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ABSTRACT 

Renormalization group fl.ow of the U(l) lattice gauge theory with staggered fermions 

is studied by the Migdal-Kadanoff renormalization group method. The phase structure is 

extensively investigated. It is shown that an induced four fermi coupling term becomes 

relevant in the strong gauge coupling region while it becomes irrelevant in the weak gauge 

coupling one. The chiral order parameter and the anomalous dimension of the fermion 

mass operator are calculated. 

The Migdal-Kadanoff renormalization group (MKRG) method 
1

'
2 

is an approximate 

but suitable tool to get into an essential feature of the lattice gauge models~-s Such a 

method may provide us with an important information of the dynamics with the strong 

four fermi coupling, and is complementary to Monte Carlo calculations which are currently 

providing interesting results~- 13 
One of the authors (M.I.) has recently studied the theory 

by incorporating the fermion self-energy to the recursion equation, and found that the four 

fermi interaction is in fact induced from the original QED in the strong gauge coupling 

region~4 In the present paper we make an extensive study of its RG fl.ow and the phase 

structure. 

The main results are as follows. The bare parameter space is divided into two phases, 

one being the phase where the four fermi coupling is relevant and another where it is irrel­

evant. Within the former phase, there is a distinction with respect to RG fl.ow between the 

strong and the weak gauge coupling regions. The chiral order parameter shows a transition 

separating the two phases. The anomalous dimension /m of the fermion mass operator is 

also calculated by the UT(U nique Trajectory 
15 

) method 
5 

in the chiral symmetry unbro-
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ken phase. It is found that 'Ym is large at the critical line and monotonically decreases as 

one goes off from the critical line, i.e., 'Ym decreases monotonically as the gauge coupling 

and/ or the four fermi coupling Co become weak. 

Migdal-KadanofF renormalization group transformation 

The recursion equations for the MKRG transformation for U(l) LGT with staggered 
r . 16

'
17 d 14 I al RG r . . d lin h" h 1erm1ons are presente . n gener , transJ.ormahons in uce coup gs w ic are 

not in the original bare theory. It is then convenient to write here the most general form 

of action in the MKRG framework. The lattice action of U{l) gauge group with staggered 

fermions 1/J and {1 is given by 

00 

Su= - 2 L L(l - Rexq{B) )/3q, 
pla.q q=l 

St =Ao L 1]µ{n)(e:+{l(n)U,.(n)1/J(n + µ,) + e;_{l(n + µ,)UJ(n)'ifJ(n)) 
n.,µ 

(1) 

- Bo L {;(n)'ifJ(n) 

- Co L {;(n)U,.(n)'ifJ(n + µ,) {;(n + µ,)U~(n)-r/J(n), 
n,µ 

where Xq in Sg denotes the q-irreducible character of a plaquette variable; Xq(B) = TrUq = 

eiqU (q =integer, 0 ::; 8 ::; 211"), and /3q is corresponding bare inverse gauge coupling. The 

fermionic action S1 contains three bare parameters A0 , Bo and Co which represent hopping 

parameter, mass and four fermi coupling in tum. Positive values of Co correspond to an 

attractive force. e+ and e;_ are sign factors (e+ = -1 and e;_ = +1), and 17,.(n) = 

(-1 )n.1 +nl+ ... +n.,.-1, where ni is the i-th coordinate of the site n. The following convention 

for integrating Grassmann variables 1/J and {1 is employed: 

(2) 

A RG transformation consists of two procedures, the decimation and the bond-moving, 

both for the gauge and fermionic degrees of freedom. In each decimation, the gauge degrees 

of freedom receive fermion loop corrections, while the fermionic ones contain self-energy 

corrections. 

The recursion equation for the gauge field 
3 

connecting two scales L and >..L is given 

by 
;1.D-l 

F(>.L, 0) ~ [~ F,( L)'°-'<'i,(L)x,(O)l (3) 
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where Fq is coefficient in the character expansion of the plaquette function F(L, 8) at scale 

L, 
F(L,8) = LFq(L)xq(8), (4) 

q 

where F(L, 8) is written in terms of the gauge couplings as 

F(L,8) = F(L,O)exp{-2 L(l -Rexq(8))/3q(L)}. (5) 
q:l 

While Qq is the coefficient in the expansion of Q(L,8), which represents the contribution 

from the innermost plaquette in Fig.1 receiving the fermion loop correction with N1 :flavors 

(vacuum polarization). A RG transformation is thus completed by the bond-moving as 

is represented by the exponent _xD- 2 in (3), which is the contribution from the D - 2 

directions perpendicular to the plane on which the plaquette in question is sitting. 

The l.h.s. of(3) is also represented by the renormalized couplings {.Bq(.XL)} at scale 

.XL in the same manner as ( 5) 

F(.XL, 8) = F(.XL, 0) exp{-2 L(l - Rexq(8))j3q{AL)}. (6) 
q:l 

Therefore, by solving (3) and (6) one obtains the recursion equation for. the gauge coupling 

{.Bq(L)} -t {.Bq(AL)}. 

Through fermion decimation( Fig.2( a)) 
14 

we obtain fermion parameters A( .XL), B( AL) 

and C(.XL) at scale .XL from those at L. If we take into account fermion self-energy 

correction( Fig.2(b)), we have 

Aa(H)=A(U) (;:) ', 

BG(.XL) =B(AL), 

(

- ) 2..\ 

CG(.XL) =C(.XL)- {1 - ~~ }A(AL)c+c-· 

(7) 

The factor i't/Fo is ,....., /3 at strong coupling regions (/3 ~ 1) and ,....., (1-1//3) at weak 

coupling regions(/3 ~ 1). Then CG receives large (small) effect from fermion self energy 

correction in strong (weak) gauge coupling regions. It may be convenient to define nor­

malized para.meters Mand G rather than using A, Band C. They are defined by 



Renormalization group How and phase structure 
18 

We a.re now ready to calculate RG flow. Throughout this paper the scale factor,\ and 

the number of staggered fermion Nt are taken to be three and unity, respectively. All the 

calculations in this section are made for a sufficiently small fixed value of Bo ( =0.05 ). Its 

extrapolation to B0 =0 will be discussed in the following section. 

Flow of the renormalization group transformations runs in the infinite dimensional 

parameter space, ( { /3q ; q = 1 ,..., oo }, M, G). It may then be convenient to project it to 

various subspaces. In what follows we, in tum, see the one projected to the subspaces of 

pure gauge (/31,/32), gauge and fermion (/3i, G) and pure fermion ( G, M). 

Flow diagram of gauge coupling /3q is shown in Fig.3. We observe critical point 

/31c at 2.3 < /31c < 2.4. For /31 > /31c, trajectories flow to weaker coupling regions, which 

represents "screening" due to vacuum polarization. For /31 < /31c , trajectories flow to IR 

fixed point /3q = 0 (q =all). 

As to the projection onto the subspace, (/3i, G), the RG flow moves as shown in Fig.4. 

For each trajectory in the figure, starting point corresponds to the bare theory with certain 

(/31, Co). One clearly sees that the two dimensional subspace (/31, C0 ) is divided into two 

phases in view of the manner of the movement of the G. For small /31 and all allowed Co 

values, trajectories move up to large G region very quickly. This feature is seen up to the 

critical point /31c· In the weak gauge coupling region beyond /31c, trajectories. move up 

first but eventually go down to small G for small C0 values, while for large C0 values the 

trajectories move up quickly to the large G region. Namely, in between strong and weak 

four fermi coupling regions, a critical line runs (see Fig.7). 

Keeping the above feature in mind, let us now see the behavior of the trajectories 

in the fermionic parameter subspace (M, G); For small /31( < /3ic); 
(1) In the very strong coupling region /31 (;:;, 1.0), a range of bare theories in different /31 

and Co values moves on to a scaling trajectory as seen in Fig.5. The functional form 

of the trajectory reads G ex: M 2 for large M and G values. 

(2) As /31 increases beyond 1.0, the flow starts to deviate from such a trajectory, and the 

slope of the trajectory becomes smaller in the logG-logM plot. 

For large fh(> f3v::), the behavior is quite different from the one for small /31; 
(1) For large bare C0 values, the trajectories move up as shown in Fig.6. 

(2) Whereas for small Co values, flows move down and converge to a single trajectory, 

which moves eventually toward G = 0. 

(3) In between there exists a critical point Cc, at which trajectory moves flat. 

( 4) The locations of both the critical C0 value and the convergent trajectory depend on 

chosen /31 value. As /31 increases, the value of Cc monotonically increases as seen 

145 
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in Fig.7. Such a critical line (actually critical surface in the full parameter space) 

separates the parameter space into chiral symmetry unbroken( weak four fermi side) 

and broken( strong four fermi side) phases. Similar critical line is found also in the 

analysis of Schwinger-Dyson equation of quenched QED.
19 

( 5) On the other hand, the value of G of the convergent trajectory at sufficiently large M 

decreases, as the bare /31 increases. 

In Fig. 7 the two phases are labeled by I (chiral symmetry broken) and II ( unbro­

ken). Within the chiral symmetry broken phase I , we found a distinct behavior between 

strong and weak bare gauge couplings. Trajectories for large bare /31 values move very 

slowly toward larger /31 value, while those for small /31 converge rapidly to the fixed point 

at /3q = O. This appears to suggest that there is a phase boundary between the two regions. 

We then distinguish the weaker gauge coupling side from the stronger one by naming it 

the domain III, as indicated in Fig.7. II and III are then connected to the chiral symmetry 

unbroken and broken phases, respectively , in the Nambu-Jona-Lasinio model?
0 

Chiral order parameter < -{np > is calculated from the partition function Z by 

- -1 [ 8Z ] (1/n/J)Bo = -N. llB /Z , 
ute• U O ·Bo 

(8) 

and by taking linear extrapolation to B0 = 0. N,ite denotes the total site number, AtD, 

with t and D being the number of RG iterations and the space time dimension( =4 in our 

case), respectively. The result is shown in Fig.8. We observe that < -{np > at strong 

gauge couplings is much larger than that at weak ones. In the weak gauge coupling region, 

however, < -{np > is not exactly zero. Subtracting the value (~ 5 x 10-5 ) at large /31 , 

therefore, it can be fitted by an essential singularity form aexp(-1 / v'f3e - {31). The result 

is insensitive to the assumed value of f3e· For example, a case for f3e=2.3 is shown in the 

figure. 

Anomaloua dimenaion 

We will discuss the anomalous dimension of {np. Fig.9 shows RG fl.ow for various 

small values of bare mass Bo in the symmetric phase (or domain II). One sees that all 

bare theories (for Co = 0) with these different values of Bo converge to single trajectory. 

Therefore the unique trajectory method applies in order to get the anomalous dimension of 

{np. That is, one sets up a gate on the trajectory, and then count the number of steps tG of 

RG transformations necessary to reach the gate from various bare points. The scale at the 

gate fo and the lattice constant a of a bare point is related by log a = -t G log .A +log fo. 
We found 

log Bo~ -c(f31)tG + d(/31), (9) 



and its slope c(,Bi) increases as ,81 becomes larger. The c(,Bi) is calculated to be 0.37, 

0.28, 0.19 and 0.14 for ,81 =2.5, 3.0, 5.0 and 10.0 in order. This slope gives essentially the 

anomalous dimension of {n/l as follows. 

The anomalous dimension Im is defined by 

8logmo(A) 
Im= - 8logA ' (10) 

where mo is a dimensionful bare mass, and A denotes an ultraviolet cut-off. In the lattice 

notation, (10) reads Im= 81~~,!0j") -1, since mo(A) = Bo(a)/a and A=l/a. Im is also 

represented as 
Im=-=!:_ 8log Bo _ l 

log A 8tG 

For ,81 values in question, ( 9) leads to 

Im ~ c(,81)/ log A - 1. 

(11). 

(12) 

For A= 3, Im reads -0.22, -0.41, -0.61 and -0.71 for ,81=2.5, 3.0, 5.0 and 10.0 in turn. 

This result seems queer, since it is expected that Im is positive and becomes vanishing as ,81 
goes to infinity, where the theory becomes free. This is due to the quantitative roughness of 

the approximation. In the free theory, for example, the mass M ought to change to AM by 

a scale transformation by A. However, in the MK framework, or rather generally in approx­

imated RG transformations, M does not transform properly 
4 

but by Aet f ( ::f: A). Therefore 

we normalize Im in (12) so that Im = 0 is correctly reproduced in the weak gauge coupling 

limit. Namely, we take A to be Aett which is fixed at a large ,81. We choose ,81 = 10.0 (some 

other choice, say, {31 = 15.0 does not make much difference ). The estimated value of Aef f is 

1.39. This leads to I= = 1.64, 1.0, 0.36 and 0.0 for ,81 = 2.5, 3.0, 5.0 and 10.0 (see Fig.10). 
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FIGURE CAPTIONS 

Fig. 1. Gauge plaquette decimation. The vacuum polarization is contained. Crosses denote 

the fermion decimations. 

Fig. 2. (a)Link function. (b)Fermion self-energy correction. 

Fig. 3. Flow diagrams of gauge coupling constants projected onto (/31,/32) plane. 

Fig. 4. RG :flow projected onto /31-G plane. 

Fig. 5. RG :flow projected onto M-G plane. Strong gauge coupling case with /31 = 1.0 and 

C0 =0.0(o), 1.0 (a) and 2.0 (.c..). Intermediately strong gauge coupling case with (31 = 
2.0 and Co=O.O( <> ), 1.0{ +) and 2.0( x ). 

Fig. 6. RG flow projected onto M-G plane. Weak gauge coupling case with /31 = 5.0 and 

Co= O.O(o), 0.4(a), 0.6(.c..), 0.9(<>) and 1.0(+). 

Fig. 7. Phase diagram in /31-Co plane. 

Fig. 8. < -{np > vs. /31. Co = 0.0. With fermion self energy correction( o) and without 

it( a). The former is :fitted by aexp(--y / y'/31<: - /3i) with /31c = 2.3, a = 18.14, a.nd 

/ = 12.50(bold line). 

Fig. 9. RG fl.ow projected onto logM-logG plane for B0 =0.01( o ), 0.025(a), 0.05(.c..) and 0.1( + ). 

/31 and Co is chosen to be 5.0 and 0.0, respectively. 

Fig. 10. /m vs. /31 for Co = 0.0. 
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Fig. 7. 
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