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Abstract The present study aims to see how gravitational
modification, specifically, the f (T ) gravitational field, where
T is torsion scalar, impacts static fluid content with hyper-
bolic symmetry and electromagnetic field. We enlarge Her-
rera’s strategy (Herrera et al. in Phys Rev D 103:024037,
2021) to analyze the impact of electromagnetic field on f (T )

gravity. We distinguish the stress–energy tensor by consid-
ering the ingredients of the tetrad field in the Minkowski
co-ordinate frame, commencing with modified field equa-
tions. With the advent of negative density, this sort of fluid
is supposed to surpass extreme physical conditions, enabling
quantum impacts to be detected. We calculate a viable formu-
lation of mass utilizing the Tolman mass from the viewpoint
of f (T ) gravity along with the electromagnetic field. The
gravitational interference is repulsive, as made evident by
the negative value of the Tolman mass. Also, we explored
the structure scalars in f (T ) gravity and found significant
solutions in presence of electric charge.

1 Introduction

The recognition of accelerated growth of the cosmos in the
1990s, experienced a major breakthrough. Although general
relativity (GR) is a very effective paradigm, it incorporates
substantial drawbacks, such as the failure to comprehend and
interpret dark matter (DM) and dark energy (DE) [2,3]. The
escalating conflict about indirect and direct estimations of
the Hubble parameter [4–6] and the cosmic constant issue [7]
have boosted interest in investigating feasible adaptations of
GR and the λCDM model. The latest photograph of gigan-
tic black hole’s image in the core of the galaxy M87 [8] as
well as the latest finding of gravitational radiation [9] have
enhanced the ability of investigating what gravity works in
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a massive domain. This impact could also be employed to
examine GR and look for feasible impacts in modified grav-
ity. In this regard, many of the most efficient approaches
to the foregoing difficulties are grounded on the expansion
and adaptation of GR. It should be emphasized that certain
approaches are highly effective not just in the perspective of
the aforesaid cosmic growth, but also in other aspects of cur-
rent cosmology. Furthermore, the conventional GR cannot
be altered in terms of quantum theory, but this problem can
be resolved with the aid of higher-curvature components in
gravitational-action.

The need of the modification of GR has been well-drafted
via some reviews on alternative gravities [10–14]. The idea
we’re addressing in this study is relevant to nominal telepar-
allel gravity (TG) theories. In this context, the torsion tensor
is associated with the gravitational intensity but the curvature
tensor has zero value [15]. In this paradigm, the teleparallel
in equivalence of GR (TEGR) is a special framework with
the analogous equations of GR. TEGR is the Einstein’s the-
ory that unites the electromagnetic and gravitational fields
[16,17]. Using the energy–momentum tensor, the TEGR
approach might be used to compute the conserved compo-
nents, angular-momentum, and mass [18]. The fundamental
justification for altering the TEGR framework was the recent
appearance of problems in findings that TEGR could not
answer [19]. This theory can then be adjusted, and many
modified TG frameworks have been proposed and examined
in recent years. The f (T ) gravity [19,20], in which T is the
scalar torsion, is a prominent example, is the alternation of
the TEGR framework. Not only inflation in the primordial
universe [19], but late-time cosmological expansion [21–23]
might be addressed using this idea.

We focus on f (T ) gravity for a variety of purposes,
along with the notion that the Lagrangian of this frame-
work is purely based on the torsion scalar, allowing it sim-
ple to accomplish than other modified approaches of gravity
[12,24]. A further key aspect is that, apart from the numer-
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ous different modified approaches, modified field equations
(MFEq’s) are of second-order [25,26]. This notion has been
the subject of numerous studies in a variety of contexts (as in
cosmological and astrophysical domains). Following confor-
mal transformation, Yang [27] observed that the f (T ) gravity
is not dynamically analogous to the TEGR Lagrangian. Meng
and Wang [28] discussed the validity of Birkhoff’s theorem
in f (T ) gravity. They elaborated the concept by studying its
implementation on de-Sitter space-time. Bamba et al. [29]
discussed f (T ) gravity conformal challenges. The de-Sitter
solution is also revealed to emerge under conformal TG.
Geng et al. [30] used observational data to restrict a newly
schemed teleparallel DE strategy rooted on the TEGR, where
a certain canonical scalar field is included, enabling for non-
minimal gravity interaction. They depicted that the concept
is acceptable with observed data using the approaches like
exponential and power-law etc. Bhatti et al. [31–34] studied
the dynamical instability ranges for self-gravitating objects
in f (T ) gravity with planar and cylindrical geometry. The
key findings of their analysis is that in f (T ) gravity, the stiff-
ness parameter plays a vital impact on the stability of celestial
object.

The Schwarzschild-solution (SS) of the Einstein-field
equations (EFEq’s) for null space is the hyperbolically-
symmetric, static and asymptotically-flat solution. The term
“static” refers to that for the time-like vector field, the metric-
tensor please the Killing equations. And the SS please the
time-like Killing vectors of the form χ(0) = ∂t , χ(1) =
∂φ, χ(2) = −cosφ∂θ + cothθsinφ∂φ, χ(3) = sinφ∂θ +
cothθcosφ∂φ . Harrison [35] examined the slightly differ-
ent solutions of EFEq’s from usual ones by considering it
as an outcome of GR. He determined the solutions for null
space by using the separation method. The expressions for 10
degenerate and 20 non-degenerate solutions are found explic-
itly. The geometrical and physical inspections of these thirty
solutions are carried out. Gaudin et al. [36] inspected the SS
of EFEq’s in the appearance of without mass scalar field.
They also investigated the physical properties of null hyper-
bolic spacetime in detail. Stephani et al. [37] studied certain
exact SS for EFEq’s in depth. Rizzi et al. [38] investigated
the model (of empty space) which shows the emergence of
homogenous and continuous classification of matter because
of test particle movement. They further found that no matter
existed as stress–energy tensor vanished. It indicates that the
DM appears as dynamical impact because of space-time cur-
vature. The probability of containing tunnels in hyperbolical-
spacetime is studied by Lobo et al. [39]. They established a
class of degenerate solutions by introducing exotic matter
in hyperbolically symmetric static spacetime. The particu-
lar solutions and physical properties are studied by imposing
specific limitations. The analytical assessment of inhomoge-
neous and spherical solutions of scalar-tensor gravities and
FEq’s is done by Faraoni et al. [40]. This gravity hub consists

of dynamical and static solutions. They presented a connec-
tion between numerous solutions already discussed in the
literature.

During the evolution of stellar objects, the static solutions
of FEq’s have become the topic of vast study, not only in GR
but also in f (T ) gravity. Wang [41] explored static solutions
for f (T ) models including a Maxwell term. He adopted a
particular frame as selection of frames has a great influence
on results in the f (T ) theory. In the chosen frame, he fur-
nished the conditions of several solutions and determined
only a delimited group of f (T ) models. While using the
Weyl coordinates, Houndjo et al. [42] inspected the cylin-
drically symmetric static vacuum solutions in f (T ) back-
ground. They established the set of MFEq’s and found the
general solution as the outcome of constant torsion scalar.
Moreover, they set up the cosmological constant and dis-
cussed the Linet Tian solution in the background of GR. Li
et al. [43] checked the stability of static Einstein universe in
both cases, i.e., open and closed with couple of exponential
f (T ) models. They studied the existence of stable solutions
in the context of f (T ) theory. Atazadeh and Mousavi [44]
imposed new conditions on components of spherically sym-
metric metric and found new vacuum solutions in the con-
text of f (T ) theory. They settled the analytical formation
of f (T ) theory by eliminating coefficients of metric. Using
anisotropic fluid configuration, Sharif and Rani [45] explored
the static spherically-symmetric wormhole solutions in sce-
nario of f (T ) theory. They explored MFEq’s and determined
the matter constituent expressions of transverse and radial
pressure, and energy density. With the help of shape and par-
ticular f (T ) functions, they determined the nature of energy
conditions in terms of wormhole solutions. It results in the
existence of phenomenal admissible wormhole solutions in
both cases.

An electromagnetic field (EMF) is the feature of space
induced by the movement of an electric charge. The simul-
taneous connection of Maxwell and Einstein (or modified)
fields, which is viewed as the dispersion of electromagnetic-
waves because of curvature of space-time, has a rich back-
ground in curved space-time analysis. By introducing EMF
in Lagrangian, Moffat [46] acquired field equations for new
gravity and attained static spherically symmetric solutions.
Ivanov [47] found the solutions for the Reissner–Nordström
metric by using a new categorized strategy in the presence of
EMF. Dehghani [48] furnished a new group of solutions for a
modified gravity along with negative cosmological constant.
He treated these solutions possibly as black brane solutions.
Zhang et al. [49] explored the gravitational collapse in the
presence of charge in de-Sitter space-time. They studied the
impact of two factors on the charge and found that features
of gravitational collapse are independent of the dimension
of space-time. Bhatti and Yousaf [50] studied the inhomo-
geneity components for plane symmetry in f (R) gravity
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with the effect of the charge on it. They used dissipative and
anisotropic fluid for this analysis. The main findings indicate
that the inhomogeneity components are influenced by electric
charge. Yousaf et al. [51,52] explored the impact of modi-
fication and charge on self-gravitating objects. They stud-
ied the role of zero complexity factor and quasi-homologous
constraint in considered structure. They constructed various
solutions for MFEq’s and deduced that few of them accept
the Darmois constraints. Recently, in different modified theo-
ries, the influence of EMF on gravastars is studied [14,34,53]
where the researchers found the stable regions for gravastars
in this context. It is deduced that the entropy, length of the thin
shell, and the energy content of the gravastar are all impacted
by the EMF. In this article, we will communicate with issues
listed below :

1. We inspect the structure scalars for static fluid content in
f (T ) gravity within the presence of EMF. We will find
effective analytical answers in turn of generating func-
tions.

2. The contribution of f (T ) dark source components and
impact of EMF will be scrutinized.

The following scheme is used to line up our article. We
explore the physical characteristics of the static fluids
equipped with hyperbolical symmetry in the framework of
f (T ) gravity and the presence of EMF. In Sect. 2, we devel-
oped the MFEq’s in terms of EMF and work out the expres-
sion for stress–energy tensor. The f (T )-Maxwell field equa-
tions along with mass function will be explored in Sect. 3.
We also find relations of kinematical quantities in terms of
the mass function. The relationship between the conformal
tensor and the intrinsic curvature is built up in Sect. 4. The
total energy budget formula given by the Tolman–Whittaker
is utilized to evaluate its value in our analysis. In Sect. 5, the
approach of an orthogonal division of the intrinsic curvature
in the framework of f (T ) gravity and presence of EMF is
carried out to evaluate structure scalars. Section 6 includes
few effective analytical answers to concern fluid content. In
Sect. 7, the closing comments are presented.

2 Formulation of f (T ) gravity; metric and matter
distribution

In this section, first of all, we will give a formal idea of f (T )

gravity, where T is referred to as torsion scalar. Later on,
the complete description of line elements and matter content
will be given. This theory has great influence in investigating
inflation and late-time accelerated expansion of the universe.

The EHA for f (T ) gravity is defined as [29,54]

S f (T ) =
∫

d4x

(
LM + LEMF + f (T )

2κ2

)
|h|, (1)

where |h| = det (hτ
φ), while hτ

φ behaves as the dynamical
field of f (T ) theory. Here, coupling constant is represented
by κ , LM is the representation for matter field Lagrangian
and differential function of the torsion scalar is given by
f (T ). This set of orthonormal vector fields is associated
with metric tensor by following relation gφτ = ϑi jh

i
φh

j
τ with

ϑi j = diag(1,−1,−1,−1). The coordinates for the man-
ifold is given by the indices (i, j, . . .) and coordinates for
tangent space is given by (τ, φ, . . .). The relation for torsion
scalar is defined as

T = S τφ
ρ T ρ

τφ, (2)

where the tensor T ρ
τφ satisfy T ρ

τφ = −T ρ
φτ . The Weitzen-

böck connection (�̄
ρ
φτ = h

ρ
i ∂φh

i
τ ) has vital role in defining

the above tensor as

T ρ
τφ = �̄

ρ
φτ − �̄

ρ
τφ = h

ρ
i (∂φh

i
τ − ∂τh

i
φ), (3)

where

S τφ
ρ = φτ

ρ

2
T βφ

β − φ
φ
ρ

2
T βτ

β + 1

4

(
T τφ

ρ + T φτ
ρ − T τφ

ρ

)
. (4)

The following result is attained by pursuing variation on the
action of Eq. (1) with reference to tetrad field

h
ρ
i S τφ

ρ ∂τT fT T + f

4
h

φ
i

+ fT
h

∂τ (hh
ρ
i S τφ

ρ ) + h
ρ
i T α

τρS
φτ

α fT

= κ2

2
h

ρ
i (T φ(m)

ρ + Eφ(m)
ρ ), (5)

whereas, fT ≡ ∂ f
∂T , fT T ≡ ∂2 f

∂T 2 , while T φ(m)
ρ is the fluid

stress–energy tensor and Eφ(m)
ρ is EMF stress tensor. To carry

our analysis in f (T ) gravity, initially a general form of fluid
as an amalgam of anisotropic tensor �τφ , isotropic stress P
and energy density μ is taken and then hyperbolic symmetry
will be applied later on. The stress–energy tensor is given as

T (m)
τφ = (μ + P)VτVφ − Pgτφ + �τφ, (6)

whereas V τ is four-velocity vector and fluid satisfies the fol-
lowing relations

μ = TτφV
τV φ, P = −1

3
h̄τφTτφ,

�τφ = h̄β
τ h̄

α
φ(Tβα + Ph̄βα),
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with h̄βα = gβα − VαVβ represents the projection tensor.
Since, TG is equivalent to GR, so the influence of covariant
formulation of its extension, i.e., f (T ) gravity has equiva-
lence with the subtraction of torsion scalar from the Ricci
scalar. The f (T ) field equations by using covariant formu-
lation is attainted as follows

ϒτφ fT T − T

2

(
fT − f

T

)
gτφ + Gτφ fT

= κ2
(
T (m)

τφ + E (m)
τφ

)
, (7)

where ϒτφ = S ρ
τφ∇ρT , while the Einstein tensor is given by

Gτφ . After reshaping Eq. (5), we get

Gτφ = κ2

fT

(
T (T )

τφ + T (m)
τφ + Eτφ

)
, (8)

where f (T ) based corrections are as follows

T (T )
τφ = − 1

κ2

{
ϒτφ fT T + 1

4

(
R fT − ϒ fT T + T

)
gτφ

}
.

(9)

Applying the usual limit, i.e., f (T ) = T , TEGR equa-
tions can be attained. Mathematically, EMF stress tensor is
expressed as

Eτφ = 1

4

(
−Fμ

τ Fφμ + 1

4
FμδFμδgτφ

)
,

where Fφμ is EMF tensor and mathematically it is given by
Fφμ = ϕμ,φ −ϕφ,μ along with four-current density given by
Jφ = σ(r)Vφ and four-potential expressed by ϕφ = ϕ(r)δ0

φ .
In compact form, the Einstein–Maxwell field equations (E-
MFEq’s) can be read as

Fτφ

; φ
= μ0 J

τ ; F[τφ; γ ],

where the magnetic permeability is described by the constant
μ0 = 4π . The non-vanishing constituents of the E-MFEq’s
furnish the subsequent second-order equation of the form

ϕ′′ −
(

λ′

2
+ ν′

2
− 2

r

)
ϕ′ = 4πσeλ+ ν

2 .

By solving the above equation using method of integrating

factor, we attain r2ϕ′e−λ−ν
2 = q̌ , where q̌ = ∫

4πr2σe
λ
2 .

The components of EMF tensor will summed up as

E00 = eν q̌2

8πr4 ; E11 = − eλq̌2

8πr4 ; E22 = q̌2

8πr2 ;

E33 = sinh2θ q̌2

8πr2 .

To study the effect of staticity and EMF within f (T ) gravity,
we take the line element of hyperbolically static symmetric
geometry (for the interior region) as

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sinh2θdφ2), (10)

where λ(r) and ν(r) are only functions of r . The anisotropic
fluid [55,56] has great influence in investigating behavior of
self-gravitating objects. We consider our fluid in co-moving
frame, where constituents of four velocity vectors in terms
of orthonormal tetrad are as follows

e(0)
τ ≡ Vτ = (e

ν
2 , 0, 0, 0); e(1)

τ ≡ Kτ = (0,−e
λ
2 , 0, 0);

e(2)
τ ≡ Lτ = (0, 0, −r, 0); e(3)

τ ≡ Sτ = (0, 0, 0, −rsinhθ).

With aid of the Bondi idea [57] carried by Herrera [1], the
stress–energy tensor is given as

Tτφ = (μ + Pzz)VτVφ − Pzzgτφ + (Pxx − Pzz)Kτ Kφ. (11)

To analyze the bounded-ness of anisotropic matter from the
exterior region, the idea of smooth combining of the interior
region given by Eq. (10) is used. In this scenario, the Darmois
conditions as computed by Bhatti et al. [58] are executed.

3 f (T )-Maxwell equations

The f (T ) field equations including non-zero constituents of
EMF and the stress–energy tensor are as follows

e−λλ́

r
− (1 + e−λ)

r2

= 8πeν

fT

[
μ + q̌

8πr4 + 1

16π

×
{
(T fT − f ) + e−λ fT T

(
2

r
T́ − ν́

4

)}]
, (12)

e−λν́

r
+ (1 + e−λ)

r2

= 8πeλ

fT

[
Pr − q̌

8πr4 − 1

16π
(T fT − f )

]
, (13)

(
ν′′ + ν′

r
+ ν′2

2
− λ′ν′

2
− λ′

r

)
e−λ

2

= 8πr2

fT

[
P⊥ + q̌

8πr4 − 1

16π

{
(T fT − f )

− fT T × e−λ

2
(ν′ − 3

r
)T ′
}]

, (14)

where fT is used for differentiable function of torsion and
prime for derivative with regard to r . We made following
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assumptions in computing constituents of stress–energy ten-
sor, i.e., Pxx = Pr and P⊥ = Pyy = Pzz . The engagement

of f (T )-Maxwell equations and T τφ(e f f )
;φ = 0 emerge in

hydrostatic equilibrium form like

P ′
r + (μ + Pr )

ν′

2
+ 2�

r
− q̌q̌ ′

4πr4 + h1

8π
= 0, (15)

where presence of dark source terms are indicated by h1 listed
in Appendix I. The mass formula which basically provide
information about change of energy of spherical fluid [59]
corresponding to interior region is given as

m(r) = (1 + e−λ)r

2
− q̌2

2r
. (16)

By making use of Eq. (16) into (12), we find

m(r) = −4π

∫ r

0

r2

fT

[
μeν + q̌q̌ ′

4πr
+ �

(T )
00

]
dr, (17)

where �
(T )
00 is stated in Appendix I. The above equation stipu-

late that the mass has certainly positive amount. For this sake,
energy density should owe negative value which is encroach-
ment of weak energy conditions (WEC). For more physical
relevance, the detail analysis is examined in [1]. The above
equation can be rewritten as

m = 4π

∫ r

rmin

r2

fT

[
|μ|eν − q̌q̌ ′

4πr
− �

(T )
00

]
dr, (18)

where by making use of the fact that energy density owe
negative value, |μ| is used in place of μ. The amalgam of
Eqs. (13) and (16) yield

ν′ =
⎛
⎝2

{
4π
fT

(r3Pr − (2m − r)r2�
(T )
11 ) − q̌2

r

}

(2m − r + q̌2

r )2
− m

⎞
⎠ ,

(19)

where �
(T )
11 is stated in Appendix I. Substituting the above

in Eq. (15), it leads to

P ′
r + (Pr − |μ|) ×

⎛
⎝2

{
4π
fT

(r3Pr−(2m−r)r2�
(T )
11 )+ q̌2

r

}

(2m−r− q̌2
r )2

− m

⎞
⎠

2

+2�

r
+ h1

8π
= 0. (20)

This equation is in full engagement with pressure, anisotropic
factor, and gravitational power in course of fluid composi-
tion in hydrostatic form. The out-turn in this scenario is well
narrated in [1].

4 Conformal tensor in association with total energy
budget

The relation between the conformal tensor and the intrinsic
curvature is given by [60]

Rλ
τφσ = Cλ

τφσ + 1

2
Rλ

φgτσ − 1

2
Rτφδλ

σ

+1

2
Rτσ δλ

φ − 1

2
Rλ

σ gτφ − 1

6
R(δλ

φgτσ − gτφδλ
σ ).

(21)

The conformal tensor infers knowledge about the tidal force
pertain by a body when an object moves across a geodesic. It
is in a relationship with the intrinsic curvature and both have
contrast on the idea that the conformal tensor only allows
information about the geometry of the object deformed
because of tidal force. The conformal tensor contains electric
as well as magnetic parts. But in the case of the exact Einstein
solution, the magnetic part diminishes. The idea behind this
fact is that the nearest flow lines spread unrelated to each one,
in other words, the progression is merely dependent locally
on fluid quantities. In this context, the electric component of
the conformal tensor together with the conformal scalar is
addressed as

Cσκνλ = (gσκτφgνλμξ − ησκτφηνλμξ )V
τVμEφξ ,

where gσκτφ = gστ gκφ − gσφgκτ and the representation
for the Levi-Civita tensor is observed as ησκτφ . The use
of above argument in Eq. (10) provide the electric compo-
nent as Eτφ = ε(Kτ Kφ + 1

3hτφ). The conformal tensor has
no dependence on the four-velocity vector. But it’s electric
and magnetic components are linked to four-velocity vector
orthogonally as interpreted by subsequent relation EτσV σ

with trace-free Eτ
τ = 0. The value of conformal scalar

observe as

ε = e−λ

4

(
λ′ν′

2
− ν′′ − ν′2

2

)

+e−λ

2r

(
ν′

2
− 1

r

)
− 1

2r

(
e−λλ′

2
+ 1

r

)
. (22)

Employing field equations (12)–(14), Eq. (16) and the value
of ε from Eq. (22), it provides

3m

r3 =4π

fT

[(
μeν − r2P⊥ + eλPr

)

+
(
�

(T )
11 − �

(T )
00 − �

(T )
22

)]
− ε − 5q̌2

2r4 . (23)

Here, the value of �
(T )
22 is written down in Appendix I. This

expression reveals the effects of the conformal scalar, fluid
components, extra curvature terms of f (T ) gravity and terms
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arise because of EMF on the mass function. The differenti-
ation of the above equation with regard to radial constituent
in presence of EMF and utilizing mass value from Eq. (17),
bring out the equation of the form

ε = 4π

fT

[(
μeν − r2P⊥ + eλPr

)

+
∫ r

0

(
�

(T )
11 − �

(T )
22 − 2�

(T )
00

)
dr

]

+ 4π

r3

[∫ r

0

(
�

(T )
00

fT

)′
+
(
eν |μ|
fT

)′]
r̃3dr̃

+ 3

2r3

∫ r

0

q̌2

r2 dr − q̌2

r4 . (24)

This manifest the conformal scalar rest on the fluid con-
stituents (in other words, local anisotropy), density inho-
mogeneity, and expressions because of f (T ) curvature and
EMF. Using value of the conformal scalar into Eq. (23), we
obtain

m =4πr3

3 fT

[∫ r

0

(
�

(T )
22 − �

(T )
11 + 2�

(T )
00

)
dr

+
(
�

(T )
11 − �

(T )
22 − �

(T )
00

)]

+ 4π

r3

[∫ r

0

(
�

(T )
00

fT

)′
−
(
eν |μ|
fT

)′]
r̃3dr̃

− 1

2

∫ r

0

q̌2

r2 dr − q̌2

2r
. (25)

From the above equation, it is indicated that only density
inhomogeneity, curvature terms of f (T ) gravity, and expres-
sion because of EMF affects the mass function in this sce-
nario. Equations (24) and (25) is in accordance with [1] with
added terms because of EMF. The Tolman–Whittaker mass
serves as active gravitational mass for static as well as slow
progression cases. It provides a better explanation of mass
in the study of anisotropic fluids. This was established as an
estimate of the entire energy budget of the system, without
the faithfulness of its localization. The Tolman–Whittaker
mass formula in our case with EMF is illustrated as

mT =
∫ r

0

∫ 2π

0

∫ π

0
Sinhθr2e

λ+ν
2

(
T 0

0 + E0
0 − T 1

1

−E1
1 − 2T 2

2 − 2E2
2

)
dθdφdr̃ . (26)

Here, T i
i and Ei

i for i = 1, 2, 3 denote the constituents of
stress–energy tensor and EMF, respectively. The solution of
Eq. (26) turns out as

mT = (coshπ − 1)2π

∫ r

0
e

(ν+λ)
2 r̃2

×
(

−|μ| + 2P⊥ + Pr + q̌2

4πr4

)
dr̃ . (27)

The execution of Eqs. (12)–(14) and integration with regard
to radial component becomes

mT = (coshπ − 1) fT
4

× ν′e
(ν−λ)

2 r2

− (coshπ − 1)

24π

[∫ r

0
{k1(r)dr̃},1 + k1(r)

]
, (28)

where k1(r) is stated in Appendix I. The amalgam of the
above equation with Eq. (19) is observed as

mT = coshπ − 1) fT (

2
e

(3λ+ν)
2

×
{

4π

fT

(
Prr

3 + r2(r − 2m)�
(T )
11

)
− m − q̌2

r

}

− (coshπ − 1)

24π

[∫ r

0
{k1(r)dr̃},1 + k1(r)

]
. (29)

The Eq. (27) is estimate of total energy budget and manifest
that it is negative in nature. From Eq. (29), this argument only

possible in presence of EMF if 4π
fT

(
Prr3 + r2(r − 2m)�

(T )
11

)

− q̌2

r < m. The illustration of four-acceleration with termi-
nology aτ and relation aτ = Vτ ; φV φ is yielded as aτ = aKτ

with a = ν′e
−λ
2

2 . Using this value in Eq. (28) gives

a = 2e
−ν
2

r2(coshπ − 1) fT

×
[
mT + (coshπ − 1)

24π

{∫ r

0
{k1(r)dr̃},1 + k1(r)

}]
.

This equation manifests the inward-pointing of four-
acceleration, i.e., negative value. This way exhibit the
repulsive nature of gravitational force. Now, differentiating
Eq. (27) and implement of Eq. (29) make as

ḿT − 3

r
mT = − (coshπ − 1)

2

× fT r2
{
ε + 4π� − q̌2

4πr4 − 4π�
(T )
22 − 4π�

(T )
00

}

− (coshπ − 1)

8πr

{∫ r

0
{k1(r)dr̃},1 + k1(r)

}
.

The integration of equation acquire
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mT = (mT )�(
r

r�
)3 + (coshπ − 1)

2
r3
∫ r�e

r

[
fT × e

ν+λ
2

r̃

(
ε + 4π� − q̌2

4π r̃4 − 4π�
(T )
22 − 4π�

(T )
00

)

− 1

4πr4

{∫ r

0
{k1(r)dr̃},1 + k1(r)

}]
. (30)

Now, making substitution of value from Eq. (24), we
acquire

mT = (mT )�(
r

r�
)3 + r3 × (coshπ − 1)

2

∫ r�e

r

[
fT × e

ν+λ
2

r̃

{
4π

r3

∫ s

0

(
(
�

(T )
00

fT
)′ + (

eν |μ|
fT

)′
)
s̃3ds̃

}

+ 4π� + 4π

fT
(μeν − r2P⊥ + Pre

λ − q̌2

r̃4 ) + ς1

]
dr, (31)

where ς1 value is stated in Appendix I. The above-
mentioned equations are well-matched within [1] and its
physical relevance can be studied in presence of EMF and
f (T ) gravity.

5 Evaluation of structure parameters in f (T ) gravity

The work is about the review of anisotropic fluids concern-
ing scalars which are acquired by the orthogonal division of
the intrinsic curvature because of f (T ) gravity and EMF.
The concept of orthogonal splitting of the Riemann tensor to
obtain the structure scalars is the pioneering work of Herrera
et al. [61]. They used spherically symmetric geometry linked
with anisotropic dissipative fluid content. They performed the
orthogonal splitting for the Riemann tensor and attained five
structure scalars in the framework of GR. These are trace
and trace-free components of tensors Xαβ, Yαβ and Zαβ .
These scalars have a direct influence on the physical proper-
ties of the fluid content. Few realistic solutions in terms of
these scalars are also evaluated by these authors. To under-
stand the concept of stability without shear-free constraint,
Herrera et al. [62] evaluated the shear evolution equation in
terms of scalar YT F . They found that the scalar YT F may be
defined through the pressure anisotropy and the Weyl tensor
or as in form of density inhomogeneity, pressure anisotropy,
and dissipative parameters.

Herrera et al. [63] further extended their idea to acquire
structure scalars from the orthogonal splitting of the Riemann
tensor in the presence of charged dissipative fluid. The differ-
ent scalars are labeled as XT , XT F , YT , YT F and Z in this
case. They studied their physical features and deduced that
each of them has different characteristics. The fluid energy
density is controlled by the factor XT while Z is responsi-
ble for all feasible dissipative fluxes. To understand inhomo-

geneities in the energy density of the fluid, the factor XT F

plays a significant role without contributing to dissipation.
While the effect of pressure anisotropy and density inhomo-
geneity on the value of the Tolman mass is studied with the
help of factor YT F . The factor YT depicts proportional rela-
tion with Tolman mass density. They determined that only
factors YT and YT F are true candidates to understand the
evolution of shear and expansion. Each scalar plays a sig-
nificant role in describing fluid properties. With the help of
these structure scalars, the evolution and structure of self-
gravitating fluids can be studied [64]. One of the scalars YT F

is also referred to as the complexity factor and is the subject
of vast study. Herrera et al. [65] extended his strategy to study
self-gravitating systems in fulfillment of quasi-homologous
conditions and vanishing complexity factor. They calculated
some models under these constraints and found that the evo-
lution of spherical fluids is explained with help of few mod-
els. The contribution of the scalars in the inspection of fluid
content is concerned deeply by [66–68]. In this framework,
we employ three tensors with subsequent expressions as

Yτφ = RτσφρV
σV ρ,

Zτφ =� RτσφρV
σV ρ = 1

2
ητσπκ R

πκ
φρV

σV ρ,

Xτφ =� R�
τσφρV

σV ρ = 1

2
η πκ

τσ R�
πκφρV

σV ρ,

alongside R�
τφσρ = 1

2ηπκσρR πκ
τφ . Turning into account

f (T )-Maxwell equations, we observe

Rτσ
φρ =Cτσ

φρ + 16π(T (T ) + T (m)

+ E (m))
[τ
[φδ

σ ]
ρ] + 8πT (

1

3
δτ[φδσ

ρ] − δ
[τ
[φδ

σ ]
ρ] ). (32)
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Using EMF along side stress–energy tensor components, we
observe

Rτσ
φρ = Rτσ

(I )φρ + Rτσ
(I I )φρ + Rτσ

(I I I )φρ,

here

Rτσ
(I )φρ = 16π

(
μ + q̌2

8πr4

)
V [τ V[φδ

σ ]
ρ]

− 16π

(
P + q̌2

8πr4

)
h[τ
[φδ

σ ]
ρ]

+ 8π

(
μ − 3P + (T fT − f )

16π
δτφ − fT T

8π
Sτ ∇T

)

+ 8π

(
1

3
δτ[φδσ

ρ] − δ
[τ
[φδ

σ ]
ρ]
)

,

Rτσ
(I I )φρ = 16

(
� − q̌2

4πr4

[τ

[φ
δ
σ ]
ρ] + 1

8π
(
(T fT − f )

2
δ
[τ
[φδ

σ ]
ρ]

− fT T S
[τ
[φδ

σ ]
ρ]∇T

)
,

Rτσ
(I I I )φρ = 4V [τ V[φEσ ]

ρ] − ετσ
κ εφρψ Eκψ .

The overhead equations provide the pave to calculate the
expressions of three tensors in the way spotted as

Xτφ = −8π

3
|μ|hτφ + 4π

(
�τφ − q̌2

r4

)
− Eτφ + ς2, (33)

Yτφ = 4π

3
(−|μ| + 3P)hτφ + 4π

(
�τφ − q̌2

r4

)
+ Eτφ + ς3,

(34)

Zτφ = 0, (35)

where, the expression for ς2 and ς3 is stated in Appendix I. In
their trace and trace-free components, the overhead Eqs. (33)
and (34) can be turned down as

Xτφ = XT
hτφ

3
+ XT F

(
Kτ Kφ + hτφ

3

)
;

Yτφ = YT
hτφ

3
+ YT F

(
Kτ Kφ + hτφ

3

)
.

The value for scalars is given as

XT = −8|μ|π + q̌2

r4 + ς4; XT F = 4π� − q̌2

r4 − ε + ς5;

YT = 4π(−|μ| + 3P) + q̌2

r4 + ς6;

YT F = 4π� − q̌2

r4 + ε + ς7, (36)

where, the expression for ς4, ς5, ς6 and ς7 is stated in
Appendix I. The values of trace-free and trace scalars pre-

sented in Eq. (36) with components of EMF and f (T ) dark
source factors is well-matched in [1]. Turning into account
the value of ε from Eq. (24) into the trace free scalar YT F

from Eq. (36) consequences as

YT F = 4π� + ς7 + 4π

fT

[(
μeν − r2P⊥ + Pre

λ

)

+
∫ r

0

(
�

(T )
11 − 2�

(T )
00 − �

(T )
22

)
dr

]

− 4π

r3

[∫ r

0

(
�

(T )
00

fT

)′
+
(
eν |μ|
fT

)′]
r̃3dr̃

+ 3

2r3

∫ r

0

q̌2

r2 dr − q̌2

r4 . (37)

We observe from Eq. (36) that

YT F + XT F = 8π� + ς5 + ς7 − 2
q̌2

r4 .

To reveal the physical implication of YT F and YT , we employ
Eq. (31) with (36) and observe

mT = (mT )�e

(
r

r�

)3

+ coshπ − 1

2

×
∫ r�e

r
fT × eν+λ

r̃

(
YT F + q̌2

r̃4 + ς8

)
dr̃ ,

mT = coshπ − 1

2

∫ r

0
r̃2 × e

ν+λ
2

(
YT + ς6

)
dr̃ , (38)

where ς8= −ς7+ς7I , and value of ς7I is stated in Appendix I.
We interpose the impact of YT F on the total energy budget in
terms of anisotropic matter, dark source terms of f (T ), com-
ponents of EMF, and density inhomogeneity. It also narrates
the proportional association of YT with dark source terms of
f (T ) and total energy budget.

6 Charged static form of solutions

This portion of article is allocate to deduce results for the
static fluid content encompass with hyperbolic symmetry in
occupancy of EMF and f (T ) gravity. These solutions are
evaluated in frame of two generating functions which further
utilized to explore more explicit solutions with different con-
ditions imposed on them. This approach is well-matched in
[69]. From Eqs. (13) and (14), we observe

8π

fT
(Pr − P⊥) − 2

q̌2

r4 =
(
e−λ + 1

r2

)

+ e−λ

2

(
λ′

r
+ λ′ν′

2
− ν′2

2
− ν′′ + ν′

r

)
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+ 8π

fT

(
�

(T )
22 − �

(T )
11

)
.

By taking advantage of novel functions described in [1] as
e−λ = y; ν′

2 = −( 1
r − z), the above equation is observed

as

2

z

(
− 8π�

fT
+ 1

r2 + 2q̌2

r4

)
= y′ − y

[
6

r
− 2z − 2z′

z
− 4

zr2

]

− 2

z
× 8π

fT

(
�

(T )
22 (y) − �

(T )
11 (y)

)
. (39)

Integration of above yields

eλ = z2e

∫ 4

r2 z
+2z

dr

r6

(
2
∫
(

1+ q̌

r2
−8π�r2

r2 fT

)
+ 8π

fT

(
�

(T )
22 (y) − �

(T )
11 (y)

)
e

∫ 4

r2 z
+2z

dr + A1

.

Here, constant of integration is labeled with A1. From this
it is evident that in case of static anisotropic matter content,
novel generating functions can be picked up to describe solu-
tions in form of them. In our scenario, the role of dark source
components of f (T ) gravity and EMF components has sig-
nificance. The physical variables in this argument observe
as

m′(r)
r2 + q̌q̌ ′

r3 = 4π

fT

[
|μ|eν − �

(T )
00

]
,

4π

fT
× r

(2m − r)
×
[
Pr − 1

16π
(T fT − f )

]

= z(2m − r + q̌2

r ) − m + r

r3 ,

8π P⊥ = fT
r2

[(
2m

r
+ q̌2

r2 − 1

)(
z2 + z′ + 1

r2 − z
r

)

+z

(
m′

r
+ q̌q̌ ′

r2 − m

r2 − q̌2

r3

)
− q̌2

r4 + r2

2 fT
ζ1

]
,

where value of ζ1 is stated in Appendix I.

6.1 Conformally flat static fluid

Here, we utilize one generating function along with an auxil-
iary ansatz to evaluate the solutions. As, we explained in
preceding section that the conformal tensor has only one
component, i.e., electric and magnetic component diminish
in spherically symmetric form. The reduction of conformal
scalar, i.e., ε=0 yield an equation of the form

(
e−λ + 1

r2

)′
−
(
e−λν′

2r

)′
e−(ν+λ) −

(
e−λν′

2r

)′
= 0. (40)

Now, introducing novel function as used in [1] of formw ν′
2 =

w′; y = e−λ, Eq. (40) turn up as

y′ +
2y

(
w′′ − w′

r + w
r2

)
(
w′ − w

r

) + 2w

r2

(
w′ − w

r

) = 0,

and the solution of above equation is attained after integration
in subsequent form

y = e− ∫ n1(r)dr
[∫

e
∫
n1(r)dr n2(r)dr + A2

]
, (41)

here, constant of integration is labeled as A2, and n1, n2

defined as

n1 = 2
d

dr

[
ln

(
w′ − w

r

)]
; n2 = − 2w

r2

(
w′ − w

r

) .

In terms of native variables, Eq. (41) is reconstructed as

−r

(
1

r
− ν′

2

)
= e

λ
2

√
e−νβ1r2 − 1, (42)

here, β1 serves as constant of integration and whose value is
attained with the aid of matching conditions [58], giving

β1 = (3M + 2Q2

r�e
− r�e)

2 + r�e(2M + Q2

r�e
− r�e)

r4
�e

.

After integration of Eq. (42), we observe

eν = r2β1Sin
2
(∫

e
λ
2 r−1dr + ζ2

)
,

here, ζ2 is used as constant of integration, which with the aid
of matching conditions in [58], gives

ζ2 = −

⎧⎪⎪⎨
⎪⎪⎩
(∫

e
λ
2 r−1dr

)
− arcsin

×

⎡
⎢⎢⎢⎣r�e

√√√√√√
( 2M
r�e

+ Q2

r2
�e

− 1)

(3M + 2Q2

r�e
− r�e)2 + r�e(2M + Q2

r�e
− r�e)

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

In the scenario of conformally flat static fluid, only one
generating function works out. So, in this context, a sub-
sidiary condition is mandatory. For this , we place Pr = 0.
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Using this condition in Eq. (13), we observe

ν′ = −
(
T fT − f

2

)
× e2λ

fT
−
(1 + q̌2

r2 + eλ

r

)
. (43)

Replacing above value in expression of the conformal tensor
and setting up ε = 0, we acquire equation of the form

8(eλ + 1) + (1 + q̌2

r2 + eλ)2 − reλλ′ + 3λ′r

+
(

1 − 3rλ′

2
− r

)
× T fT − f

fT
r2e2λ

− r3e2λ

(
T fT − f

fT

)′
− r4e4λ

2 f 2
T

(T fT − f )2

− 8q̌2

r2 − 4q̌q̌ ′

r
+ λ′q̌2

r
= 0.

Setting 2g − 1 = eλ in above equation, we obtain the subse-
quent form

−rg′(3g − 2) + g(9g − 4) + ζ3 = 0. (44)

Where value of ζ3 is stated in Appendix I. The integration of
Eq. (44) yield

A3r
6 = 4g3

(9g − 4)
+ r6

∫
ζ4dr,

here A3 serve as constant of integration and ζ4 is stated in
Appendix I. The combination of both Eqs. (42) and (43)
resulted as

eν = r2β1(2g − 1)

g(9g − 4) + (2g − 1)2 q̌2

4r2 − q̌2(2g−1)(1−3g)
r2 + ζ5

,

where ζ5 has value stated in Appendix I. The subsequent
relations for physical quantities are attained in this case

|μ| = 3 fT
2πr2

(
g(9g − 4) + ζ5 + H1

(3g − 2)

)
+ ζ6 − q̌2

2r4 ;

P⊥ = 3g fT
4πr2

[
41g2 − 2g(9g2 − 8) + ζ7(1 + 2g)

r2(2g − 1)(3g − 2)

]
+ ζ8,

where H1, ζ5, ζ6, ζ7, ζ8 has value stated in Appendix I.
It is indicated from above equations that eν exhibit positive
nature when g > 2

3 . This result in presence of EMF and f (T )

gravity are well matched in [1] and the generating functions
for this model are as

z = (g − 1)

r(2g − 1)
− r

4 fT (2g − 1)2 − q̌2

r3 ;

�(r) = −
{

3g fT
4πr2

[
41g2 − 2g(9g2 − 8) + ζ7(1 + 2g)

r2(2g − 1)(3g − 2)

]
+ ζ8

}
.

6.2 Model with diminishing complexity factor

In this section, we analyze the model matching with condition
YT F = 0, which is a diminishing complexity factor condi-
tion. Due to the existence of an infinite possible solution, we
need to emphasize certain conditions to attain a specific one.
For this, we impose that Pr=0. Satisfying above condition,
Eq. (13) turn out as

ν′ = −
{

2g

r(2g − 1)
+ (T fT − f )r

2(2g − 1)2 fT
+ q̌2

r3

}
, (45)

where again using 2g−1 = e−λ for g and taking into account
of constraint YT F=0 in Eq. (38), we observe

mT = (mT )�e(
r

r�
)3 + coshπ − 1

2

×
∫ r�e

r
fT × eν+λ

r̃

(
q̌2

r̃4 + ς8

)
dr̃ . (46)

The value of eν is attainted by taking into account Eqs. (27),
(45) and (46) observe as

eν = 1

(coshπ − 1)2 × 1

(2g − 1) × 4r2g2 + 2q̌2g + (2g−1)q̌4

r3

+ (mT )�e

(
r

r�

)3
+ coshπ − 1

2

∫ r�e

r
fT

× eν+λ

r̃

(
q̌2

r̃4 + ς8

)
dr̃ .

The implication of constraint YT F also yield

r × g′(1 − g) + g × (5g − 2) + (2g − 1)r2ζ9 = 0.

The value of ζ9 is stated in Appendix I. The integration of
the above equation turn into

A4r
10 = g5

(5g − 2)6 + r10
∫

ζ10dr, (47)

here, constant of integration is labeled as A4 and value of ζ10

is stated as ζ10 = (2g−1)×g4

(5g−2)
ζ9. The physical variables in this

case possess the subsequent relations

|μ| = 3 × fT
4πr2

(
3g − r2ζ9

6

)
− �

(T )
00 ;

P⊥ = −3g2 × fT
8πr2 × 1

(1 − g)
+ (2g − 1)ζ9 − �

(T )
00

r2 .

The results in presence of EMF components and f (T )gravity
are well-matched in [1] and the generating functions for this

123



Eur. Phys. J. C           (2022) 82:340 Page 11 of 15   340 

model are as

z = − r

4 fT × (2g − 1)2 + (g − 1)

(2g − 1)r
− q̌2

2r3 ,

�(r) = 3g2 fT
8πr2 × 1

(1 − g)
− (2g − 1)ζ9 + �

(T )
00

r2 .

6.3 Stiff matter

This part of the article is concerned to evaluate few solutions
which fulfilled the stiff matter equation of state (SMEQ’s).
It chronically relates an increase in pressure with an increase
in density. That is the reason the material that possesses this
property is hard to compress and furnish more assistance
opposite to gravity. This concept was first brought up by
[70], where pressure and energy density are retained equal.
This argument turn Eq. (15) into

P
′
r + h1

(8π)2 + 2�

r
− q̌q̌ ′

4πr4 = 0. (48)

To achieve solution, we imposed certain constraints. One as
P⊥ = 0 and afterward YT F = 0 so that

• At P⊥ = 0. Imposing this constraint on Eq. (48) and
afterward integrating, we attain

Pr = rh1

3(8π)2 + B1

r2 − r2

(8π)2

∫ r

0

r3h′
1

3
dr

+ 1

r2

∫ r

0

q̌q̌ ′

4πr4 dr �⇒ |μ| = rh1

3(8π)2

+ B1

r2 − r2

(8π)2

∫ r

0

r3h′
1

3
dr + 1

r2

∫ r

0

q̌q̌ ′

4πr4 dr,

where B1 is constant of integration. The previous equa-
tions in association with Eqs. (16), (17) and (19) observed

m = 4πB1r

fT
−
∫ r

0

q̌q ′

r
dr + χ1;

e−λ = 8πB1r

fT
− 2

r

∫ r

0

q̌q ′

r
dr − 1 − q̌2

r2 + 2χ1

r
,

the value of χ1 is stated in Appendix I. The generating
functions in terms of this model turn out as

� = rh1

3(8π)2 + B1

r2 − r2

(8π)2

∫ r

0

r3h′
1

3
dr

+ 1

r2

∫ r

0

q̌q̌ ′

4πr4 dr; z = 1

r
+ ν′

2
.

where ν′ =
2

{
4π fT (Prr4−(2m−r)r2�T

11− q̌2

r )−m

}

r( 8Hπr
fT

+2χ1)
.

• At YT F = 0.
Now, the addition of diminishing complexity factor in
SMEQ’s will be analyzed. For this purpose, we make use
of this constraint into Eq. (37) and surrogate into Eq. (48),
so that

P ′′
r + 3P ′

r

r
+ 5χ ′

2

r
− 2χ2

r2 + h′
1

(8π)2 + θ1 = 0,

here, the value of θ1 and χ2 is stated in Appendix I. The
solution of above equation becomes

Pr = −c + d

r2 + θ� − χ3,

where, c and d serve as constant of integration while χ3

is stated in Appendix I. Now, matching Eqs. (16) and (17)
which acknowledge the above conditions, and provide a
pave to calculate the value of λ as stated

m = −4πr

fT

(
r2c

3
− d

)
+ 4π

∫ r

0

(
θ�r2 + q̌q̌ ′

4πr

)
dr + χ4;

λ = −ln

[
8π

fT
×
(

− r2c

3
+ d

)
− 1 + 2r

χ4

]
.

Taking into account the matter content enclosed from
outward surface �e, we acquire

Pr = −d

(
1

r2
�e

− 1

r2

)
+ 2χ3;

m = −4πrd

3r2
�e

(
r2 − 3r2

�e

)
+
∫ r

0

q̌q̌ ′

r
dr + χ5.

The value of χ5 is stated in Appendix I. Now, we build
appealing relationship among r�e , f (T ), EMF and Pr
as follows

4π Prr3

fT
− r2(2m − r)�(T )

11 − q̌2

r

= 4πrd

fT
(1 − 2r2�

(T )
11 ) − 4πr3d

fT r2
�e

(
1 − 2r2�

(T )
11

3

)

+ 8πr3χ3

fT
− 2χ5r

2�
(T )
11 + r3�

(T )
11

− q̌2

r
−
∫ r

0

q̌q̌ ′

r
dr.

While the tangential pressure in this way secure the fol-
lowing form

P⊥ = − d

r2
�e

− q̌q̌ ′

4πr3 + χ6,

where the value of χ6 is stated in Appendix I.
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7 Closing comments

The analysis to explore the features of static matter content
equipped with hyperbolical symmetry in presence of EMF
and f (T ) gravity, where T acts as torsion scalar, is done
in this article. We took motivation from Herrera’s strategy
[1] and elaborate this work in the context of f (T ) gravity
and EMF. We accounted for inner geometry as static hyper-
bolically symmetry and combine it with outward geometry
viewed as Reissner–Nordström with aid of Darmois con-
straints computed in [58]. We deeply analyze their physical
attributes. First of all, We distinguished the stress–energy
tensor by carefully considering the ingredients of the tetrad
field in the Minkowski co-ordinate frame, commencing with
Modified field equations. We calculated a viable formulation
of mass utilizing Tolman and Misner-Sharp mass from the
viewpoint of f (T ) gravity and along with EMF, and devel-
oped some relationships between them. We build up the rela-
tionship between the conformal tensor and the intrinsic cur-
vature which provides a pave to evaluate structure scalars in
f (T ) gravity. We discussed an accurate finding to analyze
the impact of the EMF in the composition of f (T ) gravity,
and found few effective analytical answers. We concluded
the following remarks:

• The first observation about this sort of matter content is
that they possess the negative form of energy density. The
anisotropic nature of pressure has a significant character
in this study and exhibits the property that stresses are
not equal in it. In this scenario, the central space is void
as it is not covered by the matter.

• The use of two different masses is analyzed in detail.
Both of these two definitions of masses match when
they are calculated at the boundary of fluid content. They
exhibit different values even when a single piece is inside
the fluid excluding isotropic pressure and a homogenous
form of energy density.

• The total energy budget (or Tolman mass) possess nega-

tive value if ( 4π
fT

(prr3 − r2(2m − r)�(T )
11 )) − q̌2

r < m)

as WEC invade in our framework. Also, many astro-
physical phenomena possess negative energy density.
It is deduced that with the advent of negative den-
sity, this sort of fluid is supposed to surpass extreme
physical conditions, enabling quantum impacts to be
detected.

• The relationship between the conformal tensor and the
intrinsic curvature has significance in this analysis. The
conformal tensor infers knowledge about the tidal forces.
Among 256 components of the conformal tensor, 10
are only independent of each other in 4D. With the aid
of a four-velocity vector, these 10 tensors are incor-
porated into a two-second rank tensor named as elec-

tric and magnetic part of the conformal tensor. In our
case, the only non-vanishing constituent is electric and
it provided help in the establishment of the relation-
ship between the conformal tensor and the intrinsic
curvature.

• We used orthogonal division of the intrinsic curvature to
construct the structure scalars in f (T ) gravity in pres-
ence of EMF. First of all, we found the three tensors and
then break them into their trace-free and trace compo-
nents of the form XT F , YT F , XT and YT , respectively.
As structure scalars provide information about the fea-
tures of fluid contents. So, in our framework, we devel-
oped the relationship of the total energy budget in terms
of YT F and YT . We inferred that homogeneity and inho-
mogeneity of energy density, presence of EMF, and dark
source components of f (T ) have substantial impact on
our analysis.

We wrapped this discussion as, a detailed description to ana-
lyze the features of static fluid content which are equipped
with hyperbolical symmetry in the framework of f (T ) grav-
ity and in presence of EMF. For this concern, generating func-
tions are used. We found few effective analytical answers and
the relations of physical quantities in the framework of f (T )

gravity and in presence of EMF. The substantial impact of
EMF and f (T ) dark source components are analyzed. All
the cases deal with a void central region in this sort of fluid
content.
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Appendix I

The value of dark source term h1, �
(T )
11 , �

(T )
00 , �

(T )
22 and

k1(r) are as below

h1 = e−2λν′

32π

(
2

r
− ν′

4

)
T ′ − e−λλ′

16π
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× {(T fT − f ) − {T fT − f },1
}

− e−2λ

r

{
fT T
16π

(
ν′ − 3

r

)}
,

�
(T )
00 = eν

16π

{
(T fT − f ) + e−λ fT T

(
2

r
− ν′

4

)
T ′
}

;

�
(T )
11 = − eλ

8π

(
T fT − f

2

)
,

�
(T )
22 = r2

16π

{
−(T fT − f ) + fT T

2

(
ν′eλ − 3

r
e−λ

)
T ′
}

;

K1(r) = e
(ν+λ)

2

(
�

(T )
11 + �

(T )
00 + �

(T )
22

)
dr̃3.

The value of ς1, ς2, ς3, ς4, ς5, ς6, ς7 and ς7I is listed
below

ς1 = 4π

fT

∫ r

0

(
�

(T )
11 − 2�

(T )
00 − �

(T )
22

)
dr − 4π�

(T )
22

− 4π�
(T )
00 − 1

4πr4

{∫ r

0
{k1(r)dr̃},1 + k1(r)

}
,

ς2 = 1

2

{(
T fT − f

2

)
δτφ + fT T Sτφλ∇λT

}

− 1

3

{
fT T S

τλ∇λT −
(
T fT − f

2

)}
hτφ,

ς3 = 1

2

{(
T fT − f

2

)
gτφ − fT T S

λ
φτ∇λT

+ fT T
2

(Vφ + Vτ − gτφV
σ )Sλ

τ ∇λT

}

− hτφ

2

{(
T fT − f

2

)
− fT T S

τλ∇λT

}
,

ς4 = −1

9

{
fT T S

τλ∇λT −
(
T fT − f

2

)}
;

ς5 = 1

2

{
fT T Sτφτ∇λT +

(
T fT − f

2

)
δτφ

}
,

ς6 = 1

6

{
fT T S

τλ∇λT −
(
T fT − f

2

)}
;

ς7 = 1

2

{(
T fT − f

2

)
gτφ − fT T S

λ
φτ∇λT

+ fT T
2

(Vφ + Vτ − gτφV
σ )Sλ

τ ∇λT

}
,

ς7I = −4π�
(T )
22 − 4π�

(T )
00

− 1

4πr4

{
+
∫ r

0
k1(r)dr̃ + k1(r)

}
,

where the value of ζ1, ζ3, ζ4, ζ5, ζ6, ζ7, ζ8, ζ9 and H1 is as
under

ζ1 =
{(

T fT − f

)
+ fT T

2

(
3 − 2(2z − 1

)

×
(

2m

r
− 1

)2
T ′
}

,

ζ3 = −r2
(
r − 1 + 3rλ′

2
× −2g′

(2g − 1)

)
T fT − f

fT
− r4

2 f 2
T

×
(
T fT − f

2g − 1

)2
− r3

(
T fT − f

fT

)′

+ g2
(

4q̌4

r4 − 8q̌2

r2 − 16q̌q̌ ′
r

)

− g′ 2q̌2

r
−
(

4q̌q̌ ′
r

− q̌4

r4 − 8q̌2

r2

)

− g

(
4q̌4

r4 − 16q̌q̌ ′
r

+ 12q̌2

r2

)
,

ζ4 = 24

r4(9g − 4)2

[(
T fT − f

fT

)′
+ 2

(
T fT − f

fT

)]

+ 6

r3 fT (9g − 4)2(2g − 1)

×
[

(T fT − f )2

fT
− 2(T fT − f )gg′

r

]

+ 24r2g2

[
g2
(

4q̌4

r4 − 8q̌2

r2 − 16q̌q̌ ′
r

)

− g′ 2q̌2

r
−
(

4q̌q̌ ′
r

− q̌4

r4 − 8q̌2

r2

)

−g

(
4q̌4

r4 − 16q̌q̌ ′
r

+ 12q̌2

r2

)]
,

ζ5 = (T fT − f )r2

2 fT

{
3g + (T fT − f )

8 fT (2g − 1)
− 1

}
;

ζ6 = − 1

16π
{(T fT − f ) + (2g − 1) fT T

×
(

2

r
− ζ5

4(2g − 1)β1g2

)
T ′
}

,

ζ7 = −r2
(
r − 3rλ′

2
× 2g′

(2g − 1)
− 1

)(
T fT − f

fT

)

−
(
T fT − f

fT

)′
r3 −

(
T fT − f

2g − 1

)2
× r4

2 f 2
T

,

ζ8 =
(
g(g − 1) + gr

(2g − 1)2 − rg′
4(2g − 1)2

)

−
(
T fT − f

fT

)′
× r

4(2g − 1)
+ T fT − f

fT

+
(
T fT − f

fT

)2
× r2

8(2g − 1)3

+ r2

fT

{
(2g − 1) × fT T

2

(
+ 2g

(2g − 1)r
+ 3

r

+ r(T fT − f )

2 fT (2g − 1)2

)
T ′ + (T fT − f )

}

+ q̌2(9g2 − 4g + H1)

(3g − 2)r4 − (2g − 1)

2

×
{

2q̌q̌ ′
r3 + q̌2

r3 − 3q̌2

r4 − 3q̌4

2r6 − 2gq̌2

(2g − 1)r4

}
,
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H1 =g2
(

4q̌4

r4 − 8q̌2

r2 − 16q̌q̌ ′
r

)
− g′ 2q̌2

r

−
(

4q̌q̌ ′
r

− q̌4

r4 − 8q̌2

r2

)

− g

(
4q̌4

r4 − 16q̌q̌ ′
r

+ 12q̌2

r2

)
,

ζ9 = fT
8π

[(
T fT − f

fT

)′
× −r

2(2g − 1)
+
(
T fT − f

fT

)

×
(

1

2(2g − 1)
+ r2

8 fT (2g − 1)4 + 2rg′(2g − 1)

− 1

(2g − 1)2

)]
+ q̌2

r4

− (2g − 1)

{
gq̌2

2r4 + 3q̌2

2r4 − q̌q̌ ′
r3 − q̌4

4r6 − q̌2

r3

}
− �

(T )
00 .

The value of χ1, χ2, χ3, χ4, χ5, χ6, θ1 and θ� is as given

χ1 = −4πr2

fT

∫ r

0

(
h1r

3(8π)2 − r2

(8π)2

∫ r

0

h′
1r

3

3
dr + �

(T )
00 r2

fT

)
dr;

χ2 = h1r

3(8π)2 − r2

(8π)2

∫ r

0

h′
1r

3

3
dr,

χ3 =
∫ [

8χ2

r
+ 6

∫ (
χ2

r2 + h′
1

(8π)2

)
dr

]
;

χ4 = 4π

∫ r

0

(
r2�

(T )
00

fT
− r2χ3

fT
+
(

1

fT

)′(r3c

3
− rd

))
dr,

χ5 = −4πd

r2
�e

∫ r

0

(
1

fT

)′(
rr2

�e − r3

3

)
dr

+ 4πd
∫ r

0

(
r2�

(T )
00

fT
+ 2χ3

)
dr;

χ6 = r(χ ′
3 + χ3) − d

r2
�e

+ h1r

2(8π)2 ,

θ1 = q̌q̌ ′

r5π
− 7q̌2

8r6π
− q̌q̌ ′′

4r4π
− q̌ ′2

4r4π
;

θ� = − c −
∫

1

r3

(∫
r3θ1

)
dr
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