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ABSTRACT

Renormalization group flow of the U(1) lattice gauge theory with staggered fermions
is studied by the Migdal-Kadanoff renormalization group method. The phase structure is
extensively investigated. It is shown that an induced four fermi coupling term becomes
relevant in the strong gauge coupling region while it becomes irrelevant in the weak gauge
coupling one. The chiral order parameter and the anomalous dimension of the fermion

mass operator are calculated.

The Migdal-Kadanoff renormalization group (MKRG) method "? is an approximate
but suitable tool to get into an essential feature of the lattice gauge models’™® Such a
method may provide us with an important information of the dynamics with the strong
four fermi coupling, and is complementary to Monte Carlo calculations which are currently
providing interesting results’ "> One of the authors (M.L) has recently studied the theory
by incorporating the fermion self-energy to the recursion equation, and found that the four
fermi interaction is in fact induced from the original QED in the strong gauge coupling
1:egion.1 * In the present paper we make an extensive study of its RG flow and the phase
structure.

The main results are as follows. The bare parameter space is divided into two phases,
one being the phase where the four fermi coupling is relevant and another where it is irrel-
evant. Within the former phase, there is a distinction with respect tc RG flow between the
strong and the weak gauge coupling regions. The chiral order parameter shows a transition
separating the two phases. The anomalous dimension v,, of the fermion mass operator is
also calculated by the UT(Unique Trajeci:ory15 ) method® in the chiral symmetry unbro-
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ken phase. It is found that 4, is large at the critical line and monotonically decreases as
one goes off from the critical line, i.e., 4y, decreases monotonically as the gauge coupling
and/or the four fermi coupling Cp become weak.
Migdal-Kadanoff renormalization group transformation

The recursion equations for the MKRG transformation for U(1) LGT with staggered

16,17

fermions are presented s general, RG transformations induce couplings which are
not in the original bare theory. It is then convenient to write here the most general form
of action in the MKRG framework. The lattice action of U(1) gauge group with staggered

fermions ¥ and ¥ is given by

-5 =8,+ 5y,
Sg=-2 Z E(l ~ Rexq(8) )Bqs
plagg=1
S1 =40 3 1u(n)(e+9(m)T(m)$(n + ) + - %(n + p)TL(n)(n)) )

— By Z P(n)9(n)
—Co y_ %(m)Uu(n)b(n + p) $(n + p)UL(n)o(n),

By He
where x, in S; denotes the g-irreducible character of a plaquette variable ; x,(6) = TrU, =
e'? (g =integer, 0 < 8 < 27), and f3, is corresponding bare inverse gauge coupling. The
fermionic action § + contains three bare parameters Ag, Bg and Cy which represent hopping
parameter, mass and four fermi coupling in turn. Positive values of Cy correspond to an
attractive force. €, and . are sign factors (¢4 = —1 and - = +1), and 7,(n) =
(=1)ratmatetmu-1 where n; is the i-th coordinate of the site n. The following convention

for integrating Grassmann variables ¢ and ¥ is employed:

/ dpdyp exp(—pdb + 56 + ) = pexp(%a@. @)

A RG transformation consists of two procedures, the decimation and the bond-moving,
both for the gauge and fermionic degrees of freedom. In each decimation, the gauge degrees
of freedom receive fermion loop corrections, while the fermionic ones contain self-energy
corrections. ,

The recursion equation for the gaunge field® connecting two scales L and AL is given

by

AD-’

F(AL8) = |3 Fy(L) "1 Qq(L)xq(6) (3)
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where F, is coefficient in the character expansion of the plaquette function F(L, ) at scale
L, ’

F(L,8) =) FoL)xq(6), @)
q
where F(L,0) is written in terms of the gauge couplings as
F(L,6) = F(L,0) exp{~2 3 (1 — Rex(6))8o(L)}- ()
g=1

While @, is the coefficient in the expansion of Q(L,8), which represents the contribution
from the innermost plaquette in Fig.1 receiving the fermion loop correction with N; flavors
(vacuum polarization). A RG transformation is thus completed by the bond-moving as
is represented by the exponent AP~? in (3), which is the contribution from the D — 2
directions perpendicular to the plane on which the plaquette in question is sitting.

The Lh.s. of (3) is also represented by the renormalized couplings {8,(AL)} at scale

AL in the same manner as (5)

F(AL8) = FOZ,0) exp{=2 3 (1 - Rexa(9))B,(AD)}. ©)

g=1

Therefore, by solving (3) and (6) one obtains the recursion equation for the gauge coupling
{B4(L)} — {B,(AD)}-

Through fermion decimation( Fig.2(a)) '* we obtain fermion parameters A(AL), B(AL)
and C(AL) at scale AL from those at L. If we take into account fermion self-energy
correction( Fig.2(b)), we have

- A
Ag(AL) =A(\L) (?) ,

Bg(AL) =B(AL), (M)
- 22
Co(AL) =C(\L) — {1 — (%1) JA(AD)ese. .

The factor Fy/Fy is ~ B at strong coupling regions (8 < 1) and ~ (1 —1/8) at weak
coupling regions(f >> 1). Then Cg receives large (small) effect from fermion self energy
correction in strong (weak) gauge coupling regions. It may be convenient to define nor-
malized parameters M and G rather than using 4, B and C. They are defined by

M = Bg/A(;,G = C(_,'/Aév



Renormalization group flow and phase structure 18
We are now ready to calculate RG flow. Throughout this paper the scale factor A and

the number of staggered fermion Ny are taken to be three and unity, respectively. All the

calculations in this section are made for a sufficiently small fixed value of By (=0.05). Its
extrapolation to By=0 will be discussed in the following section.

Flow of the renormalization group transformations runs in the infinite dimensional
parameter space, ({ By ;g=1~ o0 }, M, G). It may then be convenient to project it to
various subspaces. In what follows we, in turn, see the one projected to the subspaces of
pure gauge (81, 32), gauge and fermion (8;, G) and pure fermion (G, M).

Flow diagram of gauge coupling 8, is shown in Fig.3. We observe critical point
Bic at 2.3 < B < 2.4. For By > Pic, trajectories flow to weaker coupling regions, which
represents “screening” due to vacuum polarization. For §; < ;. , trajectories flow to IR
fixed point B, =0 (g = all).

As to the projection onto the subspace, (8;, G), the RG flow moves as shown in Fig.4.
For each trajectory in the fignre, starting point corresponds to the bare theory with certain
(B1,Co). One clearly sees that the two dimensional subspace (8, Cp) is divided into two
* phases in view of the manner of the movement of the G. For small §; and all allowed Cy
values, trajectories move up to large G region very quickly. This feature is seen up to the
critical point ;.. In the weak gauge coupling region beyond f31., trajectories. move up
first but eventually go down to small G for small Cy values, while for large Cy values the
trajectories move up quickly to the large G region. Namely, in between strong and weak
four fermi coupling regions, a critical line runs (see Fig.7).

Keeping the above feature in mind, let us now see the behavior of the trajectories
in the fermionic parameter subspace (M, G); For small 8;(< B1.);

(1) In the very strong coupling region 8:(< 1.0), a range of bare theories in different §;
and Cp values moves on to a scaling trajectory as seen in Fig.5. The functional form
of the trajectory reads G o« M? for large M and G values.

(2) As B3, increases beyond 1.0, the flow starts to deviate from such a trajectory, and the
slope of the trajectory becomes smaller in the logG-logf plot.

For large 31(> Bic), the behavior is quite different from the one for small Sy;

(1) For large bare Cy values, the trajectories move up as shown in Fig.6.

(2) Whereas for small Cy values, flows move down and converge to a single trajectory,
which moves eventually toward G = 0.

(3) In between there exists a critical point C., at which trajectory moves flat.

(4) The locations of both the critical Cy value and the convergent trajectory depend on

chosen #; value. As 3; increases, the value of C. monotonically increases as seen
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in Fig.7. Such a critical line (actually critical surface in the full parameter space)
separates the parameter space into chiral symmetry unbroken(weak four fermi side)
and broken(strong four fermi side) phases. Similar critical line is found also in the
analysis of Schwinger-Dyson equation of quenched Q,ED.19
(5) On the other hand, the value of G of the convergent trajectory at sufficiently large M
decreases, as the bare (3; increases. '
In Fig.7 the two phases are labeled by I (chiral symmetry broken) and IT (unbro-
ken). Within the chiral symmetry broken phase I , we found a distinct behavior between
strong and weak bare gauge couplings. Trajectories for large bare §; values move very
slowly toward larger B; value, while those for small By converge rapidly to the fixed point
at B, = 0. This appears to suggest that there is a phase boundary between the two regions.
We then distinguish the weaker gauge coupling side from the stronger one by naming it
the domain III, as indicated in Fig.7. II and III are then connected to the chiral symmetry
unbroken and broken phases, respectively , in the Nambu-Jona-Lasinio model?’
Chiral order parameter < —3 > is calculated from the pariition function Z by

- -1
(¢¢>Bo = N

0z

v (23577, @
and by taking linear extrapolation to By = 0. N,;. denotes the total site number, A*?,
with t and D being the number of RG iterations and the space time dimension(=4 in our
case), respectively. The result is shown in Fig.8. We observe that < —%% > at strong
gauge couplings is much larger than that at weak ones. In the weak gauge coupling région,
however, < —3 > is not exactly zero. Subtracting the value (= 5 x 10~5 ) at large f1,
therefore, it can be fitted by an essential singularity form aexp(—v/+/B. — B1). The result
is insensitive to the assumed value of 8.. For example, a case for 8.=2.3 is shown in the
figure.
Anomalous dimension

We will discuss the anomalous dimension of 9. Fig.9 shows RG flow for various
small values of bare mass By in the symmetric phase (or domain II). One sees that all
bare theories (for Co = 0) with these different values of By converge to single trajectory.
Therefore the unique trajectory method applies in order to get the anomalous dimension of
¥%. That is, one sets up a gate on the trajectory , and then count the number of steps ¢g of
RG transformations necessary to reach the gate from various bare points. The scale at the
gate g and the lattice constant a of a bare point is related by loga = —tglog A +logég.
We found

log Bg ~ —C(ﬂl)tG -+ d(ﬂl), (9)




and its slope ¢((;) increases as 3; becomes larger. The ¢(3;) is calculated to be 0.37,
0.28, 0.19 and 0.14 for 8,=2.5, 3.0, 5.0 and 10.0 in order. This slope gives essentially the
anomalous dimension of ¥ as follows.

The anomalous dimension 7,, is defined by

__Ologme(A)

m T a1 a3 1
7 dlog A (10)

where mg is a dimensionful bare mass, and A denotes an ultraviolet cut-off. In the lattice

notation, (10) reads v, = o_lg%éﬂ — 1, since mqg(A) = Bo(a)/a and A=1/a. vy, is also

represented as

_ -1 (910g Bo
T = g Bte (11).
For 31 values in guestion, (9) leads to
Tom 2 c{B)log A — 1. (12)

For A = 3, vy, reads —0.22, —0.41, —0.61 and —0.71 for B;=2.5, 3.0, 5.0 and 10.0 in turn.
This result seems queer, since it is expected that v,, is positive and becomes vanishing as 4,
goes to infinity, where the theory becomes free. Thisis due to the quantitative roughness of
the approximation. In the free theory, for example, the mass M ought to change to AM by
a scale transformation by A. However, in the MK framework, or rather generally in approx-
imated RG transformations, M does not transform pl:operly4 but by A.t; (£ ). Therefore
we normalize 4., in (12) so that v, = 0 is correctly reproduced in the weak gauge coupling
limit. Namely, we take A to be A.;; which is fixed at a large ;. We choose 8; = 10.0 (some
other choice, say, #; = 15.0 does not make much difference ). The estimated value of A 4y is
1.39. This leads to v, = 1.64, 1.0, 0.36 and 0.0 for 8; = 2.5, 3.0, 5.0 and 10.0 (see Fig.10).
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FIGURE CAPTIONS

Gauge plaquette decimation. The vacuum polarization is contained. Crosses denote

the fermion decimations.

. (a)Link function. (b)Fermion self-energy correction.

. Flow diagrams of gauge coupling constants projected onto (31, 3;) plane.

. RG flow projected onto 3;-G plane.

. RG flow projected onto M-G plane. Strong gauge coupling case with §; = 1.0 and
Co=0.0(0), 1.0 (d) and 2.0 (»). Intermediately strong gauge coupling case with g; =

2.0 and C¢=0.0(o), 1.0(+) and 2.0(x). ‘
RG flow projected onto  M-G plane. Weak gauge coupling case with 8; = 5.0 and
Co = 0.0(0), 0.4(1), 0.6(=), 0.9(0) and 1.0(+).

. Phase diagram in $;-Cy plane.
Fig. 8.

< - > vs. B1. Co = 0.0. With fermion self energy correction(o) and without
it(m). The former is fitted by aexp(-y/v/Pic — B1) with B;. = 2.3, a = 18.14, and
v = 12.50(bold line). ,

RG flow projected onto logM-log@G plane for Bg=0.01(c), 0.025(c), 0.05(») and 0.1(+).
B1 and Cj is chosen to be 5.0 and: 0.0, respectively.

Ym vs. By for Cy = 0.0.
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Fig. 3
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Fig. 7.
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