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Racah matrices and higher j-symbols are used in description of braiding properties of conformal blocks 
and in construction of knot polynomials. However, in complicated cases the logic is actually inverted: 
they are much better deduced from these applications than from the basic representation theory. Follow-
ing the recent proposal of [1] we obtain the exclusive Racah matrix S̄ for the currently-front-line case of 
representation R = [3, 1] with non-trivial multiplicities, where it is actually operator-valued, i.e. depends 
on the choice of bases in the intertwiner spaces. Effective field theory for arborescent knots in this case 
possesses gauge invariance, which is not yet properly described and understood. Because of this lack of 
knowledge a big part (about a half) of S̄ needs to be reconstructed from orthogonality conditions. There-
fore we discuss the abundance of symmetric orthogonal matrices, to which S̄ belongs, and explain that 
dimension of their moduli space is also about a half of that for the ordinary orthogonal matrices. Thus 
the knowledge approximately matches the freedom and this explains why the method can work – with 
some limited addition of educated guesses. A similar calculation for R = [r, 1] for r > 3 should also be 
doable.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Racah matrices (also known as 6 j-symbols) are a traditional topic in theoretical and mathematical physics, with a special chapter 
dedicated to them already in [2]. Despite a long history of research and with all available computer power, actual computation of these 
quantities remains among the most difficult problems, and until very recently all the non-trivial and interesting examples were out of 
reach. In modern theory j-symbols appear in two intimately related stories: modular transformations of conformal blocks and evaluation 
of physical observables in Chern–Simons theory [3] (known as Wilson loop averages or knot polynomials [4]). As often happens, these 
applications of Racah theory actually provide the most efficient way to calculate them. The present paper is a one more illustration of this 
inverse feedback from physical would-be-applications to basic mathematics: It reports a new breakthrough in Racah calculus – to series 
[r, 1] of representations with multiplicities, and Racah matrices are extracted from a new deep knowledge about knot polynomials – the 
structure of their differential expansion.

We do not go into details about knots, referring the interested reader to [1] and references therein. Instead we concentrate on the 
complementary part of the story, coming from the fact that one of the relevant Racah matrices, called S̄ , is actually a little peculiar: it 
is orthogonal, as any properly normalized 6 j-symbol (when real-valued, in general it is unitary), but at the same time it is symmetric. 
Intersection of these two requirements actually restricts a matrix a lot – and this allows to reconstruct it from a fragment. A fragment is 
exactly what is currently known about S̄ in representations R = [3, 1] from knot theory – and it is of approximately the right size which 
is necessary for the reconstruction. Matching is not exact and, more important, not quite under control, because it is not clear how to 
separate the independent orthogonality constraints – but it is at least a motivation for a try. In fact, one can add intuition of another kind: 
Racah matrices usually depend on the quantum group/knot theory parameters q and A in a relatively nice way: many of matrix elements 
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factorize into products/ratios of “differentials” (actually, of quantum numbers), and those which do not, deviate from factorized form 
only “moderately”. It is highly non-trivial to get such nearly-factorized quantities satisfying non-linear orthogonality relations – and this 
imposes additional strong constraints, which, however, are still very difficult to formalize. In this paper we report the result of a tedious 
analysis, leading to a very plausible answer for S̄ in representation [3, 1]. It generalizes the celebrated result of [5] for R = [2, 1], which 
was obtained from the first principles in a sophisticated 70-page paper, but became nearly trivial in the approach of [1]. The new formula 
is tested by providing polynomial expressions for HOMFLY-PT Wilson-loop averages for numerous knots, some of which (for 2-strand 
knots) are actually known from other sources. In principle, one can now build a second exclusive matrix S and apply the machinery 
of [6] to do calculations for all arborescent knots [7]. This is an important task, because the arborescent calculus of [6] is based on a 
very interesting effective field theory, which possesses a peculiar gauge invariance, associated with multiplicities in representation theory, 
and which is not yet satisfactorily formulated. One can expect that multiplicity problem does not arise to its full size for representations 
smaller than R = [4, 2], because gauge invariance for them is actually partly broken by diagonal matrices T and T̄ – this appeared to be 
the case for R = [2, 1], but remains to be tested for R = [3, 1]. This test is made possible by the result/conjecture of the present paper, but 
it is left for the future work.

In this paper we concentrate on the problem of its own: evaluation of S̄[3,1] in a particular basis. We begin from reminding the notion 
of Racah matrices in sec. 2, then discuss the moduli space of symmetric orthogonal matrices in sec. 3. After that in sec. 4 we briefly 
comment on the calculation, suggested in [1], which includes the clever choice of a basis – expressed in the form of a special ansatz for 
the shape of S̄ . The complement of the piece S̄ ⊂ S̄ , which was earlier found in [1], is provided in explicit form in the Appendix, the full 
matrix is available – together with all other currently known examples – at the site [8]. A very brief description of immediate knot theory 
applications is provided in sec. 5.

2. The options for Racah calculus

2.1. Racah matrices

The product of m irreducible representations Ri of a Lie algebra G (classical or quantum) can be decomposed into a linear combination 
of irreps:

⊗m
i=1 Ri = ⊕Q W R1,...,Rm

Q ⊗ Q (1)

If representation Q appears at the r.h.s. with non-trivial multiplicity, then there is a space W Q of intertwiners, which is representation of 
the symmetry group Sm . Racah matrix U describes a linear map between the spaces W (3) and it intertwines (R1 ⊗ R2) ⊗ R3 −→ Q and 
R1 ⊗ (R2 ⊗ R3) −→ Q :
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The labeling of U looks natural in another pictorial representation, familiar from the study of dualities:
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A basis in W (3)
Q is naturally labeled by the “intermediate” representations Y or Z in R1 ⊗ R2, thus U is a matrix with the indices Y and Z . 

If not only W (3) at the level of triple products, but also W (2) for ordinary products is non-trivial, then matrix elements U Y Z are actually 
linear operators, acting from W R1,R2

Y to W R2,R3
Z and there are additional pairs of indices (ab) and (cd) with a, b = 1, . . . , dim W R1,R2

Y and 
c, d = 1, . . . , dim W R2,R3

Z . Such operator-valued matrices still do not have a commonly-accepted description, and this – along with extreme 
calculational difficulties – explains the lack of results in the literature.

Various j-symbols can be considered as the mixing matrices [9] between the R-matrices, which are the generators of the braid 
group Bm , e.g.

R(2) = UR(1)U †

Yang–Baxter (braid group) relation
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R(1)R(2)R(1) = R(2)R(1)R(2)

then implies expression for U through R, like the eigenvalue hypothesis [10,11].

2.2. The highest weight method [12]

This is the simplest straightforward approach to evaluation of j-symbols. One just explicitly describes highest weights hQ within the 
Verma modules (R1 ⊗ R2) ⊗ R3 and R1 ⊗ (R2 ⊗ R3) and then compares.

For example, one can describe the fundamental representation [1] = V 0 of S L∞ by the highest weight |0 > and the action of simple 
roots

|k − 1〉 T +
k−→ δi,k · |k〉

(for the sake of brevity we omit the group-dependent coefficients, which can be easily restored). Then

[1] ⊗ [1] = V 00 ⊕ V [10]
is a combination of two representations with highest weights |0〉 ⊗ |0〉 and |1〉 ⊗ |0〉 − q|0〉 ⊗ |1〉. At the next stage schematically(

[1] ⊗ [1]
)

⊗ [1] = V 00 ⊗ V 0 ⊕ V [10] ⊗ V 0 = V 000 ⊕ V (10)0−[2]·001 ⊕ V [10]0 ⊕ V (210) (2)

and

[1] ⊗
(
[1] ⊗ [1]

)
= V 0 ⊗ V 00 ⊕ ⊗V 0 ⊗ V [10] = V 000 ⊕ V 0(10)−[2]·100 ⊕ V 0[10] ⊕ V (210) (3)

where ( ) and [ ] denote q-symmetrization and q-antisymmetrization. Clearly the underlined highest weights in the two cases are different 
and Racah matrix relates them (properly normalized)⎛

⎜⎜⎝
|100>+ 1

q |010>−q[2]·|001>√[2][3]

|100>−q|010>√[2]

⎞
⎟⎟⎠ =

⎛
⎜⎝

1
[2]

√[3]
[2]

√[3]
[2] − 1

[2]

⎞
⎟⎠

⎛
⎜⎝

[2]·|100>−q2|010>−q|001>√[2][3]

|010>−q|001>√[2]

⎞
⎟⎠ (4)

Unfortunately, complexity of calculations rapidly grows with the size of representations. Situation can be improved by more advanced 
description of highest weights, say, by (q-deformed) Vandermonde products [12] and Gelfand–Zeitlin labeling [13], – but only partly. 
Currently, the top achievement on this way is evaluation of inclusive Racah matrices for representations up to R = [4, 2].

2.3. Conformal block monodromies [14] and exclusive matrices S̄ , S

A potentially competitive method uses advances in the theory of conformal blocks. Since they can be represented by (appropriately de-
fined) Dotsenko–Fateev integrals/sums [15] and thus belong to a class of q-hypergeometric functions, their modular properties, which are 
controlled by the j-symbols, should be comprehensible. Advantage of this approach is a relatively simple dependence of vertex operators 
on representation, what gives a chance to get formulas for entire classes of representations at once. For an example of this kind for q = 1
(i.e. for the central charge c = ∞, when multiple integrals are not always needed [16,17]) see [18].

The simplest of all are the 4-point conformal blocks with two vertices in representation R and two in the conjugate representation R̄ . 
The corresponding 6 j-symbols are now called exclusive Racah matrices S̄ and S:

S̄ R :
(
(R ⊗ R̄) ⊗ R −→ R

)
−→

(
R ⊗ (R̄ ⊗ R) −→ R

)
(5)

and

S R :
(
(R ⊗ R) ⊗ R̄ −→ R

)
−→

(
R ⊗ (R ⊗ R̄) −→ R

)
(6)

They are difficult to calculate by the highest weight method, because highest weights of the conjugate representations depend strongly on 
the choice of the group S LN – therefore one needs to calculate for different values of N and then analytically continue.

Instead these matrices can be looked for by the evolution method in knot theory [19,20]. This paper describes a new achievement of 
this approach – for representations R = [r, 1] where multiplicities begin to matter. We immediately reproduce in this way the difficult 
result of [5] for R = [2, 1] and conjecture the answer for R = [3, 1]. This adds to the previously known cases of arbitrary symmetric 
representation R = [r] in [21,22] and rectangular representations R = [rs] in [20,23] (in the latter case actually tabulated are Racah 
matrices for the two-line R = [rr] with r ≤ 5, see [8]). Formulas for transposed representations (say, antisymmetric or two-column) are 
obtained by the change q −→ −q−1 [24].

3. The abundance of matrices S̄ and S

3.1. Yang–Baxter relation

Because of the Yang–Baxter relation the matrices S and S̄ are not independent. If we denote the diagonalized R matrices in the 
channels R ⊗ R and R ⊗ R̄ by T and T̄ respectively, then
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S†T S = T̄ −1 S̄ T̄ −1 (7)

Moreover, by its definition S̄ is a symmetric orthogonal matrix, thus (7) defines S as the diagonalizing matrix of symmetric (but no longer 
orthogonal) T −1 S̄ T̄ −1, i.e. S defines S̄ and vice versa – for given diagonal T and T̄ with no degenerate eigenvalues. If T = T̄ and S = S̄ , 
then (7) becomes a non-trivial quadratic relation, presumably leading to the eigenvalue hypothesis [10,11]. Degeneration of eigenvalues of 
T and T̄ signals about non-trivial multiplicities, though the situation is somewhat more involved: there can be “accidental” degeneracies, 
unrelated to multiplicities (at least in an obvious way) and conversely, there can be multiplicities, but no degeneracies (eigenvalues can 
still differ by a sign) – both phenomena will show up in the discussion or representations R = [r, 1] in this paper.

3.2. Moduli space of symmetric orthogonal matrices

For ordinary orthogonal matrices of the size N ×N one usually imposes N (N+1)
2 orthonormality constraints on N 2 elements, and if 

the constraints are all independent this leaves N 2 − N (N+1)
2 = N (N−1)

2 free parameters. The simplest way to justify this is just to note 
that for any antisymmetric matrix exp(antisymmetric) = orthogonal.

However, such exponentiation will never produce a symmetric matrix (with the only exception of unity), i.e. symmetric orthogonal 
matrices do not possess exponential realization. Already for N = 2 they have a form σ3 · eiασ2 rather than eiασ2 – and this example is 
enough to demonstrate that now of N (N+1)

2 orthogonality constraints on N (N+1)
2 elements are not always independent. If they were, 

there would be no free parameters (moduli) at all, but in fact the set of symmetric orthogonal matrices, to which S̄ belongs, is just small.

3.3. Eigenvalues and signature of S̄

Racah matrices, needed in knot theory, are functions of parameters q and A = qN , which can be arbitrary complex numbers. However, 
since the final quantities made out of them are Laurent polynomials, one can easily continue from the domain where the matrix in a 
particular representation R is real-valued (for this one should just keep A and q real and |A| > |q|±|R|). Real valued symmetric matrix S̄
can be diagonalized by conjugation with orthogonal matrix and has real eigenvalues. Since S̄ is at the same time orthogonal, these eigen-
values can be only ±1. Naturally the spaces of such matrices are classified by their signatures – the difference between the numbers of 
eigenvalues +1 and −1, and dimension of the moduli space of symmetric orthogonal matrices depends on the signature. If all eigenvalues 
are the same, there are no moduli: orthogonal conjugate of unit matrix is unit matrix itself.

Since eigenvalues do not depend on q, they can be evaluated at q = 1, when diagonal T̄ is also made from ±1 and the eigenvalues of S̄
merge with those of T̄ −1 S̄ T̄ −1, which, according to (7), are just the elements of diagonal T . This means that for every Racah matrix S̄ we 
actually know its signature – it coincides with the signature of T . For example, for all symmetric representations R = [r] the eigenvalues of 
S̄ are just an alternating sequence +1, −1, +1, −1, . . . thus signature is 0 and 1 for even and odd N = r + 1 respectively, while signature 
−1 does not appear.

3.4. The elementary cases of N = 3 and N = 2

For example, for N = 3 the condition⎛
⎝ d1 a b

a d2 c
b c d3

⎞
⎠

2

= I (8)

implies

a2 = (d1 + d3)(d2 + d3)

b2 = (d1 + d2)(d2 + d3)

c2 = (d1 + d2)(d1 + d3) (9)

and

(d1 + d2 + d3)
2 = 1 (10)

what leaves a 2-parametric set, which for N = 2 (c = 0, d3 = 1) reduces to a 1-parametric(
cos θ sin θ

sin θ − cos θ

)
(11)

(note that this is a rotation, complemented by a reflection, and determinant of the matrix is −1 rather than 1).
One can instead express the entries of the symmetric orthogonal matrix through those in the first line, satisfying a2 + b2 + d2

1 = 1:

c = ± ab

1 ± d1
= ±ab(1 ∓ d1)

1 − d2
1

d2 = −d1 ∓ b2

1 ± d1
= ∓1 ± a2

1 ± d1
= −a2d1 ± b2

1 − d2
1

(12)

d3 = −d1 ∓ a2

1 ± d1
= ∓1 ± b2

1 ± d1
= −b2d1 ± a2

1 − d2
1

(13)

so that d1 + d2 + d3 = ∓1.
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The sign ambiguity is essential for our purposes: only one of the two branches (the one with 1 − d1 in denominators) reproduces the 
right expression [19] for Racah matrix S̄[2] ,

S̄[2] = [2]
[N][N + 1]

⎛
⎜⎜⎜⎜⎜⎜⎝

1
√[N + 1][N − 1] [N]√[N+3][N−1]

[2]
√[N + 1][N − 1] [N+1]

[2][N+2]
(
[N + 3][N − 1] − 1

)
−[N]√[N+3][N+1]

[N+2]

[N]√[N+3][N−1]
[2] − [N]√[N+3][N+1]

[N+2]
[N]

[N+2]

⎞
⎟⎟⎟⎟⎟⎟⎠

=

= 1

D1 D0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[2]{q}2

D1 D0

[2]{q}
D0

√
D−1
D1

√
D3 D−1

D1

[2]{q}
D0

√
D−1
D1

D1
D2

(
D3 D−1 − {q}2

)
−[2]{q} D0

√
D3 D1

D2

√
D3 D−1

D1
−[2]{q} D0

√
D3 D1

D2
[2]{q}2 D0

D2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(14)

Technically this is related to factorization identity N(N + 1) − 2 = (N − 1)(N + 2), which has no analogue for N(N + 1) + 2. The true reason 
is that different branches provide matrices with two different signatures: +1 and −1, and only the former is the right one for Racah 
matrix S̄[2] .

Thus it is not a surprise that Racah matrix S̄[1] which has signature 0 is of the form (11) without any reservations:

S̄[1] = 1

[N]

⎛
⎝ 1

√[N + 1][N − 1]
√[N + 1][N − 1] −1

⎞
⎠ = 1

D0

⎛
⎝ {q} √

D1 D−1

√
D1 D−1 −{q}

⎞
⎠ (15)

Here and further in the text we use the standard notation:

A = qN , {x} = x − 1

x
, Dk = {Aqk} = Aqk − 1

Aqk
, [n] = {qn}

{q} = qn − q−n

q − q−1
(16)

3.5. The case of generic N

For higher N the out-of-diagonal constraints look like

Pi j = s̄i j
(
s̄ii + s̄ j j

) +
∑

k �=i, j

s̄ik s̄ jk = 0 for i �= j (17)

while the diagonal constraints are

Pii =
N∑

k=1

s̄2
ik − 1 = 0 (18)

and it is not immediately clear which of them are actually independent. As we shall see in this subsection, the answer is indeed far from 
obvious.

The dimension of moduli space is equal to corank of the N (N+1)
2 × N (N+1)

2 matrix ∂Pi j
∂ s̄kl

, i.e. to the number of its vanishing eigenval-
ues – at a point where all Pi j = 0. One can easily measure these eigenvalues at symmetric representations R = [r], where the symmetric 
orthogonal matrix S̄ of signature parity(r + 1) = parity(N ) is explicitly known from [22]. The eigenvalues are ±2 and 0 with the multi-
plicities

r 1 2 3 4 5 6 7 8 9 . . . r
N 2 3 4 5 6 7 8 9 10 r + 1

N (N+1)
2 3 6 10 15 21 28 36 45 55 (r+1)(r+2)

2

#(2) 1 3 3 6 6 10 10 15 15 1
2 · (entier

[ r
2

] + 1
) · (entier

[ r
2

] + 2
)

#(−2) 1 1 3 3 6 6 10 10 15 1
2 ·

(
entier

[
r−1

2

]
+ 1

)
·
(

entier
[

r−1
2

]
+ 2

)

#(0) 1 2 4 6 9 12 16 20 25 r + entier
[

r−1
2

]
· entier

[ r
2

]

(19)

The answer can be different for non-symmetric representations: for R = [2, 2] and R = [3, 3] the matrices S̄ have sizes 6 × 6 and 10 × 10, 
while the eigenvalue multiplicities are (#2, #−2, #0) = (10, 3, 8) and (#2, #−2, #0) = (21, 10, 24) respectively, i.e. different from those for 
R = [5] and R = [9] with the same sizes of S̄ . However, different are also the signatures: for R = [2, 2] and R = [3, 3] they are equal to 2

(and further raise to 3 for R = [4, 4] – presumably it is equal to entier
[

r+2
2

]
for R = [r, r]).



296 A. Morozov / Physics Letters B 766 (2017) 291–300
However, in the case of the simplest of non-rectangular representations R = [r, 1] the signature is just the same parity(N ) as for 
R = [r] in the case. Remarkably, in support of our above-presented arguments, the same as for R = [9] is the answer for the eigenvalue 
multiplicity at the 10 × 10 Racah matrix S̄ in representation R = [2, 1].

3.6. Conjecture about the moduli of symmetric orthogonal matrices

This gives certain support to the following conjecture: the dimension of moduli space for N ×N symmetric orthogonal matrices with 
the signature parity(N ) is

DN = N − 1 + entier

[
N − 2

2

]
· entier

[
N − 1

2

]
(20)

i.e. for large N about a quarter of the elements of S̄ are not fixed by orthogonality constraints – twice less than for the ordinary orthogonal 
matrices. Still this freedom is quite big. It means that we should know at least N (N+1)

2 −DN elements of the matrix S̄ to have a chance 
of restoring the rest from orthogonality constraints, as suggested in [1].

Of course, there is no immediate way to solve a set of quadratic equations (unless the advanced methods of non-linear algebra [25] are 
used, requiring the explicit knowledge of the relevant resultants). The knowledge of a part of the matrix allows to considerably simplify 
this problem – as explained in [1] it actually reduces to a system of linear equations for R = [2, 1]. In the next section we comment on 
bigger representations – there things are not so simple. Still, we get through to the final answer at least in the case of R = [3, 1].

4. Racah matrix from [1]

Discovered in [1] was the shape of the differential expansion [21,19,26,23] for colored HOMFLY-PT polynomials of the antiparallel-
double-braid knots (a certain 2-parametric generalization of twist knots) in representations R = [3, 1]. After this structure is revealed, 
one knows the polynomials themselves and from them one can easily read a piece of Racah matrix S̄ . It is actually entire S̄ for the 
multiplicity-free rectangular representations R = [rs], but for the non-rectangular ones, beginning from R = [r, 1], this is indeed a piece, 
moreover, a relatively small one. Namely, extracted is a 3r × 3r sub-matrix S̄ of S̄[r,1] , which has the size (7r − 4) × (7r − 4) – and com-
parison with (20) shows that this is far below the need: 3r(3r+1)

2 ∼ 9
2 r2 is parametrically much less than the half of (7r−4)(7r−3)

2 ∼ 49
2 r2. 

To cure this problem it was suggested in [1] to make an educated guess and look for S̄ in the special form, consistent with the empirical 
properties of the embedding S̄ −→ S̄:

S̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j̃ = 2, . . . , r j = 1, . . . , r − 1 j = 1, . . . , r − 1

0 j̃,1 j̃,2 j1 r1 r j,1 j,2 j,3 j,4

0 S̄00
1
2 S̄0 j̃

1
2 S̄0 j̃ S̄0, j1 S̄0,r1 S̄0r

1
2 S̄0 j

1
2 S̄0 j 0 0

ĩ,1 1
2 S̄0,ĩ

1
4 S̄ĩ j̃

1
4 S̄ĩ j̃

1
2 S̄ĩ, j1 0 1

2 S̄ĩ,r
1
2 S̄ĩ j − xij xi j

Yi j+yi j
2

Yij−yi j
2

ĩ,2 1
2 S̄0,ĩ

1
4 S̄ĩ j̃

1
4 S̄ĩ j̃

1
2 S̄ĩ, j1 0 1

2 S̄ĩ,r
1
2 S̄ĩ j − xij xi j

−Yij+yi j
2

−Yij−yi j
2

i1 S̄0,i1
1
2 S̄i1, j̃

1
2 S̄i1, j̃ S̄i1, j1 S̄i1,r1 S̄i1,r S̄i1, j − uij ui j vi j −vij

r1 S̄0,r1 0 0 S̄i1,r1 S̄r1,r1 S̄r1,r S̄r1, j 0 0 0

r S̄0r
1
2 S̄r, j̃

1
2 S̄r, j̃ S̄r, j1 S̄r,r1 S̄r,r S̄r j − U j U j V j −V j

i,1 1
2 S̄0i

1
2 S̄i, j̃ − x ji

1
2 S̄i, j̃ − x ji S̄i, j1 − u ji S̄i,r1 S̄ir − Ui zi j|11 zi j|12 zi j|13 zi j|14

i,2 1
2 S̄0i x ji x ji u ji 0 Ui zi j|21 zi j|22 zi j|23 zi j|24

i,3 0
Yij+yi j

2
−Yij+yi j

2 v ji 0 V i zi j|31 zi j|32 zi j|33 zi j|34

i,4 0
Yij−yi j

2
−Yij−yi j

2 −v ji 0 −V i zi j|41 zi j|42 zi j|43 zi j|44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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This is a significant improvement: undetermined now are the 3(r − 1)2 parameters x, y, Y , 2r(r − 1) parameters u, v and 
2(r − 1)(4r − 3) parameters z, i.e. a total of (13r − 9)(r − 1), what only slightly exceeds D7r−4 ∼ 49

4 r2. Moreover, some r(r−1)
2 com-

binations of z are also expressible through S – thus, if all orthogonality constraints were independent for this ansatz they would be 
enough.

For small r such estimates are even more optimistic.
For r = 1 there is no freedom left – and indeed, this is a simple case, R = [1, 1] is equivalent to R = [2], it is sufficient to switch 

q −→ −q−1 in all the formulas.
For r = 2 (R = [2, 1]) there are 17 or even 16 free parameters (the sum of all z is a known element of S̄), what is considerably smaller 

than D10 = 25 – and indeed, as explained in [1], in this case orthogonality constraints are sufficient to restore the matrix S̄ from S and 
the above ansatz. This reproduces rather easily the result of [5], obtained by a complicated first-principle calculation. In fact, with minor 
additional guesses, coming from the desire to have factorization into quantum numbers, in this case it is sufficient to solve only linear
equations, what makes the calculation really simple.

For r = 3 the number of free parameters is 60 or 57, while the conjecture (20) gives D17 = 72 – thus there are also chances 
for success. This time essentially quadratic orthogonality equations need to be used and the calculation is pretty tedious. In re-
sult we obtained a one-parametric family of symmetric orthogonal matrices, with the modulus, parameterized by the angle θ , 
which enters only the four Y -parameters. Thus, orthogonality constraints are not sufficient in this case, even with a restrictive 
ansatz and with certain factorization guesses. This angle, however, can be fixed from additional requirement – that the eigen-
values of T̄ −1 S̄ T̄ −1 are given by T . Moreover, after the angle is found in this way, factorization of the matrix elements S̄
significantly improves – what means that the right value could be also guessed from factorization studies, if more effort was 
made.

See Appendix for the list of parameters in S̄[31] , which remained undetermined in [1].

5. Torus test and new knot polynomials

Available test of these formulas is provided by evaluation of the 2-strand torus knots, which can be represented as 2-bridge knots, 
expressible only through S̄ and T̄ matrices:

Torus(2,2k + 1) = Finger
(

2, . . . ,2︸ ︷︷ ︸
2k times

)

Pictorially this looks as

�
����

����
	

2m1
���


�

2m2
�
����
�

	

2m3
���


�

	

2m4

. . .
����

�

	

where boxes contain 2m twists of the two lines:

2

���� ���


���� ���� =
����� ���


���� �����

Expression for HOMFLY-PT polynomial, obtained by the standard rules of [6], is

HFingerR (2m1,2m2,...)

R = dR ·
(

S̄ T̄ 2m1 S̄ T̄ 2m2 S̄ . . . T̄ 2m2k S̄
)

∅∅ (21)

Bar over “finger” reminds that it involves only crossings of anti-parallel lines. Since knot polynomials for torus knots are known for 
arbitrary representation R from the Rosso–Jones formula [27,24], one can make a comparison – and it is indeed successful. After that one 
can immediately calculate [31]-colored polynomials for all knots with arbitrary parameters m1, m2, . . . – they are all 2-bridge and thus 
not too many. It looks plausible, but is not quite unclear if all the 2-bridge can be brought to this form, with antiparallel crossings only. 
Still this produces quite a few new results. The simplest single-antiparallel-finger knots are:
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knot {m} knot {m} knot {m} knot {m} knot {m}

31 1,1 81 1,−3 91 1,1,1,1,1,1,1,1 101 1,−4 1025 ?

82 1,1,1,1,1,−1 92 1,4 102 1,1,1,1,1,1,1,−1 1026 ?

41 1,−1 83 2,−2 93 2,1,1,1,1 103 2,−3 1027 ?

84 2,−1,−1,−1 94 1,1,1,3 104 1,1,1,−3 1028 ?

51 1,1,1,1 86 1,1,2,−1 95 3,2 105 1,1,1,1,1,1,−1,1 1029 ?

52 1,2 87 1,1,1,1,−1,−1 96 1,1,1,1,2,1 106 1,1,1,1,2,−1 1030 ?
88 1,1,−2,−1 97 1,1,3,1 107 3,1,1,−1 1031 ?

61 1,−2 89 1,1,1,−1,−1,−1 98 1,1,−2,1 108 1,1,1,1,1,−2 1032 ?

62 1,1,1,−1 811 ? 99 1,1,1,2,1,−1 109 1,1,1,1,1,−1,−1,−1 1033 ?
63 1,1,−1,−1 812 1,−1,1,−1 910 ? 1010 3,1,−1,−1 1034 ?

813 ? 911 1,−1,1,1,1,1 1011 1,1,2,−2 1035 1,−1,2,−1

71 1,1,1,1,1,1 814 ? 912 2,−1,1,1 1012 1,1,1,2,1,1 1036 ?

72 1,3 913 2,2,1,1 1013 1,−1,1,−2 1037 ?

73 1,1,1,2 85 914 ? 1014 1,1,1,2,1,−1 1038 ?
74 2,2 810 3 − bridge 915 1,−1,2,1 1015 1,1,1,1,−2,−1 1039 ?
75 1,1,2,1 815− knots 917 ? 1016 ? 1040 ?
76 1,1,−1,1 −821 918 2,1,2,1 1017 ? 1041 ?
77 1,−1,−1,1 919 1,−1,−2,1 1018 ? 1042 ?

920 ? 1019 ? 1043 ?
921 ? 1020 1,1,3,−1 1044 ?
923 ? 1021 ? 1045 ?
926 ? 1022 ?
927 ? 1023 ? 1046− 3 − bridge
931 ? 1024 ? −10165 knots

Every knot in the table has many realizations of this kind, we include only the simplest one. Underlined are the knots, describable by only 
two non-vanishing parameters m1 and m2 – these are double braids, which possess a remarkable factorization of differential-expansion 
coefficients into those for twist knots (double-underlined), and were the source of knowledge about the sub-matrix S̄ from [1]. Sensitive 
to the other elements of S̄ (though not to the angle θ , see the Appendix) are non-underlined knots. For testing our formulas the torus 
knots were used – the simplest of them are present in the table and marked by boxes. Omitted are the knots which are not 2-bridge, i.e. 
not representable as single fingers with both types of crossings allowed, parallel and antiparallel. The ones which are not yet (?) identified 
as single antiparallel fingers are labeled by question marks.

The next immediate things to do are extraction of the matrix S from (7) and development of arborescent calculus a la [6] for repre-
sentation R = [3, 1].
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Appendix A

We list here the entries of S̄ for representation R = [3, 1], complementing the matrix elements of the non-orthogonal sub-matrix S , 
which was derived in [1] from the newly-discovered differential expansion of the [r, 1]-colored HOMFLY-PT polynomials.

x21 = {q}2

D2
0

·
√

D−2
D2

·
(

Aq2 + 1
Aq2

)
, x22 = − D3 D1−{q}2

[2]D0
·
√

D−2
D3 D2 D1

y21 = [2]{q}
D2

0

√[2]D3 D2
·
(

2D3 D−1 − D2
0 + {q}2

)
y22 = − 1

[2]D0
·
√

D4
D3 D2 D1

·
(

D2
1 − D1 D−1 − 2[3]{q}2

)

Y21 = cos θ = {q}
√ [2]

D3 D2
Y22 = sin θ =

√
D4 D1
D3 D2

x31 = − 1
[3]D0

·
√ [2]D4 D1 D−2

D2
, x32 = {q}

[3]D1
·
√

D4 D−2
[2]D3 D2

y31 = 2D2−[3]D0[3]D0
·
√

D4 D1
D3 D2

y32 = − {q}
[3]D1

√[2]D3 D2
·
(
[4]D1 − {q}

(
Aq + 1

Aq

))

Y31 = − sin θ = −
√

D4 D1 Y32 = cos θ = {q}
√ [2]
D3 D2 D3 D2
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Matrix S̄[3,1] is symmetric and orthogonal for arbitrary value of parameter θ . Moreover, θ does not contribute to expressions for 2-strand 
torus knots and other single-finger knots, considered in sec. 5. However, it affects the eigenvalues of T̄ −1 S̄ T̄ −1 and is fixed by comparison 
with the entries of T .

u11 = {q}D3
D2 D0

·
√

D−3
D−1

v11 = {q}
D2 D0

·
√ [2]D3 D−1 D−3

D−2

u12 = D3[2]D2
·
√

D3 D−3
D1 D−1

v12 = − 1
[2]D2

·
√

D4 D3 D−1 D−3
D1 D−2

u21 = D4
[3]D2 D2

0
· √D3 D1 D−1 D−3 v21 = D4 D−1

[3]D2 D2
0

·
√ [2]D1 D−1 D−3

D−2

u22 = − {q}D4[3][2]D2 D1 D0
· √D−1 D−3 v22 = {q}([4]D1+D0

)
[3][2]D2 D1 D0

·
√

D4 D−1 D−3
D−2

U1 = [2]D−2
[3]D2 D0

· √D5 D1 V 1 = − 1
[3]D0

·
√ [2]D5 D1 D−2

D3

U2 = − {q}D−2
[3]D2 D1

·
√

D5
D3

V 2 = − {q}
[3]D1

·
√

D5 D−2
D4 D3

The z-constituents of S̄ are listed in an order, which reflects their hidden symmetry:

S̄10,10 = [2]{q}2

D3 D2 D2
0 D−2

·
(
[2]D4 D0 D−3 + D2 D2

0 − [2]{q}2(2D1 + D−1)
)

S̄10,11 = [2]{q}2

D2 D2
0

·
(

D3 + [2]D−2

)

S̄10,14 = {q}
D2 D0 D−2

√
D3 D1

·
(

D5 D0 D−3 + D4 D0 D−2 − 2[2]{q}2 D1

)

S̄10,15 = {q}
D2 D0

√
D3 D1

·
( [4]

[2] D4 D0 + {q}2
)

S̄11,11 = {q}2

D2 D2
0

·
(
[2]D3 − D0

)
S̄11,14 = {q}(D4+[2]2 D−2

)
[2]D2 D0

·
√

D3
D1

S̄11,15 = −{q}([2]D1+D0
)

[2]D2 D0
·
√

D3
D1

S̄12,14 = −{q}([2]D−1−D2
)

D2 D0
·
√

D1[2]D−2
S̄12,15 = − {q}

D2 D0
·
√

D1 D−2
[2]

S̄13,14 = − S̄12,14 S̄13,15 = − S̄12,15

S̄14,14 = D5 D2 D2
0 − [2]{q}2

(
[4][3]D5 D0 + ([3] + {q}2)D4 D0

)
− [4]2[2]{q}4 + [2]3{q}6

S̄14,15 = D5 D−2 − [6]
[3] {q}2

[2]2 D2 D1
S̄15,15 = D1 D0 + [2]{q}2

[2]2 D2 D1

S̄10,12 = [2]2{q}3

D2 D2
0

√[2]D3 D−2

(
q A2 − 1

q A2

)
S̄10,13 = − S̄10,12 S̄10,16 = − {q}2

D2 D0

√
D4

D3 D1 D−2

(
q A2 − 1

q A2

)
S̄10,17 = − S̄10,16

S̄11,12 = {q}2

D2 D2
0

√[2]D3 D−2
S̄11,13 = − S̄11,12 S̄11,16 = − {q}

[2]D2 D0

√
D4 D3 D−2

D1
S̄11,17 = − S̄11,16

S̄12,12 = −[2]{q}2

D2 D2
0

S̄12,13 = − S̄12,12 S̄12,16 = − {q}
[2]D2 D0

√[2]D4 D1 S̄12,17 = − S̄12,16

S̄13,12 = − S̄12,12 S̄13,13 = S̄12,12 S̄13,16 = − S̄12,16 S̄13,17 = S̄12,16

S̄14,16 = D5 D2
0−[2]{q}4 D2

[2]2 D2 D1
√

D4 D−2
S̄14,17 = − S̄14,16

S̄15,16 =
√

D4 D−2

[2]2 D2
S̄15,17 = − S̄12,16

S̄16,16 = D2 D1+[2]{q}2

[2]2 D2 D1
S̄16,17 = − S̄16,16

S̄17,16 = − S̄16,16 S̄17,17 = S̄16,16
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