn’t changing the La-

grangian. But, however, Lagrangian is due to classical physics. The quantum effects would

remain the physics to be unchanged in those changing variables. For example, applying a

redefinition(Changing variable) in fermions to the Lagrangian Eq.(1.46),

ψi → eiβ(x)Qiγ5ψi. (1.55)

The charges Qi are free degrees of freedom. Following the axial ward identity Eq.(1.45),

the axion-fermion interaction in Eq.(1.46) can be rewrote by

mψ

fa
aψ̄iγ5ψ → a

2fa
∂µJ5

µ − a

fa

e2

16π2
G̃µνG

µν . (1.56)

This means that we can remove the axion-fermion Yukawa coupling by the unphysical field

redefinition, and create the aGG term. The full Lagrangian reads (on tree level) [2, 1],

L → λ1ψ̄L,1He
iβ(x)Q1ψR,1 + λ2ψ̄L,2He

iβ(x)Q2ψR,2 + h.c.

+ β(x)Qi∂µJ
µ
a,i − β(x)TrQi

g2

16π2
G̃µνGµν + Lθ. (1.57)
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But, another question is HOW do we know this transformation wouldn’t change

the physics? This is a technique on effective field theory [49, 50]. This paper [1] shows that

those two different representations are identical. Further discussion is shown in Sec. 1.3.2.

On the other hand, it is not true that U(1)PQ is made a local symmetry since

scalar fields are not transformed. One should think about QED: going from a global to

a local symmetry requires the introduction of gauge fields because a true symmetry asks

for the Lagrangian to retain its form. Here, the transformation is not leaving the fermion

kinetic terms invariant but introduces the derivative interactions. Those are precisely the

interaction that would be killed by gauge fields (thanks to the dµΛ in Aµ → Aµ + dµΛ).

Basis: β(x) = 0

If we have the field redefinition Eq.(1.55), the β(x) is unphysical, then we can

choose any of β(x). But in this subsection, we first choose β(x) = 0. Then the Lagrange

reduces to Eq.(1.46). Then after the fermion condensate (Eq.(2.14) of [47])

⟨θ|ψ̄LψR|θ⟩ = Λ3
QCDe

−iϕi , ⟨θ|ψ̄RψL|θ⟩ = Λ3
QCDe

iϕi , (1.58)

where |θ⟩ is QCD state, namely, the minimal of axion potential. In this explanation, we

only consider one family of fermion, this gives ϕi = θi, see Eq.(1.73) or Eq.(2.17) in [47].

The QCD ground state is (section 2.1, [47])

⟨θ|ψ̄LψR|θ⟩ = ⟨θ|ψ̄RψL|θ⟩ = Λ3
QCD. (1.59)
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To rotate into the QCD ground sate (see Sec.1.3.2), the phase eiθi is removed by global

U(1)PQ rotation ψ → eiθi/2γ5ψ, equivalently, ψR → eiθi/2ψR and ψL → e−iθi/2ψL. When

we rotate the phase eiθi away, the θi in Eq.(1.47) also be rotated away by Eq.(1.41) with

C = 1. This is the key point of the PQ mechanism. Back to Lagrange Eq.(1.46), before the

U(1)PQ rotation, the original Lagrangian is

L ⊃ λ√
2
ψ̄L(fa + h)eia/faψR + h.c.

=
λ√
2
⟨ψ̄LψR⟩(fa + h)eia/fa + h.c.

=
√

2λΛ3
QCD(fa + h) cos(

a

fa
− θi). (1.60)

We can redefine the axion by the global U(1)PQ Eq.(1.49), namely, a→ a+ θifa to absorb

the θi. On the other hand, we can look at the G̃G anomalous term:

L ⊃
(
θi −

a

fa

)
e2

16π2
GaµνG̃

µν,a, (1.61)

where the aG̃G term is from fermion loop, the calculation is in Eq.(7) of [1]14. We can use

U(1)PQ to cancel the θi. In this case, we can see that we only need a global axial U(1)PQ

to solve the strong CP problem. The redefinition Eq.(1.55) isn’t necessary.

So we find that both Eq.(1.60) and Eq.(1.61) break the axion shift symmetry. The

14The Ref.[1] considers aγγ case, but we can simply add the trace of SU(3)c generators Tr[tatb] for
aG̃a

µνG
µν
b case. We don’t need to calculate the value of the trace, because it would be written as an effective

Lagrangian form as Eq.(1.61).
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axion is the same as Higgs in the Higgs mechanism. It would roll into its true vacuum

a = θifa. (1.62)

If we redefine a→ a+ θifa, the potential is shown in Fig.4.3. Furthermore, the aG̃G term

allows the axion interacts to the meson or gluon radiative bath in this toy model. This

interaction would provide thermal friction on axion, as in Minimal warm inflation. Once

the meson density is hardly diluted in the universe, this effect would be ignorable, i.e. the

aG̃G interaction term isn’t affected much. Then the dynamic of axion is the same as the

conventional one.

On the other hand, if all of the fermions are massless, i.e. no aG̃G term Eq.(1.68),

and this also means that the H does not spontaneously symmetry breaking. In this case,

the axion shift symmetry and U(1)PQ still hold. So if we say the aG̃G term breaks the

axion shift symmetry, which isn’t precise. Because all the things (H SSB, fermion get mass,

U(1)PQ breaking, axion shift symmetry breaking, aG̃G term) are all together.

By the way, once the Higgs h rotates to its minimal h→ 0, this potential is purely

cosine. However, this potential can be modified, e.g. if we assume another component in

this term, and it would dominate in the early universe:

L ⊃ λ

(
ϕ

Λϕ

)n
ψ̄LHψR ≫ λψ̄LHψR, (1.63)

where ψ is a real field, this term can modify the dynamic of axion in the early universe.
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Basis: β(x) = a(x)/fa

In the last subsection, we prove that the U(1)PQ can solve the strong CP problem

without the field redefinition. But in this section, we use the redefinition. This procedure

is more standard [44]. If we secondly pick up the redefinition to be β(x) = a/(faTrQi), the

Lagrange becomes [2, 44, 1]

L → λ1ψ̄L,1He
i a
fa ψR,1 + λ2ψ̄L,2He

i a
fa ψR,2 + h.c.

+
a

2fa
∂µJ

µ
a,i +

(
− a

fa
+ θi

)
g2

16π2
G̃µνGµν ,

=
λ1√

2
ψ̄L,1(fa + h)ψR,1 +

λ2√
2
ψ̄L,2(fa + h)ψR,2 + h.c.

+
a

2fa
∂µJ

µ
a,i +

(
− a

fa
+ θi

)
g2

16π2
G̃µνGµν , (1.64)

to simplify we simply assume

Q1 = Q2 =
1

2
, TrQi = Q1 +Q2 = 1, (1.65)

this is the same as the case mu ≃ md in Eq.(225) of [44] or see Eq.(14) of [2]. The axion in

H is shown in Eq.(1.48), and the axion in Yukawa terms are exactly canceled by the chiral

transformation β(x), but we have to emphasize that this cancellation is true only if the

charge degenercy Eq.(1.65).If Q1 ̸= Q2, the axion cannot be cencelled in both Yukawa terms,

simultaneously. The Eq.(1.64) is the same as Eq.(1) of [2], i.e. Eq.(1.113). Interestingly,

they [2] further do an inverse transformation to rotate the symmetry back to β(x) = 0 case.

In addition, this transformation β(x) is the same as using the axial Ward identity Eq.(1.45)
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to replace mψψ̄iγ5ψ in Eq.(1.67).

It is worth mentioning that the aψ̄iγ5ψ term is vanished in this representation

Eq.(1.64). But it is checked in [1], the physics (e.g. a→ γγ) are the same as in the previous

representation Eq.(1.60) plus Eq.(1.61).

Comparison of these two bases

A comparison between two different bases is shown on page 4 of [2]. In β =

a/(faTrQi) basis, the aG̃G interaction would introduce a quantum loop: This leading order

of the loop graph gives the second leading order of the cosine in Eq.(1.60), i.e. m2
aa

2 term,

m2
af

2
a cos(

a

fa
) ≃ m2

af
2
a +m2

aa
2 + · · · . (1.66)

More axion legs on the loop would give higher order of cosine. By the way, odd axion legs

are forbidden by CP-symmetry. On the other hand, on the β(x) = 0 basis, the aG̃G term

can be introduced by a fermion loop as Fig.4.2, see Eqs.(5-10) in [1], and depiction on below

Eq.(3.50) of [47]. Therefore, these two representation bases are Equivalent, see discussion

below Eq.(5) of [2].

Furthermore, to expanding the exponential eia/fa in Eq.(1.49), we can have an

25



interaction term as [1],

L ⊃
mψ

fa
aψ̄iγ5ψ, (1.67)

As shown in [1], this axion-fermions interaction term with a triangle fermion loop can

introduce an anomalous term [1]

Leff = − a

fa
C g2

16π2
G̃G×


0, for mψ → 0

1, for mψ → ∞
. (1.68)

where C is a constant, dependent on fermion mass and number of fermions Eq.(1.44). This

aG̃G breaks the axion shift symmetry. They [1] find that those two representations β(x) = 0

and β(x) = a/fa are identical.

Rotate to the vacuum representation

The charge choosing on [44],

Q1 =
m1

m1 +m2
, Q2 =

m2

m1 +m2
, (1.69)

is in order to rotate the Lagrange into the QCD vacuum15, which is the same as the

redefinition of Higgs field in Higgs mechanism H → 1√
2
(v + h). This choice Eq.(1.69)

can cancel the axion-pion mixing term a − π [44], and rotate the Lagrange into the QCD

vacuum presentation [47]. The following is the calculation in section 2.1 of [47]. Suppose

15See, section2.1 of [47] and Eq.(14) of [2] and Eq.(225) of [44]
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we have fermion mass terms to break the U(1)A axial symmetry, and this term is very small

ϵL = −miq̄iqi, (1.70)

where ϵ is very small. So in the low energy region, the U(1)A is broken(spontaneously), but

it is still an approximate symmetry. Without this symmetry-breaking term, the Lagrange

should have vacuum expectation values which are invariant(degenerate) under U(1)A, there-

fore the vacuum expectation values can be written

⟨θ|q̄iLqjR|θ⟩ = Λ3
QCDδije

−iϕi + O(ϵ), (1.71)

where ϕi is a variable, which corresponds to U(1)A invariant. The explicit chiral-symmetry

breaking term ϵL will pick out a unique vacuum on the U(1)A circle, i.e. explicit value

for the ϕi. The U(1)A vacuum direction is governed by the anomalous Ward identity, see

Eq.(2.17) of [47],

mi sinϕi = mj sinϕj + O(ϵ2), (1.72)

n∑
i=1

ϕi = θi + O(ϵ), (1.73)

where θi is from Eq.(1.47). If the |θ⟩ is the correct vacuum, it must satisfy Eqs.(1.72,1.73).

Lets consider the field redefinition as Eq.(1.55) and the charges in Eq.(1.57), to remove the
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phases on Eq.(1.71), we need

β(x)Qi = ϕi. (1.74)

Lets consider simple case i = {1, 2}, and ϕi ≪ 1, the Eq.(1.72) becomes

m1 sin(β(x)Q1) ≃ m2 sin(β(x)Q2) → m1Q1 ≃ m2Q2. (1.75)

The Eq.(1.73) becomes

β(x) (Q1 +Q2) = θi → a(x)

fa

1

TrQ
(Q1 +Q2) =

a(x)

fa
= θi, (1.76)

where we substitute the basis,

β(x) = a(x)/(faTrQ). (1.77)

The Eq.(1.76) is the same as what we expected16, the vacuum is when the G̃G term dis-

appear, see Eq.(1.64), and solution of Q1 and Q2 are exactly Eq.(1.69), where 1 → u and

2 → d. On the other hand, for the β(x) = 0 basis, the ϕi are global phases. We still can

chose ϕ1 and ϕ2 to satisfy Eqs.(1.72,1.73)17. This is shown in Section 2.1 of [47].

The Eq.(1.72) also says that if one of a fermion is massless, the rotation β(x) or

say ϕi is unphysical, see discussion in Section II-B-2 [48]. Hence, there are no strong CP

16We have to emphasize that these calculations are considering the Lagrange Eq.(1.46), but in some case,

an aG̃G is initially(before rotation) gave by exotic fermion loop, and the phase of H isn’t axion, see [2, 44].

In these cases, we need to add an aG̃G into Eq.(1.46). But all the calculations are the same.
17Also, if θi = 0, we don’t need to do redefinition of β(x), because we can have β(x) = 0 as solution of

Eqs.(1.72,1.73).
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problems.

Similarity with Gauge fixing

The gauge fixing is fixing the gauge transformation function β(x), and the unitary

gauge requires

β(x) ≡ a

fa
, (1.78)

this is exactly the same as the vacuum representation. In these two cases β(x) = {0, a/fa},

they both have same physics. This is very similar to gauge fixing.

1.3.3 No Confuse on Anomaly Cancellation - Strong CP Phase do Not

Break SU(3)c

First, from Eq.(25.73) of [43], the strong CP phase term

Lθ ∝ θϵµναβF aµνF
a
αβ = 2θ∂µ

(
ϵµναβAaνF

a
αβ

)
, (1.79)

is gauge invariance. A non-Abelian gauge field Aµ ≡ AaµT
a transformation

Aµ → A′
µ = UAµU

−1 − i

g
(∂µU)U−1, (1.80)

where U−1 = U †, considering the non-Abelian rotation U = eiθaT
a ≃ 1 + iθaT

a,

Aµ → A′
µ = Aµ + iθa [T a, Aµ] − 1

g
∂µθaT

a + O(θ2) (1.81)
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then substituting Aµ ≡ AaµT
a, we have

Aaµ → Aa ′µ = Aaµ − fabcθbAcµ −
1

g
∂µθ

a = Aaµ −
1

g
Dab
µ θ

b , (1.82)

where we used

[Ta, Tb] = ifabcTc, Dab
µ = δab∂µ + gfabcAcµ. (1.83)

Let’s define non-Abelian field strength

F aµν = ∂µA
a
ν − ∂νA

a
µ − gfabcAbµA

c
ν . (1.84)

Then using U = eiθaT
a ≃ 1 + iθaT

a again

Fµ → F ′
µν = UFµνU

† = F aµνUTaU
† = F aµνTa + iθbF aµν [Tb, Ta] = (F aµν − fabcθbF cµν)Ta,

(1.85)

then we have the field transformation without the operator:

F aµν → F a ′µν = F aµν − fabcθbF cµν (1.86)

Let us check the kinetic term of the gauge boson:

LA = −1

2
tr(FµνF

µν) → −1

2
tr
[
(F aµν − fabcθbF cµν)Ta(F

α
µν − fαβγθβF γµν)Tα

]
, (1.87)
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this trace can be just replaced by tr[Ta, Tα] = 1
2δaα. Consider the O(θ) term:

tr
[
F aµνTaf

αβγθβF γµνTα + fabcθbF cµνTaF
α
µνTα

]
♣
=tr

[
F aµνTaf

αbcθbF cµνTα + fabcθbF cµνTaF
α
µνTα

]
♠
=tr

[
FαµνTαf

abcθbF cµνTa + fabcθbF cµνTaF
α
µνTα

]
♢
=tr [TαTa + TaTα] fabcθbFαµνF

c
µν

♡
=tr [{Tα, Ta}] fabcθbFαµνF

c
µν

◦
=tr

1

3
δaαI3×3 +

8∑
j=1

daαjTj

 fabcθbFαµνF cµν
=fabcθbF aµνF

c
µν = 0. Gauge invariant!

where ♣, ♠ and ♢ just replace the index. The ♡ is considering {T a, T b} = 1
3δ
ab + dabcT c,

where dabc is a set of constants (hyperlink). The most important is the antisymmetry of

structure constant fabc = −facb, therefore the symmetry a↔ c on F aµνF
c
µν makes the term

be vanished. Furthermore, the string CP phase Eq.(1.79) is SU(3)c gauge invariant as well,

since the ϵµναβ do not affect color space. So the kinetic mixing term between U(1)a×U(1)b

is gauge invariant as well, but kinetic mixing SU(3)c × U(1) is not since gluon carried the

colors.

Second, a Question: Why the term ϵµναβF bµνF
a
αβ does not break non-Abelian gauge

symmetry, but we still need anomaly cancellation?

Recall the anomaly cancellation term, for example U(1)a × SU(3)c × SU(3)c
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(Eq.(30.80) of [43]):

∂µJ
a
α(x) =

∑
left

A(Rl) −
∑
right

A(Rr)

 g2s
128π2

dabcϵµναβF bµνF
a
αβ. (1.88)

The key point it that the U(1)α gauge invariance require ∂µJ
a
α(x) = 0, this condition is

independent to SU(3)c, namely, ϵµναβF bµνF
a
αβ in this equation. Therefore the anomaly

cancellation is only conditions for this U(1)a symmetry invariance, instead of the condition

for SU(3) or SU(2), etc. By the way, for the non-Abelian symmetry the non-Abelian current

is NOT defined as Abelian. The non-Abelian current should be covariant, see Eq.(1.91).

Third, another Question: What is the current gauge invariant condition for non-

Abelian gauge symmetry?

Recalling Chapter 25.3 of [43], in Abelian U(1)a symmetry we defined

Qa =

∫
d3Ja0 , (1.89)

as conserved current. However, it cannot be the case in non-Abelian theory. Since the

gauge boson in non-Abelian is carried charges, e.g. gluon has color, W± has weak isospin

to change up to down. So the current should be gauge covariant i.e. carried gauge charge

jaµ − ψ̄iγ
µT aijψj . (1.90)
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Then the gauge invariant condition to be

Dµj
a
ν ≡ ∂µj

a
ν + gfabcAbµj

c
nu = 0 . (1.91)

We will see the application of this gauge invariant in the following sections.

1.3.4 CP violation θB, θW and θQCD in SM

Basis on the chiral rotation ψ → eiγ5θψ, we have

∫
Dψ̄Dψ →

∫
Dψ̄Dψ exp

(
iθ

∫
d4x

g2

32π2
ϵµναβF aµνF

a
αβ

)
, (1.92)

where ψ can be chiral e.g. ψ = ψL, this transformation wouldn’t be changed. Furthermore,

applied to SM fermions, the chiral transformation provides

LSM ⊃ θQCD
g2s

32π2
ϵµναβF aµνF

a
αβ + θW

g2

32π2
ϵµναβW a

µνW
a
αβ + θB

g′2

16π2
ϵµναβBµνBαβ, (1.93)

where F aµν , W a
µν and Bµν are the SU(3)c, SU(2)L and U(1)Y field strengths, respectively. To

connect to the phenomenon, we need to use the chiral rotation is that when the interaction

states are not the mass eigenstates, e.g.

Yd = Ud,LMdU
†
dR
, Yu = Uu,LMuU

†
uR
, (1.94)
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where Yu,d are on the SM interaction eigenstate, the Mu,d are on the mass eigenstate i.e.

diagonal. One we can do is considering the Dirac basis for fermion, i.e.

Yd = UdMdU
†
dK

†
d, Yu = UuMuU

†
uK

†
u, (1.95)

by assuming the chiral rotations on only the Ku and Kd, and they can be removed by

right-handed fermions. On the other hand, the Ud and Uu can be removed by non-chiral

rotations, i.e. they are real. Considering Eq.(1.92), if we are only chiral rotating the right-

hand fermions globally i.e.

∫
Dψ̄RDψR →

∫
Dψ̄RDψR exp

(
iθF

∫
d4x

g2

32π2
ϵµναβF aµνF

a
αβ

)
, (1.96)

to cancel the Kd,u. From Eq.(1.20) and using Eq.(1.22) with ∆ = Kd,u, the phase θF should

be read as

arg det∆ = argJ = arge−iθF γ5 = −θF , (1.97)

and

arg det (Kd) + arg det (Ku) = arg det (KdKu) = −arg [det (MdMu) det (YdYu)] = −arg det (YdYu) .
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Thus we have18

L ⊃ θ̄
g2s

32π2
ϵµναβF aµνF

a
αβ, θ̄ ≡ θQCD − θF , (1.98)

where

θF = arg det (YdYu) , (1.99)

and the θQCD is the phase after the U(1)A symmetry breaking, just like Higgs vacuum vH

in SM, a parameter. It is worth mentioning that only the difference θ̄ = θQCD − θF is

physical, it is a so-called strong CP phase.

Another two phases θW and θB can be removed: For the θW , considering the

lepton Yukawa matrix, e.g.

Ye = UeMeU
†
eK

†
e , (1.100)

again, since the right-hand lepton does not couple to SU(2)L, the K†
e can be removed by

right-hand lepton without the anomaly term. Similarly, the θB can be removed by a right-

hand neutrino. You may question that How about U(1)em? Since it is linear combination

of SU(2)L and U(1)Y , the anomaly term should be removed initially. To sum, the anomaly

term will be left after U(1)A SSB only if the gauge-symmetry couple to both left and right-

hand massive fermions. We emphasize the massive fermions since the U(1)A is broken by

the mass terms. By the way, instantons break the U(1)A symmetry at V ∼ 260MeV [51].

18In some papers, e.g. [38, 39, 2], they defined the chiral transformation ei
1
2
γ5θ with additional factor 1

2
.
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1.3.5 Constraint from neutron electric dipole moment

Lets use the sigma model again, rewrite Eq.(1.82) and Eq.(1.4),

L =
F 2
π

4
tr
[
(DµU)

(
DµU

†
)]

+
V 3

2
tr
[
MU +M †U †

]
(1.101)

where we do the chiral rotation on quarks u → eiθ̄γ5u i.e. M → Mqe
iθ̄ at Eq.(1.8), and

−V 3 = ⟨ūu⟩ = ⟨d̄d⟩. It is worth mentioning that the second term leads to the Gell-Mann-

Oakes-Renner relation, i.e. after expanding U(x) = exp (2iπa(x)λa/Fπ),

F 2
πm

2
π = V 3 (mu +md) , (1.102)

where V ≃ 260MeV is the U(1)A SSB scale [51]. As above, the vacuum energy from the

mass terms by expanding in first order U(x) → 1, then considering only two flavors SU(2)

would be (drop off constant term)

E(θ̄) = −V
3

2
tr
[
M +M †

]
= −V 3(mu +md) cos θ̄ = F 2

πm
2
π cos θ̄, (1.103)

as we can see the vacuum energy is the function of θ̄-vacuum. Next, lets consider the Baryon

SU(3) chiral Lagrangian, see chapter 4.4 in [52] for details, and the original paper [53]

LπNN = πaΨ̄ (iγ5gπNN + ḡπNN )λaΨ, (1.104)

where Ψ is the P − N isospin doublet. The first term is the ordinary Yukawa coupling

with gπNN = 13.4 to the pseudoscalar pions, which provides a Yukawa potential to describe
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strong nuclear force among nucleons. The ḡπNN is from Eq.(12) of [53],

ḡπNN =
2mumd

fπ(mu +md)(2ms −mu −md)
(MΣ −MN ) θ̄ ≃ 0.023θ̄. (1.105)

then the neutron EDM is (dn + dp = 0) [38, 39]

dn = e
gπNN ḡπNN

4π2mN
ln

(
mN

mπ

)
≃ 4.5 × 10−15 θ̄ e cm < 2.9 × 10−26 e cm, (1.106)

where the bound is from 2006 [54], i.e. θ̄ ≲ 0.7 × 10−11, by comparing to gπNN = 13.4 ≫

ḡπNN ∼ 10−13, we know it is unnaturally small.

In later sections, we apply the Goldstone field theory to the axion phenomenology.
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1.4 Axion: Theory

There have many possibilities to solve the strong CP problem, e.g. a calculable

θ̄, the easiest way to do this job is by assuming the SSB phase θQCD to be zero, then the θ̄

is mainly contributed by Yukawa matrix e.g. [55] or spontaneous CP violation [56] which

can be introduced effectively from multi-loop (at least one-loop suppression) diagrams e.g.

[57], see [58] and [38, 39] for more examples.

An elegant solution for the strong CP problem is the axion (The axion that solves

the strong CP problem is called QCD Axion), introduced by Peccei and Quinn (PQ) [59].

They introduce a global chiral symmetry U(1)PQ on both the quarks and the Higgs multi-

plets transform same phase as quarks transformed under U(1)PQ. Consequently, the phase

θ̄ can be dynamically set to zero.

The symmetry breaking procedure of axion is following19

G
Step-1→ U(1)PQ

Step-2→ ZN , (1.107)

where the G is the symmetry on PQ scalar ϕ, the U(1)PQ is topologically a circle, and ZN

is disconnected points in the circle as shown in the figure in 1.1. The Step-1 and Step-2

are gonna be explained in following paragraphs.

Following the calculation in [33]. Similar to the linear sigma model, the Lagrangian

L = (∂µϕ
∗) (∂µϕ) +m2ϕϕ∗ − λ

4
ϕ2ϕ∗2, (1.108)

19However, the U(1)PQ is not a explicit symmetry, see an important explanation on page20 of [47] points

(a) and (b). This symmetry breaking is also explained mathematically/topologically on page 79 of the book
[60]. The axion-string formation depends on whether G isn’t simply connect π1(G) ̸= I.
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with m2 > 0, where we have a global U(1)PQ symmetry ϕ(x) → eiβϕ(x). Step-1 , the G

will be broken at ⟨ϕ⟩ = v = fa/
√

2 (axion-string has possible to be formed). However, the

Goldstone direction does not break (i.e. U(1)PQ not break), so there are an infinite number

of equivalent vacua |Ωθ⟩ with ⟨Ωθ|ϕ|Ωθ⟩ =
√

2m2

λ eiθ for any constant θ. Consequently, the

θ direction can be parametrized to a real field as

ϕ(x) =

(√
2m2

λ
+

1√
2
σ(x)

)
e
i
a(x)
fa . (1.109)

Next interesting is expanding the Lagrangian with the field, i.e.

L =
1

2
(∂µσ)2 +

(√
2m2

λ
+

1√
2
σ(x)

)2
1

f2a
(∂µa)2 −

(
−m

4

λ
+m2σ2 +

1

2

√
λmσ3 +

1

16
λσ4

)
,

if we require a canonical kinetic term for the axion, we have fa = 2m√
λ
≡

√
2v. The axion

a is the Goldstone boson of the broken U(1)PQ symmetry, i.e. its transformation in the

Goldstone direction do not break

e
iγ5

a
fa ψ → e

iγ5(
a
fa

+α)
ψ, as a(x) → a(x) + αfa, (1.110)

fa is a real parameter with a mass scale, as the decay constant fπ in the sigma model which

is associated with breaking U(1)PQ. Step-2 , this shift symmetry on axion would be broken

by instanton non-perturbative effect i.e. ⟨a⟩ = Λinst ∼ ΛQCD, to a ZNDW
symmetry e.g.20

At step-2, an axion potential from fermions is shown up as Fig.4.3, and the axion-

20 Here should not be confused, when we say ZNDW is looking around the potential at the original point

instead of the minima. This ZNDW is not real symmetry at minima potential, therefore it do not need any

d.o.f..
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domain walls are formed at this moment. On the other hand, the Noether current is

JµPQ =
∂L

∂ (∂µa)

δa

δα
= fa∂

µa+ fermion terms, (1.111)

where δa/δα = fa. If we only require the right(left)-hand fermions carry the U(1)PQ charge,

i.e.

ψR → e
i a
fa ψR, ψL → e

−i a
fa ψL (1.112)

this is the same as transformation under of Dirac basis with γ5 e.g. Eq.(1.110). So the

fermion terms will be

JµPQ = fa∂
µa+ fa

∂

∂ (∂µa)

[
iψ̄Rγµ∂

µψR −mψ̄RψL −mψ̄LψR
]

= fa∂
µa− ψ̄RγµψR.
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Figure 1.1: The last two terms can be not only obtained by these triangle diagrams but
also from Kazuo Fujikawa’s path-integral i.e. Eq.(1.38). Only AAA or AV V mode would
contribute nonzero amplitude, where the A is axial vector γ5 and V is a vector. See Eqs.(5-
10) in [1].

1.4.1 Axion potential

The detail of the calculation for obtaining the Lagrange Eq.(1.113) is given in

1.3.2. We mainly follow [2] in this section. Including the fermion part, the full Lagrange

would be

L ⊃ 1

2
(∂µa)2︸ ︷︷ ︸

from Eq.(1.109)

+ c0q
∂µa

fa
jµa,0︸ ︷︷ ︸

from Eq.(1.114)

+
g2s

16π2
a

fa
GµνG̃

µν +
1

2
g0aγγaFµνF̃

µν︸ ︷︷ ︸
from Triangle diagram Fig.4.2

, (1.113)

there has a factor 1/2 difference to Eq.(1) of [2], since a different definition e
iγ5

a(x)
fa , where

axial current jµa,0 ≡ q̄γµγ5q with a model dependent parameter c0q , and the fermion kinetic

term under the U(1)PQ transformation, for example,

iq̄γµ∂µq → iq̄γµ∂µq +
∂µa

fa
q̄γµ∂µq, (1.114)
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where we used {γµ, γ5} = 0, and q → e
iγ5

a(x)
fa q. The dual gluon field strength G̃µν =

1
2ϵµνρσG

ρσ, color indices are implicit, and the coupling to the photon field strength Fµν is

g0aγγ ≡ αem
2πfa

E
C
, (1.115)

where the electromagnetic and the color anomaly ratio: E/C = 8/3 for a complete SU(5)

representation [61] or DFSZ [62], E/C = 0 for KSVZ [63] (details in Section III.C of [38]

and Section 8.1.2 of [39]). Similar to Eq.(1.43), the E is the EM anomaly

E = 2TrQaQ
2
em. (1.116)

In addition, if the quarks transformation under the Yukawa matrix i.e. θ̄ with U(1)PQ and

a local U(1)A: ψ → eiβ(x)Qaγ5ψ with redefinition β(x) ≡ a(x)/fa are (similarly Eq.(220) of

[44])

q =


u

d

 → eiγ5θ̄Qa


u

d

 , and q =


u

d

 → e
iγ5

a
fa
Qa


u

d

 (1.117)

with unitary condition trQa = 1, where θ̄ is the strong CP phase. Then using Eq.(1.38),

the Eq.(1.113) becomes

L ⊃ 1

2
(∂µa)2 +

∂µa

fa
jµa +

1

2
agaγγFµνF̃

µν − q̄Maq + h.c. (1.118)
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where

gaγγ =
αem
2πfa

[
E
C
− 6 tr

(
QaQ

2
em

)]
, jµa = jµa,0 − q̄γµγ5Qaq,

Ma =e
i
(
θ̄+ a

fa

)
QaMqe

i
(
θ̄+ a

fa

)
Qa , Mq =

 mu 0

0 md

 , Qem =


2
3 0

0 −1
3

 , (1.119)

where only non-derivative couplings of the axion appear in the quark’s mass terms. The

important is that the aG̃G term has been removed, and we have to say those two different

bases are Equivalent because the rotation(redefinition) Eq.(1.117) is unphysical. In addition,

an example for the Qa as

Qa =
1

2

M−1
q

TrM−1
q
, (1.120)

see Eq.(50) of [38], in fact, it can be any form e.g. a number Qa =Diag(Xu, Xd) see

Eq.(1.135), it depends on the model. Apply this axial symmetry on the Eq.(1.101) by

replacing M →Ma then considering only 2-flavor {u, d} SU(2) effective chiral theory21, we

obtain

L ⊃ V 3

2
tr
[
MU +M †U †

]
, (1.121)

21If we do not consider this SU(2) flavor symmetry, the mass term with first order a will provide a potential

V (a) = − 1
4
m2

af
2
a cos(θ̄ + 2a/fa) with the minia θ̄ = −2⟨a⟩/fa, this exactly cancel the strong CP phase to

solve that problem.
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Figure 1.2: This figure is from [2]. Comparison between the axion potential predicted
by chiral Lagrangians, Eq.(1.123) (blue solid line) and the single cosine instanton one,
V (a) = −1

4m
2
af

2
a cos(a) with a≡ θ̄ + 2a/fa.

where similar to Eq.(1.5) and V 3 at Eq.(1.102),

U = eiπ
aτa/Fπ , πaτa =

 π0
√

2π+

√
2π− −π0

 , (1.122)

then do the same as Eq.(1.103), expanding U → 1 + iπaτa/Fπ and using Ma in Eq.(1.119),

we have [64] (drop off constant term)

V (a, π0) = −V 3

[
mu cos

(
π0

Fπ
− θ̄ − a

fa

)
+md cos

(
π0

Fπ
+ θ̄ +

a

fa

)]
= −m2

πF
2
π

√
1 − 4mumd

(mu +md)2
sin2

(
θ̄ +

a

fa

)
cos

(
π0

Fπ
− ϕa

)
, (1.123)

where we defined

tanϕa ≡
mu −md

mu +md
tan

(
θ̄ +

a

fa

)
. (1.124)
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As we can see at Eq(1.123) or numerically Fig.(4.3), the minima happen at sin2
(
θ̄ + a

fa

)
=

0, and cos
(
π0

fπ
− ϕa

)
= 1 i.e. ⟨π0⟩ = ϕaFπ, it means that the π0 vacuum expectation value

(VEV) depends on the axion phase. So if we keep ⟨π0⟩ = ϕaFπ, the potential read as

V (a) = −m2
πF

2
π

√
1 − 4mumd

(mu +md)2
sin2

(
θ̄ +

a

fa

)
. (1.125)

As expected the minimum is at ⟨a⟩ = −θ̄fa (solving strong CP problem). Just simply

expand this within the first order of a, we obtain the well-known formula for the axion mass

[65]

m2
a =

1

2

mumd

(mu +md)2
m2
πF

2
π

f2a
=

mumd

(mu +md)2
m2
πf

2
π

f2a
. (1.126)

It is worth mentioning that there would be a 3 by 3 mixing matrix between {a, η′, π0} if a

SU(3) {u, d, s} chiral Lagrangian was considered i.e. Eq.(1.5), see Eq.(39) in [38] or Section

4 of [33], it solved the U(1) problem. It is worth mentioning that the vacuum of axion ⟨a⟩ is

called QCD instanton vacuum since the non-perturbative instanton effect breaks the axion

shift symmetry down to discrete shift symmetry [5, 37]. On the other hand, the SU(2)L

and U(1)Y were affected by instanton as well, but the effects were suppressed by a factor

e.g.

Vi(θ) ∝ cot θe−Sinst , with Sinst =
8π2

g2i
, (1.127)

where gs ≫ g1, g2, therefore the instanton effects on perturbative theory SU(2)L and U(1)Y

can be ignored, see Eq.(2.27) in [66] for details. It is worth mentioning that the temperature-
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dependent term (Eq.(32) in [67])

e−Sinst = e
− 2π

αs(T ) ≃
(

ΛQCD
T

)11− 2
3
Nf

, (1.128)

where Nf is the number of quark flavors with mass less than T .

1.4.2 PQWW/KSVZ/DFSZ Axion Models

• PQWW axion model.

The original axion model is considering a single additional complex scalar field, ϕ,

to the SM as a second Higgs doublet, just like 2HDM type(I,II,X,Y). One Higgs couple to

u-type quarks, while another couple to d-type quarks. The key point is requiring the quarks

transform under the global chiral symmetry U(1)PQ, on the other hand, the scalar should

rotate the same value on its phase, i.e.

q → eiγ5αq, H → eiβH, (1.129)

where α = β = a/fa at PQ SSB. However, in their model, the symmetry breaking should

be at EW scale, i.e. vEW = fa = 246GeV. Since all the interactions between SM and

axion are proportional to at least the order of 1/fa, it was excluded by e.g. beam-dump

experiments, recently fa ≥ 1012GeV. Under this constraint fa ≫ vEW , we call the axion as

invisible, e.g. KSVZ and DFSZ models, see Section 2 of [5].
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• KSVZ axion model (also called hadronic axion model).

The KSVZ axion model [63] include vector-like heavy quark doublets, QL, QR,

each is in SU(3)c triplet, the Yukawa term as

LKSV Z = −λQϕQ̄LQR + h.c., (1.130)

with the global chiral U(1)PQ transformation,

QL → eiα/2QL, QR → e−iα/2QR, ϕ→ eiαϕ, (1.131)

where the singlet scalar ϕ has to be carried charge 1 under U(1)PQ, fermions have charge

1/2. At low energy, after PQ symmetry breaking i.e. redefine the quarks field as,

QL → eia/2faQL, QR → e−ia/2faQR, (1.132)

then the Lagrangian would be

LKSV Z = −1

2
∂µa∂

µa− λQfa

(
Q̄Le

ia/faQR + Q̄Re
−ia/faQL

)
(1.133)

where the mass of Q field as mQ ∼ λQfa ≫ vEM . It suppresses all of the tree-level couplings

between axion and SM fields. All SM fermions do NOT interact with axion directly. The

transformation of field under U(1)PQ are similar to Eq.(1.129).
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• DFSZ axion model.

Similar to the PQWW model, the axion couples to the SM via the 2HDM sector,

but add an additional singlet complex scalar field ϕ [62],

L ⊃ λHϕ
2H†

uHd + h.c., (1.134)

where ϕ carried charge −(Xu + Xd)/2 under U(1)PQ, and the Higgs fields have Xu,d for

each, i.e. (the Hu has additional minus because of duality of SU(2)L)

Hu → e−iXuHu, Hd → eiXdHd, ϕ→ e−i(Hu+Hd)/2ϕ (1.135)

The transformation of field under U(1)PQ are similar to Eq.(1.129), assuming no charge on

left-hand quarks,

uR → eiXuuR, dR → eiXddR, ℓR → e−iXℓℓR, (1.136)

where the ℓ part is flexible, it depends on which type of 2HDM is used. The simplest

solution is setting {Xu, Xd} = {1, 1}. On the other hand, the Yukawa as e.g.

L ⊃ λuq̄LHuuR + h.c., (1.137)

it means the SM fermion should be charged under U(1)PQ. As the transformation in

Eq.(1.129), the interaction between axion and SM fermions after EW SSB, mu(a/fa)iūγ5u.

This term provides the anomaly term i.e. GG̃ term with a triangle diagram. The PQ scale
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vϕ should be much larger than vEM to avoid experiment constraint. The difference between

these two models is that the heavy quarks Q provide anomaly terms on KSVZ, but SM

light-fermions provide anomaly terms on DFSZ. In the DFSZ model, all of SM quarks are

charged under U(1)PQ, it giving rise to color anomaly C = 6, see Sec.1.4.4 for details.

1.4.3 SM fermions couple to SM

Figure 1.3: Graphs for the potentials [3]. Left to right, monopole-monopole, monopole-
dipole, and dipole-dipole.

Mainly follow Section 2.3 of [5], [61], Section 8.1.2 of [39], and more details in

Section III.C of [38].

• Couple to fermions, from Eq.(1.114), the interaction is

gaff
∂µa

fa

(
ψ̄γµγ5ψ

)
, (1.138)

where γ5 means that the axion force is spin-dependent, see Eq.(6) in [3] as well as Fig.1.3.

The potential is only dipole-dipole interaction between particle-i and particle-j,

V (r) =
gigj

16πMiMj

[
(σ̂i · σ̂j)

(
ma

r2
+

1

r3

)
− (σ̂i · r̂) (σ̂j · r̂)

(
m2
a

r
+

3ma

r2
+

3

r3

)]
e−mar,

(1.139)
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where σ̂ is a unit vector in the direction of the spin, and r̂ is a unit vector along the line of

centers. As we can see, the Yukawa-type interaction is suppressed by e−mar. If we consider

the limit ma → 0, the potential to be V (r) ∝ 1
r3

, it is a short distance force. Thus NO

matter how light the axion, it transmits no long-rangle scalar forces between macroscopic

bodies.

• As an example for axion-SM couplings can be found in Chapter 10.1.1 of [6],

considering the DFSZ model as Eq.(1.134) to Eq.(1.137). The effective Lagrangian

Lint = i
gaNN
2mN

∂µa
(
N̄γµγ5N

)
+ i

gapp
2mp

∂µa (p̄γµγ5p) + i
gaee
2me

∂µa (ēγµγ5e) + gaγγaE⃗ · B⃗;

(1.140)

with

gaee =

[
Xℓ

NDW
+

3α2
em

4π

(
E

NDW
ln(fa/me) − 1.95ln(ΛQCD/me)

)]
me

fa/NDW
, (1.141)

gaγγ =
αem

2π(fa/NDW )

(
E

NDW
− 1.95

)
, (1.142)

gaNN = [(−FA0 + FA3)(Xu/2NDW − 0.32) − (FA0 + FA3)(Xd/2NDW − 0.18)]
mN

fa/NDW
,

(1.143)

gaNN = [(−FA0 − FA3)(Xu/2NDW − 0.32) − (FA0 − FA3)(Xd/2NDW − 0.18)]
mp

fa/NDW
,

(1.144)

where FA0 ≃ −0.75, FA3 ≃ −1.25 and E at Eq.(1.116) and NDW = C at Eq.(1.43). As

50



above, the axion lifetime is [6]

τa = 6.8 × 1024sec
(ma/eV)−5

[(E/NDW − 1.95)/0.72]2
. (1.145)

This lifetime is usually longer than the universe’s age, thus the axion is a good candidate

for dark matter.

1.4.4 Colour Anomaly/Domain Wall Number in Axion Model

Mainly following Section 2.2 [5], Section 7.3 [39] and [61]. Considering Eq.(1.117)

and Eq.(1.44), i.e. the U(1)PQ transform as

ψi → e±iQia/faψi, (1.146)

where i = {L,R}, the left and right handed spinor carried opposite U(1)PQ charges. Similar

to Eq.(1.41), the matrix Qi achieve a colour anomaly from Eq.(1.43). It turns out that

adding a factor on Lagrangian

L → L +
C

32π2
a

fa
TrGµG̃

µν . (1.147)

This factor effectively affects the vacuum energy Eq.(1.125) to (at limit 4mumd/(mu +

md)
2 ∼ 1)

V (a) ∝ − cos

(
θ̄ + C a

fa

)
. (1.148)
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This means that the colour anomaly sets the number of vacua that a has in the range

[0, 2πfa]. Since the U(1)PQ has the transform symmetry under every 2π shift i.e. a →

a + 2πfa, the physics do not charge. Therefore the colour anomaly C must be an integer

[61]. Because the C corresponds to a number of vacuums during axion shift, it is a number

of domain walls i.e. C = NDW . Effectively, it affects the decay constant

fa → fa/NDW . (1.149)

This also means that the U(1)PQ symmetry was broken into subgroup ZNDW
, and has

degenerated minima at a = 0, 2π/NDW , · · · , 2π(NDW − 1)/NDW . For example:

Therefore, Eq.(1.126) can be rewrote as

m2
a =

m2
πf

2
π

(fa/NDW )2
mumd

(mu +md)2

{
1 +

m2
π

m2
η

[
−1 + O

(
1 − mπ

mη

)]}
(1.150)

where the NLO is considered. This talk to us that if these mesons {η′, π} carried the same

masses, the axion should be massless. Numerically,

ma ≃ 6 × 10−6 eV

(
1012 GeV

fa/NDW

)
. (1.151)
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• For the Domain Wall number for U(1)PQSU(3)2c [10], from Eq.(1.43) we have

(it is the same as the calculation on anomaly cancellation)

NDW =

∣∣∣∣∣2∑
i=L

Tr
[
QPQ(qi)T

2
a (qi)

]
− 2

∑
i=R

Tr
[
QPQ(qi)T

2
a (qi)

]∣∣∣∣∣ , (1.152)

where QPQ(qi) is the U(1)PQ charge for each quark species qi, and Ta are the generators of

SU(3)c normalized such that Tr[TaTb] = Iδab where I = 1/2 for fundamental representation

of SU(3)c. If we choose the unit QPQ = 1 for the minimum non-vanishing magnitude of

PQ quantum numbers. In KSV Z models, from Eq.(1.132) we obtain

NKSV Z
DW =

∣∣∣∣2 × 1

2
× 1

2
− 2 ×

(
−1

2

)
× 1

2

∣∣∣∣ = 1, (1.153)

while in the DFSZ models, from Eq.(1.136) with Xu = Xd = 1,

NDFSZ
DW =

∣∣∣∣∣∣0 − 2
∑

uR,cR,tR

×1 × 1

2
− 2

∑
dR,sR,bR

×1 × 1

2

∣∣∣∣∣∣ = 6. (1.154)

It is exactly a number of families. As above, the domain wall number is just the non-canceled

(NDW ̸= 0) anomaly cancellation.
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1.5 Axion: Cosmology

Figure 1.4: The PQ complex scalar potential with PQ symmetry breaking, the figure is
cited from [4].

The PQ scalar field ϕ has the Lagrangian, (see Section.3 in [4])

L =
1

2
|∂µϕ|2 − Veff (ϕ, T ) , (1.155)

where

Veff (ϕ, T ) =
λ

4

(
|ϕ|2 − η2

)2
+
λ

6
T 2|ϕ|2. (1.156)

This Lagrangian is invariant under global U(1)PQ transformation, ϕ → ϕeiα. At high

temperature T > Tc ≡
√

3η, the potential has the minimum at ϕ = 0 and the vacuum has

the U(1)PQ symmetry. Then as the cosmic temperature decreases to T < Tc, the PQ scalar

ϕ obtains vacuum expectation value |ϕ| = η. The axion a is a Goldstone boson associated

with this U(1)PQ SSB. Recalling Eq.(1.148), the instanton vacuum ⟨a⟩ would cancel the

strong CP phase θ̄, leave the field term only i.e.

V (a) =
m2
aη

2

N2
DW

(
1 − cos

NDWa

η

)
, (1.157)
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where axion mass ma is temperature dependent, i.e. [68] or Eq.(10.26) of [6]

ma(T ) ≃


4.05 × 10−4 ×

Λ2
QCD

fa

(
T

ΛQCD

)−3.34

T > 0.26ΛQCD,

3.82 × 10−2 ×
Λ2
QCD

fa
T < 0.26ΛQCD,

(1.158)

where ΛQCD ≃ 400MeV, and recall to Eq.(1.149) we have fa = η/NDW . This is like

Eq.(1.149), in the following section, we used fa ≡ η/NDW . More clear discussion of this

ma(T ) can be also found at [69].

1.5.1 The Kibble Mechanism

During a cosmological phase transition any correlation length is always limited by

the particle horizon, see Chapter 7.5 of [6]. The particle horizon is at Chapter 2.2 of [6], it

is the maximum distance a massless particle can propagate since the time of the big bang,

i.e.

dH(t) = R(t)

∫ t

0

dt′

R(t′)
≤ 1

H(t)
≃ T 2

mpl
. (1.159)

If R ∝ tn with n > 1, then we have dH = t/(1− n). Any physical length/correlation length

cannot be longer than dH(t).
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1.5.2 Misalignment Mechanism

At beginning T ≫ fa, the potential is Eq.(1.156). Following the cooling universe

in Refs.[70, 71, 72], at the temperature T ∼ fa the U(1)PQ symmetry broken, then the

Goldstone axion moving in the circle, shown as (a). However, at T ∼ ΛQCD ≪ fa, instanton

break the shift symmetry of axion, the potential looks like (b), i.e. as Eq.(1.125) with

ma ≪ fa,

V (a) = m2
af

2
a

[
1 − cos

(
a

fa

)]
≃ 1

2
m2
aa

2 + · · · . (1.160)

But the axion is not just rolling down to the minimum, it is oscillating around the mini-

mum point, this motion is called coherent axion oscillation. The oscillation happen when

ma(T1) ≃ 3H(T1) (see Eq.(1.170)), this correspond to T ∼ T1 ∼ GeV, i.e. radiation dom-

inated era the H ∝ 1
t ∝ T 2 [73]. On the other hand, Eq.(1.158) shows ma(T ) ∝ 1/T 3.34.

Therefore the fraction term in Eq.(1.162) can be ignored by H(T ) ≪ ma(T ) at a later time

T ≪ T1. The Eq.(1.162) can be rewrote as (more precise calculations in [67, 70, 71, 72])

ä+ 3Hȧ+ V ′(a) = 0

→ ä+m2
aa ≃ 0 → a(t) = A(t) cos (mat+ C) with A(t) ∼ A≪ fa, (1.161)

56



where A and C are constants depends on initial conditions θ1 and T1. This is called an

Adiabatic condition. Axion is fixed at θ ∼ 0, therefore A ≪ fa. Kinetic energy can be

ignored (substitute this solution back to Lagrange) when axion reaches the minimum, the

energy density from Eq.(1.163) will be approximated to ρa ≃ 1
2m

2
aa

2, it associated density

as shown in Eq.(1.177), see also [70, 71, 72, 7]. Since the coherent axion will condensate, it

can be cold DM even if it is super light. [74]

1.5.3 Abundance of the Axion

Axion Density in Misalignment Mechanism

The calculations in this section are following Section 4.2 of [5]. The axion equation

of motion on FRW metric reads, (This equation of motion ONLY valid when |θ| = |a/fa| ≲ 1

in Eq.(1.160))

ä+ 3Hȧ+m2
aa = 0. (1.162)

where the space term ∇2
xa(x) is ignored, see Eq.(29) of [67]. The background energy density

and pressure of the axion field are:

ρa =
1

2
ȧ2 +

1

2
m2
aa

2, Pa =
1

2
ȧ2 − 1

2
m2
aa

2. (1.163)
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The general at the matter or radiation dominated universe R(t) ∝ tp. In this era, the field

has an exact solution:

a = R−3/2 (t/ti)
1/2 [C1Jn(mat) + C2Yn(mat)] , (1.164)

where n = (3p − 1)/2, Jn(x) and Yn(x) are Bessel functions of the first and second kind,

and the ti is the initial time. The initial conditions are when H(ti) ≫ ma:

a(ti) = faθa,i, ȧ(ti) = 0, (1.165)

where θa ≡ ⟨a⟩/fa is at Eq.(1.183). The numerical solution is shown in Fig.4.6.
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Figure 1.5: This shows Eq.(1.164) with p = 1/2. This is from Figure 4 of [5]. Vertical

dashed lines show the condition defining A ≡ ma/H(Rosc) ≡ 2 as condition in Eq.(1.162)

and Eq.(1.163), also used the approximation ρa(R) = ρa(Rosc)(Rosc/R)3 when (R > Rosc) as

well as ρa(Rosc) ≃ m2
aa

2
i /2, hence the axion energy density is controlled by initial conditions.

The right-down shows a comparison of A = 2 and is fully numerical. On the other hand, if

we consider A = 3 the result can be fit very well as A = 2 did. The important things are (1)

upper-left, the axion field frozen when ma is in of scale-regime (H > ma, see upper-right).

(2) lower-right, the axion energy density decays shortly once enters to scale regime.

In initial conditions Eq.(1.165), the factor C2 → 0. The potential term in Eq.1.163

to be dominated until the oscillation occurs at TOSC, namely, the relation holds 3H(TOSC) ≃

ma(TOSC). On the other hand, if there has an initial velocity of the field at an early time
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e.g. ȧ ∼ H(T = fa)
2 or the condition when two terms are comparable at QCD phase

transition time i.e. 3Hȧ
T∼ΛQCD∼ m2

aa, the solution will be different C1 → 0. The axion will

be w = +1 during T > TOSC, then oscillating at low temperature as usual. This situation

can be built by that the early axion was emitted by a cosmic string, those axions have high

kinetic energy. A non-zero initial velocity of field is assumed in this reference [75].

By the way, in the limit mat→ 0, the Eq.(1.164) can be simplified by

R−3/2(t/ti)
1/2Jn(mat) ∼ constant, R−3/2(t/ti)

1/2Yn(mat) ∝
1√
mat

. (1.166)

So the energy density ρa in Eq.(1.163) would be decreasing as w = +1, if C2 is dominated.

The w ≡ Pa/ρa is the Equation of state. On the other hand, in the limit mat → ∞, the

asymptotic form reads

Jα(z → ∞) =

√
2

πz
cos
(
z − απ

2
− π

4

)
, Yα(z → ∞) =

√
2

πz
sin
(
z − απ

2
− π

4

)
.

(1.167)

So the field solution on Eq.(1.164),

a ≃ R−3/2

√
2

πmati
(C1 cos(mat) + C2 sin(mat)) . (1.168)

The constants C1 and C2 from initial conditions Eq.(1.165) with p = 1/2 reads

C1 ≃ faθa,i/27, C2 ≃ 0. (1.169)
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• The history of the axion field is given:

1. At early times when H > ma, the axion field is overdamped and is frozen at

its initial value by Hubble friction. The equation of state at early times is ωa = −1, and it

behaves as a contribution to the vacuum energy, see the left-down in Fig.4.6. However, the

length of this period depends on the ratio H/ma when the axion comes to dominate the

energy density.

2. Later time, when H < ma the axion field is underdamped and oscillating. The

equation of state oscillates around ωa = 0 (after averaged), that’s the reason why

the axion can work like ordinary matter, see the left-down in Fig.4.6. It becomes a

DM candidate. By the way, the Hubble rate at matter-radiation equality in ΛCDM is

approximately H(aeq) ∼ 10−28eV.

3. For the solution of H ≃ ma at QCD phase transition (see Chapter 10.3.2 in [6]

for more details) i.e. Cold QCD Axion with peV ≲ ma ≲ µeV and fa ≳ 1012 GeV, using

the condition A = 3 i.e. ma(T1) = 3H(T1) where T1 corresponds to QCD phase transition,

which is the temperature when oscillation starts. Then using Eq.(1.158), we have22 [4]:

T1 = 0.98 GeV

(
Fa

1012 GeV

)−0.19( ΛQCD
400 MeV

)
. (1.170)

where the simplest Cold Axion model is considered i.e. Eq.(1.160) instead of Eq.(1.123). In

22Since matter-radiation equality at T ≃ 0.75eV, we use radiation domination in this calculation, i.e.

H = 1.66g∗(T )
1/2T 2/mpl, see Eq.(A5) in [76].
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short, the story is that

Axion freeze out at H ≫ mawith field value a ∼ fa

↓

Axionenergy density start to decay as ρ ∝ R−3when H ∼ ma

↓

Since astrongoscillationbetween ω = ±1, axion is averagely matter-like ⟨ω⟩ = 0

• Adiabatic condition at late time of universe H ≪ ma

Again, using Eq.(1.162) and Eq.(1.163), see details in Section.3.2.1 of [4]. we have

ρ̇a
1.163
= äȧ+ ṁamaa

2 +m2
aȧa

1.162
=
(
−Hȧ−m2

aa
)
ȧ+ ṁamaa

2 +m2
aȧa

= − 3Hȧ2 + ṁamaa
2. (1.171)

Since the potential varies much slower than the field itself (i.e. H, ṁa/ma ≪ ma) [77], we

can use the so-called adiabatic invariant theorem (is a WKB approximation [5]), the area

in the phase space swept by the periodic motion is unchanged per one axion oscillation

[77, 38]. In this case, the Eq.(1.162) can be rewrite as

ä+ 3Hȧ+m2
aa → ä+m2

aa = 0, (1.172)
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so the ansatz solution reads as Eq.(1.161) (Eq.(62) of [5])

a(t) = A(t) cos (mat+ θ) , (1.173)

where θ is an arbitrary phase, and using Eq.(1.162) we obtain A ∝ a3/2 in RD is slowly

varying such that Ȧ/ma ∼ H/ma ≪ 1. So we have approximately

ȧ2 ≃ m2
a

(
A2 − a2

)
. (1.174)

The basis of this ansatz solution, we obtain the time-invariant quantity as [4]

ρaR
3

ma
= constant. (1.175)

The solution with this theorem is shown as the number to entropy ratio [76, 77, 4] (since

s ∝ R−3)

Y cold
a =

na,0
s0

= β

(
ρa/ma

s

)
T=T1

, (1.176)

where s is the entropy density and s0 is its present value. The β = 1.85 [77] is a correction

factor from anharmonic terms in axion potential. The anharmonic is just the ratio of the

axion energy density obtained by using e.g. V ′(a) = m2/N sin(Na), to that obtained using

the linearized form V ′(a) = m2
aa

2 i.e. higher order terms effect (see Figure 4 in [76]). The

numerical result for present cold axion density is given [Anthropic window, i.e. SSB-fa
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before end of inflation]

Ωah
2 = 0.18 θ21

(
fa

1012 GeV

)1.19( ΛQCD
400 MeV

)
, (1.177)

where we assume that the late-time entropy production after the QCD phase transition

is neglected [?], and the misalignment mechanism was considered. The θ1 ≡ a1/η with

(fa = η/NDW ) is the initial angle at the start of oscillation, see Eq.(1.183). We know the

energy density is proportional to ρa ∝ Va ∝ m2
af

2
a , then we know ma ∝ 1/fa. It seems

the energy density should be independent to fa or ma, however, check the temperature

dependence (Eq.(1.158)):

ma(T ) ∝ 1

fa
T−n, (1.178)

we also know the temperature

3H ≃ ma(T ) → 1

t
∝ T 2 ∝ 1

fa
T−n → fa ∝ T−2−n. (1.179)

Then we obtain

ρa(t0) = m2
a(T )f2a

ma(T = 0)

ma(T )
∝ T−n ∝ f

n
2+n
a ∝ f0.625a , (1.180)

where na = m2
a(T )f2a/ma(T ) is the number of axions at starting of the oscillation, we also

assume that the axion mass changes adiabatically, the number density is conserved. So the
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relic density is expressed

Ωa =
ρa(t0)

s(T )
× s0
ρ0

∝ f
n

2+n
a × T−3 ∝ f

n
2+n

+ 3
2+n

a = f1.187a , (1.181)

where n = 3.34 is the QCD axion. [This is how we calculate the Eq.(1.177)]

Axion Isocurvature condition

• If the U(1)PQ SSB after the inflation, we called classic window,

fa < Max

[
HI

2π
, Tmax

]
, (1.182)

where HI is Hubble parameter during inflation, the Tmax is maximum temperature after

inflation. In this case, the θ1 is random in the whole space, then we should replace with its

spatial average, namely, (Eq.(16) in [78] or Eq.(10.48) in [6])

θ21 → ⟨θ21⟩ =
canh
2π

∫ π

−π
θ21dθ1 ≃ canhπ

2/3 ∼ 6.85, (1.183)

where canh ∼ 2 is the anharmonic correction [77]. The picture of the universe is shown in

Fig.1.6.

• If the U(1)PQ SSB before the inflation, we called anthropic window,

fa > Max

[
HI

2π
, Tmax

]
, (1.184)

The θ1 takes the same value in the whole space, it becomes a free parameter. In this case,
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Figure 1.6: Distribution of |θ1| in an inflationary Universe, this from Fig. 10.9 of [6].

Ωah
2 depends strongly on initial conditions.

In particular, the density of this coherent axion oscillation (Misalignment mecha-

nism) cannot exceed the present DM density i.e. Ωah
2 ≤ ΩCDMh

2 ≃ 0.11. If the U(1)PQ

SSB after inflation, we obtain an upper bound on

fa ≲ 1.4 × 1011 GeV, (1.185)

this is the bound from cosmic string radiation. But from PQ-SSB axion is at Figure.5 in

[5], the bound on fa depends on the mass of axion ma.

Isocurvature bound is from the uniformless that is caused by inflation, which is

only applicable when the PQ-SSB is earlier than inflation i.e. the anthropic window. It

happens when you have massless particles that have independent quantum fluctuations vs.

an inflaton field.
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Thermal production of axion

4. For the case H ≫ ma on all period, namely, Hot Axion with ma ≲ keV and

106 GeV ≲ fa ≲ 108 GeV. Follow the Lagrangian

Linteration = − αs
8πfa

GaµνG̃
a
µνa−

Cγαem
8πfa

FµνF̃
µνa

+
Ci
2fa

Ψ̄iγ
µγ5Ψj∂µa+

Cπ
fafπ

(
π+π0∂µπ− + · · ·

)
∂µa+ · · · ,

where the Ψi are SM fermions, and Cγ , Ci are model-dependent parameters, see [38, 39].

In the following we set Cγ = Ci = 0. The axion production rate is dominated by these

processes as shown in Fig.(4.9).

Figure 1.7: The axion production from gluon collision [7].
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Those processes correspond to the amplitudes (see Table. I in [7]),

|MA|2 = − g6s
32π4f2a

(s2 + st+ t2)2

st(s+ t)
|fabc|2, (1.186)

|MB|2 =
g6s

128π4f2a

(
2
t2

s
+ 2t+ s

)
|T aji|2, (1.187)

|MC |2 = − g6s
128π4f2a

(
2
s2

t
+ 2s+ t

)
|T aji|2, (1.188)

where gluons ga carried the color index a, then fabc and T aji are SU(NC) color matrces.

Then the Boltzmann equation is

dna
dt

+ 3Hna = −⟨σa|v|⟩
[
n2a −

(
nEQa

)2]
= Wa (1.189)

where using Eq.(5.23) in [6],

Wa =
ξ(3)g6sT

6

64π7f2a

[
ln

(
T 2

m2
g

+ 0.406

)]
, (1.190)

where mg = gsT
√
Nc + (nf/2)/3, σa is cross-section of axion production. The easier way

to find the number to entropy ratio is using Eq.(1.189) with Y ≡ na/s

dY

dt
=
dna
dt

1

s
− na

ds

dt

1

s2
=
dna
dt

1

s
+ na3H

1

s
=

(
dna
dt

+ 3Hna

)
× 1

s
=
Wa

s
, (1.191)

where we used s ∝ R−3 and H ≡ Ṙ/R. If we set the initial condition Y (TR) = 0, where TR

is reheating temperature after inflation, and assumed that axions were never in the thermal
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equilibrium with the primordial plasma. So we obtain the relic axion today

Y TP
a =

∫ TR

Tm,γ

dT
Wa(T )

Ts(T )H(T )
= 18.6 g6s ln

(
1.501

gs

)(
1010 GeV

fa

)2(
TR

1010 GeV

)
, (1.192)

where Tm,γ is the matter-radiation equality temperature. This is only valid when axion

disappearance processes can be neglected, i.e. TR < TD and the axion is out of thermal

equilibrium. However, if the decoupling temperature is lower the reheating temperature,

i.e. TR > TD, the disappearance processes have to be taken into account, namely, the axion

is within thermal equilibrium unit T ∼ TD its behaver is the same as hot thermal relics,

the resent yield of that thermal relic axion is then given by23 Y EQ
a = nEQa /s ≃ 2.6 × 10−3.

The decoupling temperature TD can be found by [79], for process a+ j ↔ 1 + 2,

√
4π3

45
g∗(T )

T 2

Mpl
= H ≃ Γa =

1

nEQa

∫
d3pa

(2π3)2Ea

d3pj
(2π3)2Ej

fEQa fEQj (σa+j↔1+2 v 2Ea2Ej)

= nj⟨σ|v|⟩,

then obtain numerically [7]

TD ≃ 9.6 × 106 GeV

(
fa

1010 GeV

)2.246

. (1.193)

Finally, the density from Thermal Production rate:

ΩTP
a h2 ≃

√
⟨pa,0⟩2 +m2

aY
TP
a (∞)s(T0)h

2/ρc, (1.194)

23Using Fig.3.5 and Eq.(5.27) in [6] Y∞ = YEQ(xf ) = 0.278geff/g∗S(xf ) with geff ∼ 1 and g∗S(xf ) ∼ 100.
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where the present average momentum ⟨pa,0⟩ = 2.701Ta,0 given by the present

axion temperature Ta,0 = 0.332T0 ≃ 0.332 × 0.235 = 0.08meV [7]. The axion mass is at

Eq.(1.151). As above we have: [7]

As we see, the Thermal production of axion is negligible, but it may not be the

case if nonzero Cγ and Ci were considered (still an open question). In addition, the axion

condensate from the misalignment mechanism is considered as well (the dotted lines), see
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Eq.(1.177). Thus total density would be

Ωah
2 = ΩMIS

a h2 + ΩTP
a h2, (1.195)

where we set ΩMIS
a = ΩEq.1.177

a .

1.5.4 Axion Strings and Domain Walls

The potential at Eq.(1.156) and Eq.(1.157) give a total potential at T → 0 limit

[10]

V (ϕ) =
λ

4

(
|ϕ|2 − η2

)2
+
m2
aη

2

N2
DW

[1 − cos (NDW θ)] , with θ ≡ a

η
. (1.196)

At the G (see Eq.(1.107)) PQ-scalar symmetry breaking, the ⟨ϕ⟩ = η, the cosmic strings

are formed. Then the phase part of ϕ became axion i.e. ϕ→ ηeia/η. Then the second term

in Eq.(1.196) is from instanton vacuum which breaks the U(1)PQ into its subgroup ZNDW

(it is the symmetry only if the minima at the original point of the potential, see note.20).

Furthermore, this term becomes non-negligible when the mass of the axion is lager then

the friction of cosmic expansion, i.e. ma ≳ H from Friedmann equations, see details in

Section.4 of [5].

The calculations are mainly following [80]. Since the ma(T ) and η(T ) are temper-

ature dependent, the second term in Eq.(1.196) can be write as

V (ϕ, a) → λ

4

(
|ϕ|2 − η2

)2
+ χ(T ) [1 − cos(NDW θ)] , (1.197)
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where χ(T ) = m2
a(T )f2a (T ) with fa ≡ η/NDW is a calculable temperature-dependent topo-

logical susceptibility of QCD, which is not determined at high-temperature [81, 2]. Form

Figure.1 of [80]:

At T > ΛQCD, before axion shift symmetry breaking, figure (a) shows a series

of points along the minimum of the potential in field-space, they can be mapped onto a

loop in position-space (b). Then at T ≃ ΛQCD, the axion shift symmetry break to ZNDW

symmetry, i.e. from A to I, NDW = 9 different phases show up. They should meet at a

singularity in θ̄ = ⟨a⟩/fa as (c), and the singular point forming a string as (d). Another

point of view with NDW = 3 is from Appendix.B2 of [10]:

In this picture, the scalar field was written as ϕ = |ϕ|eia/η ≡ ϕ1 + iϕ2, therefore

the axion is already included in a linear combination of ϕ1 and ϕ2. As we see, for example,

the real space between wall-1 and wall-2 is at vacuum-1.
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• The string energy density can be wrote as [80],

µ ≡ Energy

length
=

∫
rdrdθ

(
1

2
∇ϕ†∇ϕ+ V (ϕ)

)
≃π

∫
rdr

(
∂θϕ

†

r

∂θϕ

r

)
≃π

∫ 1/H

1/ms

rdr
f2a
r2

= πf2a ln (ms/H) ≡ πf2aκ, (1.198)

where the integral over r is cut off at small r by the scale where v(r) ̸= 1, namely, the

radius of string core r > 1/ms. On the other hand, using particle horizon as the upper

limit of the radius of the string, see Eq.(1.159). The ms is the mass of the real scalar field,

i.e. from Eq.(1.196), m2
s ≡ λf2a . Numerically, the κ ∼ 70 with λ ∼ 1, fa ∼ 1011GeV, and

H ∼ 1/(2t) ∼ 10−18GeV at T ∼ 1GeV, the reason for taking T ∼ 1GeV is at Eq.(1.170),

[80].

• Surface mass density of domain walls. Following Appendix. E of [10]. At

Eq.(1.196), there have two kinds of domain walls: First, the domain wall from the first

term of Eq.(1.196) i.e. PQ scalar ϕ at T ∼ fa ≫ T0 where T0 is the temperature today, this

domain walls density will be diluted very fast (see, Chapter 7.2 of [6] Table.7.1). Therefore

its effects are negligible. Second, we only need to consider the domain walls from axion

with broken axion shift symmetry ZNDW
. Axion’s Lagrangian,

La =
η2

2
(∂µθ)

2 − m2
aη

2

N2
DW

(1 − cosNDW θ) , (1.199)

again where θ ≡ a/η. To solve equation of motion in Eq.(1.199) by using θ(x, y, z, t) = θ(z),
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we have

θ(z) =
2πk

NDW
+

4

NDW
tan−1 exp(maz), k = 0, 1, · · · , NDW − 1. (1.200)

Integrating our energy density, the surface energy density of the domain wall would be

σwall =

∫ ∞

−∞
dzη2

(
dθ

dz

)2

=
8maη

2

N2
DW

. (1.201)

If we also include the effects by the neutral pion fields vary inside the wall i.e. using

Eq.(1.123) as the potential, the Eq.(1.201) has an additional factor

σwall → 4.32fπmπη/NDW = 9.23
maη

2

N2
DW

, (1.202)

see Eq.(3.13) in [82].

• As we discussed T1 at Eq.(1.170), the axion rolling down to its minimum only

when T ∼ T1 i.e. ma(T1) ≃ 3H(T1) at this time, the domain walls are formed. In addition,

at a later moment tw, the axion domain walls are dominated in the space. One we can

estimate (This plot is from Kawasaki’s slide):
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Axion strings formed at: time = ts, temperature:Ts ≃ fa,

Domain walls formed at: time = t1, temperature:T1 ≃ 1 GeV, see Eq.1.170,

Domain walls dominated at: time = tw ≃ 1

ma
,

where ”dominated” is compared only to string, and ts < t1 < tw. This tw can be found at

Eq.(2.5) in [10] or by using Eq.(1.199) and Eq.(1.201) we have:

tw ≡ µ(tw)

σwall
=

π

9.23

ln(ms/H)

ma
, (1.203)

• The Axion Domain Wall Problem or called Overclosure problem on axion

domain walls, see Chapter.3 in [67] for more details or [10]. After the time tw, the domain

walls are straightened by their tension force up to horizon scale dH = H−1 such as the

wall curvature radius and the distance of two neighboring walls. For example, considering

a NDW = 2 (i.e. two minima ±) case, the domain walls structure is (from Cambridge

website):
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where only bold lines are domain walls. Form Kibble mechanism Eq.(1.159), we

have dH ≃ 1
H . Therefore, the energy density of domain walls is diluting as24

ρwall ≃
σwall
H−1

∝ t−1 (1.204)

where radiation dominated H−1 = 2t is used, and σwall ≃ constant by using Eq.(1.158)

and Eq.(1.201) at T < T1 ≃ 1 GeV. Since this dilution of domain walls is slower than that

of matters ρm ∼ R(t)−3 ∼ t−3/2 and radiation ρ ∼ R(t)−4 ∼ t−2 as well [73], its energy

24This is true for simulations, i.e. ⟨v2⟩ ≃ 0.577 at RD or 0.16 at MD, see [83]. The theoretical calculation
at [6].
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density will eventually dominate in universe at the time (Eq(74) of [67] or see [73]):

H2 ∼ 8πG

3
ρwall → tWD =

3

16πGσwall
, (1.205)

where G is Newton’s gravitational constant. Its temperature is T ∼ O(10)keV [9].

However, there have three solutions to solve the axion domain wall problem (details

in Chpater.3 of [67]): First, if the PQ phase transitions earlier than inflation, i.e. all of

the effects of axion would be homogenized by inflation, and there are no string s or domain

walls. Second, If domain wall number NDW = 1, ρwall will be decaying by gravitational

radiation, heating and reflecting axion by against false vacuum region (DW do not radiate

axion, but string does, so there still has axion contribution from Fig.1.8). In this case, the

picture of the domain wall will be shown as Fig.1.8.

𝑎
𝑎
𝑎
𝑎
𝑎
𝑎

𝑎
𝑎

𝑎 𝑎
𝑎

𝑎𝑠

𝑎𝑠

𝑎𝑠

𝑎𝑠

𝑎𝑠 is domain wall tension

Figure 1.8: The Axion Domain Wall will eventually disappear, see Fig.2 in [8] and Fig.1.12
as well.

The tension as = pF + µℓ− pT , where pT = σwall ×A is the tension from domain

wall surface density with area A.
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𝑅𝑤: curvature of radius
𝑅𝑤

𝒑𝑭

𝒑𝑻

𝒑𝑻

𝒗𝒘: 𝑤𝑎𝑙𝑙
′𝑠 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝒑𝑻

𝒑𝑹

𝒑𝑹

Figure 1.9: Domain wall tensions, where the black plane is the domain wall.

The pF is from colliding between the domain wall and particles. The pR is the

summation of the reheating of particles (generated by the colliding), gravitational force, and

energy-losing rate from particle radiation. We simply assume pR ∼ pF here for a simple

calculation.

In Fig.1.8, the domain wall tension as is created by gravity, and a good video

for this [?]. More details of the discussion are at Chapter 3.1 of [67], and the energy loss

rate can be found in Chapter 4.3 in [67]. However, it would not be the case if we consider

NDW > 1. For example NDW = 2, there should have two tension applying on the string by

different domain walls but in opposite directions, i.e.

It consequently introduces an oscillation mode on the string and then creates the

gravitational wave, see Eq.(85) and Eq.(86) in [67], but its energy density ρwall(t) still

decreases slower than matter and radiation. An example for NDW = 4 on the intersecting

surface of string (This figure is from Cambridge website):

78

http://www.damtp.cam.ac.uk/research/gr/public/cs_top.html


𝑎𝑠

𝑎𝑠

where is only two strings, other vertexes are not. However, even at NDW > 1,

there still have some events for two stings collision, it may make some loops then radiate

axion and gravitational wave.

Third, considering a bias term that breaks the ZDW symmetry, then the domain
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Figure 1.10: Potential Eq.(1.207), from [8].

walls and strings would quickly decay to gravitational wave and axion [8]. The bias term is

introduced by Sikivie [84], and a later study [85]. This term is added on potential Eq.(1.197):

δV = −Ξη3
(

Φe−iδ + h.c.
)

(1.206)

where Ξ is a dimensionless parameter that is assumed to be super smaller than unity. After

PQ-SSB, the ground energy would be lifted by (Eq(88) at [67])

δVa = −2Ξη4 cos

(
a

fa
− δ

)
, (1.207)

adding this term then draw Eq.(1.197), we have Fig.1.10, and result is at Fig.1.16.
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𝑣
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𝑣
𝑣

𝑣
𝑣

𝑣
𝑣

𝑣
𝑣 𝑣

𝑣 𝑣

𝑇ℎ𝑒 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑐𝑎𝑟𝑟𝑦 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝒗 𝑡𝑜 𝑐𝑜𝑙𝑙𝑖𝑑𝑖𝑛𝑔 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟𝑠.

Figure 1.11: We pick up the wall at θa = π/3 as blue, θa = −π/3 as green, and θa = π
as Black in Fig.1.10. The domain walls move like this show. The asymmetry of surface
tension on domain walls will make the collision between strings more frequent. The axion
wind will provide pressure on domain walls, then expand the true vacuum area.

Due to this term, domain walls become unstable, and the true vacuum on axion

direction will be shifted to |θ| → |θ − δ|, and its energy density is lowered by an order Ξη4

to the original vacua. Consider the bias force pb ∼ δVa/NDW balance to tension pT ∼ σ/Rw

at domain wall annihilation time tdec , where Rw is curvature radius Rw ∼ t/A ≃ t, (see
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[9, 8]):

tdec ∼
σwall

Ξη4/NDW
. (1.208)

After tdec the bias force will dominate in the domain wall network. Requiring that the decay

of walls occurs before the wall domination i.e. tdec < tWD,

Ξ > 7.2 × 10−60 ×N−3
DW

(
ma

6 × 10−4eV

)2

. (1.209)

To sum, the Misalignment Mechanism (oscillation), strings, and domain walls both

contribute to matter-like relic density ([8]):

Ωa,Mis ≃ 0.19⟨θ21⟩
(

fa
1012 GeV

)1.19

, (1.210)

Ωa,str ≃ (4.0 ± 2.0)

(
fa

1012 GeV

)1.19

, (1.211)

Ωa,wall ≃ (11.8 ± 5.7)

(
fa

1012 GeV

)1.19

, (1.212)

where ⟨θ21⟩ = 6.85 is at Eq.(1.183), and the Eq.(1.210) only works on Cold Axion, see

Eq.(1.170). All of above provide a DM-like constraint i.e.
∑

Ωa ≲ 0.11:

fa ≲ (2.0 ∼ 3.8) × 1010 GeV. (1.213)

82



1.5.5 Numerical Simulation of Axion String and Domain Walls

In this subsection, we provide a short review of the simulation studies [9, 8]. They

considered a 3D simulation for stable domain walls, and a 2D simulation for unstable domain

walls. They find the scaling solution and the spectrum of domain wall decay.

Figure 1.12: This graph is cited from [9] shows the area of domain walls with different
domain wall numbers NDW . The τ is conformal time. As we see in Fig.1.8, the domain
wall will decay very fast at NDW = 1 case. On the other hand, domain walls will decay
very slowly with NDW > 1, therefore, eventually, a non-neglectable domain wall density
will dominate in the universe, the so-called Axion Domain Wall Problem.
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Figure 1.13: This graph is cited from [9]. The white lines correspond to the position of the

core of strings, which is identified by using the method described in Appendix B.1 of [10].

NDW domain walls are represented by surfaces with various colors, which are identified by

using the method described in Appendix B.2 of [10].
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Figure 1.14: This graph is cited from [9]. The value of θa varies from −π (blue) to π (red).

At late times, the value of θa is separated into three domains represented by blue, red,

and green regions. Domain walls are located around the boundary of these three regions,

θa = π/3, θa = −π/3, and θ = ±π. Strings, which are represented by white lines, pass

through the point where three regions meet each other.
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Figure 1.15: This graph is cited from [8]. The green region corresponds to the core

of domain walls V (Φ) = 2m2
aη

2/N2
DW and the white region corresponds to the vacuum

V (Φ) = 0. The Ξ is from the bias term Eq.(1.206), and the δ does not affect the dynamics.
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Figure 1.16: This graph is cited from [8]. As we can see in this graph, the domain wall

energy density will quickly decrease with growing time. So, the Axion domain wall problem

can be solved by adding a bias term in potential, i.e. Eq.(1.206).

87



Chapter 2

A Review for Topological Defects

2.1 Cosmic Strings

In the following, our discussion and calculation are based on [86, 87].

2.1.1 String Dynamics

If the radius of curvature of string R is much larger than its thickness δ, we can

simply use the Nambu-Olesen action for gauge string or Kalb-Ramond action for global

string,

S =

∫
L
√
−γd2ζ =


µ

∫ √
−γdζ2 Gauge

µ

∫ √
−γdζ2 +

1

6

∫ √
−gH2d4x+ 2πη

∫
Bµνdζ

µν Global

(2.1)

where η is string forming scale, Bµν is the antisymmetric tensor field, Hµνλ is its field

strength and dζµν is the worldsheet area element. It is described by a string worldsheet

i.e. a two-dimensional surface. One is ζ1 which corresponds to the length of the string.
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Another is ζ0, moving of string. These can be represented as

xµ = xµ(ζa), a = 0, 1. (2.2)

So we can rewrite the Lorentz-invariant scalar

d2s = gµνx
µ
,ax

ν
,bdζ

adζb = γabdζ
adζb, (2.3)

where γab is a 2D string worldsheet metrics. In following, we denote the {µ, ν, ρ, σ} index

are in 4D spacetime, {a, b} are in 2D sting worldsheet. Varying the Nambu action Eq.(2.1)

obtains the equation of motion

xν ;a
,a + Γντλγ

abxτ,ax
λ
,b =


0 Gauge

2πη

µ
Hν
τλϵ

abxτ,ax
λ
,b Global

(2.4)

If the string is moving in a background radiation fluid, there would has Aharonov-Bohm

(gauge string) or Everett scattering (global string) between string and particles. that effects

scattering provides a frictional force per unit length

Ff = − µ

ℓf

v√
1 − v2

, (2.5)
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where v is the string velocity and ℓf is the friction length scale of string. For the both

strings, its length scale are

ℓf =


µ

βT 3
Gauge

µ

βT 3
ln2 (Tδ) Global

(2.6)

where T is the background temperature, and β us a numerical factor related to the number

of particle species interacting with the string. The force can be included by adding a term

(
uν − xν,ax

σ ,auσ
) 1

ℓf
(2.7)

on right-hand side of Eq.(2.4). The unu is the four-velocity of the background fluid. Fur-

thermore, if the strings are within the FRW universe with Lorentz-invariant scalar

ds2 = a2(τ)
(
dτ2 − dx2

)
; (2.8)

then uν =
(
a−1(τ),0

)
and choosing the gauge conditions ζ0 = τ to identify conformal and

worldsheet times, also require ẋ·x′ = 0 which means the string velocity is always orthogonal

to the string direction. As above, the string equation of motion can be expressed as

ẍ +

(
2
ȧ

a
+

a

ℓf

)(
1 − ẋ2

)
ẋ =

1

ϵ

(
x′

ϵ

)′
, (2.9)

ϵ̇+

(
2
ȧ

a
+

a

ℓf

)
ẋ2ϵ = 0, (2.10)

90



where the coordinate energy per unit length ϵ is defined by

ϵ2 =
x′2

1 − ẋ2 , (2.11)

the dots and primes respectively denote derivatives with respect to τ and space ζ1 ≡ ζ.

2.1.2 Lengthscale Evolution

The total string energy can be read as

E = γµ× ℓ = µa(τ)

∫
ϵdζ, (2.12)

where γ is relativity factor γ = 1/
√

1 − v2, which velocity was defined as averaged RMS i.e.

v2 ≡ ⟨ẋ2⟩ =

∫
ẋ2ϵdσ∫
ϵdσ

. (2.13)

We use these two variables to describe the large-scale evolution of the string network.

Furthermore, the total string energy density ρ ∝ E/a3, so we have1

dρ

dt
=

1

a3
dE

dt
− 3

E

a4
da

dt
(2.14)

2.12
=

1

a3

(
E

µ

dµ

dt
+
E

a

da

dt
+
E

ϵ

dϵ

dt

)
− 3

ρ

a

da

dt
(2.15)

2.10
=


1

a3

(
E

µ
0 + EH − E

(
2H +

a

ℓf

)
v2
)
− 3ρH Gauge

1

a3

(
E

µ

dµ

dt
+ EH − E

(
2H +

a

ℓf

)
v2
)
− 3ρH Global

(2.16)

1For doing dE
dt

, since t isn’t function of ζ (no any form like dt = [...]dζ), we should do differential on µ, a
and ϵ, respectively.
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where Hubble parameter H = ȧ
a . In short, the averaged RMS equation of motion is

dρ

dt
=


−
[
2H(1 + v2) + a

v2

ℓf

]
ρ Gauge

−
[
2H(1 + v2) + a

v2

ℓf
+

1

µ

dµ

dt

]
ρ Global

(2.17)

This equation only included the strings that do Not interact with other strings e.g. long

strings and ”small, short-lived” loops. Those strings usually have a low probability to

interact with other strings before their demise.

• Usually, people assume that the long-string network evolution can be charac-

terized by a single lengthscale L. This scale can be defined as correlation length or the

distance between two strings.

• We define the strings longer than ℓ > L as long (or infinite) string, otherwise

loops ℓ < L. The long strings are moving as Brownian.

• The network density of long strings reads as

ρ∞ ≡ µ

L2
. (2.18)

• The rate of loop production from long-string collisions can be written as

(
dρ∞
dt

)
to loops

= ρ∞
v∞
L

∫
w

(
ℓ

L

)
ℓ

L

dℓ

L
≡ c̃v∞

ρ∞
L
, (2.19)

where we define a loop ”chopping” efficiency factor c̃ and assume it is a constant (compare

to Eq.(2.26) in [86], a factor g is absorbed in c̃). This w(ℓ/L) is the same as f(ℓ/L) in

Eq.(9.3.25) in [87].
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2.1.3 Scale-Invariant Solutions

Define two parameters in VOS-Model (the λ is defined by scaling factor a(t) ≡ tλ

with λ=const., and 0 < λ < 1.),

γ2 ≡ ξ−1 ≡
(
L

t

)2

≡ k(k + c̃)

4λ(1 − λ)
, v2 =

k(1 − λ)

λ(k + c̃)
. (2.20)

Use this two, replace k with takingN → ∞, we have (see also eq.(17) of [Martins:1811.12678])

c̃ = 2(1 − λv2 − λ)
γ√
v2
, (2.21)

where v = v∞. This agree to Eq.(9.3.17) of [87], we have to emphasize that the c in [87] is

defined as c ≡ c̃v in Eq.(2.22), and recently papers defined c→ c̃, i.e.

(
dρ∞
dt

)
to loops

≡ cv∞
ρ∞
L
. (2.22)

2.1.4 One-scale density

This part follows section 9.3.3 of [87]. From its Eq.(9.3.19)

ρ̇L = −3

(
ȧ

a

)
ρL (ℓ, t) + g

µ

L4
f (ℓ/L) . (2.23)

to solve this differential equation, first, consider the scaling term only

ρ̇L = −3

(
ȧ

a

)
ρL (ℓ, t) . (2.24)
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We have

dρL
ρL

= −3Hdt. (2.25)

For example, in RD, H = 1/2t, so

ρL ∝ t−3/2. (2.26)

Use this result (blank the scaling term) to Eq.(2.23),

ρ̇L = g
µ

L4
f (ℓ/L) → ρL = g

µ

L4
f (ℓ/L) dt ∝ t−3/2. (2.27)

Since the RHS should be proportional to t−3/2, we can drop out the t−3/2 then integrate

others out like (use L ≡ γt = t/
√
ξ)

g
µ

L4
f (ℓ/L) dt =

gµ

γ4t4
f(ℓ/L)dt

=
gµ

γ4t3/2

[
t−5/2f(ℓ/L)dt

]
=

gµ

γ4t3/2

[
t−5/2f(x)

γt2

ℓ
dx

]
=

gµ

γ3t3/2ℓ

[
t−1/2f(x)dx

]
=

gµ

γ3t3/2ℓ

[√
xγ

ℓ
f(x)dx

]
=

gµ

γ5/2t3/2ℓ3/2

[
√
xf(x)

∫ ∞

ℓ/γt
dx

]
, (2.28)
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where we define x ≡ ℓ
L = ℓ

γt , so dx = − ℓ
γt2
dt. At late times, t→ ∞, we define a parameter

as

νr ≡ gγ−5/2

∫ ∞

0

√
xf(x)dx = gc

√
αγ−3, (2.29)

where f(x) = cδ(x − α/γ) is suggested by Eq.(9.3.25) of [87], and the chopping factor

c ≡ c̃v∞ from Eq.(2.22). This result is the same as Eq.(9.3.27) of [87]. Another example,

in MD, H = 2/3t, so Eq.(2.26) rewrite to

ρ ∝ t−2. (2.30)

So we have

ρL = g
µ

L4
f (ℓ/L) dt =

gµ

γ4t2
[
t−2f(ℓ/L)dt

]
=

gµ

γ3t2ℓ

[
f(x)

∫ ∞

ℓ/γt
dx

]
. (2.31)

Another example, if a ∝ t2/6, H = 1/3t. We have

ρL ∝ t−1. (2.32)

95



So we have

ρL = g
µ

L4
f (ℓ/L) dt =

gµ

γ4t

[
t−3f(ℓ/L)dt

]
=

gµ

γ2tℓ2

[
f(x)

∫ ∞

ℓ/γt
xdx

]
. (2.33)

We can define

ν6 ≡
g

γ2

∫ ∞

0
f(x)xdx =

g

γ2
c
α

γ
=
gαc̃v∞
γ3

. (2.34)

Use Eq.(2.21), we have c̃v∞ = 2
3(2 − v2∞)γ. Then use ρL(ℓ, t) = µℓn(ℓ, t) to simply get

n(ℓ, t) the number density of loop per a3(t) per ℓ. The final step is that shift ℓ→ ℓ+ ΓGµt

to add the radiation effect, so we obtain Eq.(9.3.26) of [87] from Eq.(2.28).
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2.2 Domain Wall

2.2.1 Introduce VOS

Figure 2.1: The wall surface M2 parameterized by two parameters, σ1 and σ2. The vectors

on tangential surface are defined by ξα ≡ ∂x
sα where Sα is defined at Eq.(2.46), and ni ≡ ẋi

|ẋi| .

Domain wall surface M2 can be described by the vector function xµ(σ1, σ2, τ),

where τ ≡ σ0 is conformal time. The Domain wall shows as [88]. We expect that the

function xµ is smooth, so every two tangential vectors will be orthogonal

∂σ1x
µ∂σ2xµ ≡ xµ,1xµ,2 = 0, and xµ,τxµ,1 = xµ,τxµ,2 = 0, (2.35)

where nµ ≡ xµ,τ/|xµ,τ | is normal vector on tangential surface. We also define ∂τx
µ = xµ,τ ≡ ẋµ.

The second normal relation is true only if the surface area of the domain wall is larger than

Hubble’s surface.

The wall-moving on σ1 and σ2 directions can be ignored. The domain wall action
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is imitated from the Goto-Nambu string,

S = −
∫

Ld3σdz = −σw
∫

√
γd3σ, (2.36)

where σw is energy surface density, z is orthogonal to σ1,2, and

γab = gµνx
µ
,ax

ν
,b, with γ ≡ Det [γab] =

1

3!
ϵabϵcdγacγbd

2.35
= γ00γ11γ22, (2.37)

where xµ,a = dxµ/dσa, and the Eq.(2.35) gives γ01 = γ02 = γ12 = 0. The Lagrangian reads

∫
dL =

1

2

∫
√
γγabdγab =

√
γ, with

∫
Ldz = σw, (2.38)

where z is the direction that orthogonal to σ1 and σ2, see Eq.(13.2.7) of [87]. So the equation

of motion reads

∂L
∂xλ

− ∂c

(
∂L
∂xλ,c

)
=

1

2

√
γγabgµν,λx

µ
,ax

ν
,b − ∂c

(√
γγabgµλx

µ
,aδ

c
b

)
= 0, (2.39)

and the energy-momentum tensor gives

Tµν
√
−g ≡ −2

δS

δgµν
= σw

∫
√
γγabxµ,ax

ν
,bδ

4 (xρ − xρ(σc)) d2σdτ, (2.40)
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where −g ≡ Det|gµν |. So the energy is gave

E =T 00dV

=T 00a3(τ)dxdydz

=σw

∫
√
γγabx0,ax

0
,bδ

4 (xρ − xρ(σc)) d2σdτa3(τ)dxdydz/
√
−g

=σw

∫
√
γγab x0,ax

0
,b︸ ︷︷ ︸

a2(τ) if a=b=0

d2σδ(t)
dt

a(τ)

=σwa(τ)

∫
√
γγ00d2σ

≡σw a
2(τ)

∫
εd2σ︸ ︷︷ ︸

effective area

, with ε ≡ √
γγ00/a(τ), (2.41)

where
√
−g = a3(τ) in FRW metric, a(τ)dτ = dt and

x0,a =
dτ

dσa
= {1, 0, 0}, for a = {0, 1, 2}, (2.42)

since {τ, σ1, σ2} are independent to each other e.g. dσi/dτ = 0. Since 2

gµν,λ =
dgµν
dxλ

= {2
ȧ

a
gµν , 0, 0, 0}, for λ = {0, 1, 2, 3}, (2.43)

2We should treat the time of wall t = t(τ) as our definition xµ(σ1, σ2, τ)
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where i, j = {1, 2, 3}, ȧ(τ) = da(τ)/dτ , and

gµν =



a2(τ) 0 0 0

0 −a2(τ) 0 0

0 0 −a2(τ) 0

0 0 0 −a2(τ)


, (2.44)

and gµν = 1/gµν . We can rewrite Eq.(2.39) in FRW metric as

ȧ

a
δ0λ

√
γγabγab − ∂c

(√
γγabgµλx

µ
,aδ

c
b

)
= 0. (2.45)

Let’s redefine the coordinates σ1 and σ2 to s1 and s2 which makes the tangential vectors to

be unit-vectors as

∂xi

∂sα
≡

xi,α
|xi,α|

≡ ξiα, i.e.
∣∣∣ ∂xi
∂sα

∣∣∣2 = 1, ∀α = {1, 2}, (2.46)
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where is no summation on i and α. Using this substitutes to Eq.(2.45) we have (for λ = 0)3,

ȧ

a

√
γγabγab − ∂b

(√
γγabgµ0x

µ
,a

)
µ=0
=

ȧ

a

√
γγabγab − ∂b

(√
γγabg00x

0
,a

)
2.42
=

ȧ

a

√
γγabγab − ∂b

(√
γγ0bg00x

0
,0

)
2.35
=

ȧ

a

√
γγabγab − ∂0

(√
γγ00g00x

0
,0

)
2.41
=

ȧ

a

√
γγabγab − ∂0

(
εa3(τ)

)
2.49
=

ȧ

a

√
γ × 3 − ∂0

(
εa3(τ)

)
2.41
= 3ȧε/γ00 − ∂0

(
εa3(τ)

)
2.50
= 3ȧεa2

(
1 − ẋiẋi

)
− ∂0

(
εa3(τ)

)
= 3ȧεa2

(
1 − ẋiẋi

)
− ε̇a3 − 3εȧa2

= − ε̇a3 − 3εȧa2ẋiẋi = 0, (2.47)

where g00 = −a2(τ), γab is diagonal since Eq.(2.35), again ∂τx
µ = xµ,τ ≡ ẋµ, and ∂0 =

∂/∂σ0 = ∂/∂τ , also ε̇ = dε/dτ . There also need

γab ≡ 1

γab
= Inverse [γab] =


1
γ00

0 0

0 1
γ11

0

0 0 1
γ22


, (2.48)

3This agrees to Eq.(3) in [88]
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so we have

γabγab = Tr


1 0 0

0 1 0

0 0 1


= 3. (2.49)

Using Eq.(2.48), we obtain

γ00 =
1

γ00
=

1

a2 (1 − ẋiẋi)
. (2.50)

For λ = i,

∂c

(√
γγabgµix

µ
,aδ

c
b

)
= −∂b

(√
γγaba2(τ)xi,a

)
, (2.51)

for b = 0,

∂0
(√
γγ00a2(τ)xi,0

)
=

√̇
γγ00a2(τ)xi,0 +

√
γγ̇00a2(τ)xi,0 +

√
γγ002ȧaxi,0 +

√
γγ00a2(τ)xi,00,

where

√̇
γ =

1

2
γ̇γ−1/2 =

1

2
γ−1/2 d

dτ
(γ00γ11γ22) ,
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and γ00 = (a2 − a2ẋiẋi), γ11 = −a2xi,1xi,1, and γ̇aa = −γ̇aa/γ2aa,

γ̇00 = 2ȧa− 2ȧaẋiẋi − 2a2ẍiẋi,

γ̇11 = − 2ȧaxi,1x
i
,1 − 2a2ẋi,1x

i
,1,

γ̇22 = − 2ȧaxi,2x
i
,2 − 2a2ẋi,2x

i
,2.

for b = α = {1, 2},

∂i
(√
γγααa2(τ)xi,α

)
=

∂

∂σα
(√
γγααa2(τ)xi,α

)
=

1

2

d

dσα
√
γγααa2xi,α +

√
γ
d

dσα
γααa2xi,α +

√
γγααa2xi,αα

where γaa,α = −γaa,α/γ2aa, so

∂

∂σα
γ00 = − 2a2ẋi,αẋ

i,

∂

∂σα
γ11 = − 2a2xi,1αx

i
,1,

∂

∂σα
γ22 = − 2a2xi,2αx

i
,2.

Using above, our result exactly agrees to Eq.(11) in [88] as

ẍi + 3
ȧ

a
ẋi
(
1 − ẋiẋi

)
=
(
1 − ẋiẋi

) (
ki1 + ki2

)
, (2.52)

where since the size of kiα is proportional to inverse of curvature radii, |kiα| ∝ 1/Rα, hence

kiα ≡ ∂ξiα
∂sα

≡ a(τ)
Rα

uiα, where uiα ≡ kiα/|kiα| are units vectors, and Rα are curvature radii of σ1
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or σ2, respectively.

𝜉𝛼
𝑖

𝑘𝛼
𝑖

𝑥𝛼
𝑖

Tangent surface

Domain wall

𝑅𝛼 𝑅𝛼

𝑛𝑖

To average Eq.(2.47) and Eq.(2.52) with contracting ni, we obtain

dρ

dt
= −Hρ

(
1 + 3v2

)
, (2.53)

dv

dt
= (1 − v2)

(
kw
L

− 3Hv

)
, (2.54)

where t is physical time, and H = 1
a
da
dt . We also used

E

V
= ρ =

σwa
2

V

∫
εd2σ, (2.55)

and the root-mean-squared velocity

v2 =

∫
ẋ2εd2σ∫
εd2σ

. (2.56)

We also assumed that the curvature radii are equal to correlation length R1 = R2 = L. The

kw is called momentum parameter, is defined by adding K1 and K2 as

kw ≡ K1 +K2, and Kα ≡ |uiαni|, (2.57)
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theoretically, we expect 1 ≥ Kα ≥ 0 (hence 0 ≤ kw ≤ 2) and approximately to be a constant

during cosmological physics time evolution. This momentum parameter is assumed in the

from

kw ≡ k(v) = k0
1 −

(
qv2
)β

1 + (qv2)β
, (2.58)

where β, k0 and q are unknown parameters but can be determined in simulation. Not like

helicoidal solution on string case, the domain wall has no nontrivial analytic solution. The

parameter 1/q is an averaged maximal velocity for the wall network. It cannot be larger

than the maximum velocity of walls v2max,

0 <
1

q
≤ v2max =

n

n+ 1
=

2

3
, (2.59)

in n-dimensional topological defects (n = 1 for string, n = 2 for walls) [89].
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2.2.2 Energy losing

Domain wall chopping

The domain wall network loses energy by the domain wall intersections and cre-

ation of sphere-like objects that eventually collapse (walls are repelled to each other),

𝑣 𝑣

This effect can be concluded by a chopping parameter cw that add in equation of

motion Eqs.(2.53-2.54), and also replace the domain wall correlation length L(τ) = σw/ρ(τ)

as

dL

dt
=
(
1 + 3v2

)
HL+ cwv, (2.60)

dv

dt
= (1 − v2)

(
kw
L

− 3Hv

)
. (2.61)

Gravitational behavior

We review the development of the topology theory with the following literature

studies.

• Vilenkin1982 [90]

They only mentioned that the string-wall network are oscillating at a typical frequency

ω ∼ R−1 where R ≥ µ/σw is the piece of domain wall size, µ is string tension, its energy
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losing rate by gravitational radiation is

dM

dt
∼ −GM2R4ω6 ∼ −GσM, (2.62)

where M is string-wall mass. The lifetime of the piece is independent of its size,

τw ∼ (Gσ)−1 ∼ (mp/η)2m−1
a , (2.63)

where η = fa is PQ-symmetry-SSB scale, and axion mass ma. Worth to mention that when

the piece becomes smaller than µ/σ, its mass is determined mostly by string, and the decay

time is τ ≤ (Gµ)R ≤ (Gσw)−1.

• Vilenkin1981 [91] and Vilenkin1983 [92]

The energy-momentum domain wall is described by a classical solution of

T νµ (x) =
∑
i

∂L
∂ϕi,ν

ϕi,µ − δνµL, (2.64)

where the i is summation over all possible fields, and we also assumed there is a static wall

that parallel to y-z plane in a flat space-time. In thin-wall approximation

T̃ νµ (x) = δ(x− a)

∫
T νµ (x)dx, (2.65)
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where x = a is position of the wall. Since ϕ(x) is only function of x (isotropic on y-z, and

static), we conclude that

T̃ 0
0 = T̃ 2

2 = T̃ 3
3 . (2.66)

From the conservation law

T νµ,ν = 0, (2.67)

so

d

dx
T 1
1 = 0, → T 1

1 = constant. (2.68)

Since the boundary condition of topological defects is T νµ = 0 at x = ±∞, we conclude

T 1
1 = T̃ 1

1 = 0. Hence the energy-momentum tensor reads

T̃ νµ (x) = σwδ(x− a) × diag (1, 0, 1, 1) = δ(x− a) × diag (σw, 0,−p,−p) , (2.69)

where p = −σw is the pressure that equals to surface tension. Note that this energy-

momentum tensor is only Lorentz invariant on the parallel transformation of the wall i.e.

the tangential motion of the wall is unobservable.
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Weak Field approximation

The domain wall gravity can use the weak field approximation on the metric as

gµν = ηµν + hµν , (2.70)

with hµν ≪ 1. The Einstein equation is

(
∇2 − ∂2t

)
gµν =

(
∇2 − ∂2t

)
hµν = 16πG

(
Tµν −

1

2
ηµνT

)
, (2.71)

the harmonic coordinate condition

∂ν

(
hνµ −

1

2
δνµh

)
= 0, (2.72)

which is useful on the weak field approximation. The remaining coordinate freedom is

restricted to the transformations as

h′µν = hµν − ξµ,ν − ξν,µ, (2.73)

with

(
∇2 − ∂2t

)
ξµν = 0. (2.74)

Btw, this is a usual solution on the harmonic-weak-field condition. Substituting Eq.(2.69)
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to Eqs.(2.71-2.72), we obtain

h00 = 4πG (σw + 2p) |x| = −4πGσw|x|, (2.75)

h11 = 4πG (σw − 2p) |x| = 12πGσw|x|, (2.76)

h22 =h33 = 4πGσw|x|, (2.77)

with

ξ1 = 2πGσwx|x|, and ξ0 = ξ2 = ξ3 = 0. (2.78)

As we can see in this solution, the hµν will be larger than 1 at |x| > 4πGσw i.e. the

weak-field approximation is no longer valid. The energy-momentum tensor is given by

T 00 =σwδ(x− vt), (2.79)

T 22 =T 33 = pδ(x− vt), (2.80)

T 10 =T 01 = σwvδ(x− vt), (2.81)

others are zero. From energy-momentum conservation, we have

T νµ,ν = 0 → ∂ν
(
T νµ

√
−g
)

=
1

2

√
−g∂gστ

∂xµ
T στ . (2.82)
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Consider µ = 1 case, and integrating over x, we have

dv

dt
= −1

2

d

dx

[
h00 +

p

σw
(h22 + h33)

]
. (2.83)

If we take Eqs.(2.75-2.77) into Eq.(2.83), we will find

dv

dt
= −1

2

d

dx
[−4πGσw|x| − 8πGσw|x|] =


6πGσw, x > 0

− 6πGσw, x < 0

(2.84)

It means the domain walls are repelled from each other [91].

Exact static solution of Domain wall gravity

Since as mentioned before, the weak field approximation is only work in the regime |x| <

4πGσw. We have to solve the exact solution on large distances. Again, consider the static

solution with T νµ = 0 everywhere except in y-z plane and using reflection symmetry x→ |x|,

we have (The general solution with only depends on one spatial coordinate is call Kasner

solution, if depends on (t, x) is Rindler solution [93])

ds2 = e2u
(
dt2 − dx2

)
− e2v

(
dy2 + dz2

)
, (2.85)

where u = u(t, x) = u(t,−x), v = v(t, x) = v(t,−x) and they should be discontinuous at

x = 0. The static solution is suggested by [92, 94],

ds2 = (1 +A|x|)−1/2 (dt2 − dx2
)
− (1 +A|x|)

(
dy2 + dz2

)
. (2.86)
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To find the constant A, we use weak field approximation regime A|x| ≪ 1 to find the hµν

metric as

h00 = − h11 = −1

2
A|x|, (2.87)

h22 =h33 = −A|x|. (2.88)

This solution disagrees to Eqs.(2.75-2.77), since we do not consider the harmonic conditions

Eq.(2.73) yet. We have to firstly using Eq.(2.73) as

h00 = − 1

2
A|x| − ξ0,0, h11 = −1

2
A|x| − ξ1,1, (2.89)

h22 = −A|x| − ξ2,2, h33 = −A|x| − ξ3,3. (2.90)

Since the metric is function of x only, we expect ξ0 = ξ2 = ξ3 = 0, therefore

ξ1 =
1

2
Ax|x|. (2.91)

Then compare to Eqs.(2.75-2.77),

A = −4πGσw, p = −1

4
σw. (2.92)

This solution does not match weak-field approximation. We should note that there is a

singular at 1 + A|x| = 0, since a negative A. To avoid this singular, we have to require

σw < 0, which is a negative energy of the wall, is unphysical. So this solution is concluded

in [91] that the static domain wall is gravitationally unstable and will eventually collapse
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to singularities. However, this solution is wrong (the wrong metric was used Eq.(2.86)), the

exact solution should be exactly matched to weak-filed approximation within |x| < 4πGσw.

So the author redo the calculation, by using the metric as [92]

ds2 = e−K|x| [dt2 − dx2 − eKt
(
dy2 + dz2

)]
, (2.93)

they eventually found the constant K = 4πGσw, and at weak-field limit K|x| ≪ 1, this

result is matched to Eqs.(2.75-2.77). Furthermore, the proper distance from the wall (x = 0)

to x = ±∞ is given

∫ ∞

0
exp (−Kx/2) dx = 2K−1 = (2πGσw)−1 = 2|xmax|. (2.94)

This gives an event horizon dH = (2πGσw)−1 that if an observer at x = 0 never sees par-

ticles or light cross the surfaces at x = ±∞ in his flat coordinate i.e. the 2K−1 in domain

wall’s non-flat coordinate.

An easier way to understand is that considering a sphere of domain wall with

radius R. The mass of this sphere is M = πR2σw. The event horizon is given

1

2
mc2 ≤ GMm

R
→ R ≥ (2πGσw)−1 = dH , (2.95)

where the regime R ≥ dH are all lied on light-cone t = x line. For all the domain wall

spheres within this condition, will they collapse? Answered in [95], only the spherical wall

will collapse to the black hole, and Eq.(2.95) agrees to Eq.(3.9) in [95] but a factor 1/2. If
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they do collapse, this also gives a collapsing time of the sphere domain wall as

tc ∼ (Gσ)−1 . (2.96)

After this time, the domain wall will collapse which may avoid the domain wall problem.

Another question, can the domain wall’s size be larger than d2H? By the way, the domain

wall black hole is studied in [96].

Similar analysis can be used in the string case, the string loop has the mass as

M = 2πRµ, so similarly (µ = 2πη2)

1

2
mc2 ≤ GMm

R
→ 1

2
c2 ≤ G2πRµ

R
= 2πGµ → η ≥ mp

2
√

2π
, (2.97)

namely, the collapsing strings should enter to quantum gravity regime, that’s why we don’t

need to worry about the string collapsing within current phenomenology. Furthermore,

there has no constraint on string event horizon, so string loop is safely on its gravitational

behavior. On the other hand, the string cannot help for forming BH, since the η should be

much larger than inflation scale, the string will be diluted out by inflation.

• Kodama1994 [97]

They concluded that the domain wall does not emit gravitational waves spontaneously by its

free oscillations. But the spherical symmetry may make the spacetime solutions describing

the emission of gravitational waves
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Chapter 3

Kinetic Misalignment Mechanism

3.1 Introduction

Axions are ultra-light pseudo-scalar particles that are generically predicted in the

Peccei-Quinn (PQ) mechanism [98, 99, 100], a compelling solution for the Strong CP prob-

lem in particle physics. Recently QCD axions and axion-like particles (ALPs) have at-

tracted substantial interest as a leading dark matter (DM) candidate alternative to WIMPs

[101, 71, 72, 70].

Understanding the production mechanism of axions is critical for determining their

potential as a viable DM candidate and related phenomenology [102, 5]. Despite exten-

sive literature on this subject, our understanding is not yet complete. For instance, for

post-inflationary PQ symmetry breaking, axion topological defects (cosmic strings, domain

walls) necessarily form and through their subsequent decays may contribute to axion relic

abundance (Ωa) in significant ways [103, 104, 105, 106, 8, 107]. However, the prediction

of such contributions is still challenging, while a growing effort has recently been made
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[108, 109, 110, 31, 111, 112, 113, 114]. Meanwhile, our understanding of possible outcomes

of the misalignment production may not be complete either. According to the conventional

misalignment mechanism, axion field starts with an initial value, θi (θ ≡ a/Nfa), away from

the true vacuum, then begins to oscillate around the minimum when its mass ma ∼ 3H

(H: Hubble expansion rate), and behaves like cold DM after that. In order to solve the

equation of motion for axion evolution, the initial velocity θ̇i also needs to be specified,

which is implicitly assumed to be zero in the conventional misalignment, and directly af-

fects the Ωa prediction. Meanwhile, nonzero θ̇i is possible and well-motivated. Then how

would a nonzero initial velocity of the axion field influence the axion relic abundance and

phenomenology?

In this work we propose and systematically investigate an alternative misalignment

mechanism with an initial condition θ̇i ̸= 0. Based on classified benchmark examples

in a UV model-independent approach, we demonstrate the conditions when axion relic

density prediction can significantly differ from the conventional, with potentially dramatic

enhancement or suppression depending on specifics with θ̇i and whether the PQ symmetry

breaks before/during or after inflation. An example model realizing such an initial condition

is illustrated in Appendix. B. Another recent work [115] also considered the possibility of

θ̇i ̸= 0, focusing on the large θ̇ > 0 region, demonstrating examples of interesting UV

complete models leading to an enhanced Ωa.
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3.2 The Origin of a Nonzero Initial Velocity

Axion originates from the phase of a complex scalar Φ whose vacuum expectation

value fa/
√

2 leads to the spontaneous breaking of the U(1)PQ symmetry (or a generic global

U(1) for ALPs) 1:

Φ ≡ 1√
2

(fa + ϕ) eia/fa (3.1)

where ϕ and a are the radial and angular (axion) modes, respectively. The conserved

Noether charge associated with the PQ symmetry is R3f2a θ̇ where R is the cosmic scale

factor. θ̇i ̸= 0 thus corresponds to the rotation of the Φ field and an asymmetry of the

global PQ charge. Such a charge asymmetry can result from higher dimensional operators

that explicitly breaks U(1)PQ in the early Universe, in analogy to the Affleck-Dine (AD)

mechanism for baryogenesis [116, 117, 118, 119]. This effect in fact can be generic for an

approximate global symmetry [119, 117, 118]. Alternatively θ̇i ̸= 0 may originate from axion

models with a small dimensionful symmetry-breaking term which introduces a slope in axion

potential [120]. Such PQ-breaking effects should be absent today in order not to undermine

the solution to the Strong CP problem, which can be realized by tying its strength to the

Hubble rate or a dynamical field that has a larger value in the early Universe. Although the

specifics of θ̇i is model-dependent, important phenomenological insights can be obtained by

studying the axion evolution with benchmark examples that we will demonstrate.

1Without loss of generality we focus on the simplest scenario where domain wall number N = 1.
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3.3 Axion Misalignment Mechanism with a Nonzero Initial

Velocity

We first present Fig. 4.1 as a cartoon illustration for two representative possibil-

ities of θ̇i ̸= 0 initial condition (IC), with related technical details elaborated later. In

conventional misalignment, axion field starts at rest with the rescaled field value θi, then

roll down the periodic potential well, and start oscillating when ma ∼ 3H (at tcono ∼ 1/ma).

In both cases we show, the field starts with θi at time ti. The lower panel demonstrates

the possibility where the axion field has a negative moderate initial velocity to allow it

to roll down further in the potential well so that the field value becomes smaller than θi

when oscillation begins. This would lead to a suppression of the axion relic density. The

upper panel shows the possibility with a high initial velocity, which may delay the onset of

oscillation (at to) to be later than tcono , thus reduce the entropy s(to) then and enhance the

relic density of the axion (Ωa ∝ Ya ≡ na/s).

We now study the dynamics of axion evolution in details. The equation of motion (e.o.m)

of axion field with rescaled θ(t) ≡ a(t)/fa (mod 2π) in FRW cosmology is 2

θ̈ + 3Hθ̇ +m2
a(T )θ = 0. (3.2)

In the conventional misalignment mechanism, θ̇(ti) ≡ θ̇i = 0, and the axion field freezes at a

random initial field value θi from PQ breaking to QCD phase transition. For post-inflation

PQ breaking, Ωa is obtained by averaging over the randomly distributed θi over all causal

2We assume that by ti of our consideration the radial mode has settled into its true vacuum, therefore
does not influence axion evolution through coupled e.o.m’s.
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Figure 3.1: Cartoon illustration of the axion field evolution for the two representative
possibilities with θ̇i ̸= 0, as explained in the text. The axion starts at θi as blue, then follows
the orange arrows until it starts to oscillate at to(t

con
o ). The green trajectory represents the

sequence of motion. In the conventional misalignment, the field starts with θ̇i = 0.

patches. For QCD axion, we will assume ma(T ) ∝ T−4 as found by instanton calculation

[121, 122, 123, 124, 125], while a constant ma may apply for general ALPs.

We start by investigating the axion evolution at early times well before oscillation

starts. The starting time ti is generally assumed to be at PQ breaking scale, but can be

later times when the axion picks up a nonzero θ̇i. Allowing θ̇(ti) ̸= 0, and dropping the

potential term in Eq. 3.14 which is negligible for this early regime, we find the following
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solution in general cosmology, with background energy density ρ ∝ R−n:

θ(t) =


θi +

θ̇i
Hi

(
2

6 − n

)[
1 −

(
R(t)

R(ti)

)n/2−3
]
, (n ̸= 6)

θi +
θ̇i

3Hi
ln

[
t

ti

]
, (n = 6)

(3.3)

θ̇(t) = θ̇i

(
R(ti)

R(t)

)3

. (3.4)

We will assume standard cosmology (i.e. radiation domination (RD), n = 4, thus θ(t) ∝

1/
√
t) except when considering inflationary effects. The energy density of the axion evolves

as ρa(t) = 1
2 θ̇

2(t)f2a + 1
2ma(T )2θ(t)2f2a , and relic density can be estimated as:

Ωa = ma(To)ma(T = 0)θ2of
2
a

s0
s(to)ρc

, (3.5)

where θo ≡ θ(to), to implicitly depends on θ̇i, s0 and ρc are the current-day entropy and

critical density, respectively.

We now specify two benchmark types of initial condition of θ̇i to find concrete form of

solutions given by Eqs. 3.3.

Type-I IC: θ̇i = −δHi, where δ is a constant parameter independent of θi. To simplify

discussion we choose the convention of δ ≥ 0 without loss of generality 3. While the detailed

UV physics leading to such initial conditions is not our focus here, they may arise from an

AD-like scenario [126], which readily gives |θ̇(ti)| ∼ H(ti) upon PQ-breaking at ti ∼ mpl/f
2
a

(assuming PQ-breaking during radiation domination around T ∼ fa)
4. Applying this IC

3The late time evolution of the field with δ < 0 is nearly the same as their δ > 0 counterpart.
4The specifics of initial velocity depends on the radial mode in the UV model. The AD mechanism can

generate a initial velocity with a varying ratio to the Hubble rate, see e.g. [126, 127, 128].
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to Eq. 3.3 in RD we find

θ(t) = θi − δ + δ

(
R(ti)

R(t)

)
, Mod[2π]. (3.6)

Provided a small/moderate θ̇(ti), the oscillation onset to in the new scenario is also close

to tcono . However, with sufficiently large θ̇i the kinetic energy (KE) could be larger than

the potential energy V at tcono , and oscillation can only start later when KE ∼ V. Such a

delayed to may enhance Ωa since Ωa ∼ ρa(to)/s(to). For high |θ̇i| we can estimate to as the

earliest time when KE and V become equal (θo ≈ 2π):

θ̇i (ti/to)
3/2 ≈ 2πma(to). (3.7)

Combining Eq. 3.7 and ma(t
con
o ) ≈ 3H(tcono ), we can find the critical δc: for δ > δc a notable

delay of to relative to tcono would occur:

δc ≈ 6π (tcono /ti)
1/2 ≃ 2 × 1011

(
fa

1011 GeV

)7/6

, (3.8)

where we assumed ti around the PQ-breaking time ∼ MP /f
2
a . Note that δc can be much

smaller if ti (when axion picks up a nonzero velocity) is much later than PQ-breaking time.

Next we will discuss the evolution patterns in different δ parameter regions based

on Eqs. 3.3, 3.13. The two distinct scenarios of PQ breaking after and before/during

inflation will be considered in order.
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Figure 3.2: The dependence of axion relic abundance on initial velocity (δ) for Type-I IC,
post-inflation PQ breaking (fa = 1011 GeV). The kink around δ ∼ 1020 is due to the change
in the number of relativistic degrees of freedom, g∗, which is accounted for in our numerical
calculation.

IC-I: Post-inflationary U(1)PQ breaking.

In each of the following cases, we consider the field evolution with a random initial field

value θi which upon considering Ωa will be averaged over post-inflationary causal patches

as ⟨θ2o⟩ = ⟨θ2i ⟩ ∼ 2.67π2/3 [129, 130].

(i) 0 < δ < θi, i.e., with generally small initial KE. For generic θi ∼ 1, although the R(t)
R(ti)

term in Eq. 3.3 slightly reduces θ(t) over time, the effect is negligible relative to the constant

term and θo ∼ θi. Therefore the axion evolution and the prediction Ωa ∝ θ2o is very similar

to the conventional prediction Ωconv
a and remains so after averaging over causal patches.

(ii) θi < δ < δc, i.e., with moderate initial KE. In this case KE becomes important at early
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stages of the field evolution, but is not yet sufficient to cause a notable delay of the to

relative to tcono . In this regime as δ increases θo and thus Ωa become more sensitive to δ

(oscillatory dependence) due to the periodic nature of the field potential. In particular, Ωa

can be much suppressed for particular δ values that causes cancelation among the θi and

δ-dependent terms in Eqs. 3.13, i.e., when

θo = 2πk, k ∈ Z. (3.9)

However, with a constant δ such an accidental cancelation only occurs for certain θi’s, and

its effect is washed out after averaging. Consequently, the Ωa prediction is comparable to

Ωcon
a .

(iii) δ > δc, i.e., with high initial KE. This case is similar to the above (ii), yet the difference

is that KE is reshifted to ∼ V after tcono , so the oscillation is delayed. Although ρ(to) is

the same as in case (ii) at the onset of axion oscillation, the entropy then is diluted as

s(to) ∼ s(tcono ) (tcono /to)
3/2 ∝ δ−1 (using Eqs. 3.13, 3.7). Like in (ii), accidental cancelation

Eq. 3.9 can happen but becomes irrelevant after averaging. Therefore Ωa is enhanced rela-

tive to Ωcon
a by a factor of ∼ δ/δc.

(iv) δ = θi or δ ≈ θi, the special regime where δ is equal to or in the close vicinity of θi. This

case is qualitatively different from the previous ones. Due to the (almost) cancelation be-

tween θi and δ, δ
(
R(ti)
R(t)

)
term in Eq. 3.13 dominates the evolution which causes a potentially

dramatic decrease in θ(t) until oscillation starts around to ∼ tcono , with θ(to) = θo ≪ θi.
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ρa(to) would be expected to be suppressed by ∼ θ2o/θ
2
i relative to the conventional. How-

ever, he cancelation between δ and θi only occurs for patches with peculiar θi, and the effect

disappears after averaging over post-inflationary patches.

𝛿

𝛺
𝑎

Conventional

𝛺DM

Pre-Inflation IC-I

𝜃𝑖 = 1

𝜃𝑖 = 0.1

Figure 3.3: The dependence of axion relic abundance on initial velocity (δ) for Type-I IC,
pre/during-inflation PQ breaking (fa = 1011 GeV, tI = 103ti). The oscillatory dependence
in large δ region is shown.

Detailed illustrations for the field evolution in each of these cases can be found in

Fig. S1 in the Appendix. A. A representative example of Ωa-δ relation is shown in Fig. 3.2

based on numerical results. The analytical estimate of Ωa is summarized later in Eq. 3.10.

The upshot for the post-inflation scenario is: Ωa can be similar to or enhanced relative to

the conventional misalignment due to θ̇(ti) ̸= 0, while the potential suppression effect in

specific patches is resolved after averaging over post-inflationary causal patches.
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IC-I: Before or during inflation U(1)PQ breaking. During inflation the KE in the

axion field is rapidly diluted, while θi or the potential energy freezes in as its value at the

onset of inflation (or at PQ breaking time if PQ breaks during inflation). Many of the

discussions for the post-inflationary scenario apply here, but there are key differences due

to inflationary effects. We briefly summarize the results for the same four cases as follows:

(i) 0 < δ < θi: similar to the conventional pre-inflationary case.

(ii) θi < δ < δc: in general similar to the conventional, but unlike in the post-inflationary

scenario, the accidental cancelation/suppression on Ωa (i.e. θo ≈ 0 in Eq.(3.9)) persists

without the averaging.

(iii) δ > δc: the situation with ρa evolution is similar to the above (iii), but the enhancement

due to the diluted s(to) is absent due to the intervention of inflation which cuts short the

KE domination time (unless inflation happens after QCD phase transition). Therefore the

result is in general similar to the conventional, but accidental suppression is possible for

certain δ.

(iv) δ = θi or δ ≈ θi. For PQ breaking during inflation, the situation is similar to the con-

ventional, since the initial KE is quickly depleted by inflation before it can drive down θi

value. However, if the PQ breaks before inflation with a moderate/large separation in their

scales, the θ̇(ti) ̸= 0 initial condition can leave a trace despite inflation: the field value is

already driven down to θI ≡ θ(tI) ≈ R(ti)
R(tI)

θi for θi − δ → 0, where tI is when inflation

starts. θ(tI) then freezes in as the effective new initial condition for axion misalignment

after inflation.
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Detailed illustrations for the field evolution in each of these cases can be found

in Fig. S2 in Appendix. A. A representative example of Ωa-δ relation for this scenario is

illustrated in Fig. 3.3 based on numerical results. The upshot for this pre/during inflation

scenario is: Ωa is similar to or suppressed relative to the conventional due to θ̇(ti) ̸= 0 ,

while the potential enhancement effective in post-inflationary case is wiped out by inflation.

We now summarize the prediction for Ωa with IC-I for post- and pre-inflation cases

in order:

Ωpost−I
a ≃


Ωcon
a = 0.02 ⟨θ2o⟩

(
fa

1011 GeV

)7/6

, δ < δc

Ωcon
a

δ

δc
≃ 0.01 ⟨θ2o⟩

(
δ

1011

)
, δ ≥ δc,

(3.10)

and

Ωpre−I
a = Ωcon

a

θ2I
⟨θ2o⟩

, (3.11)

For the last equality in the 2nd line of Eq. 3.10, we used Eq. 3.8 which assumes ti at PQ

breaking scale ti ∼ mpl/f
2
a . Other ti choices would change the numerics. θI in Eq. 3.11 is

obtained from Eq. 3.13 with t = tI , which as discussed can lead to a suppression in Ωpre−I
a

when θi ≈ δ.

Note that case (iv) of this scenario provides a new possibility for Ωa to account

for ΩDM with fa ≳ 1011 GeV due to specific relations between θi and θ̇i even with a natural

θi ∼ 1. On the other hand, one could argue that this is trading one type of fine-tuning for

another type. Although challenging it is curious to see if it is possible to distinguish the
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Figure 3.4: . The dependence of axion relic abundance on initial velocity (γ) for Type-II
IC (fa = 1011 GeV), post-inflationary PQ-breaking.

two types of fine-tuning combining various avenues of observational data.

Type-II IC: θ̇i = −(1 − γ)θiHi, where γ ≥ 0. This IC is inspired by case (iv)

with Type-I IC. Most results in IC-I apply, with the replacement of δ → (1 − γ)θi in

Eq. 3.13. The key difference is that here the relation θ̇i ∝ θi is assumed to be valid for any

θi, therefore the aforementioned suppression effect in case (iv) (here γ → 0) is robust and

survives even after averaging patches for post-inflationary PQ breaking. The realization of

such an IC generally requires an explicit PQ breaking term in the axion potential effective

in the early Universe, which is beyond the scope of this work but would be interesting to

explore. We highlight this possibility since it provides a novel dynamic way to accommodate
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large fa ≳ 1011 GeV QCD axion as a DM candidate for post-inflation PQ breaking. Despite

requiring a special relation between θi and θ̇i, this solution is intriguing considering that

for post-inflationary PQ breaking in the conventional misalignment there is no way to even

fine-tune to accommodate fa ≳ 1011 GeV, since θi is averaged to O(1). We show the Ωa-γ

relation for IC-II in Figs. 3.4 and 3.5, for post- and pre-inflation PQ-breaking, respectively.

𝛺
𝑎

𝛾

∝ 𝛾2

𝜃 𝑡𝐼 = 𝜃𝑖𝑅 𝑡𝐼

𝑅 𝑡ⅈ

𝜃𝑖=0.1

𝜃𝑖=1

𝛺𝐷𝑀Pre-Inflation IC-II
Conventional

Figure 3.5: . The dependence of axion relic abundance on initial velocity (γ) for Type-II
IC (fa = 1011 GeV and tI = 103ti), pre/during-inflationary PQ-breaking.

The main difference from IC-I in the Ωa prediction, i.e., for case (iv) (small γ) in

the post-inflation scenario, is demonstrated with the following formula:

Ωpost−I
a ≃

Ωcon
a γ2,

1.3cm
R(ti)

R(to)
≤ γ ≤ 1

Ωcon
a

(
R(ti)

R(to)

)2

, 0.45cm0 ≤ γ ≤ R(ti)

R(to)
,

(3.12)
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where we can clearly see the suppression relative to the conventional by a factor of γ2 or(
R(ti)
R(to)

)2
. This result shows that the relic abundance of axion can be either very large or

being suppressed to be very small. All the parameter space that is constrained by dark

matter relic abundance turns out free.

3.4 The dynamics of Axion Evolution with An Initial Veloc-

ity

In this section, we illustrate the time evolution of θ(t), |θ̇(t)|, ρa(t) for the different

scenarios of non-zero θ̇i in the main text. We will refer to Type-I IC to be specific, while

each of the cases may apply to Type-II IC by the substitution of δ → (1 − γ)θi in θ(t)

solution as

θ(t) = θi

[
γ + (1 − γ)

(
R(ti)

R(t)

)]
, Mod[2π]. (3.13)

The difference between IC-I and IC-II in predicting Ωa is explained in the main text. The

results shown in Figs. 3.6, 3.7 are obtained by solving the equation of motion

θ̈ + 3Hθ̇ +m2
a(T )θ = 0. (3.14)
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By solving the above E.O.M, we can also obtain the averaged background energy density

ρ̄a and pressure P̄a of the axion field are:

ρ̄a =
1

2
ȧ2 +

1

2
m2
aa

2, P̄a =
1

2
ȧ2 − 1

2
m2
aa

2. (3.15)

The equation of state can then be found by applying

w(t) ≡ P̄a
ρ̄a
. (3.16)

IC-I Post-inflationary U(1)PQ breaking: the representative solutions for this

scenario in the following four cases are illustrated in Fig. 3.6. θi takes a random initial value

which will be averaged over post-inflationary patches for Ωa calculation

(i) 0 < δ < θi, i.e., with generally small initial KE. This is illustrated with green dashed

lines (δ ∼ 0, overlapping with conventional case) in Fig. 3.6 for constant ma, while for QCD

axion the evolution before tcono follows the orange line (overlapping with green for w(t) and

θ(t)).

(ii) θi < δ < δc, i.e., with moderate initial KE. The evolution for this case is illustrated with

blue lines in Fig. 3.6 (for θi away from the cancelation region θo = 2πk, k ∈ Z). Due

to the dominance of KE over V in early times, both the constant ma and the QCD cases

essentially follow same evolution (this also applies to the case (iii) and (iv) below). We can

see that due to the large θi the field’s equation of state in early stage is kination-like.

(iii) δ > δc, i.e., with high initial KE. This case is illustrated with black lines in Fig. 3.6.
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Figure 3.6: The time evolution of the axion field with Type-I IC in post-inflation PQ-
breaking scenario (for an individual θi, before averaging). Green/orange: case (i), blue:
case (ii), black: case (iii), red: case (iv). In addition, we assume the axion mass m2

a ∝ R8

as QCD axion in orange curve, others are assumed as constant. Details are also given in
the text.

(iv) δ = θi or δ ≈ θi, the special regime where δ is equal to or in the close vicinity of θi.

This case is demonstrated in red in Fig. 3.6 for δ = θi, in yellow for δ ≈ θi. IC-I Pre-

inflationary U(1)PQ breaking: the representative solutions for this scenario in the fol-

lowing four cases are illustrated in Fig. 3.6, with the same color codes as in their post-

inflationary counterparts.
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Figure 3.7: The time evolution of the axion field with Type-I IC, in the pre-inflationary
PQ-breaking scenario. Color codes are the same as in Fig. 3.6. In addition, we assume the
axion mass m2

a ∝ R8 as QCD axion in orange and purple curves, others are assumed as
constant. Details are given in the text.

3.5 An Example Model Generating An Axion Initial Velocity

In this section, we demonstrate a simple example of generating a nonzero initial

velocity of axion starting from θ̇(t → 0) = 0, as a result of the breaking of axion shift

symmetry in the early Universe. Such a symmetry breaking is analogous to that realized

at late times by the QCD instanton effect. This is consistent with the expectation that

PQ symmetry, as a global symmetry, is generally considered approximate/accidental. In

particular, we consider the following effective action involving higher dimension operators
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(dimension λ+ 1, λ > 0):

S ⊃ −
∫
dx4

√
−g

[
∂µΦ†

i∂µΦi + λ1

(
Φ†
1Φ1 −

f2a
2

)2

+ gf

(
Φ2

Λ2

)λ
Φ1 + h.c.

]
,

with

Φ1 =
1√
2

(fa + ϕ) eia/fa , (3.17)

where i = {1, 2}, and Φ2, ϕ are CP-even scalar. The angular mode of Φ1 is identified as the

axion, while there is no spontaneous symmetry breaking occurring through Φ2 (at least in

the early universe). For simplicity, we assume the effective coupling gf is real, and this term

explicitly breaks the axion shift symmetry. Λ2 is the cutoff scale of this effective action,

and Λ2 ≫ fa. The effective potential can be rewritten by the form

L ⊃ −
√

2gffa

(
Φ2

Λ2

)λ
cos

(
a

fa
+ α0

)
. (3.18)

Considering the motivated possibility that Φ2 may be displaced from its true vacuum at the

end of inflation, the dynamics of the field Φ2 in Eq.(3.18) provides a variety of possibilities to

generate a nontrivial axion velocity at tosc (the onset of axion oscillation). For instance, we

consider that V (Φ2) takes the following power-law form, which can occur in e.g. quintessence
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models [131, 132, 133, 134]:

V (Φ2) = gNΦN
2 , (3.19)

where gN is a constant parameter. We simply assume that this term dominates the potential

in early universe. With the dominant background energy density generically parametrized

as ρ ∝ R−m, we find ρΦ2 ∝ R−n, where n =
(

N
N−2

)
m. By solving the time evolution of Φ2

in this potential, we find

Φ2(t) ∝ t1−N/(N−2), ∀N > 2., n ̸= m,
6 − n

m
> 0, (3.20)

Plugging this solution to Eq.(3.18), we obtain the axion potential at early times:

VΛ(a) = Λ4

(
t2
t

)p
cos

(
a

fa
+ α0

)
, (3.21)

where Λ4 ≡
√

2gffa(M2/Λ2)
λ with initial field value of Φ2(t2) = M2, p ≡ −λ(1 −N/(N −

2)) > 0. With the VΛ(a) given above, we can write down the parametrized equation of

motion for the axion field:

ä+
6

m

1

t
ȧ − Λ4

fa

(
t2
t

)p
sin

(
a

fa
+ α0

)
+m2

a(T )fa sin

(
a

fa

)
= 0. (3.22)

A key feature of this model with positive p is that the effect of the potential VΛ(a) is

suppressed/negligible after t ∼ 1/ma. Consequently, the conventional axion dynamics is
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restored after QCD phase transition. Therefore the axion has enough time to enter into

QCD vacuum and behaves just like the standard QCD axion at late times. We also find that

the constraint of solving strong CP problem is weaker than the DM relic density constraint.

To see this, we know the following constraint from neutron EDM measurements:

θ(t0) < θQCD ≃ 10−10. (3.23)

We also know that axion energy density today is

ρa(t0) = m2
af

2
a ⟨θ2(t0)⟩ = 3.49 × 10−5 GeV2⟨θ2(t0)⟩,

where we substituted mafa = 5.7 × 10−3 GeV2 [121]. Therefore Eq. 3.23 implies an upper

bound on axion relic abundance today. Putting all numerics together, we find Ωa ≲ 1022,

which is a much more forgiving bound than the DM over-closure bound. Therefore the

strong CP constraint can be satisfied as long as Ωa ≤ ΩDM, and the implied constraints on

model parameters can be found in Eqs. 10-12 in the main text.

The example we demonstrated provides a class of models parametrized by p, λ and

m, that can generate diverse possibilities of initial conditions for the axion field including

a sizable initial velocity. In the following, we will show a choice of parameters that can

generate our IC-I (iv) and IC-II.
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Example: p = 2, λ = 10, m = 4

Here we consider p = 2, λ = 10, m = 4, consequently N = 12 and n = 4.8. In this

case, the equation of motion of axion in the very early Universe can be approximately as

the following (the choice of α0 = π leads to c > 0, while α0 = 0 leads to c < 0, and QCD

axion potential is negligible during this early era of interest):

ä+
3

t
ȧ+

c

t2
a = 0. (3.24)

where define |c| ≡ Λ4t22/f
2
a . The solution is

a(t) = c1t
n+ + c2t

n− , (3.25)

where

n± =
1

2

(
−2 ±

√
4 − 4c

)
. (3.26)

In general, c is suppressed by PQ-scale fa and high energy physics scale Λ2. Therefore,

we expect −1 ≤ c ≤ 1 and consequently −1 ≤ n+ ≲ 0.414. Assuming that initially at t2,

a(t2) ∼ πfa and ȧ(t2) = 0, we find that n+ term will dominate at late times, and the axion

follows the relation

ȧ(t)

a(t)
≃ n+

1

t
= n+

m

2
H(t). (3.27)
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To give a numerical benchmark example, we consider

M2 ∼ 105GeV, gN ∼ 1 GeV−8,

Λ ∼ 10
√
mafa, ma ∼ 10−15 GeV,

t2 ∼ 10−2tcono , α0 = π.

This implies

c = Λ4 t
2
2

f2a
∼ 1 → n+ ∼ −1, (3.28)

therefore

ȧ(tcono )

a(tcono )
=
θ̇(tcono )

θ(tcono )
∼ n+

m

2
H(tcono ) ∼ −H(tcono ). (3.29)

This gives our IC-I-(iv) and IC-II.
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Chapter 4

Global String Gravitational Waves

and Archaeologies

4.1 Introduction

The detection of gravitational waves (GW) by the LIGO/Virgo collaboration [135,

136, 137] opens up a new observational window into the cosmos, and offers unprecedented

opportunities to probe fundamental physics beyond the Standard Model (SM). The presence

of a cosmologically generated stochastic GW background (SGWB) is highly motivated and

has been actively searched for/studied by the LIGO and LISA collaborations [138, 139, 140,

141]. Although still being investigated, the intriguing stochastic signal recently reported by

the NANOGrav collaboration [142, 143, 144] has been shown to be possibly explained by a

SGWB of cosmic origin [145, 146, 147, 148, 149, 150, 151, 152]. Furthermore, the detection

of a cosmogenic SGWB can potentially address many long-standing questions in particle
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physics and cosmology (e.g. [153, 154, 14, 13, 155, 156, 157, 158, 159, 160, 161, 162, 163]),

and allows us to probe very early stages of the Universe.

Among the known cosmological sources of SGWB (see review [164]), cosmic strings

stand out as one that can yield strong signals over a wide frequency range due to continuous

emission over a long period of time. Cosmic strings are one-dimensional, topologically

stable objects that are generically predicted by many theoretical extensions of the Standard

Model of particle physics, e.g., field theories with a spontaneously broken U(1) symmetry

(gauge or global) [165, 166, 167, 168, 169, 170, 171], and the fundamental and/or composite

strings in superstring theory [172, 173, 174, 175, 176]. After formation, the strings quickly

evolve towards a scaling regime where the string network consists of a few Hubble-length

long strings per horizon volume, along with more copious loops formed by long string

intersections. The loops then oscillate and radiate energy in the form of GWs and/or other

particles until they decay away. Most literature on GW signatures from cosmic strings

have been focused on those sourced by local strings or superstrings which typically can be

described by Nambu-Goto (NG) action. In contrast, a global string network as a potential

source of GWs has been largely ignored since by naive estimate GW radiation would be

overwhelmed by Goldstone emission which occurs with a much larger rate. Very recently,

inspired by its intimate connections to axion dark matter physics, significant progress has

been made in simulating global topological defects and on the GW signals originated from it

[109, 111, 177, 178, 15]. With a semi-analytical approach based on the Velocity-dependent

One-Scale (VOS) model, our earlier work [156] demonstrated that the GW signal from global

strings, albeit notably smaller than that from its NG string counterpart, can be within reach
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of future GW experiments such as LISA [140, 141], AEDGE [179], DECIGO and BBO [180].

Such a positive prospect of detection has been confirmed by simulation-based work [15, 178],

although details differ which will be addressed in this work.

The frequency spectrum of the SGWB from a cosmic string network can also

serve as a powerful tool to probe the very early cosmic history that is not accessible by

existing means. The ΛCDM cosmology was established based on precise measurements

of electromagnetic radiation over different frequency ranges with a variety of experiments.

A simple extrapolation of ΛCDM cosmology back in time suggests that the Universe is

radiation dominated from the recent matter-radiation equality all the way back to the end

of inflation. This paradigm is supported by observing cosmic microwave background (CMB),

the relic photons that started free traveling when the radiation temperature was about 0.3

eV. The success of BBN theory in predicting primordial abundances of light elements also

provides evidence for a radiation dominated era up to T ∼ 5 MeV. However, the hypothesis

of radiation domination (RD) for epochs prior to BBN or at radiation temperature higher

than ∼ 5 MeV is yet to be experimentally tested. On the other hand, possibilities of non-

standard pre-BBN cosmologies are well motivated by many grounds, such as dark matter

[181, 182], axion physics [183, 5], baryogenesis [184, 185], non-minimal inflation/reheating

[186, 187], and string compactification [188, 189]. In particular, recently there has been

an increased interest in the impact of non-standard cosmology on dark matter physics

[190, 191, 192]. The discovery of GWs leads to unprecedented opportunities to shed light

on this mysterious pre-BBN primordial dark age [193, 194, 195]. GWs are the only cosmic

messengers that can travel freely throughout space-time since the Big Bang. They carry
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unique information about the earliest phases of the Universe’s evolution, beyond what

can be assessed by observing EM radiations. Due to the continuous, potentially strong

GW emissions from a string network throughout a long era of cosmic history, the SGWB

frequency spectrum from cosmic strings is particularly appealing as a tool for looking back

in time or cosmic archaeology [14, 13, 155]. The application of this idea in the context

of NG strings was recently proposed and studied in [14, 13], based on a frequency-time

(temperature) correspondence. Cosmic archaeology with global string induced GWs was

only briefly discussed in [156], which we will explore in great detail in this update.

In this work, we aim at an extensive study of SGWB signals originated from a

global string network, and a comprehensive investigation into the potential new physics

imprints in the pre-BBN Universe that can be detected with such a GW spectrum. Greater

technical details are given, which may serve as a handy reference for future studies. Our

primary approach is to use the analytic VOS model calibrated with simulation results

(directly obtained for early times). Due to technical difficulties of simultaneously capturing

physics at hierarchical scales, current simulations can only cover the evolution history of

a global string network up to a few e-folds of Hubble expansion after the formation time.

Thus, whether it is reliable to make a direct extrapolation of simulation results to late times

(most relevant for observations today) requires further investigation. On the other hand,

while VOS model for global strings are still being tested and needs to be calibrated with

simulation data, the prediction for late times by the VOS model is obtained by solving the

evolution equation incorporating the known physics effects instead of simple extrapolation.

Therefore, such a semi-analytical approach is highly complementary to the simulation efforts
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and the two approaches can lead to insights to help improve each other. We significantly

updated and expanded the related studies initiated in our earlier paper [156], taking into

consideration the very recent developments since then. For instance, [162, 158] show that

the inclusion of the very high oscillation modes can drastically change the shape of the

GW spectrum from NG strings in (early-)matter dominated era, which was neglected in

earlier literature. We included the contribution from these high modes in this updated

study, which leads to substantial modifications to the GW spectrum at low f for standard

thermal history as well as at high f with the presence of an early matter domination epoch.

We also discuss the consequence for the prediction of SGWB if the non-scaling behavior

found in some simulation results for early evolution sustains in the late-time evolution of

a global string network, compare with the results found in [15, 196], and suggest potential

modifications to the VOS model to accommodate such a feature. We will dive into the

time-frequency correspondence for global strings, which is the guiding principle for testing

standard cosmology. We conduct an extensive study on probing a potentially existing

non-standard equation of state of the pre-BBN Universe such as early matter domination

(EMD) or kination, where we also include a concrete example for a finite duration of a

kination epoch. In addition, we study the effects on the GW spectrum with the presence

of new massive degrees of freedom. Furthermore, a detailed discussion is given to address

uncertainties such as loop size distribution, radiation parameters, and distinguishing from

other SGWB sources. Our results directly apply to pure global strings associated with

massless Goldstone. The application to the axion case where the Goldstone acquires a mass

at a QCD(-like) phase transition is more complex and requires treatments of the axion
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domain walls in addition to the strings, see for example [197]. We reserve a dedicated study

on the axion case for future work. We also comment on the prospect of addressing the

recent NANOGrav result with global strings.

The rest of this article is organized as follows. In Section 4.2.1 we will present

our methodology based on the analytical Velocity-dependent One-Scale (VOS) model for

global strings calibrated with recent simulation results. In Section 4.2.2 we derive the GW

frequency spectrum from a global string network in the context of standard thermal history.

In Section 4.3 we illustrate the relation between the frequency of a GW signal observed today

and its emission time in the early Universe. With several benchmark examples, we show

how this relation can be used to test standard cosmology and detect potential new physics.

Related experimental constraints and sensitivities are also demonstrated in Section 4.3 and

4.4. In Section 4.5 we will address various uncertainty factors that may affect the results, as

well as how to distinguish global string induced SGWB from other potential SGWB sources.

We make our conclusions in Section 8.

4.2 Evolution of a Global Cosmic String Network

4.2.1 Velocity-dependent One-Scale (VOS) model for global strings

Recent years have seen rapid developments in simulating a global/axion string net-

work [177, 109, 198, 199, 200, 112, 201, 196, 111, 202]. Nevertheless, a technical challenge

persists for pure numerical simulation to track the network’s evolution over the entire rele-

vant cosmic history. Two characteristic scales need to both be captured by simulation: the

string width which is about the inverse of the related symmetry breaking scale rcore ∼ 1/η,
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the time-dependent horizon size of the Universe which is of the Hubble scale H−1. There

is generally a large hierarchy between the two scales, which can be up to η/H ∼ 1057 in

the late-time universe. However, current simulations can only cover very early stage of the

evolution up to η/H ∼ 103, therefore extrapolation, potentially unreliable for late times,

has to be made to make prediction for observations today. Our approach here is to adopt an

analytical VOS model that captures the essential physics, and use it to study and predict

the evolution of the string network over a long range of time, while calibrating the input

model parameters with data points for early time evolution that have been made available

by simulations.

In this section, we review the VOS model of a global string network and compare

its predictions with that from simulations. The VOS model was originally introduced in

the context of NG strings [203, 204, 205], and recently extended/updated including the

application to axion strings [206, 207, 31]. The VOS model has been widely supported by

simulation results in the case of NG strings [208, 209, 210], yet for global strings it is still

being tested by simulations. According to the VOS model, starting with an arbitrary initial

condition, the cosmic string network would eventually enter a scaling regime [196, 109],

where the correlation length L (or the mean of the inter-string separation scale) of the

strings remains constant relative to the horizon size, and the energy density of the network

tracks the total background energy density with a coefficient ∼ Gµ. The network typically

consists of a few horizons sized long strings along with copious sub-horizon sized string loops.

In this regime, the energy density of the string network relative to the background energy

density does not grow with the scale factor a due to the energy loss from the decay of the
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loops. While GWs constitute the leading radiation by the NG strings, they are irreducible

but subdominant mode for global strings for which the emission of Goldstone particles is

more important1. The energy density of the global string network (mainly stored in long

strings) is

ρ∞ =
µ(t)

L2(t)
= ξ(t)

µ(t)

t2
, (4.1)

where the dimensionless parameter ξ(t) is defined as the number of long strings per horizon

volume. µ(t) is the time-dependent tension (i.e. energy per unit length) of the global strings

(µ is a constant for NG or local strings),

µ(t) = 2πη2ln
L

δ
≡ 2πη2N, (4.2)

with

δ ∼ (
√
λmϕ)−1 and m2

ϕ = λ

∣∣∣∣(T 2

3
− η2

)∣∣∣∣ ∼ λη2, (4.3)

where δ is the width of the string core, λ is the coupling in ϕ4 theory and mϕ sets the mass

of the Higgs-like complex ϕ whose VEV breaks the global U(1), and we have defined the

time-dependent parameter N which will be used in later discussions. The temperature T

dependent thermal mass contribution is negligible well after the symmetry breaking phase

transition (T ≪ η), and thus we ignore it in our analysis. We consider λ ∼ 1 such that mϕ

1We neglect the emission of radial mode which is shown to decouple soon after the network formation
[15, 177] and may be generally suppressed when the loop size is larger than ∼ 1/η [199].
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and η are comparable. The evolution equation for the correlation length L is [168, 31, 203,

204]

(
2 − 1

N

)
dL

dt
= 2HL

(
1 + v̄2∞

)
+
Lv̄2∞
ℓf

+ c̄v̄∞ + s
v̄6∞
N
, (4.4)

which couples to the evolution equation for the average long string velocity v̄∞:

dv̄∞
dt

=
(
1 − v̄2∞

) [kv
L

− 2Hv̄∞

]
, (4.5)

where kv is the momentum parameter. While we will investigate the detectability of GW

signal, we left out the GW radiation term in these evolution equations because its contri-

bution here is sufficiently suppressed [168]. The terms on the RHS of Eq. 4.4 represent, in

order, the dilution effect from the expansion of the Universe, thermal friction effect with

characteristic scale ℓf ∝ µT−3, loop chopping rate parameter c̄, and the back-reaction due

to Goldstone boson emission [31, 204]. The thermal friction is negligible as the Universe

cools down such that T ≪ η.

In the following analysis we consider various possibilities of background cosmology

parametrized by n, defined as

ρ ∝ a−n, a(t) ∝ t2/n (4.6)

where a(t) is the expansion parameter as a function of time t, ρ is the background cosmic

energy density. n = 3, 4 correspond to the cases of matter (MD) and radiation (RD)
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domination, respectively. We focus on the range of 2 < n ≤ 6 (n = 6 corresponds to

kination epoch which we will discuss more in Sec. 4.4).

In the scaling regime, the parameters ξ and v̄∞ are approximately time-independent.

For a specific n, the solution to the evolution equations in the VOS model can be expressed

as [31]

ξ =

(
L

t

)−2

=
8
(
1 − 2

n − 1
2N

)
nkv(kv + c̄)(1 + ∆)

, v̄2∞ ≡ v20(1 − ∆) =
n− 2 − n

2N

2

kv
kv + c̄

(1 − ∆) ,

(4.7)

with

∆ ≡ σ

N(kv + c̄)
, σ ≡ sv50. (4.8)

The Goldstone particle radiation term sv̄6∞/N is treated as a perturbation (valid when

∆ ≪ 1), and v0 is the solution to v̄∞ in the limit where the Goldstone emission term is

set to 0. The model parameters {c̄, kv, σ} can be extracted by calibrating with current

simulation results, as we will discuss.

Although the presence of a scaling regime with a constant ξ as in the VOS model

has been confirmed by simulations for NG or gauge strings [211, 212, 213, 214, 215, 216], the

situation is not yet clear for global strings. Some of the recent simulation studies such as
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[177] suggest a time-dependent ξ(t) that grows linearly with N in small 4 ≲ N ≲ 7 region,

ξ(t) ≃ 0.24(2) ×N + β, (4.9)

where β is a constant bearing large uncertainty related to initial condition. The linear in-

crease of ξ in N is also found in some other simulation studies [202, 196, 108, 110, 111, 198],

but is in conflict with other groups’ simulation results, which predict a nearly constant ξ

[178, 112, 200, 215, 205, 217, 218, 219, 220, 8]. This discrepancy is an intriguing puzzle, and

requires further investigation with higher resolution simulations. Given the uncertainty,

while we mainly focus on the application of the VOS model, here and in Sec. 4.5.3 we

also carefully considered the effect of potential deviation from scaling and suggest modifi-

cation/extension to the current VOS model.

In order to calibrate the parameters {c̄, kv, σ} for the VOS model, we fit data

extracted from simulation results in [108, 109, 112], as summarized in Table. 4.1. The error

bars are visually estimated from the plots in [108, 109, 112], as we are doing a simplified

statistical analysis as in [31]. Our best fitting result for the VOS model parameters are as

follows:

{c̄, kv, σ} ≃ {0.497, 0.284, 5.827}, (4.10)

and the fitting quality is about 3.3-σ significance (p-value < 0.001). Such a fitting quality

reflects moderate tensions among simulation data listed in Table. 4.1, possibly due to the

different simulation methods as well as the different ways of counting the number of strings
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that are employed in the literature. We will assume that these same parameters apply for

different scenarios of cosmological background, e.g. radiation domination (RD) or matter

domination (MD) 2. As an example, for N = 70, we obtain the number of strings per Hubble

volume ξ ∼ 4.0 and v̄∞ ∼ 0.57 in RD, and ξ ∼ 3.55 with v̄∞ ∼ 0.40 in MD.

In Fig. 4.1 we show the evolution of ξ and v̄∞ as functions of N using the VOS

model with the fitting model parameters listed above. Given the recent findings suggesting

deviation from scaling (Eq.(4.9)), in the sub-figure of Fig. 4.1 where the small N region

is zoomed in, we also show the 1-σ area of Eq.(4.9) as the yellow band (the error bar is

given in [177]), in comparison with the VOS model prediction (sold curve). We found that

in the region of small N ≲ 7 the VOS model prediction is consistent with a linear growth

of ξ in N , provided that β is not too small, e.g. β ∼ 0.20 is taken as an example in our

analysis. The late-time evolution in the scaling regime is insensitive to the exact value of

β which depends on initial conditions. Nevertheless, as can be seen in Fig. 4.1, at large N

VOS model prediction approaches scaling, i.e. a nearly constant ξ. For our later analysis

of the GW signals, the late-time evolution in the region of N ≳ 50 region is most relevant,

yet is beyond the reach of most of current simulations. In contrast, VOS model provides

a reasonable prediction for the entire time range of interest, after calibrating with low N

simulation data.

The data points we used and listed in Table.4.1 were also applied in [31]. We ini-

tially considered using a larger data set for the fitting by including more simulation results,

2While this assumption has been confirmed for NG/local strings, a recent simulation work for global
strings [196] suggests that c̄ may differ with different background cosmologies. The deviation mostly orig-
inates from the difference in the predicted averaged velocity v̄∞, while ξ is about the same in different
cases.
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Figure 4.1: The number of global string per Hubble volume ξ and the average long
string velocity v̄∞ as functions of N ≡ lnLδ , as predicted by the VOS model, for different
background cosmologies. The subfigure in the left panel is the zoom-in of ξ evolution in the
low N range during radiation domination, where the yellow band shows the 1-σ uncertainty
region based on the finding by simulation (as shown in Eq.(4.9) with β ∼ 0.20).

but they are in some way in conflict with the data in Table.4.1. In order to have meaningful

results, we decided to leave out the data sets that fit VOS model poorly. The discrepancies

among different simulation results could be in part because these simulations are done with

very different methods, covering different ranges of N , and the number of strings and the

velocities are counted by different numerical algorithms [31]. Further investigations and

developments are certainly required to reach a convergence among different simulation re-

sults. To fairly consider these other data sets, in the following, we further discuss their

implications and why we left them out of our analysis.

First, note that the VOS model is only valid once the string network enters the

scaling region N ∼ 6 (e.g. see Fig. 3 of [109]). The evolution in the very early stage of

N ≲ 5 is sensitive to the initial condition. Therefore, for our fitting, we exclude simulation
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data points with very low N ’s such as in [110] (N = 2 − 4). The result from [200] is not

included because we found that its large velocity v̄ = 0.609±0.014 leads to a poor χ2 fit with

other simulation data3. Ref. [196] simulated the global string network with cosmological

background parameter n ≤ 3, without a data point simulated with a radiation-dominated

background, thus cannot be analyzed with the results included in Table. 4.1. Another

reason we did not include data from [196] is that their results suggest a time-dependent

loop chopping rate, which does not match the VOS model. [111] suggests another pattern

of deviation from scaling that is inconsistent with Eq.(4.9). While these suggested non-

scaling behaviors only directly apply to low N range and do not converge among literature,

it is intriguing to consider their potential effects on GW signals (if the non-scaling persist

till large N) and how VOS model would need to be revised accordingly. We leave more

discussion on this topic in Sec. 4.5.3.

In this study, we simply keep the velocity parameter kv as a constant as in the

conventional VOS model. Nevertheless, some studies suggested the possibility of velocity-

dependent momentum parameter kv = kv(v) [205, 221, 206, 222]

kv(v) = k0
1 − (qv2)β

1 + (qv2)β
, (4.11)

where q ≃ 2.3, β ≃ 1.5, and k0 ≃ 1.37 [206, 222]. We found that in RD background

Eq.(4.11) gives a numerical value of velocity parameter kv(v = v̄∞) ∼ 0.3 at high N ≳ 10

which is consistent with our fitting result Eq.(4.10). In addition, there is a debate about

3With the large velocity, the χ2 prediects {c̄, kv, σ} ≃ {0.588, 0.395, 0.314} with p value ≪ 0.01%. It
consequently decreases the ξ by a factor of 2, and no significant change on v̄∞. Those parameters would
reduce the GW production rate to about 44%.
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Reference N ξ v̄

Klaer et al. [108] 55 4.4 ± 0.4 0.50 ± 0.04
31 4.0 ± 0.4 0.50 ± 0.04
15 2.9 ± 0.3 0.51 ± 0.04

Gorghetto et al. [109] 6 − 7 1.0 ± 0.30
Hindmarsh et al. [112] 6 1.19 ± 0.20

Table 4.1: Results from recent global string network simulations (in a radiation dominated
background) for the number of strings per Hubble volume ξ and the average velocity of long
strings v̄ in radiation dominated background. These data points were also applied in [31].
In the main text, we explain why some other recent simulation results were left out of this
table (thus our analysis) and their implications.

whether the chopping parameter c̄ is time-independent: e.g. [196] suggests that c̄ decreases

with N , while [200] fits a constant value c̄ = 0.843 ± 0.039 in radiation background. We

will not elaborate on these two particular types of uncertainty.

4.2.2 Dynamics of global string loops: formation and radiation into GWs

and Goldstones

A global cosmic string network forms during the phase transition around T ∼ η.

The dynamics of the very early stage of evolution is sensitive to initial conditions. However,

the string network would soon evolve towards an initial condition independent scaling regime

[202, 177, 109, 196, 108], namely, ξ ∼ constant (or with potential deviation from scaling

suggested by some recent work, see earlier discussion and later in Sec. 4.5.3 ). The horizon-

sized long strings randomly intersect each other and lose energy via forming sub-horizon

sized loops, which subsequently oscillate and radiate energy until they decay away. The

loop size distribution at formation time can be parameterized by: a distribution function

Fα and the fraction of energy stored in loops that can be released as radiation (GWs or
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Figure 4.2: The dependence of loop emission factor Ceff on the background cosmology as
derived from the VOS model, as well as its evolution in time (characterized by N ≡ lnL(t)δ
or t). In the example shown, the symmetry breaking scale is taken as η = 1015 GeV.

Goldstones), Fα. In this work, we consider two representative scenarios in detail, both

inspired by simulation results: (1) a nearly monochromatic loop size at formation ℓi ∼ αti

with α ∼ 0.1, such that Fα∼0.1 ∼ 1, while ∼ 90% fraction of loop’s energy is in the form

of kinetic energy which would eventually redshift away without contributing to GWs, thus

Fα ∼ 0.1, as inspired by [209, 208]; and (2) a flatter, log-uniform distribution of loop size as

suggested in [109]. In this section we focus on the simpler first case, and the second scenario

will be discussed in Sec. 4.5.1. In Sec. 4.5.1 we also comment on other loop distribution

possibilities to account for the related uncertainties [223].
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By energy conservation, for a specific α the formation rate of string loops in a

scaling string network is given by

dρo
dt

×Fα = −
(
dρ∞
dt

)
× Fα ×Fα = c̄v̄∞

µ

L3
FαFα, (4.12)

where the chopping rate parameter c̄ is given in Eq.(4.10), and ρo denotes the energy density

of string loops. The number density of loops with length ℓ = αt is then

dno =
c̄v̄∞FαFα
αtL3

dt ≡ FaCeff
Fα
α

dt

t4
, (4.13)

where we define the loop emission parameter Ceff

Ceff ≡ c̄v̄∞ξ
3/2. (4.14)

We obtain Ceff for different background cosmologies (i.e. equations of state) based on the

solutions given in Eq.(4.10) and Eq.(4.7). Fig. 4.2 illustrates the solution and evolution

of Ceff. Numerically, we found Ceff ≃ {1.32, 2.26, 2.62, 2.70} for n = {3, 4, 5, 6} (n param-

eterizes cosmology as defined in Eq.(4.6), respectively. Note that Ceff falls down to zero

when the v̄∞ → 0, which corresponds to the time tη when the Goldstone radiation becomes

important in the equation of motion Eq.(4.4), i.e. ∆(t = tη) = 1 in the string network

evolution (see Eq.(4.7)):

tη ≃
√
ξ(tη)

η
exp

(
σ

k + c̄

)
. (4.15)
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The right panel of Fig. 4.2 illustrates this point with numerical results. With our calibrated

parameters, tη as defined corresponds to N ∼ 6 − 7, which implies that the perturbative

VOS model [31] has large uncertainties in such a low N range.

After formation, a global string loop would rapidly oscillate and emit energy in the

form of GWs and Goldstones by the following energy loss rates until the loop disappears

completely [107]:

dE

dt
= −ΓGµ2 − Γaη

2. (4.16)

Note that the parameter Γ(a) only depends on the loop trajectory [168, 224], thus we expect

that the Goldstone radiation constant Γa should be close to the value of the GW radiation

constant Γ ∼ Γa [224] which is also determined by the loop shape. In the following, we

assume benchmark values Γ ∼ 50 [225, 226, 208, 209], and Γa ∼ 65 [224, 168]. We will

discuss the effect of varying Γa, Γ in Sec. 4.5.2 to account for the potential uncertainty on

the radiation parameters.

The size of a loop with initial length ℓi = αti therefore decreases as

ℓ(t) ≃ αti − ΓGµ(t− ti) −
Γa
2π

1

ln(L/δ)
(t− ti), (4.17)

where ti is the loop formation time. The radiation of GW and Goldstone from a loop can

be decomposed into a set of normal-mode oscillations with frequencies f̃k = 2k/ℓ̃, where

mode numbers k = 1, 2, 3 · · · , and ℓ̃ ≡ ℓ(t̃) is the instantaneous size of the loop when it
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radiates at t̃. We can rewrite the radiation parameters in a decomposed form

Γ(k) =
Γk−

4
3∑∞

m=1m
− 4

3

, and Γ(k)
a =

Γak
− 4

3∑∞
m=1m

− 4
3

, (4.18)

where
∑∞

m=1m
− 4

3 ≃ 3.60,
∑

k Γ(k) = Γ, and
∑

k Γ
(k)
a = Γa. We have assumed that the

cusps are the dominating source of GW and Goldstone emissions as found in NG string

simulations [227, 228, 229]. The contributions from kinks and kink-kink collisions follow

different power laws: Γ(k) ∝ k−5/3 and k−2 for kinks and kink-kink collisions, respectively

[230, 231, 232]. As shown in Eq.(4.16), relative to Goldstone emission, GW radiation is

suppressed by a factor of ∼ η2/m2
p, where mp is Planck scale. Nevertheless, the suppression

factor becomes less severe as the symmetry breaking scale η gets closer to mp.

Our main analysis results shown in Sec. 4.3 are obtained by focusing on the simple,

motivated assumptions made in this section. Nevertheless, we acknowledge other possibil-

ities of Ceff and Γ(a) that were suggested in literature. We further discuss the effects on

phenomenology in light of possible deviations from our assumptions on these factors in

Sec. 4.5.2 and Sec. 4.5.3.

4.3 SGWB Spectrum from Global Strings

In this section we will first show the derivation and numerical results of SGWB

frequency spectrum from a global cosmic string network assuming a standard cosmic history

(Sec. 4.3.1, 4.3.2). Then in order to give more physics explanation and insights, in Sec. 4.3.3

we provide parametric estimates for the relic densities of Goldstones and GWs emitted from

global strings, and compare them with GW signals from NG strings.
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4.3.1 Derivation of GW spectrum from global strings

The generic form of the relic energy density of a SGWB is given by

ΩGW =
f

ρc

dρGW

df
, (4.19)

where ρGW is the energy density of GWs, and ρc = 3H2
0/8πG is the critical density. String

loops emit GWs from normal mode oscillations with frequencies f̃k = 2k
ℓ̃

, where k ∈ Z+,

ℓ̃ is the loop size at emission time t̃ [233, 177]. Taking into account of redshift effects, the

observed frequencies today are then

fk =
a(t̃)

a(t0)
f̃k =

2k

ℓ̃

a(t̃)

a(t0)
. (4.20)

The relic GW background is obtained by summing over all harmonic modes

ΩGW(f) =
∑
k

Ω
(k)
GW(f) =

∑
k

fk
ρc

dρGW

dfk
. (4.21)

Using Eq.(4.13) and Eq.(4.17) that we derived earlier and integrating over emission

time t̃, we can derive the contribution Ω
(k)
GW(f) from an individual k mode as

Ω
(k)
GW(f) =

Fα
ρc

2k

f

Fα
α

∫ t0

tF

dt̃
Γ(k)Gµ2(

α+ ΓGµ+ Γa
2πN

) Ceff

(
t
(k)
i

)
t
(k)4
i

Θ(ti, t̃)

(
a(t̃)

a(t0)

)5
(
a(t

(k)
i )

a(t̃)

)3

(4.22)

where tF is the formation time of the global string network, t0 is the current time, and the
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causality and energy conversation conditions are imposed by

Θ(ti, t̃) = θ(ℓ̃) θ(t̃− ti). (4.23)

With Eq.(4.17) we can derive that a loop that emits GW at time t̃ leading to an observed

frequency f was formed at the time

t
(k)
i (t̃, f) =

(
1

α+ ΓGµ+ Γa
2πN

)[
ℓ̃(t̃, f, k) + ΓGµt̃+

Γa
2πN

t̃

]
, (4.24)

Note that to consider the radiation of Goldstones, we may define ΩGold(f) in analogy to

Eq.(4.22) with the simple replacements: Γ → Γa, and ΓGµ2 → Γaη
2. We will apply this

prescription in later discussions involving Goldstone radiation (e.g. Sec. 4.3.3).

Earlier studies based on radiation dominated background [224, 234, 235] found that

the first few k-modes dominate the GW radiation from loops. However, recent work (in the

context of NG strings) showed that a large value of k ≳ 105 may be needed to converge,

depending on the background cosmology [162, 158, 236]. For instance, including higher k

modes changes the power-law index of ΩGW(f) from −1 to −1/3 in a MD epoch. In this

work we investigated the importance of high k modes in the context of global strings and

found similar results. We found that to reach a converging result for ΩGW(f) up to ∼ 100

Hz, i.e. within the frequency range relevant for current and near-future GW detections, up

to k ∼ 108 modes need to be included. Higher f range requires more k modes to converge.

To draw the full spectrum shown in Fig. 4.3 we took into account of up to k ∼ 1015 modes

in our analysis.
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Figure 4.3: Gravitational wave spectra from a global (solid) and NG (dashed) string net-
work with α = 0.1, Fα = 0.1, for η = 5×1015 (red), 1015 (orange), 5×1014 (green), and1014

GeV (blue). Up to k = 1015 harmonic modes are included in the summation.

Fig. 4.3 demonstrates the SGWB spectrum calculated numerically with the method

we outlined. The corresponding results for NG strings are also shown in comparison, with

more explanation given in Sec. 4.3.3. While the very high f range f ≫ 100 Hz is well beyond

the reach of any foreseeable experiment, we keep it in Fig. 4.3 for theoretical completeness

by capturing physics at times as early as the formation time of the string network. As can

be seen, towards high f the spectrum falls most significantly starting around the frequency

fη ∼ 2
αtη

[a(tη)/a(t0)] ∼ 1010 Hz [237], as a result of the string network formation time and

the validity cutoff of the perturbative VOS model (Eq.(4.15)). The exact shape of the falling

spectrum at frequencies f > fη has uncertainties and is sensitive to the initial condition and

the very early stage of string network evolution, which is not captured by the VOS model.

Then over a wide range of f the spectrum gradually declines towards higher f (∼ ln3(1/f),

see Eq.(4.25) below), corresponding to the emissions during the RD era. Note that this

feature of the SGWB spectrum from global strings is in contrast to a nearly flat plateau as
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in its NG string counterpart. Starting at f0 ≃ 2
αt0

∼ 3.6 × 10−16 Hz, the spectrum behaves

as f−1/3 until feq ∼ 1.8 × 10−7 Hz, which is due to the transition to the late MD era. feq

indicates the frequency corresponding to the emission around the matter-radiation equality

time. We will elaborate the f -T or f -t correspondence later in Sec. 4.4.1. Note that the

f−1/3 behavior was obtained by summing up to high oscillation modes k ≫ 105 which was

shown to be important for a MD background [162, 158]. By only summing up to low k

modes (k ≪ 105) it would be f−1. The low end of the frequency spectrum has a cutoff

corresponding to emission at the present time t0, with a maximum point shortly before the

ending of the spectrum at f0.

By combining Eq.(4.31) and Eq.(4.42) we derive the following analytical approxi-

mation for global string SGWB spectrum in different f regions, which shows the parametric

dependence:

ΩGW(f)h2 ≃ (4.25)

5.1 × 10−15
( η

1015 GeV

)4( f

fη

)−1/3

, for f > fη

8.8 × 10−18
( η

1015 GeV

)4
ln3

[(
2

αf

)2 η

teq

1

z2eq
√
ξ

∆
1/2
R (f)

]
∆R(f), for fη > f > feq

2.9 × 10−12
( η

1015 GeV

)4( f

feq

)−1/3

, for f0 < f < feq

0, for f < f0

where teq and zeq denote the time and redshift at the matter-radiation equality, respectively.

∆R(f) accounts for the effect of varying the number of relativistic degrees of freedom, g∗
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and g∗S , over time:

∆R(f) =
g∗(f)

g0∗

(
g0∗S

g∗S(f)

)4/3

, (4.26)

where g∗(f) and g∗S(f), are obtained by applying the f -T relation which will be introduced

later in Eq.(4.32), and the superscript 0 indicates the values today. Note that here we

focus on global strings associated with massless Goldstones, thus they are stable until the

current time. In the case of axion strings with massive Goldstones, the string network would

turn to domain walls and finally disintegrate around the transition time when Goldstones

acquire masses. In that case, the GW spectrum would beget a cut with potentially distinct

structure around a characteristic fcut that is larger than f0.

4.3.2 GW frequency spectrum and experimental sensitivities

Fig. 4.4 illustrates the SGWB signal originated from global strings based on our

numerical results. We also include related experimental sensitivities: current constraints

(solid lines) from LIGO [238, 239, 138, 137] and European Pulsar Timing Array (EPTA)

[240], Parkes Pulsar Timing Array (PPTA) [241, 242, 210]; the projected future sensitivities

(dashed lines) with LIGO A+ [243], LISA [141], DECIGO/BBO [180], AEDGE/AION

[179, 244], Einstein Telescope (ET) [245, 246], Cosmic Explorer (CE) [135], and Square

Kilometer Array (SKA) [247]; as well as the region corresponding to the recent NANOGrav

excess [143, 144]. We can see that as expected from Eq.(4.31) the global string GW spectrum

is sensitive to the symmetry breaking scale η. Experiments such as LISA, BBO and SKA

can probe η ≳ 1014 GeV. Among the existing searches, PPTA gives the strongest constraint
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of η ≲ 2 × 1015 GeV. These sensitivities/constraints on η may be improved/relieved with

non-standard cosmology and alternative modelings, see discussions in Sec. 4.4 and Sec. 4.5.

Various intriguing interpretations of the recent NANOGrav excess as a SGWB signal have

been considered [145, 146, 248, 147, 148, 149, 150, 151, 152]. In particular, [15] and [151]

investigated the possibility of fitting the NANOGrav signal with GWs from QCD axion

strings or general ALP strings. The former [15] found that the GW amplitude hinted by

the NANOGrav data requires fa ≳ 1015 GeV which is in conflict with bound on ∆Neff

from BBN and CMB data, given that the axions are emitted as radiation from the strings.

Nevertheless, the latter suggests that a non-standard cosmological history may improve the

fit [151]. In our independent check by including high k modes in the summation, we find

that the GW frequency spectrum follows a power-law f−1/3 in the range of f ≤ feq (defined

before Eq.(4.25)), and with 4.3 × 1015 GeV≤ η ≤ 6.1 × 1015 GeV, global strings can lead

to a good 1-σ fit to the NANOGrav 12.5-year data [143]. However, as also discussed in

[143, 145], such a spectrum with a gentle slope is in tension with previous bounds from

PPTA [242, 241], EPTA [240], and NANOGrav 11-year data [142]. Such a tension may be

eased by re-analyzing the data sets using different choices of the red noise model [249] which

is being investigated. Variations to the standard theoretical assumptions may allow a viable

interpretation of the NANOGrav signal as originated from a global/axion string network,

consistent with PPTA data and ∆Neff constraints, which we will explore in future study.

In Sec. 4.3.3, we will discuss the ∆Neff bound on Goldstone and GW emissions in detail.

Other relevant constraints on the global U(1) breaking scale η include inflation scale and

CMB anisotropy bound, which were discussed in [156], also pointing to η ≲ O(1015) GeV.
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CMB polarization data potentially yields stronger bound on GW in the frequency range of

10−17 − 10−14 Hz [241, 250, 251]. Nevertheless, in Sec. 4.4.1 we will demonstrate that this

latter constraint does not apply to our case following the introduction of the f -T relation.

Comparison with literature:

GW signals from a global string network have also been recently investigated by simulation

approaches based on a Nambu-Goto effective theory [15] or field theory for global defects

[178]. Our results agree with others’ on some general features such as ΩGW ∝ η4, but differ

in details. [15] simulated the global string network in a radiation background during a

very early stage of evolution, i.e. N ≲ 7-8, and extrapolated the linear growth of ξ ∝ N

to high N when computing the GW spectrum. They agree with our finding that the

global strings can lead to detectable GW signals, but found that the GW spectrum scales

as ΩGW ∝ η4N4, instead of η4N3 as found in our analysis (see Eq.(4.31) in Sec. 4.3.3).

The N3 dependence we found results from the prediction of the conventional scaling VOS

model. The difference may be resolved if the loop emission factor Ceff in the VOS model is

not (nearly) a constant but evolves as Ceff ∝ N (see Eq.(4.14). We further discuss the effect

of such a non-scaling behavior or deviation from the conventional VOS in Sec. 4.5.3. On

the other hand, [178] found that the GW spectrum asymptotes to an exact scale invariant

form, and the amplitude of the signal is below the prediction by both our method and by

[15]. The possible explanations for this discrepancy was suggested in [156, 15], while further

investigation is certainly needed to fully resolve this issue.
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Figure 4.4: Gravitational wave spectrum from a global cosmic string network with α = 0.1,
Fα = 0.1 for η = 1014, 5 × 1014, 1015 GeV. The solid curves shown are the full results with
standard cosmology, dashed lines show the contribution from emission during radiation
domination. Exclusion limits or projected sensitivities with various GW experiments are
also shown.

4.3.3 Comparison with GWs from NG strings, relic densities of GWs and

(massless) Goldstones

In this subsection, we give a simple estimate for the relic density of GWs from

global strings which captures key parametric dependence, and compare it with that for NG

strings. This can help us gain insights into the detectability of the GW signal from global

strings. For example, the energy density of the emitted GWs contributes to the amplitude

of primordial tensor power spectrum that should be constrained by CMB data [251], we will

discuss this constraint in detail in Sec. 4.4.1. In addition, while in this work we focus on

GW radiation from global strings, it is important to better understand Goldstone emission

which is the dominant radiation mode in this case. We thus also present a parametric

estimate for the relic density of the emitted Goldstone and compare it with GW emission.
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bosons from a global string network (green), as functions of the symmetry breaking scale
η (related to the string tension µ). The purple dashed line shows the constraint on extra
radiation energy density by CMB data: ∆Neff ≲ 0.2 [11] or

∫
d(lnf)∆Ωradh

2 ≲ 8.1 × 10−7

[11, 12], which requires η ≲ 3.5 × 1015 GeV.

As shown in Fig. 4.5, with these analyses we can find the constraint on η considering the

upper limit on extra radiation energy density ∆Neff from BBN/CMB data. As mentioned

earlier, in this work we focus on the simple case with massless Goldstones and our discussion

about Goldstone emission is illustrative and concise. Nevertheless, some key insights can

be applied to axion strings where the Goldstones are massive as potential dark matter

candidates. We leave a detailed discussion on Goldstone radiation and its impact on axion

DM physics for future work.

A key difference between the dynamics of a global and a NG string network is

that the global string loops are rather short-lived due to the strong Goldstone emission

rate. We consider a loop formed at time ti which decays away at time tr ≡ γr(ti)ti, where
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we have adopted a unified notation for the cases of NG and global string loops for an

easy comparison: r = {NG, global}. Using Eq.(4.17) we find the following expression for

estimating the lifetime parameter γ(ti) for the two cases:

γr(t) ≡
α+ ΓGµ+ κ

ΓGµ+ κ
≃


α

ΓGµ
≃ 5 × 1010

( η

1012GeV

)−2
NG String (κ = 0)

α+ κ

κ
≃ 2 Global String

(4.27)

where

κ ≡ Γa
2πN

. (4.28)

Our ansatz of α ∼ 0.1 ≫ ΓGµ is applied to derive the final results. The lifetime of a loop

formed at time ti with an initial length of αti can then be estimated as τr = (γr(ti) − 1)ti.

Recent simulations support our estimates of global string loop’s lifetime [199, 177]. Due

to the time dependence of global string tension (i.e. the N -dependence), κ varies in the

range of 0.6 ≲ 1/κ ≲ 10 throughout the expansion history of universe. Therefore, the

global strings are short-lived and are expected to decay in about one Hubble time after

its formation (but the lifetime is still sufficient to yield detectable GWs with large η). In

contrast, as can be seen from Eq.(4.27), the NG string loops generally survive a much

longer time after formation. Due to this drastic difference in loop lifetime, with the same

parameters such as η and loop distribution function, GWs from a global string network on

average experience a larger redshift effect after emission, which contributes to a suppressed

GW amplitude (along with the suppression effect due to the Goldstone dominance) and

shifts the spectrum towards lower frequencies. We show the result in in Fig. 4.3.
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We now estimate the relic densities of GW and Goldstone emitted from global

strings. As mentioned in Sec. 4.3.1 the formulation for GW calculation given in Eq.(4.22)

and Eq.(4.23) can be applied to the Goldstone case with the replacements of Γ → Γa,

and ΓGµ2 → Γaη
2. (based on Eq.(4.16)). We can then express the total relic densities

(integrated over f) of GWs and Goldstones from global string radiation in the following

unified form:

Ωβ =

∫
d (lnf) Ωβ(f), with β = {GW, Gold}. (4.29)

Our numerical results of the relic energy densities are illustrated in Fig. 4.5 as functions

of symmetry breaking scale η, along with ΩGW from NG strings for comparison. The

upper limit on the total relic radiation energy density from the CMB data is also shown

[252, 12, 11]. One can see that the constraint is dominantly driven by the emission of

radiation-like Goldstones, which requires η ≲ 3.5 × 1015 GeV, while for GWs alone the

constraint is relaxed to η ≲ 9 × 1015 GeV. In comparison, with a non-scaling solution as

suggested in Eq.(4.9) this CMB constraint on η would be tighter: η ≲ 9 × 1014 GeV [15],

as the total energy of the string network would increase relative to the scaling scenario (see

Sec. 4.5.3 for more related discussion).

Next we further discuss the parametric dependence of ΩGW and ΩGold for global

strings and compare with ΩGW for NG string. For a fair comparison, we assume that the

symmetry breaking scale η and the string network evolution parameters such as the long

string number density ξ and loop size α are the same for the NG and global string network

under consideration. Then we consider ΩGlobal
GW , ΩGlobal

Gold and ΩNG
GW as observed at a time
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parametrized by N ≡ ln(Lη). Based on simple analytic estimates checked with numerical

fitting, we find the following relations:

ΩNG
GW : ΩGlobal

Gold : ΩGlobal
GW ≃ 1 : N

√
ΓGµ

α
: N

√
ΓGµ

α

ΓGµ

Γa/(2πN)
, (4.30)

where α
ΓGµ is the lifetime parameter for NG string, γNG

r , as defined in Eq.(4.27), which

accounts for the aforementioned difference in redshift effects between global and NG case,

and the square-root of ΓGµ
α is due to the redshift of the GW energy ∝ a(t) ∝ t1/2; the N

factors account for the log enhanced string tension for global strings; ΓGµ
Γa/(2πN) represents

the different energy loss rates to GWs vs. to Goldstones. We also find the following key

parametric dependencies (focusing on η and N) for each of these Ω’s:

ΩNG
GW ∝ η, ΩGlobal

Gold ∝ η2N, ΩGlobal
GW ∝ η4N3, (4.31)

The η dependence of GWs from NG strings that we found agrees with earlier

literature [168, 13, 14, 225, 230, 253, 254, 210, 209, 255], and ΩGlobal
GW ∝ η4 agrees with two

most recent independent simulations [15] and [178]. Nevertheless, the N -dependence of the

scaling solution of long string number density ξ in the VOS model (see Eq.(4.7)) disagrees

with some of the simulation results which suggest a logarithmic increase in ξ based on low

N data [15]. The effect of a non-scaling ξ persisting till late times, e.g. N > 70, will be

discussed in Sec. 4.5.3, including a comparison with the result in [15].
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4.4 Probing the Early Universe

In this section we investigate how the SGWB spectrum from a global string network

would alter if the cosmic history and particle content of the early Universe differ from the

standard scenario which we assumed in Sec. 4.3. This in turn allows us to use such GW

signals to test the standard paradigms and probe the dynamics of the early Universe well

before BBN. Such an idea of using GWs for cosmic archaeology was proposed and developed

in the context of NG strings [14, 13]. The situation with global strings bear similarities with

that of NG strings, yet with significant differences. In the following, we will demonstrate

our findings and make comparison with NG string results.

4.4.1 The connection between the observed GW frequencies and emission

times

In the context of NG strings, the frequency-temperature (f -T ) correspondence

during a RD era was derived in [13], and serves as the foundation of cosmic archaeology

with the f spectrum of GWs from strings. The analogous relation for global strings can be

derived following the same method. Nevertheless, the derivation can be greatly simplified

in this case. As explained in Sec. 4.3.3 (Eq.(4.31)), a key difference between NG and global

string loop dynamics is that, global string loops decay away within ∼ 1 Hubble time after

formation due to the strong Goldstone emission rate. Therefore, the timescale when the

GW emission from a loop occurs is approximately the same as the loop’s formation time,

i.e. t̃ ∼ ti (Eq. (4.17)). For an estimate, it suffices to focus on the k = 1 mode which we

find to be the dominant one in the cases of interest. With this understanding and following
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the calculation in Sec. 4.3.1, we find that a specific f∆ band observed today relates to a

particular emission temperature T∆ in the following way:

f∆ ≃ 2

ℓ(t̃)

a(t∆)

a(t0)
=

2

αzeqteqTeq

[
g∗(T∆)

g∗(Teq)

]1/4
T∆

≃ (3.02 × 10−6 Hz)

(
T∆

1 GeV

)( α

0.1

)−1
[
g∗(T∆)

g∗(Teq)

]1/4
, (4.32)

where the loop size at the emission time ℓ(t̃) ≃ αti ≡ αt∆ (see Eq.(4.17)), zeq ≃ 3387 is

the redshift at the matter-radiation equality, and teq, Teq are the corresponding time and

temperature, respectively. Note that f∆ linearly depends on T∆, but is insensitive to the

symmetry breaking scale η, unlike in the case of local strings. Eq. (4.32) applies to RD era,

while f -T relation varies with background cosmology, which we will discuss in Sec. 4.4.2. A

departure from the standard cosmology at T∆ would thus imprint itself in the GW spectrum

around the corresponding f∆.

In Fig. 4.6 we illustrate the f -T relation derived for SGWB spectrum from global

strings, in comparison with the recent results for NG strings [13, 14]. There are two major

differences between the two cases: f -T correspondence for NG strings has η-dependence

while for global strings it is almost independent of η which makes it more robust in a

way; for the same f the corresponding emission T is much earlier for global strings than

for NG strings. Both these differences originate from the aforementioned fact that global

string loops decay shortly after formation and their resultant GW signal observed in a

certain f band has undergone longer period of redshift after emission (relative to its NG

counterpart). Note that due to the current bounds from LIGO and PPTA, η for NG strings
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Figure 4.6: Frequency f∆ where the GW spectrum from cosmic strings would be altered
due to a transition to a non-standard cosmology at T∆ (Eq.(4.32)): the comparison between
the results for global strings (the upper-left black line) and NG strings [13, 14] (the lower-
right dashed lines). The relevant experimental sensitivities are also shown in different colors,
where the darkest bands indicate peak sensitivities. This illustrated the f∆ − T∆ relation
given in the main text.

is constrained as η ≲ 1.89 × 1013 GeV [13, 210]. If the recent NANOGrav excess indeed

originates from NG cosmic strings, it favors η ≃ 3 − 5 × 1013 GeV [145, 146]. According to

Fig. 4.6 these constraints/potential signal implies that GW spectrum from NG strings can

reach up to T ∼ 104 GeV (with ET and CE). In contrast, as shown in Fig. 4.6 global strings

can probe much earlier cosmic history, up to T ∼ 108 GeV. As discussed in Sec. 4.3.2,

η ≳ 1014 GeV is needed to be within experimental sensitivity reach in terms of ΩGW, while

other constraints require η ≲ O(1015) GeV. Fig. 4.7 illustrates the f -T relation for global

strings in a different manner where the sensitivity to η is explicitly shown. As demonstrated

in Fig. 4.7, global string GWs can trace the cosmic history over a rather wide range in time:

up to T ∼ 108 GeV (with ET and CE) and down to T ∼ 10−4 GeV (with PPTA and SKA)

which intriguingly corresponds to the beginning of the BBN era.
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Figure 4.7: Another illustration for f∆-T∆ relation for GW frequency spectrum from global
strings, where the experimental sensitivities to η are shown.

The f -T relation as we have elaborated can also help us understand why the

global string scenario safely evades the potentially strong bound on ΩGW in the range of

f ∼ 10−17 − 10−14 Hz by the CMB polarization data [241, 250, 251]. The f -T relation in

Eq.(4.32), together with the observation that global string loops decay in one Hubble time,

indicate that the SGWB signal below a certain f range could not be generated until after

a certain time or below a certain T . In Fig. 4.8 we illustrate the constraints from CMB

polarization data, and the decomposed contributions to a SGWB induced by global strings:

the signal in the low f range of f ∼ 10−17−10−14 Hz in fact is not populated until after the

photon decoupling, thus is not present at the CMB epoch to be subject to the constraint.

One can also simply estimate f corresponding to the photon decoupling Tγ ∼ 0.3 eV using

Eq.(4.32), and confirm that GWs with f ≲ 10−15 Hz is emitted afterwards.
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4.4.2 Probing new phases of cosmological evolution

According to the standard thermal history, the Universe is radiation dominated

starting from the end of inflation all the way down to the matter-radiation equality at

zeq ∼ 3000. Nevertheless, so far there is no data evidence to support this assumption for the

epoch prior to the BBN time, i.e. the primordial dark age. On the other hand, recently there

has been substantial interest to consider well-motivated non-standard cosmology scenarios,

where the standard RD era transits to a different phase at some point in the early Universe,

such as EMD or kination. An EMD era can be due to the temporary domination of a long-

lived massive particle or oscillations of a scalar moduli field [256]. More generic possibilities

arise in models where a scalar field ϕ oscillates in a polynomial potential V (ϕ) ∝ ϕN ,

characterized by an averaged equation of state w = (N − 2)/(N + 2). In the limit N → ∞,
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we have n = 6 in Eq.(4.6) which is called kination phase, as the kinetic energy of the scalar

dominates. Kination can generally arise in inflation [131], quintessence, dark energy [133],

and axion-like particle (ALP) models with varying power of sin-Gordon potential [134] or

with a non-zero initial field velocity [257, 115]. In order to retain the successful predictions

of BBN theory, for all these scenarios the Universe needs to settle to RD before the BBN

time T∆ ∼ 5 MeV.

It is thus intriguing to see how the SGWB from global strings would alter in a non-

standard cosmology and the related implication for detections. From another perspective,

similar to the finding in the context of NG strings, SGWB from global strings thus opens

up the possibility of probing the early Universe during the primordial dark age that may

not be directly accessible otherwise. This allows us to test the standard assumption about

cosmology while uncovering potential deviations. The base of this method lies in the f -T

relation during RD (Eq.(4.32)) which allows us to relate a deviation from the standard

prediction for the SGWB frequency spectrum to a time point in history where RD transits

to a new (earlier) phase. To calculate ΩGW(f) with a non-standard cosmology background,

we follow the method given in [156, 13]: we assume that the Universe transits from RD to

a new equation state parametrized by n (Eq.(4.6): ρ ∝ a−n) at T∆, and match the energy

density at T∆ for a smooth transition. ΩGW(f) can then be calculated using Eq.(4.22) with

the input of a non-standard evolution of a(t).

We therefore expect that a non-standard cosmology leads to a modified GW spec-

trum in the high frequency region starting round f∆ corresponding to the transition in cos-

mic history occurring around T∆ (see Eq.(4.32)). Numerically, we found that ΩGW(f) can
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be parametrized in the following way in large f region for general cosmologies (parametrized

by n):

ΩGW(f) ∝


f

8−2n
2−n log3

{
η√
ξ

[(
20

f

)2 1

teq

t
1−4/n
∆

z2eq
∆

1/2
R (f)

]1/(2−4/n)}
, for n ≥ 26

7
,

f−
1
3 , for n <

26

7
,

(4.33)

where t∆ is the time corresponding to the temperature T∆, and we have assumed α = 0.1.

Eq. (4.33) shows that ΩGW(f ≫ f∆) ∝ f+1 for kination (n = 6) and ∝ f−1/3 for MD

(n = 3). Note that the validity of the VOS model approach requires n > 2, otherwise

both ξ and v̄∞ would me imaginary valued according to Eq. 4.7. Another caveat is that, at

sufficiently large f ≳ fη such that log(...) ∼ 1 or N ∼ O(1) (corresponding to the very early

stage after the string network formation), ΩGW would universally fall as ΩGW ∝ f−1/3, for

different background cosmologies.

In Fig. 4.9 we show our numerical results for benchmark examples of GW spectrum

from a scaling global cosmic string network with a non-standard cosmology background such

as kination or EMD, contrasted by the standard prediction shown in solid black line. We can

see that compared to standard cosmology, with the presence of an EMD phase ΩGW(f) falls

faster towards higher f , making it harder to observe in that f range. On the other hand, the

spectrum rises above the standard prediction at high f in case of an early kination phase,

leading to a stronger signal. The kination case thus is more subject to existing constraint
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from LIGO. In general, the LIGO O3 constraint on T∆ can be expressed as

(
T∆

100 GeV

)−1 ( η

1015 GeV

)4
≲ 1, (4.34)

where we have dropped the logarithmic dependence from Eq.(4.33) for a simple estimate.

The LIGO constraint can be relaxed if the duration of kination is short enough so that it

transits to other phases (e.g. RD, EMD or vacuum energy domination) at a time corre-

sponding to an f band below LIGO reach. In fact a sufficiently short span of kination epoch

is also required to satisfy CMB/BBN bound on extra radiation density as we reviewed ear-

lier in Sec. 4.3.3. With these motivations, in the following we further consider a concrete

example with two stages of transitions where kination is preceded by an earlier RD era

and investigate the constraints on the model due to the CMB/BBN bound on ∆Neff (both

Goldstone and GW).
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Figure 4.9: Gravitational wave spectrum from a global cosmic string network with α = 0.1,
Fα = 0.1 for η = 1014 (left) and 1015 GeV (right). The solid black lines show the GW
spectrum with the standard cosmological evolution. The colored lines show the results
with an EMD (n = 3) or kination (n = 6) that ends and restores the late RD era at the
temperature T∆ = 10 GeV or 102 GeV. The sensitivities of related GW experiments are also
shown.

A two-stage transition scenario with kination:

We assume that at T = T∆2 > T∆1 kination transits to an early RD era (note: not the later

standard RD era). Such a scenario can be realized if, for instance, a dominating radiation

species decays to kination particles around T∆2. Other possibilities of exiting kination at

high T exist, e.g. by a vacuum energy dominated phase such as inflation. However, a

long period of vacuum energy domination would dilute the overall GW signal significantly

[258, 158]. An alternative is to have a short duration of vacuum energy domination (mini-

inflation) which then transits to an early RD. Kination can also be preceded by a dominating

matter-like species that decay to kination particles. Here we choose to consider the simple

scenario of RD-kination-RD for illustration.
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Examples of GW spectrum of such a two-stage transition scenario are shown in the

left-panel of Fig. 4.10: ΩGW linearly rises with f in a finite frequency range of f∆2 > f > f∆1

due to kination, then restores the logarithmically decreasing behavior in the range of f >

f∆2 (Eq.(4.33)) during the early RD. The three benchmark cases shown satisfy both LIGO

O3 bound and the CMB ∆Neff bound that we will discuss next. The characteristic frequency

f∆1 corresponding to the later stage of transition at T∆1 can be estimated by Eq.(4.32).

Similarly, based on Eq.(4.20), the frequency corresponding to the earlier transition at T∆2

can be estimated as (applying ρ ∝ a−6 for kination)

f∆2 =

(
T∆2

T∆1

)2

f∆1. (4.35)

Now we consider the implication of the CMB ∆Neff bound on additional relic

radiation for this kination example. We assume the equation of state of the Goldstones

emitted from global strings is radiation-like. As suggested by the sharp rising of GW

spectrum shown in Fig. 4.10 in the presence of a kination phase, the relic radiation energy

densities of Goldstone and GW from the string network are dominated by the emission

during the kination epoch, T∆1 < T < T∆2, which can be roughly estimated as

ΩGoldh
2 ∼

{
8.0 × 10−9

(
T∆1

GeV

)−1.6( T∆2

GeV

)1.5

+ Ω15
Goldh

2

}( η

1015 GeV

)2
, (4.36)

ΩGWh
2 ∼

{
1.3 × 10−11

(
T∆1

GeV

)−1.37( T∆2

GeV

)1.2

+ Ω15
GWh

2

}( η

1015 GeV

)4
, (4.37)

where Ω{GW,Gold} are defined in Eq.(4.29), and numerically computed/fitted based on

Eq.(4.22). We also defined the reference values with η = 1015 GeV assuming the standard
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Figure 4.10: Left panel: examples of GW spectra from global strings with two-stage phase
transitions including kination: from an early RD era to kination at T∆2, and from kination
to standard cosmology at T∆1. Right panel: the relic energy densities of GWs (solid) and
Goldstones (dashed) from global strings with varying phase transition temperatures (T∆1,
T∆2). The red dotted-dashed line shows the CMB bound on extra radiation energy density
[12, 11].

cosmology:

Ω15
Goldh

2 ≃ 7.5 × 10−8, Ω15
GWh

2 ≃ 1.3 × 10−10. (4.38)

As discussed in Sec. 4.3.3, the emission of radiation-like Goldstone dominates the bound.

The right panel of Fig. 4.10 illustrates three viable benchmark scenarios assuming η =

1015 GeV, parametrized by T∆1, T∆2: with T∆2 = 25 GeV, 180 GeV, and 3150 GeV, the

CMB ∆Neff bound requires T∆1 ≳ 1 GeV, 10 GeV, and 100 GeV, respectively.
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4.4.3 Probing new degrees of freedom

Many BSM theories involve new particles that are relativistic and in thermal equi-

librium in the early Universe, e.g. in many potential solutions to the electroweak hierarchy

problem [259, 260, 261, 120], and theories of dark sectors [262, 263, 264, 265, 266, 267, 268,

269, 270, 271, 272]. These particles would contribute to the effective number of relativistic

degrees of freedom (DOFs) in energy, g∗, and in entropy, g∗S , in the high T Universe, but

can generally be out of reach of available probes such as by the LHC or CMB experiments

due to heavy masses or feeble interactions with the SM. The methodology for calculating

the effect of new DOFs on the SGWB spectrum of NG strings was introduced in [13]. In

this work, we briefly review the method and apply it to obtain results in the case of global

strings.

We illustrate the effect of new massive DOFs on the string GW spectrum without

referring to the details of the underlying theory. We model the change in the number of

DOF with the following assumption where g∗ rapidly decreases as T drops below a mass

threshold T∆g [13]:

g∗(T ) = gSM∗ (T ) +
∆g∗

2

[
1 + tanh

(
10
T − T∆g
T∆g

)]
≃


gSM∗ (T ) ;T < T∆g

gSM∗ (T ) + ∆g∗ ;T > T∆g

(4.39)

To numerically demonstrate the effect, we choose the well-motivated scenario, where T∆g

is of weak scale, which may be motivated from solutions to the Hierarchy Problem. In

particular, in Fig. 4.11 we choose the benchmark values of T∆g = 200 GeV, ∆g∗ = 0, 102, 103,

and assume g∗ ≃ g∗S . As can be seen, relative to the prediction with SM DOFs only, the
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spectrum falls towards higher f starting from a frequency f∆g that agrees with the prediction

by the f -T relation in the RD era (see Eq.(4.32)).

Such an effect can be understood by analytical estimates following [13]. Deep in

the RD regime, the Hubble rate and the corresponding time depend on g∗ in the following

way:

H ≃
√

∆RΩRH0a
−2, t ≃ a2

2
√

∆RΩR
, (4.40)

with

∆R(a) =
g∗(a)

g0∗

(
g0∗S

g∗S(a)

)4/3

, (4.41)

where H0 is the current Hubble constant, and ΩR is the radiation energy relic density

observed today. Note that ∆R(a) is simply a variational form of ∆R(f) as defined in

Eq. (4.26). Applying this simplification in Eq.(4.22), we have

ΩGW (f ≫ f∆g) ≃ ΩSM
GW(f)

(
gSM∗

gSM∗ + ∆g∗

)1/3

, (4.42)

where ΩSM
GW(f) indicates the amplitude with SM DOFs only. Eq.(4.42) clearly shows that

the overall amplitude of the high f tail (f > f∆g) of ΩGW decreases with the presence of

additional DOFs, agreeing with numerical findings.
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Figure 4.11: Modification to the GW spectrum from a global string network due to an
increase in the number of relativistic degrees of freedom above T∆g = 200 GeV. In the
example shown, η = 1015 GeV, α = 0.1, and ∆g∗ = 0, 102, 103 (shown in black, red, and
blue, respectively). The relevant experimental sensitivities are also shown.

4.5 Discussion

4.5.1 Sensitivity to the loop size parameter α and its distribution

Throughout our work we have used α ≃ 0.1 as the peak value of loop sizes at their

formation time, which is inspired by results from NG string simulations [209, 208]. However,

there are still uncertainties about loop distribution for global strings. To investigate how

such uncertainties may impact the predicted GW spectrum, in this subsection we consider

two alternative scenarios of loop distribution: 1. varying α for the peak value, and 2. a log

uniform distribution of loops as suggested in [109].

Alternative-1: varying α for the peak value.

The analysis with different α values is straightforward with our formulations in

Sec. 4.3. In the left panel of Fig. 4.12 we show the α dependence of ΩGW(f) for specific f ’s

normalized by the prediction with α = 0.1 (the benchmark choice used in earlier sections)
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Figure 4.12: Left panel: ΩGW(f, α) normalized by the prediction with α = 0.1, varying
α in the range of 10−5 ≤ α ≤ 10, η = 1015 GeV for different background cosmologies
(for MD and kination, the departure from standard cosmology is assumed to occur at
T∆ = 1 GeV). The green lines show the results with radiation dominated epoch with varying
f = 10−2, 10−5, 10−8 Hz, and the red (blue) line shows the results for kination (matter)
domination which are insensitive to f . Right panel: GW frequency spectra with varying
loop size α (dotted: α = 2π, solid: α = 0.1, dashed: α = 10−4) with various background
cosmologies: standard cosmology (black), kination (red) and EMD (blue)–another way of
illustration with the same choices of η, T∆ as in the left panel.

with different background cosmologies, assuming η = 1015 GeV. As shown, RD, MD, and

kination-dominated eras have different dependencies on α, which are insensitive to f for

the cases of MD and kination. The α dependence can be discussed in two distinct regions.

Firstly, in the range of α < κ ∼ 0.11, the loop lifetime is shorter than a Hubble time,

and thus the analysis and discussion in the previous sections can apply: the 2nd line in

Eq.(4.25) explains the result for RD; the redshift effect on GWs is the same since the loop

would decay off immediately, and smaller α corresponds to higher N for fixed frequency

i.e. larger string energy density. The GW spectrum consequently increases. In addition,

we find that in a kination epoch, the spectrum linearly increases with α, while in matter
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(Eq.(4.39)) for different cosmology backgrounds; dashed lines: results with a monotonous
α = 0.1 as applied in previous sections (for comparison). For the cases with kination or
EMD, the departure from standard cosmology is assumed to occur at T∆ = 1 GeV.

domination ΩGW(f) ∝ α−1/3. In the other region of α > κ, the loops are long-lived, and

thus the spectrum in RD agrees with the NG string case, which gives ΩGW(f) ∝ α1/2 [13].

In this large α region, ΩGW(f) still linearly increases with α in kination, while becoming

approximately α independent in MD.

Alternative-2: A log uniform distribution.

Fig. 5 of the recent global string simulation [109] suggests a logarithmic uniform distribu-

tion of the size of string loops at formation time, which is very different from the nearly

monotonous α that we have assumed inspired by NG string simulation. While this hint

of log uniform distribution is yet to be further tested, we consider how this variation can

impact the prediction for GW signals. A log uniform distribution indicates that at for-

mation time the loop number density dn(ℓ)/dℓ at size ℓ follows dn(ℓ)/d(log ℓ) ∼ const, or
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dn(ℓ)/dℓ ∝ 1/ℓ. Our method of calculating SGWB signal with a monotonous loop forma-

tion size α as shown in Eq.(4.22) can be adapted to this alternative distribution by replacing

Fα/α... in Eq.(4.22) (the “...” part represent other parts in the formula for computing GWs)

with a sum over thinly sliced loop sizes in the range of π/η < ℓ < π/H:

∑
α

Fα
α
... = lim

n→∞

n∑
x=0

1

n

(
1

e−
x
n
δ+y

)
... =

1

δ

∫ δ−y

y
exdx... =

1

δ

∫ α0

α1

1

α2
dα..., (4.43)

where we have applied Fα = 1
n and α = e−x to implement the log uniform distribution,

and taken the continuous limit to get the second equality. The parameters y, δ, α0, α1 are

introduced to rewrite the integration limits in more convenient forms: ℓmax ∼ π/H ≡ α0t ≡

eyt, and ℓmin ∼ π/η ≡ α1t ≡ e−δ+yt. However, in our numerical calculation we found that

including small loops down to the scale of π/η leads to very large ΩGW(f) ≫ 1 in certain f

range as a consequence of energy conservation. Therefore, we assume a lower cutoff of α at

α ∼ 10−4. The exact value of small scale cutoff on α is not essential for our study here, as

our purpose is to simply show an example of how a log uniform distribution can alter the

GW spectrum.

In Fig. 4.13 we show the GW spectrum predicted with the assumed log uniform

distribution for different cosmology scenarios. We find that by summing over the loop

sizes in the range of 10−4 ≤ α ≤ 2π, the GW amplitude is generally increased over many

decades in the frequency range except around the cutoff around f0 ∼ 10−16 Hz. Due to the

inclusion of larger loops up to α = 2π in the distribution, the low frequency cutoff extends

to ∼ 2/(2πt0).
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Figure 4.14: An illustration of ΩGW(f) for varying Γa (the Goldstone radiation parameter),
normalized to the results with Γa = 50 (the benchmark value used in earlier sections). We fix
other parameters as: Γ = 50, η = 1015 GeV, f = 1 Hz. The results for different background
cosmologies are shown in different colors. The three regions as discussed in the text are
divided by the vertical dashed lines.

4.5.2 Sensitivity to the loop radiation parameter Γ and Γa

While we chose motivated benchmark values of loop radiation parameters Γ and Γa

in our main studies, we acknowledge that there are still uncertainties around these values.

Here we investigate how the GW signal would change by varying Γ and Γa. Considering

energy conservation law and energy loss rates in Eq.(4.16), naively, we expect the GW

density to depend on Γ,Γa simply as ΩGW ∝ ΓGµ2

Γaη2
. However, such dependencies can be

more complex as the redshift-related factors a(t̃) and t
(k)
i in Eq.(4.22) also depend on Γa,

Γ. In Fig. 4.14 we illustrate the possibilities for the Γa dependence of ΩGW(f) based on

numerical results (fixing f = 1 Hz and η = 1015 GeV and Γ = 50 for example). Γ dependence

is simpler, linear as naively expected, unless GW becomes the dominant radiation mode

186



(Γa ≪ Γ). We will show the Γ dependence explicitly in the following formulae/discussion.

As can be seen in Fig. 4.14 there are three distinct regions in the ΩGW(f) − Γa relation,

which we can understand analytically as follows:

• Large Γa, such that loops decay within a Hubble time after formation, driven by strong

Goldstone emission. In this region α < κ, where κ ≡ Γa/(2πN) (Eq.(4.24)), and we

can estimate with N ∼ 70 for relevant observations. The Γa term thus dominates both

numerator and denominator of Eq.(4.24), which implies that both a(t̃) and t
(k)
i in Eq.(4.22)

are insensitive to Γa. Therefore, ΩGW(f) in Eq.(4.22) depends on Γ,Γa as

ΩGW(f) ∝ Γ

Γa
. (4.44)

• Medium size Γa, such that loops survive beyond a Hubble time after formation, while

Goldstone radiation still dominates over GWs. In this region, α > κ > ΓGµ, and thus

redshift factors a(t̃) and t
(k)
i in Eq.(4.22) depend on Γa. By fitting numerical results we find

the following relations which depend on background cosmologies:

ΩGW(f) ∝


Γ

Γ
3/2
a

, for RD and EMD,

Γ

Γa
, for Kination.

(4.45)

As discussed in Sec. 4.4.2, the GW frequency spectrum with an EMD is dominated by loop

radiation during the later radiation domination era. Consequently, the ΩGW(f)-Γa relation

is approximately the same as RD for the benchmark frequency f = 1 Hz.
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• Small Γa, such that Γa ≲ ΓGµ2/η2 (i.e. κ < ΓGµ, and the Goldstone emission term in

Eq.(4.16) becomes negligible relative to the GW radiation). Given the hierarchy between

the Planck mass and the viable η value considering the relevant constraints, this scenario is

only possible for very small Γa ≪ Γ. In this case, GW radiation would become the dominant

energy loss mechanism and ΩGW(f) would increase as, Γ−1/2 which agrees with the related

result for NG strings [13].

4.5.3 Non-scaling solution

In this subsection, we consider the impact of possible non-scaling solutions on the

GW signals. The violation of the scaling properties in the case of global strings were found in

some of the recent simulation studies [202, 196, 108, 110, 111, 198, 109, 177]. This suggests

that the attractor solution of the average number of strings per Hubble patch, ξ, logarithmic

growing with N . Note that in most of these studies the non-scaling behavior is found in

the low N regime which is within direct reach of current simulations, and whether such a

behavior can apply to large N still needs to be investigated. As earlier shown in Fig. 4.1, the

VOS model can be consistent with the non-scaling solution Eq.(4.9) (or Eq.(4.46) below)

within the range of low N , 3 ≲ N ≲ 7, then predicts ξ ∼ const for larger N . Nevertheless,

it is intriguing to see how the GW spectrum would change if such a behavior does sustain

throughout the evolution history of the string network, and whether/how a variation to the

original analytical VOS model may match this behavior. We will focus on the following

two examples and then comment on other possibilities, and in both cases we adopt the
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non-scaling solution as suggested in simulations [196, 15, 177]

ξ = 0.24(2)N + 0.2, (4.46)

where N ≡ ln(η/H(t)). We consider ξ taking the above non-scaling form in both examples

that we will discuss next, and adopt the relevant parameters from the VOS model for the

GW calculations (Eqs.(4.12,4.13,4.14)).

In the first possibility we consider, in addition to Eq. 4.46, we apply the following

benchmark parameters: a constant average velocity of long strings v̄∞ ≃ 0.50± 0.04, and a

loop chopping parameter c̄ = 0.497, which we obtained in Sec. 4.2.1 based on fitting simu-

lation results (Table. 4.1). With Eq.(4.13), primarily derived based on energy conservation,

we find the prediction for effective loop formation parameter Ceff ∝ N3/2. With this Ceff

as an input for Eq.(4.22) we computed the GW spectrum, and found that the amplitude

is larger than the prediction in [15] by a factor of O(10 − 100), depending on frequencies.

This discrepancy motivated us to introduce the second scenario which is found to lead

to a good agreement with [177]: while still assuming Eq. (4.46), this example involves a

time-dependent c̄v̄∞, and consequently a different form of Ceff:

c̄v̄∞ = 0.15(1)N−1/2 → Ceff ≃ 0.018(3)N. (4.47)

Based on the analysis method given in Sec. 4.3.3, the GW spectrum with the non-scaling

solution Eq.(4.47) in a RD background (the spectrum would be cut off at lower frequencies
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by a QCD-like phase transition as shown in [15]) can be estimated as

ΩGWh
2 ≃ 2.6 × 10−17

( η

1015 GeV

)4
log4

[(
2

αf

)2 η

teq

1

2z2eq
∆

1/2
R (f)

]
∆R(f). (4.48)

The notable difference between this result and that based on the scaling VOS model solution

(Eq.(4.25)) is the power law index of the log term (i.e. log4 vs. log3), which enhances

the GW amplitude by O(10) for this non-scaling example. The enhancement is due to

the increase in loop number density (Eq. 4.13). Fig. 4.15 illustrates the GW spectrum

predicted with a non-scaling solution where ξ ∝ N , including a comparison between our

results based on a variation to the VOS model (Eq. (4.47)) and the result in [15] based on

extrapolating simulation results to large N . A good agreement between our second scenario

(Eq.(4.47)) and that in [15] can be seen in Fig. 4.15. In particular ,our analytic fit for the

GW spectrum (Eq.(4.48)) captures the key log4 dependence that agrees with [15]. This

agreement suggests that the extrapolation of the non-scaling solution to large N may be

reproduced in a variation to the original VOS model, where the relations c̄v̄∞ ∝ N−1/2 and

ξ ∝ N are realized. This hint may be helpful for future investigations.

As a supplemental discussion, in Fig. 4.16 we illustrate and compare the different

predictions of GW spectrum based on the two aforementioned non-scaling scenarios, with

various background cosmologies. As shown, in the second scenario (Eq.(4.47)) the GW

spectrum amplitude is lowered by O(10) relative to the first scenario (Eq.(4.46)), which is

due to the different predictions for loop number density (Ceff ∝ N v.s. Ceff ∝ N3/2). In the

frequency range of our interest, the result is insensitive to the initial condition dependent
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Figure 4.15: GW spectrum in the radiation dominated epoch assuming a non-scaling
solution (ξ = 0.24(2)N+0.2): a comparison between the result with our assumption/method
and that obtained in the recent simulation work [15]. The data points with error bars are
taken from [15]. The blue dashed curve is based on our analytical estimate Eq.(4.48).
The red curves with shadowed uncertainty band is based on our numerical calculation of
Eq.(4.22) with linear growth of Ceff ∝ N . Further details are given in the main text.

parameter β: as discussed in [109, 177], the linearly growing term in Eq.(4.46) would quickly

dominate the string network evolution. Then the energy loss will be linearly afterward as

we have seen in earlier sections.

A very different form of non-scaling solution was suggested in another simulation

work [111]:

ξ = 2.60 × log

(
TPQ
T

)
+ 1.27, (4.49)

where TPQ ∼ η is the temperature when the PQ symmetry breaking occurs. The predic-

tion for ξ as in Eq.(4.49) is significantly larger than non-scaling results from other groups’

simulations [196, 108, 110, 109, 177]. As suggested by the authors of [111], the predic-
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tion of Eq.(4.49) only provides a rough counting for cosmic strings, which may address the

discrepancy, while further investigations are needed. We attempted to fit Eq.(4.49) with

a variation of VOS model, but found a rather poor VOS model fit for the 13 data points

provided in [111] due to the large value ξ given in Eq.(4.49), which is inconsistent with other

simulation results. Assuming the non-scaling behavior as in form of Eq.(4.49) sustains till

late times, we expect the GW amplitude to be amplified by a factor of O(10− 100) relative

to the scaling case due to the larger loop density implied (similar to the case inspired by

[109]).
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4.5.4 Distinguish from other SGWB sources

In this subsection, we discuss potential challenges for detecting a SGWB signal

from global strings in practice, including astrophysical background and a comparison with

other cosmological sources of SGWB.

SGWB from global strings, like other cosmogenic SGWBs, may be contaminated

by astrophysical sources of SGWB, e.g. from unresolved binary black hole mergers [138,

273, 274, 275, 276, 277, 278]. Progress has been made in recent years to address this impor-

tant issue of distinguishing a cosmological SGWB from its astrophysical counterpart. The

potential solutions include: identify and subtract astrophysical sources using information

from future GW detectors with improved resolutions [279, 280, 281]; optimized statistical

analysis beyond the conventional cross-correlation method [282, 283, 284]; utilize spectral

information over a wide frequency band [239, 285, 286, 287, 288, 278, 289, 290, 291]. De-

tailed discussions on this subject can be found in e.g. [13, 278, 287].

Upon detection of a cosmogenic SGWB signal, it is important to analyze and iden-

tify the nature of the underlying physics. Global cosmic string is among many motivated

new physics sources that can give rise to a SGWB [164, 292, 293], for example, primordial

inflation [294, 295] and black hole [296], preheating [297, 298, 299, 300], first-order phase

transitions [301, 302, 303, 304, 305], and other types of topological defects [306, 254] in-

cluding local/NG strings [225, 167, 307, 308, 309, 310]. A key to distinguishing the various

cosmological sources lies in the GW spectral information. For instance, SGWB from a

first-order phase transition features a peaky spectrum in frequency associated with specific

split power laws, which results from the fact that the GWs were emitted during a specific
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epoch in the early Universe. In contrast, SGWBs from cosmic strings (both global and NG)

feature a rather long (nearly) flat plateau towards high frequencies, due to the continuous

emission throughout the cosmic history. We refer to [13] for more detail regarding the gen-

eral comparison of SGWB originated from cosmic strings with other cosmological sources.

Here we highlight the prospect of distinguishing SGWB from global strings vs. that from

NG strings. As seen in Sec. 4.3.1 and Fig. 4.3 the GW spectrum from global strings has

a long tail which logarithmically declines towards high frequencies, whereas the spectrum

from NG strings is very close to simple flatness (except for the mild steps due to the change

in g∗). A main cause of such a difference is the logarithmic time-dependence of the global

string tension, Eq.(4.46). The difference would be further amplified if the non-scaling be-

havior as discussed in Sec. 4.5.3 is confirmed to last till late times. In practice, we therefore

expect that for global strings, GW searches at lower frequencies such as SKA in general

have a better prospect of detection than those at higher frequencies such as LIGO (the

prospect also depends on the experimental sensitivities).

In summary, while challenges for experimentally detecting a global string sourced

SGWB are present, potentially promising solutions exist and will be further developed

in coming years. Using frequency band information is a common potential solution for

disentangling a global string signal from both astrophysical background and other cosmo-

logical sources, which will be strengthened with a multi-band GW experimental program

[241, 287, 290, 278].
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Chapter 5

Determine early dark energy in

gravitational wave data

5.1 Introduction

Gravitational waves (GWs) search technologies [311, 312, 275, 274, 313] have

strong ongoing research interest. Implications from these developments focus not only

on discovering new astrophysical objects [273, 314], but also probing gravitation physics

[315, 316, 317, 318, 319, 320] and non-standard cosmologies [321, 156, 155, 17, 322, 323,

162, 157]; and GW observations has been used to measure the current Hubble rate H0

[279, 324, 325, 326]. Although not yet sufficiently precise to resolve the Hubble tension,

estimates will be continuously improved.

Increasingly attention is focusing on possible solutions of Hubble tension, a Hubble

rate discrepancy between local observations, such as supernovae signals [327, 328, 329, 330,
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331, 332], lensing time delays [333, 334, 335, 336, 337, 338, 339] and non-local searches, e.g.

the cosmic microwave background (CMB) [11, 340, 341, 342]. Local measurements confirm

H0 is approximately five sigma statistical significance above observation in the CMB with

assuming standard cosmological model (ΛCDM). This strong disagreement has been closely

examined using many statistical [343, 344, 345, 346] and measurement methods [347, 348,

337, 349, 332, 350], and re-examining potential technical issues [351, 352, 353, 354, 355, 356]

in both local and CMB measurements (see reviews [357, 358, 348, 359]). Various evidence

suggests the discrepancy arises due to a currently unknown physical phenomenon outside

conventional ΛCDM predictions.

V. Poulin et al. [16, 134, 360] showed that early dark energy (EDE) behaves as

a cosmological constant when comoving scaling factor a(t) is smaller than critical ac ∼

10−4, and is then diluted faster or equal to radiation-like component to relieve the Hubble

tension. EDE contributes up to 20% energy density of the universe (model-dependent)

at ac, consequently accelerating the universe expansion and hence slightly delaying the

universe entering the matter-domination era. This framework brings H0 in estimated CMB

to be consistent with local measurements and also with measured high and low redshifts

[361, 362, 363, 364].
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We adopted the simplest EDE model, i.e., slow-rolling potential V (ϕ) ∝ ϕ2n with

scalar field ϕ [365, 366, 257]. Effective mass for ϕ is lighter than the Hubble rate on the

early universe, and hence Hubble friction overdamps scalar field motion and freezes it.

Consequently, the scalar field behaves as a subdominant cosmological constant until the

Hubble rate decreases to approximately scalar effective mass, namely, the driving force

overcomes the Hubble friction. Subsequently, the field starts oscillating as a fluid with

equation of state wϕ = (n− 1)/(n+ 1).

Cosmic strings, one dimension long-lived topological defects, are stable and pre-

dictable sources for stochastic GW background (SGWB) and hence ideal creator sources

for GW as a messenger that carries new signal from the early universe [104, 367, 188]. Such

stable objects arise from beyond standard model theories, such as spontaneously broken

U(1) [165, 166, 167, 168] or superstring theories [172, 173, 174, 175]. The GW frequency

spectrum formed by the cosmic string network is an approximate plateau over a broad

frequency range with parameter Gµ dependence, where G is the Newtonian gravitational

constant and µ is string tension. GW experiments EPTA [368] and PPTA [242] provide

strong bounds on Gµ ≲ 2 × 10−11 [17], but this remains in tension with the NANOGrav

12.5yr result [369] Gµ ∈ (2, 30) × 10−11 in 95% C.L. [145, 146]. The tension may be due to

the different noise analysis methods [249].
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This paper shows that EDE imprints a GW signal in the SGWB formed from

the cosmic string network that is distinguishable from other astrophysical and cosmological

signals in the GW frequency spectrum. Such a unique spectrum could be detected in future

GW experiments LISA [370, 141, 286] and SKA [247]. We also contour the SKA and LISA

sensitivities on EDE parameter space.
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Figure 5.1: Signal difference ratio versus GW frequencies as defined in Eq.(5.6). The
black solid curve: Gµ = 10−12, ac = 10−4.48, n = 2 and fEDE = 4%. According to
black curve, others are changing one parameter on each, e.g. red: change ac → 10−3.57,
green: Gµ → 10−11, and blue: n → 3. The ac correspond to highest and lowest values
in 68%C.L. CMB analysis [16]. LISA and SKA sensitivities targeting Gµ = 10−12 cosmic
string GW spectrum (see Fig. 2 in [17]) show as gray and yellow area, respectively. The
lighter yellow is for Gµ = 10−11.
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5.2 Framework

Nambu-Goto string action is an effective model that describes cosmic string net-

work evolution [223]. These strings formed at time tF when the temperature cools to

symmetry breaking scale of theory. Shortly after, the defects behave as a scaling invariant

network that includes a few long (super-horizon length) strings and a collection of closed

loops chopped from long strings. GW loop emission dominates the network energy loss,

and loop number density no(ti, t) is characterized by [168]

dno(ti, t) =
0.1

α

∫ t

tF

Ceff(ti)
dti
t4i

(
a(ti)

a(t)

)3

, (5.1)

where loops form at ti and subsequently continuously diluted until time t, factor 0.1 rep-

resents 90% string energy release to loop kinetic energy and subsequent diluted off, and

parameter α = 0.1 [208, 209] characterize initial loop size ℓ(ti) = αti. The appendix re-

views the simulation calibration parameter Ceff [322, 17], which controls loop production.

Created loops are shortened by radiating GWs

ℓ(t) = αti − ΓGµ(t− ti), with t ≥ ti, (5.2)

where GW emission parameter Γ = 50 [208, 209, 225, 371, 372]. Loop emission characterizes

in normal modes k ∈ Z+ oscillation with emitted GW frequency,

f =
2k

ℓ
=

a(t)

a(t0)

2k

αti − ΓGµ(t− ti)
, (5.3)
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where emitted GWs redshift to today (t0). Thus, the SGWB frequency spectrum can be

computed by summing all normal modes,

ΩGW (f) =
f

ρc

dρGW
df

=
∑
k

Ω
(k)
GW(f), (5.4)

with

Ω
(k)
GW (f) =

1

ρc

2k

f

FαΓ(k)Gµ2

α(α+ ΓGµ)
(5.5)

×
∫ t0

tF

dt
Ceff(ti)

t4i

(
a(t)

a(t0)

)5(a(ti)

a(t)

)3

θ(ti − tF )θ(ℓ(t)),

where critical density ρc = 3H2
0/8πG, cusp dominates GW emission Γ(k) = Γ/(3.6 k4/3)

[17], and we sum over k modes up to k ≤ 105.

To visualize EDE influence on SGWB, we define signal difference to SGWB spec-

trum ratio as,

∆ΩGW

ΩGW
(f) ≡ ∆ΩGW(f)

ΩΛCDM
GW (f)

≡
ΩEDE
GW (f) − ΩΛCDM

GW (f)

ΩΛCDM
GW (f)

, (5.6)

where superscripts imply GW frequency spectra on different cosmologies. Fig. 5.1 shows

that EDE modifies the spectrum in two frequency regions: firstly, in contrast to ΛCDM,

diluting EDE delays entering of matter domination, which slows down the redshift on GWs

that emitted by the loops with loop formation time ti ≲ ΓGµtc/α where tc is the universe

age at ac. This mechanism peaks the GW spectrum at frequency f ∼ 10−4 Hz. The resulting

spectrum typically increases at characterized frequency fp, which can be estimated from
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Figure 5.2: Energy density fraction of early dark energy fEDE versus string tension pa-
rameter Gµ with peak frequency fp on upper x-axis, and fixing early dark energy potential
exponent parameter n = 2 and critical redshift ac = 10−4.48. The colored region shows
influenced cosmic string GW background Signal-to-Noise Ratio (SNR) with LISA 4 years
nominal mission operating period, see Eq.(5.22).

Eq.(5.3) as,

fp ∼
2ϵ

ΓGµtc

ac
a(t0)

, (5.7)

where ϵ ∼ O(1) is a numerical parameter. The shape of this peak approximately estimate

to

∆ΩGW

ΩGW
(f) ∝


(
f

fp

)−0.23

, for f ≥ fp,(
f

fp

)3

, for f < fp,

(5.8)
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Figure 5.3: GW spectrum difference ratio ∆ΩGW/ΩGW at peak frequency fp with fixed
Gµ = 10−12. The colored areas and the black circled areas represent the 95% C.L. and 68%
C.L. in CMB numerical analysis, respectively. The CMB analysis is directly quoted from
[16], they scan early dark energy (EDE) total energy fraction 1% ≤ fEDE ≤ 13% and critical
scaling factor 10−4.8 ≤ ac ≤ 10−3.4 in different EDE potential ϕ2n exponents n = {2, 3,∞}.
The dashed curves show the signal-noise-ratio SNR = 1 with LISA 4 years collection. The
curves on the boundaries between each color (e.g. between lighter green and green) are ac
variations with fixed fEDE as the red dashed line.

and the slower diluting EDE (lower n) more significantly delays the universe en-

tering the matter domination epoch while GWs experience a longer and slower dilution

period, hence increasing the signal difference.

Second, faster universe expansion at tc reduces loop chopping efficiency i.e., reduces

Ceff(ti = tc) in Eq.(5.1), due to less frequent intercommutation between strings. Such a

mechanism implies a signal difference dip at characteristic frequency fd ∼ 10−9 to 10−11 Hz

as shown in Fig. 5.1, which can be computed from Eq.(5.3) with GWs emission today,

fd ∼
2

αtc
. (5.9)

Shortly after tc, more long strings have entered the horizon, loop chopping efficiency turns

back to about that for ΛCDM, and again, the delayed entering of matter domination era.

Therefore, loop number density increases slightly, and redshift effects on GW slow. This
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mechanism increases signal difference at frequencies below but close to fd.

Universal fitting on a wide frequency spectrum not only determines string tension

parameter Gµ, but also addresses EDE parameters. fEDE proportionally controls both

signal difference peak and dip amplitudes, whereas peak amplitude is sensitive to n but dip

amplitude is independent. Therefore, we expect peak and dip amplitudes pin down fEDE

and n, and fd and fp can be used to address ac (as shown in Fig. 5.1).

Modified GW frequency spectra present in LISA [370, 141, 286] and SKA [247]

frequency sensitivities (Fig. 5.1) and hence we focus on analyzing signal-to-noise ratio (SNR)

for the remainder of this paper.

5.2.1 Application of VOS Model

In this subsection, we review the velocity-dependent one-scale (VOS) model that

used to predict the string network evolution [373, 203, 204], and most of the content can also

be found in Refs. [17, 322, 374, 375, 236]. The VOS model is used to describe the evolution

of long Nambu-Goto string network in terms of a mean string velocity [373, 203, 204]

v̄ =

√
m

2

k(v̄)

[k(v̄) + c̄]

(
1 − 2

m

)
, (5.10)

and a characteristic length,

ξ =
m

2

√
k(v̄) [k(v̄) + c̄]

2(m− 2)
, (5.11)

203



as a fraction of the horizon, where the m is exponent of scaling factor in universe energy

density ρ ∝ a−m, the chopping parameter c̄ = 0.23 [204], and the ansatz function [204]

k(v̄) =
2
√

2

π
(1 − v̄2)

(
1 + 2

√
2v̄3
) 1 − 8v̄6

1 + 8v̄6
. (5.12)

The long string energy density express

ρL =
µ

(ξt)2
, (5.13)

and the intercommutation between strings chops them to loops as energy losing as

dρL
dt

= c̄v̄
ρL
ξt

= c̄v̄
µ

(ξt)3
. (5.14)

Consequently, the loops number density at evolution time t with particular loop size ℓ(ti) =

αti that formed at time ti reads

dno(ti, t) =
0.1

α

∫ t

tF

Ceff(ti)
dti
t4i

(
a(ti)

a(t)

)3

, (5.15)

with

Ceff(ti) =
c̄

γ
v̄ξ−3 (5.16)
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where Ceff implies that the energy gain from string network, and a3 is due to number density

dilution. The γ =
√

2 is loop Lorentz boost [208, 209]. EDE locally influences the universe

expansion rate around a(t) ∼ ac, and therefore it would influence the Ceff on such a period.

A smaller Ceff implies a faster universe expansion rate, i.e. smaller m. It is because of a less

frequently intercommuation rate in a faster expanding universe.

We present Ceff versus scaling factor a in Fig. 5.4, the bumps on the black curve

are caused by the changing relativistic degree of freedom in early universe. EDE locally

influences Ceff around ac as the colored ranges. Before ac, EDE behaves as a cosmological

constant that accelerates the universe expansion rate, and therefore Ceff is smaller than

the one in ΛCDM around the ac. Shortly after, EDE starts diluting with a dilution rate

that is faster or equals to radiation-like components, then the universe expansion rate m

turns to slightly larger than the m in ΛCDM. Consequently, Ceff increases to slightly higher

than in ΛCDM. All curves converge when EDE energy density isn’t comparable to other

components.

5.2.2 Numerical Details

Parameters

The cosmological parameters we used in numerical is as following: the scale factor

for Hubble expansion rate h = 0.71 [16], pressureless matter density of the universe Ωm =

0.31, dark energy density of the ΛCDM universe ΩΛ = 0.69, today temperature T0 =

2.726 K, and relativistic degrees of freedom g∗(T ) is quoted from [376].
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Figure 5.4: Ceff versus scaling factor a. The black curve is in ΛCDM. The modified
universes with the EDE are shown as ac = 10−4.48 and ac = 10−3.57 as blue and red,
respectively.

LISA noise background

To estimate the noise background in the LISA to a stochastic gravitational wave

background, we express the result that concluded in [287]. The signal-to-noise ratio is

defined as {i = SKA,LISA}

SNR =

√
Ti

∫ fmax

fmin

df

(
ΩGW(f)

Ωi
n(f)

)2

, (5.17)

where ΩGW(f) represents the GW signal spectrum, Ti is experiment operating period, and

the integration range is the experiment sensitive region that is 20µHz ≤ f ≤ 1 Hz in LISA.
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The effective strain noise spectral spectrum is expressed as

Ωi
n(f) = Sin(f)

2π2f3

3H2
0

, (5.18)

with the effective noise power spectrum,

SLISA
n (f) ≃ 2

√
2

20

3

[
SI(f)

(2πf)4
+ SII

][
1 +

(
3f

4f∗

)2
]

(5.19)

where f∗ = c/(2πL) with light speed c and L = 2.5 × 106 km, and SII = 3.6 × 10−41 Hz−1

is an optical path-length fluctuation. The acceleration noise SI(f) reads

SI(f) = 5.76 × 10−48

[
1 +

(
f1
f

)2
]

s−4Hz−1, (5.20)

where f1 = 0.4 mHz. As discussed in [287], the SNR in Eq.(5.17) is an idealization, we

ignore foreground contamination, non-Gaussianity, data interruption, and other systematic

issues.

SKA noise background

The noise background of interferometer and pulsar timing experiments have been

nicely reviewed in the appendix of [290]. As the result, the effective strain noise spectral

spectrum is defined as Eq.(5.18), and the effective noise power spectrum is given [377, 378,

379]

SSKA
n (f) = 12π2f2

[
2

NSKA(NSKA − 1)

]1/2 DSKA
n

ζrms
, (5.21)
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where ζrms ≃ 0.147, number of pulsars NSKA = 50 [247, 380], operating time TSKA = 20yrs

[290, 381], and the 20 years timing noise spectra DSKA
n ≃ 1.1 × 10−9 Hz−3 [290, 239]. The

sensitive frequency range is from the operating period fmin = 1/TSKA to the cadence of the

timing observation, fmax = 1/Tc where Tc = 1 week [247, 380].

5.3 Signal-to-Noise Ratio

Early dark energy has relatively small energy contribution in the early universe,

hence its influence GW variation is small compared to string SGWB, but could still be

larger than noise background if string tension is sufficiently large. For comparing signal

difference and noise background, we define SNR as {i = SKA,LISA}

SNR =

√
Ti

∫ fmax

fmin

df

(
∆ΩGW(f)

Ωi
n(f)

)2

, (5.22)

where the SKA and LISA are calculated separately, frequency is integrated on the experi-

mental sensitivity region, Ti is the observation period, and Ωi
n(f) is an effective strain noise

spectral spectrum for LISA and SKA, respectively. SNR analysis has been widely studied

[290, 287, 239, 291] and numerical details are provided in the appendix.

The peak frequency fp is within the LISA goal sensitivities 20µHz≤ f ≤ 1 Hz

[370] for Gµ ≤ 2 × 10−11 as presented in Fig. 5.2, and the peaky signal is more significant

than noise background for most of interesting parameter space. More string energy causes

stronger cosmic string SGWB, and hence the signal is more significant for larger Gµ.

Fig. 5.3 shows signal difference ratio ∆ΩGW/ΩGW at peak frequency fp. The

colored areas were studied in CMB analysis [16] for relieving the Hubble tension. We
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Figure 5.5: Energy density fraction of early dark energy fEDE versus critical scaling factor
ac with marking SNR for LISA 4 years operating and SKA 20 years observation period,
respectively. The black areas present the CMB analysis with 68% C.L. from [16].

explicitly show that the signal difference could exceed the noise background (SNR> 1) in

the 4 years LISA collection, and therefore the EDE signal is detectable. As discussed, lower

n has a larger signal difference due to the later universe transition to matter-domination

era.

Fig. 5.5 shows LISA and SKA detection sensitivities to EDE parameter space.

Signal difference can be larger than noise background over few frequency decades, including

most sensitive LISA regions, see the gentle slope f−0.23 over frequencies f > fp in Eq.(5.8).

Thus, LISA can capture the EDE signal even though fp is outside LISA sensitivities. Higher

ac corresponds to lower SNR because fp moves away from LISA sensitivities with increasing

ac.
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The pulsar timing detector SKA can capture (SNR> 1) the signal difference dip,

as presented in Fig. 5.5. There are two falls on the SKA curves on the left-panel: the fall on

lower ac is caused by the dip in signal difference; whereas the fall on higher ac is due to the

signal difference peak. If the NANOGrav signal is due to cosmic string i.e. Gµ ≥ 2× 10−11

[145, 146], then SKA and LISA should detect EDE signals in future observations. Scanning

the 1σ regions, detectable EDE signal with n = {2, 3,∞} requires approximately at least

Gµ ≳ {4.4, 6.7, 31}× 10−14 and Gµ ≳ {4.2, 20, 29}× 10−13 for LISA and SKA, respectively.

5.4 Distinguish signal from other sources

The EDE signal in cosmic string SGWB is distinguishable from other possible

influences, such as string parameter variations, or sub-dominated SGWB from astrophysical

or cosmological objects. For example, kinks or kink-kink collision modes [223], or string

parameters α and Γ variations [17] would universally influence GW amplitude. Therefore,

they cannot cause local amplitude modification as does EDE. We numerically checked that

EDE influenced SGWB difference is much flatter than cosmic string SGWB with influence

from astrophysical objects, such as binary black hole merger [382, 383] and inspiral [384,

385, 386]. On the other hand, a sub-dominated GWs from cosmological phenomena, e.g.

flat frequency spectrum from inflation [387, 194, 164]; peaky spectrum from domain wall

[388, 389]; or first order phase transition dynamics [390, 304, 290]: sound wave [391], bubble

wall collision [392, 393] and magnetohydrodynamic turbulence [394, 292], frequency spectra

are distinguishable to EDE as well. In particular, the dip structure signal difference at fd

cannot be caused by any other physical phenomena.
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Chapter 6

Enhanced Early Galaxy Formation

in JWST from Axion Dark Matter

6.1 Review for recent developments

The standard ΛCDM cosmology makes firm predictions for the abundance of dark

matter halos as a function of time. However, recent James Webb Space Telescope (JWST)

observations have revealed what may be an unexpectedly large population of luminous

galaxies at redshifts 10 and above [395, 396, 397, 23, 398, 399, 400, 395]. In particular, Ref.

[399] reported 25 spectroscopically confirmed galaxies at zspec = 8.61 − 13.20, two of which

have MUV < −19.8 mag at z > 11. The reported number exceeds most predictions based

on the ΛCDM cosmology, and may be the harbinger of new fundamental physics and/or

lead to a new understanding of structure formation [401, 402, 403, 404, 405, 406, 407, 408].
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These surprising JWST results have inspired many dedicated studies [409, 407,

408, 410, 411, 412]. Proposed explanations for the JWST excess include enhanced star for-

mation, accelerated mass assembly, early or clustering dark energies, large scale-dependent

non-Gaussianities, cosmic string loops, etc. [413, 414, 415, 416, 417, 418, 419, 420, 421, 422].

Among them, a population of high z heavy compact objects has emerged as a compelling

solution [423, 419, 417, 418]. The presence of these objects in the radiation dominated era

introduces isocurvature perturbations which enhance the matter power spectrum (MPS)

with a shot-noise-like contribution up to a certain truncation scale [424]. This shot noise

enhancement could then trigger higher star formation efficiency, particularly in the most

massive halos and at earlier epochs [423, 413, 21]. To fully address the excess, however,

these objects must be extremely massive and contribute a substantial fraction to the total

matter content in the universe (Ωm) [419, 417, 418].

A well-motivated source of such heavy compact objects is axion DM, which is the

focus of this work. Large amplitude axion density fluctuations can collapse into massive

clusters by z ∼ 10 [425, 426, 427, 428, 429, 430, 431], with masses ranging from 10−12 M⊙ to

104 M⊙ [423, 432]. The mass of these clusters anti-correlates with the axion mass ma, and

the ma range favored by the JWST excess is 10−19 eV < ma < 10−16 eV in the Standard

Misalignment Mechanism (SMM) [419]. This mass range is excluded by black hole super-

radiance (BHSR) [24, 419, 25, 26, 27], and in addition requires a larger star formation

efficiency f∗ than expected from low redshift astrophysics.
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In this work, we show that models with delayed axion oscillation, in particular

the recently proposed kinetic misalignment mechanism (KMM) [115, 257], enable efficient

formation of field fragments at sub-horizon scales [433, 434], opening up a parameter space

safe from the BHSR constraint with astrophysically plausible f∗. In particular, we reveal

a large viable parameter region with 10−22 eV < ma < 10−19eV that can explain the

JWST excess, while being consistent with relevant constraints such as from BHSR, Lyman-

α forest, and stellar dynamics [18, 435, 436, 25, 26, 27]. Furthermore, we demonstrate

that the same ALP models that address the JWST excess may yield complementary signals

in a variety of current/future axion search experiments [437, 438, 439], and intriguingly

have the potential to alleviate puzzling features found in the small-scale structure of DM

halos [440, 441, 442]. In addition, we identify a parameter range that is consistent with

existing ΛCDM predictions, which is worth exploration even if the current JWST excess

resolves upon further investigations.

6.2 Axion clusters from kinetic misalignment

We first review some essential aspects of axion physics that are relevant to this

study. Axions are pseudo-Nambu-Goldstone bosons arising from spontaneous breaking of

global Peccei-Quinn (PQ) symmetries, originally proposed to solve the strong CP problem

in QCD [98, 99, 100]. Later on, they were found to be attractive dark matter candidates,

and more general non-QCD ALPs are also well motivated from theoretical frameworks such

as string theory and supersymmetry [101, 71, 72, 70]. The very light ma needed to affect

high redshift structure growth as we found is incompatible with the QCD axion.
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Axions can be produced from both misalignment mechanisms (MM) and the decay

of axion topological defects. The axion energy density resulting from the latter mechanism

is contingent upon model specifics and still under development, with uncertainties in part

due to technical challenges in simulations (see e.g. [443, 321, 156, 444, 445, 446, 111, 447],

and the refs therein). In particular, the effect of topological defects can be absent in certain

cosmological scenarios. For example, if PQ symmetry breaking occurs before inflation, axion

cosmic strings would be sufficiently diluted; on the other hand, the contribution from axion

domain walls can be inconsequential when compared to that from the MM mechanism, if

the lifetime of domain walls is sufficiently short. For these reasons, here we choose to focus

on the formation of axion clusters (ACs) via the misalignment mechanism.

In the SMM, the axion field value is initially displaced from its true potential

minimum, with a zero initial velocity, then starts to oscillate when it obtains a mass ma

similar to the Hubble rate, H∗ ∼ ma. The oscillations of the axion field then result in its

relic abundance today (Ωa) as a condensate of CDM. In contrast, in the recently proposed

KMM [115, 257], a non-zero initial axion velocity is considered, which can arise from models

with asymmetries in the PQ charges or some dimensional symmetry-breaking operators.

This results in a larger kinetic energy for the axion, with the possibility of H∗ ≪ ma, which

delays the onset of axion field oscillation and thus alters the prediction for Ωa. It was later

shown in [434, 433] that such a delayed oscillation in the KMM also generically leads to

a phenomenon called axion field fragmentation, which is the exponential growth of axion

quanta via parametric resonances. The enhanced fluctuation due to the fragmentation

triggers the formation of axion clusters, in a way distinct from that resulting from SMM.
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Here we focus on the KMM scenario described in [434, 433], in the context of pre-

inflationary PQ breaking, and follow the approach outlined there for analyzing axion cluster

formation. We introduce a parameter η ≡ ma/H∗ to characterize the degree of the oscilla-

tion delay due to KMM, which plays a key role in determining the scale of fragmentation,

and consequently the mass function of the ACs. A delayed oscillation corresponds to a larger

value of η, compared to approximately 3 in SMM. The parameter space can be divided into

regions of incomplete fragmentation (η ≲ 40), complete fragmentation (40 ≲ η ≲ O(103)),

and non-perturbative (η ≳ O(103)) [434, 433].

The fraction of the field which is fragmented saturates quickly with increasing η,

and we focus on the case of complete fragmentation which spans the bulk of the parameter

space of interest. While η and fa are in principle independent model parameters, for a

given ma and a specified Ωa output, they have a 1-1 relation. As an example, for a simple,

temperature-independent axion potential as used in most ALP models, fa relates to η in

the following way [434]:

fa ≈ 1015 GeV

(
10−20eV

ma

) 1
4
(

90

η

) 3
4
(
g∗
4

Ωah
2

0.12

) 1
2

, (6.1)

where g∗ is the effective degrees of freedom in the entropy evaluated at the onset of frag-

mentation. Throughout our paper, we will assume that all the DM is comprised of the ACs,

i.e. Ωa = ΩDM, to fix η, which then fixes the 1-1 correspondence between fa and η for a

given ma.
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We assume complete fragmentation, in which case the dark matter is comprised of

ACs with typical masses determined by the comoving scale around kosc ≈ maa∗κp, where

a∗ is the expansion parameter at the oscillation onset [433]. κp ∼ O(1) is a correction factor

that contains a mild η dependence, as we will discuss later in Eq. (6.8). The typical mass

of the AC can be estimated as

M0 ≈ ρ̄a
4π

3

(
π

maa∗κp

)3

(6.2)

≈ 104 M⊙

(
70

η

) 3
2
+0.66 θ(η−80)(4 × 10−20 eV

ma

) 3
2

,

where θ is the Heaviside Function, ρ̄a is the average axion energy density and is taken to

be the average DM energy density today. Both η and ma anti-correlate with M0, i.e. M0

decreases as η, ma increases. For a fixed M0, increasing η can accommodate a smaller ma,

which can help alleviate the BHSR constraints. These axion clusters are produced from the

collapse of the axion fields that fragmented at subhorizon scales.

The substantial mass of ACs naturally induces significant velocity-dependent grav-

itational scatterings [448]. In terms of the cluster mass, we have

σ

M0
≈ 10 cm2/g

(
M0

104M⊙

)(
10 km/s

v

)4

, (6.3)

where v is the relative velocity between the two ACs and anomalies in DM small scale

structure observations may be addressed by values of O(1) cm2/g [440, 441, 442, 449, 450,

451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461]. The wave nature of ALPs in our

considered mass range gives rise to pc to kpc scale solitonic cores in ACs and ALP halos,
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Figure 6.1: Example MPSs in KMM axion DM models (colored curves) compared to
the MPS from a standard ΛCDM model. Data points with error bars represent Lyman-α
measurements (black) from Ref.[18] and HST UV luminosity function measurements (green)
from Ref.[19]. The red dashed curve denotes the maximal cut-off scale for k4 growth in
the adiabatic curvature power spectrum based on the COBE/FIRAS bound from Ref.[20].
Higher resolution Lyman-α surveys can extend the scales on which the power spectrum is
measured to k ∼ 10 h/Mpc, similar to the UV luminosity data [21, 22].

which may also help alleviate small scale challenges in ΛCDM [462, 5, 429]. Given a large

cross-section, e.g., 10 cm2/g, close encounters between ACs can merge them into larger,

more diffuse structures within the ALP halos, enriching the small-scale features of our

model. The diffuse nature of the ACs also alleviates the existing stringent constraints from

stellar dynamical, microlensing, and small-scale structures that apply to massive compact

halo objects such as primordial black holes [435, 436, 463, 464, 465, 466, 467]. Depending

on the shapes of the ALP potential, ACs could further evolve into oscillons, which decay

into axion stars [5, 468, 469, 470, 471, 472].
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6.3 Matter power spectrum.

We decomposed the density perturbation into linear and quadratic components

following the methodology outlined in Ref. [434]. The linear component approximately

corresponds to the adiabatic perturbation in ΛCDM cosmology, denoted as PCDM(k). On

the other hand, the quadratic component introduces a shot noise-like contribution referred

to as PAC(k) which can be estimated as [418, 473, 474, 475]

PAC(k) ≈ (Diso(0) − 1)2
fACM0

ρcΩa
∝M0, for k < kosc. (6.4)

Here ρc is the critical energy density today, fAC is the fraction of dark matter comprised by

ACs which we fix to be 1, fACρcΩa/M0 is the number density of the ACs, and Diso(z) is the

growth factor of isocurvature perturbations which can be parameterized as [474, 473, 475]

Diso(z) =

(
1 +

Ωa

Ωma−

3a

2aeq

)a−
, (6.5)

where

a− = (
√

1 + 24Ωa/Ωm − 1)/4. (6.6)

The Diso does not evolve at a≪ aeq and grow as 3a/(2aeq) (identical to the adiabatic one)

for Ωa = Ωm at a ≫ aeq. If ACs comprise only a fraction of dark matter, then fAC < 1,

resulting in a smaller PAC(k). Note that the AC number density is independent of Ωa
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because M0 ∝ Ωa. However, PAC decreases as Ωa decreases through the Diso in Eq. 6.5

and Eq. 6.4, resulting in fewer high-z massive galaxies.

We numerically calculate the leading order PAC(k), including backreaction, follow-

ing Eq. 4.11 in Ref. [434], and parameterize the obtained results as 1:

PAC(k) =
2π2

k3
f(η)(Diso(0) − 1)2

(Diso(zeq) − 1)2

(
κ

κp(η)

)3

θ(κp − κ), (6.7)

where κ ≡ k
maa∗

, κp(η) and f(η) are numerical factors parameterized as

κp(η) ≃


0.9, 40 ≤ η ≤ 80,

0.9
( η

80

)0.22
, 80 < η ≤ 103,

(6.8)

and

f(η) ≃ 1.19
( η

80

)−0.1
, 40 < η ≤ 103. (6.9)

The spectrum PAC(k) becomes dominant at scales larger than k∗ ≈ a∗H∗ and is truncated at

kosc. For k > kosc, the spectrum becomes negligibly small and decreases as 1/k2 [434, 433].

In Fig. 6.1, we show the MPS for three benchmark examples. The M0 is 1.6×103,

1.5 × 104 M⊙, and 4.9 × 105 for the orange, golden, and magenta cases, respectively. We

will show in Fig. 6.3 that the case in gold color is favored in order to explain the JWST

excess, the orange case is consistent with ΛCDM, while the magenta case overproduces

1We solved for the relic abundance neglecting the effect of fragmentation which could induce a sub-O(1)
uncertainty [433]. A more accurate determination of the relic abundance requires dedicated study which is
beyond the scope of this work.
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Figure 6.2: The halo mass function for the benchmark cases of Fig. 6.1 at redshifts z = 0
and z = 12.

structures and is excluded by measurements of the UV luminosity function. In all cases,

PAC(k) ≫ PCDM(k) for k > k∗, where the spectrum plateaus, before being truncated at

k ∼ kosc (beyond the range of Fig. 6.1). The case in gold color, specifically, has a transition

around k∗ ∼ 10 h/Mpc, which is close to the scale associated with the JWST excess.

6.4 Halo Mass Function

The clustering of ACs in the matter era leads to the formation of halos. We use the

Press-Schechter formalism to estimate the halo mass function (HMF) from the MPS [476].

Given an MPS P (k, z) at redshift z, we compute the mass variance using a top-hat window

function as

σ2M (R) =
1

2π2

∫
dkP (k, z)

(
3

sin(kR) − kR cos(kR)

kR

)2

k2,
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where M and R are halo mass and radius and are related through M = 4πρ̄mR
3/3, with

ρm being the mean matter density today. The HMF is computed in terms of ν ≡ δ2c (z)/σ2M

as

dn

dM
=
ρ̄m
M
νfEPS(ν)

d ln ν

d lnM
, (6.10)

where νfEPS(ν) is a shape function including the effect of ellipsoidal collapse from Ref. [477].

This approach has been widely applied in the literature because of its simplicity. Ref. [417]

demonstrated that this technique can produce reliable approximations of the N-body re-

constructed HMFs, even in the presence of massive primordial black holes.

In Fig. 6.2, we show the obtained HMFs for the ΛCDM and the three benchmarks

in Fig. 6.1 at z = 0 (left) and z = 12 (right). We see that the HMFs at z = 0 are relatively

similar across all cases; however, at z = 12, the KMM cases exhibit significant enhance-

ments towards larger halo masses, increasing the likelihood of finding halos hosting the very

massive galaxies. Once small halos virialize, they almost decouple from the background

evolution. Hence the abundance of massive halos is largely unaffected at low redshifts. As

a result, the effect of our model becomes less significant today, which alleviates constraints

from low redshift measurements [475, 467].

6.5 Phenomenology with JWST excess

The enhanced massive halo population as we see in Fig. 6.2 can trigger earlier

galaxy formation and enhance the formation efficiency [423, 413]. To convert the model
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Figure 6.3: The viable model parameter space given the observations in Ref. [23], consid-
ering galaxies with MUV < −19.8 mag at z ≥ 11. The 68% CL preferred region shaded in
blue corresponds to a prediction of 0.74 < Nexp < 4.3. It is obtained for a star formation
efficiency f∗ = 0.066 and would shift up (down) if f∗ increases (decreases). Black lines
represent contours of the gravitational scattering cross section per mass for values of 1, 10,
and 100cm2/g, evaluated at a velocity of v = 10 km/s. At larger velocities, the cross sec-
tion quickly reduces due to the v−4 dependence. Constraints from various sources exclude
certain regions: the Lyman-α forest data [18] disfavors the orange area; the region to the
left of the red curve is inconsistent with measured UV luminosity functions [19]; and the
grey area to the right is excluded by BHSR constraints [24, 25, 26, 27].

prediction for HMF into the number of observed galaxies, we consider a simplified approach

assuming a constant star formation efficiency f∗. We compute the expected number of

observed galaxies with MUV < −19.8 mag at z > 11 as considered in Fig. 13 of Ref. [399],

where the number of observed galaxies Nobs = 2 is systematically higher than theoretical

predictions from the literature [401, 402, 403, 404, 405, 406], e.g., 0.3 from Ref. [478] as a

recent estimate. We convert the requirement of MUV < −19.8 mag into a minimum halo

mass by using the M∗ −MUV relation of Ref. [478]. Assuming a constant star formation

efficiency f∗, we set the minimum halo mass Mmin = 1.8 × 109e−0.12zmin/(f∗fb) M⊙, where
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Figure 6.4: Axion-photon (left) and axion-nucleon (right) couplings versus axion DM mass
ma (assuming Ωa = ΩDM in Eq. 6.1). The blue and the lighter-blue regions correspond
to the regions favoured by matching the JWST excess, with Caγ,N = 1 and Caγ,N = 103,
respectively. The blue regions are bounded by two dashed black lines, corresponding to the
requirement of perturbative η with complete fragmentation. Constraints from various exist-
ing searches (solid shaded regions) and forecasts (colored dashed lines) are also illustrated.
See text for further details.

zmin = 11, fb ≈ 0.16 is the baryon fraction in the matter energy density, and we set

f∗ = 0.066 so that the ΛCDM prediction is for an expected 0.3 galaxies at z > 11 [478].

The value of f∗ = 0.066 is within expectations for a 1012 M⊙ halo at z=0, but small

compared to some theoretical models proposed to explain the JWST excess solely by extra

star formation [413, 408, 407, 406, 479]. It has been noted that an excessively high f∗ could

introduce new tensions with the cosmic reionization history [480], making our obtained

value a more desirable option. The number of expected galaxies count is calculated as

Nexp =
Aeff

4π

∫ zmax

11
dz
dVc
dz

∫ Mmax

Mmin

dM
dn

dM
, (6.11)

where Aeff = 45 arcmin2 is the effective area of the observation following Ref. [399] and Vc

is the comoving Hubble volume at z. dn/dM is the HMF in Eq. 6.10. Our result is not

sensitive to zmax, Mmax, provided that they are sufficiently large.
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Fig. 6.3 presents the preferred 68% CL parameter regions for a constant f∗ =

0.066 as a blue band in the ma − η plane. We obtain the blue band considering 0.74 <

Nexp < 4.3 which arises from a Feldman-Cousins analysis for two observations and zero

background [481], and the lower limit happens to coincide with that from Ref. [399]. For

a higher (lower) value of f∗, the band would shift upward (downward). The upper-right

corner corresponds to lower prediction for Nexp values that are consistent with ΛCDM

predictions within the uncertainties [401, 402, 403, 404, 405, 406]. The lower-left region has

higher Nexp and is constrained by Lyman-α and UV luminosity measurements [18, 19]. We

also plot the contours of the gravitational scattering cross section of Eq. (6.3) evaluated

at v = 10 km/s in Fig. 6.3. In the viable region, we see that the gravitational cross

section takes values in (1 − 100) cm2/g, which could lead to novel signal predictions that

can address the small-scale observations, e.g., the core-cusp problem and the too-big-to-fail

problem [440, 441, 442, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461].

6.6 Implications for Axion Models

As shown in the last section, axion models with KMM can address the JWST

excess, with a preferred parameter space spanning 4 × 10−22 eV < ma < 10−19 eV and

40 < η < 1000. Existing ALP searches may provide valuable complementary probes for

such ALPs, albeit in a model-dependent way. While the impact of ALP on structure

formation is largely independent of the non-gravitational axion coupling to the Standard

Model (SM) particles, most other ALP searches do depend on the specific coupling patterns.
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Here we focus on axion interactions with photons and nucleons (N), as described by

L ∈ gaγ
4
aFµνF̃

µν + gaN∂µaN̄γ
µγ5N, (6.12)

with effective couplings

gaγ = Caγα/(2πfa), gaN = CaN/fa, (6.13)

where Fµν represents the electromagnetic field strength, and Caγ , CaN are model-dependent

parameters. In standard QCD axion inspired models such as KSVZ or DFSZ [482, 483, 484,

485], Caγ , CaN ∼ O(1). Meanwhile, other recently proposed well-motivated axion theories

such as those with multiple PQ fermions, vector kinetic mixing, and axion clockworks,

can generically predict significantly larger coupling C’s, up to O(102 − 103) [486, 487, 488].

According to Eqs. 6.1 and 6.13, with our assumption of Ωa = ΩDM, fa and the corresponding

η are fixed for given gaγ (gaN ) and Caγ (CaN ). Thus we may map the parameter regions in

Fig. 6.3 onto the ma−gaγ,N space as in Fig. 6.4. In light of the aforementioned theoretically

motivated range for Caγ , CaN , in Fig. 6.4, the JWST excess favored regions are illustrated

for two benchmark values: Caγ , CaN = 1 (blue band) and Caγ , CaN = 1000 (light blue

band). The viable regions for other values of 1 ≲ Caγ , CaN ≲ 1000 are expected to

lie between these two bands. These bands are truncated from above and below (denoted

by dashed black lines) by requiring that the corresponding η are within the perturbative

regime with complete fragmentation, 40 ≲ η ≲ 1000 (see discussion above Eq. 6.1), which

we have chosen to focus on in our analysis. As Caγ or CaN increases, the blue and orange
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bands, along with the black dashed lines, would linearly shift upwards. We also show the

current constraints (solid shaded regions) and future sensitivity forecast (bounded above

by colored dashed lines) for a variety of experiments/observations, including Lyman-α [18],

BHSR [25, 26, 27], Supernova-1987A [489], neutron star cooling (NS) [490, 491, 492, 493],

protoplanetary disk polarimetry (PPD) [494], active galactic nuclei (AGN) [495], and old

comagnetometer [439].

As can be seen from Fig. 6.4, upcoming experiments can offer complementary

probes for KMM axion parameter range that could address the JWST excess. For example,

for the benchmark of Caγ = 1000 the reach of future heterodyne experiments [437] overlaps

with the JWST excess favored region of (gaγ , ma). Similarly, future storage ring and co-

magnetometer experiments would be able to explore the (gaN , ma) range motivated by the

JWST excess [438, 439]. It is also worth noting that the experiments covering the further

upper regions in Fig. 6.4, such as interferometry [496] and linearly polarized pulsar light

(Pulsar I in Fig.6.4 left) [497], can potentially probe KMM axions with η > 103 and Caγ (or

CaN ) > 103. However, these regions require a non-perturbative analysis of fragmentation

(η ≳ 103), which is beyond the scope of this study.
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Chapter 7

Dynamics of Long-lived Axion

DWs and its Cosmological

Implications

7.1 Introduction

Axions are ultra-light particles that are originally invoked as a compelling solution

for the Strong CP problem in quantum chromodynamics (QCD) [98, 99, 100]. Recent

years have seen a significant increase in interest in QCD axions and more general axion-like

particles (ALPs), as dark matter (DM) candidates alternative to WIMPs [101, 71, 72, 70].

While most existing studies on axion phenomenology and detection focused on the axion

particle per se, the impact of the accompanying axion topological defects, i.e. axion strings

and domain walls (DWs), can be substantial, yet still not well understood. Such axion
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topological defects are indispensable companions of axion particles for post-inflationary

PQ symmetry breaking, with potentially significant contribution to axion relic abundance

[103, 104, 105, 106, 8, 107], and may provide complementary search avenues for axion models

[5, 498, 499, 500, 156, 321, 443, 501, 502, 503, 504, 505, 506]. A growing effort has been made

in the past few years along this direction. However, there are still debates to be resolved

and clarifications to be made, in part due to the technical challenges with simulating axion

topological defects [108, 110, 31, 112, 114, 30, 177, 202, 109, 111, 219, 507, 220].

Axion cosmic strings form as the PQ breaking phase transition (PT) occurs at

a high energy scale fa, and prevail till the pseudo-goldstone boson (axion) later acquires

a nonzero mass ma and DWs enter the horizon. The structure of the DWs depends on

the model specifics of the axion potential and is characterized by the axion mass and the

DW number NDW. The case with NDW = 1 is most studied in recent years, where the

DWs are short-lived and strings dominate the dynamics of the axion topological defects

[111, 30, 202]. On the other hand, more generally for the NDW > 1 models e.g. Dine-

Fischler-Srednicki-Zhitnitsky model [485, 484], the DWs are stable and problematic as they

would over-close the Universe. Nevertheless, the NDW > 1 cases can be innocuous with

the presence of a small symmetry-breaking bias in the axion potential, which yields the

DWs that are long-lived but collapse before the BBN [508, 388]. Upon collapsing, long-

lived DWs can leave observable imprints in the form of axion dark matter relic density,

gravitational waves (GWs), as well as the impact on cosmic structure formation [8, 389].

A clear understanding of the evolution and dynamics of the DW network is crucial for

predicting and probing such potentially rich phenomenology. However, the literature on
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the dynamics of metastable DWs (axion associated or more general) is still relatively scarce

[509, 510, 221, 511, 512, 8, 389], and further investigation is required to advance and clarify

our understanding.

In this work, we conduct an updated analysis for the long-lived axion DWs and

predict axion relic abundance produced from the axion DWs (withNDW=2 as a benchmark).

We perform a 3D field theory lattice simulation for the axion field with grid size N3 =

15363 in a radiation-dominated background, including the bias term in the axion potential,

and solve the axion field equation of motion exactly. This differs from earlier simulation

work, with the promise of potential improvement: e.g. the estimation of the decay time of

metastable DWs in [8] and [507] is based on a 2D simulation, while the 3D simulation in

[221, 511] employs Higgs DWs with Press-Ryden-Spergel (PRS) [513] approximation. In

order to elucidate the physics of the dynamics of DW evolution, we investigated the DW

radiation mechanisms by capturing through analyzing the axion spectrum and zoom-in

the snapshots of animations from our simulation. In addition to obtaining results based on

numerical simulation, through analytical fitting, we also present the velocity-dependent one-

scale (VOS) model applicable to the metastable DW evolution. This is a notable extension

of the framework of the VOS model which previously has been widely used to describe

the evolution of other types of topological defects such as cosmic strings [203, 204] and,

only recently a few attempts on stable DWs [221, 514, 511, 515, 516, 517]. By combining

numerical and analytical approaches, our analysis leads to an updated prediction for the

spectrum and relic abundance of axions radiated from DWs, as well as new insights into

the evolution of DW substructures. This study may shed new light on the cosmological
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implication of axion topological defects and their role in axion physics at large. In the

following, we will first introduce the axion model and simulation setup that we adopted.

Then we will present the essential results on the dynamics of axion DWs derived from the

simulation, and demonstrate how these can be used to calibrate the analytical VOS model.

Cosmological implications related to axion DM will be discussed before the conclusion.

7.2 Axion model

We first introduce the benchmark axion model that we consider and the essen-

tials in our simulation. As a pseudo-Nambu-Goldstone boson, axion is associated with the

angular mode of a complex scalar field whose VEV spontaneously breaks a global U(1)

symmetry. The symmetry breaking occurs at a relatively high scale fa ≫ Λ ≃
√
mafa,

where ∼ Λ is the energy scale of DW formation (i.e.ΛQCD for QCD axion) when the radial

mode acquires a mass mR ∼ fa. Furthermore, the shift symmetry possessed by the angular

mode is broken at the time when 3H = ma (where H is Hubble rate), which is when DW

enters into the horizon, much later than the global U(1) breaking. At later times when

H ≪ fa, the effective Lagrangian for axion field a = a(x, t) with the radial mode integrated

out reads

L = |∂µa|2 − V (a). (7.1)
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We consider a biased potential

V (a) =
m2
af

2
a

N2
DW

[
1 − cos

(
NDW

a

fa

)
+ ϵ

(
1 + cos

a

fa

)]
, (7.2)

where ϵ≪ 1 is the bias parameter that causes DW to collapse, ma and fa are the axion mass

and decay constant respectively. We consider NDW = 2, which implies one true vacuum and

one false vacuum in the model 1. This is a representative choice that involves a simple DW

structure which eases the simulation analysis and also allows us to extrapolate our results

to the string-wall scenario, which we will discuss in more detail later.

We estimate the DW surface tension based on the axion potential in Eq.(7.2):

σDW ≃ ηDW
maf

2
a

N2
DW

, (7.3)

where ηDW = 8 for the potential in Eq.(7.2), and ηDW = 8.97(5) for QCD axion with

including pion contribution [518], we used the former in this study. The DWs are dynamical

at cosmic time t ∼ 1/ma when the horizon is comparable to the DW thickness δ ∼ 1/ma.

1It is worth mentioning that the bias term in Eq.(7.2) doesn’t shift the true vacuum in the axion potential,
which is for avoiding the axion quality problem, see a review in [114].
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7.3 Setup

7.3.1 Simulation Setup

The equation of motion (EoM) of the axion field in a flat homogeneous and

isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) universe is

∂2a

∂τ2
+ 2

(
dlnR

dlnτ

)
1

τ

∂a

∂τ
− ∂2a

∂x2i
= −R2∂V

∂a
, (7.4)

where R(t) is the scale factor, xi is comoving space, τ is comoving time, and ∇ is the

Laplacian in physical coordinates. We start our simulations at a time that is slightly earlier

than the DW formation time.

For the initial condition (IC) of the field of our simulation, a random and uniform

distribution of the axion field agrees with the consequence of stochastic inflation with an

assumption that the axion potential scale
√
mafa is far below the inflation scale HI (see

[519] and a review the stochastic method [520]). We consider a simpler scenario in that

we randomly assign field value a = 0 or π (the two vacuums in the potential) to realize an

unbiased IC that half of the points on the lattice are in a true vacuum and assume zero

initial field velocity ȧ(ti) → 0. As we will see that once the DW network enters the attractive

solution, the so-called scaling regime, the DW network evolution will no longer be sensitive

to IC. This statement has been observed in earlier simulations [521, 110, 500, 515, 389],

and see [511] for a discussion of the effect of a biased IC on PRS DW evolution (and earlier

references [512, 522, 523]).
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Other simulation setups are as follows. We utilized all parameters with fa → 1.

The lattice size is N3 = 15363, and the simulation period starts from 1/H(ti) = R(ti)∆xi,

and ends at 1/H(tf ) = (N/2)∆xf , where ∆xi = 1 is initial lattice spacing, R(ti) = 1 is

initial scaling factor, ∆xf = R(tf )∆xi is comoving spacing at the end of simulation end,

and assuming a radiation background R(t) ∝ t1/2. We fix the time interval ∆τ = 0.1

and test convergence by re-running with smaller time intervals, where τ is comoving time.

Moreover, we fix the physical DW thickness as

δ ∼ 1

ma
=

1

(N/2)R(ti)∆xi
. (7.5)

These choices imply that the simulation starts at the time that the horizon size equals

lattice spacing ∆xi, and ends when the horizon expands to half of the simulation size. On

the other hand, the DW thickness δ occupies N/2 lattice grids at ti, then as the coordinate

expands, the simulation ends when two grids occupy δ. We chose such simulation setups

for the following reasons:

(1) δ can not be smaller than the size of two grids for enough resolution of the DW. Lower

resolution leads to incorrect and insensible simulation results such as a frozen DW in lattice

because the gradient ∇2a in the equation of motion Eq.(7.4) would be incorrectly calculated

in simulation. Also, a lower resolution would incorrectly induce a wrong tail in the axion

kinetic spectrum at axion momentum k ∼ 2π/∆xf .

(2) We simulated with two types of boundary conditions (b.c.’s), periodic and symmetric,

and investigated the results’ robustness against the choice of b.c. As the simulation results

are expected to be inevitably subject to b.c. (albeit not significantly as we found), in order
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to mitigate the effect we conservatively collect simulation data from the middle 1/8 of the

simulation box and discard the rest. This data collection range equals the Hubble box size

at the end of the simulation.

In order to present a free axion spectrum by filtering out the DW contribution, we

employ a mask function on the axion field as in previous studies [219, 8] (firstly applied in

CMB analysis [524]). The method is to mask ȧ(x) by a window function

ȧ(x) → θ(x− d)ȧ(x), (7.6)

where x is the coordinate that origin at the DW center where V (a(x = 0)) = Vmax, d is

a mask function parameter, and θ(x) is the Heaviside step function. We fix d = δ/2 in

our simulation for excluding the DWs contribution to the power spectrum. But due to the

influences on the DWs exerted by the background axion field, δ would not be perfectly a

constant. Thus we cannot fully erase the DW contribution to the free axion spectrum, but

our approach should provide a good estimation. A more effective algorithm to erase such

a contribution may be developed with dedicated future work. The kinetic power spectrum

is found to be insensitive to the choice of d that is not too far from δ, i.e. δ/4 ≲ d ≲ 2δ.

We found that applying the mask function on the axion field a(x) → θ(x − d)a(x) causes

an insensible result on the gradient energy and potential, which is a sensitive variation on

the blue tail of spectrum (k ∼ 1/ma) with a variation of d. This may be caused by the

twinkling. The oscillons are flashing/twinkling in the simulation sub-horizon compact DW

or oscillons (see the red points at the end of simulation at Fig. 7.1) that cannot be fully

removed by the mask function. We thus only apply the mask function on the axion kinetic
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energy and assume that the free axions are all in harmonic mode i.e. its kinetic energy takes

half of its total energy for estimating the total free energy of the radiated axions.

Our DW simulation is run with various simulation conditions and ALP model

benchmarks. We conducted 5 simulations for each benchmark with ϵ ∼ 10−3 (to ensure

convergence) while keeping the aforementioned parameters constant as described in the

earlier paragraphs. Subsequently, we extrapolated our findings to lower ϵ values and a

distinct range of ma by analyzing the axion spectrum and monitoring the DW and axion

background fields on the snapshot of simulation.

Besides the main simulation runs, we also conducted testing runs under various

conditions and ALP model benchmarks. We assessed the impact of altering simulation

parameters (with 5 testing runs for each benchmark as well) such as axion massma, spanning

a range from 0.5 to 2, initial scaling rate R(ti) with values of 0.5, 1, and 2, and xi with values

of 0.1, 1, and 10. Additionally, we considered different lattice sizes N (512, 1024, and 1536)

and the mask function parameter d as previously mentioned. Remarkably, the variation

in these parameters did not affect our analysis results for the axion kinetic spectrum, and

consequently, our conclusions remained unaffected.

7.3.2 Application of our simulation to other models

Although we simulated a network with only a simple DW, our results can be

applied to many more complex models if the model satisfy the following conditions:

(1) The DW network has enough time to enter the scaling regime.

(2) The DW properties such as its thinkness δ and DW number N should be the same as

in this study.
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The first condition erases the DW initial distribution effect from different models. The

second ensures the DW dynamics agree with our found. As an example, we explain how our

simulation can fit the QCD axion model. Firstly, considering the absence of cosmic string

in the QCD axion models such that a pre-inflationary PQ symmetry breaking or PQ scalars

have a non-simply connected topological structure. The differences between our study and

a QCD axion model with N = 2 are the nonzero bias parameter ϵ in the potential Eq.(7.2)

which should be small enough ϵ ≲ 5 × 10−3 to ensure that the DW network can enter the

scaling regime. This refers to, as we will see in Sec.7.4, the stable DW network entering to

scaling regime within a short period ∆t ≲ 10/ma. Another difference is the DW thickness

as

1

δQCD
≃ ma(T ) ≃


ma

(
ΛQCD

T

)4

for T > ΛQCD,

ma for T ≤ ΛQCD,

(7.7)

where QCD scale ΛQCD = 400 MeV, T is cosmic temperature, and the term is from a

diluting instanton gas approximation [124, 123, 122, 125] (also see the results from lattice

simulation [525, 518]). The QCD axion DW thickness δQCD turns to a constant at time ta,

and afterward, the QCD axion DW evolution as in our simulation. In which, we should

consider a small ϵ that the DW can live long enough to enter the rescaling regime after ta.

We will discuss this condition in the parameter space in Sec.7.8.
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We did not simulate the QCD axion DW due to the limitations imposed by the

lattice. The DW thickness, which rapidly shrinks as δQCD ∝ R(t)−4 in Eq.(7.7), imposes

a significant constraint on the evolution period in our simulation. Because the thickness

should be at least larger than the lattice spacing for accurate resolution. Consequently, we

treated δ as a constant in our simulation, ensuring that the DW decays before the simulation

concludes.

On the other hand, QCD axion models with existing cosmic strings, such as the PQ

scalar with post-inflationary U(1) symmetry breaking, maintain QCD axion strings until

DW formation. Subsequently, two DWs attach to a single cosmic string, forming a string-

wall network that differs significantly from what we considered in our study. However, we

find that the influence of cosmic strings is negligible when the DW tension dominates the

network [224], specifically when the condition

σDWt/µ > 1 (7.8)

is satisfied, where µ ≃ 2π2f2a ln(tfa) is the cosmic string tension. Under this condition, the

string-wall structure approximates our simulation. However, for higher values of NDW > 2,

where multiple DWs attach to a single string, a more complex scenario arises with the

attachment of multi-DWs. We have chosen to leave the investigation of such complex

scenarios with NDW > 2 for future work. In Section 7.8, we will present the parameter

space availability under the constraint given in Eq.(7.8).
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Furthermore, our decision to focus on the simplified case without string contribu-

tions is also influenced by technical considerations. Due to limitations in our simulation

resources, the lattice size imposes constraints on extending the simulation period sufficiently

to observe DW decay if cosmic strings are included. The scale gap between the width of

the string (∼ 1/fa) and the Hubble scale at the DW decay prevents us from adequately

observing the network in our simulation with the current lattice size.

Our simulation result can not only apply to the QCD axion models but also to

other axion-like particle models that satisfy the two conditions that we have discussed above.
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Figure 7.1: Visualization of lattice simulation with bias parameter ϵ = 0.0013: snapshots
in a time series (left to right: mat = 21, 43, 97, 385). The yellow (blue) region indicates a
false (true) vacuum, and the red region represents DWs. The Hubble volume is shown as a
black cube in the bottom-left corner of each snapshot (see animation for ϵ = 0.0012). The
small red points are defined as sub-horizon compact DW or oscillon, they are twinkling in
the simulation.

7.4 Domain wall dynamics

7.4.1 Scaling behavior

In our simulation, we track the evolution of DWs and the pattern of energy loss

from the DW network. A snapshot of the evolution is shown in Fig. 7.1, and its counterpart

with non-biased potential is shown in Fig. 7.11 in the appendix[]. The left-most snapshot

is taken as the network enters the scaling regime when the DWs flatten while expanding.

Shortly after its formation (∆t ≲ 10/ma), the network approaches an attractive solution

called the scaling regime while releasing energy through the following two mechanisms: (1)

DW flattening motion that not only radiates the axion but also heats the axion background

field and (2) the collapse of contraction compact DWs as shown in the second snapshot

in Fig. 7.1 where the DWs flatten while collapse to compact DWs and oscillons. The

former dominates the radiation for stable DW, and the latter is important for decaying DW.
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Figure 7.2: DW area parameter (defined in Eq.(7.10)) as a function of the cosmic time in
our simulation, with varying bias parameter ϵ (defined in Eq.(7.2)).

Meanwhile, the out-of-horizon DWs enter into the horizon continuously, which consequently

compensates for the energy loss due to the decay, such that the DW area per horizon volume

Av remains constant. This constant solution is the feature of the scaling region. Such a

feature has been measured in literature [515, 514, 500, 8, 389], and also agrees with our

findings as shown in Fig. 7.2. While the DWs turn to decay and collapse at about tdecay

and the rescaling solution break. In the scaling regime, the DW energy density takes the

following form:

ρDW = γ2
σDWAv

t
, (7.9)
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Figure 7.3: Visualization of the lattice simulation with the bias parameter ϵ = 0.0012.
The leftmost figure displays a snapshot of the entire simulation scale, where the domain
wall (DW) is highlighted in red color. The upper-row showcases a zoomed-in region of our
simulation with a 1603 lattice, accompanied by a time series depicted at the bottom. The
lower-row comprises smaller lattice sizes. Both sets of sub-figures encompass a range of
features discovered in this study, and a detailed discussion of these features is provided in
Section 7.4.2.

where γ ≃ 1 is the Lorentz factor that implies the contribution of the kinetic energy of the

DW, and the area parameter is given by

Av ≡
Awt

R(t)V
= 0.67+0.04

−0.04, for ϵ = 0, (7.10)

where Aw is the DW comoving area, and V is the comoving volume. The result agrees with

the simulation study [8, 389, 507, 389], but it is about 30% less than the prediction with

PRS DW network [221]. On the other hand, in the metastable scenario, we find

Av = c1 + c2 Exp
[
−c3

(
ϵ
√
mat

)c4] , for ϵ > 0, (7.11)
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with

c1 = 0.0088+0.0009
−0.0009, c2 = 0.62+0.06

−0.05,

c3 = 3.98+0.40
−0.40 × 106, c4 = 3.57+0.08

−0.11,

where the parameter c1 term represents the residual compact DWs and oscillons at the end

of the simulation. We cannot distinguish whether these are exactly small compact DWs or

oscillons due to the limitation of the simulation period and resolution. The fitting model

Eq.(7.11) is inspired by field theory analysis [509] that employs mean-field approximation

method and Gaussian ansatz on the field probability distribution in the limit of small bias

term ϵ ≪ 1. Moreover, the parameter c4 ∼ 3 is about the spatial dimension as predicted

in [509], non-Gaussian field distribution may cause this discrepancy. The fitting model

in Eq.(7.11) also fits the data in other DW simulation studies [523, 512, 511]. As the

axion kinetic energy cools down, the true vacuum pressure force gradually overcomes the

DW tension, which causes the decay and collapse of the DW network. We define the

characteristic decay time of the DW, tdecay, as when the DW area Av becomes ∼ 10% of the

pre-collapsing value i.e. 0.1Av(t→ 0) = Av(tdecay). tdecay can be estimated by Eq.(7.11) as

tdecay ≃ ϵ−2

ma

(
cµ
c3

)2/c4

(7.12)

≃ ϵ−2

ma
(3.22 ± 0.94) × 10−4,
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where the factor

cµ = 2.32+0.61
−0.60. (7.13)

We further define the decaying period: start from the exponential component in Eq.(7.11)

as lower than −1 until DW all decayed. Note that other semi-analytical estimation studies

[8, 388] compare the pressure gap between vacua and use a power-law model to fit their

data, and predict tdecay ∝ 1/ϵ. This causes a notable difference from our results in the

prediction for the axion relic abundance as shown in later sections.

7.4.2 Features in Simulation

In this subsection, we will discuss the simulated features that we discovered in our

simulation snapshots, and further discuss their energy contribution and dynamic behavior

later in Sec. 7.6 and Sec. 7.7.

As depicted in Fig. 7.3, the observed features are described as follows:

(1) DWs, represented as red walls in Fig. 7.3, primarily exist within super-horizon to horizon

sizes, i.e. k ≲ H. The process of these DWs’ movements is analogous to the act of laying

out a piece of paper flat, and we refer to this motion as ”flattening”. As a result of this

flattening process, the energy of fluctuation radiate to a free axion field and is stored in the

axion clouds.

(2) Axion clouds are regions of denser energy in the background axion field. They are

illustrated by blue in the true vacuum and yellow in the false vacuum in Fig. 7.3.

(3) Self-chopping is a crucial mechanism in which DWs release energy to both the horizon
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and subhorizon-sized compact DWs. The upper-row subfigures in Fig. 7.3 depicts the self-

chopping processes.

(4) Contraction refers to the progressive reduction in the size of a compact DW over time.

This phenomenon leads to the formation of a horizon compact DW from a super-horizon

DW.

(5) Horizon compact DW refers to compact DW with a size approximately equal to the

horizon scale. This compact structure is primarily formed through the self-chopping of a

horizon-sized DW, which subsequently collapses shortly after its formation. As indicated

by the upper-row subfigures in Fig. 7.3, the collapsed compact DW generates ripples and

heats the background axion fields.

(6) Sub-horizon compact DWs are compact DWs with sizes (∼ 1/ma) much smaller than the

horizon scale. These structures are mainly formed through the self-chopping of fluctuations

on the DW surface. Distinguishing between sub-horizon compact DWs and oscillons is

challenging due to limited lattice resolution, as both structures occupy only a few lattice

points. Note that at the initial stages of the simulation, the horizon and sub-horizon

compact DWs are indistinguishable as they share (or approximately share) the same size

scale.

(7) Ripples refer to axion waves propagating outward from the collapsing DWs. They retain

energy and possess horizon scales (k ≲ ma) in our simulation.

(8) A resonance phenomenon is observed in which the axion clouds are divided into piles

with scales of approximately k ≳ 1/ma.

We will discuss these DW evolution features in the following content.
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Through the monitoring of the simulation snapshots, the DW energy-releasing

mechanism can be divided into two categories:

(1) Ripples: the process involves a DW self-chopping into a horizon-sized compact DW,

which subsequently collapses while radiating a free axion field in the form of ripples and

heating the background axion field. Similarly, a horizon compact DW, which is formed by

the contraction of a super-horizon DW, falls into this category.

(2) Axion clouds: DW energy is released into axion clouds through the flattening motion.

Additional contributions from processes such as sub-horizon compact DW chopping exist,

but they have a relatively minor impact compared to the aforementioned factors. The

collapse of the horizon compact DWs also contributes to the formation of axion clouds.

However, explicit evidence demonstrating its significant contribution is currently lacking.

As we will see in Sec. 7.7, these two energy contributions will be discussed in a mathematical

form with details.

Compared to the VOS model of cosmic strings, where the majority of energy is

released through the formation of loops primarily generated by the interaction of two long

strings [526]. Unlike cosmic string chopping, the chopping from two DWs is unlikely to

happen, and the majority of energy loss is due to the two mechanisms discussed in the

last paragraph. The energy contribution from sub-horizon compact DW self-chopping is

negligible when compared to horizon-scale compact DW self-chopping. Moreover, it is

frequently observed that super-horizon and horizon scale DWs tend to reduce in size by

contraction or self-chopping into sub-horizon compact DWs as shown in the upper-row of

245



ϵ = 0
ϵ = 0.0011
ϵ = 0.0012
ϵ = 0.0013
ϵ = 0.0014

50 100 150 200 250 300 350
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

mat

<
γ
v>

Figure 7.4: The average γv versus mat with varying bias parameter ϵ. The uncertainties
are shown as shadow areas.

Fig. 7.3, as opposed to arising from the collision or chopping of two horizon DWs.

7.5 Domain Wall Velocity

In DW dynamics, its velocity plays an important role in its equation of motion.

We measure the velocity by tracking the movement of the maximum of the axion potential

V (a(x, t)) = Vmax in the simulation. The observed DW velocity is shown in Fig. 7.4 with

varying ϵ. The network is first accelerated due to the pressure difference between the true

and false vacua, then decelerated when the network decays. The peak of each curve thus

locates at about tdecay, see Fig. 7.5, where we show that the comparison of decay time tdecay
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Figure 7.5: Bias parameter ϵ versus axion mass times decaying time matdecay. The red
bars are the decay time calculated by Eq.(7.12) using the fitting result at Eq.(7.11). The
black bars are the peaks in Fig. 7.4.

as defined in Eq.(7.12) and the peak of observed velocity.

To fit the DW velocity function, we consider the following model:

γv =
0.923 ± 0.136

(mat)0.614±0.031
+ αve

−(t−tdecay)2/(2σ2
v), (7.14)

with

αv = (0.241 ± 0.039), and σv = (52 ± 20)
1

ma
.

The Hubble friction, the interaction with the background axion field, and the flattening

motion of the DW cause the deceleration of the DW as shown as the first term in Eq.(7.14).
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This term indicates the velocity decrease during the scaling regime. The second term in

Eq.(7.14) indicates the effect of the pressure difference between the true and false vacua in

the decay phase, αv represents the magnitude of the acceleration, σv is the uncertainty in

our observation and the exponential presents that the acceleration stops at about t ≃ tdecay.

The preceding section has centered on scrutinizing the domain wall’s velocity.

This groundwork paves the way for the subsequent sections, dedicated to exploring the

repercussions of domain wall decay, particularly in relation to the emergence of a free axion

spectrum.

7.6 Free Axion Spectral Analysis

We discuss the detail of the spectral analysis for free axion energy density in this

section, which would be the key input for estimating axion dark matter relic density. As

discussed in Sec. 7.3, we estimate the total free axion energy as twice of the masked axion

kinetic energy. We then compute the free axion spectrum according to [109, 507] as

ρa =

∫
dk∂ρa/∂k, with ρa = ⟨ȧ2⟩, (7.15)

where the axion spectrum ∂ρa/∂k is given by

∂ρa
∂k

=
k2

(2πL)3

∫
dΩk|˜̇a(k)|2, (7.16)
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Figure 7.6: Free axion energy density spectrum ∂ρa/∂k as a function of physical momentum
k, assuming the bias parameter ϵ = 0.0011. The early to later spectrum is shown as blue to
red. The spectrum can be split into three Gaussian distributions as shown as dashed gray
curves corresponding to the 3 contributing terms in Eq.(7.17). From low k to higher k, these
three Gaussian distributions present the energy density from misalignment (k/ma ≲ 0.2),
free axions radiated by compact DW self-chopping, and collapsing (k/ma ≲ 1), and the
small structure axion field such as the axion clouds with the resonance at (k ∼ O(ma) ),
respectively. The smaller k < 0.01ma region is lacking data because of the simulation lattice
size, and higher k has been cut at Nyqvist frequency as discussed in Sec.7.6.

where ˜̇a(k) is the Fourier transform of ȧ(x), L = (N/2)R(t)∆xi is the collected data range,

and the momentum k⃗ ≡ 2πn⃗
L . In addition, we cut off the momentum that is higher than

the Nyqvist frequency kNy = π/(R(t)∆xi) to prevent corrupted data caused by insufficient

resolution.
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In Fig. 7.6 we show the free axion energy spectrum with snapshots for the cosmic

time evolution, using different colors. The dark blue curve (mat = 15) represents the

spectrum when the network just enters the scaling regime, and the red curve (mat = 360)

presents the spectrum near the end of the simulation. We find that the spectrum can be

fitted as a sum of three Gaussian distributions corresponding to distinct physics origins (to

be explained later):

∂ρa
∂k

=

3∑
i=1

∂ρi(Ai, ki, σi)

∂k
, (7.17)

where the labels i = {1, 2, 3} denote the 3 gray-dashed curves from low k to higher in

Fig. 7.6, associated with the first, second, and third peak, as indicated respectively. These

curves are parameterized by

∂ρi(Ai, ki, σi)

∂k
≡ Ai exp−(k−ki)2/σ2

i , (7.18)

where we set k1 ≃ 0 due to the lack of data within k ≤ 0.02, k2 ≃ 0 because the 1st peak

overshadows the relevant data range, and

k3 = (3.68 ± 0.03)ma, (7.19)

which decreases as 1/R(t) after DW decay. We fit the parameters in Eq.(7.17) for each

cosmic time snapshot in Fig. 7.6, then analyze their time dependence in the next section.

The fitting results for the parameters and energy densities in Eq.(7.17) are given in Ap-

pendix.7.10. We have verified the peak by conducting additional tests involving variations
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in the value of ma and lattice spacing, as outlined in the simulation setup section, but the

observation in Eq.(7.19) closely approaches the Nyquist frequency during the later stages

of the simulation, indicating a potential influence of inherent resolution limitations on the

magnitude of the peak.

We observe that ρ1 is in reasonable agreement with the energy density of axions

produced through the misalignment mechanism, specifically, ρ1 ∼ m2
af

2
a/2N

2
DW

2, at the

early stage of simulation, then redshifts like matter. As a result of this redshift, the spectral

line associated with this contribution progressively shifts towards the lower frequencies over

time.

The free axion energy density ρ2 in Eq.(7.15) carries the energy contribution with

the scale k ≲ ma. We attribute this energy to the horizon compact DW chopping, and there

are two reasons for this designation: (1) The energy spectrum of ρ2 coincides with the scale

size of the ripples. (2) ρ2 aligns well with the production process of the compact DW, as

predicted by the DW VOS model (as referred to in DW chopping [515]). It is important to

emphasize that while we observe the self-chopping phenomenon (as discussed in Sec.7.4.2),

it differs from the definition of two DWs chopping in the VOS model. Nonetheless, they

share a similar energy loss form in the equation of motion, as we will see in Sec.7.7.

2Note that the initial condition that sets the axion fields on vacuums seems to exclude the axion energy
from the misalignment mechanism. However, it just stores the energy on the gradient energy budget at the
onset of simulation.
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Additionally, the energy density ρ3 can be interpreted as the contribution from

axion clouds with a resonance at k3. This energy arises from various processes, as discussed

in Sec.7.4.2. We anticipate that the primary contribution to this energy comes from the

annihilation of fluctuations on the DW surface because the estimation of the energy released

from these fluctuations aligns well with the energy density ρ3 as demonstrated in Sec.7.7.

The energy release mechanisms discussed in Sec.7.4.2 occur in both the scaling

regime and decaying period, and the compact DW collapse is more likely to occur in the

decaying period. In other words, the biased potential significantly accelerates the DW

flattening, contraction, and self-chopping. During the decaying phase, we find that the

production of axion clouds (ρ3) increases by about ∼ 70%, and the radiation for larger

wavelength axion ripples (ρ2) is enhanced by about ∼ 30%, compared to the scaling regime.

The percentage is estimated at time tdecay(ϵ → 0.0012), and by comparing ϵ = 0.0012 and

ϵ = 0 scenarios.

7.7 Model for Domain Wall Evolution

In this section, we present the coupled evolution equations for the energy densities

of the DW network and of the free axions emitted from the DWs. The two components

of axion energy densities sourced by different DW dynamics, ρ2 and ρ3, as identified via

spectral analysis and monitoring simulation evolution in Sec.7.4.2 and Sec.7.6, are key

inputs in this section. Here we will quantitatively model these contributions by numerically

fitting simulation data. We have found the time-dependence of energy densities ρ2 and ρ3

in Sec.7.6, we further fit them into the DW evolution equations in this section.
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We first generalize the DW evolution equation in the VOS model for a stable DW

network [515, 514] as follows:

dρDW

dt
= −(1 + 3v2)HρDW − dρDW

dt

∣∣∣∣∣
to2

− dρDW

dt

∣∣∣∣∣
to3

, (7.20)

where the right-hand side of the equation represents, in order, the redshift effect, the DW

energy loss to ρ2 and ρ3, respectively. Here we have reasonably assumed that the final form

of DW energy release is axions, as gravitational wave radiation albeit inevitable, is expected

to be subleading.

By energy conservation, the latter two terms in Eq. 7.20 also enter the evolution

equations of the free axions, which is essential for solving axion relic abundance. As revealed

via the spectral analysis based on simulation results, free axion production from DWs can

be roughly divided into two kinetic regions associated with distinct DW dynamics, corre-

sponding to ρ2, ρ3. It is thus reasonable to consider the evolution of ρ2 and ρ3 components

separately, then sum up their solution for the total axion abundance. We first write down

the evolution equation for ρ2, which originated from the collapse of compact DWs:

dρ2
dt

= −3Hρ2 +
dρDW

dt

∣∣∣∣∣
to2

, (7.21)

where the 3H reflects the finding that this spectral component of axions generally has a

longer wavelength and behaves like cold matter. The second term on the right-hand side

reflects energy conservation and the aforementioned reasonable assumption that the DW

energy release 100% goes to axions. As the second term descends from the formation of
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compact DWs through DW self-chopping, we can explicitly model its evolution as follows:

dρDW

dt

∣∣∣∣∣
to2

= c̃vv
ρDW

LDW
, (7.22)

where the self-chopping efficiency parameter, c̃v, can be modeled as

c̃v ≡ cvγ
cγA−3/2

F , (7.23)

with

cv = 0.36+0.07
−0.03, cγ = 1.36+0.13

−0.18, (7.24)

where LDW = σDW/ρDW is the DW correlation length. The value of the parameters cv, cγ

and the power of −3/2 in AF are calibrated by the simulation data as shown in Fig. 7.6.

AF is the area fraction parameter:

AF ≡ Av(ϵ)

Av(ϵ→ 0)
. (7.25)

where Av is defined in Eq.(7.11). In the non-relativistic and stable DW limit, γ → 1 and

ϵ → 0, the Eq.(7.22) approaches the expression cvv
ρDW
LDW

which was used to describe the

energy loss resulting from the intersection of DWs, which leads to the creation of compact

DWs that eventually collapse. This term is originally introduced by Kibble in the context

of the cosmic string network [526], and later applied to the DW VOS model [515] for two

DWs chopping. We slightly modify its physical interpretation to self-chopping and utilize

254



it to explain our data (see Fig. 7.7). The factor A−3/2
F captures the simulation finding that

compact DW production is more efficient during the decay phase, vρDW/LDW represents the

likelihood of DW self-chopping, and γcγ indicates that an accelerated DW velocity increases

the rate of self-chopping.

We further roughly estimate the solution of ρ2 by solving the axion radiation

equation Eq.(7.21) numerically as

ρ2R
3(t) ≃ 2c̃vvρDW

∣∣∣∣
ϵ→0, t→tdecay

, (7.26)

where the DW network stops supplying the energy to ρ2 at tdecay, and substitutes ϵ → 0

into ρDW in Eq.(7.9), then the free axions redshift like matter afterwards. This estimation

can be understood as energy conservation.

Next, we consider the evolution equation for the component of ρ3, mostly due to

the axion clouds production from the DWs. By analogy of Eq. 7.21 for ρ2, we have:

dρ3
dt

= −λ3Hρ3 +
dρDW

dt

∣∣∣∣∣
to3

, (7.27)

where λ3 represents the time-dependent redshift of this component of axion energy den-

sity. As shown in the spectral analysis, at production these axions are on average (semi-

)relativistic with a shorter wavelength, thus radiation-like and λ3 ≃ 4; then the axions cool

down and become matter-like with λ3 = 3 3. For simplicity, we use the following function

3The radiated axions can be understood as hot axions whose kinetic and gradient terms dominate their
total energy. We have confirmed through simulations that for an axion field with initial conditions where
the time derivative (θ̇), the spatial gradient (∇xθ), and the wavenumber (k) are all greater than ma, (where
θ = a(x)/fa), and ignorable potential energy, i.e., the kinetic and gradient components dominate. In this
scenario, the total energy density redshifts like radiation, and the energy oscillates harmonically between
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for λ3 to fit the spectrum,

λ3 =


4 for t < tdecay,

3 for t ≥ tdecay.

(7.28)

Note that the λ = 3 period dominates the energy contribution due to the definition of

tdecay at Eq.(7.12). The evolution of DW energy loss that leads to this component of axion

production can be modeled as (to be explained later):

dρDW

dt

∣∣∣∣∣
to3

=
1

2

d

dt

[
ρDW(1 − v2)cf2

(ma

H

)cf1(1−AF )
]
,

≡ 1

2

d

dt
FA(t), (7.29)

where the parameters are calibrated by simulation data as:

cf1 = 0.44+0.20
−0.20, cf2 = 3.61+0.90

−0.98. (7.30)

Similar to the case of ρ2, the numerical solution of Eq. (7.27) can be roughly estimated as

ρ3R
3(t) ≃ FA

∣∣∣∣
ϵ→0, t→tdecay

. (7.31)

We have chosen the model fitting form given by Eq. (7.29) for the following reasons.

Firstly, the energy of the perturbation per unit area of the DW increases with the scalar

(axion) mass ma as estimated in [527]. Additionally, the total area of the horizon-sized DWs

the kinetic and gradient components. As the potential energy becomes comparable to the total energy, it
starts diluting as matter-like (freezing at V (a) ∼ m2

af
2
a when it becomes sub-dominant).
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within a horizon decreases as H increases, and it is expected that the energy loss of DWs

is greater for higher overall DW energy density ρDW. These considerations are captured by

the variables 1/H, and ρDW, respectively, along with their functional form in Eq. (7.29). In

addition, the power of cf1(1−AF ) renders the dimensionless parameter ma/H negligible in

the scaling regime, which captures the fact that the DW fluctuations release energy becomes

more significant during the decay period. We also introduced a simple velocity dependence

into Eq. (7.29), which implies a significant contribution to ρ3 occurs at the deceleration

period in Fig. 7.4 i.e. the decay period of DW.

It is important to highlight that the term described in [221], representing the axion

radiation resulting from surface fluctuations of the DWs, does not align well with the axion

spectrum depicted in Fig. 7.6 of our simulation. This discrepancy may be attributed to

the utilization of the PRS algorithm [513] in [221], which can inaccurately model the DW

dynamics at small-scale structures, as pointed out in [389].

Furthermore, there are other potential sources of this discrepancy. Firstly, ρ3 en-

compasses not only the radiation from surface fluctuations of the DWs but also contributions

from, for instance, horizon compact DW collapse that leads to the heating of axion clouds,

as discussed in Sec.7.4.2. Secondly, in the later stages of the simulation, the observations

of the scale of ρ3 come close to the Nyquist frequency, which may result in considerable

observational uncertainties, as discussed in Sec.7.6.
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𝑚𝑎t

Figure 7.7: The energy density of the second Gaussian fitting function as given in Fig. 7.6
and Eq.(7.17) where we fix ϵ = 0.0012. The black curve presents the prediction of energy
loss model Eq.(7.21).

This section introduces coupled equations for DW network and free axions from

DWs, using ρ2 and ρ3 from spectral analysis. The DW evolution equation, considering

redshift effects and energy loss to ρ2 and ρ3, highlights the DW-axion relationship. Separate

ρ2 and ρ3 equations detail DW self-chopping and axion cloud production. This illustrated

free axion generation, which we delve into its application in the next section.
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Figure 7.8: The energy density with ϵ = 0.0012 for the third Gaussian fitting function as
given in Fig. 7.6 and Eq.(7.17). The blue curve presents the prediction of energy loss model
Eq.(7.27).

7.8 Cosmological implication

In this section, we will estimate the contribution of DWs to the relic density of ax-

ions based on the results obtained in earlier sections and present the viable parameter space

of our model. We will apply our result to the NDW = 2 ALP model (see Eq.(7.2)) with pre-

inflationary PQ symmetry breaking as a concrete example. We then present an illustrative

analysis that includes the contribution of cosmic strings to the axion relic abundance in the

Appendix.7.9.
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Furthermore, the contribution of the standard misalignment mechanism to the

axion relic density is found to be ignorable (ρmis/ρDW < 1%, where ρmis is axion energy

density from misalignment mechanism, and ρDW is axion energy density from DW decay)

compared to DW’s contribution in our interested parameter space (see also [8]), we thus

neglect its contribution in the subsequent discussion.

The DW contribution to relic axion is given by the solutions of the evolution

equation of motion Eq.(7.21) and Eq. (7.27) in Eq.(7.26) and Eq. (7.31), respectively. The

total axion energy density is ρa = ρ2 + ρ3, which reads

ΩDW
a h2 ≃ 0.116

(
ma

2 × 10−4 eV

)−1.50+0.02
−0.02

×
(

ΛQCD

400 MeV

)2 ( ϵ

10−4

)−1.87−0.35
+0.44

. (7.32)

As shown in Fig. 7.9 where assumed the DW formation at the QCD phase transition (Λ =

ΛQCD) the parameter region that predicts the observed axion DM relic density Ωa = (0.12±

0.0012)h−2 lies in the white area. We also considered the BBN constraint tdecay < 0.01s

[28, 29], and the CMB constraint that DW should decay before photon decoupling because

the DW-produced particle represents DM. In addition, the region (above the black dashed-

line) with a small biased parameter ϵ ≲ 5× 10−3 (see Fig. 7.20 in Appendix. 7.10) indicates

that the DW network has sufficient time to transition into the scaling regime before its

decay.

The limitations imposed upon ALP models are intricately tied to the interplay

between axions and particles within the Standard Model (SM). As an illustration, when

there is no interaction, the parameters ma, Λ, and ϵ remain unconstrained. Hence, it
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becomes justifiable to introduce an interaction, thereby enhancing the predictive capacity

of the model. In this regard, we present two instances of ALP models under constraints,

wherein interactions with SM particles have been incorporated.

To begin with, the introduction of an axion-photon conversion interaction gaγγaFµνF̃
µν ,

where gaγγ denotes the coupling strength, leads to constraints determined by axion helio-

scopes such as the ongoing CAST experiment [528] and the prospective IAXO project [529].

These experiments serve to determine the characteristics of axions originating from the sun.

The resulting bounds roughly limit ma to ≲ 1,eV and gaγγ to ≲ 10−10 GeV−1. Given these

restrictions, Figure 7.9 illustrates a region in the parameter space where the dark matter

relic abundance exceeds ϵ ≥ 3 × 10−9.

Moving forward, a vector-like flavor violation interaction involving axions can be

considered: ceµ
∂νa
2fa

f̄eγ
νfµ, where fe denotes the electron and fµ represents the muon. With

a naive assumption that the mixing coupling ceµ approximate O(1). An upper limit on the

muon decay channel Br(µ+ → e+a) < 2.6 × 10−6, established by the TRIUMF experiment

[530], imposes a constraint on ma of ≲ 0.1 eV. This constraint results in the parameter space

depicted in Figure 7.9, where the dark matter relic abundance is bounded by ϵ ≳ 3× 10−8.

A comprehensive exploration of ALP constraints arising from particle physics experiments

is presented in [183].

Fig. 7.9 also includes a comparison between the results from our study and those

from the previous 2D simulation for the metastable DW by [8, 507]. We use the dashed blue

curve to represent the predicted result 4 of DW contribution to the axion relic abundance

4The authors in [8] used a different notation compared to our Eq.(7.2), here we used a conversion:

Ξ ≃ ϵ
m2

a

2f2
aN2

DW
, where Ξ is the bias parameter that used in Eq.(3.1) in [8].
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as presented in [8]. Both studies have technical limitations that restrict their simulations

to relatively large values of ϵ ≳ O(10−3), and extrapolations are made to smaller ϵ and

different ma values.

Our estimate of the axion relic abundance at ϵ ∼ 10−4 to 10−3 roughly agrees

with that of [8], but a discrepancy becomes increasingly significant as ϵ decreases. This

discrepancy may arise from the differences in the fitting models chosen for DW dynamics,

especially the DW decay behavior Av. This Av controls the energy density of DW and

explains its decaying process, and thus consequently influences the axion production. We

adopt the fitting model described by Eq.(7.11), whereas [8] employs a power-law form

Av ∝ t1−p with a pressure calibration parameter p. This power-law model was investigated

in [523, 9]. They analyze the pressure gap between different vacuums, then conclude that

the collapse of DWs occurs when the pressure in the true vacuum overcomes the one in

the false vacuum, which takes place at tdecay ∼ σDW/∆V ∝ ϵ
ma

, where ∆V represents

the difference in potential between the vacua. However, the fitting model described by

Eq.(7.11) and Eq.(7.12) in our work provides a much better fit to our simulation results.

Those equations are inspired by the mean-field approximation method analysis in [509] as

discussed in Sec.7.2.

In addition, a high non-zero axion field initial velocity (ȧ ≫ fa at 3H(t) ≃ ma)

in kinetic misalignment mechanism [257, 115] can delay the DW formation, and thus po-

tentially increases the axion production from the DW network for given ϵ and ma. Such a

hypothesis can relax the BBN and CMB constraints.
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7.9 The implication of QCD axion string-wall network

In order to estimate the axion energy density generated by cosmic strings, we

employ a conservative estimation outlined in [30]. They simulated the QCD axion cosmic

string evolution with a short-lived DW (NDW = 1) that formatted at the QCD phase

transition. In this section, we consider a string-wall network which can be described by a

combination of the string simulation [30, 111, 109] and the DW simulation in this study.

As discussed in Sec.7.3.2, our simulation result can be applied to the DW domi-

nation period in the QCD axion string-wall network if the two conditions are met:

(1) The DW dominates the string-wall network (t > µ/σDW, see Eq.(7.8)), then have enough

time (∆t ∼ 10/ma) to enter the scaling region before its decay. This condition erases the

string influence on the network and erases the initial field distribution effects after entering

the attractive solution.

(2) Because the QCD axion domain wall thickness is time-dependent as Eq.(7.7) until cos-

mic temperature T = ΛQCD, and our simulation considered a constant thickness. In order

to be consistent, the second condition is that the DW network should be long-lived enough

to enter the scaling region after T = ΛQCD.

We will show these two conditions numerically in later paragraph.

The estimation of string-produced axion energy density in [30, 111, 109] considered

two distinct contributions from cosmic strings: (1) the radiation emitted by cosmic strings

during the evolutionary phase, and (2) the complete decay of the remaining cosmic strings

at the QCD phase transition. The former contribution plays a more significant role in

determining the axion relic abundance, as the production of a single lighter axion (as defined
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in Eq.(7.7) that ma(T ) ∝ T−4) requires lower energy levels during earlier times. The latter

contribution accounts for approximately 50% of the former [30]. It is worth noting that the

string-wall network as we consider involves strings that are attached to walls, and not all of

these strings decay at the QCD phase transition: some persist until later times. Therefore,

the estimation presented in [30] may predict a higher axion abundance from strings in our

specific case.

As shown in Fig. 7.10 that predicts the observed axion DM relic density Ωa =

(0.12 ± 0.0012)h−2 lies in the white area. The BBN and CMB constraints, scaling region,

and a comparison to the early simulation work [521] are discussed in Fig. 7.9 and Sec.7.8.

Furthermore, We present condition (1) as the red line, and condition (2) has been shown as

the green dashed line in Fig. 7.10. The prediction of DW-produced axion relic abundance

is given in Eq.(7.32). Due to the QCD axion string contribution, the constraint on ma is

strictly compared to the pure DW scenario.
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7.10 Supplementary Data

In this section, we provide supplementary data for the following purposes:

• We present a simulation animation for a no biased potential ϵ = 0 in Fig. 7.11. The

right-most and the second-right snapshots clearly present the flattening motion of the DW.

• Axion kinetic energy density spectrum with benchmarks ϵ = 0 and ϵ = 0.0012 are given

in Fig. 7.12 and Fig. 7.13, respectively.

• The model fits for ρ3 with benchmarks ϵ = 0, ϵ = 0.0011, ϵ = 0.0013, and ϵ = 0.0014 are

shown in Fig. 7.14, Fig. 7.15, Fig. 7.16, and Fig. 7.17, respectively.

• The model fits for ρ2 with different benchmarks are shown in Fig. 7.18.

• Fig.7.19 displays the various potential model fit options for the DW velocity ⟨γv⟩ when

ϵ = 0, which corresponds to fitting the first term in Eq.(7.14). The interpolation results

for later times mat ≫ 1 are significantly influenced by different assumptions made about

the data, such as when the network enters the scaling regime. In this particular study, we

assumed that the network enters the scaling regime when Av becomes constant, i.e.mat, as

shown in Fig. 7.2.

• We increase the bias parameter ϵ from 0.002 to 0.005 to verify a limitation of ϵ that

whether the DW network enters into the scaling region before its decay in our simulation.

Fig. 7.20.
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Figure 7.9: Viable parameter region of axion model considering the DW contribution
to axion relic density as estimated by this work. The white region indicates that the
axion relic abundance is sufficient to account for the observed dark matter as measured
by the Planck Observatory (ΩDM = (0.12 ± 0.0012)h−2) [11], taking into account both
the misalignment mechanism and the DW. The width of the white region presents the
uncertainty associated with extrapolation, which expands as ϵ decreases. Above the black-
dashed horizontal line, the DW has not entered the scaling regime before its decay. The
yellow area indicates that the produced axion partially contributes to dark matter, while
the orange area indicates an overproduction of dark matter. The blue-dashed line represents
the prediction ΩDW

a ∝ ϵ−1/2 from a previous simulation study [8]. The black areas have
been excluded by CMB observation as the DWs must decay earlier than the CMB time.
The gray region is excluded by BBN constraint tdecay < 0.01s [28, 29].
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Figure 7.10: Viable parameter region of axion model considering the DW contribution to
axion relic density as estimated by this work. The white region indicates that the axion relic
abundance is sufficient to account for the observed dark matter as measured by the Planck
Observatory (ΩDW = (0.12 ± 0.0012)h−2) [11], taking into account both the misalignment
mechanism, cosmic string [30], and the DW. Above the black-dashed horizontal line, the DW
has not entered the scaling regime before its decay. Above the red-solid curve, if a cosmic
string exists, string tension dominates the network until the DW decay. Below the green-
dashed curve, the thickness of the QCD axion DWs stops contraction before its collapse, as
given by Eq.(7.7). The yellow area indicates that the produced axion partially contributes
to dark matter, while the orange area indicates an overproduction of dark matter. The
blue-dashed line represents the prediction ΩDW

a ∝ ϵ−1/2 from a previous simulation study
[8]. The gray areas have been excluded by CMB observation as the DWs must collapse
earlier than the CMB time. The gray region is excluded by BBN constraint tdecay < 0.01s
[28, 29].
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Figure 7.11: Virtualization of lattice simulation with no biased potential from early cosmic
time to later (left to right). It is more clear to see the flattening motion of the DW on the
right-most and second-right snapshots, in which the DW flats its surface curvature.
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Figure 7.12: Axion energy density spectrum ∂ρa/∂k versus physical momentum k with no
biased potential.
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Figure 7.13: Axion energy density spectrum ∂ρa/∂k versus physical momentum k with
bias parameter ϵ = 0.0012.
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Figure 7.14: The energy density with ϵ = 0 for the third Gaussian fitting function, see
Eq.(7.17). The blue curve presents the prediction of energy loss model Eq.(7.27). We
excluded the data from the early time mat < 100 because its amplitude is too small, and
the fitting result has big uncertainty. The later time data mat > 200 has also been excluded
because the peak of ρ3 is out of kNy , and we are thus not able to fit the model nicely.
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Figure 7.15: The energy density with ϵ = 0.0011 for the third Gaussian fitting function as
given in Eq.(7.17). The blue curve presents the prediction of energy loss model Eq.(7.27).
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Figure 7.16: The energy density with ϵ = 0.0013 for the third Gaussian fitting function as
given in Eq.(7.17). The blue curve presents the prediction of energy loss model Eq.(7.27).
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Figure 7.17: The energy density with ϵ = 0.0014 for the third Gaussian fitting function as
given in Eq.(7.17). The blue curve presents the prediction of energy loss model Eq.(7.27).
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Figure 7.18: The energy density of the second Gaussian fitting function as given in Eq.(7.17)
where we provide a variation of ϵ as marked in the figure. The black curve presents the
prediction of energy loss model Eq.(7.21).
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Figure 7.19: Averaged DW velocity with a relativistic factor < γv > versus mat with
benchmark ϵ = 0. The black error bars are observation data in the simulation. The red
area presents a constant fit. The dashed purple curve fits with whole time ranges. The
dashed green curve fits with mat ≥ 15 which corresponds to the scaling regime. And
the dashed blue curve fits with mat ≥ 20 that excludes the high-velocity data point at
mat ∼ 15 where the network just right entered the scaling regime (see Fig. 7.2, the Av
becomes a constant).
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Figure 7.20: Domain wall area parameter to simulation cosmic time with varying bias
parameter ϵ. All the benchmarks converge to Av = 0.009+0.0012

−0.0012. As the yellow curve,
ϵ = 0.005, the DW enters the scaling regime with a short period 11 ≲ mat ≲ 17, then
decays shortly after. We thus conclude that the DW has enough time to enter the scaling
regime for ϵ ≲ 0.005.
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Chapter 8

Conclusions

We propose a new misalignment mechanism where the axion initial velocity is non-

zero and demonstrate its impact on axion relic abundance based on systematically classified

benchmark cases with a UV model-independent approach. While in many cases Ωa remains

similar to the conventional prediction, it may be significantly enhanced with a large initial

velocity θ̇i or suppressed when θ̇i and θi satisfy peculiar relations. As an outcome of this new

scenario, new viable parameter space for the QCD axion DM opens up, allowing fa both

much above (in the special suppression region identified in IC-II) and much below (with

sufficiently large θ̇i) the conventional ∼ 1011 GeV scale (detailed relations given in Eqs. 3.10-

3.12). Detailed realization of these initial conditions and phenomenological consequences

for both QCD axion and general ALPs are worth further investigation (an example is given

in Appendix. B). Meanwhile, a caveat for the scenario of post-inflationary PQ-breaking is

that, as in conventional misalignment, topological defects’ contribution to Ωa may dominate

over the misalignment contribution, and is worth revisiting to advance and complete our
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understanding of the axion production mechanism [8, 156, 447, 109, 111]. In this thesis and

the following conclusion paragraphs, we will discuss the axion phenomenologies on no only

dark matter relic abundance, but also its topological defect evolution.

Global or axion cosmic strings are well-motivated sources of SGWB, and have

attracted growing interest in the past few years. In this work, we applied the analytical

VOS model in solving the evolution of a global string network over the course of cosmic

history and illustrated the procedure of calculating the resultant GW signals with great

detail. We demonstrated how our VOS model parameters were calibrated by simulation

data which are most reliable for the early time of evolution N ≲ 7, and commented on

the compatibility between VOS model prediction and simulation results found by various

groups. We found that the deviation from the scaling property as found by some simulation

studies can be consistent with conventional VOS model prediction in the early regime of

3 ≲ N ≲ 7, but the simple extrapolation of such a non-scaling behavior to large N or

late times contradicts the conventional VOS model. Nevertheless, we also investigated how

the SGWB signal would alter if the non-scaling does persist to late times, and suggested

a possible revision to the VOS model that addresses this difference which can lead to a

GW signal prediction consistent with that given in [15] based on simulation. While it will

take time to resolve the discrepancies among different simulation data sets as well between

VOS model prediction and some simulation results, our methodology of analysis and related

discussions are timely complements to the literature and can be further improved/updated

in light of future developments.
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Our main results are presented following the standard VOS model and analytical

calculation of SGWB by summing over harmonic modes and taking into account the signif-

icant effect of Goldstone emissions. In light of the recent findings on the important effect

of high k modes for NG strings, we summed over 105 modes in all our analyses, leading to

updated spectra relative to our earlier results in [156]. We first demonstrated the results

assuming standard cosmology, and then considered the possible presence of a non-standard

equation of state before BBN, e.g. an EMD or kination, which would lead to a drastic

departure from the standard prediction at high f ranges. Since an indefinitely long kina-

tion period is subject to strong constraints on additional relic radiation energy density from

CMB/BBN data due to a blue-tilted spectrum, we also considered an example where the

kination epoch has a finite window of span and is preceded by an early stage of RD. We

further demonstrated how the presence of new relativistic degrees of freedom in the early

Universe can alter the GW spectrum. We showed the current and projected future sensitiv-

ities of GW detectors in detecting global string signals, and found that a detectable signal

requires the corresponding spontaneous symmetry breaking scale η > 2 × 1014 GeV. Differ-

ent from NG strings, GW amplitude from global strings is very sensitive to η (ΩGW ∝ η4).

The frequency-time (temperature) relation, which is the foundation for the method of GW

cosmic archaeology, takes a very different form for global strings relative to its NG string

counterpart. In particular, there is no Gµ dependence in the f -T relation and the same

f band corresponds to a much earlier emission time for global strings, which enables us

to test the standard radiation era up to T ∼ 108 GeV. We explained the physics behind

the notable differences between SGWB from global strings and from NG strings, where the
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strong rate of Goldstone emission and the consequent short lifetime of global string loops

play an important role. As we have discussed in detail in the previous sections, the global

string and its decay productions leave an abundant physics in dark matter and gravitational

waves.

We further considered how the GW signal based on our baseline assumptions and

model choices could vary with alternative possibilities. We studied the effects of different

loop distribution patterns, the uncertainty in the radiation parameters (Γ, Γa), as well as a

persisting non-scaling regime during the string network evolution. For example, by adopt-

ing the suggested non-scaling solution with ξ ∝ N while assuming c̄v̄∞ ∝ N−1/2, we found

that the predicted GW frequency spectrum (including the log4 relation) can be consistent

with the simulation-based finding in [15]. We also briefly discussed the prospect of distin-

guishing a SGWB sourced by global strings from other cosmogenic sources or astrophysical

background.

It is worth noting the importance of studying GWs from global/axion strings

in light of its connection to axion physics (for QCD axion or general axion-like particles

(ALPs)). Axion strings are indispensable companions of axion particles when the U(1)PQ

symmetry breaking occurs after inflation. The detection of axion particles is being actively

pursued, but the prospect is model-dependent due to the uncertainty of the interaction

between the SM and the axions. The prospect would be particularly dim in the case of the

hidden axion scenario (e.g. motivated by the string axiverse [531]) where non-gravitational

coupling is absent. Thus, the universal GW signal from axion strings could be the smoking-

gun for the underlying axion physics. While our current work focused on the simpler case of
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pure global strings with massless Goldstones, the methodology and results are relevant for

the massive axion case. The GW spectrum from axion topological defects at high frequencies

is expected to be dominated by cosmic strings, while at a low frequency corresponding to a

QCD(-like) phase transition when the domain wall forms, the signal is expected to change

form and die down. The recent work based on extrapolating simulation results to late times

shows such a pattern [15]. It is intriguing to apply our analytical approaches to the more

complex axion scenario including domain wall contributions, which will be pursued in future

work.

We proposed that SGWB originating from the cosmic string network can be used to

test the Hubble tension solution EDE. EDE behaves as dark energy in the early universe,

then begins to dilute at the critical scaling factor ac ∼ 10−4 with total energy density

fraction fEDE ≳ 1%. It influences cosmic string SGWB by accelerating and decelerating

universe expansion rate ȧ(t) due to a dark energy-like equation of state ωϕ = −1 and

diluting faster than or equal to radiation-like component ωϕ ≥ 1/3, respectively. The

decelerated universe expansion rate locally increases cosmic string GW frequency spectra

with magnitude 0.1% to 1% in the frequency range 10−5 to 10−3 Hz which is within LISA

sensitivity. And on the other side, the acceleration reduces spectra with magnitude ∼ 5% in

the lower frequency region f ∼ 10−9 Hz, within the SKA search region. We also showed that

EDE-influenced signals were stronger than LISA and SKA experimental noise background,

and hence detectable. Such spectral shapes are distinguishable from other SGWBs sourced

by cosmological or astrophysical objects. Thus, GW detection provides a possibility to

probe EDE.
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We demonstrated that in the framework of KMM there is a large parameter space

of axion dark matter with 10−22eV ≲ ma ≲ 10−19eV that can address the JWST excess

while being compatible with all existing constraints. The delayed onset of the axion field

oscillation in KMM allows for efficient axion field fragmentation at subhorizon scales. The

fragmented axion field collapses into a large population of massive ACs, which leads to more

massive galaxies at high redshift, and thus can potentially address the excess observed by

JWST. Upcoming experiments can provide complementary probes for the ALP parameter

range favored by the JWST excess. Near-future Lyman-α forest surveys such as Weave-

QSO [532] or DESI [533, 534] will extend the scales on which the MPS can be measured

by a further factor of 2 − 3. Future surveys of strong lensing caustics could directly detect

the predicted signature from small halos [535]. We also identified sizable gravitational

scattering in our model parameter space, which enriches small-scale structure formation in

our model that is worth further investigation [441, 442]. In addition to the complementary

astrophysical probes related to structure formation, we demonstrated that the JWST excess

favored parameter region can be probed by existing or planned axion search avenues, e.g.

heterodyne, comagnetometer and storage ring experiments, assuming certain patterns of

ALP-SM couplings (i.e. fixed Caγ , CaN ). This study identifies new avenues for probing

axion DM, and would stand as a worthwhile addition to the literature even if the current

JWST excess resolves after further investigation.
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We present an updated investigation into the dynamics and evolution of long-

lived, metastable axion DWs with a DW number of NDW = 2 as a benchmark example.

The study incorporates 3D lattice simulations and a semi-analytical approach based on

the VOS model. Our analysis includes a detailed examination of the axion kinetic energy

spectrum, based on which and monitoring the simulation snapshot, we infer the mechanisms

of axion production sourced by the DWs and the corresponding energy loss mechanisms of

the DWs.

In particular, based on the features in the axion energy spectrum obtained from our

simulation (see Sec7.4.2), we identified two distinct components or kinetic energy regions of

the axions: the shorter wave-length axion clouds with resonance around k ∼ 3.68ma, with

larger impact on the small-scale region in the spectrum; and the longer wave-length axion

ripples with k ≤ ma. These two features are sourced by different DW dynamics. The axion

clouds primarily arise from the flattening motion of the horizon-scale DWs, which motion

annihilated the fluctuations on the DW surface and then heats the background axion fields.

On the other hand, the wave-like axion ripples are mostly generated by the collapse of the

horizon-sized compact DWs which are formed by the self-chopping process of DWs.

Based on these identified features and the corresponding sources, we derive equa-

tions governing the evolution of the DWs, building upon the VOS model while extending

it to incorporate the decay phase of the DWs. The DW equation is coupled to the axion

evolution equations by energy conservation. By solving these equations, we determine the

present-day relic abundance of axions. While our findings align with some earlier litera-

ture, notable differences arise and are thoroughly discussed. Particularly, our prediction
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for Ωa(ma, ϵ) takes a different form compared to the results found in [8, 507], as shown in

Eq.(7.32) and Fig. 7.9. This discrepancy, which is caused by the mathematical fitting model

for DW area evolution Av, potentially has significant implications for axion dark matter

physics and complementary probes. We predict more relic axion energy from the DW decay

process on the ϵ ≲ 10−6 range.

While we directly simulated the axion model using the potential described in

Eq.(7.2), we have demonstrated that the results can be applied to ALP models and the QCD

axion string-wall network, with a bias parameter ϵ ≲ 10−3−10−4 that ensure DW thickness

is a constant before DWs decay away, and can be generalized to more general ALPs, see

discussion in Sec.7.3.2 for the application conditions, and Sec.7.8 and Appendix. 7.9 for

a numerical result of the application for ALP DW and QCD axion string-wall networks,

respectively.

Notably, our study improves upon existing literature by including the biased term

in the 3D field simulation without relying on approximations such as the PRS algorithm. To

ensure efficient simulation with this more accurate treatment, we focus on the benchmark

case of NDW = 2 and decouple the radial mode, which is a reasonable assumption for the

relevant time range of DW formation. It is worth exploring further by considering NDW > 2

and simulating the complex scalar field. The dynamics of DWs identified in this study can

provide new insights into axion-like DWs and other types of DWs, such as those arising

from GUT models. The updated results on axion DW dynamics presented here also have

implications for astrophysical observables related to axion physics, including gravitational

wave signals from axion DWs and the formation of axion minihalos as relic overdense energy.
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Gottlöber, Gustavo Yepes, and Ryan Endsley. The Universe at z > 10: predictions for
JWST from the UNIVERSEMACHINE DR1. , 499(4):5702–5718, December 2020.

[405] Stephen M. Wilkins, Aswin P. Vijayan, Christopher C. Lovell, William J. Roper,
Dimitrios Irodotou, Joseph Caruana, Louise T. C. Seeyave, Jussi K. Kuusisto, Peter A.
Thomas, and Shedeur A. K. Parris. First light and reionization epoch simulations
(FLARES) V: the redshift frontier. , 519(2):3118–3128, February 2023.

[406] Charlotte A. Mason, Michele Trenti, and Tommaso Treu. The brightest galaxies at
cosmic dawn. , 521(1):497–503, May 2023.

[407] Christopher C. Lovell, Ian Harrison, Yuichi Harikane, Sandro Tacchella, and
Stephen M. Wilkins. Extreme value statistics of the halo and stellar mass distribu-
tions at high redshift: are JWST results in tension with ΛCDM? , 518(2):2511–2520,
January 2023.

[408] Michael Boylan-Kolchin. Stress Testing ΛCDM with High-redshift Galaxy Candi-
dates. arXiv e-prints, 8 2022.
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